sched: cleanup: refactor normalize_rt_tasks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
31 *
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
34 */
35 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
36
37 /*
38 * After fork, child runs first. (default) If set to 0 then
39 * parent will (try to) run first.
40 */
41 const_debug unsigned int sysctl_sched_child_runs_first = 1;
42
43 /*
44 * Minimal preemption granularity for CPU-bound tasks:
45 * (default: 2 msec, units: nanoseconds)
46 */
47 const_debug unsigned int sysctl_sched_nr_latency = 20;
48
49 /*
50 * sys_sched_yield() compat mode
51 *
52 * This option switches the agressive yield implementation of the
53 * old scheduler back on.
54 */
55 unsigned int __read_mostly sysctl_sched_compat_yield;
56
57 /*
58 * SCHED_BATCH wake-up granularity.
59 * (default: 10 msec, units: nanoseconds)
60 *
61 * This option delays the preemption effects of decoupled workloads
62 * and reduces their over-scheduling. Synchronous workloads will still
63 * have immediate wakeup/sleep latencies.
64 */
65 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
66
67 /*
68 * SCHED_OTHER wake-up granularity.
69 * (default: 10 msec, units: nanoseconds)
70 *
71 * This option delays the preemption effects of decoupled workloads
72 * and reduces their over-scheduling. Synchronous workloads will still
73 * have immediate wakeup/sleep latencies.
74 */
75 const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
76
77 /**************************************************************
78 * CFS operations on generic schedulable entities:
79 */
80
81 #ifdef CONFIG_FAIR_GROUP_SCHED
82
83 /* cpu runqueue to which this cfs_rq is attached */
84 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
85 {
86 return cfs_rq->rq;
87 }
88
89 /* An entity is a task if it doesn't "own" a runqueue */
90 #define entity_is_task(se) (!se->my_q)
91
92 #else /* CONFIG_FAIR_GROUP_SCHED */
93
94 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95 {
96 return container_of(cfs_rq, struct rq, cfs);
97 }
98
99 #define entity_is_task(se) 1
100
101 #endif /* CONFIG_FAIR_GROUP_SCHED */
102
103 static inline struct task_struct *task_of(struct sched_entity *se)
104 {
105 return container_of(se, struct task_struct, se);
106 }
107
108
109 /**************************************************************
110 * Scheduling class tree data structure manipulation methods:
111 */
112
113 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
114 {
115 s64 delta = (s64)(vruntime - min_vruntime);
116 if (delta > 0)
117 min_vruntime = vruntime;
118
119 return min_vruntime;
120 }
121
122 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
123 {
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta < 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129 }
130
131 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
132 {
133 return se->vruntime - cfs_rq->min_vruntime;
134 }
135
136 /*
137 * Enqueue an entity into the rb-tree:
138 */
139 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
140 {
141 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
142 struct rb_node *parent = NULL;
143 struct sched_entity *entry;
144 s64 key = entity_key(cfs_rq, se);
145 int leftmost = 1;
146
147 /*
148 * Find the right place in the rbtree:
149 */
150 while (*link) {
151 parent = *link;
152 entry = rb_entry(parent, struct sched_entity, run_node);
153 /*
154 * We dont care about collisions. Nodes with
155 * the same key stay together.
156 */
157 if (key < entity_key(cfs_rq, entry)) {
158 link = &parent->rb_left;
159 } else {
160 link = &parent->rb_right;
161 leftmost = 0;
162 }
163 }
164
165 /*
166 * Maintain a cache of leftmost tree entries (it is frequently
167 * used):
168 */
169 if (leftmost)
170 cfs_rq->rb_leftmost = &se->run_node;
171
172 rb_link_node(&se->run_node, parent, link);
173 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
174 }
175
176 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
177 {
178 if (cfs_rq->rb_leftmost == &se->run_node)
179 cfs_rq->rb_leftmost = rb_next(&se->run_node);
180
181 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
182 }
183
184 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
185 {
186 return cfs_rq->rb_leftmost;
187 }
188
189 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
190 {
191 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
192 }
193
194 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
195 {
196 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
197 struct sched_entity *se = NULL;
198 struct rb_node *parent;
199
200 while (*link) {
201 parent = *link;
202 se = rb_entry(parent, struct sched_entity, run_node);
203 link = &parent->rb_right;
204 }
205
206 return se;
207 }
208
209 /**************************************************************
210 * Scheduling class statistics methods:
211 */
212
213
214 /*
215 * The idea is to set a period in which each task runs once.
