Merge branch 'fixes-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms * ilog(ncpus), units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
31 *
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
34 */
35 unsigned int sysctl_sched_latency = 20000000ULL;
36
37 /*
38 * Minimal preemption granularity for CPU-bound tasks:
39 * (default: 1 msec * ilog(ncpus), units: nanoseconds)
40 */
41 unsigned int sysctl_sched_min_granularity = 1000000ULL;
42
43 /*
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
45 */
46 unsigned int sched_nr_latency = 20;
47
48 /*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
51 */
52 const_debug unsigned int sysctl_sched_child_runs_first = 1;
53
54 /*
55 * sys_sched_yield() compat mode
56 *
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
59 */
60 unsigned int __read_mostly sysctl_sched_compat_yield;
61
62 /*
63 * SCHED_BATCH wake-up granularity.
64 * (default: 10 msec * ilog(ncpus), units: nanoseconds)
65 *
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
69 */
70 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 10 msec * ilog(ncpus), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
81
82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
83
84 /**************************************************************
85 * CFS operations on generic schedulable entities:
86 */
87
88 #ifdef CONFIG_FAIR_GROUP_SCHED
89
90 /* cpu runqueue to which this cfs_rq is attached */
91 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92 {
93 return cfs_rq->rq;
94 }
95
96 /* An entity is a task if it doesn't "own" a runqueue */
97 #define entity_is_task(se) (!se->my_q)
98
99 #else /* CONFIG_FAIR_GROUP_SCHED */
100
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return container_of(cfs_rq, struct rq, cfs);
104 }
105
106 #define entity_is_task(se) 1
107
108 #endif /* CONFIG_FAIR_GROUP_SCHED */
109
110 static inline struct task_struct *task_of(struct sched_entity *se)
111 {
112 return container_of(se, struct task_struct, se);
113 }
114
115
116 /**************************************************************
117 * Scheduling class tree data structure manipulation methods:
118 */
119
120 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
121 {
122 s64 delta = (s64)(vruntime - min_vruntime);
123 if (delta > 0)
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127 }
128
129 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
130 {
131 s64 delta = (s64)(vruntime - min_vruntime);
132 if (delta < 0)
133 min_vruntime = vruntime;
134
135 return min_vruntime;
136 }
137
138 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 return se->vruntime - cfs_rq->min_vruntime;
141 }
142
143 /*
144 * Enqueue an entity into the rb-tree:
145 */
146 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 {
148 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
149 struct rb_node *parent = NULL;
150 struct sched_entity *entry;
151 s64 key = entity_key(cfs_rq, se);
152 int leftmost = 1;
153
154 /*
155 * Find the right place in the rbtree:
156 */
157 while (*link) {
158 parent = *link;
159 entry = rb_entry(parent, struct sched_entity, run_node);
160 /*
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
163 */
164 if (key < entity_key(cfs_rq, entry)) {
165 link = &parent->rb_left;
166 } else {
167 link = &parent->rb_right;
168 leftmost = 0;
169 }
170 }
171
172 /*
173 * Maintain a cache of leftmost tree entries (it is frequently
174 * used):
175 */
176 if (leftmost)
177 cfs_rq->rb_leftmost = &se->run_node;
178
179 rb_link_node(&se->run_node, parent, link);
180 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
181 }
182
183 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 {
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
187
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
189 }
190
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192 {
193 return cfs_rq->rb_leftmost;
194 }
195
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197 {
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199 }
200
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202 {
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214 }
215
216 /**************************************************************
217 * Scheduling class statistics methods:
218 */
219
220 #ifdef CONFIG_SCHED_DEBUG
221 int sched_nr_latency_handler(struct ctl_table *table, int write,
222 struct file *filp, void __user *buffer, size_t *lenp,
223 loff_t *ppos)
224 {
225 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
226
227 if (ret || !write)
228 return ret;
229
230 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
231 sysctl_sched_min_granularity);
232
233 return 0;
234 }
235 #endif
236
237 /*
238 * The idea is to set a period in which each task runs once.
