sched: rt-group: heirarchy aware throttle
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 cpu_set(rq->cpu, rq->rd->rto_mask);
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
44 }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50 return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55 return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_RT_GROUP_SCHED
59
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
61 {
62 if (!rt_rq->tg)
63 return RUNTIME_INF;
64
65 return rt_rq->rt_runtime;
66 }
67
68 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69 {
70 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
71 }
72
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77 {
78 return rt_rq->rq;
79 }
80
81 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82 {
83 return rt_se->rt_rq;
84 }
85
86 #define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
88
89 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90 {
91 return rt_se->my_q;
92 }
93
94 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
97 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
98 {
99 struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
102 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
104 enqueue_rt_entity(rt_se);
105 if (rt_rq->highest_prio < curr->prio)
106 resched_task(curr);
107 }
108 }
109
110 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
111 {
112 struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114 if (rt_se && on_rt_rq(rt_se))
115 dequeue_rt_entity(rt_se);
116 }
117
118 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119 {
120 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121 }
122
123 static int rt_se_boosted(struct sched_rt_entity *rt_se)
124 {
125 struct rt_rq *rt_rq = group_rt_rq(rt_se);
126 struct task_struct *p;
127
128 if (rt_rq)
129 return !!rt_rq->rt_nr_boosted;
130
131 p = rt_task_of(rt_se);
132 return p->prio != p->normal_prio;
133 }
134
135 #ifdef CONFIG_SMP
136 static inline cpumask_t sched_rt_period_mask(void)
137 {
138 return cpu_rq(smp_processor_id())->rd->span;
139 }
140 #else
141 static inline cpumask_t sched_rt_period_mask(void)
142 {
143 return cpu_online_map;
144 }
145 #endif
146
147 static inline
148 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
149 {
150 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151 }
152
153 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154 {
155 return &rt_rq->tg->rt_bandwidth;
156 }
157
158 #else
159
160 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161 {
162 return rt_rq->rt_runtime;
163 }
164
165 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166 {
167 return ktime_to_ns(def_rt_bandwidth.rt_period);
168 }
169
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174 {
175 return container_of(rt_rq, struct rq, rt);
176 }
177
178 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179 {
180 struct task_struct *p = rt_task_of(rt_se);
181 struct rq *rq = task_rq(p);
182
183 return &rq->rt;
184 }
185
186 #define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
188
189 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190 {
191 return NULL;
192 }
193
194 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
195 {
196 }
197
198 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
199 {
200 }
201
202 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203 {
204 return rt_rq->rt_throttled;
205 }
206
207 static inline cpumask_t sched_rt_period_mask(void)
208 {
209 return cpu_online_map;
210 }
211
212 static inline
213 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214 {
215 return &cpu_rq(cpu)->rt;
216 }
217
218 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219 {
220 return &def_rt_bandwidth;
221 }
222
223 #endif
224
225 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226 {
227 int i, idle = 1;
228 cpumask_t span;
229
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
232
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
241 u64 runtime;
242
243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
249 }
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
252 spin_unlock(&rt_rq->rt_runtime_lock);
253 }
254
255 if (enqueue)
256 sched_rt_rq_enqueue(rt_rq);
257 spin_unlock(&rq->lock);
258 }
259
260 return idle;
261 }
262
263 #ifdef CONFIG_SMP
264 static int balance_runtime(struct rt_rq *rt_rq)
265 {
266 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268 int i, weight, more = 0;
269 u64 rt_period;
270
271 weight = cpus_weight(rd->span);
272
273 spin_lock(&rt_b->rt_runtime_lock);
274 rt_period = ktime_to_ns(rt_b->rt_period);
275 for_each_cpu_mask(i, rd->span) {
276 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277 s64 diff;
278