216 *
217 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
218 * this period because otherwise the slices get too small.
219 *
220 * p = (nr <= nl) ? l : l*nr/nl
221 */
222 static u64 __sched_period(unsigned long nr_running)
223 {
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency = sysctl_sched_nr_latency;
226
227 if (unlikely(nr_running > nr_latency)) {
228 period *= nr_running;
229 do_div(period, nr_latency);
230 }
231
232 return period;
233 }
234
235 /*
236 * We calculate the wall-time slice from the period by taking a part
237 * proportional to the weight.
238 *
239 * s = p*w/rw
240 */
241 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
242 {
243 u64 slice = __sched_period(cfs_rq->nr_running);
244
245 slice *= se->load.weight;
246 do_div(slice, cfs_rq->load.weight);
247
248 return slice;
249 }
250
251 /*
252 * We calculate the vruntime slice.
253 *
254 * vs = s/w = p/rw
255 */
256 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
257 {
258 u64 vslice = __sched_period(nr_running);
259
260 do_div(vslice, rq_weight);
261
262 return vslice;
263 }
264
265 static u64 sched_vslice(struct cfs_rq *cfs_rq)
266 {
267 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
268 }
269
270 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
271 {
272 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
273 cfs_rq->nr_running + 1);
274 }
275
276 /*
277 * Update the current task's runtime statistics. Skip current tasks that
278 * are not in our scheduling class.
279 */
280 static inline void
281 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
282 unsigned long delta_exec)
283 {
284 unsigned long delta_exec_weighted;
285 u64 vruntime;
286
287 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
288
289 curr->sum_exec_runtime += delta_exec;
290 schedstat_add(cfs_rq, exec_clock, delta_exec);
291 delta_exec_weighted = delta_exec;
292 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
293 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
294 &curr->load);
295 }
296 curr->vruntime += delta_exec_weighted;
297
298 /*
299 * maintain cfs_rq->min_vruntime to be a monotonic increasing
300 * value tracking the leftmost vruntime in the tree.
301 */
302 if (first_fair(cfs_rq)) {
303 vruntime = min_vruntime(curr->vruntime,
304 __pick_next_entity(cfs_rq)->vruntime);
305 } else
306 vruntime = curr->vruntime;
307
308 cfs_rq->min_vruntime =
309 max_vruntime(cfs_rq->min_vruntime, vruntime);
310 }
311
312 static void update_curr(struct cfs_rq *cfs_rq)
313 {
314 struct sched_entity *curr = cfs_rq->curr;
315 u64 now = rq_of(cfs_rq)->clock;
316 unsigned long delta_exec;
317
318 if (unlikely(!curr))
319 return;
320
321 /*
322 * Get the amount of time the current task was running
323 * since the last time we changed load (this cannot
324 * overflow on 32 bits):
325 */
326 delta_exec = (unsigned long)(now - curr->exec_start);
327
328 __update_curr(cfs_rq, curr, delta_exec);
329 curr->exec_start = now;
330 }
331
332 static inline void
333 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
334 {
335 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
336 }
337
338 /*
339 * Task is being enqueued - update stats:
340 */
341 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 {
343 /*
344 * Are we enqueueing a waiting task? (for current tasks
345 * a dequeue/enqueue event is a NOP)
346 */
347 if (se != cfs_rq->curr)
348 update_stats_wait_start(cfs_rq, se);
349 }
350
351 static void
352 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
353 {
354 schedstat_set(se->wait_max, max(se->wait_max,
355 rq_of(cfs_rq)->clock - se->wait_start));
356 schedstat_set(se->wait_start, 0);
357 }
358
359 static inline void
360 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 {