239 *
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
242 *
243 * p = (nr <= nl) ? l : l*nr/nl
244 */
245 static u64 __sched_period(unsigned long nr_running)
246 {
247 u64 period = sysctl_sched_latency;
248 unsigned long nr_latency = sched_nr_latency;
249
250 if (unlikely(nr_running > nr_latency)) {
251 period *= nr_running;
252 do_div(period, nr_latency);
253 }
254
255 return period;
256 }
257
258 /*
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
261 *
262 * s = p*w/rw
263 */
264 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
265 {
266 u64 slice = __sched_period(cfs_rq->nr_running);
267
268 slice *= se->load.weight;
269 do_div(slice, cfs_rq->load.weight);
270
271 return slice;
272 }
273
274 /*
275 * We calculate the vruntime slice.
276 *
277 * vs = s/w = p/rw
278 */
279 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
280 {
281 u64 vslice = __sched_period(nr_running);
282
283 vslice *= NICE_0_LOAD;
284 do_div(vslice, rq_weight);
285
286 return vslice;
287 }
288
289 static u64 sched_vslice(struct cfs_rq *cfs_rq)
290 {
291 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
292 }
293
294 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
295 {
296 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
297 cfs_rq->nr_running + 1);
298 }
299
300 /*
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
303 */
304 static inline void
305 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
306 unsigned long delta_exec)
307 {
308 unsigned long delta_exec_weighted;
309 u64 vruntime;
310
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
319 }
320 curr->vruntime += delta_exec_weighted;
321
322 /*
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
325 */
326 if (first_fair(cfs_rq)) {
327 vruntime = min_vruntime(curr->vruntime,
328 __pick_next_entity(cfs_rq)->vruntime);
329 } else
330 vruntime = curr->vruntime;
331
332 cfs_rq->min_vruntime =
333 max_vruntime(cfs_rq->min_vruntime, vruntime);
334 }
335
336 static void update_curr(struct cfs_rq *cfs_rq)
337 {
338 struct sched_entity *curr = cfs_rq->curr;
339 u64 now = rq_of(cfs_rq)->clock;
340 unsigned long delta_exec;
341
342 if (unlikely(!curr))
343 return;
344
345 /*
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
349 */
350 delta_exec = (unsigned long)(now - curr->exec_start);
351
352 __update_curr(cfs_rq, curr, delta_exec);
353 curr->exec_start = now;
354 }
355
356 static inline void
357 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
358 {
359 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
360 }
361
362 /*
363 * Task is being enqueued - update stats:
364 */
365 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 /*
368 * Are we enqueueing a waiting task? (for current tasks
369 * a dequeue/enqueue event is a NOP)
370 */
371 if (se != cfs_rq->curr)
372 update_stats_wait_start(cfs_rq, se);
373 }
374
375 static void
376 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 {
378 schedstat_set(se->wait_max, max(se->wait_max,
379 rq_of(cfs_rq)->clock - se->wait_start));
380 schedstat_set(se->wait_start, 0);
381 }
382
383 static inline void
384 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
385 {
386 /*
387 * Mark the end of the wait period if dequeueing a
388 * waiting task:
389 */
390 if (se != cfs_rq->curr)
391 update_stats_wait_end(cfs_rq, se);
392 }
393
394 /*
395 * We are picking a new current task - update its stats:
396 */
397 static inline void
398 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
399 {
400 /*
401 * We are starting a new run period:
402 */
403 se->exec_start = rq_of(cfs_rq)->clock;
404 }
405
406 /**************************************************
407 * Scheduling class queueing methods:
408 */
409
410 static void
411 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 {
413 update_load_add(&cfs_rq->load, se->load.weight);
414 cfs_rq->nr_running++;
415 se->on_rq = 1;
416 }
417
418 static void
419 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
420 {
421 update_load_sub(&cfs_rq->load, se->load.weight);
422 cfs_rq->nr_running--;
423 se->on_rq = 0;
424 }
425
426 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 {
