ALSA: hda - Fix NULL-derefence with a single mic in STAC auto-mic detection
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 8;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162 return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206 }
207
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212 return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217 return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se) 1
221
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227 return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241 return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246 return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255 return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260 return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295 {
296 return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301 return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326 * Enqueue an entity into the rb-tree:
327 */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
372 }
373
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391 if (!last)
392 return NULL;
393
394 return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
405 {
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
422
423 return 0;
424 }
425 #endif
426
427 /*
428 * delta /= w
429 */
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
432 {
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436 return delta;
437 }
438
439 /*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447 static u64 __sched_period(unsigned long nr_running)
448 {
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
451
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
455 }
456
457 return period;
458 }
459
460 /*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 {
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
476
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
486 }
487
488 /*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 }
497
498 /*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
505 {
506 unsigned long delta_exec_weighted;
507
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
510
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
517 }
518
519 static void update_curr(struct cfs_rq *cfs_rq)
520 {
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock_task;
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
536
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
546 }
547 }
548
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553 }
554
555 /*
556 * Task is being enqueued - update stats:
557 */
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
566 }
567
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 {
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
580 }
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
583 }
584
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
594 }
595
596 /*
597 * We are picking a new current task - update its stats:
598 */
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 /*
603 * We are starting a new run period:
604 */
605 se->exec_start = rq_of(cfs_rq)->clock_task;
606 }
607
608 /**************************************************
609 * Scheduling class queueing methods:
610 */
611
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 {
616 cfs_rq->task_weight += weight;
617 }
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621 {
622 }
623 #endif
624
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637 }
638
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
648 }
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651 }
652
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663
664 if ((s64)delta < 0)
665 delta = 0;
666
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
669
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
672
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
676 }
677 }
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680
681 if ((s64)delta < 0)
682 delta = 0;
683
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
686
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
689
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
695 }
696
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
708 }
709 }
710 #endif
711 }
712
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 {
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
724 }
725
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 {
729 u64 vruntime = cfs_rq->min_vruntime;
730
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
739
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
743
744 /*
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
750
751 vruntime -= thresh;
752 }
753
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
757 se->vruntime = vruntime;
758 }
759
760 static void
761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
762 {
763 /*
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
766 */
767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 se->vruntime += cfs_rq->min_vruntime;
769
770 /*
771 * Update run-time statistics of the 'current'.
772 */
773 update_curr(cfs_rq);
774 account_entity_enqueue(cfs_rq, se);
775
776 if (flags & ENQUEUE_WAKEUP) {
777 place_entity(cfs_rq, se, 0);
778 enqueue_sleeper(cfs_rq, se);
779 }
780
781 update_stats_enqueue(cfs_rq, se);
782 check_spread(cfs_rq, se);
783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
785 }
786
787 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 if (!se || cfs_rq->last == se)
790 cfs_rq->last = NULL;
791
792 if (!se || cfs_rq->next == se)
793 cfs_rq->next = NULL;
794 }
795
796 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797 {
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
800 }
801
802 static void
803 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
804 {
805 /*
806 * Update run-time statistics of the 'current'.
807 */
808 update_curr(cfs_rq);
809
810 update_stats_dequeue(cfs_rq, se);
811 if (flags & DEQUEUE_SLEEP) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
815
816 if (tsk->state & TASK_INTERRUPTIBLE)
817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818 if (tsk->state & TASK_UNINTERRUPTIBLE)
819 se->statistics.block_start = rq_of(cfs_rq)->clock;
820 }
821 #endif
822 }
823
824 clear_buddies(cfs_rq, se);
825
826 if (se != cfs_rq->curr)
827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
829 update_min_vruntime(cfs_rq);
830
831 /*
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
835 */
836 if (!(flags & DEQUEUE_SLEEP))
837 se->vruntime -= cfs_rq->min_vruntime;
838 }
839
840 /*
841 * Preempt the current task with a newly woken task if needed:
842 */
843 static void
844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
845 {
846 unsigned long ideal_runtime, delta_exec;
847
848 ideal_runtime = sched_slice(cfs_rq, curr);
849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850 if (delta_exec > ideal_runtime) {
851 resched_task(rq_of(cfs_rq)->curr);
852 /*
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
855 */
856 clear_buddies(cfs_rq, curr);
857 return;
858 }
859
860 /*
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
864 */
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
867
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
870
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
874
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
877 }
878 }
879
880 static void
881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
885 /*
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
889 */
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
892 }
893
894 update_stats_curr_start(cfs_rq, se);
895 cfs_rq->curr = se;
896 #ifdef CONFIG_SCHEDSTATS
897 /*
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
901 */
902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903 se->statistics.slice_max = max(se->statistics.slice_max,
904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
905 }
906 #endif
907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
908 }
909
910 static int
911 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
913 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
914 {
915 struct sched_entity *se = __pick_next_entity(cfs_rq);
916 struct sched_entity *left = se;
917
918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
920
921 /*
922 * Prefer last buddy, try to return the CPU to a preempted task.
