sched: old sleeper bonus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
80 #ifdef CONFIG_FAIR_GROUP_SCHED
81
82 /* cpu runqueue to which this cfs_rq is attached */
83 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
84 {
85 return cfs_rq->rq;
86 }
87
88 /* An entity is a task if it doesn't "own" a runqueue */
89 #define entity_is_task(se) (!se->my_q)
90
91 #else /* CONFIG_FAIR_GROUP_SCHED */
92
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return container_of(cfs_rq, struct rq, cfs);
96 }
97
98 #define entity_is_task(se) 1
99
100 #endif /* CONFIG_FAIR_GROUP_SCHED */
101
102 static inline struct task_struct *task_of(struct sched_entity *se)
103 {
104 return container_of(se, struct task_struct, se);
105 }
106
107
108 /**************************************************************
109 * Scheduling class tree data structure manipulation methods:
110 */
111
112 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
113 {
114 s64 delta = (s64)(vruntime - min_vruntime);
115 if (delta > 0)
116 min_vruntime = vruntime;
117
118 return min_vruntime;
119 }
120
121 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
122 {
123 s64 delta = (s64)(vruntime - min_vruntime);
124 if (delta < 0)
125 min_vruntime = vruntime;
126
127 return min_vruntime;
128 }
129
130 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
131 {
132 return se->vruntime - cfs_rq->min_vruntime;
133 }
134
135 /*
136 * Enqueue an entity into the rb-tree:
137 */
138 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
141 struct rb_node *parent = NULL;
142 struct sched_entity *entry;
143 s64 key = entity_key(cfs_rq, se);
144 int leftmost = 1;
145
146 /*
147 * Find the right place in the rbtree:
148 */
149 while (*link) {
150 parent = *link;
151 entry = rb_entry(parent, struct sched_entity, run_node);
152 /*
153 * We dont care about collisions. Nodes with
154 * the same key stay together.
155 */
156 if (key < entity_key(cfs_rq, entry)) {
157 link = &parent->rb_left;
158 } else {
159 link = &parent->rb_right;
160 leftmost = 0;
161 }
162 }
163
164 /*
165 * Maintain a cache of leftmost tree entries (it is frequently
166 * used):
167 */
168 if (leftmost) {
169 cfs_rq->rb_leftmost = &se->run_node;
170 /*
171 * maintain cfs_rq->min_vruntime to be a monotonic increasing
172 * value tracking the leftmost vruntime in the tree.
173 */
174 cfs_rq->min_vruntime =
175 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
176 }
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
180 }
181
182 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
183 {
184 if (cfs_rq->rb_leftmost == &se->run_node) {
185 struct rb_node *next_node;
186 struct sched_entity *next;
187
188 next_node = rb_next(&se->run_node);
189 cfs_rq->rb_leftmost = next_node;
190
191 if (next_node) {
192 next = rb_entry(next_node,
193 struct sched_entity, run_node);
194 cfs_rq->min_vruntime =
195 max_vruntime(cfs_rq->min_vruntime,
196 next->vruntime);
197 }
198 }
199
200 if (cfs_rq->next == se)
201 cfs_rq->next = NULL;
202
203 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
204 }
205
206 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
207 {
208 return cfs_rq->rb_leftmost;
209 }
210
211 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
212 {
213 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
214 }
215
216 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
217 {
218 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
219
220 if (!last)
221 return NULL;
222
223 return rb_entry(last, struct sched_entity, run_node);
224 }
225
226 /**************************************************************
227 * Scheduling class statistics methods:
228 */
229
230 #ifdef CONFIG_SCHED_DEBUG
231 int sched_nr_latency_handler(struct ctl_table *table, int write,
232 struct file *filp, void __user *buffer, size_t *lenp,
233 loff_t *ppos)
234 {
235 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
236
237 if (ret || !write)
238 return ret;
239
240 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
241 sysctl_sched_min_granularity);
242
243 return 0;
244 }
245 #endif
246
247 /*
248 * The idea is to set a period in which each task runs once.
249 *
250 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
251 * this period because otherwise the slices get too small.
252 *
253 * p = (nr <= nl) ? l : l*nr/nl
254 */
255 static u64 __sched_period(unsigned long nr_running)
256 {
257 u64 period = sysctl_sched_latency;
258 unsigned long nr_latency = sched_nr_latency;
259
260 if (unlikely(nr_running > nr_latency)) {
261 period = sysctl_sched_min_granularity;
262 period *= nr_running;
263 }
264
265 return period;
266 }
267
268 /*
269 * We calculate the wall-time slice from the period by taking a part
270 * proportional to the weight.
271 *
272 * s = p*w/rw
273 */
274 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
275 {
276 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
277 se->load.weight, &cfs_rq->load);
278 }
279
280 /*
281 * We calculate the vruntime slice.
