Merge branch 'fix' of git://git.kernel.org/pub/scm/linux/kernel/git/ycmiao/pxa-linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
148 {
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155 }
156
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187 }
188
189 #else /* CONFIG_FAIR_GROUP_SCHED */
190
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 return container_of(cfs_rq, struct rq, cfs);
194 }
195
196 #define entity_is_task(se) 1
197
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
200
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 return &task_rq(p)->cfs;
204 }
205
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212 }
213
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 return NULL;
218 }
219
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 return &cpu_rq(this_cpu)->cfs;
223 }
224
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 return 1;
232 }
233
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 return NULL;
237 }
238
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
245
246
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258 }
259
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267 }
268
269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270 {
271 return se->vruntime - cfs_rq->min_vruntime;
272 }
273
274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
275 {
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293 }
294
295 /*
296 * Enqueue an entity into the rb-tree:
297 */
298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 {
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
303 s64 key = entity_key(cfs_rq, se);
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
316 if (key < entity_key(cfs_rq, entry)) {
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
328 if (leftmost)
329 cfs_rq->rb_leftmost = &se->run_node;
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
333 }
334
335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
342 }
343
344 if (cfs_rq->next == se)
345 cfs_rq->next = NULL;
346
347 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
348 }
349
350 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
351 {
352 return cfs_rq->rb_leftmost;
353 }
354
355 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
356 {
357 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
358 }
359
360 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
361 {
362 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
363
364 if (!last)
365 return NULL;
366
367 return rb_entry(last, struct sched_entity, run_node);
368 }
369
370 /**************************************************************
371 * Scheduling class statistics methods:
372 */
373
374 #ifdef CONFIG_SCHED_DEBUG
375 int sched_nr_latency_handler(struct ctl_table *table, int write,
376 struct file *filp, void __user *buffer, size_t *lenp,
377 loff_t *ppos)
378 {
379 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
380
381 if (ret || !write)
382 return ret;
383
384 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
385 sysctl_sched_min_granularity);
386
387 return 0;
388 }
389 #endif
390
391 /*
392 * delta *= P[w / rw]
393 */
394 static inline unsigned long
395 calc_delta_weight(unsigned long delta, struct sched_entity *se)
396 {
397 for_each_sched_entity(se) {
398 delta = calc_delta_mine(delta,
399 se->load.weight, &cfs_rq_of(se)->load);
400 }
401
402 return delta;
403 }
404
405 /*
406 * delta /= w
407 */
408 static inline unsigned long
409 calc_delta_fair(unsigned long delta, struct sched_entity *se)
410 {
411 if (unlikely(se->load.weight != NICE_0_LOAD))
412 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
413
414 return delta;
415 }
416
417 /*
418 * The idea is to set a period in which each task runs once.
419 *
420 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
421 * this period because otherwise the slices get too small.
422 *
423 * p = (nr <= nl) ? l : l*nr/nl
424 */
425 static u64 __sched_period(unsigned long nr_running)
426 {
427 u64 period = sysctl_sched_latency;
428 unsigned long nr_latency = sched_nr_latency;
429
430 if (unlikely(nr_running > nr_latency)) {
431 period = sysctl_sched_min_granularity;
432 period *= nr_running;
433 }
434
435 return period;
436 }
437
438 /*
439 * We calculate the wall-time slice from the period by taking a part
440 * proportional to the weight.
441 *
442 * s = p*P[w/rw]
443 */
444 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
445 {
446 unsigned long nr_running = cfs_rq->nr_running;
447
448 if (unlikely(!se->on_rq))
449 nr_running++;
450
451 return calc_delta_weight(__sched_period(nr_running), se);
452 }
453
454 /*
455 * We calculate the vruntime slice of a to be inserted task
456 *
457 * vs = s/w
458 */
459 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
460 {
461 return calc_delta_fair(sched_slice(cfs_rq, se), se);
462 }
463
464 /*
465 * Update the current task's runtime statistics. Skip current tasks that
466 * are not in our scheduling class.
