sched: fair-group: de-couple load-balancing from the rb-trees
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
80 static inline struct task_struct *task_of(struct sched_entity *se)
81 {
82 return container_of(se, struct task_struct, se);
83 }
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101 {
102 return p->se.cfs_rq;
103 }
104
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107 {
108 return se->cfs_rq;
109 }
110
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113 {
114 return grp->my_q;
115 }
116
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121 {
122 return cfs_rq->tg->cfs_rq[this_cpu];
123 }
124
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129 /* Do the two (enqueued) entities belong to the same group ? */
130 static inline int
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
132 {
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137 }
138
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
140 {
141 return se->parent;
142 }
143
144 #else /* CONFIG_FAIR_GROUP_SCHED */
145
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147 {
148 return container_of(cfs_rq, struct rq, cfs);
149 }
150
151 #define entity_is_task(se) 1
152
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
155
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157 {
158 return &task_rq(p)->cfs;
159 }
160
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162 {
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167 }
168
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171 {
172 return NULL;
173 }
174
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176 {
177 return &cpu_rq(this_cpu)->cfs;
178 }
179
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183 static inline int
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
185 {
186 return 1;
187 }
188
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
190 {
191 return NULL;
192 }
193
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
195
196
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202 {
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208 }
209
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
211 {
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217 }
218
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220 {
221 return se->vruntime - cfs_rq->min_vruntime;
222 }
223
224 /*
225 * Enqueue an entity into the rb-tree:
226 */
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 {
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
257 if (leftmost) {
258 cfs_rq->rb_leftmost = &se->run_node;
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
269 }
270
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272 {
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
288
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
293 }
294
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296 {
297 return cfs_rq->rb_leftmost;
298 }
299
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301 {
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303 }
304
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306 {
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308
309 if (!last)
310 return NULL;
311
312 return rb_entry(last, struct sched_entity, run_node);
313 }
314
315 /**************************************************************
316 * Scheduling class statistics methods:
317 */
318
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323 {
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333 }
334 #endif
335
336 /*
337 * The idea is to set a period in which each task runs once.
338 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
341 *
342 * p = (nr <= nl) ? l : l*nr/nl
343 */
344 static u64 __sched_period(unsigned long nr_running)
345 {
346 u64 period = sysctl_sched_latency;
347 unsigned long nr_latency = sched_nr_latency;
348
349 if (unlikely(nr_running > nr_latency)) {
350 period = sysctl_sched_min_granularity;
351 period *= nr_running;
352 }
353
354 return period;
355 }
356
357 /*
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
360 *
361 * s = p*w/rw
362 */
363 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364 {
365 u64 slice = __sched_period(cfs_rq->nr_running);
366
367 for_each_sched_entity(se) {
368 cfs_rq = cfs_rq_of(se);
369
370 slice *= se->load.weight;
371 do_div(slice, cfs_rq->load.weight);
372 }
373
374
375 return slice;
376 }
377
378 /*
379 * We calculate the vruntime slice of a to be inserted task
380 *
381 * vs = s/w = p/rw
382 */
383 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 {
385 unsigned long nr_running = cfs_rq->nr_running;
386 unsigned long weight;
387 u64 vslice;
388
389 if (!se->on_rq)
390 nr_running++;
391
392 vslice = __sched_period(nr_running);
393
394 for_each_sched_entity(se) {
395 cfs_rq = cfs_rq_of(se);
396
397 weight = cfs_rq->load.weight;
398 if (!se->on_rq)
399 weight += se->load.weight;
400
401 vslice *= NICE_0_LOAD;
402 do_div(vslice, weight);
403 }
404
405 return vslice;
406 }
407
408 /*
409 * Update the current task's runtime statistics. Skip current tasks that
410 * are not in our scheduling class.