279 if (iter == rt_rq)
280 continue;
281
282 spin_lock(&iter->rt_runtime_lock);
283 diff = iter->rt_runtime - iter->rt_time;
284 if (diff > 0) {
285 do_div(diff, weight);
286 if (rt_rq->rt_runtime + diff > rt_period)
287 diff = rt_period - rt_rq->rt_runtime;
288 iter->rt_runtime -= diff;
289 rt_rq->rt_runtime += diff;
290 more = 1;
291 if (rt_rq->rt_runtime == rt_period) {
292 spin_unlock(&iter->rt_runtime_lock);
293 break;
294 }
295 }
296 spin_unlock(&iter->rt_runtime_lock);
297 }
298 spin_unlock(&rt_b->rt_runtime_lock);
299
300 return more;
301 }
302 #endif
303
304 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305 {
306 #ifdef CONFIG_RT_GROUP_SCHED
307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309 if (rt_rq)
310 return rt_rq->highest_prio;
311 #endif
312
313 return rt_task_of(rt_se)->prio;
314 }
315
316 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
317 {
318 u64 runtime = sched_rt_runtime(rt_rq);
319
320 if (runtime == RUNTIME_INF)
321 return 0;
322
323 if (rt_rq->rt_throttled)
324 return rt_rq_throttled(rt_rq);
325
326 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327 return 0;
328
329 #ifdef CONFIG_SMP
330 if (rt_rq->rt_time > runtime) {
331 int more;
332
333 spin_unlock(&rt_rq->rt_runtime_lock);
334 more = balance_runtime(rt_rq);
335 spin_lock(&rt_rq->rt_runtime_lock);
336
337 if (more)
338 runtime = sched_rt_runtime(rt_rq);
339 }
340 #endif
341
342 if (rt_rq->rt_time > runtime) {
343 rt_rq->rt_throttled = 1;
344 if (rt_rq_throttled(rt_rq)) {
345 sched_rt_rq_dequeue(rt_rq);
346 return 1;
347 }
348 }
349
350 return 0;
351 }
352
353 /*
354 * Update the current task's runtime statistics. Skip current tasks that
355 * are not in our scheduling class.
356 */
357 static void update_curr_rt(struct rq *rq)
358 {
359 struct task_struct *curr = rq->curr;
360 struct sched_rt_entity *rt_se = &curr->rt;
361 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
362 u64 delta_exec;
363
364 if (!task_has_rt_policy(curr))
365 return;
366
367 delta_exec = rq->clock - curr->se.exec_start;
368 if (unlikely((s64)delta_exec < 0))
369 delta_exec = 0;
370
371 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
372
373 curr->se.sum_exec_runtime += delta_exec;
374 curr->se.exec_start = rq->clock;
375 cpuacct_charge(curr, delta_exec);
376
377 for_each_sched_rt_entity(rt_se) {
378 rt_rq = rt_rq_of_se(rt_se);
379
380 spin_lock(&rt_rq->rt_runtime_lock);
381 rt_rq->rt_time += delta_exec;
382 if (sched_rt_runtime_exceeded(rt_rq))
383 resched_task(curr);
384 spin_unlock(&rt_rq->rt_runtime_lock);
385 }
386 }
387
388 static inline
389 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
390 {
391 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392 rt_rq->rt_nr_running++;
393 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
394 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
395 rt_rq->highest_prio = rt_se_prio(rt_se);
396 #endif
397 #ifdef CONFIG_SMP
398 if (rt_se->nr_cpus_allowed > 1) {
399 struct rq *rq = rq_of_rt_rq(rt_rq);
400 rq->rt.rt_nr_migratory++;
401 }
402
403 update_rt_migration(rq_of_rt_rq(rt_rq));
404 #endif
405 #ifdef CONFIG_RT_GROUP_SCHED
406 if (rt_se_boosted(rt_se))
407 rt_rq->rt_nr_boosted++;
408
409 if (rt_rq->tg)
410 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
411 #else
412 start_rt_bandwidth(&def_rt_bandwidth);
413 #endif
414 }
415
416 static inline
417 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 {
419 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
420 WARN_ON(!rt_rq->rt_nr_running);
421 rt_rq->rt_nr_running--;
422 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
423 if (rt_rq->rt_nr_running) {
424 struct rt_prio_array *array;
425
426 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
427 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
428 /* recalculate */
429 array = &rt_rq->active;
430 rt_rq->highest_prio =
431 sched_find_first_bit(array->bitmap);
432 } /* otherwise leave rq->highest prio alone */
433 } else
434 rt_rq->highest_prio = MAX_RT_PRIO;
435 #endif
436 #ifdef CONFIG_SMP
437 if (rt_se->nr_cpus_allowed > 1) {
438 struct rq *rq = rq_of_rt_rq(rt_rq);
439 rq->rt.rt_nr_migratory--;
440 }
441
442 update_rt_migration(rq_of_rt_rq(rt_rq));
443 #endif /* CONFIG_SMP */
444 #ifdef CONFIG_RT_GROUP_SCHED
445 if (rt_se_boosted(rt_se))
446 rt_rq->rt_nr_boosted--;
447
448 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
449 #endif
450 }
451
452 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
453 {
454 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
455 struct rt_prio_array *array = &rt_rq->active;
456 struct rt_rq *group_rq = group_rt_rq(rt_se);
457
458 /*
459 * Don't enqueue the group if its throttled, or when empty.
