Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 if (!rq->online)
16 return;
17
18 cpu_set(rq->cpu, rq->rd->rto_mask);
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32 if (!rq->online)
33 return;
34
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
50 }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56 return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61 return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
70
71 return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84 return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89 return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97 return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
113 }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144 return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149 return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161 return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else /* !CONFIG_RT_GROUP_SCHED */
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168 return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181 return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197 return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 }
203
204 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
205 {
206 }
207
208 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209 {
210 return rt_rq->rt_throttled;
211 }
212
213 static inline cpumask_t sched_rt_period_mask(void)
214 {
215 return cpu_online_map;
216 }
217
218 static inline
219 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220 {
221 return &cpu_rq(cpu)->rt;
222 }
223
224 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225 {
226 return &def_rt_bandwidth;
227 }
228
229 #endif /* CONFIG_RT_GROUP_SCHED */
230
231 #ifdef CONFIG_SMP
232 static int do_balance_runtime(struct rt_rq *rt_rq)
233 {
234 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
235 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
236 int i, weight, more = 0;
237 u64 rt_period;
238
239 weight = cpus_weight(rd->span);
240
241 spin_lock(&rt_b->rt_runtime_lock);
242 rt_period = ktime_to_ns(rt_b->rt_period);
243 for_each_cpu_mask_nr(i, rd->span) {
244 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
245 s64 diff;
246
247 if (iter == rt_rq)
248 continue;
249
250 spin_lock(&iter->rt_runtime_lock);
251 if (iter->rt_runtime == RUNTIME_INF)
252 goto next;
253
254 diff = iter->rt_runtime - iter->rt_time;
255 if (diff > 0) {
256 diff = div_u64((u64)diff, weight);
257 if (rt_rq->rt_runtime + diff > rt_period)
258 diff = rt_period - rt_rq->rt_runtime;
259 iter->rt_runtime -= diff;
260 rt_rq->rt_runtime += diff;
261 more = 1;
262 if (rt_rq->rt_runtime == rt_period) {
263 spin_unlock(&iter->rt_runtime_lock);
264 break;
265 }
266 }
267 next:
268 spin_unlock(&iter->rt_runtime_lock);
269 }
270 spin_unlock(&rt_b->rt_runtime_lock);
271
272 return more;
273 }
274
275 static void __disable_runtime(struct rq *rq)
276 {
277 struct root_domain *rd = rq->rd;
278 struct rt_rq *rt_rq;
279
280 if (unlikely(!scheduler_running))
281 return;
282
283 for_each_leaf_rt_rq(rt_rq, rq) {
284 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
285 s64 want;
286 int i;
287
288 spin_lock(&rt_b->rt_runtime_lock);
289 spin_lock(&rt_rq->rt_runtime_lock);
290 if (rt_rq->rt_runtime == RUNTIME_INF ||
291 rt_rq->rt_runtime == rt_b->rt_runtime)
292 goto balanced;
293 spin_unlock(&rt_rq->rt_runtime_lock);
294
295 want = rt_b->rt_runtime - rt_rq->rt_runtime;
296
297 for_each_cpu_mask(i, rd->span) {
298 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
299 s64 diff;
300
301 if (iter == rt_rq)
302 continue;
303
304 spin_lock(&iter->rt_runtime_lock);
305 if (want > 0) {
306 diff = min_t(s64, iter->rt_runtime, want);
307 iter->rt_runtime -= diff;
308 want -= diff;
309 } else {
310 iter->rt_runtime -= want;
311 want -= want;
312 }
313 spin_unlock(&iter->rt_runtime_lock);
314
315 if (!want)
316 break;
317 }
318
319 spin_lock(&rt_rq->rt_runtime_lock);
320 BUG_ON(want);
321 balanced:
322 rt_rq->rt_runtime = RUNTIME_INF;
323 spin_unlock(&rt_rq->rt_runtime_lock);
324 spin_unlock(&rt_b->rt_runtime_lock);
325 }
326 }
327
328 static void disable_runtime(struct rq *rq)
329 {
330 unsigned long flags;
331
332 spin_lock_irqsave(&rq->lock, flags);
333 __disable_runtime(rq);
334 spin_unlock_irqrestore(&rq->lock, flags);
335 }
336
337 static void __enable_runtime(struct rq *rq)