282 *
283 * vs = s/w = p/rw
284 */
285 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
286 {
287 u64 vslice = __sched_period(nr_running);
288
289 vslice *= NICE_0_LOAD;
290 do_div(vslice, rq_weight);
291
292 return vslice;
293 }
294
295 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
296 {
297 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
298 cfs_rq->nr_running + 1);
299 }
300
301 /*
302 * Update the current task's runtime statistics. Skip current tasks that
303 * are not in our scheduling class.
304 */
305 static inline void
306 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
307 unsigned long delta_exec)
308 {
309 unsigned long delta_exec_weighted;
310
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
319 }
320 curr->vruntime += delta_exec_weighted;
321 }
322
323 static void update_curr(struct cfs_rq *cfs_rq)
324 {
325 struct sched_entity *curr = cfs_rq->curr;
326 u64 now = rq_of(cfs_rq)->clock;
327 unsigned long delta_exec;
328
329 if (unlikely(!curr))
330 return;
331
332 /*
333 * Get the amount of time the current task was running
334 * since the last time we changed load (this cannot
335 * overflow on 32 bits):
336 */
337 delta_exec = (unsigned long)(now - curr->exec_start);
338
339 __update_curr(cfs_rq, curr, delta_exec);
340 curr->exec_start = now;
341
342 if (entity_is_task(curr)) {
343 struct task_struct *curtask = task_of(curr);
344
345 cpuacct_charge(curtask, delta_exec);
346 }
347 }
348
349 static inline void
350 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 {
352 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
353 }
354
355 /*
356 * Task is being enqueued - update stats:
357 */
358 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
359 {
360 /*
361 * Are we enqueueing a waiting task? (for current tasks
362 * a dequeue/enqueue event is a NOP)
363 */
364 if (se != cfs_rq->curr)
365 update_stats_wait_start(cfs_rq, se);
366 }
367
368 static void
369 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 {
371 schedstat_set(se->wait_max, max(se->wait_max,
372 rq_of(cfs_rq)->clock - se->wait_start));
373 schedstat_set(se->wait_count, se->wait_count + 1);
374 schedstat_set(se->wait_sum, se->wait_sum +
375 rq_of(cfs_rq)->clock - se->wait_start);
376 schedstat_set(se->wait_start, 0);
377 }
378
379 static inline void
380 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 {
382 /*
383 * Mark the end of the wait period if dequeueing a
384 * waiting task:
385 */
386 if (se != cfs_rq->curr)
387 update_stats_wait_end(cfs_rq, se);
388 }
389
390 /*
391 * We are picking a new current task - update its stats:
392 */
393 static inline void
394 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 {
396 /*
397 * We are starting a new run period:
398 */
399 se->exec_start = rq_of(cfs_rq)->clock;
400 }
401
402 /**************************************************
403 * Scheduling class queueing methods:
404 */
405
406 static void
407 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
408 {
409 update_load_add(&cfs_rq->load, se->load.weight);
410 cfs_rq->nr_running++;
411 se->on_rq = 1;
412 }
413
414 static void
415 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
416 {
417 update_load_sub(&cfs_rq->load, se->load.weight);
418 cfs_rq->nr_running--;
419 se->on_rq = 0;
420 }
421
422 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
423 {
424 #ifdef CONFIG_SCHEDSTATS
425 if (se->sleep_start) {
426 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
427 struct task_struct *tsk = task_of(se);
428
429 if ((s64)delta < 0)
430 delta = 0;
431
432 if (unlikely(delta > se->sleep_max))
433 se->sleep_max = delta;
434
435 se->sleep_start = 0;
436 se->sum_sleep_runtime += delta;
437
438 account_scheduler_latency(tsk, delta >> 10, 1);
439 }
440 if (se->block_start) {
441 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
442 struct task_struct *tsk = task_of(se);
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->block_max))
448 se->block_max = delta;
449
450 se->block_start = 0;
451 se->sum_sleep_runtime += delta;
452
453 /*
454 * Blocking time is in units of nanosecs, so shift by 20 to
455 * get a milliseconds-range estimation of the amount of
456 * time that the task spent sleeping:
457 */
458 if (unlikely(prof_on == SLEEP_PROFILING)) {
459
460 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
461 delta >> 20);
462 }
463 account_scheduler_latency(tsk, delta >> 10, 0);
464 }
465 #endif
466 }
467
468 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 #ifdef CONFIG_SCHED_DEBUG
471 s64 d = se->vruntime - cfs_rq->min_vruntime;
472
473 if (d < 0)
474 d = -d;
475
476 if (d > 3*sysctl_sched_latency)
477 schedstat_inc(cfs_rq, nr_spread_over);
478 #endif
479 }
480
481 static void
482 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
483 {
484 u64 vruntime;
485
486 if (first_fair(cfs_rq)) {
487 vruntime = min_vruntime(cfs_rq->min_vruntime,
488 __pick_next_entity(cfs_rq)->vruntime);
489 } else
490 vruntime = cfs_rq->min_vruntime;
491
492 /*
493 * The 'current' period is already promised to the current tasks,
494 * however the extra weight of the new task will slow them down a
495 * little, place the new task so that it fits in the slot that
496 * stays open at the end.
