Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20 return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25 return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34 return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39 return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56 return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78 if (!rq->online)
79 return;
80
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168 return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 #define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189 #define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
191
192 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193 {
194 return rt_se->my_q;
195 }
196
197 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
198 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
203 struct sched_rt_entity *rt_se = rt_rq->rt_se;
204
205 if (rt_rq->rt_nr_running) {
206 if (rt_se && !on_rt_rq(rt_se))
207 enqueue_rt_entity(rt_se);
208 if (rt_rq->highest_prio.curr < curr->prio)
209 resched_task(curr);
210 }
211 }
212
213 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
214 {
215 struct sched_rt_entity *rt_se = rt_rq->rt_se;
216
217 if (rt_se && on_rt_rq(rt_se))
218 dequeue_rt_entity(rt_se);
219 }
220
221 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
222 {
223 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
224 }
225
226 static int rt_se_boosted(struct sched_rt_entity *rt_se)
227 {
228 struct rt_rq *rt_rq = group_rt_rq(rt_se);
229 struct task_struct *p;
230
231 if (rt_rq)
232 return !!rt_rq->rt_nr_boosted;
233
234 p = rt_task_of(rt_se);
235 return p->prio != p->normal_prio;
236 }
237
238 #ifdef CONFIG_SMP
239 static inline const struct cpumask *sched_rt_period_mask(void)
240 {
241 return cpu_rq(smp_processor_id())->rd->span;
242 }
243 #else
244 static inline const struct cpumask *sched_rt_period_mask(void)
245 {
246 return cpu_online_mask;
247 }
248 #endif
249
250 static inline
251 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
252 {
253 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
254 }
255
256 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
257 {
258 return &rt_rq->tg->rt_bandwidth;
259 }
260
261 #else /* !CONFIG_RT_GROUP_SCHED */
262
263 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
264 {
265 return rt_rq->rt_runtime;
266 }
267
268 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
269 {
270 return ktime_to_ns(def_rt_bandwidth.rt_period);
271 }
272
273 #define for_each_leaf_rt_rq(rt_rq, rq) \
274 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
275
276 #define for_each_sched_rt_entity(rt_se) \
277 for (; rt_se; rt_se = NULL)
278
279 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
280 {
281 return NULL;
282 }
283
284 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
285 {
286 if (rt_rq->rt_nr_running)
287 resched_task(rq_of_rt_rq(rt_rq)->curr);
288 }
289
290 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
291 {
292 }
293
294 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
295 {
296 return rt_rq->rt_throttled;
297 }
298
299 static inline const struct cpumask *sched_rt_period_mask(void)
300 {
301 return cpu_online_mask;
302 }
303
304 static inline
305 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
306 {
307 return &cpu_rq(cpu)->rt;
308 }
309
310 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
311 {
312 return &def_rt_bandwidth;
313 }
314
315 #endif /* CONFIG_RT_GROUP_SCHED */
316
317 #ifdef CONFIG_SMP
318 /*
319 * We ran out of runtime, see if we can borrow some from our neighbours.
320 */
321 static int do_balance_runtime(struct rt_rq *rt_rq)
322 {
323 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
324 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
325 int i, weight, more = 0;
326 u64 rt_period;
327
328 weight = cpumask_weight(rd->span);
329
330 spin_lock(&rt_b->rt_runtime_lock);
331 rt_period = ktime_to_ns(rt_b->rt_period);
332 for_each_cpu(i, rd->span) {
333 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
334 s64 diff;
335
336 if (iter == rt_rq)
337 continue;
338
339 spin_lock(&iter->rt_runtime_lock);
340 /*
341 * Either all rqs have inf runtime and there's nothing to steal
342 * or __disable_runtime() below sets a specific rq to inf to
343 * indicate its been disabled and disalow stealing.
344 */
345 if (iter->rt_runtime == RUNTIME_INF)
346 goto next;
347
348 /*
349 * From runqueues with spare time, take 1/n part of their
350 * spare time, but no more than our period.
351 */
352 diff = iter->rt_runtime - iter->rt_time;
353 if (diff > 0) {
354 diff = div_u64((u64)diff, weight);
355 if (rt_rq->rt_runtime + diff > rt_period)
356 diff = rt_period - rt_rq->rt_runtime;
357 iter->rt_runtime -= diff;
358 rt_rq->rt_runtime += diff;
359 more = 1;
360 if (rt_rq->rt_runtime == rt_period) {
361 spin_unlock(&iter->rt_runtime_lock);
362 break;
363 }
364 }
365 next:
366 spin_unlock(&iter->rt_runtime_lock);
367 }
368 spin_unlock(&rt_b->rt_runtime_lock);
369
370 return more;
371 }
372
373 /*
374 * Ensure this RQ takes back all the runtime it lend to its neighbours.
375 */
376 static void __disable_runtime(struct rq *rq)
377 {
378 struct root_domain *rd = rq->rd;
379 struct rt_rq *rt_rq;
380
381 if (unlikely(!scheduler_running))
382 return;
383
384 for_each_leaf_rt_rq(rt_rq, rq) {
385 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
386 s64 want;
387 int i;
388
389 spin_lock(&rt_b->rt_runtime_lock);
390 spin_lock(&rt_rq->rt_runtime_lock);
391 /*
392 * Either we're all inf and nobody needs to borrow, or we're
393 * already disabled and thus have nothing to do, or we have
394 * exactly the right amount of runtime to take out.
395 */
396 if (rt_rq->rt_runtime == RUNTIME_INF ||
397 rt_rq->rt_runtime == rt_b->rt_runtime)
398 goto balanced;
399 spin_unlock(&rt_rq->rt_runtime_lock);
400
401 /*
402 * Calculate the difference between what we started out with
403 * and what we current have, that's the amount of runtime
404 * we lend and now have to reclaim.