338 {
339 struct rt_rq *rt_rq;
340
341 if (unlikely(!scheduler_running))
342 return;
343
344 for_each_leaf_rt_rq(rt_rq, rq) {
345 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
346
347 spin_lock(&rt_b->rt_runtime_lock);
348 spin_lock(&rt_rq->rt_runtime_lock);
349 rt_rq->rt_runtime = rt_b->rt_runtime;
350 rt_rq->rt_time = 0;
351 spin_unlock(&rt_rq->rt_runtime_lock);
352 spin_unlock(&rt_b->rt_runtime_lock);
353 }
354 }
355
356 static void enable_runtime(struct rq *rq)
357 {
358 unsigned long flags;
359
360 spin_lock_irqsave(&rq->lock, flags);
361 __enable_runtime(rq);
362 spin_unlock_irqrestore(&rq->lock, flags);
363 }
364
365 static int balance_runtime(struct rt_rq *rt_rq)
366 {
367 int more = 0;
368
369 if (rt_rq->rt_time > rt_rq->rt_runtime) {
370 spin_unlock(&rt_rq->rt_runtime_lock);
371 more = do_balance_runtime(rt_rq);
372 spin_lock(&rt_rq->rt_runtime_lock);
373 }
374
375 return more;
376 }
377 #else /* !CONFIG_SMP */
378 static inline int balance_runtime(struct rt_rq *rt_rq)
379 {
380 return 0;
381 }
382 #endif /* CONFIG_SMP */
383
384 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
385 {
386 int i, idle = 1;
387 cpumask_t span;
388
389 if (rt_b->rt_runtime == RUNTIME_INF)
390 return 1;
391
392 span = sched_rt_period_mask();
393 for_each_cpu_mask(i, span) {
394 int enqueue = 0;
395 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
396 struct rq *rq = rq_of_rt_rq(rt_rq);
397
398 spin_lock(&rq->lock);
399 if (rt_rq->rt_time) {
400 u64 runtime;
401
402 spin_lock(&rt_rq->rt_runtime_lock);
403 if (rt_rq->rt_throttled)
404 balance_runtime(rt_rq);
405 runtime = rt_rq->rt_runtime;
406 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
407 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
408 rt_rq->rt_throttled = 0;
409 enqueue = 1;
410 }
411 if (rt_rq->rt_time || rt_rq->rt_nr_running)
412 idle = 0;
413 spin_unlock(&rt_rq->rt_runtime_lock);
414 } else if (rt_rq->rt_nr_running)
415 idle = 0;
416
417 if (enqueue)
418 sched_rt_rq_enqueue(rt_rq);
419 spin_unlock(&rq->lock);
420 }
421
422 return idle;
423 }
424
425 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
426 {
427 #ifdef CONFIG_RT_GROUP_SCHED
428 struct rt_rq *rt_rq = group_rt_rq(rt_se);
429
430 if (rt_rq)
431 return rt_rq->highest_prio;
432 #endif
433
434 return rt_task_of(rt_se)->prio;
435 }
436
437 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
438 {
439 u64 runtime = sched_rt_runtime(rt_rq);
440
441 if (runtime == RUNTIME_INF)
442 return 0;
443
444 if (rt_rq->rt_throttled)
445 return rt_rq_throttled(rt_rq);
446
447 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448 return 0;
449
450 balance_runtime(rt_rq);
451 runtime = sched_rt_runtime(rt_rq);
452 if (runtime == RUNTIME_INF)
453 return 0;
454
455 if (rt_rq->rt_time > runtime) {
456 rt_rq->rt_throttled = 1;
457 if (rt_rq_throttled(rt_rq)) {
458 sched_rt_rq_dequeue(rt_rq);
459 return 1;
460 }
461 }
462
463 return 0;
464 }
465
466 /*
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
469 */
470 static void update_curr_rt(struct rq *rq)
471 {
472 struct task_struct *curr = rq->curr;
473 struct sched_rt_entity *rt_se = &curr->rt;
474 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
475 u64 delta_exec;
476
477 if (!task_has_rt_policy(curr))
478 return;
479
480 delta_exec = rq->clock - curr->se.exec_start;
481 if (unlikely((s64)delta_exec < 0))
482 delta_exec = 0;
483
484 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
485
486 curr->se.sum_exec_runtime += delta_exec;
487 curr->se.exec_start = rq->clock;
488 cpuacct_charge(curr, delta_exec);
489
490 for_each_sched_rt_entity(rt_se) {
491 rt_rq = rt_rq_of_se(rt_se);
492
493 spin_lock(&rt_rq->rt_runtime_lock);
494 rt_rq->rt_time += delta_exec;
495 if (sched_rt_runtime_exceeded(rt_rq))
496 resched_task(curr);
497 spin_unlock(&rt_rq->rt_runtime_lock);
498 }
499 }
500
501 static inline
502 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
503 {
504 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
505 rt_rq->rt_nr_running++;
506 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
507 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
508 #ifdef CONFIG_SMP
509 struct rq *rq = rq_of_rt_rq(rt_rq);
510 #endif
511
512 rt_rq->highest_prio = rt_se_prio(rt_se);
513 #ifdef CONFIG_SMP
514 if (rq->online)
515 cpupri_set(&rq->rd->cpupri, rq->cpu,
516 rt_se_prio(rt_se));
517 #endif
518 }
519 #endif
520 #ifdef CONFIG_SMP
