sched: add sched-domain roots
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
31 *
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
34 */
35 unsigned int sysctl_sched_latency = 20000000ULL;
36
37 /*
38 * Minimal preemption granularity for CPU-bound tasks:
39 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
40 */
41 unsigned int sysctl_sched_min_granularity = 4000000ULL;
42
43 /*
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
45 */
46 static unsigned int sched_nr_latency = 5;
47
48 /*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
51 */
52 const_debug unsigned int sysctl_sched_child_runs_first = 1;
53
54 /*
55 * sys_sched_yield() compat mode
56 *
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
59 */
60 unsigned int __read_mostly sysctl_sched_compat_yield;
61
62 /*
63 * SCHED_BATCH wake-up granularity.
64 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 *
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
69 */
70 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
81
82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
83
84 /**************************************************************
85 * CFS operations on generic schedulable entities:
86 */
87
88 #ifdef CONFIG_FAIR_GROUP_SCHED
89
90 /* cpu runqueue to which this cfs_rq is attached */
91 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92 {
93 return cfs_rq->rq;
94 }
95
96 /* An entity is a task if it doesn't "own" a runqueue */
97 #define entity_is_task(se) (!se->my_q)
98
99 #else /* CONFIG_FAIR_GROUP_SCHED */
100
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return container_of(cfs_rq, struct rq, cfs);
104 }
105
106 #define entity_is_task(se) 1
107
108 #endif /* CONFIG_FAIR_GROUP_SCHED */
109
110 static inline struct task_struct *task_of(struct sched_entity *se)
111 {
112 return container_of(se, struct task_struct, se);
113 }
114
115
116 /**************************************************************
117 * Scheduling class tree data structure manipulation methods:
118 */
119
120 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
121 {
122 s64 delta = (s64)(vruntime - min_vruntime);
123 if (delta > 0)
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127 }
128
129 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
130 {
131 s64 delta = (s64)(vruntime - min_vruntime);
132 if (delta < 0)
133 min_vruntime = vruntime;
134
135 return min_vruntime;
136 }
137
138 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 return se->vruntime - cfs_rq->min_vruntime;
141 }
142
143 /*
144 * Enqueue an entity into the rb-tree:
145 */
146 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 {
148 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
149 struct rb_node *parent = NULL;
150 struct sched_entity *entry;
151 s64 key = entity_key(cfs_rq, se);
152 int leftmost = 1;
153
154 /*
155 * Find the right place in the rbtree:
156 */
157 while (*link) {
158 parent = *link;
159 entry = rb_entry(parent, struct sched_entity, run_node);
160 /*
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
163 */
164 if (key < entity_key(cfs_rq, entry)) {
165 link = &parent->rb_left;
166 } else {
167 link = &parent->rb_right;
168 leftmost = 0;
169 }
170 }
171
172 /*
173 * Maintain a cache of leftmost tree entries (it is frequently
174 * used):
175 */
176 if (leftmost)
177 cfs_rq->rb_leftmost = &se->run_node;
178
179 rb_link_node(&se->run_node, parent, link);
180 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
181 }
182
183 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 {
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
187
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
189 }
190
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192 {
193 return cfs_rq->rb_leftmost;
194 }
195
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197 {
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199 }
200
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202 {
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214 }
215
216 /**************************************************************
217 * Scheduling class statistics methods:
218 */
219
220 #ifdef CONFIG_SCHED_DEBUG
221 int sched_nr_latency_handler(struct ctl_table *table, int write,
222 struct file *filp, void __user *buffer, size_t *lenp,
223 loff_t *ppos)
224 {
225 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
226
227 if (ret || !write)
228 return ret;
229
230 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
231 sysctl_sched_min_granularity);
232
233 return 0;
234 }
235 #endif
236
237 /*
238 * The idea is to set a period in which each task runs once.