467 */
468 static inline void
469 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
470 unsigned long delta_exec)
471 {
472 unsigned long delta_exec_weighted;
473
474 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
475
476 curr->sum_exec_runtime += delta_exec;
477 schedstat_add(cfs_rq, exec_clock, delta_exec);
478 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
479 curr->vruntime += delta_exec_weighted;
480 update_min_vruntime(cfs_rq);
481 }
482
483 static void update_curr(struct cfs_rq *cfs_rq)
484 {
485 struct sched_entity *curr = cfs_rq->curr;
486 u64 now = rq_of(cfs_rq)->clock;
487 unsigned long delta_exec;
488
489 if (unlikely(!curr))
490 return;
491
492 /*
493 * Get the amount of time the current task was running
494 * since the last time we changed load (this cannot
495 * overflow on 32 bits):
496 */
497 delta_exec = (unsigned long)(now - curr->exec_start);
498
499 __update_curr(cfs_rq, curr, delta_exec);
500 curr->exec_start = now;
501
502 if (entity_is_task(curr)) {
503 struct task_struct *curtask = task_of(curr);
504
505 cpuacct_charge(curtask, delta_exec);
506 account_group_exec_runtime(curtask, delta_exec);
507 }
508 }
509
510 static inline void
511 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 {
513 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
514 }
515
516 /*
517 * Task is being enqueued - update stats:
518 */
519 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 {
521 /*
522 * Are we enqueueing a waiting task? (for current tasks
523 * a dequeue/enqueue event is a NOP)
524 */
525 if (se != cfs_rq->curr)
526 update_stats_wait_start(cfs_rq, se);
527 }
528
529 static void
530 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 {
532 schedstat_set(se->wait_max, max(se->wait_max,
533 rq_of(cfs_rq)->clock - se->wait_start));
534 schedstat_set(se->wait_count, se->wait_count + 1);
535 schedstat_set(se->wait_sum, se->wait_sum +
536 rq_of(cfs_rq)->clock - se->wait_start);
537 schedstat_set(se->wait_start, 0);
538 }
539
540 static inline void
541 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 /*
544 * Mark the end of the wait period if dequeueing a
545 * waiting task:
546 */
547 if (se != cfs_rq->curr)
548 update_stats_wait_end(cfs_rq, se);
549 }
550
551 /*
552 * We are picking a new current task - update its stats:
553 */
554 static inline void
555 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 /*
558 * We are starting a new run period:
559 */
560 se->exec_start = rq_of(cfs_rq)->clock;
561 }
562
563 /**************************************************
564 * Scheduling class queueing methods:
565 */
566
567 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
568 static void
569 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
570 {
571 cfs_rq->task_weight += weight;
572 }
573 #else
574 static inline void
575 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
576 {
577 }
578 #endif
579
580 static void
581 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
582 {
583 update_load_add(&cfs_rq->load, se->load.weight);
584 if (!parent_entity(se))
585 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
586 if (entity_is_task(se)) {
587 add_cfs_task_weight(cfs_rq, se->load.weight);
588 list_add(&se->group_node, &cfs_rq->tasks);
589 }
590 cfs_rq->nr_running++;
591 se->on_rq = 1;
592 }
593
594 static void
595 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 update_load_sub(&cfs_rq->load, se->load.weight);
598 if (!parent_entity(se))
599 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
600 if (entity_is_task(se)) {
601 add_cfs_task_weight(cfs_rq, -se->load.weight);
602 list_del_init(&se->group_node);
603 }
604 cfs_rq->nr_running--;
605 se->on_rq = 0;
606 }
607
608 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 {
610 #ifdef CONFIG_SCHEDSTATS
611 if (se->sleep_start) {
612 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
613 struct task_struct *tsk = task_of(se);
614
615 if ((s64)delta < 0)
616 delta = 0;
617
618 if (unlikely(delta > se->sleep_max))
619 se->sleep_max = delta;
620
621 se->sleep_start = 0;
622 se->sum_sleep_runtime += delta;
623
624 account_scheduler_latency(tsk, delta >> 10, 1);
625 }
626 if (se->block_start) {
627 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
628 struct task_struct *tsk = task_of(se);
629
630 if ((s64)delta < 0)
631 delta = 0;
632
633 if (unlikely(delta > se->block_max))
634 se->block_max = delta;
635
636 se->block_start = 0;
637 se->sum_sleep_runtime += delta;
638
639 /*
640 * Blocking time is in units of nanosecs, so shift by 20 to
641 * get a milliseconds-range estimation of the amount of
642 * time that the task spent sleeping:
643 */
644 if (unlikely(prof_on == SLEEP_PROFILING)) {
645
646 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
647 delta >> 20);
648 }
649 account_scheduler_latency(tsk, delta >> 10, 0);
650 }
651 #endif
652 }
653
654 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 {
656 #ifdef CONFIG_SCHED_DEBUG
657 s64 d = se->vruntime - cfs_rq->min_vruntime;
658
659 if (d < 0)
660 d = -d;
661
662 if (d > 3*sysctl_sched_latency)
663 schedstat_inc(cfs_rq, nr_spread_over);
664 #endif
665 }
666
667 static void
668 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
669 {
670 u64 vruntime = cfs_rq->min_vruntime;
671
672 /*
673 * The 'current' period is already promised to the current tasks,
674 * however the extra weight of the new task will slow them down a
675 * little, place the new task so that it fits in the slot that
676 * stays open at the end.
677 */
678 if (initial && sched_feat(START_DEBIT))
679 vruntime += sched_vslice(cfs_rq, se);
680
681 if (!initial) {
682 /* sleeps upto a single latency don't count. */
683 if (sched_feat(NEW_FAIR_SLEEPERS)) {
684 unsigned long thresh = sysctl_sched_latency;
685
686 /*
687 * convert the sleeper threshold into virtual time
688 */
689 if (sched_feat(NORMALIZED_SLEEPER))
690 thresh = calc_delta_fair(thresh, se);
691
692 vruntime -= thresh;
693 }
694
695 /* ensure we never gain time by being placed backwards. */
696 vruntime = max_vruntime(se->vruntime, vruntime);
697 }
698
699 se->vruntime = vruntime;
700 }
701
702 static void
703 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
704 {
705 /*
706 * Update run-time statistics of the 'current'.