521 if (rt_se->nr_cpus_allowed > 1) {
522 struct rq *rq = rq_of_rt_rq(rt_rq);
523
524 rq->rt.rt_nr_migratory++;
525 }
526
527 update_rt_migration(rq_of_rt_rq(rt_rq));
528 #endif
529 #ifdef CONFIG_RT_GROUP_SCHED
530 if (rt_se_boosted(rt_se))
531 rt_rq->rt_nr_boosted++;
532
533 if (rt_rq->tg)
534 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
535 #else
536 start_rt_bandwidth(&def_rt_bandwidth);
537 #endif
538 }
539
540 static inline
541 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
542 {
543 #ifdef CONFIG_SMP
544 int highest_prio = rt_rq->highest_prio;
545 #endif
546
547 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
548 WARN_ON(!rt_rq->rt_nr_running);
549 rt_rq->rt_nr_running--;
550 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
551 if (rt_rq->rt_nr_running) {
552 struct rt_prio_array *array;
553
554 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
555 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
556 /* recalculate */
557 array = &rt_rq->active;
558 rt_rq->highest_prio =
559 sched_find_first_bit(array->bitmap);
560 } /* otherwise leave rq->highest prio alone */
561 } else
562 rt_rq->highest_prio = MAX_RT_PRIO;
563 #endif
564 #ifdef CONFIG_SMP
565 if (rt_se->nr_cpus_allowed > 1) {
566 struct rq *rq = rq_of_rt_rq(rt_rq);
567 rq->rt.rt_nr_migratory--;
568 }
569
570 if (rt_rq->highest_prio != highest_prio) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
572
573 if (rq->online)
574 cpupri_set(&rq->rd->cpupri, rq->cpu,
575 rt_rq->highest_prio);
576 }
577
578 update_rt_migration(rq_of_rt_rq(rt_rq));
579 #endif /* CONFIG_SMP */
580 #ifdef CONFIG_RT_GROUP_SCHED
581 if (rt_se_boosted(rt_se))
582 rt_rq->rt_nr_boosted--;
583
584 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
585 #endif
586 }
587
588 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
589 {
590 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
591 struct rt_prio_array *array = &rt_rq->active;
592 struct rt_rq *group_rq = group_rt_rq(rt_se);
593 struct list_head *queue = array->queue + rt_se_prio(rt_se);
594
595 /*
596 * Don't enqueue the group if its throttled, or when empty.
597 * The latter is a consequence of the former when a child group
598 * get throttled and the current group doesn't have any other
599 * active members.
600 */
601 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
602 return;
603
604 list_add_tail(&rt_se->run_list, queue);
605 __set_bit(rt_se_prio(rt_se), array->bitmap);
606
607 inc_rt_tasks(rt_se, rt_rq);
608 }
609
610 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
611 {
612 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
613 struct rt_prio_array *array = &rt_rq->active;
614
615 list_del_init(&rt_se->run_list);
616 if (list_empty(array->queue + rt_se_prio(rt_se)))
617 __clear_bit(rt_se_prio(rt_se), array->bitmap);
618
619 dec_rt_tasks(rt_se, rt_rq);
620 }
621
622 /*
623 * Because the prio of an upper entry depends on the lower
624 * entries, we must remove entries top - down.
625 */
626 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
627 {
628 struct sched_rt_entity *back = NULL;
629
630 for_each_sched_rt_entity(rt_se) {
631 rt_se->back = back;
632 back = rt_se;
633 }
634
635 for (rt_se = back; rt_se; rt_se = rt_se->back) {
636 if (on_rt_rq(rt_se))
637 __dequeue_rt_entity(rt_se);
638 }
639 }
640
641 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
642 {
643 dequeue_rt_stack(rt_se);
644 for_each_sched_rt_entity(rt_se)
645 __enqueue_rt_entity(rt_se);
646 }
647
648 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
649 {
650 dequeue_rt_stack(rt_se);
651
652 for_each_sched_rt_entity(rt_se) {
653 struct rt_rq *rt_rq = group_rt_rq(rt_se);
654
655 if (rt_rq && rt_rq->rt_nr_running)
656 __enqueue_rt_entity(rt_se);
657 }
658 }
659
660 /*
661 * Adding/removing a task to/from a priority array:
662 */
663 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
664 {
665 struct sched_rt_entity *rt_se = &p->rt;
666
667 if (wakeup)
668 rt_se->timeout = 0;
669
670 enqueue_rt_entity(rt_se);
671
672 inc_cpu_load(rq, p->se.load.weight);
673 }
674
675 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
676 {
677 struct sched_rt_entity *rt_se = &p->rt;
678
679 update_curr_rt(rq);
680 dequeue_rt_entity(rt_se);
681
682 dec_cpu_load(rq, p->se.load.weight);
683 }
684
685 /*
686 * Put task to the end of the run list without the overhead of dequeue
687 * followed by enqueue.