428 #ifdef CONFIG_SCHEDSTATS
429 if (se->sleep_start) {
430 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
431
432 if ((s64)delta < 0)
433 delta = 0;
434
435 if (unlikely(delta > se->sleep_max))
436 se->sleep_max = delta;
437
438 se->sleep_start = 0;
439 se->sum_sleep_runtime += delta;
440 }
441 if (se->block_start) {
442 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->block_max))
448 se->block_max = delta;
449
450 se->block_start = 0;
451 se->sum_sleep_runtime += delta;
452
453 /*
454 * Blocking time is in units of nanosecs, so shift by 20 to
455 * get a milliseconds-range estimation of the amount of
456 * time that the task spent sleeping:
457 */
458 if (unlikely(prof_on == SLEEP_PROFILING)) {
459 struct task_struct *tsk = task_of(se);
460
461 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
462 delta >> 20);
463 }
464 }
465 #endif
466 }
467
468 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 #ifdef CONFIG_SCHED_DEBUG
471 s64 d = se->vruntime - cfs_rq->min_vruntime;
472
473 if (d < 0)
474 d = -d;
475
476 if (d > 3*sysctl_sched_latency)
477 schedstat_inc(cfs_rq, nr_spread_over);
478 #endif
479 }
480
481 static void
482 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
483 {
484 u64 vruntime;
485
486 vruntime = cfs_rq->min_vruntime;
487
488 if (sched_feat(TREE_AVG)) {
489 struct sched_entity *last = __pick_last_entity(cfs_rq);
490 if (last) {
491 vruntime += last->vruntime;
492 vruntime >>= 1;
493 }
494 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
495 vruntime += sched_vslice(cfs_rq)/2;
496
497 /*
498 * The 'current' period is already promised to the current tasks,
499 * however the extra weight of the new task will slow them down a
500 * little, place the new task so that it fits in the slot that
501 * stays open at the end.
502 */
503 if (initial && sched_feat(START_DEBIT))
504 vruntime += sched_vslice_add(cfs_rq, se);
505
506 if (!initial) {
507 /* sleeps upto a single latency don't count. */
508 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
509 task_of(se)->policy != SCHED_BATCH)
510 vruntime -= sysctl_sched_latency;
511
512 /* ensure we never gain time by being placed backwards. */
513 vruntime = max_vruntime(se->vruntime, vruntime);
514 }
515
516 se->vruntime = vruntime;
517 }
518
519 static void
520 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
521 {
522 /*
523 * Update run-time statistics of the 'current'.
524 */
525 update_curr(cfs_rq);
526
527 if (wakeup) {
528 place_entity(cfs_rq, se, 0);
529 enqueue_sleeper(cfs_rq, se);
530 }
531
532 update_stats_enqueue(cfs_rq, se);
533 check_spread(cfs_rq, se);
534 if (se != cfs_rq->curr)
535 __enqueue_entity(cfs_rq, se);
536 account_entity_enqueue(cfs_rq, se);
537 }
538
539 static void
540 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
541 {
542 /*
543 * Update run-time statistics of the 'current'.
544 */
545 update_curr(cfs_rq);
546
547 update_stats_dequeue(cfs_rq, se);
548 if (sleep) {
549 #ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se)) {
551 struct task_struct *tsk = task_of(se);
552
553 if (tsk->state & TASK_INTERRUPTIBLE)
554 se->sleep_start = rq_of(cfs_rq)->clock;
555 if (tsk->state & TASK_UNINTERRUPTIBLE)
556 se->block_start = rq_of(cfs_rq)->clock;
557 }
558 #endif
559 }
560
561 if (se != cfs_rq->curr)
562 __dequeue_entity(cfs_rq, se);
563 account_entity_dequeue(cfs_rq, se);
564 }
565
566 /*
567 * Preempt the current task with a newly woken task if needed:
568 */
569 static void
570 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
571 {
572 unsigned long ideal_runtime, delta_exec;
573
574 ideal_runtime = sched_slice(cfs_rq, curr);
575 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
576 if (delta_exec > ideal_runtime)
577 resched_task(rq_of(cfs_rq)->curr);
578 }
579
580 static void
581 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
582 {
583 /* 'current' is not kept within the tree. */
584 if (se->on_rq) {
585 /*
586 * Any task has to be enqueued before it get to execute on
587 * a CPU. So account for the time it spent waiting on the
588 * runqueue.