923 */
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
926
927 clear_buddies(cfs_rq, se);
928
929 return se;
930 }
931
932 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
933 {
934 /*
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
937 */
938 if (prev->on_rq)
939 update_curr(cfs_rq);
940
941 check_spread(cfs_rq, prev);
942 if (prev->on_rq) {
943 update_stats_wait_start(cfs_rq, prev);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
946 }
947 cfs_rq->curr = NULL;
948 }
949
950 static void
951 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
952 {
953 /*
954 * Update run-time statistics of the 'current'.
955 */
956 update_curr(cfs_rq);
957
958 #ifdef CONFIG_SCHED_HRTICK
959 /*
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
962 */
963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
966 }
967 /*
968 * don't let the period tick interfere with the hrtick preemption
969 */
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973 #endif
974
975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976 check_preempt_tick(cfs_rq, curr);
977 }
978
979 /**************************************************
980 * CFS operations on tasks:
981 */
982
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985 {
986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989 WARN_ON(task_rq(p) != rq);
990
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
995
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1000 }
1001
1002 /*
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1005 */
1006 if (rq->curr != p)
1007 delta = max_t(s64, 10000LL, delta);
1008
1009 hrtick_start(rq, delta);
1010 }
1011 }
1012
1013 /*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018 static void hrtick_update(struct rq *rq)
1019 {
1020 struct task_struct *curr = rq->curr;
1021
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1024
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1027 }
1028 #else /* !CONFIG_SCHED_HRTICK */
1029 static inline void
1030 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031 {
1032 }
1033
1034 static inline void hrtick_update(struct rq *rq)
1035 {
1036 }
1037 #endif
1038
1039 /*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
1044 static void
1045 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1046 {
1047 struct cfs_rq *cfs_rq;
1048 struct sched_entity *se = &p->se;
1049
1050 for_each_sched_entity(se) {
1051 if (se->on_rq)
1052 break;
1053 cfs_rq = cfs_rq_of(se);
1054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
1056 }
1057
1058 hrtick_update(rq);
1059 }
1060
1061 /*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
1066 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1067 {
1068 struct cfs_rq *cfs_rq;
1069 struct sched_entity *se = &p->se;
1070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 dequeue_entity(cfs_rq, se, flags);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq->load.weight)
1076 break;
1077 flags |= DEQUEUE_SLEEP;
1078 }
1079
1080 hrtick_update(rq);
1081 }
1082
1083 /*
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1087 */
1088 static void yield_task_fair(struct rq *rq)
1089 {
1090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
1093
1094 /*
1095 * Are we the only task in the tree?
1096 */
1097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1099
1100 clear_buddies(cfs_rq, se);
1101
1102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103 update_rq_clock(rq);
1104 /*
1105 * Update run-time statistics of the 'current'.
1106 */
1107 update_curr(cfs_rq);
1108
1109 return;
1110 }
1111 /*
1112 * Find the rightmost entry in the rbtree:
1113 */
1114 rightmost = __pick_last_entity(cfs_rq);
1115 /*
1116 * Already in the rightmost position?