688 */
689 static void
690 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
691 {
692 if (on_rt_rq(rt_se)) {
693 struct rt_prio_array *array = &rt_rq->active;
694 struct list_head *queue = array->queue + rt_se_prio(rt_se);
695
696 if (head)
697 list_move(&rt_se->run_list, queue);
698 else
699 list_move_tail(&rt_se->run_list, queue);
700 }
701 }
702
703 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
704 {
705 struct sched_rt_entity *rt_se = &p->rt;
706 struct rt_rq *rt_rq;
707
708 for_each_sched_rt_entity(rt_se) {
709 rt_rq = rt_rq_of_se(rt_se);
710 requeue_rt_entity(rt_rq, rt_se, head);
711 }
712 }
713
714 static void yield_task_rt(struct rq *rq)
715 {
716 requeue_task_rt(rq, rq->curr, 0);
717 }
718
719 #ifdef CONFIG_SMP
720 static int find_lowest_rq(struct task_struct *task);
721
722 static int select_task_rq_rt(struct task_struct *p, int sync)
723 {
724 struct rq *rq = task_rq(p);
725
726 /*
727 * If the current task is an RT task, then
728 * try to see if we can wake this RT task up on another
729 * runqueue. Otherwise simply start this RT task
730 * on its current runqueue.
731 *
732 * We want to avoid overloading runqueues. Even if
733 * the RT task is of higher priority than the current RT task.
734 * RT tasks behave differently than other tasks. If
735 * one gets preempted, we try to push it off to another queue.
736 * So trying to keep a preempting RT task on the same
737 * cache hot CPU will force the running RT task to
738 * a cold CPU. So we waste all the cache for the lower
739 * RT task in hopes of saving some of a RT task
740 * that is just being woken and probably will have
741 * cold cache anyway.
742 */
743 if (unlikely(rt_task(rq->curr)) &&
744 (p->rt.nr_cpus_allowed > 1)) {
745 int cpu = find_lowest_rq(p);
746
747 return (cpu == -1) ? task_cpu(p) : cpu;
748 }
749
750 /*
751 * Otherwise, just let it ride on the affined RQ and the
752 * post-schedule router will push the preempted task away
753 */
754 return task_cpu(p);
755 }
756
757 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
758 {
759 cpumask_t mask;
760
761 if (rq->curr->rt.nr_cpus_allowed == 1)
762 return;
763
764 if (p->rt.nr_cpus_allowed != 1
765 && cpupri_find(&rq->rd->cpupri, p, &mask))
766 return;
767
768 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
769 return;
770
771 /*
772 * There appears to be other cpus that can accept
773 * current and none to run 'p', so lets reschedule
774 * to try and push current away:
775 */
776 requeue_task_rt(rq, p, 1);
777 resched_task(rq->curr);
778 }
779
780 #endif /* CONFIG_SMP */
781
782 /*
783 * Preempt the current task with a newly woken task if needed:
784 */
785 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
786 {
787 if (p->prio < rq->curr->prio) {
788 resched_task(rq->curr);
789 return;
790 }
791
792 #ifdef CONFIG_SMP
793 /*
794 * If:
795 *
796 * - the newly woken task is of equal priority to the current task
797 * - the newly woken task is non-migratable while current is migratable
798 * - current will be preempted on the next reschedule
799 *
800 * we should check to see if current can readily move to a different
801 * cpu. If so, we will reschedule to allow the push logic to try
802 * to move current somewhere else, making room for our non-migratable
803 * task.