239 *
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
242 *
243 * p = (nr <= nl) ? l : l*nr/nl
244 */
245 static u64 __sched_period(unsigned long nr_running)
246 {
247 u64 period = sysctl_sched_latency;
248 unsigned long nr_latency = sched_nr_latency;
249
250 if (unlikely(nr_running > nr_latency)) {
251 period *= nr_running;
252 do_div(period, nr_latency);
253 }
254
255 return period;
256 }
257
258 /*
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
261 *
262 * s = p*w/rw
263 */
264 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
265 {
266 u64 slice = __sched_period(cfs_rq->nr_running);
267
268 slice *= se->load.weight;
269 do_div(slice, cfs_rq->load.weight);
270
271 return slice;
272 }
273
274 /*
275 * We calculate the vruntime slice.
276 *
277 * vs = s/w = p/rw
278 */
279 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
280 {
281 u64 vslice = __sched_period(nr_running);
282
283 vslice *= NICE_0_LOAD;
284 do_div(vslice, rq_weight);
285
286 return vslice;
287 }
288
289 static u64 sched_vslice(struct cfs_rq *cfs_rq)
290 {
291 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
292 }
293
294 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
295 {
296 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
297 cfs_rq->nr_running + 1);
298 }
299
300 /*
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
303 */
304 static inline void
305 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
306 unsigned long delta_exec)
307 {
308 unsigned long delta_exec_weighted;
309 u64 vruntime;
310
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
319 }
320 curr->vruntime += delta_exec_weighted;
321
322 /*
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
325 */
326 if (first_fair(cfs_rq)) {
327 vruntime = min_vruntime(curr->vruntime,
328 __pick_next_entity(cfs_rq)->vruntime);
329 } else
330 vruntime = curr->vruntime;
331
332 cfs_rq->min_vruntime =
333 max_vruntime(cfs_rq->min_vruntime, vruntime);
334 }
335
336 static void update_curr(struct cfs_rq *cfs_rq)
337 {
338 struct sched_entity *curr = cfs_rq->curr;
339 u64 now = rq_of(cfs_rq)->clock;
340 unsigned long delta_exec;
341
342 if (unlikely(!curr))
343 return;
344
345 /*
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
349 */
350 delta_exec = (unsigned long)(now - curr->exec_start);
351
352 __update_curr(cfs_rq, curr, delta_exec);
353 curr->exec_start = now;
354
355 if (entity_is_task(curr)) {
356 struct task_struct *curtask = task_of(curr);
357
358 cpuacct_charge(curtask, delta_exec);
359 }
360 }
361
362 static inline void
363 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
364 {
365 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
366 }
367
368 /*
369 * Task is being enqueued - update stats:
370 */
371 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 {
373 /*
374 * Are we enqueueing a waiting task? (for current tasks
375 * a dequeue/enqueue event is a NOP)
376 */
377 if (se != cfs_rq->curr)
378 update_stats_wait_start(cfs_rq, se);
379 }
380
381 static void
382 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
383 {
384 schedstat_set(se->wait_max, max(se->wait_max,
385 rq_of(cfs_rq)->clock - se->wait_start));
386 schedstat_set(se->wait_start, 0);
387 }
388
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
391 {
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
398 }
399
400 /*
401 * We are picking a new current task - update its stats:
402 */
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 {
406 /*
407 * We are starting a new run period:
408 */
409 se->exec_start = rq_of(cfs_rq)->clock;
410 }
411
412 /**************************************************
413 * Scheduling class queueing methods:
414 */
415
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418 {
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422 }
423
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426 {
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430 }
431
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
433 {
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
437
438 if ((s64)delta < 0)
439 delta = 0;
440
441 if (unlikely(delta > se->sleep_max))
442 se->sleep_max = delta;
443
444 se->sleep_start = 0;
445 se->sum_sleep_runtime += delta;
446 }
447 if (se->block_start) {
448 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
449
450 if ((s64)delta < 0)
451 delta = 0;
452
453 if (unlikely(delta > se->block_max))
454 se->block_max = delta;
455
456 se->block_start = 0;
457 se->sum_sleep_runtime += delta;
458
459 /*
460 * Blocking time is in units of nanosecs, so shift by 20 to
461 * get a milliseconds-range estimation of the amount of
462 * time that the task spent sleeping:
463 */
464 if (unlikely(prof_on == SLEEP_PROFILING)) {
465 struct task_struct *tsk = task_of(se);
466
467 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
468 delta >> 20);
469 }
470 }
471 #endif
472 }
473
474 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
475 {
476 #ifdef CONFIG_SCHED_DEBUG
477 s64 d = se->vruntime - cfs_rq->min_vruntime;
478
479 if (d < 0)
480 d = -d;
481
482 if (d > 3*sysctl_sched_latency)
483 schedstat_inc(cfs_rq, nr_spread_over);
484 #endif
485 }
486
487 static void
488 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
489 {
490 u64 vruntime;
491
492 vruntime = cfs_rq->min_vruntime;
493
494 if (sched_feat(TREE_AVG)) {
495 struct sched_entity *last = __pick_last_entity(cfs_rq);
496 if (last) {
497 vruntime += last->vruntime;
498 vruntime >>= 1;
499 }
500 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
501 vruntime += sched_vslice(cfs_rq)/2;
502
503 /*
504 * The 'current' period is already promised to the current tasks,
505 * however the extra weight of the new task will slow them down a
506 * little, place the new task so that it fits in the slot that
507 * stays open at the end.