362 /*
363 * Mark the end of the wait period if dequeueing a
364 * waiting task:
365 */
366 if (se != cfs_rq->curr)
367 update_stats_wait_end(cfs_rq, se);
368 }
369
370 /*
371 * We are picking a new current task - update its stats:
372 */
373 static inline void
374 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 {
376 /*
377 * We are starting a new run period:
378 */
379 se->exec_start = rq_of(cfs_rq)->clock;
380 }
381
382 /*
383 * We are descheduling a task - update its stats:
384 */
385 static inline void
386 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
387 {
388 se->exec_start = 0;
389 }
390
391 /**************************************************
392 * Scheduling class queueing methods:
393 */
394
395 static void
396 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
397 {
398 update_load_add(&cfs_rq->load, se->load.weight);
399 cfs_rq->nr_running++;
400 se->on_rq = 1;
401 }
402
403 static void
404 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 {
406 update_load_sub(&cfs_rq->load, se->load.weight);
407 cfs_rq->nr_running--;
408 se->on_rq = 0;
409 }
410
411 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 {
413 #ifdef CONFIG_SCHEDSTATS
414 if (se->sleep_start) {
415 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
416
417 if ((s64)delta < 0)
418 delta = 0;
419
420 if (unlikely(delta > se->sleep_max))
421 se->sleep_max = delta;
422
423 se->sleep_start = 0;
424 se->sum_sleep_runtime += delta;
425 }
426 if (se->block_start) {
427 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
428
429 if ((s64)delta < 0)
430 delta = 0;
431
432 if (unlikely(delta > se->block_max))
433 se->block_max = delta;
434
435 se->block_start = 0;
436 se->sum_sleep_runtime += delta;
437
438 /*
439 * Blocking time is in units of nanosecs, so shift by 20 to
440 * get a milliseconds-range estimation of the amount of
441 * time that the task spent sleeping:
442 */
443 if (unlikely(prof_on == SLEEP_PROFILING)) {
444 struct task_struct *tsk = task_of(se);
445
446 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
447 delta >> 20);
448 }
449 }
450 #endif
451 }
452
453 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
454 {
455 #ifdef CONFIG_SCHED_DEBUG
456 s64 d = se->vruntime - cfs_rq->min_vruntime;
457
458 if (d < 0)
459 d = -d;
460
461 if (d > 3*sysctl_sched_latency)
462 schedstat_inc(cfs_rq, nr_spread_over);
463 #endif
464 }
465
466 static void
467 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
468 {
469 u64 vruntime;
470
471 vruntime = cfs_rq->min_vruntime;
472
473 if (sched_feat(TREE_AVG)) {
474 struct sched_entity *last = __pick_last_entity(cfs_rq);
475 if (last) {
476 vruntime += last->vruntime;
477 vruntime >>= 1;
478 }
479 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
480 vruntime += sched_vslice(cfs_rq)/2;
481
482 if (initial && sched_feat(START_DEBIT))
483 vruntime += sched_vslice_add(cfs_rq, se);
484
485 if (!initial) {
486 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
487 task_of(se)->policy != SCHED_BATCH)
488 vruntime -= sysctl_sched_latency;
489
490 vruntime = max_t(s64, vruntime, se->vruntime);
491 }
492
493 se->vruntime = vruntime;
494
495 }
496
497 static void
498 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
499 {
500 /*
501 * Update run-time statistics of the 'current'.
502 */
503 update_curr(cfs_rq);
504
505 if (wakeup) {
506 place_entity(cfs_rq, se, 0);
507 enqueue_sleeper(cfs_rq, se);
508 }
509
510 update_stats_enqueue(cfs_rq, se);
511 check_spread(cfs_rq, se);
512 if (se != cfs_rq->curr)
513 __enqueue_entity(cfs_rq, se);
514 account_entity_enqueue(cfs_rq, se);
515 }
516
517 static void
518 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
519 {
520 /*
521 * Update run-time statistics of the 'current'.