804 */
805 if (p->prio == rq->curr->prio && !need_resched())
806 check_preempt_equal_prio(rq, p);
807 #endif
808 }
809
810 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
811 struct rt_rq *rt_rq)
812 {
813 struct rt_prio_array *array = &rt_rq->active;
814 struct sched_rt_entity *next = NULL;
815 struct list_head *queue;
816 int idx;
817
818 idx = sched_find_first_bit(array->bitmap);
819 BUG_ON(idx >= MAX_RT_PRIO);
820
821 queue = array->queue + idx;
822 next = list_entry(queue->next, struct sched_rt_entity, run_list);
823
824 return next;
825 }
826
827 static struct task_struct *pick_next_task_rt(struct rq *rq)
828 {
829 struct sched_rt_entity *rt_se;
830 struct task_struct *p;
831 struct rt_rq *rt_rq;
832
833 rt_rq = &rq->rt;
834
835 if (unlikely(!rt_rq->rt_nr_running))
836 return NULL;
837
838 if (rt_rq_throttled(rt_rq))
839 return NULL;
840
841 do {
842 rt_se = pick_next_rt_entity(rq, rt_rq);
843 BUG_ON(!rt_se);
844 rt_rq = group_rt_rq(rt_se);
845 } while (rt_rq);
846
847 p = rt_task_of(rt_se);
848 p->se.exec_start = rq->clock;
849 return p;
850 }
851
852 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
853 {
854 update_curr_rt(rq);
855 p->se.exec_start = 0;
856 }
857
858 #ifdef CONFIG_SMP
859
860 /* Only try algorithms three times */
861 #define RT_MAX_TRIES 3
862
863 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
864 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
865
866 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
867
868 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
869 {
870 if (!task_running(rq, p) &&
871 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
872 (p->rt.nr_cpus_allowed > 1))
873 return 1;
874 return 0;
875 }
876
877 /* Return the second highest RT task, NULL otherwise */
878 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
879 {
880 struct task_struct *next = NULL;
881 struct sched_rt_entity *rt_se;
882 struct rt_prio_array *array;
883 struct rt_rq *rt_rq;
884 int idx;
885
886 for_each_leaf_rt_rq(rt_rq, rq) {
887 array = &rt_rq->active;
888 idx = sched_find_first_bit(array->bitmap);
889 next_idx:
890 if (idx >= MAX_RT_PRIO)
891 continue;
892 if (next && next->prio < idx)
893 continue;
894 list_for_each_entry(rt_se, array->queue + idx, run_list) {
895 struct task_struct *p = rt_task_of(rt_se);
896 if (pick_rt_task(rq, p, cpu)) {
897 next = p;
898 break;
899 }
900 }
901 if (!next) {
902 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
903 goto next_idx;
904 }
905 }
906
907 return next;
908 }
909
910 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
911
912 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
913 {
914 int first;
915
916 /* "this_cpu" is cheaper to preempt than a remote processor */
917 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
918 return this_cpu;
919
920 first = first_cpu(*mask);
921 if (first != NR_CPUS)
922 return first;
923
924 return -1;
925 }
926
927 static int find_lowest_rq(struct task_struct *task)
928 {
929 struct sched_domain *sd;
930 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
931 int this_cpu = smp_processor_id();
932 int cpu = task_cpu(task);
933
934 if (task->rt.nr_cpus_allowed == 1)
935 return -1; /* No other targets possible */
936
937 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
938 return -1; /* No targets found */
939
940 /*
941 * Only consider CPUs that are usable for migration.
942 * I guess we might want to change cpupri_find() to ignore those
943 * in the first place.
944 */
945 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
946
947 /*
948 * At this point we have built a mask of cpus representing the
949 * lowest priority tasks in the system. Now we want to elect
950 * the best one based on our affinity and topology.
951 *
952 * We prioritize the last cpu that the task executed on since
953 * it is most likely cache-hot in that location.
954 */
955 if (cpu_isset(cpu, *lowest_mask))
956 return cpu;
957
958 /*
959 * Otherwise, we consult the sched_domains span maps to figure
960 * out which cpu is logically closest to our hot cache data.
961 */
962 if (this_cpu == cpu)
963 this_cpu = -1; /* Skip this_cpu opt if the same */
964
965 for_each_domain(cpu, sd) {
966 if (sd->flags & SD_WAKE_AFFINE) {
967 cpumask_t domain_mask;
968 int best_cpu;
969
970 cpus_and(domain_mask, sd->span, *lowest_mask);
971
972 best_cpu = pick_optimal_cpu(this_cpu,
973 &domain_mask);
974 if (best_cpu != -1)
975 return best_cpu;
976 }
977 }
978
979 /*
980 * And finally, if there were no matches within the domains
981 * just give the caller *something* to work with from the compatible
982 * locations.
983 */
984 return pick_optimal_cpu(this_cpu, lowest_mask);
985 }
986
987 /* Will lock the rq it finds */
988 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
989 {
990 struct rq *lowest_rq = NULL;
991 int tries;
992 int cpu;
993
994 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
995 cpu = find_lowest_rq(task);
996
997 if ((cpu == -1) || (cpu == rq->cpu))
998 break;
999
1000 lowest_rq = cpu_rq(cpu);
1001
1002 /* if the prio of this runqueue changed, try again */
1003 if (double_lock_balance(rq, lowest_rq)) {
1004 /*
1005 * We had to unlock the run queue. In
1006 * the mean time, task could have
1007 * migrated already or had its affinity changed.
1008 * Also make sure that it wasn't scheduled on its rq.
1009 */
1010 if (unlikely(task_rq(task) != rq ||
1011 !cpu_isset(lowest_rq->cpu,
1012 task->cpus_allowed) ||
1013 task_running(rq, task) ||
1014 !task->se.on_rq)) {
1015
1016 spin_unlock(&lowest_rq->lock);
1017 lowest_rq = NULL;
1018 break;
1019 }
1020 }
1021
1022 /* If this rq is still suitable use it. */
1023 if (lowest_rq->rt.highest_prio > task->prio)
1024 break;
1025
1026 /* try again */
1027 double_unlock_balance(rq, lowest_rq);
1028 lowest_rq = NULL;
1029 }
1030
1031 return lowest_rq;
1032 }
1033
1034 /*
1035 * If the current CPU has more than one RT task, see if the non
1036 * running task can migrate over to a CPU that is running a task
1037 * of lesser priority.