707 */
708 update_curr(cfs_rq);
709 account_entity_enqueue(cfs_rq, se);
710
711 if (wakeup) {
712 place_entity(cfs_rq, se, 0);
713 enqueue_sleeper(cfs_rq, se);
714 }
715
716 update_stats_enqueue(cfs_rq, se);
717 check_spread(cfs_rq, se);
718 if (se != cfs_rq->curr)
719 __enqueue_entity(cfs_rq, se);
720 }
721
722 static void
723 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
724 {
725 /*
726 * Update run-time statistics of the 'current'.
727 */
728 update_curr(cfs_rq);
729
730 update_stats_dequeue(cfs_rq, se);
731 if (sleep) {
732 #ifdef CONFIG_SCHEDSTATS
733 if (entity_is_task(se)) {
734 struct task_struct *tsk = task_of(se);
735
736 if (tsk->state & TASK_INTERRUPTIBLE)
737 se->sleep_start = rq_of(cfs_rq)->clock;
738 if (tsk->state & TASK_UNINTERRUPTIBLE)
739 se->block_start = rq_of(cfs_rq)->clock;
740 }
741 #endif
742 }
743
744 if (se != cfs_rq->curr)
745 __dequeue_entity(cfs_rq, se);
746 account_entity_dequeue(cfs_rq, se);
747 update_min_vruntime(cfs_rq);
748 }
749
750 /*
751 * Preempt the current task with a newly woken task if needed:
752 */
753 static void
754 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
755 {
756 unsigned long ideal_runtime, delta_exec;
757
758 ideal_runtime = sched_slice(cfs_rq, curr);
759 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
760 if (delta_exec > ideal_runtime)
761 resched_task(rq_of(cfs_rq)->curr);
762 }
763
764 static void
765 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /* 'current' is not kept within the tree. */
768 if (se->on_rq) {
769 /*
770 * Any task has to be enqueued before it get to execute on
771 * a CPU. So account for the time it spent waiting on the
772 * runqueue.
773 */
774 update_stats_wait_end(cfs_rq, se);
775 __dequeue_entity(cfs_rq, se);
776 }
777
778 update_stats_curr_start(cfs_rq, se);
779 cfs_rq->curr = se;
780 #ifdef CONFIG_SCHEDSTATS
781 /*
782 * Track our maximum slice length, if the CPU's load is at
783 * least twice that of our own weight (i.e. dont track it
784 * when there are only lesser-weight tasks around):
785 */
786 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
787 se->slice_max = max(se->slice_max,
788 se->sum_exec_runtime - se->prev_sum_exec_runtime);
789 }
790 #endif
791 se->prev_sum_exec_runtime = se->sum_exec_runtime;
792 }
793
794 static int
795 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
796
797 static struct sched_entity *
798 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
799 {
800 if (!cfs_rq->next || wakeup_preempt_entity(cfs_rq->next, se) == 1)
801 return se;
802
803 return cfs_rq->next;
804 }
805
806 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
807 {
808 struct sched_entity *se = NULL;
809
810 if (first_fair(cfs_rq)) {
811 se = __pick_next_entity(cfs_rq);
812 se = pick_next(cfs_rq, se);
813 set_next_entity(cfs_rq, se);
814 }
815
816 return se;
817 }
818
819 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
820 {
821 /*
822 * If still on the runqueue then deactivate_task()
823 * was not called and update_curr() has to be done:
824 */
825 if (prev->on_rq)
826 update_curr(cfs_rq);
827
828 check_spread(cfs_rq, prev);
829 if (prev->on_rq) {
830 update_stats_wait_start(cfs_rq, prev);
831 /* Put 'current' back into the tree. */
832 __enqueue_entity(cfs_rq, prev);
833 }
834 cfs_rq->curr = NULL;
835 }
836
837 static void
838 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
839 {
840 /*
841 * Update run-time statistics of the 'current'.
842 */
843 update_curr(cfs_rq);
844
845 #ifdef CONFIG_SCHED_HRTICK
846 /*
847 * queued ticks are scheduled to match the slice, so don't bother
848 * validating it and just reschedule.