508 */
509 if (initial && sched_feat(START_DEBIT))
510 vruntime += sched_vslice_add(cfs_rq, se);
511
512 if (!initial) {
513 /* sleeps upto a single latency don't count. */
514 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
515 vruntime -= sysctl_sched_latency;
516
517 /* ensure we never gain time by being placed backwards. */
518 vruntime = max_vruntime(se->vruntime, vruntime);
519 }
520
521 se->vruntime = vruntime;
522 }
523
524 static void
525 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
526 {
527 /*
528 * Update run-time statistics of the 'current'.
529 */
530 update_curr(cfs_rq);
531
532 if (wakeup) {
533 place_entity(cfs_rq, se, 0);
534 enqueue_sleeper(cfs_rq, se);
535 }
536
537 update_stats_enqueue(cfs_rq, se);
538 check_spread(cfs_rq, se);
539 if (se != cfs_rq->curr)
540 __enqueue_entity(cfs_rq, se);
541 account_entity_enqueue(cfs_rq, se);
542 }
543
544 static void
545 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
546 {
547 /*
548 * Update run-time statistics of the 'current'.
549 */
550 update_curr(cfs_rq);
551
552 update_stats_dequeue(cfs_rq, se);
553 if (sleep) {
554 #ifdef CONFIG_SCHEDSTATS
555 if (entity_is_task(se)) {
556 struct task_struct *tsk = task_of(se);
557
558 if (tsk->state & TASK_INTERRUPTIBLE)
559 se->sleep_start = rq_of(cfs_rq)->clock;
560 if (tsk->state & TASK_UNINTERRUPTIBLE)
561 se->block_start = rq_of(cfs_rq)->clock;
562 }
563 #endif
564 }
565
566 if (se != cfs_rq->curr)
567 __dequeue_entity(cfs_rq, se);
568 account_entity_dequeue(cfs_rq, se);
569 }
570
571 /*
572 * Preempt the current task with a newly woken task if needed:
573 */
574 static void
575 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
576 {
577 unsigned long ideal_runtime, delta_exec;
578
579 ideal_runtime = sched_slice(cfs_rq, curr);
580 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
581 if (delta_exec > ideal_runtime)
582 resched_task(rq_of(cfs_rq)->curr);
583 }
584
585 static void
586 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /* 'current' is not kept within the tree. */
589 if (se->on_rq) {
590 /*
591 * Any task has to be enqueued before it get to execute on
592 * a CPU. So account for the time it spent waiting on the
593 * runqueue.