522 */
523 update_curr(cfs_rq);
524
525 update_stats_dequeue(cfs_rq, se);
526 if (sleep) {
527 se->peer_preempt = 0;
528 #ifdef CONFIG_SCHEDSTATS
529 if (entity_is_task(se)) {
530 struct task_struct *tsk = task_of(se);
531
532 if (tsk->state & TASK_INTERRUPTIBLE)
533 se->sleep_start = rq_of(cfs_rq)->clock;
534 if (tsk->state & TASK_UNINTERRUPTIBLE)
535 se->block_start = rq_of(cfs_rq)->clock;
536 }
537 #endif
538 }
539
540 if (se != cfs_rq->curr)
541 __dequeue_entity(cfs_rq, se);
542 account_entity_dequeue(cfs_rq, se);
543 }
544
545 /*
546 * Preempt the current task with a newly woken task if needed:
547 */
548 static void
549 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
550 {
551 unsigned long ideal_runtime, delta_exec;
552
553 ideal_runtime = sched_slice(cfs_rq, curr);
554 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
555 if (delta_exec > ideal_runtime ||
556 (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
557 resched_task(rq_of(cfs_rq)->curr);
558 curr->peer_preempt = 0;
559 }
560
561 static void
562 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
563 {
564 /* 'current' is not kept within the tree. */
565 if (se->on_rq) {
566 /*
567 * Any task has to be enqueued before it get to execute on
568 * a CPU. So account for the time it spent waiting on the
569 * runqueue.
570 */
571 update_stats_wait_end(cfs_rq, se);
572 __dequeue_entity(cfs_rq, se);
573 }
574
575 update_stats_curr_start(cfs_rq, se);
576 cfs_rq->curr = se;
577 #ifdef CONFIG_SCHEDSTATS
578 /*
579 * Track our maximum slice length, if the CPU's load is at
580 * least twice that of our own weight (i.e. dont track it
581 * when there are only lesser-weight tasks around):
582 */
583 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
584 se->slice_max = max(se->slice_max,
585 se->sum_exec_runtime - se->prev_sum_exec_runtime);
586 }
587 #endif
588 se->prev_sum_exec_runtime = se->sum_exec_runtime;
589 }
590
591 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
592 {
593 struct sched_entity *se = NULL;
594
595 if (first_fair(cfs_rq)) {
596 se = __pick_next_entity(cfs_rq);
597 set_next_entity(cfs_rq, se);
598 }
599
600 return se;
601 }
602
603 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
604 {
605 /*
606 * If still on the runqueue then deactivate_task()
607 * was not called and update_curr() has to be done:
608 */
609 if (prev->on_rq)
610 update_curr(cfs_rq);
611
612 update_stats_curr_end(cfs_rq, prev);
613
614 check_spread(cfs_rq, prev);
615 if (prev->on_rq) {
616 update_stats_wait_start(cfs_rq, prev);
617 /* Put 'current' back into the tree. */
618 __enqueue_entity(cfs_rq, prev);
619 }
620 cfs_rq->curr = NULL;
621 }
622
623 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
624 {
625 /*
626 * Update run-time statistics of the 'current'.