405 */
406 want = rt_b->rt_runtime - rt_rq->rt_runtime;
407
408 /*
409 * Greedy reclaim, take back as much as we can.
410 */
411 for_each_cpu(i, rd->span) {
412 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
413 s64 diff;
414
415 /*
416 * Can't reclaim from ourselves or disabled runqueues.
417 */
418 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
419 continue;
420
421 spin_lock(&iter->rt_runtime_lock);
422 if (want > 0) {
423 diff = min_t(s64, iter->rt_runtime, want);
424 iter->rt_runtime -= diff;
425 want -= diff;
426 } else {
427 iter->rt_runtime -= want;
428 want -= want;
429 }
430 spin_unlock(&iter->rt_runtime_lock);
431
432 if (!want)
433 break;
434 }
435
436 spin_lock(&rt_rq->rt_runtime_lock);
437 /*
438 * We cannot be left wanting - that would mean some runtime
439 * leaked out of the system.
440 */
441 BUG_ON(want);
442 balanced:
443 /*
444 * Disable all the borrow logic by pretending we have inf
445 * runtime - in which case borrowing doesn't make sense.
446 */
447 rt_rq->rt_runtime = RUNTIME_INF;
448 spin_unlock(&rt_rq->rt_runtime_lock);
449 spin_unlock(&rt_b->rt_runtime_lock);
450 }
451 }
452
453 static void disable_runtime(struct rq *rq)
454 {
455 unsigned long flags;
456
457 spin_lock_irqsave(&rq->lock, flags);
458 __disable_runtime(rq);
459 spin_unlock_irqrestore(&rq->lock, flags);
460 }
461
462 static void __enable_runtime(struct rq *rq)
463 {
464 struct rt_rq *rt_rq;
465
466 if (unlikely(!scheduler_running))
467 return;
468
469 /*
470 * Reset each runqueue's bandwidth settings
471 */
472 for_each_leaf_rt_rq(rt_rq, rq) {
473 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
474
475 spin_lock(&rt_b->rt_runtime_lock);
476 spin_lock(&rt_rq->rt_runtime_lock);
477 rt_rq->rt_runtime = rt_b->rt_runtime;
478 rt_rq->rt_time = 0;
479 rt_rq->rt_throttled = 0;
480 spin_unlock(&rt_rq->rt_runtime_lock);
481 spin_unlock(&rt_b->rt_runtime_lock);
482 }
483 }
484
485 static void enable_runtime(struct rq *rq)
486 {
487 unsigned long flags;
488
489 spin_lock_irqsave(&rq->lock, flags);
490 __enable_runtime(rq);
491 spin_unlock_irqrestore(&rq->lock, flags);
492 }
493
494 static int balance_runtime(struct rt_rq *rt_rq)
495 {
496 int more = 0;
497
498 if (rt_rq->rt_time > rt_rq->rt_runtime) {
499 spin_unlock(&rt_rq->rt_runtime_lock);
500 more = do_balance_runtime(rt_rq);
501 spin_lock(&rt_rq->rt_runtime_lock);
502 }
503
504 return more;
505 }
506 #else /* !CONFIG_SMP */
507 static inline int balance_runtime(struct rt_rq *rt_rq)
508 {
509 return 0;
510 }
511 #endif /* CONFIG_SMP */
512
513 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
514 {
515 int i, idle = 1;
516 const struct cpumask *span;
517
518 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
519 return 1;
520
521 span = sched_rt_period_mask();
522 for_each_cpu(i, span) {
523 int enqueue = 0;
524 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
525 struct rq *rq = rq_of_rt_rq(rt_rq);
526
527 spin_lock(&rq->lock);
528 if (rt_rq->rt_time) {
529 u64 runtime;
530
531 spin_lock(&rt_rq->rt_runtime_lock);
532 if (rt_rq->rt_throttled)
533 balance_runtime(rt_rq);
534 runtime = rt_rq->rt_runtime;
535 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
536 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
537 rt_rq->rt_throttled = 0;
538 enqueue = 1;
539 }
540 if (rt_rq->rt_time || rt_rq->rt_nr_running)
541 idle = 0;
542 spin_unlock(&rt_rq->rt_runtime_lock);
543 } else if (rt_rq->rt_nr_running)
544 idle = 0;
545
546 if (enqueue)
547 sched_rt_rq_enqueue(rt_rq);
548 spin_unlock(&rq->lock);
549 }
550
551 return idle;
552 }
553
554 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
555 {
556 #ifdef CONFIG_RT_GROUP_SCHED
557 struct rt_rq *rt_rq = group_rt_rq(rt_se);
558
559 if (rt_rq)
560 return rt_rq->highest_prio.curr;
561 #endif
562
563 return rt_task_of(rt_se)->prio;
564 }
565
566 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
567 {
568 u64 runtime = sched_rt_runtime(rt_rq);
569
570 if (rt_rq->rt_throttled)
571 return rt_rq_throttled(rt_rq);
572
573 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
574 return 0;
575
576 balance_runtime(rt_rq);
577 runtime = sched_rt_runtime(rt_rq);
578 if (runtime == RUNTIME_INF)
579 return 0;
580
581 if (rt_rq->rt_time > runtime) {
582 rt_rq->rt_throttled = 1;
583 if (rt_rq_throttled(rt_rq)) {
584 sched_rt_rq_dequeue(rt_rq);
585 return 1;
586 }
587 }
588
589 return 0;
590 }
591
592 /*
593 * Update the current task's runtime statistics. Skip current tasks that
594 * are not in our scheduling class.
