vfs: use ERR_CAST for err-ptr tossing in lookup_instantiate_filp
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20 return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25 return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34 return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39 return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56 return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78 if (!rq->online)
79 return;
80
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168 return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 typedef struct task_group *rt_rq_iter_t;
187
188 #define for_each_rt_rq(rt_rq, iter, rq) \
189 for (iter = list_entry_rcu(task_groups.next, typeof(*iter), list); \
190 (&iter->list != &task_groups) && \
191 (rt_rq = iter->rt_rq[cpu_of(rq)]); \
192 iter = list_entry_rcu(iter->list.next, typeof(*iter), list))
193
194 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
195 {
196 list_add_rcu(&rt_rq->leaf_rt_rq_list,
197 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
198 }
199
200 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
201 {
202 list_del_rcu(&rt_rq->leaf_rt_rq_list);
203 }
204
205 #define for_each_leaf_rt_rq(rt_rq, rq) \
206 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
207
208 #define for_each_sched_rt_entity(rt_se) \
209 for (; rt_se; rt_se = rt_se->parent)
210
211 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
212 {
213 return rt_se->my_q;
214 }
215
216 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
217 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
218
219 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
220 {
221 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
222 struct sched_rt_entity *rt_se;
223
224 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
225
226 rt_se = rt_rq->tg->rt_se[cpu];
227
228 if (rt_rq->rt_nr_running) {
229 if (rt_se && !on_rt_rq(rt_se))
230 enqueue_rt_entity(rt_se, false);
231 if (rt_rq->highest_prio.curr < curr->prio)
232 resched_task(curr);
233 }
234 }
235
236 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
237 {
238 struct sched_rt_entity *rt_se;
239 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
240
241 rt_se = rt_rq->tg->rt_se[cpu];
242
243 if (rt_se && on_rt_rq(rt_se))
244 dequeue_rt_entity(rt_se);
245 }
246
247 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
248 {
249 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
250 }
251
252 static int rt_se_boosted(struct sched_rt_entity *rt_se)
253 {
254 struct rt_rq *rt_rq = group_rt_rq(rt_se);
255 struct task_struct *p;
256
257 if (rt_rq)
258 return !!rt_rq->rt_nr_boosted;
259
260 p = rt_task_of(rt_se);
261 return p->prio != p->normal_prio;
262 }
263
264 #ifdef CONFIG_SMP
265 static inline const struct cpumask *sched_rt_period_mask(void)
266 {
267 return cpu_rq(smp_processor_id())->rd->span;
268 }
269 #else
270 static inline const struct cpumask *sched_rt_period_mask(void)
271 {
272 return cpu_online_mask;
273 }
274 #endif
275
276 static inline
277 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
278 {
279 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
280 }
281
282 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
283 {
284 return &rt_rq->tg->rt_bandwidth;
285 }
286
287 #else /* !CONFIG_RT_GROUP_SCHED */
288
289 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
290 {
291 return rt_rq->rt_runtime;
292 }
293
294 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
295 {
296 return ktime_to_ns(def_rt_bandwidth.rt_period);
297 }
298
299 typedef struct rt_rq *rt_rq_iter_t;
300
301 #define for_each_rt_rq(rt_rq, iter, rq) \
302 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
303
304 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
305 {
306 }
307
308 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
309 {
310 }
311
312 #define for_each_leaf_rt_rq(rt_rq, rq) \
313 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
314
315 #define for_each_sched_rt_entity(rt_se) \
316 for (; rt_se; rt_se = NULL)
317
318 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
319 {
320 return NULL;
321 }
322
323 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
324 {
325 if (rt_rq->rt_nr_running)
326 resched_task(rq_of_rt_rq(rt_rq)->curr);
327 }
328
329 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
330 {
331 }
332
333 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
334 {
335 return rt_rq->rt_throttled;
336 }
337
338 static inline const struct cpumask *sched_rt_period_mask(void)
339 {
340 return cpu_online_mask;
341 }
342
343 static inline
344 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
345 {
346 return &cpu_rq(cpu)->rt;
347 }
348
349 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
350 {
351 return &def_rt_bandwidth;
352 }
353
354 #endif /* CONFIG_RT_GROUP_SCHED */
355
356 #ifdef CONFIG_SMP
357 /*
358 * We ran out of runtime, see if we can borrow some from our neighbours.
359 */
360 static int do_balance_runtime(struct rt_rq *rt_rq)
361 {
362 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
363 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
364 int i, weight, more = 0;
365 u64 rt_period;
366
367 weight = cpumask_weight(rd->span);
368
369 raw_spin_lock(&rt_b->rt_runtime_lock);
370 rt_period = ktime_to_ns(rt_b->rt_period);
371 for_each_cpu(i, rd->span) {
372 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
373 s64 diff;
374
375 if (iter == rt_rq)
376 continue;
377
378 raw_spin_lock(&iter->rt_runtime_lock);
379 /*
380 * Either all rqs have inf runtime and there's nothing to steal
381 * or __disable_runtime() below sets a specific rq to inf to
382 * indicate its been disabled and disalow stealing.
383 */
384 if (iter->rt_runtime == RUNTIME_INF)
385 goto next;
386
387 /*
388 * From runqueues with spare time, take 1/n part of their
389 * spare time, but no more than our period.
390 */
391 diff = iter->rt_runtime - iter->rt_time;
392 if (diff > 0) {
393 diff = div_u64((u64)diff, weight);
394 if (rt_rq->rt_runtime + diff > rt_period)
395 diff = rt_period - rt_rq->rt_runtime;
396 iter->rt_runtime -= diff;
397 rt_rq->rt_runtime += diff;
398 more = 1;
399 if (rt_rq->rt_runtime == rt_period) {
400 raw_spin_unlock(&iter->rt_runtime_lock);
401 break;
402 }
403 }
404 next:
405 raw_spin_unlock(&iter->rt_runtime_lock);
406 }
407 raw_spin_unlock(&rt_b->rt_runtime_lock);
408
409 return more;
410 }
411
412 /*
413 * Ensure this RQ takes back all the runtime it lend to its neighbours.