589 */
590 update_stats_wait_end(cfs_rq, se);
591 __dequeue_entity(cfs_rq, se);
592 }
593
594 update_stats_curr_start(cfs_rq, se);
595 cfs_rq->curr = se;
596 #ifdef CONFIG_SCHEDSTATS
597 /*
598 * Track our maximum slice length, if the CPU's load is at
599 * least twice that of our own weight (i.e. dont track it
600 * when there are only lesser-weight tasks around):
601 */
602 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
603 se->slice_max = max(se->slice_max,
604 se->sum_exec_runtime - se->prev_sum_exec_runtime);
605 }
606 #endif
607 se->prev_sum_exec_runtime = se->sum_exec_runtime;
608 }
609
610 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
611 {
612 struct sched_entity *se = NULL;
613
614 if (first_fair(cfs_rq)) {
615 se = __pick_next_entity(cfs_rq);
616 set_next_entity(cfs_rq, se);
617 }
618
619 return se;
620 }
621
622 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
623 {
624 /*
625 * If still on the runqueue then deactivate_task()
626 * was not called and update_curr() has to be done:
627 */
628 if (prev->on_rq)
629 update_curr(cfs_rq);
630
631 check_spread(cfs_rq, prev);
632 if (prev->on_rq) {
633 update_stats_wait_start(cfs_rq, prev);
634 /* Put 'current' back into the tree. */
635 __enqueue_entity(cfs_rq, prev);
636 }
637 cfs_rq->curr = NULL;
638 }
639
640 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
641 {
642 /*
643 * Update run-time statistics of the 'current'.
644 */
645 update_curr(cfs_rq);
646
647 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
648 check_preempt_tick(cfs_rq, curr);
649 }
650
651 /**************************************************
652 * CFS operations on tasks:
653 */
654
655 #ifdef CONFIG_FAIR_GROUP_SCHED
656
657 /* Walk up scheduling entities hierarchy */
658 #define for_each_sched_entity(se) \
659 for (; se; se = se->parent)
660
661 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
662 {
663 return p->se.cfs_rq;
664 }
665
666 /* runqueue on which this entity is (to be) queued */
667 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
668 {
669 return se->cfs_rq;
670 }
671
672 /* runqueue "owned" by this group */
673 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
674 {
675 return grp->my_q;
676 }
677
678 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
679 * another cpu ('this_cpu')
680 */
681 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
682 {
683 return cfs_rq->tg->cfs_rq[this_cpu];
684 }
685
686 /* Iterate thr' all leaf cfs_rq's on a runqueue */
687 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
688 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
689
690 /* Do the two (enqueued) entities belong to the same group ? */
691 static inline int
692 is_same_group(struct sched_entity *se, struct sched_entity *pse)
693 {
694 if (se->cfs_rq == pse->cfs_rq)
695 return 1;
696
697 return 0;
698 }
699
700 static inline struct sched_entity *parent_entity(struct sched_entity *se)
701 {
702 return se->parent;
703 }
704
705 #else /* CONFIG_FAIR_GROUP_SCHED */
706
707 #define for_each_sched_entity(se) \
