sched: min_vruntime fix
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73
74 /*
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
83
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
100
101 #else /* CONFIG_FAIR_GROUP_SCHED */
102
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104 {
105 return container_of(cfs_rq, struct rq, cfs);
106 }
107
108 #define entity_is_task(se) 1
109
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
111
112 static inline struct task_struct *task_of(struct sched_entity *se)
113 {
114 return container_of(se, struct task_struct, se);
115 }
116
117
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123 {
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129 }
130
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
132 {
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138 }
139
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 {
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost) {
179 cfs_rq->rb_leftmost = &se->run_node;
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
190 }
191
192 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193 {
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
209
210 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
211 }
212
213 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
214 {
215 return cfs_rq->rb_leftmost;
216 }
217
218 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
219 {
220 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
221 }
222
223 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
224 {
225 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
226
227 if (!last)
228 return NULL;
229
230 return rb_entry(last, struct sched_entity, run_node);
231 }
232
233 /**************************************************************
234 * Scheduling class statistics methods:
235 */
236
237 #ifdef CONFIG_SCHED_DEBUG
238 int sched_nr_latency_handler(struct ctl_table *table, int write,
239 struct file *filp, void __user *buffer, size_t *lenp,
240 loff_t *ppos)
241 {
242 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
243
244 if (ret || !write)
245 return ret;
246
247 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
248 sysctl_sched_min_granularity);
249
250 return 0;
251 }
252 #endif
253
254 /*
255 * The idea is to set a period in which each task runs once.
256 *
257 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
258 * this period because otherwise the slices get too small.
259 *
260 * p = (nr <= nl) ? l : l*nr/nl
261 */
262 static u64 __sched_period(unsigned long nr_running)
263 {
264 u64 period = sysctl_sched_latency;
265 unsigned long nr_latency = sched_nr_latency;
266
267 if (unlikely(nr_running > nr_latency)) {
268 period = sysctl_sched_min_granularity;
269 period *= nr_running;
270 }
271
272 return period;
273 }
274
275 /*
276 * We calculate the wall-time slice from the period by taking a part
277 * proportional to the weight.
278 *
279 * s = p*w/rw
280 */
281 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
282 {
283 u64 slice = __sched_period(cfs_rq->nr_running);
284
285 slice *= se->load.weight;
286 do_div(slice, cfs_rq->load.weight);
287
288 return slice;
289 }
290
291 /*
292 * We calculate the vruntime slice.
293 *
294 * vs = s/w = p/rw
295 */
296 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
297 {
298 u64 vslice = __sched_period(nr_running);
299
300 vslice *= NICE_0_LOAD;
301 do_div(vslice, rq_weight);
302
303 return vslice;
304 }
305
306 static u64 sched_vslice(struct cfs_rq *cfs_rq)
307 {
308 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
309 }
310
311 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
312 {
313 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
314 cfs_rq->nr_running + 1);
315 }
316
317 /*
318 * Update the current task's runtime statistics. Skip current tasks that
319 * are not in our scheduling class.
320 */
321 static inline void
322 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
323 unsigned long delta_exec)
324 {
325 unsigned long delta_exec_weighted;
326
327 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
328
329 curr->sum_exec_runtime += delta_exec;
330 schedstat_add(cfs_rq, exec_clock, delta_exec);
331 delta_exec_weighted = delta_exec;
332 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
333 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
334 &curr->load);
335 }
336 curr->vruntime += delta_exec_weighted;
337 }
338
339 static void update_curr(struct cfs_rq *cfs_rq)
340 {
341 struct sched_entity *curr = cfs_rq->curr;
342 u64 now = rq_of(cfs_rq)->clock;