497 */
498 if (initial && sched_feat(START_DEBIT))
499 vruntime += sched_vslice_add(cfs_rq, se);
500
501 if (!initial) {
502 /* sleeps upto a single latency don't count. */
503 if (sched_feat(NEW_FAIR_SLEEPERS)) {
504 if (sched_feat(NORMALIZED_SLEEPER))
505 vruntime -= calc_delta_fair(sysctl_sched_latency,
506 &cfs_rq->load);
507 else
508 vruntime -= sysctl_sched_latency;
509 }
510
511 /* ensure we never gain time by being placed backwards. */
512 vruntime = max_vruntime(se->vruntime, vruntime);
513 }
514
515 se->vruntime = vruntime;
516 }
517
518 static void
519 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
520 {
521 /*
522 * Update run-time statistics of the 'current'.
523 */
524 update_curr(cfs_rq);
525
526 if (wakeup) {
527 place_entity(cfs_rq, se, 0);
528 enqueue_sleeper(cfs_rq, se);
529 }
530
531 update_stats_enqueue(cfs_rq, se);
532 check_spread(cfs_rq, se);
533 if (se != cfs_rq->curr)
534 __enqueue_entity(cfs_rq, se);
535 account_entity_enqueue(cfs_rq, se);
536 }
537
538 static void update_avg(u64 *avg, u64 sample)
539 {
540 s64 diff = sample - *avg;
541 *avg += diff >> 3;
542 }
543
544 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 {
546 if (!se->last_wakeup)
547 return;
548
549 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
550 se->last_wakeup = 0;
551 }
552
553 static void
554 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
555 {
556 /*
557 * Update run-time statistics of the 'current'.
558 */
559 update_curr(cfs_rq);
560
561 update_stats_dequeue(cfs_rq, se);
562 if (sleep) {
563 update_avg_stats(cfs_rq, se);
564 #ifdef CONFIG_SCHEDSTATS
565 if (entity_is_task(se)) {
566 struct task_struct *tsk = task_of(se);
567
568 if (tsk->state & TASK_INTERRUPTIBLE)
569 se->sleep_start = rq_of(cfs_rq)->clock;
570 if (tsk->state & TASK_UNINTERRUPTIBLE)
571 se->block_start = rq_of(cfs_rq)->clock;
572 }
573 #endif
574 }
575
576 if (se != cfs_rq->curr)
577 __dequeue_entity(cfs_rq, se);
578 account_entity_dequeue(cfs_rq, se);
579 }
580
581 /*
582 * Preempt the current task with a newly woken task if needed:
583 */
584 static void
585 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
586 {
587 unsigned long ideal_runtime, delta_exec;
588
589 ideal_runtime = sched_slice(cfs_rq, curr);
590 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
591 if (delta_exec > ideal_runtime)
592 resched_task(rq_of(cfs_rq)->curr);
593 }
594
595 static void
596 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
597 {
598 /* 'current' is not kept within the tree. */
599 if (se->on_rq) {
600 /*
601 * Any task has to be enqueued before it get to execute on
602 * a CPU. So account for the time it spent waiting on the
603 * runqueue.
604 */
605 update_stats_wait_end(cfs_rq, se);
606 __dequeue_entity(cfs_rq, se);
607 }
608
609 update_stats_curr_start(cfs_rq, se);
610 cfs_rq->curr = se;
611 #ifdef CONFIG_SCHEDSTATS
612 /*
613 * Track our maximum slice length, if the CPU's load is at
614 * least twice that of our own weight (i.e. dont track it
615 * when there are only lesser-weight tasks around):
616 */
617 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
618 se->slice_max = max(se->slice_max,
619 se->sum_exec_runtime - se->prev_sum_exec_runtime);
620 }
621 #endif
622 se->prev_sum_exec_runtime = se->sum_exec_runtime;
623 }
624
625 static int
626 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
627
628 static struct sched_entity *
629 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
630 {
631 if (!cfs_rq->next)
632 return se;
633
634 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
635 return se;
636
637 return cfs_rq->next;
638 }
639
640 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
641 {
642 struct sched_entity *se = NULL;
643
644 if (first_fair(cfs_rq)) {
645 se = __pick_next_entity(cfs_rq);
646 se = pick_next(cfs_rq, se);
647 set_next_entity(cfs_rq, se);
648 }
649
650 return se;
651 }
652
653 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
654 {
655 /*
656 * If still on the runqueue then deactivate_task()
657 * was not called and update_curr() has to be done:
658 */
659 if (prev->on_rq)
660 update_curr(cfs_rq);
661
662 check_spread(cfs_rq, prev);
663 if (prev->on_rq) {
664 update_stats_wait_start(cfs_rq, prev);
665 /* Put 'current' back into the tree. */
666 __enqueue_entity(cfs_rq, prev);
667 }
668 cfs_rq->curr = NULL;
669 }
670
671 static void
672 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
673 {
674 /*
675 * Update run-time statistics of the 'current'.