1117 */
1118 if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 return;
1120
1121 /*
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1125 */
1126 se->vruntime = rightmost->vruntime + 1;
1127 }
1128
1129 #ifdef CONFIG_SMP
1130
1131 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132 {
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136 se->vruntime -= cfs_rq->min_vruntime;
1137 }
1138
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1140 /*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
1161 static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
1163 {
1164 struct sched_entity *se = tg->se[cpu];
1165
1166 if (!tg->parent)
1167 return wl;
1168
1169 /*
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1172 */
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1175
1176 for_each_sched_entity(se) {
1177 long S, rw, s, a, b;
1178 long more_w;
1179
1180 /*
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1183 */
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
1187
1188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
1190 rw = se->my_q->rq_weight;
1191
1192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
1194
1195 wl = s*(a-b);
1196
1197 if (likely(b))
1198 wl /= b;
1199
1200 /*
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1203 *
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1206 */
1207 wg = 0;
1208 }
1209
1210 return wl;
1211 }
1212
1213 #else
1214
1215 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
1217 {
1218 return wl;
1219 }
1220
1221 #endif
1222
1223 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1224 {
1225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
1227 unsigned long tl_per_task;
1228 struct task_group *tg;
1229 unsigned long weight;
1230 int balanced;
1231
1232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
1237
1238 /*
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1242 */
1243 rcu_read_lock();
1244 if (sync) {
1245 tg = task_group(current);
1246 weight = current->se.load.weight;
1247
1248 this_load += effective_load(tg, this_cpu, -weight, -weight);
1249 load += effective_load(tg, prev_cpu, 0, -weight);
1250 }
1251
1252 tg = task_group(p);
1253 weight = p->se.load.weight;
1254
1255 /*
1256 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1257 * due to the sync cause above having dropped this_load to 0, we'll
1258 * always have an imbalance, but there's really nothing you can do
1259 * about that, so that's good too.
1260 *
1261 * Otherwise check if either cpus are near enough in load to allow this
1262 * task to be woken on this_cpu.
1263 */
1264 if (this_load) {
1265 unsigned long this_eff_load, prev_eff_load;
1266
1267 this_eff_load = 100;
1268 this_eff_load *= power_of(prev_cpu);
1269 this_eff_load *= this_load +
1270 effective_load(tg, this_cpu, weight, weight);
1271
1272 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1273 prev_eff_load *= power_of(this_cpu);
1274 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1275
1276 balanced = this_eff_load <= prev_eff_load;
1277 } else
1278 balanced = true;
1279 rcu_read_unlock();
1280
1281 /*
1282 * If the currently running task will sleep within
1283 * a reasonable amount of time then attract this newly
1284 * woken task:
1285 */
1286 if (sync && balanced)
1287 return 1;
1288
1289 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1290 tl_per_task = cpu_avg_load_per_task(this_cpu);
1291
1292 if (balanced ||
1293 (this_load <= load &&
1294 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1295 /*
1296 * This domain has SD_WAKE_AFFINE and
1297 * p is cache cold in this domain, and
1298 * there is no bad imbalance.
1299 */
1300 schedstat_inc(sd, ttwu_move_affine);
1301 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1302
1303 return 1;
1304 }
1305 return 0;
1306 }
1307
1308 /*
1309 * find_idlest_group finds and returns the least busy CPU group within the
1310 * domain.
1311 */
1312 static struct sched_group *
1313 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314 int this_cpu, int load_idx)
1315 {
1316 struct sched_group *idlest = NULL, *group = sd->groups;
1317 unsigned long min_load = ULONG_MAX, this_load = 0;
1318 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1319
1320 do {
1321 unsigned long load, avg_load;
1322 int local_group;
1323 int i;
1324
1325 /* Skip over this group if it has no CPUs allowed */
1326 if (!cpumask_intersects(sched_group_cpus(group),
1327 &p->cpus_allowed))
1328 continue;
1329
1330 local_group = cpumask_test_cpu(this_cpu,
1331 sched_group_cpus(group));
1332
1333 /* Tally up the load of all CPUs in the group */
1334 avg_load = 0;
1335
1336 for_each_cpu(i, sched_group_cpus(group)) {
1337 /* Bias balancing toward cpus of our domain */
1338 if (local_group)
1339 load = source_load(i, load_idx);
1340 else
1341 load = target_load(i, load_idx);
1342
1343 avg_load += load;
1344 }
1345
1346 /* Adjust by relative CPU power of the group */
1347 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1348
1349 if (local_group) {
1350 this_load = avg_load;
1351 } else if (avg_load < min_load) {
1352 min_load = avg_load;
1353 idlest = group;
1354 }
1355 } while (group = group->next, group != sd->groups);
1356
1357 if (!idlest || 100*this_load < imbalance*min_load)
1358 return NULL;
1359 return idlest;
1360 }
1361
1362 /*
1363 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1364 */
1365 static int
1366 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1367 {
1368 unsigned long load, min_load = ULONG_MAX;
1369 int idlest = -1;
1370 int i;
1371
1372 /* Traverse only the allowed CPUs */
1373 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1374 load = weighted_cpuload(i);
1375
1376 if (load < min_load || (load == min_load && i == this_cpu)) {
1377 min_load = load;
1378 idlest = i;
1379 }
1380 }
1381
1382 return idlest;
1383 }
1384
1385 /*
1386 * Try and locate an idle CPU in the sched_domain.