627 */
628 update_curr(cfs_rq);
629
630 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
631 check_preempt_tick(cfs_rq, curr);
632 }
633
634 /**************************************************
635 * CFS operations on tasks:
636 */
637
638 #ifdef CONFIG_FAIR_GROUP_SCHED
639
640 /* Walk up scheduling entities hierarchy */
641 #define for_each_sched_entity(se) \
642 for (; se; se = se->parent)
643
644 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
645 {
646 return p->se.cfs_rq;
647 }
648
649 /* runqueue on which this entity is (to be) queued */
650 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
651 {
652 return se->cfs_rq;
653 }
654
655 /* runqueue "owned" by this group */
656 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
657 {
658 return grp->my_q;
659 }
660
661 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
662 * another cpu ('this_cpu')
663 */
664 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
665 {
666 return cfs_rq->tg->cfs_rq[this_cpu];
667 }
668
669 /* Iterate thr' all leaf cfs_rq's on a runqueue */
670 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
671 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
672
673 /* Do the two (enqueued) entities belong to the same group ? */
674 static inline int
675 is_same_group(struct sched_entity *se, struct sched_entity *pse)
676 {
677 if (se->cfs_rq == pse->cfs_rq)
678 return 1;
679
680 return 0;
681 }
682
683 static inline struct sched_entity *parent_entity(struct sched_entity *se)
684 {
685 return se->parent;
686 }
687
688 #else /* CONFIG_FAIR_GROUP_SCHED */
689
690 #define for_each_sched_entity(se) \
691 for (; se; se = NULL)
692
693 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
694 {
695 return &task_rq(p)->cfs;
696 }
697
698 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
699 {
700 struct task_struct *p = task_of(se);
701 struct rq *rq = task_rq(p);
702
703 return &rq->cfs;
704 }
705
706 /* runqueue "owned" by this group */
707 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
708 {
709 return NULL;
710 }
711
712 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
713 {
714 return &cpu_rq(this_cpu)->cfs;
715 }
716
717 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
718 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
719
720 static inline int
721 is_same_group(struct sched_entity *se, struct sched_entity *pse)
722 {
723 return 1;
724 }
725
726 static inline struct sched_entity *parent_entity(struct sched_entity *se)
727 {
728 return NULL;
729 }
730
731 #endif /* CONFIG_FAIR_GROUP_SCHED */
732
733 /*
734 * The enqueue_task method is called before nr_running is
735 * increased. Here we update the fair scheduling stats and
736 * then put the task into the rbtree:
737 */
738 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
739 {
740 struct cfs_rq *cfs_rq;
741 struct sched_entity *se = &p->se;
742
743 for_each_sched_entity(se) {
744 if (se->on_rq)
745 break;
746 cfs_rq = cfs_rq_of(se);
747 enqueue_entity(cfs_rq, se, wakeup);
748 wakeup = 1;
749 }
750 }
751
752 /*
753 * The dequeue_task method is called before nr_running is
754 * decreased. We remove the task from the rbtree and
755 * update the fair scheduling stats:
756 */
757 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
758 {
759 struct cfs_rq *cfs_rq;
760 struct sched_entity *se = &p->se;
761
762 for_each_sched_entity(se) {
763 cfs_rq = cfs_rq_of(se);
764 dequeue_entity(cfs_rq, se, sleep);
765 /* Don't dequeue parent if it has other entities besides us */
766 if (cfs_rq->load.weight)
767 break;
768 sleep = 1;
769 }
770 }
771
772 /*
773 * sched_yield() support is very simple - we dequeue and enqueue.
774 *
775 * If compat_yield is turned on then we requeue to the end of the tree.
776 */
777 static void yield_task_fair(struct rq *rq)
778 {
779 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
780 struct sched_entity *rightmost, *se = &rq->curr->se;
781
782 /*
783 * Are we the only task in the tree?
784 */
785 if (unlikely(cfs_rq->nr_running == 1))
786 return;
787
788 if (likely(!sysctl_sched_compat_yield)) {
789 __update_rq_clock(rq);
790 /*
791 * Update run-time statistics of the 'current'.
792 */
793 update_curr(cfs_rq);
794
795 return;
796 }
797 /*
798 * Find the rightmost entry in the rbtree:
799 */
800 rightmost = __pick_last_entity(cfs_rq);
801 /*
802 * Already in the rightmost position?
803 */
804 if (unlikely(rightmost->vruntime < se->vruntime))
805 return;
806
807 /*
808 * Minimally necessary key value to be last in the tree:
809 * Upon rescheduling, sched_class::put_prev_task() will place
810 * 'current' within the tree based on its new key value.