594 */
595 update_stats_wait_end(cfs_rq, se);
596 __dequeue_entity(cfs_rq, se);
597 }
598
599 update_stats_curr_start(cfs_rq, se);
600 cfs_rq->curr = se;
601 #ifdef CONFIG_SCHEDSTATS
602 /*
603 * Track our maximum slice length, if the CPU's load is at
604 * least twice that of our own weight (i.e. dont track it
605 * when there are only lesser-weight tasks around):
606 */
607 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
608 se->slice_max = max(se->slice_max,
609 se->sum_exec_runtime - se->prev_sum_exec_runtime);
610 }
611 #endif
612 se->prev_sum_exec_runtime = se->sum_exec_runtime;
613 }
614
615 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
616 {
617 struct sched_entity *se = NULL;
618
619 if (first_fair(cfs_rq)) {
620 se = __pick_next_entity(cfs_rq);
621 set_next_entity(cfs_rq, se);
622 }
623
624 return se;
625 }
626
627 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
628 {
629 /*
630 * If still on the runqueue then deactivate_task()
631 * was not called and update_curr() has to be done:
632 */
633 if (prev->on_rq)
634 update_curr(cfs_rq);
635
636 check_spread(cfs_rq, prev);
637 if (prev->on_rq) {
638 update_stats_wait_start(cfs_rq, prev);
639 /* Put 'current' back into the tree. */
640 __enqueue_entity(cfs_rq, prev);
641 }
642 cfs_rq->curr = NULL;
643 }
644
645 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
646 {
647 /*
648 * Update run-time statistics of the 'current'.
649 */
650 update_curr(cfs_rq);
651
652 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
653 check_preempt_tick(cfs_rq, curr);
654 }
655
656 /**************************************************
657 * CFS operations on tasks:
658 */
659
660 #ifdef CONFIG_FAIR_GROUP_SCHED
661
662 /* Walk up scheduling entities hierarchy */
663 #define for_each_sched_entity(se) \
664 for (; se; se = se->parent)
665
666 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
667 {
668 return p->se.cfs_rq;
669 }
670
671 /* runqueue on which this entity is (to be) queued */
672 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
673 {
674 return se->cfs_rq;
675 }
676
677 /* runqueue "owned" by this group */
678 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
679 {
680 return grp->my_q;
681 }
682
683 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
684 * another cpu ('this_cpu')
685 */
686 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
687 {
688 return cfs_rq->tg->cfs_rq[this_cpu];
689 }
690
691 /* Iterate thr' all leaf cfs_rq's on a runqueue */
692 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
693 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
694
695 /* Do the two (enqueued) entities belong to the same group ? */
696 static inline int
697 is_same_group(struct sched_entity *se, struct sched_entity *pse)
698 {
699 if (se->cfs_rq == pse->cfs_rq)
700 return 1;
701
702 return 0;
703 }
704
705 static inline struct sched_entity *parent_entity(struct sched_entity *se)
706 {
707 return se->parent;
708 }
709
710 #define GROUP_IMBALANCE_PCT 20
711
712 #else /* CONFIG_FAIR_GROUP_SCHED */
713
714 #define for_each_sched_entity(se) \
715 for (; se; se = NULL)
716
717 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
718 {
719 return &task_rq(p)->cfs;
720 }
721
722 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
723 {
724 struct task_struct *p = task_of(se);
725 struct rq *rq = task_rq(p);
726
727 return &rq->cfs;
728 }
729
730 /* runqueue "owned" by this group */
731 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
732 {
733 return NULL;
734 }
735
736 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
737 {
738 return &cpu_rq(this_cpu)->cfs;
739 }
740
741 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
742 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
743
744 static inline int
745 is_same_group(struct sched_entity *se, struct sched_entity *pse)
746 {
747 return 1;
748 }
749
750 static inline struct sched_entity *parent_entity(struct sched_entity *se)
751 {
752 return NULL;
753 }
754
755 #endif /* CONFIG_FAIR_GROUP_SCHED */
756
757 /*
758 * The enqueue_task method is called before nr_running is
759 * increased. Here we update the fair scheduling stats and
760 * then put the task into the rbtree:
761 */
762 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
763 {
764 struct cfs_rq *cfs_rq;
765 struct sched_entity *se = &p->se,
766 *topse = NULL; /* Highest schedulable entity */
767 int incload = 1;
768
769 for_each_sched_entity(se) {
770 topse = se;
771 if (se->on_rq) {
772 incload = 0;
773 break;
774 }
775 cfs_rq = cfs_rq_of(se);
776 enqueue_entity(cfs_rq, se, wakeup);
777 wakeup = 1;
778 }
779 /* Increment cpu load if we just enqueued the first task of a group on
780 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
781 * at the highest grouping level.