343 unsigned long delta_exec;
344
345 if (unlikely(!curr))
346 return;
347
348 /*
349 * Get the amount of time the current task was running
350 * since the last time we changed load (this cannot
351 * overflow on 32 bits):
352 */
353 delta_exec = (unsigned long)(now - curr->exec_start);
354
355 __update_curr(cfs_rq, curr, delta_exec);
356 curr->exec_start = now;
357
358 if (entity_is_task(curr)) {
359 struct task_struct *curtask = task_of(curr);
360
361 cpuacct_charge(curtask, delta_exec);
362 }
363 }
364
365 static inline void
366 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 {
368 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
369 }
370
371 /*
372 * Task is being enqueued - update stats:
373 */
374 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 {
376 /*
377 * Are we enqueueing a waiting task? (for current tasks
378 * a dequeue/enqueue event is a NOP)
379 */
380 if (se != cfs_rq->curr)
381 update_stats_wait_start(cfs_rq, se);
382 }
383
384 static void
385 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
386 {
387 schedstat_set(se->wait_max, max(se->wait_max,
388 rq_of(cfs_rq)->clock - se->wait_start));
389 schedstat_set(se->wait_count, se->wait_count + 1);
390 schedstat_set(se->wait_sum, se->wait_sum +
391 rq_of(cfs_rq)->clock - se->wait_start);
392 schedstat_set(se->wait_start, 0);
393 }
394
395 static inline void
396 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
397 {
398 /*
399 * Mark the end of the wait period if dequeueing a
400 * waiting task:
401 */
402 if (se != cfs_rq->curr)
403 update_stats_wait_end(cfs_rq, se);
404 }
405
406 /*
407 * We are picking a new current task - update its stats:
408 */
409 static inline void
410 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
411 {
412 /*
413 * We are starting a new run period:
414 */
415 se->exec_start = rq_of(cfs_rq)->clock;
416 }
417
418 /**************************************************
419 * Scheduling class queueing methods:
420 */
421
422 static void
423 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
424 {
425 update_load_add(&cfs_rq->load, se->load.weight);
426 cfs_rq->nr_running++;
427 se->on_rq = 1;
428 }
429
430 static void
431 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
432 {
433 update_load_sub(&cfs_rq->load, se->load.weight);
434 cfs_rq->nr_running--;
435 se->on_rq = 0;
436 }
437
438 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
439 {
440 #ifdef CONFIG_SCHEDSTATS
441 if (se->sleep_start) {
442 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
443 struct task_struct *tsk = task_of(se);
444
445 if ((s64)delta < 0)
446 delta = 0;
447
448 if (unlikely(delta > se->sleep_max))
449 se->sleep_max = delta;
450
451 se->sleep_start = 0;
452 se->sum_sleep_runtime += delta;
453
454 account_scheduler_latency(tsk, delta >> 10, 1);
455 }
456 if (se->block_start) {
457 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
458 struct task_struct *tsk = task_of(se);
459
460 if ((s64)delta < 0)
461 delta = 0;
462
463 if (unlikely(delta > se->block_max))
464 se->block_max = delta;
465
466 se->block_start = 0;
467 se->sum_sleep_runtime += delta;
468
469 /*
470 * Blocking time is in units of nanosecs, so shift by 20 to
471 * get a milliseconds-range estimation of the amount of
472 * time that the task spent sleeping:
473 */
474 if (unlikely(prof_on == SLEEP_PROFILING)) {
475
476 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
477 delta >> 20);
478 }
479 account_scheduler_latency(tsk, delta >> 10, 0);
480 }
481 #endif
482 }
483
484 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
485 {
486 #ifdef CONFIG_SCHED_DEBUG
487 s64 d = se->vruntime - cfs_rq->min_vruntime;
488
489 if (d < 0)
490 d = -d;
491
492 if (d > 3*sysctl_sched_latency)
493 schedstat_inc(cfs_rq, nr_spread_over);
494 #endif
495 }
496
497 static void
498 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
499 {
500 u64 vruntime;
501
502 if (first_fair(cfs_rq)) {
503 vruntime = min_vruntime(cfs_rq->min_vruntime,
504 __pick_next_entity(cfs_rq)->vruntime);
505 } else
506 vruntime = cfs_rq->min_vruntime;
507
508 if (sched_feat(TREE_AVG)) {
509 struct sched_entity *last = __pick_last_entity(cfs_rq);
510 if (last) {
511 vruntime += last->vruntime;
512 vruntime >>= 1;
513 }
514 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
515 vruntime += sched_vslice(cfs_rq)/2;
516
517 /*
518 * The 'current' period is already promised to the current tasks,
519 * however the extra weight of the new task will slow them down a
520 * little, place the new task so that it fits in the slot that
521 * stays open at the end.