811 */
812 se->vruntime = rightmost->vruntime + 1;
813 }
814
815 /*
816 * Preempt the current task with a newly woken task if needed:
817 */
818 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
819 {
820 struct task_struct *curr = rq->curr;
821 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
822 struct sched_entity *se = &curr->se, *pse = &p->se;
823 s64 delta, gran;
824
825 if (unlikely(rt_prio(p->prio))) {
826 update_rq_clock(rq);
827 update_curr(cfs_rq);
828 resched_task(curr);
829 return;
830 }
831
832 if (sched_feat(WAKEUP_PREEMPT)) {
833 while (!is_same_group(se, pse)) {
834 se = parent_entity(se);
835 pse = parent_entity(pse);
836 }
837
838 delta = se->vruntime - pse->vruntime;
839 gran = sysctl_sched_wakeup_granularity;
840 if (unlikely(se->load.weight != NICE_0_LOAD))
841 gran = calc_delta_fair(gran, &se->load);
842
843 if (delta > gran) {
844 int now = !sched_feat(PREEMPT_RESTRICT);
845
846 if (now || p->prio < curr->prio || !se->peer_preempt++)
847 resched_task(curr);
848 }
849 }
850 }
851
852 static struct task_struct *pick_next_task_fair(struct rq *rq)
853 {
854 struct cfs_rq *cfs_rq = &rq->cfs;
855 struct sched_entity *se;
856
857 if (unlikely(!cfs_rq->nr_running))
858 return NULL;
859
860 do {
861 se = pick_next_entity(cfs_rq);
862 cfs_rq = group_cfs_rq(se);
863 } while (cfs_rq);
864
865 return task_of(se);
866 }
867
868 /*
869 * Account for a descheduled task:
870 */
871 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
872 {
873 struct sched_entity *se = &prev->se;
874 struct cfs_rq *cfs_rq;
875
876 for_each_sched_entity(se) {
877 cfs_rq = cfs_rq_of(se);
878 put_prev_entity(cfs_rq, se);
879 }
880 }
881
882 /**************************************************
883 * Fair scheduling class load-balancing methods:
884 */
885
886 /*
887 * Load-balancing iterator. Note: while the runqueue stays locked
888 * during the whole iteration, the current task might be
889 * dequeued so the iterator has to be dequeue-safe. Here we
890 * achieve that by always pre-iterating before returning
891 * the current task:
892 */
893 static struct task_struct *
894 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
895 {
896 struct task_struct *p;
897
898 if (!curr)
899 return NULL;
900
901 p = rb_entry(curr, struct task_struct, se.run_node);
902 cfs_rq->rb_load_balance_curr = rb_next(curr);
903
904 return p;
905 }
906
907 static struct task_struct *load_balance_start_fair(void *arg)
908 {
909 struct cfs_rq *cfs_rq = arg;
910
911 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
912 }
913
914 static struct task_struct *load_balance_next_fair(void *arg)
915 {
916 struct cfs_rq *cfs_rq = arg;
917
918 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
919 }
920
921 #ifdef CONFIG_FAIR_GROUP_SCHED
922 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
923 {
924 struct sched_entity *curr;
925 struct task_struct *p;
926
927 if (!cfs_rq->nr_running)
928 return MAX_PRIO;
929
930 curr = cfs_rq->curr;
931 if (!curr)
932 curr = __pick_next_entity(cfs_rq);
933
934 p = task_of(curr);
935
936 return p->prio;
937 }
938 #endif
939
940 static unsigned long
941 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
942 unsigned long max_nr_move, unsigned long max_load_move,
943 struct sched_domain *sd, enum cpu_idle_type idle,
944 int *all_pinned, int *this_best_prio)
945 {
946 struct cfs_rq *busy_cfs_rq;
947 unsigned long load_moved, total_nr_moved = 0, nr_moved;
948 long rem_load_move = max_load_move;
949 struct rq_iterator cfs_rq_iterator;
950
951 cfs_rq_iterator.start = load_balance_start_fair;
952 cfs_rq_iterator.next = load_balance_next_fair;
953
954 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
955 #ifdef CONFIG_FAIR_GROUP_SCHED
956 struct cfs_rq *this_cfs_rq;
957 long imbalance;
958 unsigned long maxload;
959