414 */
415 static void __disable_runtime(struct rq *rq)
416 {
417 struct root_domain *rd = rq->rd;
418 rt_rq_iter_t iter;
419 struct rt_rq *rt_rq;
420
421 if (unlikely(!scheduler_running))
422 return;
423
424 for_each_rt_rq(rt_rq, iter, rq) {
425 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
426 s64 want;
427 int i;
428
429 raw_spin_lock(&rt_b->rt_runtime_lock);
430 raw_spin_lock(&rt_rq->rt_runtime_lock);
431 /*
432 * Either we're all inf and nobody needs to borrow, or we're
433 * already disabled and thus have nothing to do, or we have
434 * exactly the right amount of runtime to take out.
435 */
436 if (rt_rq->rt_runtime == RUNTIME_INF ||
437 rt_rq->rt_runtime == rt_b->rt_runtime)
438 goto balanced;
439 raw_spin_unlock(&rt_rq->rt_runtime_lock);
440
441 /*
442 * Calculate the difference between what we started out with
443 * and what we current have, that's the amount of runtime
444 * we lend and now have to reclaim.
445 */
446 want = rt_b->rt_runtime - rt_rq->rt_runtime;
447
448 /*
449 * Greedy reclaim, take back as much as we can.
450 */
451 for_each_cpu(i, rd->span) {
452 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
453 s64 diff;
454
455 /*
456 * Can't reclaim from ourselves or disabled runqueues.
457 */
458 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
459 continue;
460
461 raw_spin_lock(&iter->rt_runtime_lock);
462 if (want > 0) {
463 diff = min_t(s64, iter->rt_runtime, want);
464 iter->rt_runtime -= diff;
465 want -= diff;
466 } else {
467 iter->rt_runtime -= want;
468 want -= want;
469 }
470 raw_spin_unlock(&iter->rt_runtime_lock);
471
472 if (!want)
473 break;
474 }
475
476 raw_spin_lock(&rt_rq->rt_runtime_lock);
477 /*
478 * We cannot be left wanting - that would mean some runtime
479 * leaked out of the system.
480 */
481 BUG_ON(want);
482 balanced:
483 /*
484 * Disable all the borrow logic by pretending we have inf
485 * runtime - in which case borrowing doesn't make sense.
486 */
487 rt_rq->rt_runtime = RUNTIME_INF;
488 raw_spin_unlock(&rt_rq->rt_runtime_lock);
489 raw_spin_unlock(&rt_b->rt_runtime_lock);
490 }
491 }
492
493 static void disable_runtime(struct rq *rq)
494 {
495 unsigned long flags;
496
497 raw_spin_lock_irqsave(&rq->lock, flags);
498 __disable_runtime(rq);
499 raw_spin_unlock_irqrestore(&rq->lock, flags);
500 }
501
502 static void __enable_runtime(struct rq *rq)
503 {
504 rt_rq_iter_t iter;
505 struct rt_rq *rt_rq;
506
507 if (unlikely(!scheduler_running))
508 return;
509
510 /*
511 * Reset each runqueue's bandwidth settings
512 */
513 for_each_rt_rq(rt_rq, iter, rq) {
514 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
515
516 raw_spin_lock(&rt_b->rt_runtime_lock);
517 raw_spin_lock(&rt_rq->rt_runtime_lock);
518 rt_rq->rt_runtime = rt_b->rt_runtime;
519 rt_rq->rt_time = 0;
520 rt_rq->rt_throttled = 0;
521 raw_spin_unlock(&rt_rq->rt_runtime_lock);
522 raw_spin_unlock(&rt_b->rt_runtime_lock);
523 }
524 }
525
526 static void enable_runtime(struct rq *rq)
527 {
528 unsigned long flags;
529
530 raw_spin_lock_irqsave(&rq->lock, flags);
531 __enable_runtime(rq);
532 raw_spin_unlock_irqrestore(&rq->lock, flags);
533 }
534
535 static int balance_runtime(struct rt_rq *rt_rq)
536 {
537 int more = 0;
538
539 if (rt_rq->rt_time > rt_rq->rt_runtime) {
540 raw_spin_unlock(&rt_rq->rt_runtime_lock);
541 more = do_balance_runtime(rt_rq);
542 raw_spin_lock(&rt_rq->rt_runtime_lock);
543 }
544
545 return more;
546 }
547 #else /* !CONFIG_SMP */
548 static inline int balance_runtime(struct rt_rq *rt_rq)
549 {
550 return 0;
551 }
552 #endif /* CONFIG_SMP */
553
554 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
555 {
556 int i, idle = 1;
557 const struct cpumask *span;
558
559 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
560 return 1;
561
562 span = sched_rt_period_mask();
563 for_each_cpu(i, span) {
564 int enqueue = 0;
565 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
566 struct rq *rq = rq_of_rt_rq(rt_rq);
567
568 raw_spin_lock(&rq->lock);
569 if (rt_rq->rt_time) {
570 u64 runtime;
571
572 raw_spin_lock(&rt_rq->rt_runtime_lock);
573 if (rt_rq->rt_throttled)
574 balance_runtime(rt_rq);
575 runtime = rt_rq->rt_runtime;
576 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
577 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
578 rt_rq->rt_throttled = 0;
579 enqueue = 1;
580
581 /*
582 * Force a clock update if the CPU was idle,
583 * lest wakeup -> unthrottle time accumulate.