411 */
412 static inline void
413 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
414 unsigned long delta_exec)
415 {
416 unsigned long delta_exec_weighted;
417
418 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
419
420 curr->sum_exec_runtime += delta_exec;
421 schedstat_add(cfs_rq, exec_clock, delta_exec);
422 delta_exec_weighted = delta_exec;
423 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
424 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
425 &curr->load);
426 }
427 curr->vruntime += delta_exec_weighted;
428 }
429
430 static void update_curr(struct cfs_rq *cfs_rq)
431 {
432 struct sched_entity *curr = cfs_rq->curr;
433 u64 now = rq_of(cfs_rq)->clock;
434 unsigned long delta_exec;
435
436 if (unlikely(!curr))
437 return;
438
439 /*
440 * Get the amount of time the current task was running
441 * since the last time we changed load (this cannot
442 * overflow on 32 bits):
443 */
444 delta_exec = (unsigned long)(now - curr->exec_start);
445
446 __update_curr(cfs_rq, curr, delta_exec);
447 curr->exec_start = now;
448
449 if (entity_is_task(curr)) {
450 struct task_struct *curtask = task_of(curr);
451
452 cpuacct_charge(curtask, delta_exec);
453 }
454 }
455
456 static inline void
457 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
458 {
459 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
460 }
461
462 /*
463 * Task is being enqueued - update stats:
464 */
465 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
466 {
467 /*
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
470 */
471 if (se != cfs_rq->curr)
472 update_stats_wait_start(cfs_rq, se);
473 }
474
475 static void
476 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
477 {
478 schedstat_set(se->wait_max, max(se->wait_max,
479 rq_of(cfs_rq)->clock - se->wait_start));
480 schedstat_set(se->wait_count, se->wait_count + 1);
481 schedstat_set(se->wait_sum, se->wait_sum +
482 rq_of(cfs_rq)->clock - se->wait_start);
483 schedstat_set(se->wait_start, 0);
484 }
485
486 static inline void
487 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 /*
490 * Mark the end of the wait period if dequeueing a
491 * waiting task:
492 */
493 if (se != cfs_rq->curr)
494 update_stats_wait_end(cfs_rq, se);
495 }
496
497 /*
498 * We are picking a new current task - update its stats:
499 */
500 static inline void
501 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
502 {
503 /*
504 * We are starting a new run period:
505 */
506 se->exec_start = rq_of(cfs_rq)->clock;
507 }
508
509 /**************************************************
510 * Scheduling class queueing methods:
511 */
512
513 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
514 static void
515 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
516 {
517 cfs_rq->task_weight += weight;
518 }
519 #else
520 static inline void
521 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
522 {
523 }
524 #endif
525
526 static void
527 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 update_load_add(&cfs_rq->load, se->load.weight);
530 if (!parent_entity(se))
531 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
532 if (entity_is_task(se))
533 add_cfs_task_weight(cfs_rq, se->load.weight);
534 cfs_rq->nr_running++;
535 se->on_rq = 1;
536 list_add(&se->group_node, &cfs_rq->tasks);
537 }
538
539 static void
540 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
541 {
542 update_load_sub(&cfs_rq->load, se->load.weight);
543 if (!parent_entity(se))
544 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
545 if (entity_is_task(se))
546 add_cfs_task_weight(cfs_rq, -se->load.weight);
547 cfs_rq->nr_running--;
548 se->on_rq = 0;
549 list_del_init(&se->group_node);
550 }
551
552 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 {
554 #ifdef CONFIG_SCHEDSTATS
555 if (se->sleep_start) {
556 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
557 struct task_struct *tsk = task_of(se);
558
559 if ((s64)delta < 0)
560 delta = 0;
561
562 if (unlikely(delta > se->sleep_max))
563 se->sleep_max = delta;
564
565 se->sleep_start = 0;
566 se->sum_sleep_runtime += delta;
567
568 account_scheduler_latency(tsk, delta >> 10, 1);
569 }
570 if (se->block_start) {
571 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
572 struct task_struct *tsk = task_of(se);
573
574 if ((s64)delta < 0)
575 delta = 0;
576
577 if (unlikely(delta > se->block_max))
578 se->block_max = delta;
579
580 se->block_start = 0;
581 se->sum_sleep_runtime += delta;
582
583 /*
584 * Blocking time is in units of nanosecs, so shift by 20 to
585 * get a milliseconds-range estimation of the amount of
586 * time that the task spent sleeping:
587 */
588 if (unlikely(prof_on == SLEEP_PROFILING)) {
589
590 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
591 delta >> 20);
592 }
593 account_scheduler_latency(tsk, delta >> 10, 0);
594 }
595 #endif
596 }
597
598 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 {
600 #ifdef CONFIG_SCHED_DEBUG
601 s64 d = se->vruntime - cfs_rq->min_vruntime;
602
603 if (d < 0)
604 d = -d;
605
606 if (d > 3*sysctl_sched_latency)
607 schedstat_inc(cfs_rq, nr_spread_over);
608 #endif
609 }
610
611 static void
612 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
613 {
614 u64 vruntime;
615
616 if (first_fair(cfs_rq)) {
617 vruntime = min_vruntime(cfs_rq->min_vruntime,
618 __pick_next_entity(cfs_rq)->vruntime);
619 } else
620 vruntime = cfs_rq->min_vruntime;
621
622 /*
623 * The 'current' period is already promised to the current tasks,
624 * however the extra weight of the new task will slow them down a
625 * little, place the new task so that it fits in the slot that
626 * stays open at the end.