460 * The latter is a consequence of the former when a child group
461 * get throttled and the current group doesn't have any other
462 * active members.
463 */
464 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
465 return;
466
467 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
468 __set_bit(rt_se_prio(rt_se), array->bitmap);
469
470 inc_rt_tasks(rt_se, rt_rq);
471 }
472
473 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
474 {
475 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
476 struct rt_prio_array *array = &rt_rq->active;
477
478 list_del_init(&rt_se->run_list);
479 if (list_empty(array->queue + rt_se_prio(rt_se)))
480 __clear_bit(rt_se_prio(rt_se), array->bitmap);
481
482 dec_rt_tasks(rt_se, rt_rq);
483 }
484
485 /*
486 * Because the prio of an upper entry depends on the lower
487 * entries, we must remove entries top - down.
488 */
489 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
490 {
491 struct sched_rt_entity *back = NULL;
492
493 for_each_sched_rt_entity(rt_se) {
494 rt_se->back = back;
495 back = rt_se;
496 }
497
498 for (rt_se = back; rt_se; rt_se = rt_se->back) {
499 if (on_rt_rq(rt_se))
500 __dequeue_rt_entity(rt_se);
501 }
502 }
503
504 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
505 {
506 dequeue_rt_stack(rt_se);
507 for_each_sched_rt_entity(rt_se)
508 __enqueue_rt_entity(rt_se);
509 }
510
511 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
512 {
513 dequeue_rt_stack(rt_se);
514
515 for_each_sched_rt_entity(rt_se) {
516 struct rt_rq *rt_rq = group_rt_rq(rt_se);
517
518 if (rt_rq && rt_rq->rt_nr_running)
519 __enqueue_rt_entity(rt_se);
520 }
521 }
522
523 /*
524 * Adding/removing a task to/from a priority array:
525 */
526 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
527 {
528 struct sched_rt_entity *rt_se = &p->rt;
529
530 if (wakeup)
531 rt_se->timeout = 0;
532
533 enqueue_rt_entity(rt_se);
534 }
535
536 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
537 {
538 struct sched_rt_entity *rt_se = &p->rt;
539
540 update_curr_rt(rq);
541 dequeue_rt_entity(rt_se);
542 }
543
544 /*
545 * Put task to the end of the run list without the overhead of dequeue
546 * followed by enqueue.
547 */
548 static
549 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
550 {
551 struct rt_prio_array *array = &rt_rq->active;
552
553 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
554 }
555
556 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
557 {
558 struct sched_rt_entity *rt_se = &p->rt;
559 struct rt_rq *rt_rq;
560
561 for_each_sched_rt_entity(rt_se) {
562 rt_rq = rt_rq_of_se(rt_se);
563 requeue_rt_entity(rt_rq, rt_se);
564 }
565 }
566
567 static void yield_task_rt(struct rq *rq)
568 {
569 requeue_task_rt(rq, rq->curr);
570 }
571
572 #ifdef CONFIG_SMP
573 static int find_lowest_rq(struct task_struct *task);
574
575 static int select_task_rq_rt(struct task_struct *p, int sync)
576 {
577 struct rq *rq = task_rq(p);
578
579 /*
580 * If the current task is an RT task, then
581 * try to see if we can wake this RT task up on another
582 * runqueue. Otherwise simply start this RT task
583 * on its current runqueue.
584 *
585 * We want to avoid overloading runqueues. Even if
586 * the RT task is of higher priority than the current RT task.
587 * RT tasks behave differently than other tasks. If
588 * one gets preempted, we try to push it off to another queue.
589 * So trying to keep a preempting RT task on the same
590 * cache hot CPU will force the running RT task to
591 * a cold CPU. So we waste all the cache for the lower
592 * RT task in hopes of saving some of a RT task
593 * that is just being woken and probably will have
594 * cold cache anyway.