522 */
523 if (initial && sched_feat(START_DEBIT))
524 vruntime += sched_vslice_add(cfs_rq, se);
525
526 if (!initial) {
527 /* sleeps upto a single latency don't count. */
528 if (sched_feat(NEW_FAIR_SLEEPERS))
529 vruntime -= sysctl_sched_latency;
530
531 /* ensure we never gain time by being placed backwards. */
532 vruntime = max_vruntime(se->vruntime, vruntime);
533 }
534
535 se->vruntime = vruntime;
536 }
537
538 static void
539 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
540 {
541 /*
542 * Update run-time statistics of the 'current'.
543 */
544 update_curr(cfs_rq);
545
546 if (wakeup) {
547 place_entity(cfs_rq, se, 0);
548 enqueue_sleeper(cfs_rq, se);
549 }
550
551 update_stats_enqueue(cfs_rq, se);
552 check_spread(cfs_rq, se);
553 if (se != cfs_rq->curr)
554 __enqueue_entity(cfs_rq, se);
555 account_entity_enqueue(cfs_rq, se);
556 }
557
558 static void
559 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
560 {
561 /*
562 * Update run-time statistics of the 'current'.
563 */
564 update_curr(cfs_rq);
565
566 update_stats_dequeue(cfs_rq, se);
567 if (sleep) {
568 #ifdef CONFIG_SCHEDSTATS
569 if (entity_is_task(se)) {
570 struct task_struct *tsk = task_of(se);
571
572 if (tsk->state & TASK_INTERRUPTIBLE)
573 se->sleep_start = rq_of(cfs_rq)->clock;
574 if (tsk->state & TASK_UNINTERRUPTIBLE)
575 se->block_start = rq_of(cfs_rq)->clock;
576 }
577 #endif
578 }
579
580 if (se != cfs_rq->curr)
581 __dequeue_entity(cfs_rq, se);
582 account_entity_dequeue(cfs_rq, se);
583 }
584
585 /*
586 * Preempt the current task with a newly woken task if needed:
587 */
588 static void
589 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
590 {
591 unsigned long ideal_runtime, delta_exec;
592
593 ideal_runtime = sched_slice(cfs_rq, curr);
594 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
595 if (delta_exec > ideal_runtime)
596 resched_task(rq_of(cfs_rq)->curr);
597 }
598
599 static void
600 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 /* 'current' is not kept within the tree. */
603 if (se->on_rq) {
604 /*
605 * Any task has to be enqueued before it get to execute on
606 * a CPU. So account for the time it spent waiting on the
607 * runqueue.
608 */
609 update_stats_wait_end(cfs_rq, se);
610 __dequeue_entity(cfs_rq, se);
611 }
612
613 update_stats_curr_start(cfs_rq, se);
614 cfs_rq->curr = se;
615 #ifdef CONFIG_SCHEDSTATS
616 /*
617 * Track our maximum slice length, if the CPU's load is at
618 * least twice that of our own weight (i.e. dont track it
619 * when there are only lesser-weight tasks around):
620 */
621 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
622 se->slice_max = max(se->slice_max,
623 se->sum_exec_runtime - se->prev_sum_exec_runtime);
624 }
625 #endif
626 se->prev_sum_exec_runtime = se->sum_exec_runtime;
627 }
628
629 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
630 {
631 struct sched_entity *se = NULL;
632
633 if (first_fair(cfs_rq)) {
634 se = __pick_next_entity(cfs_rq);
635 set_next_entity(cfs_rq, se);
636 }
637
638 return se;
639 }
640
641 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
642 {
643 /*
644 * If still on the runqueue then deactivate_task()
645 * was not called and update_curr() has to be done:
646 */
647 if (prev->on_rq)
648 update_curr(cfs_rq);
649
650 check_spread(cfs_rq, prev);
651 if (prev->on_rq) {
652 update_stats_wait_start(cfs_rq, prev);
653 /* Put 'current' back into the tree. */
654 __enqueue_entity(cfs_rq, prev);
655 }
656 cfs_rq->curr = NULL;
657 }
658
659 static void
660 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
661 {
662 /*
663 * Update run-time statistics of the 'current'.
664 */
665 update_curr(cfs_rq);
666
667 #ifdef CONFIG_SCHED_HRTICK
668 /*
669 * queued ticks are scheduled to match the slice, so don't bother
670 * validating it and just reschedule.
