sched, cpuset: customize sched domains, core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
80 static inline struct task_struct *task_of(struct sched_entity *se)
81 {
82 return container_of(se, struct task_struct, se);
83 }
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101 {
102 return p->se.cfs_rq;
103 }
104
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107 {
108 return se->cfs_rq;
109 }
110
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113 {
114 return grp->my_q;
115 }
116
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121 {
122 return cfs_rq->tg->cfs_rq[this_cpu];
123 }
124
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129 /* Do the two (enqueued) entities belong to the same group ? */
130 static inline int
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
132 {
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137 }
138
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
140 {
141 return se->parent;
142 }
143
144 #else /* CONFIG_FAIR_GROUP_SCHED */
145
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147 {
148 return container_of(cfs_rq, struct rq, cfs);
149 }
150
151 #define entity_is_task(se) 1
152
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
155
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157 {
158 return &task_rq(p)->cfs;
159 }
160
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162 {
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167 }
168
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171 {
172 return NULL;
173 }
174
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176 {
177 return &cpu_rq(this_cpu)->cfs;
178 }
179
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183 static inline int
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
185 {
186 return 1;
187 }
188
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
190 {
191 return NULL;
192 }
193
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
195
196
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202 {
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208 }
209
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
211 {
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217 }
218
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220 {
221 return se->vruntime - cfs_rq->min_vruntime;
222 }
223
224 /*
225 * Enqueue an entity into the rb-tree:
226 */
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 {
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
257 if (leftmost) {
258 cfs_rq->rb_leftmost = &se->run_node;
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
269 }
270
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272 {
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
288
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
293 }
294
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296 {
297 return cfs_rq->rb_leftmost;
298 }
299
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301 {
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303 }
304
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306 {
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308
309 if (!last)
310 return NULL;
311
312 return rb_entry(last, struct sched_entity, run_node);
313 }
314
315 /**************************************************************
316 * Scheduling class statistics methods:
317 */
318
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323 {
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333 }
334 #endif
335
336 /*
337 * The idea is to set a period in which each task runs once.
338 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
341 *
342 * p = (nr <= nl) ? l : l*nr/nl
343 */
344 static u64 __sched_period(unsigned long nr_running)
345 {
346 u64 period = sysctl_sched_latency;
347 unsigned long nr_latency = sched_nr_latency;
348
349 if (unlikely(nr_running > nr_latency)) {
350 period = sysctl_sched_min_granularity;
351 period *= nr_running;
352 }
353
354 return period;
355 }
356
357 /*
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
360 *
361 * s = p*w/rw
362 */
363 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364 {
365 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
366 se->load.weight, &cfs_rq->load);
367 }
368
369 /*
370 * We calculate the vruntime slice.
371 *
372 * vs = s/w = p/rw
373 */
374 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
375 {
376 u64 vslice = __sched_period(nr_running);
377
378 vslice *= NICE_0_LOAD;
379 do_div(vslice, rq_weight);
380
381 return vslice;
382 }
383
384 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
385 {
386 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
387 cfs_rq->nr_running + 1);
388 }
389
390 /*
391 * Update the current task's runtime statistics. Skip current tasks that
392 * are not in our scheduling class.