782 */
783 if (incload)
784 inc_cpu_load(rq, topse->load.weight);
785 }
786
787 /*
788 * The dequeue_task method is called before nr_running is
789 * decreased. We remove the task from the rbtree and
790 * update the fair scheduling stats:
791 */
792 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
793 {
794 struct cfs_rq *cfs_rq;
795 struct sched_entity *se = &p->se,
796 *topse = NULL; /* Highest schedulable entity */
797 int decload = 1;
798
799 for_each_sched_entity(se) {
800 topse = se;
801 cfs_rq = cfs_rq_of(se);
802 dequeue_entity(cfs_rq, se, sleep);
803 /* Don't dequeue parent if it has other entities besides us */
804 if (cfs_rq->load.weight) {
805 if (parent_entity(se))
806 decload = 0;
807 break;
808 }
809 sleep = 1;
810 }
811 /* Decrement cpu load if we just dequeued the last task of a group on
812 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
813 * at the highest grouping level.
814 */
815 if (decload)
816 dec_cpu_load(rq, topse->load.weight);
817 }
818
819 /*
820 * sched_yield() support is very simple - we dequeue and enqueue.
821 *
822 * If compat_yield is turned on then we requeue to the end of the tree.
823 */
824 static void yield_task_fair(struct rq *rq)
825 {
826 struct task_struct *curr = rq->curr;
827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
828 struct sched_entity *rightmost, *se = &curr->se;
829
830 /*
831 * Are we the only task in the tree?
832 */
833 if (unlikely(cfs_rq->nr_running == 1))
834 return;
835
836 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
837 __update_rq_clock(rq);
838 /*
839 * Update run-time statistics of the 'current'.
840 */
841 update_curr(cfs_rq);
842
843 return;
844 }
845 /*
846 * Find the rightmost entry in the rbtree:
847 */
848 rightmost = __pick_last_entity(cfs_rq);
849 /*
850 * Already in the rightmost position?
851 */
852 if (unlikely(rightmost->vruntime < se->vruntime))
853 return;
854
855 /*
856 * Minimally necessary key value to be last in the tree:
857 * Upon rescheduling, sched_class::put_prev_task() will place
858 * 'current' within the tree based on its new key value.
859 */
860 se->vruntime = rightmost->vruntime + 1;
861 }
862
863 /*
864 * wake_idle() will wake a task on an idle cpu if task->cpu is
865 * not idle and an idle cpu is available. The span of cpus to
866 * search starts with cpus closest then further out as needed,
867 * so we always favor a closer, idle cpu.
868 *
869 * Returns the CPU we should wake onto.
870 */
871 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
872 static int wake_idle(int cpu, struct task_struct *p)
873 {
874 cpumask_t tmp;
875 struct sched_domain *sd;
876 int i;
877
878 /*
879 * If it is idle, then it is the best cpu to run this task.
880 *
881 * This cpu is also the best, if it has more than one task already.
882 * Siblings must be also busy(in most cases) as they didn't already
883 * pickup the extra load from this cpu and hence we need not check
884 * sibling runqueue info. This will avoid the checks and cache miss
885 * penalities associated with that.
886 */
887 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
888 return cpu;
889
890 for_each_domain(cpu, sd) {
891 if (sd->flags & SD_WAKE_IDLE) {
892 cpus_and(tmp, sd->span, p->cpus_allowed);
893 for_each_cpu_mask(i, tmp) {
894 if (idle_cpu(i)) {
895 if (i != task_cpu(p)) {
896 schedstat_inc(p,
897 se.nr_wakeups_idle);
898 }
899 return i;
900 }
901 }
902 } else {
903 break;
904 }
905 }
906 return cpu;
907 }
908 #else
909 static inline int wake_idle(int cpu, struct task_struct *p)
910 {
911 return cpu;
912 }
913 #endif
914
915 #ifdef CONFIG_SMP
916 static int select_task_rq_fair(struct task_struct *p, int sync)
917 {
918 int cpu, this_cpu;
919 struct rq *rq;
920 struct sched_domain *sd, *this_sd = NULL;
921 int new_cpu;
922
923 cpu = task_cpu(p);
924 rq = task_rq(p);
925 this_cpu = smp_processor_id();
926 new_cpu = cpu;
927
928 for_each_domain(this_cpu, sd) {
929 if (cpu_isset(cpu, sd->span)) {
930 this_sd = sd;
931 break;
932 }
933 }
934
935 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
936 goto out_set_cpu;
937
938 /*
939 * Check for affine wakeup and passive balancing possibilities.