671 */
672 if (queued)
673 return resched_task(rq_of(cfs_rq)->curr);
674 /*
675 * don't let the period tick interfere with the hrtick preemption
676 */
677 if (!sched_feat(DOUBLE_TICK) &&
678 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
679 return;
680 #endif
681
682 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
683 check_preempt_tick(cfs_rq, curr);
684 }
685
686 /**************************************************
687 * CFS operations on tasks:
688 */
689
690 #ifdef CONFIG_FAIR_GROUP_SCHED
691
692 /* Walk up scheduling entities hierarchy */
693 #define for_each_sched_entity(se) \
694 for (; se; se = se->parent)
695
696 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
697 {
698 return p->se.cfs_rq;
699 }
700
701 /* runqueue on which this entity is (to be) queued */
702 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
703 {
704 return se->cfs_rq;
705 }
706
707 /* runqueue "owned" by this group */
708 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
709 {
710 return grp->my_q;
711 }
712
713 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
714 * another cpu ('this_cpu')
715 */
716 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
717 {
718 return cfs_rq->tg->cfs_rq[this_cpu];
719 }
720
721 /* Iterate thr' all leaf cfs_rq's on a runqueue */
722 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
723 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
724
725 /* Do the two (enqueued) entities belong to the same group ? */
726 static inline int
727 is_same_group(struct sched_entity *se, struct sched_entity *pse)
728 {
729 if (se->cfs_rq == pse->cfs_rq)
730 return 1;
731
732 return 0;
733 }
734
735 static inline struct sched_entity *parent_entity(struct sched_entity *se)
736 {
737 return se->parent;
738 }
739
740 #else /* CONFIG_FAIR_GROUP_SCHED */
741
742 #define for_each_sched_entity(se) \
743 for (; se; se = NULL)
744
745 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
746 {
747 return &task_rq(p)->cfs;
748 }
749
750 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
751 {
752 struct task_struct *p = task_of(se);
753 struct rq *rq = task_rq(p);
754
755 return &rq->cfs;
756 }
757
758 /* runqueue "owned" by this group */
759 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
760 {
761 return NULL;
762 }
763
764 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
765 {
766 return &cpu_rq(this_cpu)->cfs;
767 }
768
769 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
770 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
771
772 static inline int
773 is_same_group(struct sched_entity *se, struct sched_entity *pse)
774 {
775 return 1;
776 }
777
778 static inline struct sched_entity *parent_entity(struct sched_entity *se)
779 {
780 return NULL;
781 }
782
783 #endif /* CONFIG_FAIR_GROUP_SCHED */
784
785 #ifdef CONFIG_SCHED_HRTICK
786 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
787 {
788 int requeue = rq->curr == p;
789 struct sched_entity *se = &p->se;
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791
792 WARN_ON(task_rq(p) != rq);
793
794 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
795 u64 slice = sched_slice(cfs_rq, se);
796 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
797 s64 delta = slice - ran;
798
799 if (delta < 0) {
800 if (rq->curr == p)
801 resched_task(p);
802 return;
803 }
804
805 /*
806 * Don't schedule slices shorter than 10000ns, that just
807 * doesn't make sense. Rely on vruntime for fairness.
808 */
809 if (!requeue)
810 delta = max(10000LL, delta);
811
812 hrtick_start(rq, delta, requeue);
813 }
814 }
815 #else
816 static inline void
817 hrtick_start_fair(struct rq *rq, struct task_struct *p)
818 {
819 }
820 #endif
821
822 /*
823 * The enqueue_task method is called before nr_running is
824 * increased. Here we update the fair scheduling stats and
825 * then put the task into the rbtree:
826 */
827 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
828 {
829 struct cfs_rq *cfs_rq;
830 struct sched_entity *se = &p->se;
831
832 for_each_sched_entity(se) {
833 if (se->on_rq)
834 break;
835 cfs_rq = cfs_rq_of(se);
836 enqueue_entity(cfs_rq, se, wakeup);
837 wakeup = 1;
838 }
839
840 hrtick_start_fair(rq, rq->curr);
841 }
842
843 /*
844 * The dequeue_task method is called before nr_running is
845 * decreased. We remove the task from the rbtree and
846 * update the fair scheduling stats:
847 */
848 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
849 {
850 struct cfs_rq *cfs_rq;
851 struct sched_entity *se = &p->se;
852
853 for_each_sched_entity(se) {
854 cfs_rq = cfs_rq_of(se);
855 dequeue_entity(cfs_rq, se, sleep);
856 /* Don't dequeue parent if it has other entities besides us */
857 if (cfs_rq->load.weight)
858 break;
859 sleep = 1;
860 }
861
862 hrtick_start_fair(rq, rq->curr);
863 }
864
865 /*
866 * sched_yield() support is very simple - we dequeue and enqueue.