849 */
850 if (queued) {
851 resched_task(rq_of(cfs_rq)->curr);
852 return;
853 }
854 /*
855 * don't let the period tick interfere with the hrtick preemption
856 */
857 if (!sched_feat(DOUBLE_TICK) &&
858 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
859 return;
860 #endif
861
862 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
863 check_preempt_tick(cfs_rq, curr);
864 }
865
866 /**************************************************
867 * CFS operations on tasks:
868 */
869
870 #ifdef CONFIG_SCHED_HRTICK
871 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
872 {
873 struct sched_entity *se = &p->se;
874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
875
876 WARN_ON(task_rq(p) != rq);
877
878 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
879 u64 slice = sched_slice(cfs_rq, se);
880 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
881 s64 delta = slice - ran;
882
883 if (delta < 0) {
884 if (rq->curr == p)
885 resched_task(p);
886 return;
887 }
888
889 /*
890 * Don't schedule slices shorter than 10000ns, that just
891 * doesn't make sense. Rely on vruntime for fairness.
892 */
893 if (rq->curr != p)
894 delta = max_t(s64, 10000LL, delta);
895
896 hrtick_start(rq, delta);
897 }
898 }
899
900 /*
901 * called from enqueue/dequeue and updates the hrtick when the
902 * current task is from our class and nr_running is low enough
903 * to matter.
904 */
905 static void hrtick_update(struct rq *rq)
906 {
907 struct task_struct *curr = rq->curr;
908
909 if (curr->sched_class != &fair_sched_class)
910 return;
911
912 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
913 hrtick_start_fair(rq, curr);
914 }
915 #else /* !CONFIG_SCHED_HRTICK */
916 static inline void
917 hrtick_start_fair(struct rq *rq, struct task_struct *p)
918 {
919 }
920
921 static inline void hrtick_update(struct rq *rq)
922 {
923 }
924 #endif
925
926 /*
927 * The enqueue_task method is called before nr_running is
928 * increased. Here we update the fair scheduling stats and
929 * then put the task into the rbtree:
930 */
931 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
932 {
933 struct cfs_rq *cfs_rq;
934 struct sched_entity *se = &p->se;
935
936 for_each_sched_entity(se) {
937 if (se->on_rq)
938 break;
939 cfs_rq = cfs_rq_of(se);
940 enqueue_entity(cfs_rq, se, wakeup);
941 wakeup = 1;
942 }
943
944 hrtick_update(rq);
945 }
946
947 /*
948 * The dequeue_task method is called before nr_running is
949 * decreased. We remove the task from the rbtree and
950 * update the fair scheduling stats:
951 */
952 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
953 {
954 struct cfs_rq *cfs_rq;
955 struct sched_entity *se = &p->se;
956
957 for_each_sched_entity(se) {
958 cfs_rq = cfs_rq_of(se);
959 dequeue_entity(cfs_rq, se, sleep);
960 /* Don't dequeue parent if it has other entities besides us */
961 if (cfs_rq->load.weight)
962 break;
963 sleep = 1;
964 }
965
966 hrtick_update(rq);
967 }
968
969 /*
970 * sched_yield() support is very simple - we dequeue and enqueue.
971 *
972 * If compat_yield is turned on then we requeue to the end of the tree.
973 */
974 static void yield_task_fair(struct rq *rq)
975 {
976 struct task_struct *curr = rq->curr;
977 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
978 struct sched_entity *rightmost, *se = &curr->se;
979
980 /*
981 * Are we the only task in the tree?
982 */
983 if (unlikely(cfs_rq->nr_running == 1))
984 return;
985
986 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
987 update_rq_clock(rq);
988 /*
989 * Update run-time statistics of the 'current'.
990 */
991 update_curr(cfs_rq);
992
993 return;
994 }
995 /*
996 * Find the rightmost entry in the rbtree:
997 */
998 rightmost = __pick_last_entity(cfs_rq);
999 /*
1000 * Already in the rightmost position?
1001 */
1002 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1003 return;
1004
1005 /*
1006 * Minimally necessary key value to be last in the tree:
1007 * Upon rescheduling, sched_class::put_prev_task() will place
1008 * 'current' within the tree based on its new key value.
1009 */
1010 se->vruntime = rightmost->vruntime + 1;
1011 }
1012
1013 /*
1014 * wake_idle() will wake a task on an idle cpu if task->cpu is
1015 * not idle and an idle cpu is available. The span of cpus to
1016 * search starts with cpus closest then further out as needed,
1017 * so we always favor a closer, idle cpu.
1018 * Domains may include CPUs that are not usable for migration,
1019 * hence we need to mask them out (cpu_active_map)
1020 *
1021 * Returns the CPU we should wake onto.
1022 */
1023 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1024 static int wake_idle(int cpu, struct task_struct *p)
1025 {
1026 cpumask_t tmp;
1027 struct sched_domain *sd;
1028 int i;
1029
1030 /*
1031 * If it is idle, then it is the best cpu to run this task.
1032 *
1033 * This cpu is also the best, if it has more than one task already.
1034 * Siblings must be also busy(in most cases) as they didn't already
1035 * pickup the extra load from this cpu and hence we need not check
1036 * sibling runqueue info. This will avoid the checks and cache miss
1037 * penalities associated with that.