584 */
585 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
586 rq->skip_clock_update = -1;
587 }
588 if (rt_rq->rt_time || rt_rq->rt_nr_running)
589 idle = 0;
590 raw_spin_unlock(&rt_rq->rt_runtime_lock);
591 } else if (rt_rq->rt_nr_running) {
592 idle = 0;
593 if (!rt_rq_throttled(rt_rq))
594 enqueue = 1;
595 }
596
597 if (enqueue)
598 sched_rt_rq_enqueue(rt_rq);
599 raw_spin_unlock(&rq->lock);
600 }
601
602 return idle;
603 }
604
605 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
606 {
607 #ifdef CONFIG_RT_GROUP_SCHED
608 struct rt_rq *rt_rq = group_rt_rq(rt_se);
609
610 if (rt_rq)
611 return rt_rq->highest_prio.curr;
612 #endif
613
614 return rt_task_of(rt_se)->prio;
615 }
616
617 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
618 {
619 u64 runtime = sched_rt_runtime(rt_rq);
620
621 if (rt_rq->rt_throttled)
622 return rt_rq_throttled(rt_rq);
623
624 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
625 return 0;
626
627 balance_runtime(rt_rq);
628 runtime = sched_rt_runtime(rt_rq);
629 if (runtime == RUNTIME_INF)
630 return 0;
631
632 if (rt_rq->rt_time > runtime) {
633 rt_rq->rt_throttled = 1;
634 if (rt_rq_throttled(rt_rq)) {
635 sched_rt_rq_dequeue(rt_rq);
636 return 1;
637 }
638 }
639
640 return 0;
641 }
642
643 /*
644 * Update the current task's runtime statistics. Skip current tasks that
645 * are not in our scheduling class.
646 */
647 static void update_curr_rt(struct rq *rq)
648 {
649 struct task_struct *curr = rq->curr;
650 struct sched_rt_entity *rt_se = &curr->rt;
651 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
652 u64 delta_exec;
653
654 if (curr->sched_class != &rt_sched_class)
655 return;
656
657 delta_exec = rq->clock_task - curr->se.exec_start;
658 if (unlikely((s64)delta_exec < 0))
659 delta_exec = 0;
660
661 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
662
663 curr->se.sum_exec_runtime += delta_exec;
664 account_group_exec_runtime(curr, delta_exec);
665
666 curr->se.exec_start = rq->clock_task;
667 cpuacct_charge(curr, delta_exec);
668
669 sched_rt_avg_update(rq, delta_exec);
670
671 if (!rt_bandwidth_enabled())
672 return;
673
674 for_each_sched_rt_entity(rt_se) {
675 rt_rq = rt_rq_of_se(rt_se);
676
677 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
678 raw_spin_lock(&rt_rq->rt_runtime_lock);
679 rt_rq->rt_time += delta_exec;
680 if (sched_rt_runtime_exceeded(rt_rq))
681 resched_task(curr);
682 raw_spin_unlock(&rt_rq->rt_runtime_lock);
683 }
684 }
685 }
686
687 #if defined CONFIG_SMP
688
689 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
690
691 static inline int next_prio(struct rq *rq)
692 {
693 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
694
695 if (next && rt_prio(next->prio))
696 return next->prio;
697 else
698 return MAX_RT_PRIO;
699 }
700
701 static void
702 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
703 {
704 struct rq *rq = rq_of_rt_rq(rt_rq);
705
706 if (prio < prev_prio) {
707
708 /*
709 * If the new task is higher in priority than anything on the
710 * run-queue, we know that the previous high becomes our
711 * next-highest.
712 */
713 rt_rq->highest_prio.next = prev_prio;
714
715 if (rq->online)
716 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
717
718 } else if (prio == rt_rq->highest_prio.curr)
719 /*
720 * If the next task is equal in priority to the highest on
721 * the run-queue, then we implicitly know that the next highest
722 * task cannot be any lower than current
723 */
724 rt_rq->highest_prio.next = prio;
725 else if (prio < rt_rq->highest_prio.next)
726 /*
727 * Otherwise, we need to recompute next-highest
728 */
729 rt_rq->highest_prio.next = next_prio(rq);
730 }
731
732 static void
733 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
734 {
735 struct rq *rq = rq_of_rt_rq(rt_rq);
736
737 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
738 rt_rq->highest_prio.next = next_prio(rq);
739
740 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
741 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
742 }
743
744 #else /* CONFIG_SMP */
745
746 static inline
747 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
748 static inline
749 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
750
751 #endif /* CONFIG_SMP */
752
753 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
754 static void
755 inc_rt_prio(struct rt_rq *rt_rq, int prio)
756 {
757 int prev_prio = rt_rq->highest_prio.curr;
758
759 if (prio < prev_prio)
760 rt_rq->highest_prio.curr = prio;
761
762 inc_rt_prio_smp(rt_rq, prio, prev_prio);
763 }
764
765 static void
766 dec_rt_prio(struct rt_rq *rt_rq, int prio)
767 {
768 int prev_prio = rt_rq->highest_prio.curr;
769
770 if (rt_rq->rt_nr_running) {
771
772 WARN_ON(prio < prev_prio);
773
774 /*
775 * This may have been our highest task, and therefore
776 * we may have some recomputation to do
777 */
778 if (prio == prev_prio) {
779 struct rt_prio_array *array = &rt_rq->active;
780
781 rt_rq->highest_prio.curr =
782 sched_find_first_bit(array->bitmap);
783 }
784
785 } else
786 rt_rq->highest_prio.curr = MAX_RT_PRIO;
787
788 dec_rt_prio_smp(rt_rq, prio, prev_prio);
789 }
790
791 #else
792
793 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
794 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
795
796 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
797
798 #ifdef CONFIG_RT_GROUP_SCHED
799
800 static void
801 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
802 {
803 if (rt_se_boosted(rt_se))
804 rt_rq->rt_nr_boosted++;
805
806 if (rt_rq->tg)
807 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
808 }
809
810 static void
811 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
812 {
813 if (rt_se_boosted(rt_se))
814 rt_rq->rt_nr_boosted--;
815
816 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
817 }
818
819 #else /* CONFIG_RT_GROUP_SCHED */
820
821 static void
822 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
823 {
824 start_rt_bandwidth(&def_rt_bandwidth);
825 }
826
827 static inline
828 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
829
830 #endif /* CONFIG_RT_GROUP_SCHED */
831
832 static inline
833 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
834 {
835 int prio = rt_se_prio(rt_se);
836
837 WARN_ON(!rt_prio(prio));
838 rt_rq->rt_nr_running++;
839
840 inc_rt_prio(rt_rq, prio);
841 inc_rt_migration(rt_se, rt_rq);
842 inc_rt_group(rt_se, rt_rq);
843 }
844
845 static inline
846 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
847 {
848 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
849 WARN_ON(!rt_rq->rt_nr_running);
850 rt_rq->rt_nr_running--;
851
852 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
853 dec_rt_migration(rt_se, rt_rq);
854 dec_rt_group(rt_se, rt_rq);
855 }
856
857 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
858 {
859 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
860 struct rt_prio_array *array = &rt_rq->active;
861 struct rt_rq *group_rq = group_rt_rq(rt_se);
862 struct list_head *queue = array->queue + rt_se_prio(rt_se);
863
864 /*
865 * Don't enqueue the group if its throttled, or when empty.