595 */
596 if (unlikely(rt_task(rq->curr)) &&
597 (p->rt.nr_cpus_allowed > 1)) {
598 int cpu = find_lowest_rq(p);
599
600 return (cpu == -1) ? task_cpu(p) : cpu;
601 }
602
603 /*
604 * Otherwise, just let it ride on the affined RQ and the
605 * post-schedule router will push the preempted task away
606 */
607 return task_cpu(p);
608 }
609 #endif /* CONFIG_SMP */
610
611 /*
612 * Preempt the current task with a newly woken task if needed:
613 */
614 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
615 {
616 if (p->prio < rq->curr->prio)
617 resched_task(rq->curr);
618 }
619
620 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
621 struct rt_rq *rt_rq)
622 {
623 struct rt_prio_array *array = &rt_rq->active;
624 struct sched_rt_entity *next = NULL;
625 struct list_head *queue;
626 int idx;
627
628 idx = sched_find_first_bit(array->bitmap);
629 BUG_ON(idx >= MAX_RT_PRIO);
630
631 queue = array->queue + idx;
632 next = list_entry(queue->next, struct sched_rt_entity, run_list);
633
634 return next;
635 }
636
637 static struct task_struct *pick_next_task_rt(struct rq *rq)
638 {
639 struct sched_rt_entity *rt_se;
640 struct task_struct *p;
641 struct rt_rq *rt_rq;
642
643 rt_rq = &rq->rt;
644
645 if (unlikely(!rt_rq->rt_nr_running))
646 return NULL;
647
648 if (rt_rq_throttled(rt_rq))
649 return NULL;
650
651 do {
652 rt_se = pick_next_rt_entity(rq, rt_rq);
653 BUG_ON(!rt_se);
654 rt_rq = group_rt_rq(rt_se);
655 } while (rt_rq);
656
657 p = rt_task_of(rt_se);
658 p->se.exec_start = rq->clock;
659 return p;
660 }
661
662 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
663 {
664 update_curr_rt(rq);
665 p->se.exec_start = 0;
666 }
667
668 #ifdef CONFIG_SMP
669
670 /* Only try algorithms three times */
671 #define RT_MAX_TRIES 3
672
673 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
674 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
675
676 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
677 {
678 if (!task_running(rq, p) &&
679 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
680 (p->rt.nr_cpus_allowed > 1))
681 return 1;
682 return 0;
683 }
684
685 /* Return the second highest RT task, NULL otherwise */
686 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
687 {
688 struct task_struct *next = NULL;
689 struct sched_rt_entity *rt_se;
690 struct rt_prio_array *array;
691 struct rt_rq *rt_rq;
692 int idx;
693
694 for_each_leaf_rt_rq(rt_rq, rq) {
695 array = &rt_rq->active;
696 idx = sched_find_first_bit(array->bitmap);
697 next_idx:
698 if (idx >= MAX_RT_PRIO)
699 continue;
700 if (next && next->prio < idx)
701 continue;
702 list_for_each_entry(rt_se, array->queue + idx, run_list) {
703 struct task_struct *p = rt_task_of(rt_se);
704 if (pick_rt_task(rq, p, cpu)) {
705 next = p;
706 break;
707 }
708 }
709 if (!next) {
710 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
711 goto next_idx;
712 }
713 }
714
715 return next;
716 }
717
718 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
719
720 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
721 {
722 int lowest_prio = -1;
723 int lowest_cpu = -1;
724 int count = 0;
725 int cpu;
726
727 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
728
729 /*
730 * Scan each rq for the lowest prio.
731 */
732 for_each_cpu_mask(cpu, *lowest_mask) {
733 struct rq *rq = cpu_rq(cpu);
734
735 /* We look for lowest RT prio or non-rt CPU */
736 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
737 /*
738 * if we already found a low RT queue
739 * and now we found this non-rt queue
740 * clear the mask and set our bit.
741 * Otherwise just return the queue as is
742 * and the count==1 will cause the algorithm
743 * to use the first bit found.
744 */
745 if (lowest_cpu != -1) {
746 cpus_clear(*lowest_mask);
747 cpu_set(rq->cpu, *lowest_mask);
748 }
749 return 1;
750 }
751
752 /* no locking for now */
753 if ((rq->rt.highest_prio > task->prio)
754 && (rq->rt.highest_prio >= lowest_prio)) {
755 if (rq->rt.highest_prio > lowest_prio) {
756 /* new low - clear old data */
757 lowest_prio = rq->rt.highest_prio;
758 lowest_cpu = cpu;
759 count = 0;
760 }
761 count++;
762 } else
763 cpu_clear(cpu, *lowest_mask);
764 }
765
766 /*
767 * Clear out all the set bits that represent
768 * runqueues that were of higher prio than
769 * the lowest_prio.