627 */
628 if (initial && sched_feat(START_DEBIT))
629 vruntime += sched_vslice_add(cfs_rq, se);
630
631 if (!initial) {
632 /* sleeps upto a single latency don't count. */
633 if (sched_feat(NEW_FAIR_SLEEPERS)) {
634 if (sched_feat(NORMALIZED_SLEEPER))
635 vruntime -= calc_delta_fair(sysctl_sched_latency,
636 &cfs_rq->load);
637 else
638 vruntime -= sysctl_sched_latency;
639 }
640
641 /* ensure we never gain time by being placed backwards. */
642 vruntime = max_vruntime(se->vruntime, vruntime);
643 }
644
645 se->vruntime = vruntime;
646 }
647
648 static void
649 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
650 {
651 /*
652 * Update run-time statistics of the 'current'.
653 */
654 update_curr(cfs_rq);
655
656 if (wakeup) {
657 place_entity(cfs_rq, se, 0);
658 enqueue_sleeper(cfs_rq, se);
659 }
660
661 update_stats_enqueue(cfs_rq, se);
662 check_spread(cfs_rq, se);
663 if (se != cfs_rq->curr)
664 __enqueue_entity(cfs_rq, se);
665 account_entity_enqueue(cfs_rq, se);
666 }
667
668 static void update_avg(u64 *avg, u64 sample)
669 {
670 s64 diff = sample - *avg;
671 *avg += diff >> 3;
672 }
673
674 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
675 {
676 if (!se->last_wakeup)
677 return;
678
679 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
680 se->last_wakeup = 0;
681 }
682
683 static void
684 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
685 {
686 /*
687 * Update run-time statistics of the 'current'.
688 */
689 update_curr(cfs_rq);
690
691 update_stats_dequeue(cfs_rq, se);
692 if (sleep) {
693 update_avg_stats(cfs_rq, se);
694 #ifdef CONFIG_SCHEDSTATS
695 if (entity_is_task(se)) {
696 struct task_struct *tsk = task_of(se);
697
698 if (tsk->state & TASK_INTERRUPTIBLE)
699 se->sleep_start = rq_of(cfs_rq)->clock;
700 if (tsk->state & TASK_UNINTERRUPTIBLE)
701 se->block_start = rq_of(cfs_rq)->clock;
702 }
703 #endif
704 }
705
706 if (se != cfs_rq->curr)
707 __dequeue_entity(cfs_rq, se);
708 account_entity_dequeue(cfs_rq, se);
709 }
710
711 /*
712 * Preempt the current task with a newly woken task if needed:
713 */
714 static void
715 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
716 {
717 unsigned long ideal_runtime, delta_exec;
718
719 ideal_runtime = sched_slice(cfs_rq, curr);
720 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
721 if (delta_exec > ideal_runtime)
722 resched_task(rq_of(cfs_rq)->curr);
723 }
724
725 static void
726 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 /* 'current' is not kept within the tree. */
729 if (se->on_rq) {
730 /*
731 * Any task has to be enqueued before it get to execute on
732 * a CPU. So account for the time it spent waiting on the
733 * runqueue.
734 */
735 update_stats_wait_end(cfs_rq, se);
736 __dequeue_entity(cfs_rq, se);
737 }
738
739 update_stats_curr_start(cfs_rq, se);
740 cfs_rq->curr = se;
741 #ifdef CONFIG_SCHEDSTATS
742 /*
743 * Track our maximum slice length, if the CPU's load is at
744 * least twice that of our own weight (i.e. dont track it
745 * when there are only lesser-weight tasks around):
746 */
747 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
748 se->slice_max = max(se->slice_max,
749 se->sum_exec_runtime - se->prev_sum_exec_runtime);
750 }
751 #endif
752 se->prev_sum_exec_runtime = se->sum_exec_runtime;
753 }
754
755 static int
756 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
757
758 static struct sched_entity *
759 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 if (!cfs_rq->next)
762 return se;
763
764 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
765 return se;
766
767 return cfs_rq->next;
768 }
769
770 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
771 {
772 struct sched_entity *se = NULL;
773
774 if (first_fair(cfs_rq)) {
775 se = __pick_next_entity(cfs_rq);
776 se = pick_next(cfs_rq, se);
777 set_next_entity(cfs_rq, se);
778 }
779
780 return se;
781 }
782
783 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
784 {
785 /*
786 * If still on the runqueue then deactivate_task()
787 * was not called and update_curr() has to be done:
788 */
789 if (prev->on_rq)
790 update_curr(cfs_rq);
791
792 check_spread(cfs_rq, prev);
793 if (prev->on_rq) {
794 update_stats_wait_start(cfs_rq, prev);
795 /* Put 'current' back into the tree. */
796 __enqueue_entity(cfs_rq, prev);
797 }
798 cfs_rq->curr = NULL;
799 }
800
801 static void
802 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
803 {
804 /*
805 * Update run-time statistics of the 'current'.