1038 */
1039 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1040 return cpu;
1041
1042 for_each_domain(cpu, sd) {
1043 if ((sd->flags & SD_WAKE_IDLE)
1044 || ((sd->flags & SD_WAKE_IDLE_FAR)
1045 && !task_hot(p, task_rq(p)->clock, sd))) {
1046 cpus_and(tmp, sd->span, p->cpus_allowed);
1047 cpus_and(tmp, tmp, cpu_active_map);
1048 for_each_cpu_mask_nr(i, tmp) {
1049 if (idle_cpu(i)) {
1050 if (i != task_cpu(p)) {
1051 schedstat_inc(p,
1052 se.nr_wakeups_idle);
1053 }
1054 return i;
1055 }
1056 }
1057 } else {
1058 break;
1059 }
1060 }
1061 return cpu;
1062 }
1063 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1064 static inline int wake_idle(int cpu, struct task_struct *p)
1065 {
1066 return cpu;
1067 }
1068 #endif
1069
1070 #ifdef CONFIG_SMP
1071
1072 #ifdef CONFIG_FAIR_GROUP_SCHED
1073 /*
1074 * effective_load() calculates the load change as seen from the root_task_group
1075 *
1076 * Adding load to a group doesn't make a group heavier, but can cause movement
1077 * of group shares between cpus. Assuming the shares were perfectly aligned one
1078 * can calculate the shift in shares.
1079 *
1080 * The problem is that perfectly aligning the shares is rather expensive, hence
1081 * we try to avoid doing that too often - see update_shares(), which ratelimits
1082 * this change.
1083 *
1084 * We compensate this by not only taking the current delta into account, but
1085 * also considering the delta between when the shares were last adjusted and
1086 * now.
1087 *
1088 * We still saw a performance dip, some tracing learned us that between
1089 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1090 * significantly. Therefore try to bias the error in direction of failing
1091 * the affine wakeup.
1092 *
1093 */
1094 static long effective_load(struct task_group *tg, int cpu,
1095 long wl, long wg)
1096 {
1097 struct sched_entity *se = tg->se[cpu];
1098
1099 if (!tg->parent)
1100 return wl;
1101
1102 /*
1103 * By not taking the decrease of shares on the other cpu into
1104 * account our error leans towards reducing the affine wakeups.
1105 */
1106 if (!wl && sched_feat(ASYM_EFF_LOAD))
1107 return wl;
1108
1109 for_each_sched_entity(se) {
1110 long S, rw, s, a, b;
1111 long more_w;
1112
1113 /*
1114 * Instead of using this increment, also add the difference
1115 * between when the shares were last updated and now.
1116 */
1117 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1118 wl += more_w;
1119 wg += more_w;
1120
1121 S = se->my_q->tg->shares;
1122 s = se->my_q->shares;
1123 rw = se->my_q->rq_weight;
1124
1125 a = S*(rw + wl);
1126 b = S*rw + s*wg;
1127
1128 wl = s*(a-b);
1129
1130 if (likely(b))
1131 wl /= b;
1132
1133 /*
1134 * Assume the group is already running and will
1135 * thus already be accounted for in the weight.
1136 *
1137 * That is, moving shares between CPUs, does not
1138 * alter the group weight.
1139 */
1140 wg = 0;
1141 }
1142
1143 return wl;
1144 }
1145
1146 #else
1147
1148 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1149 unsigned long wl, unsigned long wg)
1150 {
1151 return wl;
1152 }
1153
1154 #endif
1155
1156 static int
1157 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1158 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1159 int idx, unsigned long load, unsigned long this_load,
1160 unsigned int imbalance)
1161 {
1162 struct task_struct *curr = this_rq->curr;
1163 struct task_group *tg;
1164 unsigned long tl = this_load;
1165 unsigned long tl_per_task;
1166 unsigned long weight;
1167 int balanced;
1168
1169 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1170 return 0;
1171
1172 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1173 p->se.avg_overlap > sysctl_sched_migration_cost))
1174 sync = 0;
1175
1176 /*
1177 * If sync wakeup then subtract the (maximum possible)
1178 * effect of the currently running task from the load
1179 * of the current CPU:
1180 */
1181 if (sync) {
1182 tg = task_group(current);
1183 weight = current->se.load.weight;
1184
1185 tl += effective_load(tg, this_cpu, -weight, -weight);
1186 load += effective_load(tg, prev_cpu, 0, -weight);
1187 }
1188
1189 tg = task_group(p);
1190 weight = p->se.load.weight;
1191
1192 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1193 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1194
1195 /*
1196 * If the currently running task will sleep within
1197 * a reasonable amount of time then attract this newly
1198 * woken task:
1199 */
1200 if (sync && balanced)
1201 return 1;
1202
1203 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1204 tl_per_task = cpu_avg_load_per_task(this_cpu);
1205
1206 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1207 tl_per_task)) {
1208 /*
1209 * This domain has SD_WAKE_AFFINE and
1210 * p is cache cold in this domain, and
1211 * there is no bad imbalance.