770 */
771 if (lowest_cpu > 0) {
772 /*
773 * Perhaps we could add another cpumask op to
774 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
775 * Then that could be optimized to use memset and such.
776 */
777 for_each_cpu_mask(cpu, *lowest_mask) {
778 if (cpu >= lowest_cpu)
779 break;
780 cpu_clear(cpu, *lowest_mask);
781 }
782 }
783
784 return count;
785 }
786
787 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
788 {
789 int first;
790
791 /* "this_cpu" is cheaper to preempt than a remote processor */
792 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
793 return this_cpu;
794
795 first = first_cpu(*mask);
796 if (first != NR_CPUS)
797 return first;
798
799 return -1;
800 }
801
802 static int find_lowest_rq(struct task_struct *task)
803 {
804 struct sched_domain *sd;
805 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
806 int this_cpu = smp_processor_id();
807 int cpu = task_cpu(task);
808 int count = find_lowest_cpus(task, lowest_mask);
809
810 if (!count)
811 return -1; /* No targets found */
812
813 /*
814 * There is no sense in performing an optimal search if only one
815 * target is found.
816 */
817 if (count == 1)
818 return first_cpu(*lowest_mask);
819
820 /*
821 * At this point we have built a mask of cpus representing the
822 * lowest priority tasks in the system. Now we want to elect
823 * the best one based on our affinity and topology.
824 *
825 * We prioritize the last cpu that the task executed on since
826 * it is most likely cache-hot in that location.
827 */
828 if (cpu_isset(cpu, *lowest_mask))
829 return cpu;
830
831 /*
832 * Otherwise, we consult the sched_domains span maps to figure
833 * out which cpu is logically closest to our hot cache data.
834 */
835 if (this_cpu == cpu)
836 this_cpu = -1; /* Skip this_cpu opt if the same */
837
838 for_each_domain(cpu, sd) {
839 if (sd->flags & SD_WAKE_AFFINE) {
840 cpumask_t domain_mask;
841 int best_cpu;
842
843 cpus_and(domain_mask, sd->span, *lowest_mask);
844
845 best_cpu = pick_optimal_cpu(this_cpu,
846 &domain_mask);
847 if (best_cpu != -1)
848 return best_cpu;
849 }
850 }
851
852 /*
853 * And finally, if there were no matches within the domains
854 * just give the caller *something* to work with from the compatible
855 * locations.
856 */
857 return pick_optimal_cpu(this_cpu, lowest_mask);
858 }
859
860 /* Will lock the rq it finds */
861 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
862 {
863 struct rq *lowest_rq = NULL;
864 int tries;
865 int cpu;
866
867 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
868 cpu = find_lowest_rq(task);
869
870 if ((cpu == -1) || (cpu == rq->cpu))
871 break;
872
873 lowest_rq = cpu_rq(cpu);
874
875 /* if the prio of this runqueue changed, try again */
876 if (double_lock_balance(rq, lowest_rq)) {
877 /*
878 * We had to unlock the run queue. In
879 * the mean time, task could have
880 * migrated already or had its affinity changed.
881 * Also make sure that it wasn't scheduled on its rq.
882 */
883 if (unlikely(task_rq(task) != rq ||
884 !cpu_isset(lowest_rq->cpu,
885 task->cpus_allowed) ||
886 task_running(rq, task) ||
887 !task->se.on_rq)) {
888
889 spin_unlock(&lowest_rq->lock);
890 lowest_rq = NULL;
891 break;
892 }
893 }
894
895 /* If this rq is still suitable use it. */
896 if (lowest_rq->rt.highest_prio > task->prio)
897 break;
898
899 /* try again */
900 spin_unlock(&lowest_rq->lock);
901 lowest_rq = NULL;
902 }
903
904 return lowest_rq;
905 }
906
907 /*
908 * If the current CPU has more than one RT task, see if the non
909 * running task can migrate over to a CPU that is running a task
910 * of lesser priority.