595 */
596 static void update_curr_rt(struct rq *rq)
597 {
598 struct task_struct *curr = rq->curr;
599 struct sched_rt_entity *rt_se = &curr->rt;
600 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
601 u64 delta_exec;
602
603 if (!task_has_rt_policy(curr))
604 return;
605
606 delta_exec = rq->clock - curr->se.exec_start;
607 if (unlikely((s64)delta_exec < 0))
608 delta_exec = 0;
609
610 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
611
612 curr->se.sum_exec_runtime += delta_exec;
613 account_group_exec_runtime(curr, delta_exec);
614
615 curr->se.exec_start = rq->clock;
616 cpuacct_charge(curr, delta_exec);
617
618 sched_rt_avg_update(rq, delta_exec);
619
620 if (!rt_bandwidth_enabled())
621 return;
622
623 for_each_sched_rt_entity(rt_se) {
624 rt_rq = rt_rq_of_se(rt_se);
625
626 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
627 spin_lock(&rt_rq->rt_runtime_lock);
628 rt_rq->rt_time += delta_exec;
629 if (sched_rt_runtime_exceeded(rt_rq))
630 resched_task(curr);
631 spin_unlock(&rt_rq->rt_runtime_lock);
632 }
633 }
634 }
635
636 #if defined CONFIG_SMP
637
638 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
639
640 static inline int next_prio(struct rq *rq)
641 {
642 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
643
644 if (next && rt_prio(next->prio))
645 return next->prio;
646 else
647 return MAX_RT_PRIO;
648 }
649
650 static void
651 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
652 {
653 struct rq *rq = rq_of_rt_rq(rt_rq);
654
655 if (prio < prev_prio) {
656
657 /*
658 * If the new task is higher in priority than anything on the
659 * run-queue, we know that the previous high becomes our
660 * next-highest.
661 */
662 rt_rq->highest_prio.next = prev_prio;
663
664 if (rq->online)
665 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
666
667 } else if (prio == rt_rq->highest_prio.curr)
668 /*
669 * If the next task is equal in priority to the highest on
670 * the run-queue, then we implicitly know that the next highest
671 * task cannot be any lower than current
672 */
673 rt_rq->highest_prio.next = prio;
674 else if (prio < rt_rq->highest_prio.next)
675 /*
676 * Otherwise, we need to recompute next-highest
677 */
678 rt_rq->highest_prio.next = next_prio(rq);
679 }
680
681 static void
682 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
683 {
684 struct rq *rq = rq_of_rt_rq(rt_rq);
685
686 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
687 rt_rq->highest_prio.next = next_prio(rq);
688
689 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
690 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
691 }
692
693 #else /* CONFIG_SMP */
694
695 static inline
696 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
697 static inline
698 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
699
700 #endif /* CONFIG_SMP */
701
702 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
703 static void
704 inc_rt_prio(struct rt_rq *rt_rq, int prio)
705 {
706 int prev_prio = rt_rq->highest_prio.curr;
707
708 if (prio < prev_prio)
709 rt_rq->highest_prio.curr = prio;
710
711 inc_rt_prio_smp(rt_rq, prio, prev_prio);
712 }
713
714 static void
715 dec_rt_prio(struct rt_rq *rt_rq, int prio)
716 {
717 int prev_prio = rt_rq->highest_prio.curr;
718
719 if (rt_rq->rt_nr_running) {
720
721 WARN_ON(prio < prev_prio);
722
723 /*
724 * This may have been our highest task, and therefore
725 * we may have some recomputation to do
726 */
727 if (prio == prev_prio) {
728 struct rt_prio_array *array = &rt_rq->active;
729
730 rt_rq->highest_prio.curr =
731 sched_find_first_bit(array->bitmap);
732 }
733
734 } else
735 rt_rq->highest_prio.curr = MAX_RT_PRIO;
736
737 dec_rt_prio_smp(rt_rq, prio, prev_prio);
738 }
739
740 #else
741
742 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
743 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
744
745 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
746
747 #ifdef CONFIG_RT_GROUP_SCHED
748
749 static void
750 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
751 {
752 if (rt_se_boosted(rt_se))
753 rt_rq->rt_nr_boosted++;
754
755 if (rt_rq->tg)
756 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
757 }
758
759 static void
760 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
761 {
762 if (rt_se_boosted(rt_se))
763 rt_rq->rt_nr_boosted--;
764
765 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
766 }
767
768 #else /* CONFIG_RT_GROUP_SCHED */
769
770 static void
771 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
772 {
773 start_rt_bandwidth(&def_rt_bandwidth);
774 }
775
776 static inline
777 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
778
779 #endif /* CONFIG_RT_GROUP_SCHED */
780
781 static inline
782 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
783 {
784 int prio = rt_se_prio(rt_se);
785
786 WARN_ON(!rt_prio(prio));
787 rt_rq->rt_nr_running++;
788
789 inc_rt_prio(rt_rq, prio);
790 inc_rt_migration(rt_se, rt_rq);
791 inc_rt_group(rt_se, rt_rq);
792 }
793
794 static inline
795 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
796 {
797 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
798 WARN_ON(!rt_rq->rt_nr_running);
799 rt_rq->rt_nr_running--;
800
801 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
802 dec_rt_migration(rt_se, rt_rq);
803 dec_rt_group(rt_se, rt_rq);
804 }
805
806 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
807 {
808 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
809 struct rt_prio_array *array = &rt_rq->active;
810 struct rt_rq *group_rq = group_rt_rq(rt_se);
811 struct list_head *queue = array->queue + rt_se_prio(rt_se);
812
813 /*
814 * Don't enqueue the group if its throttled, or when empty.