393 */
394 static inline void
395 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
396 unsigned long delta_exec)
397 {
398 unsigned long delta_exec_weighted;
399
400 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
401
402 curr->sum_exec_runtime += delta_exec;
403 schedstat_add(cfs_rq, exec_clock, delta_exec);
404 delta_exec_weighted = delta_exec;
405 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
406 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
407 &curr->load);
408 }
409 curr->vruntime += delta_exec_weighted;
410 }
411
412 static void update_curr(struct cfs_rq *cfs_rq)
413 {
414 struct sched_entity *curr = cfs_rq->curr;
415 u64 now = rq_of(cfs_rq)->clock;
416 unsigned long delta_exec;
417
418 if (unlikely(!curr))
419 return;
420
421 /*
422 * Get the amount of time the current task was running
423 * since the last time we changed load (this cannot
424 * overflow on 32 bits):
425 */
426 delta_exec = (unsigned long)(now - curr->exec_start);
427
428 __update_curr(cfs_rq, curr, delta_exec);
429 curr->exec_start = now;
430
431 if (entity_is_task(curr)) {
432 struct task_struct *curtask = task_of(curr);
433
434 cpuacct_charge(curtask, delta_exec);
435 }
436 }
437
438 static inline void
439 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
440 {
441 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
442 }
443
444 /*
445 * Task is being enqueued - update stats:
446 */
447 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
448 {
449 /*
450 * Are we enqueueing a waiting task? (for current tasks
451 * a dequeue/enqueue event is a NOP)
452 */
453 if (se != cfs_rq->curr)
454 update_stats_wait_start(cfs_rq, se);
455 }
456
457 static void
458 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
459 {
460 schedstat_set(se->wait_max, max(se->wait_max,
461 rq_of(cfs_rq)->clock - se->wait_start));
462 schedstat_set(se->wait_count, se->wait_count + 1);
463 schedstat_set(se->wait_sum, se->wait_sum +
464 rq_of(cfs_rq)->clock - se->wait_start);
465 schedstat_set(se->wait_start, 0);
466 }
467
468 static inline void
469 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
470 {
471 /*
472 * Mark the end of the wait period if dequeueing a
473 * waiting task:
474 */
475 if (se != cfs_rq->curr)
476 update_stats_wait_end(cfs_rq, se);
477 }
478
479 /*
480 * We are picking a new current task - update its stats:
481 */
482 static inline void
483 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
484 {
485 /*
486 * We are starting a new run period:
487 */
488 se->exec_start = rq_of(cfs_rq)->clock;
489 }
490
491 /**************************************************
492 * Scheduling class queueing methods:
493 */
494
495 static void
496 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
497 {
498 update_load_add(&cfs_rq->load, se->load.weight);
499 cfs_rq->nr_running++;
500 se->on_rq = 1;
501 }
502
503 static void
504 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
505 {
506 update_load_sub(&cfs_rq->load, se->load.weight);
507 cfs_rq->nr_running--;
508 se->on_rq = 0;
509 }
510
511 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 {
513 #ifdef CONFIG_SCHEDSTATS
514 if (se->sleep_start) {
515 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
516 struct task_struct *tsk = task_of(se);
517
518 if ((s64)delta < 0)
519 delta = 0;
520
521 if (unlikely(delta > se->sleep_max))
522 se->sleep_max = delta;
523
524 se->sleep_start = 0;
525 se->sum_sleep_runtime += delta;
526
527 account_scheduler_latency(tsk, delta >> 10, 1);
528 }
529 if (se->block_start) {
530 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
531 struct task_struct *tsk = task_of(se);
532
533 if ((s64)delta < 0)
534 delta = 0;
535
536 if (unlikely(delta > se->block_max))
537 se->block_max = delta;
538
539 se->block_start = 0;
540 se->sum_sleep_runtime += delta;
541
542 /*
543 * Blocking time is in units of nanosecs, so shift by 20 to
544 * get a milliseconds-range estimation of the amount of
545 * time that the task spent sleeping:
546 */
547 if (unlikely(prof_on == SLEEP_PROFILING)) {
548
549 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
550 delta >> 20);
551 }
552 account_scheduler_latency(tsk, delta >> 10, 0);
553 }
554 #endif
555 }
556
557 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 #ifdef CONFIG_SCHED_DEBUG
560 s64 d = se->vruntime - cfs_rq->min_vruntime;
561
562 if (d < 0)
563 d = -d;
564
565 if (d > 3*sysctl_sched_latency)
566 schedstat_inc(cfs_rq, nr_spread_over);
567 #endif
568 }
569
570 static void
571 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
572 {
573 u64 vruntime;
574
575 if (first_fair(cfs_rq)) {
576 vruntime = min_vruntime(cfs_rq->min_vruntime,
577 __pick_next_entity(cfs_rq)->vruntime);
578 } else
579 vruntime = cfs_rq->min_vruntime;
580
581 /*
582 * The 'current' period is already promised to the current tasks,
583 * however the extra weight of the new task will slow them down a
584 * little, place the new task so that it fits in the slot that
585 * stays open at the end.
586 */
587 if (initial && sched_feat(START_DEBIT))
588 vruntime += sched_vslice_add(cfs_rq, se);
589
590 if (!initial) {
591 /* sleeps upto a single latency don't count. */
592 if (sched_feat(NEW_FAIR_SLEEPERS)) {
593 if (sched_feat(NORMALIZED_SLEEPER))
594 vruntime -= calc_delta_fair(sysctl_sched_latency,
595 &cfs_rq->load);
596 else
597 vruntime -= sysctl_sched_latency;
598 }
599
600 /* ensure we never gain time by being placed backwards. */
601 vruntime = max_vruntime(se->vruntime, vruntime);
602 }
603
604 se->vruntime = vruntime;
605 }
606
607 static void
608 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
609 {
610 /*
611 * Update run-time statistics of the 'current'.