866 * The latter is a consequence of the former when a child group
867 * get throttled and the current group doesn't have any other
868 * active members.
869 */
870 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
871 return;
872
873 if (!rt_rq->rt_nr_running)
874 list_add_leaf_rt_rq(rt_rq);
875
876 if (head)
877 list_add(&rt_se->run_list, queue);
878 else
879 list_add_tail(&rt_se->run_list, queue);
880 __set_bit(rt_se_prio(rt_se), array->bitmap);
881
882 inc_rt_tasks(rt_se, rt_rq);
883 }
884
885 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
886 {
887 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
888 struct rt_prio_array *array = &rt_rq->active;
889
890 list_del_init(&rt_se->run_list);
891 if (list_empty(array->queue + rt_se_prio(rt_se)))
892 __clear_bit(rt_se_prio(rt_se), array->bitmap);
893
894 dec_rt_tasks(rt_se, rt_rq);
895 if (!rt_rq->rt_nr_running)
896 list_del_leaf_rt_rq(rt_rq);
897 }
898
899 /*
900 * Because the prio of an upper entry depends on the lower
901 * entries, we must remove entries top - down.
902 */
903 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
904 {
905 struct sched_rt_entity *back = NULL;
906
907 for_each_sched_rt_entity(rt_se) {
908 rt_se->back = back;
909 back = rt_se;
910 }
911
912 for (rt_se = back; rt_se; rt_se = rt_se->back) {
913 if (on_rt_rq(rt_se))
914 __dequeue_rt_entity(rt_se);
915 }
916 }
917
918 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
919 {
920 dequeue_rt_stack(rt_se);
921 for_each_sched_rt_entity(rt_se)
922 __enqueue_rt_entity(rt_se, head);
923 }
924
925 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
926 {
927 dequeue_rt_stack(rt_se);
928
929 for_each_sched_rt_entity(rt_se) {
930 struct rt_rq *rt_rq = group_rt_rq(rt_se);
931
932 if (rt_rq && rt_rq->rt_nr_running)
933 __enqueue_rt_entity(rt_se, false);
934 }
935 }
936
937 /*
938 * Adding/removing a task to/from a priority array:
939 */
940 static void
941 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
942 {
943 struct sched_rt_entity *rt_se = &p->rt;
944
945 if (flags & ENQUEUE_WAKEUP)
946 rt_se->timeout = 0;
947
948 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
949
950 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
951 enqueue_pushable_task(rq, p);
952 }
953
954 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
955 {
956 struct sched_rt_entity *rt_se = &p->rt;
957
958 update_curr_rt(rq);
959 dequeue_rt_entity(rt_se);
960
961 dequeue_pushable_task(rq, p);
962 }
963
964 /*
965 * Put task to the end of the run list without the overhead of dequeue
966 * followed by enqueue.
967 */
968 static void
969 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
970 {
971 if (on_rt_rq(rt_se)) {
972 struct rt_prio_array *array = &rt_rq->active;
973 struct list_head *queue = array->queue + rt_se_prio(rt_se);
974
975 if (head)
976 list_move(&rt_se->run_list, queue);
977 else
978 list_move_tail(&rt_se->run_list, queue);
979 }
980 }
981
982 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
983 {
984 struct sched_rt_entity *rt_se = &p->rt;
985 struct rt_rq *rt_rq;
986
987 for_each_sched_rt_entity(rt_se) {
988 rt_rq = rt_rq_of_se(rt_se);
989 requeue_rt_entity(rt_rq, rt_se, head);
990 }
991 }
992
993 static void yield_task_rt(struct rq *rq)
994 {
995 requeue_task_rt(rq, rq->curr, 0);
996 }
997
998 #ifdef CONFIG_SMP
999 static int find_lowest_rq(struct task_struct *task);
1000
1001 static int
1002 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1003 {
1004 struct task_struct *curr;
1005 struct rq *rq;
1006 int cpu;
1007
1008 if (sd_flag != SD_BALANCE_WAKE)
1009 return smp_processor_id();
1010
1011 cpu = task_cpu(p);
1012 rq = cpu_rq(cpu);
1013
1014 rcu_read_lock();
1015 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1016
1017 /*
1018 * If the current task on @p's runqueue is an RT task, then
1019 * try to see if we can wake this RT task up on another
1020 * runqueue. Otherwise simply start this RT task
1021 * on its current runqueue.
1022 *
1023 * We want to avoid overloading runqueues. If the woken
1024 * task is a higher priority, then it will stay on this CPU
1025 * and the lower prio task should be moved to another CPU.
1026 * Even though this will probably make the lower prio task
1027 * lose its cache, we do not want to bounce a higher task
1028 * around just because it gave up its CPU, perhaps for a
1029 * lock?
1030 *
1031 * For equal prio tasks, we just let the scheduler sort it out.
1032 *
1033 * Otherwise, just let it ride on the affined RQ and the
1034 * post-schedule router will push the preempted task away
1035 *
1036 * This test is optimistic, if we get it wrong the load-balancer
1037 * will have to sort it out.