815 * The latter is a consequence of the former when a child group
816 * get throttled and the current group doesn't have any other
817 * active members.
818 */
819 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
820 return;
821
822 list_add_tail(&rt_se->run_list, queue);
823 __set_bit(rt_se_prio(rt_se), array->bitmap);
824
825 inc_rt_tasks(rt_se, rt_rq);
826 }
827
828 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
829 {
830 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
831 struct rt_prio_array *array = &rt_rq->active;
832
833 list_del_init(&rt_se->run_list);
834 if (list_empty(array->queue + rt_se_prio(rt_se)))
835 __clear_bit(rt_se_prio(rt_se), array->bitmap);
836
837 dec_rt_tasks(rt_se, rt_rq);
838 }
839
840 /*
841 * Because the prio of an upper entry depends on the lower
842 * entries, we must remove entries top - down.
843 */
844 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
845 {
846 struct sched_rt_entity *back = NULL;
847
848 for_each_sched_rt_entity(rt_se) {
849 rt_se->back = back;
850 back = rt_se;
851 }
852
853 for (rt_se = back; rt_se; rt_se = rt_se->back) {
854 if (on_rt_rq(rt_se))
855 __dequeue_rt_entity(rt_se);
856 }
857 }
858
859 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
860 {
861 dequeue_rt_stack(rt_se);
862 for_each_sched_rt_entity(rt_se)
863 __enqueue_rt_entity(rt_se);
864 }
865
866 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
867 {
868 dequeue_rt_stack(rt_se);
869
870 for_each_sched_rt_entity(rt_se) {
871 struct rt_rq *rt_rq = group_rt_rq(rt_se);
872
873 if (rt_rq && rt_rq->rt_nr_running)
874 __enqueue_rt_entity(rt_se);
875 }
876 }
877
878 /*
879 * Adding/removing a task to/from a priority array:
880 */
881 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
882 {
883 struct sched_rt_entity *rt_se = &p->rt;
884
885 if (wakeup)
886 rt_se->timeout = 0;
887
888 enqueue_rt_entity(rt_se);
889
890 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
891 enqueue_pushable_task(rq, p);
892 }
893
894 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
895 {
896 struct sched_rt_entity *rt_se = &p->rt;
897
898 update_curr_rt(rq);
899 dequeue_rt_entity(rt_se);
900
901 dequeue_pushable_task(rq, p);
902 }
903
904 /*
905 * Put task to the end of the run list without the overhead of dequeue
906 * followed by enqueue.
907 */
908 static void
909 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
910 {
911 if (on_rt_rq(rt_se)) {
912 struct rt_prio_array *array = &rt_rq->active;
913 struct list_head *queue = array->queue + rt_se_prio(rt_se);
914
915 if (head)
916 list_move(&rt_se->run_list, queue);
917 else
918 list_move_tail(&rt_se->run_list, queue);
919 }
920 }
921
922 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
923 {
924 struct sched_rt_entity *rt_se = &p->rt;
925 struct rt_rq *rt_rq;
926
927 for_each_sched_rt_entity(rt_se) {
928 rt_rq = rt_rq_of_se(rt_se);
929 requeue_rt_entity(rt_rq, rt_se, head);
930 }
931 }
932
933 static void yield_task_rt(struct rq *rq)
934 {
935 requeue_task_rt(rq, rq->curr, 0);
936 }
937
938 #ifdef CONFIG_SMP
939 static int find_lowest_rq(struct task_struct *task);
940
941 static int select_task_rq_rt(struct task_struct *p, int sync)
942 {
943 struct rq *rq = task_rq(p);
944
945 /*
946 * If the current task is an RT task, then
947 * try to see if we can wake this RT task up on another
948 * runqueue. Otherwise simply start this RT task
949 * on its current runqueue.
950 *
951 * We want to avoid overloading runqueues. Even if
952 * the RT task is of higher priority than the current RT task.
953 * RT tasks behave differently than other tasks. If
954 * one gets preempted, we try to push it off to another queue.
955 * So trying to keep a preempting RT task on the same
956 * cache hot CPU will force the running RT task to
957 * a cold CPU. So we waste all the cache for the lower
958 * RT task in hopes of saving some of a RT task
959 * that is just being woken and probably will have
960 * cold cache anyway.
961 */
962 if (unlikely(rt_task(rq->curr)) &&
963 (p->rt.nr_cpus_allowed > 1)) {
964 int cpu = find_lowest_rq(p);
965
966 return (cpu == -1) ? task_cpu(p) : cpu;
967 }
968
969 /*
970 * Otherwise, just let it ride on the affined RQ and the
971 * post-schedule router will push the preempted task away
972 */
973 return task_cpu(p);
974 }
975
976 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
977 {
978 if (rq->curr->rt.nr_cpus_allowed == 1)
979 return;
980
981 if (p->rt.nr_cpus_allowed != 1
982 && cpupri_find(&rq->rd->cpupri, p, NULL))
983 return;
984
985 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
986 return;
987
988 /*
989 * There appears to be other cpus that can accept
990 * current and none to run 'p', so lets reschedule
991 * to try and push current away:
992 */
993 requeue_task_rt(rq, p, 1);
994 resched_task(rq->curr);
995 }
996
997 #endif /* CONFIG_SMP */
998
999 /*
1000 * Preempt the current task with a newly woken task if needed:
1001 */
1002 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
1003 {
1004 if (p->prio < rq->curr->prio) {
1005 resched_task(rq->curr);
1006 return;
1007 }
1008
1009 #ifdef CONFIG_SMP
1010 /*
1011 * If:
1012 *
1013 * - the newly woken task is of equal priority to the current task
1014 * - the newly woken task is non-migratable while current is migratable
1015 * - current will be preempted on the next reschedule
1016 *
1017 * we should check to see if current can readily move to a different
1018 * cpu. If so, we will reschedule to allow the push logic to try
1019 * to move current somewhere else, making room for our non-migratable
1020 * task.