806 */
807 update_curr(cfs_rq);
808
809 #ifdef CONFIG_SCHED_HRTICK
810 /*
811 * queued ticks are scheduled to match the slice, so don't bother
812 * validating it and just reschedule.
813 */
814 if (queued)
815 return resched_task(rq_of(cfs_rq)->curr);
816 /*
817 * don't let the period tick interfere with the hrtick preemption
818 */
819 if (!sched_feat(DOUBLE_TICK) &&
820 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
821 return;
822 #endif
823
824 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
825 check_preempt_tick(cfs_rq, curr);
826 }
827
828 /**************************************************
829 * CFS operations on tasks:
830 */
831
832 #ifdef CONFIG_SCHED_HRTICK
833 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
834 {
835 int requeue = rq->curr == p;
836 struct sched_entity *se = &p->se;
837 struct cfs_rq *cfs_rq = cfs_rq_of(se);
838
839 WARN_ON(task_rq(p) != rq);
840
841 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
842 u64 slice = sched_slice(cfs_rq, se);
843 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
844 s64 delta = slice - ran;
845
846 if (delta < 0) {
847 if (rq->curr == p)
848 resched_task(p);
849 return;
850 }
851
852 /*
853 * Don't schedule slices shorter than 10000ns, that just
854 * doesn't make sense. Rely on vruntime for fairness.
855 */
856 if (!requeue)
857 delta = max(10000LL, delta);
858
859 hrtick_start(rq, delta, requeue);
860 }
861 }
862 #else
863 static inline void
864 hrtick_start_fair(struct rq *rq, struct task_struct *p)
865 {
866 }
867 #endif
868
869 /*
870 * The enqueue_task method is called before nr_running is
871 * increased. Here we update the fair scheduling stats and
872 * then put the task into the rbtree:
873 */
874 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
875 {
876 struct cfs_rq *cfs_rq;
877 struct sched_entity *se = &p->se;
878
879 for_each_sched_entity(se) {
880 if (se->on_rq)
881 break;
882 cfs_rq = cfs_rq_of(se);
883 enqueue_entity(cfs_rq, se, wakeup);
884 wakeup = 1;
885 }
886
887 hrtick_start_fair(rq, rq->curr);
888 }
889
890 /*
891 * The dequeue_task method is called before nr_running is
892 * decreased. We remove the task from the rbtree and
893 * update the fair scheduling stats:
894 */
895 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
896 {
897 struct cfs_rq *cfs_rq;
898 struct sched_entity *se = &p->se;
899
900 for_each_sched_entity(se) {
901 cfs_rq = cfs_rq_of(se);
902 dequeue_entity(cfs_rq, se, sleep);
903 /* Don't dequeue parent if it has other entities besides us */
904 if (cfs_rq->load.weight)
905 break;
906 sleep = 1;
907 }
908
909 hrtick_start_fair(rq, rq->curr);
910 }
911
912 /*
913 * sched_yield() support is very simple - we dequeue and enqueue.
914 *
915 * If compat_yield is turned on then we requeue to the end of the tree.
916 */
917 static void yield_task_fair(struct rq *rq)
918 {
919 struct task_struct *curr = rq->curr;
920 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
921 struct sched_entity *rightmost, *se = &curr->se;
922
923 /*
924 * Are we the only task in the tree?
925 */
926 if (unlikely(cfs_rq->nr_running == 1))
927 return;
928
929 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
930 __update_rq_clock(rq);
931 /*
932 * Update run-time statistics of the 'current'.
933 */
934 update_curr(cfs_rq);
935
936 return;
937 }
938 /*
939 * Find the rightmost entry in the rbtree:
940 */
941 rightmost = __pick_last_entity(cfs_rq);
942 /*
943 * Already in the rightmost position?
944 */
945 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
946 return;
947
948 /*
949 * Minimally necessary key value to be last in the tree:
950 * Upon rescheduling, sched_class::put_prev_task() will place
951 * 'current' within the tree based on its new key value.
952 */
953 se->vruntime = rightmost->vruntime + 1;
954 }
955
956 /*
957 * wake_idle() will wake a task on an idle cpu if task->cpu is
958 * not idle and an idle cpu is available. The span of cpus to
959 * search starts with cpus closest then further out as needed,
960 * so we always favor a closer, idle cpu.
961 *
962 * Returns the CPU we should wake onto.
963 */
964 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
965 static int wake_idle(int cpu, struct task_struct *p)
966 {
967 cpumask_t tmp;
968 struct sched_domain *sd;
969 int i;
970
971 /*
972 * If it is idle, then it is the best cpu to run this task.