911 */
912 static int push_rt_task(struct rq *rq)
913 {
914 struct task_struct *next_task;
915 struct rq *lowest_rq;
916 int ret = 0;
917 int paranoid = RT_MAX_TRIES;
918
919 if (!rq->rt.overloaded)
920 return 0;
921
922 next_task = pick_next_highest_task_rt(rq, -1);
923 if (!next_task)
924 return 0;
925
926 retry:
927 if (unlikely(next_task == rq->curr)) {
928 WARN_ON(1);
929 return 0;
930 }
931
932 /*
933 * It's possible that the next_task slipped in of
934 * higher priority than current. If that's the case
935 * just reschedule current.
936 */
937 if (unlikely(next_task->prio < rq->curr->prio)) {
938 resched_task(rq->curr);
939 return 0;
940 }
941
942 /* We might release rq lock */
943 get_task_struct(next_task);
944
945 /* find_lock_lowest_rq locks the rq if found */
946 lowest_rq = find_lock_lowest_rq(next_task, rq);
947 if (!lowest_rq) {
948 struct task_struct *task;
949 /*
950 * find lock_lowest_rq releases rq->lock
951 * so it is possible that next_task has changed.
952 * If it has, then try again.
953 */
954 task = pick_next_highest_task_rt(rq, -1);
955 if (unlikely(task != next_task) && task && paranoid--) {
956 put_task_struct(next_task);
957 next_task = task;
958 goto retry;
959 }
960 goto out;
961 }
962
963 deactivate_task(rq, next_task, 0);
964 set_task_cpu(next_task, lowest_rq->cpu);
965 activate_task(lowest_rq, next_task, 0);
966
967 resched_task(lowest_rq->curr);
968
969 spin_unlock(&lowest_rq->lock);
970
971 ret = 1;
972 out:
973 put_task_struct(next_task);
974
975 return ret;
976 }
977
978 /*
979 * TODO: Currently we just use the second highest prio task on
980 * the queue, and stop when it can't migrate (or there's
981 * no more RT tasks). There may be a case where a lower
982 * priority RT task has a different affinity than the
983 * higher RT task. In this case the lower RT task could
984 * possibly be able to migrate where as the higher priority
985 * RT task could not. We currently ignore this issue.
986 * Enhancements are welcome!
987 */
988 static void push_rt_tasks(struct rq *rq)
989 {
990 /* push_rt_task will return true if it moved an RT */
991 while (push_rt_task(rq))
992 ;
993 }
994
995 static int pull_rt_task(struct rq *this_rq)
996 {
997 int this_cpu = this_rq->cpu, ret = 0, cpu;
998 struct task_struct *p, *next;
999 struct rq *src_rq;
1000
1001 if (likely(!rt_overloaded(this_rq)))
1002 return 0;
1003
1004 next = pick_next_task_rt(this_rq);
1005
1006 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
1007 if (this_cpu == cpu)
1008 continue;
1009
1010 src_rq = cpu_rq(cpu);
1011 /*
1012 * We can potentially drop this_rq's lock in
1013 * double_lock_balance, and another CPU could
1014 * steal our next task - hence we must cause
1015 * the caller to recalculate the next task
1016 * in that case:
1017 */
1018 if (double_lock_balance(this_rq, src_rq)) {
1019 struct task_struct *old_next = next;
1020
1021 next = pick_next_task_rt(this_rq);
1022 if (next != old_next)
1023 ret = 1;
1024 }
1025
1026 /*
1027 * Are there still pullable RT tasks?
1028 */
1029 if (src_rq->rt.rt_nr_running <= 1)
1030 goto skip;
1031
1032 p = pick_next_highest_task_rt(src_rq, this_cpu);
1033
1034 /*
1035 * Do we have an RT task that preempts
1036 * the to-be-scheduled task?
1037 */
1038 if (p && (!next || (p->prio < next->prio))) {
1039 WARN_ON(p == src_rq->curr);
1040 WARN_ON(!p->se.on_rq);
1041
1042 /*
1043 * There's a chance that p is higher in priority
1044 * than what's currently running on its cpu.
1045 * This is just that p is wakeing up and hasn't
1046 * had a chance to schedule. We only pull
1047 * p if it is lower in priority than the
1048 * current task on the run queue or
1049 * this_rq next task is lower in prio than
1050 * the current task on that rq.
1051 */
1052 if (p->prio < src_rq->curr->prio ||
1053 (next && next->prio < src_rq->curr->prio))
1054 goto skip;
1055
1056 ret = 1;
1057
1058 deactivate_task(src_rq, p, 0);
1059 set_task_cpu(p, this_cpu);
1060 activate_task(this_rq, p, 0);
1061 /*
1062 * We continue with the search, just in
1063 * case there's an even higher prio task
1064 * in another runqueue. (low likelyhood
1065 * but possible)
1066 *
1067 * Update next so that we won't pick a task
1068 * on another cpu with a priority lower (or equal)
1069 * than the one we just picked.