867 *
868 * If compat_yield is turned on then we requeue to the end of the tree.
869 */
870 static void yield_task_fair(struct rq *rq)
871 {
872 struct task_struct *curr = rq->curr;
873 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
874 struct sched_entity *rightmost, *se = &curr->se;
875
876 /*
877 * Are we the only task in the tree?
878 */
879 if (unlikely(cfs_rq->nr_running == 1))
880 return;
881
882 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
883 __update_rq_clock(rq);
884 /*
885 * Update run-time statistics of the 'current'.
886 */
887 update_curr(cfs_rq);
888
889 return;
890 }
891 /*
892 * Find the rightmost entry in the rbtree:
893 */
894 rightmost = __pick_last_entity(cfs_rq);
895 /*
896 * Already in the rightmost position?
897 */
898 if (unlikely(rightmost->vruntime < se->vruntime))
899 return;
900
901 /*
902 * Minimally necessary key value to be last in the tree:
903 * Upon rescheduling, sched_class::put_prev_task() will place
904 * 'current' within the tree based on its new key value.
905 */
906 se->vruntime = rightmost->vruntime + 1;
907 }
908
909 /*
910 * wake_idle() will wake a task on an idle cpu if task->cpu is
911 * not idle and an idle cpu is available. The span of cpus to
912 * search starts with cpus closest then further out as needed,
913 * so we always favor a closer, idle cpu.
914 *
915 * Returns the CPU we should wake onto.
916 */
917 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
918 static int wake_idle(int cpu, struct task_struct *p)
919 {
920 cpumask_t tmp;
921 struct sched_domain *sd;
922 int i;
923
924 /*
925 * If it is idle, then it is the best cpu to run this task.
926 *
927 * This cpu is also the best, if it has more than one task already.
928 * Siblings must be also busy(in most cases) as they didn't already
929 * pickup the extra load from this cpu and hence we need not check
930 * sibling runqueue info. This will avoid the checks and cache miss
931 * penalities associated with that.
932 */
933 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
934 return cpu;
935
936 for_each_domain(cpu, sd) {
937 if (sd->flags & SD_WAKE_IDLE) {
938 cpus_and(tmp, sd->span, p->cpus_allowed);
939 for_each_cpu_mask(i, tmp) {
940 if (idle_cpu(i)) {
941 if (i != task_cpu(p)) {
942 schedstat_inc(p,
943 se.nr_wakeups_idle);
944 }
945 return i;
946 }
947 }
948 } else {
949 break;
950 }
951 }
952 return cpu;
953 }
954 #else
955 static inline int wake_idle(int cpu, struct task_struct *p)
956 {
957 return cpu;
958 }
959 #endif
960
961 #ifdef CONFIG_SMP
962 static int select_task_rq_fair(struct task_struct *p, int sync)
963 {
964 int cpu, this_cpu;
965 struct rq *rq;
966 struct sched_domain *sd, *this_sd = NULL;
967 int new_cpu;
968
969 cpu = task_cpu(p);
970 rq = task_rq(p);
971 this_cpu = smp_processor_id();
972 new_cpu = cpu;
973
974 if (cpu == this_cpu)
975 goto out_set_cpu;
976
977 for_each_domain(this_cpu, sd) {
978 if (cpu_isset(cpu, sd->span)) {
979 this_sd = sd;
980 break;
981 }
982 }
983
984 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
985 goto out_set_cpu;
986
987 /*
988 * Check for affine wakeup and passive balancing possibilities.