940 */
941 if (this_sd) {
942 int idx = this_sd->wake_idx;
943 unsigned int imbalance;
944 unsigned long load, this_load;
945
946 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
947
948 load = source_load(cpu, idx);
949 this_load = target_load(this_cpu, idx);
950
951 new_cpu = this_cpu; /* Wake to this CPU if we can */
952
953 if (this_sd->flags & SD_WAKE_AFFINE) {
954 unsigned long tl = this_load;
955 unsigned long tl_per_task;
956
957 /*
958 * Attract cache-cold tasks on sync wakeups:
959 */
960 if (sync && !task_hot(p, rq->clock, this_sd))
961 goto out_set_cpu;
962
963 schedstat_inc(p, se.nr_wakeups_affine_attempts);
964 tl_per_task = cpu_avg_load_per_task(this_cpu);
965
966 /*
967 * If sync wakeup then subtract the (maximum possible)
968 * effect of the currently running task from the load
969 * of the current CPU:
970 */
971 if (sync)
972 tl -= current->se.load.weight;
973
974 if ((tl <= load &&
975 tl + target_load(cpu, idx) <= tl_per_task) ||
976 100*(tl + p->se.load.weight) <= imbalance*load) {
977 /*
978 * This domain has SD_WAKE_AFFINE and
979 * p is cache cold in this domain, and
980 * there is no bad imbalance.
981 */
982 schedstat_inc(this_sd, ttwu_move_affine);
983 schedstat_inc(p, se.nr_wakeups_affine);
984 goto out_set_cpu;
985 }
986 }
987
988 /*
989 * Start passive balancing when half the imbalance_pct
990 * limit is reached.
991 */
992 if (this_sd->flags & SD_WAKE_BALANCE) {
993 if (imbalance*this_load <= 100*load) {
994 schedstat_inc(this_sd, ttwu_move_balance);
995 schedstat_inc(p, se.nr_wakeups_passive);
996 goto out_set_cpu;
997 }
998 }
999 }
1000
1001 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1002 out_set_cpu:
1003 return wake_idle(new_cpu, p);
1004 }
1005 #endif /* CONFIG_SMP */
1006
1007
1008 /*
1009 * Preempt the current task with a newly woken task if needed:
1010 */
1011 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1012 {
1013 struct task_struct *curr = rq->curr;
1014 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1015 struct sched_entity *se = &curr->se, *pse = &p->se;
1016 unsigned long gran;
1017
1018 if (unlikely(rt_prio(p->prio))) {
1019 update_rq_clock(rq);
1020 update_curr(cfs_rq);
1021 resched_task(curr);
1022 return;
1023 }
1024 /*
1025 * Batch tasks do not preempt (their preemption is driven by
1026 * the tick):
1027 */
1028 if (unlikely(p->policy == SCHED_BATCH))
1029 return;
1030
1031 if (!sched_feat(WAKEUP_PREEMPT))
1032 return;
1033
1034 while (!is_same_group(se, pse)) {
1035 se = parent_entity(se);
1036 pse = parent_entity(pse);
1037 }
1038
1039 gran = sysctl_sched_wakeup_granularity;
1040 if (unlikely(se->load.weight != NICE_0_LOAD))
1041 gran = calc_delta_fair(gran, &se->load);
1042
1043 if (pse->vruntime + gran < se->vruntime)
1044 resched_task(curr);
1045 }
1046
1047 static struct task_struct *pick_next_task_fair(struct rq *rq)
1048 {
1049 struct cfs_rq *cfs_rq = &rq->cfs;
1050 struct sched_entity *se;
1051
1052 if (unlikely(!cfs_rq->nr_running))
1053 return NULL;
1054
1055 do {
1056 se = pick_next_entity(cfs_rq);
1057 cfs_rq = group_cfs_rq(se);
1058 } while (cfs_rq);
1059
1060 return task_of(se);
1061 }
1062
1063 /*
1064 * Account for a descheduled task:
1065 */
1066 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1067 {
1068 struct sched_entity *se = &prev->se;
1069 struct cfs_rq *cfs_rq;
1070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 put_prev_entity(cfs_rq, se);
1074 }
1075 }
1076
1077 #ifdef CONFIG_SMP
1078 /**************************************************
1079 * Fair scheduling class load-balancing methods:
1080 */
1081
1082 /*
1083 * Load-balancing iterator. Note: while the runqueue stays locked
1084 * during the whole iteration, the current task might be