1070 */
1071 next = p;
1072
1073 }
1074 skip:
1075 spin_unlock(&src_rq->lock);
1076 }
1077
1078 return ret;
1079 }
1080
1081 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1082 {
1083 /* Try to pull RT tasks here if we lower this rq's prio */
1084 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1085 pull_rt_task(rq);
1086 }
1087
1088 static void post_schedule_rt(struct rq *rq)
1089 {
1090 /*
1091 * If we have more than one rt_task queued, then
1092 * see if we can push the other rt_tasks off to other CPUS.
1093 * Note we may release the rq lock, and since
1094 * the lock was owned by prev, we need to release it
1095 * first via finish_lock_switch and then reaquire it here.
1096 */
1097 if (unlikely(rq->rt.overloaded)) {
1098 spin_lock_irq(&rq->lock);
1099 push_rt_tasks(rq);
1100 spin_unlock_irq(&rq->lock);
1101 }
1102 }
1103
1104 /*
1105 * If we are not running and we are not going to reschedule soon, we should
1106 * try to push tasks away now
1107 */
1108 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1109 {
1110 if (!task_running(rq, p) &&
1111 !test_tsk_need_resched(rq->curr) &&
1112 rq->rt.overloaded)
1113 push_rt_tasks(rq);
1114 }
1115
1116 static unsigned long
1117 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1118 unsigned long max_load_move,
1119 struct sched_domain *sd, enum cpu_idle_type idle,
1120 int *all_pinned, int *this_best_prio)
1121 {
1122 /* don't touch RT tasks */
1123 return 0;
1124 }
1125
1126 static int
1127 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1128 struct sched_domain *sd, enum cpu_idle_type idle)
1129 {
1130 /* don't touch RT tasks */
1131 return 0;
1132 }
1133
1134 static void set_cpus_allowed_rt(struct task_struct *p,
1135 const cpumask_t *new_mask)
1136 {
1137 int weight = cpus_weight(*new_mask);
1138
1139 BUG_ON(!rt_task(p));
1140
1141 /*
1142 * Update the migration status of the RQ if we have an RT task
1143 * which is running AND changing its weight value.
1144 */
1145 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1146 struct rq *rq = task_rq(p);
1147
1148 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1149 rq->rt.rt_nr_migratory++;
1150 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1151 BUG_ON(!rq->rt.rt_nr_migratory);
1152 rq->rt.rt_nr_migratory--;
1153 }
1154
1155 update_rt_migration(rq);
1156 }
1157
1158 p->cpus_allowed = *new_mask;
1159 p->rt.nr_cpus_allowed = weight;
1160 }
1161
1162 /* Assumes rq->lock is held */
1163 static void join_domain_rt(struct rq *rq)
1164 {
1165 if (rq->rt.overloaded)
1166 rt_set_overload(rq);
1167 }
1168
1169 /* Assumes rq->lock is held */
1170 static void leave_domain_rt(struct rq *rq)
1171 {
1172 if (rq->rt.overloaded)
1173 rt_clear_overload(rq);
1174 }
1175
1176 /*
1177 * When switch from the rt queue, we bring ourselves to a position
1178 * that we might want to pull RT tasks from other runqueues.
1179 */
1180 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1181 int running)
1182 {
1183 /*
1184 * If there are other RT tasks then we will reschedule
1185 * and the scheduling of the other RT tasks will handle
1186 * the balancing. But if we are the last RT task
1187 * we may need to handle the pulling of RT tasks
1188 * now.
1189 */
1190 if (!rq->rt.rt_nr_running)
1191 pull_rt_task(rq);
1192 }
1193 #endif /* CONFIG_SMP */
1194
1195 /*
1196 * When switching a task to RT, we may overload the runqueue
1197 * with RT tasks. In this case we try to push them off to
1198 * other runqueues.
1199 */
1200 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1201 int running)
1202 {
1203 int check_resched = 1;
1204
1205 /*
1206 * If we are already running, then there's nothing
1207 * that needs to be done. But if we are not running
1208 * we may need to preempt the current running task.
1209 * If that current running task is also an RT task
1210 * then see if we can move to another run queue.