708 for (; se; se = NULL)
709
710 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
711 {
712 return &task_rq(p)->cfs;
713 }
714
715 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
716 {
717 struct task_struct *p = task_of(se);
718 struct rq *rq = task_rq(p);
719
720 return &rq->cfs;
721 }
722
723 /* runqueue "owned" by this group */
724 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
725 {
726 return NULL;
727 }
728
729 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
730 {
731 return &cpu_rq(this_cpu)->cfs;
732 }
733
734 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
735 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
736
737 static inline int
738 is_same_group(struct sched_entity *se, struct sched_entity *pse)
739 {
740 return 1;
741 }
742
743 static inline struct sched_entity *parent_entity(struct sched_entity *se)
744 {
745 return NULL;
746 }
747
748 #endif /* CONFIG_FAIR_GROUP_SCHED */
749
750 /*
751 * The enqueue_task method is called before nr_running is
752 * increased. Here we update the fair scheduling stats and
753 * then put the task into the rbtree:
754 */
755 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
756 {
757 struct cfs_rq *cfs_rq;
758 struct sched_entity *se = &p->se;
759
760 for_each_sched_entity(se) {
761 if (se->on_rq)
762 break;
763 cfs_rq = cfs_rq_of(se);
764 enqueue_entity(cfs_rq, se, wakeup);
765 wakeup = 1;
766 }
767 }
768
769 /*
770 * The dequeue_task method is called before nr_running is
771 * decreased. We remove the task from the rbtree and
772 * update the fair scheduling stats:
773 */
774 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
775 {
776 struct cfs_rq *cfs_rq;
777 struct sched_entity *se = &p->se;
778
779 for_each_sched_entity(se) {
780 cfs_rq = cfs_rq_of(se);
781 dequeue_entity(cfs_rq, se, sleep);
782 /* Don't dequeue parent if it has other entities besides us */
783 if (cfs_rq->load.weight)
784 break;
785 sleep = 1;
786 }
787 }
788
789 /*
790 * sched_yield() support is very simple - we dequeue and enqueue.
791 *
792 * If compat_yield is turned on then we requeue to the end of the tree.
793 */
794 static void yield_task_fair(struct rq *rq)
795 {
796 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
797 struct sched_entity *rightmost, *se = &rq->curr->se;
798
799 /*
800 * Are we the only task in the tree?
801 */
802 if (unlikely(cfs_rq->nr_running == 1))
803 return;
804
805 if (likely(!sysctl_sched_compat_yield)) {
806 __update_rq_clock(rq);
807 /*
808 * Update run-time statistics of the 'current'.
809 */
810 update_curr(cfs_rq);
811
812 return;
813 }
814 /*
815 * Find the rightmost entry in the rbtree:
816 */
817 rightmost = __pick_last_entity(cfs_rq);
818 /*
819 * Already in the rightmost position?
820 */
821 if (unlikely(rightmost->vruntime < se->vruntime))
822 return;
823
824 /*
825 * Minimally necessary key value to be last in the tree:
826 * Upon rescheduling, sched_class::put_prev_task() will place
827 * 'current' within the tree based on its new key value.