989 */
990 if (this_sd) {
991 int idx = this_sd->wake_idx;
992 unsigned int imbalance;
993 unsigned long load, this_load;
994
995 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
996
997 load = source_load(cpu, idx);
998 this_load = target_load(this_cpu, idx);
999
1000 new_cpu = this_cpu; /* Wake to this CPU if we can */
1001
1002 if (this_sd->flags & SD_WAKE_AFFINE) {
1003 unsigned long tl = this_load;
1004 unsigned long tl_per_task;
1005
1006 /*
1007 * Attract cache-cold tasks on sync wakeups:
1008 */
1009 if (sync && !task_hot(p, rq->clock, this_sd))
1010 goto out_set_cpu;
1011
1012 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1013 tl_per_task = cpu_avg_load_per_task(this_cpu);
1014
1015 /*
1016 * If sync wakeup then subtract the (maximum possible)
1017 * effect of the currently running task from the load
1018 * of the current CPU:
1019 */
1020 if (sync)
1021 tl -= current->se.load.weight;
1022
1023 if ((tl <= load &&
1024 tl + target_load(cpu, idx) <= tl_per_task) ||
1025 100*(tl + p->se.load.weight) <= imbalance*load) {
1026 /*
1027 * This domain has SD_WAKE_AFFINE and
1028 * p is cache cold in this domain, and
1029 * there is no bad imbalance.
1030 */
1031 schedstat_inc(this_sd, ttwu_move_affine);
1032 schedstat_inc(p, se.nr_wakeups_affine);
1033 goto out_set_cpu;
1034 }
1035 }
1036
1037 /*
1038 * Start passive balancing when half the imbalance_pct
1039 * limit is reached.
1040 */
1041 if (this_sd->flags & SD_WAKE_BALANCE) {
1042 if (imbalance*this_load <= 100*load) {
1043 schedstat_inc(this_sd, ttwu_move_balance);
1044 schedstat_inc(p, se.nr_wakeups_passive);
1045 goto out_set_cpu;
1046 }
1047 }
1048 }
1049
1050 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1051 out_set_cpu:
1052 return wake_idle(new_cpu, p);
1053 }
1054 #endif /* CONFIG_SMP */
1055
1056
1057 /*
1058 * Preempt the current task with a newly woken task if needed:
1059 */
1060 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1061 {
1062 struct task_struct *curr = rq->curr;
1063 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1064 struct sched_entity *se = &curr->se, *pse = &p->se;
1065 unsigned long gran;
1066
1067 if (unlikely(rt_prio(p->prio))) {
1068 update_rq_clock(rq);
1069 update_curr(cfs_rq);
1070 resched_task(curr);
1071 return;
1072 }
1073 /*
1074 * Batch tasks do not preempt (their preemption is driven by
1075 * the tick):
1076 */
1077 if (unlikely(p->policy == SCHED_BATCH))
1078 return;
1079
1080 if (!sched_feat(WAKEUP_PREEMPT))
1081 return;
1082
1083 while (!is_same_group(se, pse)) {
1084 se = parent_entity(se);
1085 pse = parent_entity(pse);
1086 }
1087
1088 gran = sysctl_sched_wakeup_granularity;
1089 /*
1090 * More easily preempt - nice tasks, while not making
1091 * it harder for + nice tasks.
1092 */
1093 if (unlikely(se->load.weight > NICE_0_LOAD))
1094 gran = calc_delta_fair(gran, &se->load);
1095
1096 if (pse->vruntime + gran < se->vruntime)
1097 resched_task(curr);
1098 }
1099
1100 static struct task_struct *pick_next_task_fair(struct rq *rq)
1101 {
1102 struct task_struct *p;
1103 struct cfs_rq *cfs_rq = &rq->cfs;
1104 struct sched_entity *se;
1105
1106 if (unlikely(!cfs_rq->nr_running))
1107 return NULL;
1108
1109 do {
1110 se = pick_next_entity(cfs_rq);
1111 cfs_rq = group_cfs_rq(se);
1112 } while (cfs_rq);
1113
1114 p = task_of(se);
1115 hrtick_start_fair(rq, p);
1116
1117 return p;
1118 }
1119
1120 /*
1121 * Account for a descheduled task:
1122 */
1123 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1124 {
1125 struct sched_entity *se = &prev->se;
1126 struct cfs_rq *cfs_rq;
1127
1128 for_each_sched_entity(se) {
1129 cfs_rq = cfs_rq_of(se);
1130 put_prev_entity(cfs_rq, se);
1131 }
1132 }
1133
1134 #ifdef CONFIG_SMP
1135 /**************************************************
1136 * Fair scheduling class load-balancing methods:
1137 */
1138
1139 /*
1140 * Load-balancing iterator. Note: while the runqueue stays locked
1141 * during the whole iteration, the current task might be
1142 * dequeued so the iterator has to be dequeue-safe. Here we