1021 */
1022 if (p->prio == rq->curr->prio && !need_resched())
1023 check_preempt_equal_prio(rq, p);
1024 #endif
1025 }
1026
1027 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1028 struct rt_rq *rt_rq)
1029 {
1030 struct rt_prio_array *array = &rt_rq->active;
1031 struct sched_rt_entity *next = NULL;
1032 struct list_head *queue;
1033 int idx;
1034
1035 idx = sched_find_first_bit(array->bitmap);
1036 BUG_ON(idx >= MAX_RT_PRIO);
1037
1038 queue = array->queue + idx;
1039 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1040
1041 return next;
1042 }
1043
1044 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1045 {
1046 struct sched_rt_entity *rt_se;
1047 struct task_struct *p;
1048 struct rt_rq *rt_rq;
1049
1050 rt_rq = &rq->rt;
1051
1052 if (unlikely(!rt_rq->rt_nr_running))
1053 return NULL;
1054
1055 if (rt_rq_throttled(rt_rq))
1056 return NULL;
1057
1058 do {
1059 rt_se = pick_next_rt_entity(rq, rt_rq);
1060 BUG_ON(!rt_se);
1061 rt_rq = group_rt_rq(rt_se);
1062 } while (rt_rq);
1063
1064 p = rt_task_of(rt_se);
1065 p->se.exec_start = rq->clock;
1066
1067 return p;
1068 }
1069
1070 static struct task_struct *pick_next_task_rt(struct rq *rq)
1071 {
1072 struct task_struct *p = _pick_next_task_rt(rq);
1073
1074 /* The running task is never eligible for pushing */
1075 if (p)
1076 dequeue_pushable_task(rq, p);
1077
1078 #ifdef CONFIG_SMP
1079 /*
1080 * We detect this state here so that we can avoid taking the RQ
1081 * lock again later if there is no need to push
1082 */
1083 rq->post_schedule = has_pushable_tasks(rq);
1084 #endif
1085
1086 return p;
1087 }
1088
1089 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1090 {
1091 update_curr_rt(rq);
1092 p->se.exec_start = 0;
1093
1094 /*
1095 * The previous task needs to be made eligible for pushing
1096 * if it is still active
1097 */
1098 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1099 enqueue_pushable_task(rq, p);
1100 }
1101
1102 #ifdef CONFIG_SMP
1103
1104 /* Only try algorithms three times */
1105 #define RT_MAX_TRIES 3
1106
1107 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1108
1109 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1110 {
1111 if (!task_running(rq, p) &&
1112 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1113 (p->rt.nr_cpus_allowed > 1))
1114 return 1;
1115 return 0;
1116 }
1117
1118 /* Return the second highest RT task, NULL otherwise */
1119 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1120 {
1121 struct task_struct *next = NULL;
1122 struct sched_rt_entity *rt_se;
1123 struct rt_prio_array *array;
1124 struct rt_rq *rt_rq;
1125 int idx;
1126
1127 for_each_leaf_rt_rq(rt_rq, rq) {
1128 array = &rt_rq->active;
1129 idx = sched_find_first_bit(array->bitmap);
1130 next_idx:
1131 if (idx >= MAX_RT_PRIO)
1132 continue;
1133 if (next && next->prio < idx)
1134 continue;
1135 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1136 struct task_struct *p = rt_task_of(rt_se);
1137 if (pick_rt_task(rq, p, cpu)) {
1138 next = p;
1139 break;
1140 }
1141 }
1142 if (!next) {
1143 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1144 goto next_idx;
1145 }
1146 }
1147
1148 return next;
1149 }
1150
1151 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1152
1153 static inline int pick_optimal_cpu(int this_cpu,
1154 const struct cpumask *mask)
1155 {
1156 int first;
1157
1158 /* "this_cpu" is cheaper to preempt than a remote processor */
1159 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
1160 return this_cpu;
1161
1162 first = cpumask_first(mask);
1163 if (first < nr_cpu_ids)
1164 return first;
1165
1166 return -1;
1167 }
1168
1169 static int find_lowest_rq(struct task_struct *task)
1170 {
1171 struct sched_domain *sd;
1172 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1173 int this_cpu = smp_processor_id();
1174 int cpu = task_cpu(task);
1175 cpumask_var_t domain_mask;
1176
1177 if (task->rt.nr_cpus_allowed == 1)
1178 return -1; /* No other targets possible */
1179
1180 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1181 return -1; /* No targets found */
1182
1183 /*
1184 * At this point we have built a mask of cpus representing the
1185 * lowest priority tasks in the system. Now we want to elect
1186 * the best one based on our affinity and topology.
1187 *
1188 * We prioritize the last cpu that the task executed on since
1189 * it is most likely cache-hot in that location.
1190 */
1191 if (cpumask_test_cpu(cpu, lowest_mask))
1192 return cpu;
1193
1194 /*
1195 * Otherwise, we consult the sched_domains span maps to figure
1196 * out which cpu is logically closest to our hot cache data.