676 */
677 update_curr(cfs_rq);
678
679 #ifdef CONFIG_SCHED_HRTICK
680 /*
681 * queued ticks are scheduled to match the slice, so don't bother
682 * validating it and just reschedule.
683 */
684 if (queued)
685 return resched_task(rq_of(cfs_rq)->curr);
686 /*
687 * don't let the period tick interfere with the hrtick preemption
688 */
689 if (!sched_feat(DOUBLE_TICK) &&
690 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
691 return;
692 #endif
693
694 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
695 check_preempt_tick(cfs_rq, curr);
696 }
697
698 /**************************************************
699 * CFS operations on tasks:
700 */
701
702 #ifdef CONFIG_FAIR_GROUP_SCHED
703
704 /* Walk up scheduling entities hierarchy */
705 #define for_each_sched_entity(se) \
706 for (; se; se = se->parent)
707
708 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
709 {
710 return p->se.cfs_rq;
711 }
712
713 /* runqueue on which this entity is (to be) queued */
714 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
715 {
716 return se->cfs_rq;
717 }
718
719 /* runqueue "owned" by this group */
720 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
721 {
722 return grp->my_q;
723 }
724
725 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
726 * another cpu ('this_cpu')
727 */
728 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
729 {
730 return cfs_rq->tg->cfs_rq[this_cpu];
731 }
732
733 /* Iterate thr' all leaf cfs_rq's on a runqueue */
734 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
735 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
736
737 /* Do the two (enqueued) entities belong to the same group ? */
738 static inline int
739 is_same_group(struct sched_entity *se, struct sched_entity *pse)
740 {
741 if (se->cfs_rq == pse->cfs_rq)
742 return 1;
743
744 return 0;
745 }
746
747 static inline struct sched_entity *parent_entity(struct sched_entity *se)
748 {
749 return se->parent;
750 }
751
752 #else /* CONFIG_FAIR_GROUP_SCHED */
753
754 #define for_each_sched_entity(se) \
755 for (; se; se = NULL)
756
757 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
758 {
759 return &task_rq(p)->cfs;
760 }
761
762 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
763 {
764 struct task_struct *p = task_of(se);
765 struct rq *rq = task_rq(p);
766
767 return &rq->cfs;
768 }
769
770 /* runqueue "owned" by this group */
771 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
772 {
773 return NULL;
774 }
775
776 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
777 {
778 return &cpu_rq(this_cpu)->cfs;
779 }
780
781 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
782 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
783
784 static inline int
785 is_same_group(struct sched_entity *se, struct sched_entity *pse)
786 {
787 return 1;
788 }
789
790 static inline struct sched_entity *parent_entity(struct sched_entity *se)
791 {
792 return NULL;
793 }
794
795 #endif /* CONFIG_FAIR_GROUP_SCHED */
796
797 #ifdef CONFIG_SCHED_HRTICK
798 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
799 {
800 int requeue = rq->curr == p;
801 struct sched_entity *se = &p->se;
802 struct cfs_rq *cfs_rq = cfs_rq_of(se);
803
804 WARN_ON(task_rq(p) != rq);
805
806 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
807 u64 slice = sched_slice(cfs_rq, se);
808 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
809 s64 delta = slice - ran;
810
811 if (delta < 0) {
812 if (rq->curr == p)
813 resched_task(p);
814 return;
815 }
816
817 /*
818 * Don't schedule slices shorter than 10000ns, that just
819 * doesn't make sense. Rely on vruntime for fairness.