1212 */
1213 schedstat_inc(this_sd, ttwu_move_affine);
1214 schedstat_inc(p, se.nr_wakeups_affine);
1215
1216 return 1;
1217 }
1218 return 0;
1219 }
1220
1221 static int select_task_rq_fair(struct task_struct *p, int sync)
1222 {
1223 struct sched_domain *sd, *this_sd = NULL;
1224 int prev_cpu, this_cpu, new_cpu;
1225 unsigned long load, this_load;
1226 struct rq *this_rq;
1227 unsigned int imbalance;
1228 int idx;
1229
1230 prev_cpu = task_cpu(p);
1231 this_cpu = smp_processor_id();
1232 this_rq = cpu_rq(this_cpu);
1233 new_cpu = prev_cpu;
1234
1235 if (prev_cpu == this_cpu)
1236 goto out;
1237 /*
1238 * 'this_sd' is the first domain that both
1239 * this_cpu and prev_cpu are present in:
1240 */
1241 for_each_domain(this_cpu, sd) {
1242 if (cpu_isset(prev_cpu, sd->span)) {
1243 this_sd = sd;
1244 break;
1245 }
1246 }
1247
1248 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1249 goto out;
1250
1251 /*
1252 * Check for affine wakeup and passive balancing possibilities.
1253 */
1254 if (!this_sd)
1255 goto out;
1256
1257 idx = this_sd->wake_idx;
1258
1259 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1260
1261 load = source_load(prev_cpu, idx);
1262 this_load = target_load(this_cpu, idx);
1263
1264 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1265 load, this_load, imbalance))
1266 return this_cpu;
1267
1268 /*
1269 * Start passive balancing when half the imbalance_pct
1270 * limit is reached.
1271 */
1272 if (this_sd->flags & SD_WAKE_BALANCE) {
1273 if (imbalance*this_load <= 100*load) {
1274 schedstat_inc(this_sd, ttwu_move_balance);
1275 schedstat_inc(p, se.nr_wakeups_passive);
1276 return this_cpu;
1277 }
1278 }
1279
1280 out:
1281 return wake_idle(new_cpu, p);
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 static unsigned long wakeup_gran(struct sched_entity *se)
1286 {
1287 unsigned long gran = sysctl_sched_wakeup_granularity;
1288
1289 /*
1290 * More easily preempt - nice tasks, while not making it harder for
1291 * + nice tasks.
1292 */
1293 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1294 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1295
1296 return gran;
1297 }
1298
1299 /*
1300 * Should 'se' preempt 'curr'.
1301 *
1302 * |s1
1303 * |s2
1304 * |s3
1305 * g
1306 * |<--->|c
1307 *
1308 * w(c, s1) = -1
1309 * w(c, s2) = 0
1310 * w(c, s3) = 1
1311 *
1312 */
1313 static int
1314 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1315 {
1316 s64 gran, vdiff = curr->vruntime - se->vruntime;
1317
1318 if (vdiff <= 0)
1319 return -1;
1320
1321 gran = wakeup_gran(curr);
1322 if (vdiff > gran)
1323 return 1;
1324
1325 return 0;
1326 }
1327
1328 /*
1329 * Preempt the current task with a newly woken task if needed:
1330 */
1331 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1332 {
1333 struct task_struct *curr = rq->curr;
1334 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1335 struct sched_entity *se = &curr->se, *pse = &p->se;
1336
1337 if (unlikely(rt_prio(p->prio))) {
1338 update_rq_clock(rq);
1339 update_curr(cfs_rq);
1340 resched_task(curr);
1341 return;
1342 }
1343
1344 if (unlikely(se == pse))
1345 return;
1346
1347 cfs_rq_of(pse)->next = pse;
1348
1349 /*
1350 * We can come here with TIF_NEED_RESCHED already set from new task
1351 * wake up path.