973 *
974 * This cpu is also the best, if it has more than one task already.
975 * Siblings must be also busy(in most cases) as they didn't already
976 * pickup the extra load from this cpu and hence we need not check
977 * sibling runqueue info. This will avoid the checks and cache miss
978 * penalities associated with that.
979 */
980 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
981 return cpu;
982
983 for_each_domain(cpu, sd) {
984 if ((sd->flags & SD_WAKE_IDLE)
985 || ((sd->flags & SD_WAKE_IDLE_FAR)
986 && !task_hot(p, task_rq(p)->clock, sd))) {
987 cpus_and(tmp, sd->span, p->cpus_allowed);
988 for_each_cpu_mask(i, tmp) {
989 if (idle_cpu(i)) {
990 if (i != task_cpu(p)) {
991 schedstat_inc(p,
992 se.nr_wakeups_idle);
993 }
994 return i;
995 }
996 }
997 } else {
998 break;
999 }
1000 }
1001 return cpu;
1002 }
1003 #else
1004 static inline int wake_idle(int cpu, struct task_struct *p)
1005 {
1006 return cpu;
1007 }
1008 #endif
1009
1010 #ifdef CONFIG_SMP
1011
1012 static const struct sched_class fair_sched_class;
1013
1014 static int
1015 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1016 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1017 int idx, unsigned long load, unsigned long this_load,
1018 unsigned int imbalance)
1019 {
1020 struct task_struct *curr = this_rq->curr;
1021 unsigned long tl = this_load;
1022 unsigned long tl_per_task;
1023
1024 if (!(this_sd->flags & SD_WAKE_AFFINE))
1025 return 0;
1026
1027 /*
1028 * If the currently running task will sleep within
1029 * a reasonable amount of time then attract this newly
1030 * woken task:
1031 */
1032 if (sync && curr->sched_class == &fair_sched_class) {
1033 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1034 p->se.avg_overlap < sysctl_sched_migration_cost)
1035 return 1;
1036 }
1037
1038 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1039 tl_per_task = cpu_avg_load_per_task(this_cpu);
1040
1041 /*
1042 * If sync wakeup then subtract the (maximum possible)
1043 * effect of the currently running task from the load
1044 * of the current CPU:
1045 */
1046 if (sync)
1047 tl -= current->se.load.weight;
1048
1049 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1050 100*(tl + p->se.load.weight) <= imbalance*load) {
1051 /*
1052 * This domain has SD_WAKE_AFFINE and
1053 * p is cache cold in this domain, and
1054 * there is no bad imbalance.
1055 */
1056 schedstat_inc(this_sd, ttwu_move_affine);
1057 schedstat_inc(p, se.nr_wakeups_affine);
1058
1059 return 1;
1060 }
1061 return 0;
1062 }
1063
1064 static int select_task_rq_fair(struct task_struct *p, int sync)
1065 {
1066 struct sched_domain *sd, *this_sd = NULL;
1067 int prev_cpu, this_cpu, new_cpu;
1068 unsigned long load, this_load;
1069 struct rq *rq, *this_rq;
1070 unsigned int imbalance;
1071 int idx;
1072
1073 prev_cpu = task_cpu(p);
1074 rq = task_rq(p);
1075 this_cpu = smp_processor_id();
1076 this_rq = cpu_rq(this_cpu);
1077 new_cpu = prev_cpu;
1078
1079 /*
1080 * 'this_sd' is the first domain that both
1081 * this_cpu and prev_cpu are present in:
1082 */
1083 for_each_domain(this_cpu, sd) {
1084 if (cpu_isset(prev_cpu, sd->span)) {
1085 this_sd = sd;
1086 break;
1087 }
1088 }
1089
1090 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1091 goto out;
1092
1093 /*
1094 * Check for affine wakeup and passive balancing possibilities.
1095 */
1096 if (!this_sd)
1097 goto out;
1098
1099 idx = this_sd->wake_idx;
1100
1101 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1102
1103 load = source_load(prev_cpu, idx);
1104 this_load = target_load(this_cpu, idx);
1105
1106 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1107 load, this_load, imbalance))
1108 return this_cpu;
1109
1110 if (prev_cpu == this_cpu)
1111 goto out;
1112
1113 /*
1114 * Start passive balancing when half the imbalance_pct
1115 * limit is reached.