820 */
821 if (!requeue)
822 delta = max(10000LL, delta);
823
824 hrtick_start(rq, delta, requeue);
825 }
826 }
827 #else
828 static inline void
829 hrtick_start_fair(struct rq *rq, struct task_struct *p)
830 {
831 }
832 #endif
833
834 /*
835 * The enqueue_task method is called before nr_running is
836 * increased. Here we update the fair scheduling stats and
837 * then put the task into the rbtree:
838 */
839 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
840 {
841 struct cfs_rq *cfs_rq;
842 struct sched_entity *se = &p->se;
843
844 for_each_sched_entity(se) {
845 if (se->on_rq)
846 break;
847 cfs_rq = cfs_rq_of(se);
848 enqueue_entity(cfs_rq, se, wakeup);
849 wakeup = 1;
850 }
851
852 hrtick_start_fair(rq, rq->curr);
853 }
854
855 /*
856 * The dequeue_task method is called before nr_running is
857 * decreased. We remove the task from the rbtree and
858 * update the fair scheduling stats:
859 */
860 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
861 {
862 struct cfs_rq *cfs_rq;
863 struct sched_entity *se = &p->se;
864
865 for_each_sched_entity(se) {
866 cfs_rq = cfs_rq_of(se);
867 dequeue_entity(cfs_rq, se, sleep);
868 /* Don't dequeue parent if it has other entities besides us */
869 if (cfs_rq->load.weight)
870 break;
871 sleep = 1;
872 }
873
874 hrtick_start_fair(rq, rq->curr);
875 }
876
877 /*
878 * sched_yield() support is very simple - we dequeue and enqueue.
879 *
880 * If compat_yield is turned on then we requeue to the end of the tree.
881 */
882 static void yield_task_fair(struct rq *rq)
883 {
884 struct task_struct *curr = rq->curr;
885 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
886 struct sched_entity *rightmost, *se = &curr->se;
887
888 /*
889 * Are we the only task in the tree?
890 */
891 if (unlikely(cfs_rq->nr_running == 1))
892 return;
893
894 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
895 __update_rq_clock(rq);
896 /*
897 * Update run-time statistics of the 'current'.
898 */
899 update_curr(cfs_rq);
900
901 return;
902 }
903 /*
904 * Find the rightmost entry in the rbtree:
905 */
906 rightmost = __pick_last_entity(cfs_rq);
907 /*
908 * Already in the rightmost position?
909 */
910 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
911 return;
912
913 /*
914 * Minimally necessary key value to be last in the tree:
915 * Upon rescheduling, sched_class::put_prev_task() will place
916 * 'current' within the tree based on its new key value.
917 */
918 se->vruntime = rightmost->vruntime + 1;
919 }
920
921 /*
922 * wake_idle() will wake a task on an idle cpu if task->cpu is
923 * not idle and an idle cpu is available. The span of cpus to
924 * search starts with cpus closest then further out as needed,
925 * so we always favor a closer, idle cpu.
926 *
927 * Returns the CPU we should wake onto.
928 */
929 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
930 static int wake_idle(int cpu, struct task_struct *p)
931 {
932 cpumask_t tmp;
933 struct sched_domain *sd;
934 int i;
935
936 /*
937 * If it is idle, then it is the best cpu to run this task.
938 *
939 * This cpu is also the best, if it has more than one task already.
940 * Siblings must be also busy(in most cases) as they didn't already
941 * pickup the extra load from this cpu and hence we need not check
942 * sibling runqueue info. This will avoid the checks and cache miss
943 * penalities associated with that.
944 */
945 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
946 return cpu;
947
948 for_each_domain(cpu, sd) {
949 if (sd->flags & SD_WAKE_IDLE) {
950 cpus_and(tmp, sd->span, p->cpus_allowed);
951 for_each_cpu_mask(i, tmp) {
952 if (idle_cpu(i)) {
953 if (i != task_cpu(p)) {
954 schedstat_inc(p,
955 se.nr_wakeups_idle);
956 }
957 return i;
958 }
959 }
960 } else {
961 break;
962 }
963 }
964 return cpu;
965 }
966 #else
967 static inline int wake_idle(int cpu, struct task_struct *p)
968 {
969 return cpu;
970 }
971 #endif
972
973 #ifdef CONFIG_SMP
974
975 static const struct sched_class fair_sched_class;
976
977 static int
978 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
979 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
980 int idx, unsigned long load, unsigned long this_load,
981 unsigned int imbalance)
982 {
983 struct task_struct *curr = this_rq->curr;
984 unsigned long tl = this_load;
985 unsigned long tl_per_task;
986
987 if (!(this_sd->flags & SD_WAKE_AFFINE))
988 return 0;
989
990 /*
991 * If the currently running task will sleep within
992 * a reasonable amount of time then attract this newly
993 * woken task:
994 */
995 if (sync && curr->sched_class == &fair_sched_class) {
996 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
997 p->se.avg_overlap < sysctl_sched_migration_cost)
998 return 1;
999 }
1000
1001 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1002 tl_per_task = cpu_avg_load_per_task(this_cpu);
1003
1004 /*
1005 * If sync wakeup then subtract the (maximum possible)
1006 * effect of the currently running task from the load
1007 * of the current CPU:
1008 */
1009 if (sync)
1010 tl -= current->se.load.weight;
1011
1012 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1013 100*(tl + p->se.load.weight) <= imbalance*load) {
1014 /*
1015 * This domain has SD_WAKE_AFFINE and
1016 * p is cache cold in this domain, and
1017 * there is no bad imbalance.