1197 */
1198 if (this_cpu == cpu)
1199 this_cpu = -1; /* Skip this_cpu opt if the same */
1200
1201 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1202 for_each_domain(cpu, sd) {
1203 if (sd->flags & SD_WAKE_AFFINE) {
1204 int best_cpu;
1205
1206 cpumask_and(domain_mask,
1207 sched_domain_span(sd),
1208 lowest_mask);
1209
1210 best_cpu = pick_optimal_cpu(this_cpu,
1211 domain_mask);
1212
1213 if (best_cpu != -1) {
1214 free_cpumask_var(domain_mask);
1215 return best_cpu;
1216 }
1217 }
1218 }
1219 free_cpumask_var(domain_mask);
1220 }
1221
1222 /*
1223 * And finally, if there were no matches within the domains
1224 * just give the caller *something* to work with from the compatible
1225 * locations.
1226 */
1227 return pick_optimal_cpu(this_cpu, lowest_mask);
1228 }
1229
1230 /* Will lock the rq it finds */
1231 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1232 {
1233 struct rq *lowest_rq = NULL;
1234 int tries;
1235 int cpu;
1236
1237 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1238 cpu = find_lowest_rq(task);
1239
1240 if ((cpu == -1) || (cpu == rq->cpu))
1241 break;
1242
1243 lowest_rq = cpu_rq(cpu);
1244
1245 /* if the prio of this runqueue changed, try again */
1246 if (double_lock_balance(rq, lowest_rq)) {
1247 /*
1248 * We had to unlock the run queue. In
1249 * the mean time, task could have
1250 * migrated already or had its affinity changed.
1251 * Also make sure that it wasn't scheduled on its rq.
1252 */
1253 if (unlikely(task_rq(task) != rq ||
1254 !cpumask_test_cpu(lowest_rq->cpu,
1255 &task->cpus_allowed) ||
1256 task_running(rq, task) ||
1257 !task->se.on_rq)) {
1258
1259 spin_unlock(&lowest_rq->lock);
1260 lowest_rq = NULL;
1261 break;
1262 }
1263 }
1264
1265 /* If this rq is still suitable use it. */
1266 if (lowest_rq->rt.highest_prio.curr > task->prio)
1267 break;
1268
1269 /* try again */
1270 double_unlock_balance(rq, lowest_rq);
1271 lowest_rq = NULL;
1272 }
1273
1274 return lowest_rq;
1275 }
1276
1277 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1278 {
1279 struct task_struct *p;
1280
1281 if (!has_pushable_tasks(rq))
1282 return NULL;
1283
1284 p = plist_first_entry(&rq->rt.pushable_tasks,
1285 struct task_struct, pushable_tasks);
1286
1287 BUG_ON(rq->cpu != task_cpu(p));
1288 BUG_ON(task_current(rq, p));
1289 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1290
1291 BUG_ON(!p->se.on_rq);
1292 BUG_ON(!rt_task(p));
1293
1294 return p;
1295 }
1296
1297 /*
1298 * If the current CPU has more than one RT task, see if the non
1299 * running task can migrate over to a CPU that is running a task
1300 * of lesser priority.
1301 */
1302 static int push_rt_task(struct rq *rq)
1303 {
1304 struct task_struct *next_task;
1305 struct rq *lowest_rq;
1306
1307 if (!rq->rt.overloaded)
1308 return 0;
1309
1310 next_task = pick_next_pushable_task(rq);
1311 if (!next_task)
1312 return 0;
1313
1314 retry:
1315 if (unlikely(next_task == rq->curr)) {
1316 WARN_ON(1);
1317 return 0;
1318 }
1319
1320 /*
1321 * It's possible that the next_task slipped in of
1322 * higher priority than current. If that's the case
1323 * just reschedule current.
1324 */
1325 if (unlikely(next_task->prio < rq->curr->prio)) {
1326 resched_task(rq->curr);
1327 return 0;
1328 }
1329
1330 /* We might release rq lock */
1331 get_task_struct(next_task);
1332
1333 /* find_lock_lowest_rq locks the rq if found */
1334 lowest_rq = find_lock_lowest_rq(next_task, rq);
1335 if (!lowest_rq) {
1336 struct task_struct *task;
1337 /*
1338 * find lock_lowest_rq releases rq->lock
1339 * so it is possible that next_task has migrated.
1340 *
1341 * We need to make sure that the task is still on the same
1342 * run-queue and is also still the next task eligible for
1343 * pushing.
1344 */
1345 task = pick_next_pushable_task(rq);
1346 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1347 /*
1348 * If we get here, the task hasnt moved at all, but
1349 * it has failed to push. We will not try again,
1350 * since the other cpus will pull from us when they
1351 * are ready.
1352 */
1353 dequeue_pushable_task(rq, next_task);
1354 goto out;
1355 }
1356
1357 if (!task)
1358 /* No more tasks, just exit */
1359 goto out;
1360
1361 /*
1362 * Something has shifted, try again.
1363 */
1364 put_task_struct(next_task);
1365 next_task = task;
1366 goto retry;
1367 }
1368
1369 deactivate_task(rq, next_task, 0);
1370 set_task_cpu(next_task, lowest_rq->cpu);
1371 activate_task(lowest_rq, next_task, 0);
1372
1373 resched_task(lowest_rq->curr);
1374
1375 double_unlock_balance(rq, lowest_rq);
1376
1377 out:
1378 put_task_struct(next_task);
1379
1380 return 1;
1381 }
1382
1383 static void push_rt_tasks(struct rq *rq)
1384 {
1385 /* push_rt_task will return true if it moved an RT */
1386 while (push_rt_task(rq))
1387 ;
1388 }
1389
1390 static int pull_rt_task(struct rq *this_rq)
1391 {
1392 int this_cpu = this_rq->cpu, ret = 0, cpu;
1393 struct task_struct *p;
1394 struct rq *src_rq;
1395
1396 if (likely(!rt_overloaded(this_rq)))
1397 return 0;
1398
1399 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1400 if (this_cpu == cpu)
1401 continue;
1402
1403 src_rq = cpu_rq(cpu);
1404
1405 /*
1406 * Don't bother taking the src_rq->lock if the next highest
1407 * task is known to be lower-priority than our current task.