612 */
613 update_curr(cfs_rq);
614
615 if (wakeup) {
616 place_entity(cfs_rq, se, 0);
617 enqueue_sleeper(cfs_rq, se);
618 }
619
620 update_stats_enqueue(cfs_rq, se);
621 check_spread(cfs_rq, se);
622 if (se != cfs_rq->curr)
623 __enqueue_entity(cfs_rq, se);
624 account_entity_enqueue(cfs_rq, se);
625 }
626
627 static void update_avg(u64 *avg, u64 sample)
628 {
629 s64 diff = sample - *avg;
630 *avg += diff >> 3;
631 }
632
633 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 if (!se->last_wakeup)
636 return;
637
638 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
639 se->last_wakeup = 0;
640 }
641
642 static void
643 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
644 {
645 /*
646 * Update run-time statistics of the 'current'.
647 */
648 update_curr(cfs_rq);
649
650 update_stats_dequeue(cfs_rq, se);
651 if (sleep) {
652 update_avg_stats(cfs_rq, se);
653 #ifdef CONFIG_SCHEDSTATS
654 if (entity_is_task(se)) {
655 struct task_struct *tsk = task_of(se);
656
657 if (tsk->state & TASK_INTERRUPTIBLE)
658 se->sleep_start = rq_of(cfs_rq)->clock;
659 if (tsk->state & TASK_UNINTERRUPTIBLE)
660 se->block_start = rq_of(cfs_rq)->clock;
661 }
662 #endif
663 }
664
665 if (se != cfs_rq->curr)
666 __dequeue_entity(cfs_rq, se);
667 account_entity_dequeue(cfs_rq, se);
668 }
669
670 /*
671 * Preempt the current task with a newly woken task if needed:
672 */
673 static void
674 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
675 {
676 unsigned long ideal_runtime, delta_exec;
677
678 ideal_runtime = sched_slice(cfs_rq, curr);
679 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
680 if (delta_exec > ideal_runtime)
681 resched_task(rq_of(cfs_rq)->curr);
682 }
683
684 static void
685 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 /* 'current' is not kept within the tree. */
688 if (se->on_rq) {
689 /*
690 * Any task has to be enqueued before it get to execute on
691 * a CPU. So account for the time it spent waiting on the
692 * runqueue.
693 */
694 update_stats_wait_end(cfs_rq, se);
695 __dequeue_entity(cfs_rq, se);
696 }
697
698 update_stats_curr_start(cfs_rq, se);
699 cfs_rq->curr = se;
700 #ifdef CONFIG_SCHEDSTATS
701 /*
702 * Track our maximum slice length, if the CPU's load is at
703 * least twice that of our own weight (i.e. dont track it
704 * when there are only lesser-weight tasks around):
705 */
706 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
707 se->slice_max = max(se->slice_max,
708 se->sum_exec_runtime - se->prev_sum_exec_runtime);
709 }
710 #endif
711 se->prev_sum_exec_runtime = se->sum_exec_runtime;
712 }
713
714 static int
715 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
716
717 static struct sched_entity *
718 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 if (!cfs_rq->next)
721 return se;
722
723 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
724 return se;
725
726 return cfs_rq->next;
727 }
728
729 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
730 {
731 struct sched_entity *se = NULL;
732
733 if (first_fair(cfs_rq)) {
734 se = __pick_next_entity(cfs_rq);
735 se = pick_next(cfs_rq, se);
736 set_next_entity(cfs_rq, se);
737 }
738
739 return se;
740 }
741
742 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
743 {
744 /*
745 * If still on the runqueue then deactivate_task()
746 * was not called and update_curr() has to be done:
747 */
748 if (prev->on_rq)
749 update_curr(cfs_rq);
750
751 check_spread(cfs_rq, prev);
752 if (prev->on_rq) {
753 update_stats_wait_start(cfs_rq, prev);
754 /* Put 'current' back into the tree. */
755 __enqueue_entity(cfs_rq, prev);
756 }
757 cfs_rq->curr = NULL;
758 }
759
760 static void
761 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
762 {
763 /*
764 * Update run-time statistics of the 'current'.
765 */
766 update_curr(cfs_rq);
767
768 #ifdef CONFIG_SCHED_HRTICK
769 /*
770 * queued ticks are scheduled to match the slice, so don't bother
771 * validating it and just reschedule.