1018 */
1019 schedstat_inc(this_sd, ttwu_move_affine);
1020 schedstat_inc(p, se.nr_wakeups_affine);
1021
1022 return 1;
1023 }
1024 return 0;
1025 }
1026
1027 static int select_task_rq_fair(struct task_struct *p, int sync)
1028 {
1029 struct sched_domain *sd, *this_sd = NULL;
1030 int prev_cpu, this_cpu, new_cpu;
1031 unsigned long load, this_load;
1032 struct rq *rq, *this_rq;
1033 unsigned int imbalance;
1034 int idx;
1035
1036 prev_cpu = task_cpu(p);
1037 rq = task_rq(p);
1038 this_cpu = smp_processor_id();
1039 this_rq = cpu_rq(this_cpu);
1040 new_cpu = prev_cpu;
1041
1042 /*
1043 * 'this_sd' is the first domain that both
1044 * this_cpu and prev_cpu are present in:
1045 */
1046 for_each_domain(this_cpu, sd) {
1047 if (cpu_isset(prev_cpu, sd->span)) {
1048 this_sd = sd;
1049 break;
1050 }
1051 }
1052
1053 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1054 goto out;
1055
1056 /*
1057 * Check for affine wakeup and passive balancing possibilities.
1058 */
1059 if (!this_sd)
1060 goto out;
1061
1062 idx = this_sd->wake_idx;
1063
1064 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1065
1066 load = source_load(prev_cpu, idx);
1067 this_load = target_load(this_cpu, idx);
1068
1069 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1070 load, this_load, imbalance))
1071 return this_cpu;
1072
1073 if (prev_cpu == this_cpu)
1074 goto out;
1075
1076 /*
1077 * Start passive balancing when half the imbalance_pct
1078 * limit is reached.
1079 */
1080 if (this_sd->flags & SD_WAKE_BALANCE) {
1081 if (imbalance*this_load <= 100*load) {
1082 schedstat_inc(this_sd, ttwu_move_balance);
1083 schedstat_inc(p, se.nr_wakeups_passive);
1084 return this_cpu;
1085 }
1086 }
1087
1088 out:
1089 return wake_idle(new_cpu, p);
1090 }
1091 #endif /* CONFIG_SMP */
1092
1093 static unsigned long wakeup_gran(struct sched_entity *se)
1094 {
1095 unsigned long gran = sysctl_sched_wakeup_granularity;
1096
1097 /*
1098 * More easily preempt - nice tasks, while not making
1099 * it harder for + nice tasks.
1100 */
1101 if (unlikely(se->load.weight > NICE_0_LOAD))
1102 gran = calc_delta_fair(gran, &se->load);
1103
1104 return gran;
1105 }
1106
1107 /*
1108 * Should 'se' preempt 'curr'.
1109 *
1110 * |s1
1111 * |s2
1112 * |s3
1113 * g
1114 * |<--->|c
1115 *
1116 * w(c, s1) = -1
1117 * w(c, s2) = 0
1118 * w(c, s3) = 1
1119 *
1120 */
1121 static int
1122 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1123 {
1124 s64 gran, vdiff = curr->vruntime - se->vruntime;
1125
1126 if (vdiff < 0)
1127 return -1;
1128
1129 gran = wakeup_gran(curr);
1130 if (vdiff > gran)
1131 return 1;
1132
1133 return 0;
1134 }
1135
1136 /*
1137 * Preempt the current task with a newly woken task if needed:
1138 */
1139 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1140 {
1141 struct task_struct *curr = rq->curr;
1142 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1143 struct sched_entity *se = &curr->se, *pse = &p->se;
1144
1145 if (unlikely(rt_prio(p->prio))) {
1146 update_rq_clock(rq);
1147 update_curr(cfs_rq);
1148 resched_task(curr);
1149 return;
1150 }
1151
1152 se->last_wakeup = se->sum_exec_runtime;
1153 if (unlikely(se == pse))
1154 return;
1155
1156 cfs_rq_of(pse)->next = pse;
1157
1158 /*
1159 * Batch tasks do not preempt (their preemption is driven by
1160 * the tick):
1161 */
1162 if (unlikely(p->policy == SCHED_BATCH))
1163 return;
1164
1165 if (!sched_feat(WAKEUP_PREEMPT))
1166 return;
1167
1168 while (!is_same_group(se, pse)) {
1169 se = parent_entity(se);
1170 pse = parent_entity(pse);
1171 }
1172
1173 if (wakeup_preempt_entity(se, pse) == 1)
1174 resched_task(curr);
1175 }
1176
1177 static struct task_struct *pick_next_task_fair(struct rq *rq)
1178 {
1179 struct task_struct *p;
1180 struct cfs_rq *cfs_rq = &rq->cfs;
1181 struct sched_entity *se;
1182
1183 if (unlikely(!cfs_rq->nr_running))
1184 return NULL;
1185
1186 do {
1187 se = pick_next_entity(cfs_rq);
1188 cfs_rq = group_cfs_rq(se);
1189 } while (cfs_rq);
1190
1191 p = task_of(se);
1192 hrtick_start_fair(rq, p);
1193
1194 return p;
1195 }
1196
1197 /*
1198 * Account for a descheduled task:
1199 */
1200 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1201 {
1202 struct sched_entity *se = &prev->se;
1203 struct cfs_rq *cfs_rq;
1204
1205 for_each_sched_entity(se) {
1206 cfs_rq = cfs_rq_of(se);
1207 put_prev_entity(cfs_rq, se);
1208 }
1209 }
1210
1211 #ifdef CONFIG_SMP