1038 */
1039 static int push_rt_task(struct rq *rq)
1040 {
1041 struct task_struct *next_task;
1042 struct rq *lowest_rq;
1043 int ret = 0;
1044 int paranoid = RT_MAX_TRIES;
1045
1046 if (!rq->rt.overloaded)
1047 return 0;
1048
1049 next_task = pick_next_highest_task_rt(rq, -1);
1050 if (!next_task)
1051 return 0;
1052
1053 retry:
1054 if (unlikely(next_task == rq->curr)) {
1055 WARN_ON(1);
1056 return 0;
1057 }
1058
1059 /*
1060 * It's possible that the next_task slipped in of
1061 * higher priority than current. If that's the case
1062 * just reschedule current.
1063 */
1064 if (unlikely(next_task->prio < rq->curr->prio)) {
1065 resched_task(rq->curr);
1066 return 0;
1067 }
1068
1069 /* We might release rq lock */
1070 get_task_struct(next_task);
1071
1072 /* find_lock_lowest_rq locks the rq if found */
1073 lowest_rq = find_lock_lowest_rq(next_task, rq);
1074 if (!lowest_rq) {
1075 struct task_struct *task;
1076 /*
1077 * find lock_lowest_rq releases rq->lock
1078 * so it is possible that next_task has changed.
1079 * If it has, then try again.
1080 */
1081 task = pick_next_highest_task_rt(rq, -1);
1082 if (unlikely(task != next_task) && task && paranoid--) {
1083 put_task_struct(next_task);
1084 next_task = task;
1085 goto retry;
1086 }
1087 goto out;
1088 }
1089
1090 deactivate_task(rq, next_task, 0);
1091 set_task_cpu(next_task, lowest_rq->cpu);
1092 activate_task(lowest_rq, next_task, 0);
1093
1094 resched_task(lowest_rq->curr);
1095
1096 double_unlock_balance(rq, lowest_rq);
1097
1098 ret = 1;
1099 out:
1100 put_task_struct(next_task);
1101
1102 return ret;
1103 }
1104
1105 /*
1106 * TODO: Currently we just use the second highest prio task on
1107 * the queue, and stop when it can't migrate (or there's
1108 * no more RT tasks). There may be a case where a lower
1109 * priority RT task has a different affinity than the
1110 * higher RT task. In this case the lower RT task could
1111 * possibly be able to migrate where as the higher priority
1112 * RT task could not. We currently ignore this issue.
1113 * Enhancements are welcome!
1114 */
1115 static void push_rt_tasks(struct rq *rq)
1116 {
1117 /* push_rt_task will return true if it moved an RT */
1118 while (push_rt_task(rq))
1119 ;
1120 }
1121
1122 static int pull_rt_task(struct rq *this_rq)
1123 {
1124 int this_cpu = this_rq->cpu, ret = 0, cpu;
1125 struct task_struct *p, *next;
1126 struct rq *src_rq;
1127
1128 if (likely(!rt_overloaded(this_rq)))
1129 return 0;
1130
1131 next = pick_next_task_rt(this_rq);
1132
1133 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1134 if (this_cpu == cpu)
1135 continue;
1136
1137 src_rq = cpu_rq(cpu);
1138 /*
1139 * We can potentially drop this_rq's lock in
1140 * double_lock_balance, and another CPU could
1141 * steal our next task - hence we must cause
1142 * the caller to recalculate the next task
1143 * in that case:
1144 */
1145 if (double_lock_balance(this_rq, src_rq)) {
1146 struct task_struct *old_next = next;
1147
1148 next = pick_next_task_rt(this_rq);
1149 if (next != old_next)
1150 ret = 1;
1151 }
1152
1153 /*
1154 * Are there still pullable RT tasks?
1155 */
1156 if (src_rq->rt.rt_nr_running <= 1)
1157 goto skip;
1158
1159 p = pick_next_highest_task_rt(src_rq, this_cpu);
1160
1161 /*
1162 * Do we have an RT task that preempts
1163 * the to-be-scheduled task?
1164 */
1165 if (p && (!next || (p->prio < next->prio))) {
1166 WARN_ON(p == src_rq->curr);
1167 WARN_ON(!p->se.on_rq);
1168
1169 /*
1170 * There's a chance that p is higher in priority
1171 * than what's currently running on its cpu.
1172 * This is just that p is wakeing up and hasn't
1173 * had a chance to schedule. We only pull
1174 * p if it is lower in priority than the
1175 * current task on the run queue or
1176 * this_rq next task is lower in prio than
1177 * the current task on that rq.