1408 * This may look racy, but if this value is about to go
1409 * logically higher, the src_rq will push this task away.
1410 * And if its going logically lower, we do not care
1411 */
1412 if (src_rq->rt.highest_prio.next >=
1413 this_rq->rt.highest_prio.curr)
1414 continue;
1415
1416 /*
1417 * We can potentially drop this_rq's lock in
1418 * double_lock_balance, and another CPU could
1419 * alter this_rq
1420 */
1421 double_lock_balance(this_rq, src_rq);
1422
1423 /*
1424 * Are there still pullable RT tasks?
1425 */
1426 if (src_rq->rt.rt_nr_running <= 1)
1427 goto skip;
1428
1429 p = pick_next_highest_task_rt(src_rq, this_cpu);
1430
1431 /*
1432 * Do we have an RT task that preempts
1433 * the to-be-scheduled task?
1434 */
1435 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1436 WARN_ON(p == src_rq->curr);
1437 WARN_ON(!p->se.on_rq);
1438
1439 /*
1440 * There's a chance that p is higher in priority
1441 * than what's currently running on its cpu.
1442 * This is just that p is wakeing up and hasn't
1443 * had a chance to schedule. We only pull
1444 * p if it is lower in priority than the
1445 * current task on the run queue
1446 */
1447 if (p->prio < src_rq->curr->prio)
1448 goto skip;
1449
1450 ret = 1;
1451
1452 deactivate_task(src_rq, p, 0);
1453 set_task_cpu(p, this_cpu);
1454 activate_task(this_rq, p, 0);
1455 /*
1456 * We continue with the search, just in
1457 * case there's an even higher prio task
1458 * in another runqueue. (low likelyhood
1459 * but possible)
1460 */
1461 }
1462 skip:
1463 double_unlock_balance(this_rq, src_rq);
1464 }
1465
1466 return ret;
1467 }
1468
1469 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1470 {
1471 /* Try to pull RT tasks here if we lower this rq's prio */
1472 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1473 pull_rt_task(rq);
1474 }
1475
1476 static void post_schedule_rt(struct rq *rq)
1477 {
1478 push_rt_tasks(rq);
1479 }
1480
1481 /*
1482 * If we are not running and we are not going to reschedule soon, we should
1483 * try to push tasks away now
1484 */
1485 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1486 {
1487 if (!task_running(rq, p) &&
1488 !test_tsk_need_resched(rq->curr) &&
1489 has_pushable_tasks(rq) &&
1490 p->rt.nr_cpus_allowed > 1)
1491 push_rt_tasks(rq);
1492 }
1493
1494 static unsigned long
1495 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1496 unsigned long max_load_move,
1497 struct sched_domain *sd, enum cpu_idle_type idle,
1498 int *all_pinned, int *this_best_prio)
1499 {
1500 /* don't touch RT tasks */
1501 return 0;
1502 }
1503
1504 static int
1505 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1506 struct sched_domain *sd, enum cpu_idle_type idle)
1507 {
1508 /* don't touch RT tasks */
1509 return 0;
1510 }
1511
1512 static void set_cpus_allowed_rt(struct task_struct *p,
1513 const struct cpumask *new_mask)
1514 {
1515 int weight = cpumask_weight(new_mask);
1516
1517 BUG_ON(!rt_task(p));
1518
1519 /*
1520 * Update the migration status of the RQ if we have an RT task
1521 * which is running AND changing its weight value.
1522 */
1523 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1524 struct rq *rq = task_rq(p);
1525
1526 if (!task_current(rq, p)) {
1527 /*
1528 * Make sure we dequeue this task from the pushable list
1529 * before going further. It will either remain off of
1530 * the list because we are no longer pushable, or it
1531 * will be requeued.
1532 */
1533 if (p->rt.nr_cpus_allowed > 1)
1534 dequeue_pushable_task(rq, p);
1535
1536 /*
1537 * Requeue if our weight is changing and still > 1
1538 */
1539 if (weight > 1)
1540 enqueue_pushable_task(rq, p);
1541
1542 }
1543
1544 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1545 rq->rt.rt_nr_migratory++;
1546 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1547 BUG_ON(!rq->rt.rt_nr_migratory);
1548 rq->rt.rt_nr_migratory--;
1549 }
1550
1551 update_rt_migration(&rq->rt);
1552 }
1553
1554 cpumask_copy(&p->cpus_allowed, new_mask);
1555 p->rt.nr_cpus_allowed = weight;
1556 }
1557
1558 /* Assumes rq->lock is held */
1559 static void rq_online_rt(struct rq *rq)
1560 {
1561 if (rq->rt.overloaded)
1562 rt_set_overload(rq);
1563
1564 __enable_runtime(rq);
1565
1566 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1567 }
1568
1569 /* Assumes rq->lock is held */
1570 static void rq_offline_rt(struct rq *rq)
1571 {
1572 if (rq->rt.overloaded)
1573 rt_clear_overload(rq);
1574
1575 __disable_runtime(rq);
1576
1577 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1578 }
1579
1580 /*
1581 * When switch from the rt queue, we bring ourselves to a position
1582 * that we might want to pull RT tasks from other runqueues.
1583 */
1584 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1585 int running)
1586 {
1587 /*
1588 * If there are other RT tasks then we will reschedule
1589 * and the scheduling of the other RT tasks will handle
1590 * the balancing. But if we are the last RT task
1591 * we may need to handle the pulling of RT tasks
1592 * now.