1212 /**************************************************
1213 * Fair scheduling class load-balancing methods:
1214 */
1215
1216 /*
1217 * Load-balancing iterator. Note: while the runqueue stays locked
1218 * during the whole iteration, the current task might be
1219 * dequeued so the iterator has to be dequeue-safe. Here we
1220 * achieve that by always pre-iterating before returning
1221 * the current task:
1222 */
1223 static struct task_struct *
1224 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1225 {
1226 struct task_struct *p;
1227
1228 if (!curr)
1229 return NULL;
1230
1231 p = rb_entry(curr, struct task_struct, se.run_node);
1232 cfs_rq->rb_load_balance_curr = rb_next(curr);
1233
1234 return p;
1235 }
1236
1237 static struct task_struct *load_balance_start_fair(void *arg)
1238 {
1239 struct cfs_rq *cfs_rq = arg;
1240
1241 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1242 }
1243
1244 static struct task_struct *load_balance_next_fair(void *arg)
1245 {
1246 struct cfs_rq *cfs_rq = arg;
1247
1248 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1249 }
1250
1251 #ifdef CONFIG_FAIR_GROUP_SCHED
1252 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1253 {
1254 struct sched_entity *curr;
1255 struct task_struct *p;
1256
1257 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1258 return MAX_PRIO;
1259
1260 curr = cfs_rq->curr;
1261 if (!curr)
1262 curr = __pick_next_entity(cfs_rq);
1263
1264 p = task_of(curr);
1265
1266 return p->prio;
1267 }
1268 #endif
1269
1270 static unsigned long
1271 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1272 unsigned long max_load_move,
1273 struct sched_domain *sd, enum cpu_idle_type idle,
1274 int *all_pinned, int *this_best_prio)
1275 {
1276 struct cfs_rq *busy_cfs_rq;
1277 long rem_load_move = max_load_move;
1278 struct rq_iterator cfs_rq_iterator;
1279
1280 cfs_rq_iterator.start = load_balance_start_fair;
1281 cfs_rq_iterator.next = load_balance_next_fair;
1282
1283 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1284 #ifdef CONFIG_FAIR_GROUP_SCHED
1285 struct cfs_rq *this_cfs_rq;
1286 long imbalance;
1287 unsigned long maxload;
1288
1289 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1290
1291 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1292 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1293 if (imbalance <= 0)
1294 continue;
1295
1296 /* Don't pull more than imbalance/2 */
1297 imbalance /= 2;
1298 maxload = min(rem_load_move, imbalance);
1299
1300 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1301 #else
1302 # define maxload rem_load_move
1303 #endif
1304 /*
1305 * pass busy_cfs_rq argument into
1306 * load_balance_[start|next]_fair iterators
1307 */
1308 cfs_rq_iterator.arg = busy_cfs_rq;
1309 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1310 maxload, sd, idle, all_pinned,
1311 this_best_prio,
1312 &cfs_rq_iterator);
1313
1314 if (rem_load_move <= 0)
1315 break;
1316 }
1317
1318 return max_load_move - rem_load_move;
1319 }
1320
1321 static int
1322 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1323 struct sched_domain *sd, enum cpu_idle_type idle)
1324 {
1325 struct cfs_rq *busy_cfs_rq;
1326 struct rq_iterator cfs_rq_iterator;
1327
1328 cfs_rq_iterator.start = load_balance_start_fair;
1329 cfs_rq_iterator.next = load_balance_next_fair;
1330
1331 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1332 /*
1333 * pass busy_cfs_rq argument into
1334 * load_balance_[start|next]_fair iterators
1335 */
1336 cfs_rq_iterator.arg = busy_cfs_rq;
1337 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1338 &cfs_rq_iterator))
1339 return 1;
1340 }
1341
1342 return 0;
1343 }
1344 #endif
1345
1346 /*
1347 * scheduler tick hitting a task of our scheduling class:
1348 */
1349 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1350 {
1351 struct cfs_rq *cfs_rq;
1352 struct sched_entity *se = &curr->se;
1353
1354 for_each_sched_entity(se) {
1355 cfs_rq = cfs_rq_of(se);
1356 entity_tick(cfs_rq, se, queued);
1357 }
1358 }
1359
1360 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1361
1362 /*
1363 * Share the fairness runtime between parent and child, thus the
1364 * total amount of pressure for CPU stays equal - new tasks
1365 * get a chance to run but frequent forkers are not allowed to
1366 * monopolize the CPU. Note: the parent runqueue is locked,
1367 * the child is not running yet.