1178 */
1179 if (p->prio < src_rq->curr->prio ||
1180 (next && next->prio < src_rq->curr->prio))
1181 goto skip;
1182
1183 ret = 1;
1184
1185 deactivate_task(src_rq, p, 0);
1186 set_task_cpu(p, this_cpu);
1187 activate_task(this_rq, p, 0);
1188 /*
1189 * We continue with the search, just in
1190 * case there's an even higher prio task
1191 * in another runqueue. (low likelyhood
1192 * but possible)
1193 *
1194 * Update next so that we won't pick a task
1195 * on another cpu with a priority lower (or equal)
1196 * than the one we just picked.
1197 */
1198 next = p;
1199
1200 }
1201 skip:
1202 double_unlock_balance(this_rq, src_rq);
1203 }
1204
1205 return ret;
1206 }
1207
1208 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1209 {
1210 /* Try to pull RT tasks here if we lower this rq's prio */
1211 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1212 pull_rt_task(rq);
1213 }
1214
1215 static void post_schedule_rt(struct rq *rq)
1216 {
1217 /*
1218 * If we have more than one rt_task queued, then
1219 * see if we can push the other rt_tasks off to other CPUS.
1220 * Note we may release the rq lock, and since
1221 * the lock was owned by prev, we need to release it
1222 * first via finish_lock_switch and then reaquire it here.
1223 */
1224 if (unlikely(rq->rt.overloaded)) {
1225 spin_lock_irq(&rq->lock);
1226 push_rt_tasks(rq);
1227 spin_unlock_irq(&rq->lock);
1228 }
1229 }
1230
1231 /*
1232 * If we are not running and we are not going to reschedule soon, we should
1233 * try to push tasks away now
1234 */
1235 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1236 {
1237 if (!task_running(rq, p) &&
1238 !test_tsk_need_resched(rq->curr) &&
1239 rq->rt.overloaded)
1240 push_rt_tasks(rq);
1241 }
1242
1243 static unsigned long
1244 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1245 unsigned long max_load_move,
1246 struct sched_domain *sd, enum cpu_idle_type idle,
1247 int *all_pinned, int *this_best_prio)
1248 {
1249 /* don't touch RT tasks */
1250 return 0;
1251 }
1252
1253 static int
1254 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1255 struct sched_domain *sd, enum cpu_idle_type idle)
1256 {
1257 /* don't touch RT tasks */
1258 return 0;
1259 }
1260
1261 static void set_cpus_allowed_rt(struct task_struct *p,
1262 const cpumask_t *new_mask)
1263 {
1264 int weight = cpus_weight(*new_mask);
1265
1266 BUG_ON(!rt_task(p));
1267
1268 /*
1269 * Update the migration status of the RQ if we have an RT task
1270 * which is running AND changing its weight value.
1271 */
1272 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1273 struct rq *rq = task_rq(p);
1274
1275 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1276 rq->rt.rt_nr_migratory++;
1277 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1278 BUG_ON(!rq->rt.rt_nr_migratory);
1279 rq->rt.rt_nr_migratory--;
1280 }
1281
1282 update_rt_migration(rq);
1283 }
1284
1285 p->cpus_allowed = *new_mask;
1286 p->rt.nr_cpus_allowed = weight;
1287 }
1288
1289 /* Assumes rq->lock is held */
1290 static void rq_online_rt(struct rq *rq)
1291 {
1292 if (rq->rt.overloaded)
1293 rt_set_overload(rq);
1294
1295 __enable_runtime(rq);
1296
1297 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1298 }
1299
1300 /* Assumes rq->lock is held */
1301 static void rq_offline_rt(struct rq *rq)
1302 {
1303 if (rq->rt.overloaded)
1304 rt_clear_overload(rq);
1305
1306 __disable_runtime(rq);
1307
1308 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1309 }
1310
1311 /*
1312 * When switch from the rt queue, we bring ourselves to a position
1313 * that we might want to pull RT tasks from other runqueues.
1314 */
1315 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1316 int running)
1317 {
1318 /*
1319 * If there are other RT tasks then we will reschedule
1320 * and the scheduling of the other RT tasks will handle
1321 * the balancing. But if we are the last RT task
1322 * we may need to handle the pulling of RT tasks
1323 * now.
1324 */
1325 if (!rq->rt.rt_nr_running)
1326 pull_rt_task(rq);
1327 }
1328 #endif /* CONFIG_SMP */
1329
1330 /*
1331 * When switching a task to RT, we may overload the runqueue
1332 * with RT tasks. In this case we try to push them off to
1333 * other runqueues.
1334 */
1335 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1336 int running)
1337 {
1338 int check_resched = 1;
1339
1340 /*
1341 * If we are already running, then there's nothing
1342 * that needs to be done. But if we are not running
1343 * we may need to preempt the current running task.
1344 * If that current running task is also an RT task
1345 * then see if we can move to another run queue.