1387 */
1388 static int select_idle_sibling(struct task_struct *p, int target)
1389 {
1390 int cpu = smp_processor_id();
1391 int prev_cpu = task_cpu(p);
1392 struct sched_domain *sd;
1393 int i;
1394
1395 /*
1396 * If the task is going to be woken-up on this cpu and if it is
1397 * already idle, then it is the right target.
1398 */
1399 if (target == cpu && idle_cpu(cpu))
1400 return cpu;
1401
1402 /*
1403 * If the task is going to be woken-up on the cpu where it previously
1404 * ran and if it is currently idle, then it the right target.
1405 */
1406 if (target == prev_cpu && idle_cpu(prev_cpu))
1407 return prev_cpu;
1408
1409 /*
1410 * Otherwise, iterate the domains and find an elegible idle cpu.
1411 */
1412 for_each_domain(target, sd) {
1413 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1414 break;
1415
1416 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1417 if (idle_cpu(i)) {
1418 target = i;
1419 break;
1420 }
1421 }
1422
1423 /*
1424 * Lets stop looking for an idle sibling when we reached
1425 * the domain that spans the current cpu and prev_cpu.
1426 */
1427 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1428 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1429 break;
1430 }
1431
1432 return target;
1433 }
1434
1435 /*
1436 * sched_balance_self: balance the current task (running on cpu) in domains
1437 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1438 * SD_BALANCE_EXEC.
1439 *
1440 * Balance, ie. select the least loaded group.
1441 *
1442 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 *
1444 * preempt must be disabled.
1445 */
1446 static int
1447 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1448 {
1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
1454 int want_sd = 1;
1455 int sync = wake_flags & WF_SYNC;
1456
1457 if (sd_flag & SD_BALANCE_WAKE) {
1458 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1459 want_affine = 1;
1460 new_cpu = prev_cpu;
1461 }
1462
1463 for_each_domain(cpu, tmp) {
1464 if (!(tmp->flags & SD_LOAD_BALANCE))
1465 continue;
1466
1467 /*
1468 * If power savings logic is enabled for a domain, see if we
1469 * are not overloaded, if so, don't balance wider.
1470 */
1471 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1472 unsigned long power = 0;
1473 unsigned long nr_running = 0;
1474 unsigned long capacity;
1475 int i;
1476
1477 for_each_cpu(i, sched_domain_span(tmp)) {
1478 power += power_of(i);
1479 nr_running += cpu_rq(i)->cfs.nr_running;
1480 }
1481
1482 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1483
1484 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1485 nr_running /= 2;
1486
1487 if (nr_running < capacity)
1488 want_sd = 0;
1489 }
1490
1491 /*
1492 * If both cpu and prev_cpu are part of this domain,
1493 * cpu is a valid SD_WAKE_AFFINE target.