1038 */
1039 if (curr && unlikely(rt_task(curr)) &&
1040 (curr->rt.nr_cpus_allowed < 2 ||
1041 curr->prio < p->prio) &&
1042 (p->rt.nr_cpus_allowed > 1)) {
1043 int target = find_lowest_rq(p);
1044
1045 if (target != -1)
1046 cpu = target;
1047 }
1048 rcu_read_unlock();
1049
1050 return cpu;
1051 }
1052
1053 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1054 {
1055 if (rq->curr->rt.nr_cpus_allowed == 1)
1056 return;
1057
1058 if (p->rt.nr_cpus_allowed != 1
1059 && cpupri_find(&rq->rd->cpupri, p, NULL))
1060 return;
1061
1062 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1063 return;
1064
1065 /*
1066 * There appears to be other cpus that can accept
1067 * current and none to run 'p', so lets reschedule
1068 * to try and push current away:
1069 */
1070 requeue_task_rt(rq, p, 1);
1071 resched_task(rq->curr);
1072 }
1073
1074 #endif /* CONFIG_SMP */
1075
1076 /*
1077 * Preempt the current task with a newly woken task if needed:
1078 */
1079 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1080 {
1081 if (p->prio < rq->curr->prio) {
1082 resched_task(rq->curr);
1083 return;
1084 }
1085
1086 #ifdef CONFIG_SMP
1087 /*
1088 * If:
1089 *
1090 * - the newly woken task is of equal priority to the current task
1091 * - the newly woken task is non-migratable while current is migratable
1092 * - current will be preempted on the next reschedule
1093 *
1094 * we should check to see if current can readily move to a different
1095 * cpu. If so, we will reschedule to allow the push logic to try
1096 * to move current somewhere else, making room for our non-migratable
1097 * task.
1098 */
1099 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1100 check_preempt_equal_prio(rq, p);
1101 #endif
1102 }
1103
1104 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1105 struct rt_rq *rt_rq)
1106 {
1107 struct rt_prio_array *array = &rt_rq->active;
1108 struct sched_rt_entity *next = NULL;
1109 struct list_head *queue;
1110 int idx;
1111
1112 idx = sched_find_first_bit(array->bitmap);
1113 BUG_ON(idx >= MAX_RT_PRIO);
1114
1115 queue = array->queue + idx;
1116 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1117
1118 return next;
1119 }
1120
1121 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1122 {
1123 struct sched_rt_entity *rt_se;
1124 struct task_struct *p;
1125 struct rt_rq *rt_rq;
1126
1127 rt_rq = &rq->rt;
1128
1129 if (unlikely(!rt_rq->rt_nr_running))
1130 return NULL;
1131
1132 if (rt_rq_throttled(rt_rq))
1133 return NULL;
1134
1135 do {
1136 rt_se = pick_next_rt_entity(rq, rt_rq);
1137 BUG_ON(!rt_se);
1138 rt_rq = group_rt_rq(rt_se);
1139 } while (rt_rq);
1140
1141 p = rt_task_of(rt_se);
1142 p->se.exec_start = rq->clock_task;
1143
1144 return p;
1145 }
1146
1147 static struct task_struct *pick_next_task_rt(struct rq *rq)
1148 {
1149 struct task_struct *p = _pick_next_task_rt(rq);
1150
1151 /* The running task is never eligible for pushing */
1152 if (p)
1153 dequeue_pushable_task(rq, p);
1154
1155 #ifdef CONFIG_SMP
1156 /*
1157 * We detect this state here so that we can avoid taking the RQ
1158 * lock again later if there is no need to push
1159 */
1160 rq->post_schedule = has_pushable_tasks(rq);
1161 #endif
1162
1163 return p;
1164 }
1165
1166 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1167 {
1168 update_curr_rt(rq);
1169 p->se.exec_start = 0;
1170
1171 /*
1172 * The previous task needs to be made eligible for pushing
1173 * if it is still active
1174 */
1175 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1176 enqueue_pushable_task(rq, p);
1177 }
1178
1179 #ifdef CONFIG_SMP
1180
1181 /* Only try algorithms three times */
1182 #define RT_MAX_TRIES 3
1183
1184 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1185
1186 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1187 {
1188 if (!task_running(rq, p) &&
1189 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1190 (p->rt.nr_cpus_allowed > 1))
1191 return 1;
1192 return 0;
1193 }
1194
1195 /* Return the second highest RT task, NULL otherwise */
1196 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1197 {
1198 struct task_struct *next = NULL;
1199 struct sched_rt_entity *rt_se;
1200 struct rt_prio_array *array;
1201 struct rt_rq *rt_rq;
1202 int idx;
1203
1204 for_each_leaf_rt_rq(rt_rq, rq) {
1205 array = &rt_rq->active;
1206 idx = sched_find_first_bit(array->bitmap);
1207 next_idx:
1208 if (idx >= MAX_RT_PRIO)
1209 continue;
1210 if (next && next->prio < idx)
1211 continue;
1212 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1213 struct task_struct *p;
1214
1215 if (!rt_entity_is_task(rt_se))
1216 continue;
1217
1218 p = rt_task_of(rt_se);
1219 if (pick_rt_task(rq, p, cpu)) {
1220 next = p;
1221 break;
1222 }
1223 }
1224 if (!next) {
1225 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1226 goto next_idx;
1227 }
1228 }
1229
1230 return next;
1231 }
1232
1233 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1234
1235 static int find_lowest_rq(struct task_struct *task)
1236 {
1237 struct sched_domain *sd;
1238 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1239 int this_cpu = smp_processor_id();
1240 int cpu = task_cpu(task);
1241
1242 /* Make sure the mask is initialized first */
1243 if (unlikely(!lowest_mask))
1244 return -1;
1245
1246 if (task->rt.nr_cpus_allowed == 1)
1247 return -1; /* No other targets possible */
1248
1249 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1250 return -1; /* No targets found */
1251
1252 /*
1253 * At this point we have built a mask of cpus representing the
1254 * lowest priority tasks in the system. Now we want to elect
1255 * the best one based on our affinity and topology.