772 */
773 if (queued)
774 return resched_task(rq_of(cfs_rq)->curr);
775 /*
776 * don't let the period tick interfere with the hrtick preemption
777 */
778 if (!sched_feat(DOUBLE_TICK) &&
779 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
780 return;
781 #endif
782
783 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
784 check_preempt_tick(cfs_rq, curr);
785 }
786
787 /**************************************************
788 * CFS operations on tasks:
789 */
790
791 #ifdef CONFIG_SCHED_HRTICK
792 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
793 {
794 int requeue = rq->curr == p;
795 struct sched_entity *se = &p->se;
796 struct cfs_rq *cfs_rq = cfs_rq_of(se);
797
798 WARN_ON(task_rq(p) != rq);
799
800 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
801 u64 slice = sched_slice(cfs_rq, se);
802 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
803 s64 delta = slice - ran;
804
805 if (delta < 0) {
806 if (rq->curr == p)
807 resched_task(p);
808 return;
809 }
810
811 /*
812 * Don't schedule slices shorter than 10000ns, that just
813 * doesn't make sense. Rely on vruntime for fairness.
814 */
815 if (!requeue)
816 delta = max(10000LL, delta);
817
818 hrtick_start(rq, delta, requeue);
819 }
820 }
821 #else
822 static inline void
823 hrtick_start_fair(struct rq *rq, struct task_struct *p)
824 {
825 }
826 #endif
827
828 /*
829 * The enqueue_task method is called before nr_running is
830 * increased. Here we update the fair scheduling stats and
831 * then put the task into the rbtree:
832 */
833 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
834 {
835 struct cfs_rq *cfs_rq;
836 struct sched_entity *se = &p->se;
837
838 for_each_sched_entity(se) {
839 if (se->on_rq)
840 break;
841 cfs_rq = cfs_rq_of(se);
842 enqueue_entity(cfs_rq, se, wakeup);
843 wakeup = 1;
844 }
845
846 hrtick_start_fair(rq, rq->curr);
847 }
848
849 /*
850 * The dequeue_task method is called before nr_running is
851 * decreased. We remove the task from the rbtree and
852 * update the fair scheduling stats:
853 */
854 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
855 {
856 struct cfs_rq *cfs_rq;
857 struct sched_entity *se = &p->se;
858
859 for_each_sched_entity(se) {
860 cfs_rq = cfs_rq_of(se);
861 dequeue_entity(cfs_rq, se, sleep);
862 /* Don't dequeue parent if it has other entities besides us */
863 if (cfs_rq->load.weight)
864 break;
865 sleep = 1;
866 }
867
868 hrtick_start_fair(rq, rq->curr);
869 }
870
871 /*
872 * sched_yield() support is very simple - we dequeue and enqueue.
873 *
874 * If compat_yield is turned on then we requeue to the end of the tree.
875 */
876 static void yield_task_fair(struct rq *rq)
877 {
878 struct task_struct *curr = rq->curr;
879 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
880 struct sched_entity *rightmost, *se = &curr->se;
881
882 /*
883 * Are we the only task in the tree?
884 */
885 if (unlikely(cfs_rq->nr_running == 1))
886 return;
887
888 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
889 __update_rq_clock(rq);
890 /*
891 * Update run-time statistics of the 'current'.
892 */
893 update_curr(cfs_rq);
894
895 return;
896 }
897 /*
898 * Find the rightmost entry in the rbtree:
899 */
900 rightmost = __pick_last_entity(cfs_rq);
901 /*
902 * Already in the rightmost position?
903 */
904 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
905 return;
906
907 /*
908 * Minimally necessary key value to be last in the tree:
909 * Upon rescheduling, sched_class::put_prev_task() will place
910 * 'current' within the tree based on its new key value.
911 */
912 se->vruntime = rightmost->vruntime + 1;
913 }
914
915 /*
916 * wake_idle() will wake a task on an idle cpu if task->cpu is
917 * not idle and an idle cpu is available. The span of cpus to
918 * search starts with cpus closest then further out as needed,
919 * so we always favor a closer, idle cpu.
920 *
921 * Returns the CPU we should wake onto.
922 */
923 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
924 static int wake_idle(int cpu, struct task_struct *p)
925 {
926 cpumask_t tmp;
927 struct sched_domain *sd;
928 int i;
929
930 /*
931 * If it is idle, then it is the best cpu to run this task.
932 *
933 * This cpu is also the best, if it has more than one task already.