1494 */
1495 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1496 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1497 affine_sd = tmp;
1498 want_affine = 0;
1499 }
1500
1501 if (!want_sd && !want_affine)
1502 break;
1503
1504 if (!(tmp->flags & sd_flag))
1505 continue;
1506
1507 if (want_sd)
1508 sd = tmp;
1509 }
1510
1511 #ifdef CONFIG_FAIR_GROUP_SCHED
1512 if (sched_feat(LB_SHARES_UPDATE)) {
1513 /*
1514 * Pick the largest domain to update shares over
1515 */
1516 tmp = sd;
1517 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1518 tmp = affine_sd;
1519
1520 if (tmp) {
1521 raw_spin_unlock(&rq->lock);
1522 update_shares(tmp);
1523 raw_spin_lock(&rq->lock);
1524 }
1525 }
1526 #endif
1527
1528 if (affine_sd) {
1529 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1530 return select_idle_sibling(p, cpu);
1531 else
1532 return select_idle_sibling(p, prev_cpu);
1533 }
1534
1535 while (sd) {
1536 int load_idx = sd->forkexec_idx;
1537 struct sched_group *group;
1538 int weight;
1539
1540 if (!(sd->flags & sd_flag)) {
1541 sd = sd->child;
1542 continue;
1543 }
1544
1545 if (sd_flag & SD_BALANCE_WAKE)
1546 load_idx = sd->wake_idx;
1547
1548 group = find_idlest_group(sd, p, cpu, load_idx);
1549 if (!group) {
1550 sd = sd->child;
1551 continue;
1552 }
1553
1554 new_cpu = find_idlest_cpu(group, p, cpu);
1555 if (new_cpu == -1 || new_cpu == cpu) {
1556 /* Now try balancing at a lower domain level of cpu */
1557 sd = sd->child;
1558 continue;
1559 }
1560
1561 /* Now try balancing at a lower domain level of new_cpu */
1562 cpu = new_cpu;
1563 weight = sd->span_weight;
1564 sd = NULL;
1565 for_each_domain(cpu, tmp) {
1566 if (weight <= tmp->span_weight)
1567 break;
1568 if (tmp->flags & sd_flag)
1569 sd = tmp;
1570 }
1571 /* while loop will break here if sd == NULL */
1572 }
1573
1574 return new_cpu;
1575 }
1576 #endif /* CONFIG_SMP */
1577
1578 static unsigned long
1579 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1580 {
1581 unsigned long gran = sysctl_sched_wakeup_granularity;
1582
1583 /*
1584 * Since its curr running now, convert the gran from real-time
1585 * to virtual-time in his units.
1586 *
1587 * By using 'se' instead of 'curr' we penalize light tasks, so
1588 * they get preempted easier. That is, if 'se' < 'curr' then
1589 * the resulting gran will be larger, therefore penalizing the
1590 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1591 * be smaller, again penalizing the lighter task.
1592 *
1593 * This is especially important for buddies when the leftmost
1594 * task is higher priority than the buddy.
1595 */
1596 if (unlikely(se->load.weight != NICE_0_LOAD))
1597 gran = calc_delta_fair(gran, se);
1598
1599 return gran;
1600 }
1601
1602 /*
1603 * Should 'se' preempt 'curr'.
1604 *
1605 * |s1
1606 * |s2
1607 * |s3
1608 * g
1609 * |<--->|c
1610 *
1611 * w(c, s1) = -1
1612 * w(c, s2) = 0
1613 * w(c, s3) = 1
1614 *
1615 */
1616 static int
1617 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1618 {
1619 s64 gran, vdiff = curr->vruntime - se->vruntime;
1620
1621 if (vdiff <= 0)
1622 return -1;
1623
1624 gran = wakeup_gran(curr, se);
1625 if (vdiff > gran)
1626 return 1;
1627
1628 return 0;
1629 }
1630
1631 static void set_last_buddy(struct sched_entity *se)
1632 {
1633 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1634 for_each_sched_entity(se)
1635 cfs_rq_of(se)->last = se;
1636 }
1637 }
1638
1639 static void set_next_buddy(struct sched_entity *se)
1640 {
1641 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1642 for_each_sched_entity(se)
1643 cfs_rq_of(se)->next = se;
1644 }
1645 }
1646
1647 /*
1648 * Preempt the current task with a newly woken task if needed:
1649 */
1650 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1651 {
1652 struct task_struct *curr = rq->curr;
1653 struct sched_entity *se = &curr->se, *pse = &p->se;
1654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1655 int scale = cfs_rq->nr_running >= sched_nr_latency;
1656
1657 if (unlikely(se == pse))
1658 return;
1659
1660 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1661 set_next_buddy(pse);
1662
1663 /*
1664 * We can come here with TIF_NEED_RESCHED already set from new task
1665 * wake up path.