1116 */
1117 if (this_sd->flags & SD_WAKE_BALANCE) {
1118 if (imbalance*this_load <= 100*load) {
1119 schedstat_inc(this_sd, ttwu_move_balance);
1120 schedstat_inc(p, se.nr_wakeups_passive);
1121 return this_cpu;
1122 }
1123 }
1124
1125 out:
1126 return wake_idle(new_cpu, p);
1127 }
1128 #endif /* CONFIG_SMP */
1129
1130 static unsigned long wakeup_gran(struct sched_entity *se)
1131 {
1132 unsigned long gran = sysctl_sched_wakeup_granularity;
1133
1134 /*
1135 * More easily preempt - nice tasks, while not making
1136 * it harder for + nice tasks.
1137 */
1138 if (unlikely(se->load.weight > NICE_0_LOAD))
1139 gran = calc_delta_fair(gran, &se->load);
1140
1141 return gran;
1142 }
1143
1144 /*
1145 * Should 'se' preempt 'curr'.
1146 *
1147 * |s1
1148 * |s2
1149 * |s3
1150 * g
1151 * |<--->|c
1152 *
1153 * w(c, s1) = -1
1154 * w(c, s2) = 0
1155 * w(c, s3) = 1
1156 *
1157 */
1158 static int
1159 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1160 {
1161 s64 gran, vdiff = curr->vruntime - se->vruntime;
1162
1163 if (vdiff < 0)
1164 return -1;
1165
1166 gran = wakeup_gran(curr);
1167 if (vdiff > gran)
1168 return 1;
1169
1170 return 0;
1171 }
1172
1173 /* return depth at which a sched entity is present in the hierarchy */
1174 static inline int depth_se(struct sched_entity *se)
1175 {
1176 int depth = 0;
1177
1178 for_each_sched_entity(se)
1179 depth++;
1180
1181 return depth;
1182 }
1183
1184 /*
1185 * Preempt the current task with a newly woken task if needed:
1186 */
1187 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1188 {
1189 struct task_struct *curr = rq->curr;
1190 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1191 struct sched_entity *se = &curr->se, *pse = &p->se;
1192 int se_depth, pse_depth;
1193
1194 if (unlikely(rt_prio(p->prio))) {
1195 update_rq_clock(rq);
1196 update_curr(cfs_rq);
1197 resched_task(curr);
1198 return;
1199 }
1200
1201 se->last_wakeup = se->sum_exec_runtime;
1202 if (unlikely(se == pse))
1203 return;
1204
1205 cfs_rq_of(pse)->next = pse;
1206
1207 /*
1208 * Batch tasks do not preempt (their preemption is driven by
1209 * the tick):
1210 */
1211 if (unlikely(p->policy == SCHED_BATCH))
1212 return;
1213
1214 if (!sched_feat(WAKEUP_PREEMPT))
1215 return;
1216
1217 /*
1218 * preemption test can be made between sibling entities who are in the
1219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1220 * both tasks until we find their ancestors who are siblings of common
1221 * parent.
1222 */
1223
1224 /* First walk up until both entities are at same depth */
1225 se_depth = depth_se(se);
1226 pse_depth = depth_se(pse);
1227
1228 while (se_depth > pse_depth) {
1229 se_depth--;
1230 se = parent_entity(se);
1231 }
1232
1233 while (pse_depth > se_depth) {
1234 pse_depth--;
1235 pse = parent_entity(pse);
1236 }
1237
1238 while (!is_same_group(se, pse)) {
1239 se = parent_entity(se);
1240 pse = parent_entity(pse);
1241 }
1242
1243 if (wakeup_preempt_entity(se, pse) == 1)
1244 resched_task(curr);
1245 }
1246
1247 static struct task_struct *pick_next_task_fair(struct rq *rq)
1248 {
1249 struct task_struct *p;
1250 struct cfs_rq *cfs_rq = &rq->cfs;
1251 struct sched_entity *se;
1252
1253 if (unlikely(!cfs_rq->nr_running))
1254 return NULL;
1255
1256 do {
1257 se = pick_next_entity(cfs_rq);
1258 cfs_rq = group_cfs_rq(se);
1259 } while (cfs_rq);
1260
1261 p = task_of(se);
1262 hrtick_start_fair(rq, p);
1263
1264 return p;
1265 }
1266
1267 /*
1268 * Account for a descheduled task:
1269 */
1270 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1271 {
1272 struct sched_entity *se = &prev->se;
1273 struct cfs_rq *cfs_rq;
1274
1275 for_each_sched_entity(se) {
1276 cfs_rq = cfs_rq_of(se);
1277 put_prev_entity(cfs_rq, se);
1278 }
1279 }
1280
1281 #ifdef CONFIG_SMP
1282 /**************************************************
1283 * Fair scheduling class load-balancing methods:
1284 */
1285
1286 /*
1287 * Load-balancing iterator. Note: while the runqueue stays locked
1288 * during the whole iteration, the current task might be
1289 * dequeued so the iterator has to be dequeue-safe. Here we
1290 * achieve that by always pre-iterating before returning
1291 * the current task:
1292 */
1293 static struct task_struct *
1294 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1295 {
1296 struct task_struct *p = NULL;
1297 struct sched_entity *se;
1298
1299 if (next == &cfs_rq->tasks)
1300 return NULL;
1301
1302 /* Skip over entities that are not tasks */
1303 do {