934 * Siblings must be also busy(in most cases) as they didn't already
935 * pickup the extra load from this cpu and hence we need not check
936 * sibling runqueue info. This will avoid the checks and cache miss
937 * penalities associated with that.
938 */
939 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
940 return cpu;
941
942 for_each_domain(cpu, sd) {
943 if ((sd->flags & SD_WAKE_IDLE)
944 || ((sd->flags & SD_WAKE_IDLE_FAR)
945 && !task_hot(p, task_rq(p)->clock, sd))) {
946 cpus_and(tmp, sd->span, p->cpus_allowed);
947 for_each_cpu_mask(i, tmp) {
948 if (idle_cpu(i)) {
949 if (i != task_cpu(p)) {
950 schedstat_inc(p,
951 se.nr_wakeups_idle);
952 }
953 return i;
954 }
955 }
956 } else {
957 break;
958 }
959 }
960 return cpu;
961 }
962 #else
963 static inline int wake_idle(int cpu, struct task_struct *p)
964 {
965 return cpu;
966 }
967 #endif
968
969 #ifdef CONFIG_SMP
970
971 static const struct sched_class fair_sched_class;
972
973 static int
974 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
975 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
976 int idx, unsigned long load, unsigned long this_load,
977 unsigned int imbalance)
978 {
979 struct task_struct *curr = this_rq->curr;
980 unsigned long tl = this_load;
981 unsigned long tl_per_task;
982
983 if (!(this_sd->flags & SD_WAKE_AFFINE))
984 return 0;
985
986 /*
987 * If the currently running task will sleep within
988 * a reasonable amount of time then attract this newly
989 * woken task:
990 */
991 if (sync && curr->sched_class == &fair_sched_class) {
992 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
993 p->se.avg_overlap < sysctl_sched_migration_cost)
994 return 1;
995 }
996
997 schedstat_inc(p, se.nr_wakeups_affine_attempts);
998 tl_per_task = cpu_avg_load_per_task(this_cpu);
999
1000 /*
1001 * If sync wakeup then subtract the (maximum possible)
1002 * effect of the currently running task from the load
1003 * of the current CPU:
1004 */
1005 if (sync)
1006 tl -= current->se.load.weight;
1007
1008 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1009 100*(tl + p->se.load.weight) <= imbalance*load) {
1010 /*
1011 * This domain has SD_WAKE_AFFINE and
1012 * p is cache cold in this domain, and
1013 * there is no bad imbalance.
1014 */
1015 schedstat_inc(this_sd, ttwu_move_affine);
1016 schedstat_inc(p, se.nr_wakeups_affine);
1017
1018 return 1;
1019 }
1020 return 0;
1021 }
1022
1023 static int select_task_rq_fair(struct task_struct *p, int sync)
1024 {
1025 struct sched_domain *sd, *this_sd = NULL;
1026 int prev_cpu, this_cpu, new_cpu;
1027 unsigned long load, this_load;
1028 struct rq *rq, *this_rq;
1029 unsigned int imbalance;
1030 int idx;
1031
1032 prev_cpu = task_cpu(p);
1033 rq = task_rq(p);
1034 this_cpu = smp_processor_id();
1035 this_rq = cpu_rq(this_cpu);
1036 new_cpu = prev_cpu;
1037
1038 /*
1039 * 'this_sd' is the first domain that both
1040 * this_cpu and prev_cpu are present in:
1041 */
1042 for_each_domain(this_cpu, sd) {
1043 if (cpu_isset(prev_cpu, sd->span)) {
1044 this_sd = sd;
1045 break;
1046 }
1047 }
1048
1049 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1050 goto out;
1051
1052 /*
1053 * Check for affine wakeup and passive balancing possibilities.
1054 */
1055 if (!this_sd)
1056 goto out;
1057
1058 idx = this_sd->wake_idx;
1059
1060 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1061
1062 load = source_load(prev_cpu, idx);
1063 this_load = target_load(this_cpu, idx);
1064
1065 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1066 load, this_load, imbalance))
1067 return this_cpu;
1068
1069 if (prev_cpu == this_cpu)
1070 goto out;
1071
1072 /*
1073 * Start passive balancing when half the imbalance_pct
1074 * limit is reached.