1368 */
1369 static void task_new_fair(struct rq *rq, struct task_struct *p)
1370 {
1371 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1372 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1373 int this_cpu = smp_processor_id();
1374
1375 sched_info_queued(p);
1376
1377 update_curr(cfs_rq);
1378 place_entity(cfs_rq, se, 1);
1379
1380 /* 'curr' will be NULL if the child belongs to a different group */
1381 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1382 curr && curr->vruntime < se->vruntime) {
1383 /*
1384 * Upon rescheduling, sched_class::put_prev_task() will place
1385 * 'current' within the tree based on its new key value.
1386 */
1387 swap(curr->vruntime, se->vruntime);
1388 }
1389
1390 enqueue_task_fair(rq, p, 0);
1391 resched_task(rq->curr);
1392 }
1393
1394 /*
1395 * Priority of the task has changed. Check to see if we preempt
1396 * the current task.
1397 */
1398 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1399 int oldprio, int running)
1400 {
1401 /*
1402 * Reschedule if we are currently running on this runqueue and
1403 * our priority decreased, or if we are not currently running on
1404 * this runqueue and our priority is higher than the current's
1405 */
1406 if (running) {
1407 if (p->prio > oldprio)
1408 resched_task(rq->curr);
1409 } else
1410 check_preempt_curr(rq, p);
1411 }
1412
1413 /*
1414 * We switched to the sched_fair class.
1415 */
1416 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1417 int running)
1418 {
1419 /*
1420 * We were most likely switched from sched_rt, so
1421 * kick off the schedule if running, otherwise just see
1422 * if we can still preempt the current task.
1423 */
1424 if (running)
1425 resched_task(rq->curr);
1426 else
1427 check_preempt_curr(rq, p);
1428 }
1429
1430 /* Account for a task changing its policy or group.
1431 *
1432 * This routine is mostly called to set cfs_rq->curr field when a task
1433 * migrates between groups/classes.
1434 */
1435 static void set_curr_task_fair(struct rq *rq)
1436 {
1437 struct sched_entity *se = &rq->curr->se;
1438
1439 for_each_sched_entity(se)
1440 set_next_entity(cfs_rq_of(se), se);
1441 }
1442
1443 #ifdef CONFIG_FAIR_GROUP_SCHED
1444 static void moved_group_fair(struct task_struct *p)
1445 {
1446 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1447
1448 update_curr(cfs_rq);
1449 place_entity(cfs_rq, &p->se, 1);
1450 }
1451 #endif
1452
1453 /*
1454 * All the scheduling class methods:
1455 */
1456 static const struct sched_class fair_sched_class = {
1457 .next = &idle_sched_class,
1458 .enqueue_task = enqueue_task_fair,
1459 .dequeue_task = dequeue_task_fair,
1460 .yield_task = yield_task_fair,
1461 #ifdef CONFIG_SMP
1462 .select_task_rq = select_task_rq_fair,
1463 #endif /* CONFIG_SMP */
1464
1465 .check_preempt_curr = check_preempt_wakeup,
1466
1467 .pick_next_task = pick_next_task_fair,
1468 .put_prev_task = put_prev_task_fair,
1469
1470 #ifdef CONFIG_SMP
1471 .load_balance = load_balance_fair,
1472 .move_one_task = move_one_task_fair,
1473 #endif
1474
1475 .set_curr_task = set_curr_task_fair,
1476 .task_tick = task_tick_fair,
1477 .task_new = task_new_fair,
1478
1479 .prio_changed = prio_changed_fair,
1480 .switched_to = switched_to_fair,
1481
1482 #ifdef CONFIG_FAIR_GROUP_SCHED
1483 .moved_group = moved_group_fair,
1484 #endif
1485 };
1486
1487 #ifdef CONFIG_SCHED_DEBUG
1488 static void print_cfs_stats(struct seq_file *m, int cpu)
1489 {
1490 struct cfs_rq *cfs_rq;
1491
1492 #ifdef CONFIG_FAIR_GROUP_SCHED
1493 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1494 #endif
1495 rcu_read_lock();
1496 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1497 print_cfs_rq(m, cpu, cfs_rq);
1498 rcu_read_unlock();
1499 }
1500 #endif