1085 * dequeued so the iterator has to be dequeue-safe. Here we
1086 * achieve that by always pre-iterating before returning
1087 * the current task:
1088 */
1089 static struct task_struct *
1090 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1091 {
1092 struct task_struct *p;
1093
1094 if (!curr)
1095 return NULL;
1096
1097 p = rb_entry(curr, struct task_struct, se.run_node);
1098 cfs_rq->rb_load_balance_curr = rb_next(curr);
1099
1100 return p;
1101 }
1102
1103 static struct task_struct *load_balance_start_fair(void *arg)
1104 {
1105 struct cfs_rq *cfs_rq = arg;
1106
1107 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1108 }
1109
1110 static struct task_struct *load_balance_next_fair(void *arg)
1111 {
1112 struct cfs_rq *cfs_rq = arg;
1113
1114 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1115 }
1116
1117 static unsigned long
1118 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1119 unsigned long max_load_move,
1120 struct sched_domain *sd, enum cpu_idle_type idle,
1121 int *all_pinned, int *this_best_prio)
1122 {
1123 struct cfs_rq *busy_cfs_rq;
1124 long rem_load_move = max_load_move;
1125 struct rq_iterator cfs_rq_iterator;
1126 unsigned long load_moved;
1127
1128 cfs_rq_iterator.start = load_balance_start_fair;
1129 cfs_rq_iterator.next = load_balance_next_fair;
1130
1131 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1132 #ifdef CONFIG_FAIR_GROUP_SCHED
1133 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1134 unsigned long maxload, task_load, group_weight;
1135 unsigned long thisload, per_task_load;
1136 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1137
1138 task_load = busy_cfs_rq->load.weight;
1139 group_weight = se->load.weight;
1140
1141 /*
1142 * 'group_weight' is contributed by tasks of total weight
1143 * 'task_load'. To move 'rem_load_move' worth of weight only,
1144 * we need to move a maximum task load of:
1145 *
1146 * maxload = (remload / group_weight) * task_load;
1147 */
1148 maxload = (rem_load_move * task_load) / group_weight;
1149
1150 if (!maxload || !task_load)
1151 continue;
1152
1153 per_task_load = task_load / busy_cfs_rq->nr_running;
1154 /*
1155 * balance_tasks will try to forcibly move atleast one task if
1156 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1157 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1158 */
1159 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1160 continue;
1161
1162 /* Disable priority-based load balance */
1163 *this_best_prio = 0;
1164 thisload = this_cfs_rq->load.weight;
1165 #else
1166 # define maxload rem_load_move
1167 #endif
1168 /*
1169 * pass busy_cfs_rq argument into
1170 * load_balance_[start|next]_fair iterators
1171 */
1172 cfs_rq_iterator.arg = busy_cfs_rq;
1173 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1174 maxload, sd, idle, all_pinned,
1175 this_best_prio,
1176 &cfs_rq_iterator);
1177
1178 #ifdef CONFIG_FAIR_GROUP_SCHED
1179 /*
1180 * load_moved holds the task load that was moved. The
1181 * effective (group) weight moved would be:
1182 * load_moved_eff = load_moved/task_load * group_weight;
1183 */
1184 load_moved = (group_weight * load_moved) / task_load;
1185
1186 /* Adjust shares on both cpus to reflect load_moved */
1187 group_weight -= load_moved;
1188 set_se_shares(se, group_weight);
1189
1190 se = busy_cfs_rq->tg->se[this_cpu];
1191 if (!thisload)
1192 group_weight = load_moved;
1193 else
1194 group_weight = se->load.weight + load_moved;
1195 set_se_shares(se, group_weight);
1196 #endif
1197
1198 rem_load_move -= load_moved;
1199
1200 if (rem_load_move <= 0)
1201 break;
1202 }
1203
1204 return max_load_move - rem_load_move;
1205 }
1206
1207 static int