1352 */
1353 if (test_tsk_need_resched(curr))
1354 return;
1355
1356 /*
1357 * Batch tasks do not preempt (their preemption is driven by
1358 * the tick):
1359 */
1360 if (unlikely(p->policy == SCHED_BATCH))
1361 return;
1362
1363 if (!sched_feat(WAKEUP_PREEMPT))
1364 return;
1365
1366 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1367 (se->avg_overlap < sysctl_sched_migration_cost &&
1368 pse->avg_overlap < sysctl_sched_migration_cost))) {
1369 resched_task(curr);
1370 return;
1371 }
1372
1373 find_matching_se(&se, &pse);
1374
1375 while (se) {
1376 BUG_ON(!pse);
1377
1378 if (wakeup_preempt_entity(se, pse) == 1) {
1379 resched_task(curr);
1380 break;
1381 }
1382
1383 se = parent_entity(se);
1384 pse = parent_entity(pse);
1385 }
1386 }
1387
1388 static struct task_struct *pick_next_task_fair(struct rq *rq)
1389 {
1390 struct task_struct *p;
1391 struct cfs_rq *cfs_rq = &rq->cfs;
1392 struct sched_entity *se;
1393
1394 if (unlikely(!cfs_rq->nr_running))
1395 return NULL;
1396
1397 do {
1398 se = pick_next_entity(cfs_rq);
1399 cfs_rq = group_cfs_rq(se);
1400 } while (cfs_rq);
1401
1402 p = task_of(se);
1403 hrtick_start_fair(rq, p);
1404
1405 return p;
1406 }
1407
1408 /*
1409 * Account for a descheduled task:
1410 */
1411 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1412 {
1413 struct sched_entity *se = &prev->se;
1414 struct cfs_rq *cfs_rq;
1415
1416 for_each_sched_entity(se) {
1417 cfs_rq = cfs_rq_of(se);
1418 put_prev_entity(cfs_rq, se);
1419 }
1420 }
1421
1422 #ifdef CONFIG_SMP
1423 /**************************************************
1424 * Fair scheduling class load-balancing methods:
1425 */
1426
1427 /*
1428 * Load-balancing iterator. Note: while the runqueue stays locked
1429 * during the whole iteration, the current task might be
1430 * dequeued so the iterator has to be dequeue-safe. Here we
1431 * achieve that by always pre-iterating before returning
1432 * the current task:
1433 */
1434 static struct task_struct *
1435 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1436 {
1437 struct task_struct *p = NULL;
1438 struct sched_entity *se;
1439
1440 if (next == &cfs_rq->tasks)
1441 return NULL;
1442
1443 se = list_entry(next, struct sched_entity, group_node);
1444 p = task_of(se);
1445 cfs_rq->balance_iterator = next->next;
1446
1447 return p;
1448 }
1449
1450 static struct task_struct *load_balance_start_fair(void *arg)
1451 {
1452 struct cfs_rq *cfs_rq = arg;
1453
1454 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1455 }
1456
1457 static struct task_struct *load_balance_next_fair(void *arg)
1458 {
1459 struct cfs_rq *cfs_rq = arg;
1460
1461 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1462 }
1463
1464 static unsigned long
1465 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1466 unsigned long max_load_move, struct sched_domain *sd,
1467 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1468 struct cfs_rq *cfs_rq)
1469 {
1470 struct rq_iterator cfs_rq_iterator;
1471
1472 cfs_rq_iterator.start = load_balance_start_fair;
1473 cfs_rq_iterator.next = load_balance_next_fair;
1474 cfs_rq_iterator.arg = cfs_rq;
1475
1476 return balance_tasks(this_rq, this_cpu, busiest,
1477 max_load_move, sd, idle, all_pinned,
1478 this_best_prio, &cfs_rq_iterator);
1479 }
1480
1481 #ifdef CONFIG_FAIR_GROUP_SCHED
1482 static unsigned long
1483 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1484 unsigned long max_load_move,
1485 struct sched_domain *sd, enum cpu_idle_type idle,
1486 int *all_pinned, int *this_best_prio)
1487 {
1488 long rem_load_move = max_load_move;
1489 int busiest_cpu = cpu_of(busiest);
1490 struct task_group *tg;
1491
1492 rcu_read_lock();
1493 update_h_load(busiest_cpu);
1494
1495 list_for_each_entry_rcu(tg, &task_groups, list) {
1496 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1497 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1498 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1499 u64 rem_load, moved_load;
1500
1501 /*
1502 * empty group
1503 */
1504 if (!busiest_cfs_rq->task_weight)
1505 continue;
1506
1507 rem_load = (u64)rem_load_move * busiest_weight;
1508 rem_load = div_u64(rem_load, busiest_h_load + 1);
1509
1510 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1511 rem_load, sd, idle, all_pinned, this_best_prio,
1512 tg->cfs_rq[busiest_cpu]);
1513
1514 if (!moved_load)
1515 continue;
1516
1517 moved_load *= busiest_h_load;
1518 moved_load = div_u64(moved_load, busiest_weight + 1);
1519
1520 rem_load_move -= moved_load;
1521 if (rem_load_move < 0)
1522 break;
1523 }
1524 rcu_read_unlock();
1525
1526 return max_load_move - rem_load_move;
1527 }
1528 #else
1529 static unsigned long
1530 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1531 unsigned long max_load_move,
1532 struct sched_domain *sd, enum cpu_idle_type idle,
1533 int *all_pinned, int *this_best_prio)
1534 {
1535 return __load_balance_fair(this_rq, this_cpu, busiest,
1536 max_load_move, sd, idle, all_pinned,
1537 this_best_prio, &busiest->cfs);
1538 }
1539 #endif
1540
1541 static int
1542 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1543 struct sched_domain *sd, enum cpu_idle_type idle)
1544 {
1545 struct cfs_rq *busy_cfs_rq;
1546 struct rq_iterator cfs_rq_iterator;
1547
1548 cfs_rq_iterator.start = load_balance_start_fair;
1549 cfs_rq_iterator.next = load_balance_next_fair;
1550
1551 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1552 /*
1553 * pass busy_cfs_rq argument into
1554 * load_balance_[start|next]_fair iterators
1555 */
1556 cfs_rq_iterator.arg = busy_cfs_rq;
1557 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1558 &cfs_rq_iterator))
1559 return 1;
1560 }
1561
1562 return 0;
1563 }
1564 #endif /* CONFIG_SMP */
1565
1566 /*
1567 * scheduler tick hitting a task of our scheduling class:
1568 */
1569 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1570 {
1571 struct cfs_rq *cfs_rq;
1572 struct sched_entity *se = &curr->se;
1573
1574 for_each_sched_entity(se) {
1575 cfs_rq = cfs_rq_of(se);
1576 entity_tick(cfs_rq, se, queued);
1577 }
1578 }
1579
1580 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1581
1582 /*
1583 * Share the fairness runtime between parent and child, thus the
1584 * total amount of pressure for CPU stays equal - new tasks
1585 * get a chance to run but frequent forkers are not allowed to
1586 * monopolize the CPU. Note: the parent runqueue is locked,
1587 * the child is not running yet.