960 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
961
962 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
963 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
964 if (imbalance <= 0)
965 continue;
966
967 /* Don't pull more than imbalance/2 */
968 imbalance /= 2;
969 maxload = min(rem_load_move, imbalance);
970
971 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
972 #else
973 # define maxload rem_load_move
974 #endif
975 /* pass busy_cfs_rq argument into
976 * load_balance_[start|next]_fair iterators
977 */
978 cfs_rq_iterator.arg = busy_cfs_rq;
979 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
980 max_nr_move, maxload, sd, idle, all_pinned,
981 &load_moved, this_best_prio, &cfs_rq_iterator);
982
983 total_nr_moved += nr_moved;
984 max_nr_move -= nr_moved;
985 rem_load_move -= load_moved;
986
987 if (max_nr_move <= 0 || rem_load_move <= 0)
988 break;
989 }
990
991 return max_load_move - rem_load_move;
992 }
993
994 /*
995 * scheduler tick hitting a task of our scheduling class:
996 */
997 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
998 {
999 struct cfs_rq *cfs_rq;
1000 struct sched_entity *se = &curr->se;
1001
1002 for_each_sched_entity(se) {
1003 cfs_rq = cfs_rq_of(se);
1004 entity_tick(cfs_rq, se);
1005 }
1006 }
1007
1008 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1009
1010 /*
1011 * Share the fairness runtime between parent and child, thus the
1012 * total amount of pressure for CPU stays equal - new tasks
1013 * get a chance to run but frequent forkers are not allowed to
1014 * monopolize the CPU. Note: the parent runqueue is locked,
1015 * the child is not running yet.
1016 */
1017 static void task_new_fair(struct rq *rq, struct task_struct *p)
1018 {
1019 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1020 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1021 int this_cpu = smp_processor_id();
1022
1023 sched_info_queued(p);
1024
1025 update_curr(cfs_rq);
1026 place_entity(cfs_rq, se, 1);
1027
1028 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1029 curr->vruntime < se->vruntime) {
1030 /*
1031 * Upon rescheduling, sched_class::put_prev_task() will place
1032 * 'current' within the tree based on its new key value.
1033 */
1034 swap(curr->vruntime, se->vruntime);
1035 }
1036
1037 update_stats_enqueue(cfs_rq, se);
1038 check_spread(cfs_rq, se);
1039 check_spread(cfs_rq, curr);
1040 __enqueue_entity(cfs_rq, se);
1041 account_entity_enqueue(cfs_rq, se);
1042 se->peer_preempt = 0;
1043 resched_task(rq->curr);
1044 }
1045
1046 /* Account for a task changing its policy or group.
1047 *
1048 * This routine is mostly called to set cfs_rq->curr field when a task
1049 * migrates between groups/classes.
1050 */
1051 static void set_curr_task_fair(struct rq *rq)
1052 {
1053 struct sched_entity *se = &rq->curr->se;
1054
1055 for_each_sched_entity(se)
1056 set_next_entity(cfs_rq_of(se), se);
1057 }
1058
1059 /*
1060 * All the scheduling class methods:
1061 */
1062 static const struct sched_class fair_sched_class = {
1063 .next = &idle_sched_class,
1064 .enqueue_task = enqueue_task_fair,
1065 .dequeue_task = dequeue_task_fair,
1066 .yield_task = yield_task_fair,
1067
1068 .check_preempt_curr = check_preempt_wakeup,
1069
1070 .pick_next_task = pick_next_task_fair,
1071 .put_prev_task = put_prev_task_fair,
1072
1073 .load_balance = load_balance_fair,
1074
1075 .set_curr_task = set_curr_task_fair,
1076 .task_tick = task_tick_fair,
1077 .task_new = task_new_fair,
1078 };
1079
1080 #ifdef CONFIG_SCHED_DEBUG
1081 static void print_cfs_stats(struct seq_file *m, int cpu)
1082 {
1083 struct cfs_rq *cfs_rq;
1084
1085 #ifdef CONFIG_FAIR_GROUP_SCHED
1086 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1087 #endif
1088 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1089 print_cfs_rq(m, cpu, cfs_rq);
1090 }
1091 #endif