828 */
829 se->vruntime = rightmost->vruntime + 1;
830 }
831
832 /*
833 * Preempt the current task with a newly woken task if needed:
834 */
835 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
836 {
837 struct task_struct *curr = rq->curr;
838 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
839 struct sched_entity *se = &curr->se, *pse = &p->se;
840 unsigned long gran;
841
842 if (unlikely(rt_prio(p->prio))) {
843 update_rq_clock(rq);
844 update_curr(cfs_rq);
845 resched_task(curr);
846 return;
847 }
848 /*
849 * Batch tasks do not preempt (their preemption is driven by
850 * the tick):
851 */
852 if (unlikely(p->policy == SCHED_BATCH))
853 return;
854
855 if (!sched_feat(WAKEUP_PREEMPT))
856 return;
857
858 while (!is_same_group(se, pse)) {
859 se = parent_entity(se);
860 pse = parent_entity(pse);
861 }
862
863 gran = sysctl_sched_wakeup_granularity;
864 if (unlikely(se->load.weight != NICE_0_LOAD))
865 gran = calc_delta_fair(gran, &se->load);
866
867 if (pse->vruntime + gran < se->vruntime)
868 resched_task(curr);
869 }
870
871 static struct task_struct *pick_next_task_fair(struct rq *rq)
872 {
873 struct cfs_rq *cfs_rq = &rq->cfs;
874 struct sched_entity *se;
875
876 if (unlikely(!cfs_rq->nr_running))
877 return NULL;
878
879 do {
880 se = pick_next_entity(cfs_rq);
881 cfs_rq = group_cfs_rq(se);
882 } while (cfs_rq);
883
884 return task_of(se);
885 }
886
887 /*
888 * Account for a descheduled task:
889 */
890 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
891 {
892 struct sched_entity *se = &prev->se;
893 struct cfs_rq *cfs_rq;
894
895 for_each_sched_entity(se) {
896 cfs_rq = cfs_rq_of(se);
897 put_prev_entity(cfs_rq, se);
898 }
899 }
900
901 #ifdef CONFIG_SMP
902 /**************************************************
903 * Fair scheduling class load-balancing methods:
904 */
905
906 /*
907 * Load-balancing iterator. Note: while the runqueue stays locked
908 * during the whole iteration, the current task might be
909 * dequeued so the iterator has to be dequeue-safe. Here we
910 * achieve that by always pre-iterating before returning
911 * the current task:
912 */
913 static struct task_struct *
914 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
915 {
916 struct task_struct *p;
917
918 if (!curr)
919 return NULL;
920
921 p = rb_entry(curr, struct task_struct, se.run_node);
922 cfs_rq->rb_load_balance_curr = rb_next(curr);
923
924 return p;
925 }
926
927 static struct task_struct *load_balance_start_fair(void *arg)
928 {
929 struct cfs_rq *cfs_rq = arg;
930
931 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
932 }
933
934 static struct task_struct *load_balance_next_fair(void *arg)
935 {
936 struct cfs_rq *cfs_rq = arg;
937
938 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
939 }
940
941 #ifdef CONFIG_FAIR_GROUP_SCHED
942 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
943 {
944 struct sched_entity *curr;
945 struct task_struct *p;
946
947 if (!cfs_rq->nr_running)
948 return MAX_PRIO;
949
950 curr = cfs_rq->curr;
951 if (!curr)
952 curr = __pick_next_entity(cfs_rq);
953
954 p = task_of(curr);
955
956 return p->prio;
957 }
958 #endif
959
960 static unsigned long
961 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
962 unsigned long max_load_move,
963 struct sched_domain *sd, enum cpu_idle_type idle,
964 int *all_pinned, int *this_best_prio)
965 {
966 struct cfs_rq *busy_cfs_rq;
967 long rem_load_move = max_load_move;
968 struct rq_iterator cfs_rq_iterator;
969
970 cfs_rq_iterator.start = load_balance_start_fair;
971 cfs_rq_iterator.next = load_balance_next_fair;
972
973 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
974 #ifdef CONFIG_FAIR_GROUP_SCHED
975 struct cfs_rq *this_cfs_rq;
976 long imbalance;
977 unsigned long maxload;
978
979 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
980
981 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
982 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
983 if (imbalance <= 0)
984 continue;
985
986 /* Don't pull more than imbalance/2 */
987 imbalance /= 2;
988 maxload = min(rem_load_move, imbalance);