1588 */
1589 static void task_new_fair(struct rq *rq, struct task_struct *p)
1590 {
1591 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1592 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1593 int this_cpu = smp_processor_id();
1594
1595 sched_info_queued(p);
1596
1597 update_curr(cfs_rq);
1598 place_entity(cfs_rq, se, 1);
1599
1600 /* 'curr' will be NULL if the child belongs to a different group */
1601 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1602 curr && curr->vruntime < se->vruntime) {
1603 /*
1604 * Upon rescheduling, sched_class::put_prev_task() will place
1605 * 'current' within the tree based on its new key value.
1606 */
1607 swap(curr->vruntime, se->vruntime);
1608 resched_task(rq->curr);
1609 }
1610
1611 enqueue_task_fair(rq, p, 0);
1612 }
1613
1614 /*
1615 * Priority of the task has changed. Check to see if we preempt
1616 * the current task.
1617 */
1618 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1619 int oldprio, int running)
1620 {
1621 /*
1622 * Reschedule if we are currently running on this runqueue and
1623 * our priority decreased, or if we are not currently running on
1624 * this runqueue and our priority is higher than the current's
1625 */
1626 if (running) {
1627 if (p->prio > oldprio)
1628 resched_task(rq->curr);
1629 } else
1630 check_preempt_curr(rq, p, 0);
1631 }
1632
1633 /*
1634 * We switched to the sched_fair class.
1635 */
1636 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1637 int running)
1638 {
1639 /*
1640 * We were most likely switched from sched_rt, so
1641 * kick off the schedule if running, otherwise just see
1642 * if we can still preempt the current task.
1643 */
1644 if (running)
1645 resched_task(rq->curr);
1646 else
1647 check_preempt_curr(rq, p, 0);
1648 }
1649
1650 /* Account for a task changing its policy or group.
1651 *
1652 * This routine is mostly called to set cfs_rq->curr field when a task
1653 * migrates between groups/classes.
1654 */
1655 static void set_curr_task_fair(struct rq *rq)
1656 {
1657 struct sched_entity *se = &rq->curr->se;
1658
1659 for_each_sched_entity(se)
1660 set_next_entity(cfs_rq_of(se), se);
1661 }
1662
1663 #ifdef CONFIG_FAIR_GROUP_SCHED
1664 static void moved_group_fair(struct task_struct *p)
1665 {
1666 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1667
1668 update_curr(cfs_rq);
1669 place_entity(cfs_rq, &p->se, 1);
1670 }
1671 #endif
1672
1673 /*
1674 * All the scheduling class methods:
1675 */
1676 static const struct sched_class fair_sched_class = {
1677 .next = &idle_sched_class,
1678 .enqueue_task = enqueue_task_fair,
1679 .dequeue_task = dequeue_task_fair,
1680 .yield_task = yield_task_fair,
1681
1682 .check_preempt_curr = check_preempt_wakeup,
1683
1684 .pick_next_task = pick_next_task_fair,
1685 .put_prev_task = put_prev_task_fair,
1686
1687 #ifdef CONFIG_SMP
1688 .select_task_rq = select_task_rq_fair,
1689
1690 .load_balance = load_balance_fair,
1691 .move_one_task = move_one_task_fair,
1692 #endif
1693
1694 .set_curr_task = set_curr_task_fair,
1695 .task_tick = task_tick_fair,
1696 .task_new = task_new_fair,
1697
1698 .prio_changed = prio_changed_fair,
1699 .switched_to = switched_to_fair,
1700
1701 #ifdef CONFIG_FAIR_GROUP_SCHED
1702 .moved_group = moved_group_fair,
1703 #endif
1704 };
1705
1706 #ifdef CONFIG_SCHED_DEBUG
1707 static void print_cfs_stats(struct seq_file *m, int cpu)
1708 {
1709 struct cfs_rq *cfs_rq;
1710
1711 rcu_read_lock();
1712 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1713 print_cfs_rq(m, cpu, cfs_rq);
1714 rcu_read_unlock();
1715 }
1716 #endif