1143 * achieve that by always pre-iterating before returning
1144 * the current task:
1145 */
1146 static struct task_struct *
1147 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1148 {
1149 struct task_struct *p;
1150
1151 if (!curr)
1152 return NULL;
1153
1154 p = rb_entry(curr, struct task_struct, se.run_node);
1155 cfs_rq->rb_load_balance_curr = rb_next(curr);
1156
1157 return p;
1158 }
1159
1160 static struct task_struct *load_balance_start_fair(void *arg)
1161 {
1162 struct cfs_rq *cfs_rq = arg;
1163
1164 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1165 }
1166
1167 static struct task_struct *load_balance_next_fair(void *arg)
1168 {
1169 struct cfs_rq *cfs_rq = arg;
1170
1171 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1172 }
1173
1174 #ifdef CONFIG_FAIR_GROUP_SCHED
1175 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1176 {
1177 struct sched_entity *curr;
1178 struct task_struct *p;
1179
1180 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1181 return MAX_PRIO;
1182
1183 curr = cfs_rq->curr;
1184 if (!curr)
1185 curr = __pick_next_entity(cfs_rq);
1186
1187 p = task_of(curr);
1188
1189 return p->prio;
1190 }
1191 #endif
1192
1193 static unsigned long
1194 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1195 unsigned long max_load_move,
1196 struct sched_domain *sd, enum cpu_idle_type idle,
1197 int *all_pinned, int *this_best_prio)
1198 {
1199 struct cfs_rq *busy_cfs_rq;
1200 long rem_load_move = max_load_move;
1201 struct rq_iterator cfs_rq_iterator;
1202
1203 cfs_rq_iterator.start = load_balance_start_fair;
1204 cfs_rq_iterator.next = load_balance_next_fair;
1205
1206 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1207 #ifdef CONFIG_FAIR_GROUP_SCHED
1208 struct cfs_rq *this_cfs_rq;
1209 long imbalance;
1210 unsigned long maxload;
1211
1212 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1213
1214 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1215 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1216 if (imbalance <= 0)
1217 continue;
1218
1219 /* Don't pull more than imbalance/2 */
1220 imbalance /= 2;
1221 maxload = min(rem_load_move, imbalance);
1222
1223 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1224 #else
1225 # define maxload rem_load_move
1226 #endif
1227 /*
1228 * pass busy_cfs_rq argument into
1229 * load_balance_[start|next]_fair iterators
1230 */
1231 cfs_rq_iterator.arg = busy_cfs_rq;
1232 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1233 maxload, sd, idle, all_pinned,
1234 this_best_prio,
1235 &cfs_rq_iterator);
1236
1237 if (rem_load_move <= 0)
1238 break;
1239 }
1240
1241 return max_load_move - rem_load_move;
1242 }
1243
1244 static int
1245 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1246 struct sched_domain *sd, enum cpu_idle_type idle)
1247 {
1248 struct cfs_rq *busy_cfs_rq;
1249 struct rq_iterator cfs_rq_iterator;
1250
1251 cfs_rq_iterator.start = load_balance_start_fair;
1252 cfs_rq_iterator.next = load_balance_next_fair;
1253
1254 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1255 /*
1256 * pass busy_cfs_rq argument into
1257 * load_balance_[start|next]_fair iterators
1258 */
1259 cfs_rq_iterator.arg = busy_cfs_rq;
1260 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1261 &cfs_rq_iterator))
1262 return 1;
1263 }
1264
1265 return 0;
1266 }
1267 #endif
1268
1269 /*
1270 * scheduler tick hitting a task of our scheduling class:
1271 */
1272 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1273 {
1274 struct cfs_rq *cfs_rq;
1275 struct sched_entity *se = &curr->se;
1276
1277 for_each_sched_entity(se) {
1278 cfs_rq = cfs_rq_of(se);
1279 entity_tick(cfs_rq, se, queued);
1280 }
1281 }
1282
1283 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1284
1285 /*
1286 * Share the fairness runtime between parent and child, thus the
1287 * total amount of pressure for CPU stays equal - new tasks
1288 * get a chance to run but frequent forkers are not allowed to
1289 * monopolize the CPU. Note: the parent runqueue is locked,
1290 * the child is not running yet.