1593 */
1594 if (!rq->rt.rt_nr_running)
1595 pull_rt_task(rq);
1596 }
1597
1598 static inline void init_sched_rt_class(void)
1599 {
1600 unsigned int i;
1601
1602 for_each_possible_cpu(i)
1603 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1604 GFP_KERNEL, cpu_to_node(i));
1605 }
1606 #endif /* CONFIG_SMP */
1607
1608 /*
1609 * When switching a task to RT, we may overload the runqueue
1610 * with RT tasks. In this case we try to push them off to
1611 * other runqueues.
1612 */
1613 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1614 int running)
1615 {
1616 int check_resched = 1;
1617
1618 /*
1619 * If we are already running, then there's nothing
1620 * that needs to be done. But if we are not running
1621 * we may need to preempt the current running task.
1622 * If that current running task is also an RT task
1623 * then see if we can move to another run queue.
1624 */
1625 if (!running) {
1626 #ifdef CONFIG_SMP
1627 if (rq->rt.overloaded && push_rt_task(rq) &&
1628 /* Don't resched if we changed runqueues */
1629 rq != task_rq(p))
1630 check_resched = 0;
1631 #endif /* CONFIG_SMP */
1632 if (check_resched && p->prio < rq->curr->prio)
1633 resched_task(rq->curr);
1634 }
1635 }
1636
1637 /*
1638 * Priority of the task has changed. This may cause
1639 * us to initiate a push or pull.
1640 */
1641 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1642 int oldprio, int running)
1643 {
1644 if (running) {
1645 #ifdef CONFIG_SMP
1646 /*
1647 * If our priority decreases while running, we
1648 * may need to pull tasks to this runqueue.
1649 */
1650 if (oldprio < p->prio)
1651 pull_rt_task(rq);
1652 /*
1653 * If there's a higher priority task waiting to run
1654 * then reschedule. Note, the above pull_rt_task
1655 * can release the rq lock and p could migrate.
1656 * Only reschedule if p is still on the same runqueue.
1657 */
1658 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1659 resched_task(p);
1660 #else
1661 /* For UP simply resched on drop of prio */
1662 if (oldprio < p->prio)
1663 resched_task(p);
1664 #endif /* CONFIG_SMP */
1665 } else {
1666 /*
1667 * This task is not running, but if it is
1668 * greater than the current running task
1669 * then reschedule.
1670 */
1671 if (p->prio < rq->curr->prio)
1672 resched_task(rq->curr);
1673 }
1674 }
1675
1676 static void watchdog(struct rq *rq, struct task_struct *p)
1677 {
1678 unsigned long soft, hard;
1679
1680 if (!p->signal)
1681 return;
1682
1683 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1684 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1685
1686 if (soft != RLIM_INFINITY) {
1687 unsigned long next;
1688
1689 p->rt.timeout++;
1690 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1691 if (p->rt.timeout > next)
1692 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1693 }
1694 }
1695
1696 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1697 {
1698 update_curr_rt(rq);
1699
1700 watchdog(rq, p);
1701
1702 /*
1703 * RR tasks need a special form of timeslice management.
1704 * FIFO tasks have no timeslices.
1705 */
1706 if (p->policy != SCHED_RR)
1707 return;
1708
1709 if (--p->rt.time_slice)
1710 return;
1711
1712 p->rt.time_slice = DEF_TIMESLICE;
1713
1714 /*
1715 * Requeue to the end of queue if we are not the only element
1716 * on the queue:
1717 */
1718 if (p->rt.run_list.prev != p->rt.run_list.next) {
1719 requeue_task_rt(rq, p, 0);
1720 set_tsk_need_resched(p);
1721 }
1722 }
1723
1724 static void set_curr_task_rt(struct rq *rq)
1725 {
1726 struct task_struct *p = rq->curr;
1727
1728 p->se.exec_start = rq->clock;
1729
1730 /* The running task is never eligible for pushing */
1731 dequeue_pushable_task(rq, p);
1732 }
1733
1734 static const struct sched_class rt_sched_class = {
1735 .next = &fair_sched_class,
1736 .enqueue_task = enqueue_task_rt,
1737 .dequeue_task = dequeue_task_rt,
1738 .yield_task = yield_task_rt,
1739
1740 .check_preempt_curr = check_preempt_curr_rt,
1741
1742 .pick_next_task = pick_next_task_rt,
1743 .put_prev_task = put_prev_task_rt,
1744
1745 #ifdef CONFIG_SMP
1746 .select_task_rq = select_task_rq_rt,
1747
1748 .load_balance = load_balance_rt,
1749 .move_one_task = move_one_task_rt,
1750 .set_cpus_allowed = set_cpus_allowed_rt,
1751 .rq_online = rq_online_rt,
1752 .rq_offline = rq_offline_rt,
1753 .pre_schedule = pre_schedule_rt,
1754 .post_schedule = post_schedule_rt,
1755 .task_wake_up = task_wake_up_rt,
1756 .switched_from = switched_from_rt,
1757 #endif
1758
1759 .set_curr_task = set_curr_task_rt,
1760 .task_tick = task_tick_rt,
1761
1762 .prio_changed = prio_changed_rt,
1763 .switched_to = switched_to_rt,
1764 };
1765
1766 #ifdef CONFIG_SCHED_DEBUG
1767 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1768
1769 static void print_rt_stats(struct seq_file *m, int cpu)
1770 {
1771 struct rt_rq *rt_rq;
1772
1773 rcu_read_lock();
1774 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1775 print_rt_rq(m, cpu, rt_rq);
1776 rcu_read_unlock();
1777 }
1778 #endif /* CONFIG_SCHED_DEBUG */
1779