1208 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1209 struct sched_domain *sd, enum cpu_idle_type idle)
1210 {
1211 struct cfs_rq *busy_cfs_rq;
1212 struct rq_iterator cfs_rq_iterator;
1213
1214 cfs_rq_iterator.start = load_balance_start_fair;
1215 cfs_rq_iterator.next = load_balance_next_fair;
1216
1217 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1218 /*
1219 * pass busy_cfs_rq argument into
1220 * load_balance_[start|next]_fair iterators
1221 */
1222 cfs_rq_iterator.arg = busy_cfs_rq;
1223 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1224 &cfs_rq_iterator))
1225 return 1;
1226 }
1227
1228 return 0;
1229 }
1230 #endif
1231
1232 /*
1233 * scheduler tick hitting a task of our scheduling class:
1234 */
1235 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1236 {
1237 struct cfs_rq *cfs_rq;
1238 struct sched_entity *se = &curr->se;
1239
1240 for_each_sched_entity(se) {
1241 cfs_rq = cfs_rq_of(se);
1242 entity_tick(cfs_rq, se);
1243 }
1244 }
1245
1246 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1247
1248 /*
1249 * Share the fairness runtime between parent and child, thus the
1250 * total amount of pressure for CPU stays equal - new tasks
1251 * get a chance to run but frequent forkers are not allowed to
1252 * monopolize the CPU. Note: the parent runqueue is locked,
1253 * the child is not running yet.
1254 */
1255 static void task_new_fair(struct rq *rq, struct task_struct *p)
1256 {
1257 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1258 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1259 int this_cpu = smp_processor_id();
1260
1261 sched_info_queued(p);
1262
1263 update_curr(cfs_rq);
1264 place_entity(cfs_rq, se, 1);
1265
1266 /* 'curr' will be NULL if the child belongs to a different group */
1267 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1268 curr && curr->vruntime < se->vruntime) {
1269 /*
1270 * Upon rescheduling, sched_class::put_prev_task() will place
1271 * 'current' within the tree based on its new key value.
1272 */
1273 swap(curr->vruntime, se->vruntime);
1274 }
1275
1276 enqueue_task_fair(rq, p, 0);
1277 resched_task(rq->curr);
1278 }
1279
1280 /* Account for a task changing its policy or group.
1281 *
1282 * This routine is mostly called to set cfs_rq->curr field when a task
1283 * migrates between groups/classes.
1284 */
1285 static void set_curr_task_fair(struct rq *rq)
1286 {
1287 struct sched_entity *se = &rq->curr->se;
1288
1289 for_each_sched_entity(se)
1290 set_next_entity(cfs_rq_of(se), se);
1291 }
1292
1293 /*
1294 * All the scheduling class methods:
1295 */
1296 static const struct sched_class fair_sched_class = {
1297 .next = &idle_sched_class,
1298 .enqueue_task = enqueue_task_fair,
1299 .dequeue_task = dequeue_task_fair,
1300 .yield_task = yield_task_fair,
1301 #ifdef CONFIG_SMP
1302 .select_task_rq = select_task_rq_fair,
1303 #endif /* CONFIG_SMP */
1304
1305 .check_preempt_curr = check_preempt_wakeup,
1306
1307 .pick_next_task = pick_next_task_fair,
1308 .put_prev_task = put_prev_task_fair,
1309
1310 #ifdef CONFIG_SMP
1311 .load_balance = load_balance_fair,
1312 .move_one_task = move_one_task_fair,
1313 #endif
1314
1315 .set_curr_task = set_curr_task_fair,
1316 .task_tick = task_tick_fair,
1317 .task_new = task_new_fair,
1318 };
1319
1320 #ifdef CONFIG_SCHED_DEBUG
1321 static void print_cfs_stats(struct seq_file *m, int cpu)
1322 {
1323 struct cfs_rq *cfs_rq;
1324
1325 #ifdef CONFIG_FAIR_GROUP_SCHED
1326 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1327 #endif
1328 lock_task_group_list();
1329 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1330 print_cfs_rq(m, cpu, cfs_rq);
1331 unlock_task_group_list();
1332 }
1333 #endif