1256 *
1257 * We prioritize the last cpu that the task executed on since
1258 * it is most likely cache-hot in that location.
1259 */
1260 if (cpumask_test_cpu(cpu, lowest_mask))
1261 return cpu;
1262
1263 /*
1264 * Otherwise, we consult the sched_domains span maps to figure
1265 * out which cpu is logically closest to our hot cache data.
1266 */
1267 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1268 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1269
1270 rcu_read_lock();
1271 for_each_domain(cpu, sd) {
1272 if (sd->flags & SD_WAKE_AFFINE) {
1273 int best_cpu;
1274
1275 /*
1276 * "this_cpu" is cheaper to preempt than a
1277 * remote processor.
1278 */
1279 if (this_cpu != -1 &&
1280 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1281 rcu_read_unlock();
1282 return this_cpu;
1283 }
1284
1285 best_cpu = cpumask_first_and(lowest_mask,
1286 sched_domain_span(sd));
1287 if (best_cpu < nr_cpu_ids) {
1288 rcu_read_unlock();
1289 return best_cpu;
1290 }
1291 }
1292 }
1293 rcu_read_unlock();
1294
1295 /*
1296 * And finally, if there were no matches within the domains
1297 * just give the caller *something* to work with from the compatible
1298 * locations.
1299 */
1300 if (this_cpu != -1)
1301 return this_cpu;
1302
1303 cpu = cpumask_any(lowest_mask);
1304 if (cpu < nr_cpu_ids)
1305 return cpu;
1306 return -1;
1307 }
1308
1309 /* Will lock the rq it finds */
1310 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1311 {
1312 struct rq *lowest_rq = NULL;
1313 int tries;
1314 int cpu;
1315
1316 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1317 cpu = find_lowest_rq(task);
1318
1319 if ((cpu == -1) || (cpu == rq->cpu))
1320 break;
1321
1322 lowest_rq = cpu_rq(cpu);
1323
1324 /* if the prio of this runqueue changed, try again */
1325 if (double_lock_balance(rq, lowest_rq)) {
1326 /*
1327 * We had to unlock the run queue. In
1328 * the mean time, task could have
1329 * migrated already or had its affinity changed.
1330 * Also make sure that it wasn't scheduled on its rq.
1331 */
1332 if (unlikely(task_rq(task) != rq ||
1333 !cpumask_test_cpu(lowest_rq->cpu,
1334 &task->cpus_allowed) ||
1335 task_running(rq, task) ||
1336 !task->on_rq)) {
1337
1338 raw_spin_unlock(&lowest_rq->lock);
1339 lowest_rq = NULL;
1340 break;
1341 }
1342 }
1343
1344 /* If this rq is still suitable use it. */
1345 if (lowest_rq->rt.highest_prio.curr > task->prio)
1346 break;
1347
1348 /* try again */
1349 double_unlock_balance(rq, lowest_rq);
1350 lowest_rq = NULL;
1351 }
1352
1353 return lowest_rq;
1354 }
1355
1356 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1357 {
1358 struct task_struct *p;
1359
1360 if (!has_pushable_tasks(rq))
1361 return NULL;
1362
1363 p = plist_first_entry(&rq->rt.pushable_tasks,
1364 struct task_struct, pushable_tasks);
1365
1366 BUG_ON(rq->cpu != task_cpu(p));
1367 BUG_ON(task_current(rq, p));
1368 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1369
1370 BUG_ON(!p->on_rq);
1371 BUG_ON(!rt_task(p));
1372
1373 return p;
1374 }
1375
1376 /*
1377 * If the current CPU has more than one RT task, see if the non
1378 * running task can migrate over to a CPU that is running a task
1379 * of lesser priority.
1380 */
1381 static int push_rt_task(struct rq *rq)
1382 {
1383 struct task_struct *next_task;
1384 struct rq *lowest_rq;
1385
1386 if (!rq->rt.overloaded)
1387 return 0;
1388
1389 next_task = pick_next_pushable_task(rq);
1390 if (!next_task)
1391 return 0;
1392
1393 retry:
1394 if (unlikely(next_task == rq->curr)) {
1395 WARN_ON(1);
1396 return 0;
1397 }
1398
1399 /*
1400 * It's possible that the next_task slipped in of
1401 * higher priority than current. If that's the case
1402 * just reschedule current.
1403 */
1404 if (unlikely(next_task->prio < rq->curr->prio)) {
1405 resched_task(rq->curr);
1406 return 0;
1407 }
1408
1409 /* We might release rq lock */
1410 get_task_struct(next_task);
1411
1412 /* find_lock_lowest_rq locks the rq if found */
1413 lowest_rq = find_lock_lowest_rq(next_task, rq);
1414 if (!lowest_rq) {
1415 struct task_struct *task;
1416 /*
1417 * find lock_lowest_rq releases rq->lock
1418 * so it is possible that next_task has migrated.
1419 *
1420 * We need to make sure that the task is still on the same
1421 * run-queue and is also still the next task eligible for
1422 * pushing.
1423 */
1424 task = pick_next_pushable_task(rq);
1425 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1426 /*
1427 * If we get here, the task hasn't moved at all, but
1428 * it has failed to push. We will not try again,
1429 * since the other cpus will pull from us when they
1430 * are ready.
1431 */
1432 dequeue_pushable_task(rq, next_task);
1433 goto out;
1434 }
1435
1436 if (!task)
1437 /* No more tasks, just exit */
1438 goto out;
1439
1440 /*
1441 * Something has shifted, try again.