989
990 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
991 #else
992 # define maxload rem_load_move
993 #endif
994 /*
995 * pass busy_cfs_rq argument into
996 * load_balance_[start|next]_fair iterators
997 */
998 cfs_rq_iterator.arg = busy_cfs_rq;
999 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1000 maxload, sd, idle, all_pinned,
1001 this_best_prio,
1002 &cfs_rq_iterator);
1003
1004 if (rem_load_move <= 0)
1005 break;
1006 }
1007
1008 return max_load_move - rem_load_move;
1009 }
1010
1011 static int
1012 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1013 struct sched_domain *sd, enum cpu_idle_type idle)
1014 {
1015 struct cfs_rq *busy_cfs_rq;
1016 struct rq_iterator cfs_rq_iterator;
1017
1018 cfs_rq_iterator.start = load_balance_start_fair;
1019 cfs_rq_iterator.next = load_balance_next_fair;
1020
1021 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1022 /*
1023 * pass busy_cfs_rq argument into
1024 * load_balance_[start|next]_fair iterators
1025 */
1026 cfs_rq_iterator.arg = busy_cfs_rq;
1027 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1028 &cfs_rq_iterator))
1029 return 1;
1030 }
1031
1032 return 0;
1033 }
1034 #endif
1035
1036 /*
1037 * scheduler tick hitting a task of our scheduling class:
1038 */
1039 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1040 {
1041 struct cfs_rq *cfs_rq;
1042 struct sched_entity *se = &curr->se;
1043
1044 for_each_sched_entity(se) {
1045 cfs_rq = cfs_rq_of(se);
1046 entity_tick(cfs_rq, se);
1047 }
1048 }
1049
1050 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1051
1052 /*
1053 * Share the fairness runtime between parent and child, thus the
1054 * total amount of pressure for CPU stays equal - new tasks
1055 * get a chance to run but frequent forkers are not allowed to
1056 * monopolize the CPU. Note: the parent runqueue is locked,
1057 * the child is not running yet.
1058 */
1059 static void task_new_fair(struct rq *rq, struct task_struct *p)
1060 {
1061 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1062 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1063 int this_cpu = smp_processor_id();
1064
1065 sched_info_queued(p);
1066
1067 update_curr(cfs_rq);
1068 place_entity(cfs_rq, se, 1);
1069
1070 /* 'curr' will be NULL if the child belongs to a different group */
1071 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1072 curr && curr->vruntime < se->vruntime) {
1073 /*
1074 * Upon rescheduling, sched_class::put_prev_task() will place
1075 * 'current' within the tree based on its new key value.
1076 */
1077 swap(curr->vruntime, se->vruntime);
1078 }
1079
1080 enqueue_task_fair(rq, p, 0);
1081 resched_task(rq->curr);
1082 }
1083
1084 /* Account for a task changing its policy or group.
1085 *
1086 * This routine is mostly called to set cfs_rq->curr field when a task
1087 * migrates between groups/classes.
1088 */
1089 static void set_curr_task_fair(struct rq *rq)
1090 {
1091 struct sched_entity *se = &rq->curr->se;
1092
1093 for_each_sched_entity(se)
1094 set_next_entity(cfs_rq_of(se), se);
1095 }
1096
1097 /*
1098 * All the scheduling class methods:
1099 */
1100 static const struct sched_class fair_sched_class = {
1101 .next = &idle_sched_class,
1102 .enqueue_task = enqueue_task_fair,
1103 .dequeue_task = dequeue_task_fair,
1104 .yield_task = yield_task_fair,
1105
1106 .check_preempt_curr = check_preempt_wakeup,
1107
1108 .pick_next_task = pick_next_task_fair,
1109 .put_prev_task = put_prev_task_fair,
1110
1111 #ifdef CONFIG_SMP
1112 .load_balance = load_balance_fair,
1113 .move_one_task = move_one_task_fair,
1114 #endif
1115
1116 .set_curr_task = set_curr_task_fair,
1117 .task_tick = task_tick_fair,
1118 .task_new = task_new_fair,
1119 };
1120
1121 #ifdef CONFIG_SCHED_DEBUG
1122 static void print_cfs_stats(struct seq_file *m, int cpu)
1123 {
1124 struct cfs_rq *cfs_rq;
1125
1126 #ifdef CONFIG_FAIR_GROUP_SCHED
1127 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1128 #endif
1129 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1130 print_cfs_rq(m, cpu, cfs_rq);
1131 }
1132 #endif