1304 se = list_entry(next, struct sched_entity, group_node);
1305 next = next->next;
1306 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1307
1308 if (next == &cfs_rq->tasks)
1309 return NULL;
1310
1311 cfs_rq->balance_iterator = next;
1312
1313 if (entity_is_task(se))
1314 p = task_of(se);
1315
1316 return p;
1317 }
1318
1319 static struct task_struct *load_balance_start_fair(void *arg)
1320 {
1321 struct cfs_rq *cfs_rq = arg;
1322
1323 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1324 }
1325
1326 static struct task_struct *load_balance_next_fair(void *arg)
1327 {
1328 struct cfs_rq *cfs_rq = arg;
1329
1330 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1331 }
1332
1333 static unsigned long
1334 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1335 unsigned long max_load_move, struct sched_domain *sd,
1336 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1337 struct cfs_rq *cfs_rq)
1338 {
1339 struct rq_iterator cfs_rq_iterator;
1340
1341 cfs_rq_iterator.start = load_balance_start_fair;
1342 cfs_rq_iterator.next = load_balance_next_fair;
1343 cfs_rq_iterator.arg = cfs_rq;
1344
1345 return balance_tasks(this_rq, this_cpu, busiest,
1346 max_load_move, sd, idle, all_pinned,
1347 this_best_prio, &cfs_rq_iterator);
1348 }
1349
1350 #ifdef CONFIG_FAIR_GROUP_SCHED
1351 static unsigned long
1352 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1353 unsigned long max_load_move,
1354 struct sched_domain *sd, enum cpu_idle_type idle,
1355 int *all_pinned, int *this_best_prio)
1356 {
1357 long rem_load_move = max_load_move;
1358 int busiest_cpu = cpu_of(busiest);
1359 struct task_group *tg;
1360
1361 rcu_read_lock();
1362 list_for_each_entry(tg, &task_groups, list) {
1363 long imbalance;
1364 unsigned long this_weight, busiest_weight;
1365 long rem_load, max_load, moved_load;
1366
1367 /*
1368 * empty group
1369 */
1370 if (!aggregate(tg, sd)->task_weight)
1371 continue;
1372
1373 rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
1374 rem_load /= aggregate(tg, sd)->load + 1;
1375
1376 this_weight = tg->cfs_rq[this_cpu]->task_weight;
1377 busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
1378
1379 imbalance = (busiest_weight - this_weight) / 2;
1380
1381 if (imbalance < 0)
1382 imbalance = busiest_weight;
1383
1384 max_load = max(rem_load, imbalance);
1385 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1386 max_load, sd, idle, all_pinned, this_best_prio,
1387 tg->cfs_rq[busiest_cpu]);
1388
1389 if (!moved_load)
1390 continue;
1391
1392 move_group_shares(tg, sd, busiest_cpu, this_cpu);
1393
1394 moved_load *= aggregate(tg, sd)->load;
1395 moved_load /= aggregate(tg, sd)->rq_weight + 1;
1396
1397 rem_load_move -= moved_load;
1398 if (rem_load_move < 0)
1399 break;
1400 }
1401 rcu_read_unlock();
1402
1403 return max_load_move - rem_load_move;
1404 }
1405 #else
1406 static unsigned long
1407 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 int *all_pinned, int *this_best_prio)
1411 {
1412 return __load_balance_fair(this_rq, this_cpu, busiest,
1413 max_load_move, sd, idle, all_pinned,
1414 this_best_prio, &busiest->cfs);
1415 }
1416 #endif
1417
1418 static int
1419 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle)
1421 {
1422 struct cfs_rq *busy_cfs_rq;
1423 struct rq_iterator cfs_rq_iterator;
1424
1425 cfs_rq_iterator.start = load_balance_start_fair;
1426 cfs_rq_iterator.next = load_balance_next_fair;
1427
1428 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1429 /*
1430 * pass busy_cfs_rq argument into
1431 * load_balance_[start|next]_fair iterators
1432 */
1433 cfs_rq_iterator.arg = busy_cfs_rq;
1434 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1435 &cfs_rq_iterator))
1436 return 1;
1437 }
1438
1439 return 0;
1440 }
1441 #endif
1442
1443 /*
1444 * scheduler tick hitting a task of our scheduling class:
1445 */
1446 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1447 {
1448 struct cfs_rq *cfs_rq;
1449 struct sched_entity *se = &curr->se;
1450
1451 for_each_sched_entity(se) {
1452 cfs_rq = cfs_rq_of(se);
1453 entity_tick(cfs_rq, se, queued);
1454 }
1455 }
1456
1457 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1458
1459 /*
1460 * Share the fairness runtime between parent and child, thus the
1461 * total amount of pressure for CPU stays equal - new tasks
1462 * get a chance to run but frequent forkers are not allowed to
1463 * monopolize the CPU. Note: the parent runqueue is locked,
1464 * the child is not running yet.