1666 */
1667 if (test_tsk_need_resched(curr))
1668 return;
1669
1670 /*
1671 * Batch and idle tasks do not preempt (their preemption is driven by
1672 * the tick):
1673 */
1674 if (unlikely(p->policy != SCHED_NORMAL))
1675 return;
1676
1677 /* Idle tasks are by definition preempted by everybody. */
1678 if (unlikely(curr->policy == SCHED_IDLE))
1679 goto preempt;
1680
1681 if (!sched_feat(WAKEUP_PREEMPT))
1682 return;
1683
1684 update_curr(cfs_rq);
1685 find_matching_se(&se, &pse);
1686 BUG_ON(!pse);
1687 if (wakeup_preempt_entity(se, pse) == 1)
1688 goto preempt;
1689
1690 return;
1691
1692 preempt:
1693 resched_task(curr);
1694 /*
1695 * Only set the backward buddy when the current task is still
1696 * on the rq. This can happen when a wakeup gets interleaved
1697 * with schedule on the ->pre_schedule() or idle_balance()
1698 * point, either of which can * drop the rq lock.
1699 *
1700 * Also, during early boot the idle thread is in the fair class,
1701 * for obvious reasons its a bad idea to schedule back to it.
1702 */
1703 if (unlikely(!se->on_rq || curr == rq->idle))
1704 return;
1705
1706 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1707 set_last_buddy(se);
1708 }
1709
1710 static struct task_struct *pick_next_task_fair(struct rq *rq)
1711 {
1712 struct task_struct *p;
1713 struct cfs_rq *cfs_rq = &rq->cfs;
1714 struct sched_entity *se;
1715
1716 if (!cfs_rq->nr_running)
1717 return NULL;
1718
1719 do {
1720 se = pick_next_entity(cfs_rq);
1721 set_next_entity(cfs_rq, se);
1722 cfs_rq = group_cfs_rq(se);
1723 } while (cfs_rq);
1724
1725 p = task_of(se);
1726 hrtick_start_fair(rq, p);
1727
1728 return p;
1729 }
1730
1731 /*
1732 * Account for a descheduled task:
1733 */
1734 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1735 {
1736 struct sched_entity *se = &prev->se;
1737 struct cfs_rq *cfs_rq;
1738
1739 for_each_sched_entity(se) {
1740 cfs_rq = cfs_rq_of(se);
1741 put_prev_entity(cfs_rq, se);
1742 }
1743 }
1744
1745 #ifdef CONFIG_SMP
1746 /**************************************************
1747 * Fair scheduling class load-balancing methods:
1748 */
1749
1750 /*
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1753 */
1754 static void pull_task(struct rq *src_rq, struct task_struct *p,
1755 struct rq *this_rq, int this_cpu)
1756 {
1757 deactivate_task(src_rq, p, 0);
1758 set_task_cpu(p, this_cpu);
1759 activate_task(this_rq, p, 0);
1760 check_preempt_curr(this_rq, p, 0);
1761
1762 /* re-arm NEWIDLE balancing when moving tasks */
1763 src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
1764 this_rq->idle_stamp = 0;
1765 }
1766
1767 /*
1768 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1769 */
1770 static
1771 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1772 struct sched_domain *sd, enum cpu_idle_type idle,
1773 int *all_pinned)
1774 {
1775 int tsk_cache_hot = 0;
1776 /*
1777 * We do not migrate tasks that are:
1778 * 1) running (obviously), or
1779 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1780 * 3) are cache-hot on their current CPU.
1781 */
1782 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1783 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1784 return 0;
1785 }
1786 *all_pinned = 0;
1787
1788 if (task_running(rq, p)) {
1789 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1790 return 0;
1791 }
1792
1793 /*
1794 * Aggressive migration if:
1795 * 1) task is cache cold, or
1796 * 2) too many balance attempts have failed.
1797 */
1798
1799 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1800 if (!tsk_cache_hot ||
1801 sd->nr_balance_failed > sd->cache_nice_tries) {
1802 #ifdef CONFIG_SCHEDSTATS
1803 if (tsk_cache_hot) {
1804 schedstat_inc(sd, lb_hot_gained[idle]);
1805 schedstat_inc(p, se.statistics.nr_forced_migrations);
1806 }
1807 #endif
1808 return 1;
1809 }
1810
1811 if (tsk_cache_hot) {
1812 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1813 return 0;
1814 }
1815 return 1;
1816 }
1817
1818 /*
1819 * move_one_task tries to move exactly one task from busiest to this_rq, as
1820 * part of active balancing operations within "domain".
1821 * Returns 1 if successful and 0 otherwise.
1822 *
1823 * Called with both runqueues locked.