1291 */
1292 static void task_new_fair(struct rq *rq, struct task_struct *p)
1293 {
1294 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1295 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1296 int this_cpu = smp_processor_id();
1297
1298 sched_info_queued(p);
1299
1300 update_curr(cfs_rq);
1301 place_entity(cfs_rq, se, 1);
1302
1303 /* 'curr' will be NULL if the child belongs to a different group */
1304 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1305 curr && curr->vruntime < se->vruntime) {
1306 /*
1307 * Upon rescheduling, sched_class::put_prev_task() will place
1308 * 'current' within the tree based on its new key value.
1309 */
1310 swap(curr->vruntime, se->vruntime);
1311 }
1312
1313 enqueue_task_fair(rq, p, 0);
1314 resched_task(rq->curr);
1315 }
1316
1317 /*
1318 * Priority of the task has changed. Check to see if we preempt
1319 * the current task.
1320 */
1321 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1322 int oldprio, int running)
1323 {
1324 /*
1325 * Reschedule if we are currently running on this runqueue and
1326 * our priority decreased, or if we are not currently running on
1327 * this runqueue and our priority is higher than the current's
1328 */
1329 if (running) {
1330 if (p->prio > oldprio)
1331 resched_task(rq->curr);
1332 } else
1333 check_preempt_curr(rq, p);
1334 }
1335
1336 /*
1337 * We switched to the sched_fair class.
1338 */
1339 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1340 int running)
1341 {
1342 /*
1343 * We were most likely switched from sched_rt, so
1344 * kick off the schedule if running, otherwise just see
1345 * if we can still preempt the current task.
1346 */
1347 if (running)
1348 resched_task(rq->curr);
1349 else
1350 check_preempt_curr(rq, p);
1351 }
1352
1353 /* Account for a task changing its policy or group.
1354 *
1355 * This routine is mostly called to set cfs_rq->curr field when a task
1356 * migrates between groups/classes.
1357 */
1358 static void set_curr_task_fair(struct rq *rq)
1359 {
1360 struct sched_entity *se = &rq->curr->se;
1361
1362 for_each_sched_entity(se)
1363 set_next_entity(cfs_rq_of(se), se);
1364 }
1365
1366 #ifdef CONFIG_FAIR_GROUP_SCHED
1367 static void moved_group_fair(struct task_struct *p)
1368 {
1369 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1370
1371 update_curr(cfs_rq);
1372 place_entity(cfs_rq, &p->se, 1);
1373 }
1374 #endif
1375
1376 /*
1377 * All the scheduling class methods:
1378 */
1379 static const struct sched_class fair_sched_class = {
1380 .next = &idle_sched_class,
1381 .enqueue_task = enqueue_task_fair,
1382 .dequeue_task = dequeue_task_fair,
1383 .yield_task = yield_task_fair,
1384 #ifdef CONFIG_SMP
1385 .select_task_rq = select_task_rq_fair,
1386 #endif /* CONFIG_SMP */
1387
1388 .check_preempt_curr = check_preempt_wakeup,
1389
1390 .pick_next_task = pick_next_task_fair,
1391 .put_prev_task = put_prev_task_fair,
1392
1393 #ifdef CONFIG_SMP
1394 .load_balance = load_balance_fair,
1395 .move_one_task = move_one_task_fair,
1396 #endif
1397
1398 .set_curr_task = set_curr_task_fair,
1399 .task_tick = task_tick_fair,
1400 .task_new = task_new_fair,
1401
1402 .prio_changed = prio_changed_fair,
1403 .switched_to = switched_to_fair,
1404
1405 #ifdef CONFIG_FAIR_GROUP_SCHED
1406 .moved_group = moved_group_fair,
1407 #endif
1408 };
1409
1410 #ifdef CONFIG_SCHED_DEBUG
1411 static void print_cfs_stats(struct seq_file *m, int cpu)
1412 {
1413 struct cfs_rq *cfs_rq;
1414
1415 #ifdef CONFIG_FAIR_GROUP_SCHED
1416 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1417 #endif
1418 rcu_read_lock();
1419 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1420 print_cfs_rq(m, cpu, cfs_rq);
1421 rcu_read_unlock();
1422 }
1423 #endif