1075 */
1076 if (this_sd->flags & SD_WAKE_BALANCE) {
1077 if (imbalance*this_load <= 100*load) {
1078 schedstat_inc(this_sd, ttwu_move_balance);
1079 schedstat_inc(p, se.nr_wakeups_passive);
1080 return this_cpu;
1081 }
1082 }
1083
1084 out:
1085 return wake_idle(new_cpu, p);
1086 }
1087 #endif /* CONFIG_SMP */
1088
1089 static unsigned long wakeup_gran(struct sched_entity *se)
1090 {
1091 unsigned long gran = sysctl_sched_wakeup_granularity;
1092
1093 /*
1094 * More easily preempt - nice tasks, while not making
1095 * it harder for + nice tasks.
1096 */
1097 if (unlikely(se->load.weight > NICE_0_LOAD))
1098 gran = calc_delta_fair(gran, &se->load);
1099
1100 return gran;
1101 }
1102
1103 /*
1104 * Should 'se' preempt 'curr'.
1105 *
1106 * |s1
1107 * |s2
1108 * |s3
1109 * g
1110 * |<--->|c
1111 *
1112 * w(c, s1) = -1
1113 * w(c, s2) = 0
1114 * w(c, s3) = 1
1115 *
1116 */
1117 static int
1118 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1119 {
1120 s64 gran, vdiff = curr->vruntime - se->vruntime;
1121
1122 if (vdiff < 0)
1123 return -1;
1124
1125 gran = wakeup_gran(curr);
1126 if (vdiff > gran)
1127 return 1;
1128
1129 return 0;
1130 }
1131
1132 /* return depth at which a sched entity is present in the hierarchy */
1133 static inline int depth_se(struct sched_entity *se)
1134 {
1135 int depth = 0;
1136
1137 for_each_sched_entity(se)
1138 depth++;
1139
1140 return depth;
1141 }
1142
1143 /*
1144 * Preempt the current task with a newly woken task if needed:
1145 */
1146 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1147 {
1148 struct task_struct *curr = rq->curr;
1149 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1150 struct sched_entity *se = &curr->se, *pse = &p->se;
1151 int se_depth, pse_depth;
1152
1153 if (unlikely(rt_prio(p->prio))) {
1154 update_rq_clock(rq);
1155 update_curr(cfs_rq);
1156 resched_task(curr);
1157 return;
1158 }
1159
1160 se->last_wakeup = se->sum_exec_runtime;
1161 if (unlikely(se == pse))
1162 return;
1163
1164 cfs_rq_of(pse)->next = pse;
1165
1166 /*
1167 * Batch tasks do not preempt (their preemption is driven by
1168 * the tick):
1169 */
1170 if (unlikely(p->policy == SCHED_BATCH))
1171 return;
1172
1173 if (!sched_feat(WAKEUP_PREEMPT))
1174 return;
1175
1176 /*
1177 * preemption test can be made between sibling entities who are in the
1178 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1179 * both tasks until we find their ancestors who are siblings of common
1180 * parent.
1181 */
1182
1183 /* First walk up until both entities are at same depth */
1184 se_depth = depth_se(se);
1185 pse_depth = depth_se(pse);
1186
1187 while (se_depth > pse_depth) {
1188 se_depth--;
1189 se = parent_entity(se);
1190 }
1191
1192 while (pse_depth > se_depth) {
1193 pse_depth--;
1194 pse = parent_entity(pse);
1195 }
1196
1197 while (!is_same_group(se, pse)) {
1198 se = parent_entity(se);
1199 pse = parent_entity(pse);
1200 }
1201
1202 if (wakeup_preempt_entity(se, pse) == 1)
1203 resched_task(curr);
1204 }
1205
1206 static struct task_struct *pick_next_task_fair(struct rq *rq)
1207 {
1208 struct task_struct *p;
1209 struct cfs_rq *cfs_rq = &rq->cfs;
1210 struct sched_entity *se;
1211
1212 if (unlikely(!cfs_rq->nr_running))
1213 return NULL;
1214
1215 do {
1216 se = pick_next_entity(cfs_rq);
1217 cfs_rq = group_cfs_rq(se);
1218 } while (cfs_rq);
1219
1220 p = task_of(se);
1221 hrtick_start_fair(rq, p);
1222
1223 return p;
1224 }
1225
1226 /*
1227 * Account for a descheduled task:
1228 */
1229 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1230 {
1231 struct sched_entity *se = &prev->se;
1232 struct cfs_rq *cfs_rq;
1233
1234 for_each_sched_entity(se) {
1235 cfs_rq = cfs_rq_of(se);
1236 put_prev_entity(cfs_rq, se);
1237 }
1238 }
1239
1240 #ifdef CONFIG_SMP
1241 /**************************************************
1242 * Fair scheduling class load-balancing methods:
1243 */
1244
1245 /*
1246 * Load-balancing iterator. Note: while the runqueue stays locked
1247 * during the whole iteration, the current task might be
1248 * dequeued so the iterator has to be dequeue-safe. Here we
1249 * achieve that by always pre-iterating before returning
1250 * the current task:
1251 */
1252 static struct task_struct *
1253 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1254 {
1255 struct task_struct *p = NULL;
1256 struct sched_entity *se;
1257
1258 if (!curr)
1259 return NULL;
1260
1261 /* Skip over entities that are not tasks */
1262 do {
1263 se = rb_entry(curr, struct sched_entity, run_node);
1264 curr = rb_next(curr);
1265 } while (curr && !entity_is_task(se));
1266
1267 cfs_rq->rb_load_balance_curr = curr;
1268
1269 if (entity_is_task(se))
1270 p = task_of(se);
1271
1272 return p;
1273 }
1274
1275 static struct task_struct *load_balance_start_fair(void *arg)
1276 {
1277 struct cfs_rq *cfs_rq = arg;
1278
1279 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1280 }
1281
1282 static struct task_struct *load_balance_next_fair(void *arg)
1283 {
1284 struct cfs_rq *cfs_rq = arg;
1285
1286 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1287 }
1288
1289 #ifdef CONFIG_FAIR_GROUP_SCHED
1290 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1291 {
1292 struct sched_entity *curr;
1293 struct task_struct *p;
1294
1295 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1296 return MAX_PRIO;
1297
1298 curr = cfs_rq->curr;
1299 if (!curr)
1300 curr = __pick_next_entity(cfs_rq);
1301
1302 p = task_of(curr);
1303
1304 return p->prio;
1305 }
1306 #endif
1307
1308 static unsigned long
1309 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1310 unsigned long max_load_move,
1311 struct sched_domain *sd, enum cpu_idle_type idle,
1312 int *all_pinned, int *this_best_prio)
1313 {
1314 struct cfs_rq *busy_cfs_rq;
1315 long rem_load_move = max_load_move;
1316 struct rq_iterator cfs_rq_iterator;
1317
1318 cfs_rq_iterator.start = load_balance_start_fair;
1319 cfs_rq_iterator.next = load_balance_next_fair;
1320
1321 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1322 #ifdef CONFIG_FAIR_GROUP_SCHED
1323 struct cfs_rq *this_cfs_rq;
1324 long imbalance;
1325 unsigned long maxload;
1326
1327 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1328
1329 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1330 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1331 if (imbalance <= 0)
1332 continue;
1333
1334 /* Don't pull more than imbalance/2 */
1335 imbalance /= 2;
1336 maxload = min(rem_load_move, imbalance);
1337
1338 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1339 #else
1340 # define maxload rem_load_move
1341 #endif
1342 /*
1343 * pass busy_cfs_rq argument into
1344 * load_balance_[start|next]_fair iterators
1345 */
1346 cfs_rq_iterator.arg = busy_cfs_rq;
1347 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1348 maxload, sd, idle, all_pinned,
1349 this_best_prio,
1350 &cfs_rq_iterator);
1351
1352 if (rem_load_move <= 0)
1353 break;
1354 }
1355
1356 return max_load_move - rem_load_move;
1357 }
1358
1359 static int
1360 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1361 struct sched_domain *sd, enum cpu_idle_type idle)
1362 {
1363 struct cfs_rq *busy_cfs_rq;
1364 struct rq_iterator cfs_rq_iterator;
1365
1366 cfs_rq_iterator.start = load_balance_start_fair;
1367 cfs_rq_iterator.next = load_balance_next_fair;
1368
1369 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1370 /*
1371 * pass busy_cfs_rq argument into
1372 * load_balance_[start|next]_fair iterators
1373 */
1374 cfs_rq_iterator.arg = busy_cfs_rq;
1375 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1376 &cfs_rq_iterator))
1377 return 1;
1378 }
1379
1380 return 0;
1381 }
1382 #endif
1383
1384 /*
1385 * scheduler tick hitting a task of our scheduling class:
1386 */
1387 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1388 {
1389 struct cfs_rq *cfs_rq;
1390 struct sched_entity *se = &curr->se;
1391
1392 for_each_sched_entity(se) {
1393 cfs_rq = cfs_rq_of(se);
1394 entity_tick(cfs_rq, se, queued);
1395 }
1396 }
1397
1398 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1399
1400 /*
1401 * Share the fairness runtime between parent and child, thus the
1402 * total amount of pressure for CPU stays equal - new tasks
1403 * get a chance to run but frequent forkers are not allowed to
1404 * monopolize the CPU. Note: the parent runqueue is locked,
1405 * the child is not running yet.