1442 */
1443 put_task_struct(next_task);
1444 next_task = task;
1445 goto retry;
1446 }
1447
1448 deactivate_task(rq, next_task, 0);
1449 set_task_cpu(next_task, lowest_rq->cpu);
1450 activate_task(lowest_rq, next_task, 0);
1451
1452 resched_task(lowest_rq->curr);
1453
1454 double_unlock_balance(rq, lowest_rq);
1455
1456 out:
1457 put_task_struct(next_task);
1458
1459 return 1;
1460 }
1461
1462 static void push_rt_tasks(struct rq *rq)
1463 {
1464 /* push_rt_task will return true if it moved an RT */
1465 while (push_rt_task(rq))
1466 ;
1467 }
1468
1469 static int pull_rt_task(struct rq *this_rq)
1470 {
1471 int this_cpu = this_rq->cpu, ret = 0, cpu;
1472 struct task_struct *p;
1473 struct rq *src_rq;
1474
1475 if (likely(!rt_overloaded(this_rq)))
1476 return 0;
1477
1478 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1479 if (this_cpu == cpu)
1480 continue;
1481
1482 src_rq = cpu_rq(cpu);
1483
1484 /*
1485 * Don't bother taking the src_rq->lock if the next highest
1486 * task is known to be lower-priority than our current task.
1487 * This may look racy, but if this value is about to go
1488 * logically higher, the src_rq will push this task away.
1489 * And if its going logically lower, we do not care
1490 */
1491 if (src_rq->rt.highest_prio.next >=
1492 this_rq->rt.highest_prio.curr)
1493 continue;
1494
1495 /*
1496 * We can potentially drop this_rq's lock in
1497 * double_lock_balance, and another CPU could
1498 * alter this_rq
1499 */
1500 double_lock_balance(this_rq, src_rq);
1501
1502 /*
1503 * Are there still pullable RT tasks?
1504 */
1505 if (src_rq->rt.rt_nr_running <= 1)
1506 goto skip;
1507
1508 p = pick_next_highest_task_rt(src_rq, this_cpu);
1509
1510 /*
1511 * Do we have an RT task that preempts
1512 * the to-be-scheduled task?
1513 */
1514 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1515 WARN_ON(p == src_rq->curr);
1516 WARN_ON(!p->on_rq);
1517
1518 /*
1519 * There's a chance that p is higher in priority
1520 * than what's currently running on its cpu.
1521 * This is just that p is wakeing up and hasn't
1522 * had a chance to schedule. We only pull
1523 * p if it is lower in priority than the
1524 * current task on the run queue
1525 */
1526 if (p->prio < src_rq->curr->prio)
1527 goto skip;
1528
1529 ret = 1;
1530
1531 deactivate_task(src_rq, p, 0);
1532 set_task_cpu(p, this_cpu);
1533 activate_task(this_rq, p, 0);
1534 /*
1535 * We continue with the search, just in
1536 * case there's an even higher prio task
1537 * in another runqueue. (low likelihood
1538 * but possible)
1539 */
1540 }
1541 skip:
1542 double_unlock_balance(this_rq, src_rq);
1543 }
1544
1545 return ret;
1546 }
1547
1548 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1549 {
1550 /* Try to pull RT tasks here if we lower this rq's prio */
1551 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1552 pull_rt_task(rq);
1553 }
1554
1555 static void post_schedule_rt(struct rq *rq)
1556 {
1557 push_rt_tasks(rq);
1558 }
1559
1560 /*
1561 * If we are not running and we are not going to reschedule soon, we should
1562 * try to push tasks away now
1563 */
1564 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1565 {
1566 if (!task_running(rq, p) &&
1567 !test_tsk_need_resched(rq->curr) &&
1568 has_pushable_tasks(rq) &&
1569 p->rt.nr_cpus_allowed > 1 &&
1570 rt_task(rq->curr) &&
1571 (rq->curr->rt.nr_cpus_allowed < 2 ||
1572 rq->curr->prio < p->prio))
1573 push_rt_tasks(rq);
1574 }
1575
1576 static void set_cpus_allowed_rt(struct task_struct *p,
1577 const struct cpumask *new_mask)
1578 {
1579 int weight = cpumask_weight(new_mask);
1580
1581 BUG_ON(!rt_task(p));
1582
1583 /*
1584 * Update the migration status of the RQ if we have an RT task
1585 * which is running AND changing its weight value.
1586 */
1587 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1588 struct rq *rq = task_rq(p);
1589
1590 if (!task_current(rq, p)) {
1591 /*
1592 * Make sure we dequeue this task from the pushable list
1593 * before going further. It will either remain off of
1594 * the list because we are no longer pushable, or it
1595 * will be requeued.
1596 */
1597 if (p->rt.nr_cpus_allowed > 1)
1598 dequeue_pushable_task(rq, p);
1599
1600 /*
1601 * Requeue if our weight is changing and still > 1
1602 */
1603 if (weight > 1)
1604 enqueue_pushable_task(rq, p);
1605
1606 }
1607
1608 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1609 rq->rt.rt_nr_migratory++;
1610 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1611 BUG_ON(!rq->rt.rt_nr_migratory);
1612 rq->rt.rt_nr_migratory--;
1613 }
1614
1615 update_rt_migration(&rq->rt);
1616 }
1617
1618 cpumask_copy(&p->cpus_allowed, new_mask);
1619 p->rt.nr_cpus_allowed = weight;
1620 }
1621
1622 /* Assumes rq->lock is held */
1623 static void rq_online_rt(struct rq *rq)
1624 {
1625 if (rq->rt.overloaded)
1626 rt_set_overload(rq);
1627
1628 __enable_runtime(rq);
1629
1630 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1631 }
1632
1633 /* Assumes rq->lock is held */
1634 static void rq_offline_rt(struct rq *rq)
1635 {
1636 if (rq->rt.overloaded)
1637 rt_clear_overload(rq);
1638
1639 __disable_runtime(rq);
1640
1641 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1642 }
1643
1644 /*
1645 * When switch from the rt queue, we bring ourselves to a position
1646 * that we might want to pull RT tasks from other runqueues.
1647 */
1648 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1649 {
1650 /*
1651 * If there are other RT tasks then we will reschedule
1652 * and the scheduling of the other RT tasks will handle
1653 * the balancing. But if we are the last RT task
1654 * we may need to handle the pulling of RT tasks
1655 * now.