1465 */
1466 static void task_new_fair(struct rq *rq, struct task_struct *p)
1467 {
1468 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1469 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1470 int this_cpu = smp_processor_id();
1471
1472 sched_info_queued(p);
1473
1474 update_curr(cfs_rq);
1475 place_entity(cfs_rq, se, 1);
1476
1477 /* 'curr' will be NULL if the child belongs to a different group */
1478 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1479 curr && curr->vruntime < se->vruntime) {
1480 /*
1481 * Upon rescheduling, sched_class::put_prev_task() will place
1482 * 'current' within the tree based on its new key value.
1483 */
1484 swap(curr->vruntime, se->vruntime);
1485 }
1486
1487 enqueue_task_fair(rq, p, 0);
1488 resched_task(rq->curr);
1489 }
1490
1491 /*
1492 * Priority of the task has changed. Check to see if we preempt
1493 * the current task.
1494 */
1495 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1496 int oldprio, int running)
1497 {
1498 /*
1499 * Reschedule if we are currently running on this runqueue and
1500 * our priority decreased, or if we are not currently running on
1501 * this runqueue and our priority is higher than the current's
1502 */
1503 if (running) {
1504 if (p->prio > oldprio)
1505 resched_task(rq->curr);
1506 } else
1507 check_preempt_curr(rq, p);
1508 }
1509
1510 /*
1511 * We switched to the sched_fair class.
1512 */
1513 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1514 int running)
1515 {
1516 /*
1517 * We were most likely switched from sched_rt, so
1518 * kick off the schedule if running, otherwise just see
1519 * if we can still preempt the current task.
1520 */
1521 if (running)
1522 resched_task(rq->curr);
1523 else
1524 check_preempt_curr(rq, p);
1525 }
1526
1527 /* Account for a task changing its policy or group.
1528 *
1529 * This routine is mostly called to set cfs_rq->curr field when a task
1530 * migrates between groups/classes.
1531 */
1532 static void set_curr_task_fair(struct rq *rq)
1533 {
1534 struct sched_entity *se = &rq->curr->se;
1535
1536 for_each_sched_entity(se)
1537 set_next_entity(cfs_rq_of(se), se);
1538 }
1539
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1541 static void moved_group_fair(struct task_struct *p)
1542 {
1543 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1544
1545 update_curr(cfs_rq);
1546 place_entity(cfs_rq, &p->se, 1);
1547 }
1548 #endif
1549
1550 /*
1551 * All the scheduling class methods:
1552 */
1553 static const struct sched_class fair_sched_class = {
1554 .next = &idle_sched_class,
1555 .enqueue_task = enqueue_task_fair,
1556 .dequeue_task = dequeue_task_fair,
1557 .yield_task = yield_task_fair,
1558 #ifdef CONFIG_SMP
1559 .select_task_rq = select_task_rq_fair,
1560 #endif /* CONFIG_SMP */
1561
1562 .check_preempt_curr = check_preempt_wakeup,
1563
1564 .pick_next_task = pick_next_task_fair,
1565 .put_prev_task = put_prev_task_fair,
1566
1567 #ifdef CONFIG_SMP
1568 .load_balance = load_balance_fair,
1569 .move_one_task = move_one_task_fair,
1570 #endif
1571
1572 .set_curr_task = set_curr_task_fair,
1573 .task_tick = task_tick_fair,
1574 .task_new = task_new_fair,
1575
1576 .prio_changed = prio_changed_fair,
1577 .switched_to = switched_to_fair,
1578
1579 #ifdef CONFIG_FAIR_GROUP_SCHED
1580 .moved_group = moved_group_fair,
1581 #endif
1582 };
1583
1584 #ifdef CONFIG_SCHED_DEBUG
1585 static void print_cfs_stats(struct seq_file *m, int cpu)
1586 {
1587 struct cfs_rq *cfs_rq;
1588
1589 rcu_read_lock();
1590 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1591 print_cfs_rq(m, cpu, cfs_rq);
1592 rcu_read_unlock();
1593 }
1594 #endif