1406 */
1407 static void task_new_fair(struct rq *rq, struct task_struct *p)
1408 {
1409 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1410 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1411 int this_cpu = smp_processor_id();
1412
1413 sched_info_queued(p);
1414
1415 update_curr(cfs_rq);
1416 place_entity(cfs_rq, se, 1);
1417
1418 /* 'curr' will be NULL if the child belongs to a different group */
1419 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1420 curr && curr->vruntime < se->vruntime) {
1421 /*
1422 * Upon rescheduling, sched_class::put_prev_task() will place
1423 * 'current' within the tree based on its new key value.
1424 */
1425 swap(curr->vruntime, se->vruntime);
1426 }
1427
1428 enqueue_task_fair(rq, p, 0);
1429 resched_task(rq->curr);
1430 }
1431
1432 /*
1433 * Priority of the task has changed. Check to see if we preempt
1434 * the current task.
1435 */
1436 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1437 int oldprio, int running)
1438 {
1439 /*
1440 * Reschedule if we are currently running on this runqueue and
1441 * our priority decreased, or if we are not currently running on
1442 * this runqueue and our priority is higher than the current's
1443 */
1444 if (running) {
1445 if (p->prio > oldprio)
1446 resched_task(rq->curr);
1447 } else
1448 check_preempt_curr(rq, p);
1449 }
1450
1451 /*
1452 * We switched to the sched_fair class.
1453 */
1454 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1455 int running)
1456 {
1457 /*
1458 * We were most likely switched from sched_rt, so
1459 * kick off the schedule if running, otherwise just see
1460 * if we can still preempt the current task.
1461 */
1462 if (running)
1463 resched_task(rq->curr);
1464 else
1465 check_preempt_curr(rq, p);
1466 }
1467
1468 /* Account for a task changing its policy or group.
1469 *
1470 * This routine is mostly called to set cfs_rq->curr field when a task
1471 * migrates between groups/classes.
1472 */
1473 static void set_curr_task_fair(struct rq *rq)
1474 {
1475 struct sched_entity *se = &rq->curr->se;
1476
1477 for_each_sched_entity(se)
1478 set_next_entity(cfs_rq_of(se), se);
1479 }
1480
1481 #ifdef CONFIG_FAIR_GROUP_SCHED
1482 static void moved_group_fair(struct task_struct *p)
1483 {
1484 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1485
1486 update_curr(cfs_rq);
1487 place_entity(cfs_rq, &p->se, 1);
1488 }
1489 #endif
1490
1491 /*
1492 * All the scheduling class methods:
1493 */
1494 static const struct sched_class fair_sched_class = {
1495 .next = &idle_sched_class,
1496 .enqueue_task = enqueue_task_fair,
1497 .dequeue_task = dequeue_task_fair,
1498 .yield_task = yield_task_fair,
1499 #ifdef CONFIG_SMP
1500 .select_task_rq = select_task_rq_fair,
1501 #endif /* CONFIG_SMP */
1502
1503 .check_preempt_curr = check_preempt_wakeup,
1504
1505 .pick_next_task = pick_next_task_fair,
1506 .put_prev_task = put_prev_task_fair,
1507
1508 #ifdef CONFIG_SMP
1509 .load_balance = load_balance_fair,
1510 .move_one_task = move_one_task_fair,
1511 #endif
1512
1513 .set_curr_task = set_curr_task_fair,
1514 .task_tick = task_tick_fair,
1515 .task_new = task_new_fair,
1516
1517 .prio_changed = prio_changed_fair,
1518 .switched_to = switched_to_fair,
1519
1520 #ifdef CONFIG_FAIR_GROUP_SCHED
1521 .moved_group = moved_group_fair,
1522 #endif
1523 };
1524
1525 #ifdef CONFIG_SCHED_DEBUG
1526 static void print_cfs_stats(struct seq_file *m, int cpu)
1527 {
1528 struct cfs_rq *cfs_rq;
1529
1530 rcu_read_lock();
1531 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1532 print_cfs_rq(m, cpu, cfs_rq);
1533 rcu_read_unlock();
1534 }
1535 #endif