1656 */
1657 if (p->on_rq && !rq->rt.rt_nr_running)
1658 pull_rt_task(rq);
1659 }
1660
1661 static inline void init_sched_rt_class(void)
1662 {
1663 unsigned int i;
1664
1665 for_each_possible_cpu(i)
1666 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1667 GFP_KERNEL, cpu_to_node(i));
1668 }
1669 #endif /* CONFIG_SMP */
1670
1671 /*
1672 * When switching a task to RT, we may overload the runqueue
1673 * with RT tasks. In this case we try to push them off to
1674 * other runqueues.
1675 */
1676 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1677 {
1678 int check_resched = 1;
1679
1680 /*
1681 * If we are already running, then there's nothing
1682 * that needs to be done. But if we are not running
1683 * we may need to preempt the current running task.
1684 * If that current running task is also an RT task
1685 * then see if we can move to another run queue.
1686 */
1687 if (p->on_rq && rq->curr != p) {
1688 #ifdef CONFIG_SMP
1689 if (rq->rt.overloaded && push_rt_task(rq) &&
1690 /* Don't resched if we changed runqueues */
1691 rq != task_rq(p))
1692 check_resched = 0;
1693 #endif /* CONFIG_SMP */
1694 if (check_resched && p->prio < rq->curr->prio)
1695 resched_task(rq->curr);
1696 }
1697 }
1698
1699 /*
1700 * Priority of the task has changed. This may cause
1701 * us to initiate a push or pull.
1702 */
1703 static void
1704 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1705 {
1706 if (!p->on_rq)
1707 return;
1708
1709 if (rq->curr == p) {
1710 #ifdef CONFIG_SMP
1711 /*
1712 * If our priority decreases while running, we
1713 * may need to pull tasks to this runqueue.
1714 */
1715 if (oldprio < p->prio)
1716 pull_rt_task(rq);
1717 /*
1718 * If there's a higher priority task waiting to run
1719 * then reschedule. Note, the above pull_rt_task
1720 * can release the rq lock and p could migrate.
1721 * Only reschedule if p is still on the same runqueue.
1722 */
1723 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1724 resched_task(p);
1725 #else
1726 /* For UP simply resched on drop of prio */
1727 if (oldprio < p->prio)
1728 resched_task(p);
1729 #endif /* CONFIG_SMP */
1730 } else {
1731 /*
1732 * This task is not running, but if it is
1733 * greater than the current running task
1734 * then reschedule.
1735 */
1736 if (p->prio < rq->curr->prio)
1737 resched_task(rq->curr);
1738 }
1739 }
1740
1741 static void watchdog(struct rq *rq, struct task_struct *p)
1742 {
1743 unsigned long soft, hard;
1744
1745 /* max may change after cur was read, this will be fixed next tick */
1746 soft = task_rlimit(p, RLIMIT_RTTIME);
1747 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1748
1749 if (soft != RLIM_INFINITY) {
1750 unsigned long next;
1751
1752 p->rt.timeout++;
1753 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1754 if (p->rt.timeout > next)
1755 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1756 }
1757 }
1758
1759 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1760 {
1761 update_curr_rt(rq);
1762
1763 watchdog(rq, p);
1764
1765 /*
1766 * RR tasks need a special form of timeslice management.
1767 * FIFO tasks have no timeslices.
1768 */
1769 if (p->policy != SCHED_RR)
1770 return;
1771
1772 if (--p->rt.time_slice)
1773 return;
1774
1775 p->rt.time_slice = DEF_TIMESLICE;
1776
1777 /*
1778 * Requeue to the end of queue if we are not the only element
1779 * on the queue:
1780 */
1781 if (p->rt.run_list.prev != p->rt.run_list.next) {
1782 requeue_task_rt(rq, p, 0);
1783 set_tsk_need_resched(p);
1784 }
1785 }
1786
1787 static void set_curr_task_rt(struct rq *rq)
1788 {
1789 struct task_struct *p = rq->curr;
1790
1791 p->se.exec_start = rq->clock_task;
1792
1793 /* The running task is never eligible for pushing */
1794 dequeue_pushable_task(rq, p);
1795 }
1796
1797 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1798 {
1799 /*
1800 * Time slice is 0 for SCHED_FIFO tasks
1801 */
1802 if (task->policy == SCHED_RR)
1803 return DEF_TIMESLICE;
1804 else
1805 return 0;
1806 }
1807
1808 static const struct sched_class rt_sched_class = {
1809 .next = &fair_sched_class,
1810 .enqueue_task = enqueue_task_rt,
1811 .dequeue_task = dequeue_task_rt,
1812 .yield_task = yield_task_rt,
1813
1814 .check_preempt_curr = check_preempt_curr_rt,
1815
1816 .pick_next_task = pick_next_task_rt,
1817 .put_prev_task = put_prev_task_rt,
1818
1819 #ifdef CONFIG_SMP
1820 .select_task_rq = select_task_rq_rt,
1821
1822 .set_cpus_allowed = set_cpus_allowed_rt,
1823 .rq_online = rq_online_rt,
1824 .rq_offline = rq_offline_rt,
1825 .pre_schedule = pre_schedule_rt,
1826 .post_schedule = post_schedule_rt,
1827 .task_woken = task_woken_rt,
1828 .switched_from = switched_from_rt,
1829 #endif
1830
1831 .set_curr_task = set_curr_task_rt,
1832 .task_tick = task_tick_rt,
1833
1834 .get_rr_interval = get_rr_interval_rt,
1835
1836 .prio_changed = prio_changed_rt,
1837 .switched_to = switched_to_rt,
1838 };
1839
1840 #ifdef CONFIG_SCHED_DEBUG
1841 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1842
1843 static void print_rt_stats(struct seq_file *m, int cpu)
1844 {
1845 rt_rq_iter_t iter;
1846 struct rt_rq *rt_rq;
1847
1848 rcu_read_lock();
1849 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1850 print_rt_rq(m, cpu, rt_rq);
1851 rcu_read_unlock();
1852 }
1853 #endif /* CONFIG_SCHED_DEBUG */
1854