1824 */
1825 static int
1826 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1827 struct sched_domain *sd, enum cpu_idle_type idle)
1828 {
1829 struct task_struct *p, *n;
1830 struct cfs_rq *cfs_rq;
1831 int pinned = 0;
1832
1833 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1834 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1835
1836 if (!can_migrate_task(p, busiest, this_cpu,
1837 sd, idle, &pinned))
1838 continue;
1839
1840 pull_task(busiest, p, this_rq, this_cpu);
1841 /*
1842 * Right now, this is only the second place pull_task()
1843 * is called, so we can safely collect pull_task()
1844 * stats here rather than inside pull_task().
1845 */
1846 schedstat_inc(sd, lb_gained[idle]);
1847 return 1;
1848 }
1849 }
1850
1851 return 0;
1852 }
1853
1854 static unsigned long
1855 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move, struct sched_domain *sd,
1857 enum cpu_idle_type idle, int *all_pinned,
1858 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1859 {
1860 int loops = 0, pulled = 0, pinned = 0;
1861 long rem_load_move = max_load_move;
1862 struct task_struct *p, *n;
1863
1864 if (max_load_move == 0)
1865 goto out;
1866
1867 pinned = 1;
1868
1869 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1870 if (loops++ > sysctl_sched_nr_migrate)
1871 break;
1872
1873 if ((p->se.load.weight >> 1) > rem_load_move ||
1874 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1875 continue;
1876
1877 pull_task(busiest, p, this_rq, this_cpu);
1878 pulled++;
1879 rem_load_move -= p->se.load.weight;
1880
1881 #ifdef CONFIG_PREEMPT
1882 /*
1883 * NEWIDLE balancing is a source of latency, so preemptible
1884 * kernels will stop after the first task is pulled to minimize
1885 * the critical section.
1886 */
1887 if (idle == CPU_NEWLY_IDLE)
1888 break;
1889 #endif
1890
1891 /*
1892 * We only want to steal up to the prescribed amount of
1893 * weighted load.
1894 */
1895 if (rem_load_move <= 0)
1896 break;
1897
1898 if (p->prio < *this_best_prio)
1899 *this_best_prio = p->prio;
1900 }
1901 out:
1902 /*
1903 * Right now, this is one of only two places pull_task() is called,
1904 * so we can safely collect pull_task() stats here rather than
1905 * inside pull_task().
1906 */
1907 schedstat_add(sd, lb_gained[idle], pulled);
1908
1909 if (all_pinned)
1910 *all_pinned = pinned;
1911
1912 return max_load_move - rem_load_move;
1913 }
1914
1915 #ifdef CONFIG_FAIR_GROUP_SCHED
1916 static unsigned long
1917 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1918 unsigned long max_load_move,
1919 struct sched_domain *sd, enum cpu_idle_type idle,
1920 int *all_pinned, int *this_best_prio)
1921 {
1922 long rem_load_move = max_load_move;
1923 int busiest_cpu = cpu_of(busiest);
1924 struct task_group *tg;
1925
1926 rcu_read_lock();
1927 update_h_load(busiest_cpu);
1928
1929 list_for_each_entry_rcu(tg, &task_groups, list) {
1930 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1931 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1932 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1933 u64 rem_load, moved_load;
1934
1935 /*
1936 * empty group
1937 */
1938 if (!busiest_cfs_rq->task_weight)
1939 continue;
1940
1941 rem_load = (u64)rem_load_move * busiest_weight;
1942 rem_load = div_u64(rem_load, busiest_h_load + 1);
1943
1944 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1945 rem_load, sd, idle, all_pinned, this_best_prio,
1946 busiest_cfs_rq);
1947
1948 if (!moved_load)
1949 continue;
1950
1951 moved_load *= busiest_h_load;
1952 moved_load = div_u64(moved_load, busiest_weight + 1);
1953
1954 rem_load_move -= moved_load;
1955 if (rem_load_move < 0)
1956 break;
1957 }
1958 rcu_read_unlock();
1959
1960 return max_load_move - rem_load_move;
1961 }
1962 #else
1963 static unsigned long
1964 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1965 unsigned long max_load_move,
1966 struct sched_domain *sd, enum cpu_idle_type idle,
1967 int *all_pinned, int *this_best_prio)
1968 {
1969 return balance_tasks(this_rq, this_cpu, busiest,
1970 max_load_move, sd, idle, all_pinned,
1971 this_best_prio, &busiest->cfs);
1972 }
1973 #endif
1974
1975 /*
1976 * move_tasks tries to move up to max_load_move weighted load from busiest to
1977 * this_rq, as part of a balancing operation within domain "sd".