1211 */
1212 if (!running) {
1213 #ifdef CONFIG_SMP
1214 if (rq->rt.overloaded && push_rt_task(rq) &&
1215 /* Don't resched if we changed runqueues */
1216 rq != task_rq(p))
1217 check_resched = 0;
1218 #endif /* CONFIG_SMP */
1219 if (check_resched && p->prio < rq->curr->prio)
1220 resched_task(rq->curr);
1221 }
1222 }
1223
1224 /*
1225 * Priority of the task has changed. This may cause
1226 * us to initiate a push or pull.
1227 */
1228 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1229 int oldprio, int running)
1230 {
1231 if (running) {
1232 #ifdef CONFIG_SMP
1233 /*
1234 * If our priority decreases while running, we
1235 * may need to pull tasks to this runqueue.
1236 */
1237 if (oldprio < p->prio)
1238 pull_rt_task(rq);
1239 /*
1240 * If there's a higher priority task waiting to run
1241 * then reschedule. Note, the above pull_rt_task
1242 * can release the rq lock and p could migrate.
1243 * Only reschedule if p is still on the same runqueue.
1244 */
1245 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1246 resched_task(p);
1247 #else
1248 /* For UP simply resched on drop of prio */
1249 if (oldprio < p->prio)
1250 resched_task(p);
1251 #endif /* CONFIG_SMP */
1252 } else {
1253 /*
1254 * This task is not running, but if it is
1255 * greater than the current running task
1256 * then reschedule.
1257 */
1258 if (p->prio < rq->curr->prio)
1259 resched_task(rq->curr);
1260 }
1261 }
1262
1263 static void watchdog(struct rq *rq, struct task_struct *p)
1264 {
1265 unsigned long soft, hard;
1266
1267 if (!p->signal)
1268 return;
1269
1270 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1271 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1272
1273 if (soft != RLIM_INFINITY) {
1274 unsigned long next;
1275
1276 p->rt.timeout++;
1277 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1278 if (p->rt.timeout > next)
1279 p->it_sched_expires = p->se.sum_exec_runtime;
1280 }
1281 }
1282
1283 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1284 {
1285 update_curr_rt(rq);
1286
1287 watchdog(rq, p);
1288
1289 /*
1290 * RR tasks need a special form of timeslice management.
1291 * FIFO tasks have no timeslices.
1292 */
1293 if (p->policy != SCHED_RR)
1294 return;
1295
1296 if (--p->rt.time_slice)
1297 return;
1298
1299 p->rt.time_slice = DEF_TIMESLICE;
1300
1301 /*
1302 * Requeue to the end of queue if we are not the only element
1303 * on the queue:
1304 */
1305 if (p->rt.run_list.prev != p->rt.run_list.next) {
1306 requeue_task_rt(rq, p);
1307 set_tsk_need_resched(p);
1308 }
1309 }
1310
1311 static void set_curr_task_rt(struct rq *rq)
1312 {
1313 struct task_struct *p = rq->curr;
1314
1315 p->se.exec_start = rq->clock;
1316 }
1317
1318 static const struct sched_class rt_sched_class = {
1319 .next = &fair_sched_class,
1320 .enqueue_task = enqueue_task_rt,
1321 .dequeue_task = dequeue_task_rt,
1322 .yield_task = yield_task_rt,
1323 #ifdef CONFIG_SMP
1324 .select_task_rq = select_task_rq_rt,
1325 #endif /* CONFIG_SMP */
1326
1327 .check_preempt_curr = check_preempt_curr_rt,
1328
1329 .pick_next_task = pick_next_task_rt,
1330 .put_prev_task = put_prev_task_rt,
1331
1332 #ifdef CONFIG_SMP
1333 .load_balance = load_balance_rt,
1334 .move_one_task = move_one_task_rt,
1335 .set_cpus_allowed = set_cpus_allowed_rt,
1336 .join_domain = join_domain_rt,
1337 .leave_domain = leave_domain_rt,
1338 .pre_schedule = pre_schedule_rt,
1339 .post_schedule = post_schedule_rt,
1340 .task_wake_up = task_wake_up_rt,
1341 .switched_from = switched_from_rt,
1342 #endif
1343
1344 .set_curr_task = set_curr_task_rt,
1345 .task_tick = task_tick_rt,
1346
1347 .prio_changed = prio_changed_rt,
1348 .switched_to = switched_to_rt,
1349 };