1346 */
1347 if (!running) {
1348 #ifdef CONFIG_SMP
1349 if (rq->rt.overloaded && push_rt_task(rq) &&
1350 /* Don't resched if we changed runqueues */
1351 rq != task_rq(p))
1352 check_resched = 0;
1353 #endif /* CONFIG_SMP */
1354 if (check_resched && p->prio < rq->curr->prio)
1355 resched_task(rq->curr);
1356 }
1357 }
1358
1359 /*
1360 * Priority of the task has changed. This may cause
1361 * us to initiate a push or pull.
1362 */
1363 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1364 int oldprio, int running)
1365 {
1366 if (running) {
1367 #ifdef CONFIG_SMP
1368 /*
1369 * If our priority decreases while running, we
1370 * may need to pull tasks to this runqueue.
1371 */
1372 if (oldprio < p->prio)
1373 pull_rt_task(rq);
1374 /*
1375 * If there's a higher priority task waiting to run
1376 * then reschedule. Note, the above pull_rt_task
1377 * can release the rq lock and p could migrate.
1378 * Only reschedule if p is still on the same runqueue.
1379 */
1380 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1381 resched_task(p);
1382 #else
1383 /* For UP simply resched on drop of prio */
1384 if (oldprio < p->prio)
1385 resched_task(p);
1386 #endif /* CONFIG_SMP */
1387 } else {
1388 /*
1389 * This task is not running, but if it is
1390 * greater than the current running task
1391 * then reschedule.
1392 */
1393 if (p->prio < rq->curr->prio)
1394 resched_task(rq->curr);
1395 }
1396 }
1397
1398 static void watchdog(struct rq *rq, struct task_struct *p)
1399 {
1400 unsigned long soft, hard;
1401
1402 if (!p->signal)
1403 return;
1404
1405 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1406 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1407
1408 if (soft != RLIM_INFINITY) {
1409 unsigned long next;
1410
1411 p->rt.timeout++;
1412 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1413 if (p->rt.timeout > next)
1414 p->it_sched_expires = p->se.sum_exec_runtime;
1415 }
1416 }
1417
1418 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1419 {
1420 update_curr_rt(rq);
1421
1422 watchdog(rq, p);
1423
1424 /*
1425 * RR tasks need a special form of timeslice management.
1426 * FIFO tasks have no timeslices.
1427 */
1428 if (p->policy != SCHED_RR)
1429 return;
1430
1431 if (--p->rt.time_slice)
1432 return;
1433
1434 p->rt.time_slice = DEF_TIMESLICE;
1435
1436 /*
1437 * Requeue to the end of queue if we are not the only element
1438 * on the queue:
1439 */
1440 if (p->rt.run_list.prev != p->rt.run_list.next) {
1441 requeue_task_rt(rq, p, 0);
1442 set_tsk_need_resched(p);
1443 }
1444 }
1445
1446 static void set_curr_task_rt(struct rq *rq)
1447 {
1448 struct task_struct *p = rq->curr;
1449
1450 p->se.exec_start = rq->clock;
1451 }
1452
1453 static const struct sched_class rt_sched_class = {
1454 .next = &fair_sched_class,
1455 .enqueue_task = enqueue_task_rt,
1456 .dequeue_task = dequeue_task_rt,
1457 .yield_task = yield_task_rt,
1458 #ifdef CONFIG_SMP
1459 .select_task_rq = select_task_rq_rt,
1460 #endif /* CONFIG_SMP */
1461
1462 .check_preempt_curr = check_preempt_curr_rt,
1463
1464 .pick_next_task = pick_next_task_rt,
1465 .put_prev_task = put_prev_task_rt,
1466
1467 #ifdef CONFIG_SMP
1468 .load_balance = load_balance_rt,
1469 .move_one_task = move_one_task_rt,
1470 .set_cpus_allowed = set_cpus_allowed_rt,
1471 .rq_online = rq_online_rt,
1472 .rq_offline = rq_offline_rt,
1473 .pre_schedule = pre_schedule_rt,
1474 .post_schedule = post_schedule_rt,
1475 .task_wake_up = task_wake_up_rt,
1476 .switched_from = switched_from_rt,
1477 #endif
1478
1479 .set_curr_task = set_curr_task_rt,
1480 .task_tick = task_tick_rt,
1481
1482 .prio_changed = prio_changed_rt,
1483 .switched_to = switched_to_rt,
1484 };
1485
1486 #ifdef CONFIG_SCHED_DEBUG
1487 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1488
1489 static void print_rt_stats(struct seq_file *m, int cpu)
1490 {
1491 struct rt_rq *rt_rq;
1492
1493 rcu_read_lock();
1494 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1495 print_rt_rq(m, cpu, rt_rq);
1496 rcu_read_unlock();
1497 }
1498 #endif /* CONFIG_SCHED_DEBUG */