1978 * Returns 1 if successful and 0 otherwise.
1979 *
1980 * Called with both runqueues locked.
1981 */
1982 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1983 unsigned long max_load_move,
1984 struct sched_domain *sd, enum cpu_idle_type idle,
1985 int *all_pinned)
1986 {
1987 unsigned long total_load_moved = 0, load_moved;
1988 int this_best_prio = this_rq->curr->prio;
1989
1990 do {
1991 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1992 max_load_move - total_load_moved,
1993 sd, idle, all_pinned, &this_best_prio);
1994
1995 total_load_moved += load_moved;
1996
1997 #ifdef CONFIG_PREEMPT
1998 /*
1999 * NEWIDLE balancing is a source of latency, so preemptible
2000 * kernels will stop after the first task is pulled to minimize
2001 * the critical section.
2002 */
2003 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2004 break;
2005
2006 if (raw_spin_is_contended(&this_rq->lock) ||
2007 raw_spin_is_contended(&busiest->lock))
2008 break;
2009 #endif
2010 } while (load_moved && max_load_move > total_load_moved);
2011
2012 return total_load_moved > 0;
2013 }
2014
2015 /********** Helpers for find_busiest_group ************************/
2016 /*
2017 * sd_lb_stats - Structure to store the statistics of a sched_domain
2018 * during load balancing.
2019 */
2020 struct sd_lb_stats {
2021 struct sched_group *busiest; /* Busiest group in this sd */
2022 struct sched_group *this; /* Local group in this sd */
2023 unsigned long total_load; /* Total load of all groups in sd */
2024 unsigned long total_pwr; /* Total power of all groups in sd */
2025 unsigned long avg_load; /* Average load across all groups in sd */
2026
2027 /** Statistics of this group */
2028 unsigned long this_load;
2029 unsigned long this_load_per_task;
2030 unsigned long this_nr_running;
2031 unsigned long this_has_capacity;
2032 unsigned int this_idle_cpus;
2033
2034 /* Statistics of the busiest group */
2035 unsigned int busiest_idle_cpus;
2036 unsigned long max_load;
2037 unsigned long busiest_load_per_task;
2038 unsigned long busiest_nr_running;
2039 unsigned long busiest_group_capacity;
2040 unsigned long busiest_has_capacity;
2041 unsigned int busiest_group_weight;
2042
2043 int group_imb; /* Is there imbalance in this sd */
2044 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2045 int power_savings_balance; /* Is powersave balance needed for this sd */
2046 struct sched_group *group_min; /* Least loaded group in sd */
2047 struct sched_group *group_leader; /* Group which relieves group_min */
2048 unsigned long min_load_per_task; /* load_per_task in group_min */
2049 unsigned long leader_nr_running; /* Nr running of group_leader */
2050 unsigned long min_nr_running; /* Nr running of group_min */
2051 #endif
2052 };
2053
2054 /*
2055 * sg_lb_stats - stats of a sched_group required for load_balancing
2056 */
2057 struct sg_lb_stats {
2058 unsigned long avg_load; /*Avg load across the CPUs of the group */
2059 unsigned long group_load; /* Total load over the CPUs of the group */
2060 unsigned long sum_nr_running; /* Nr tasks running in the group */
2061 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2062 unsigned long group_capacity;
2063 unsigned long idle_cpus;
2064 unsigned long group_weight;
2065 int group_imb; /* Is there an imbalance in the group ? */
2066 int group_has_capacity; /* Is there extra capacity in the group? */
2067 };
2068
2069 /**
2070 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2071 * @group: The group whose first cpu is to be returned.
2072 */
2073 static inline unsigned int group_first_cpu(struct sched_group *group)
2074 {
2075 return cpumask_first(sched_group_cpus(group));
2076 }
2077
2078 /**
2079 * get_sd_load_idx - Obtain the load index for a given sched domain.
2080 * @sd: The sched_domain whose load_idx is to be obtained.
2081 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2082 */
2083 static inline int get_sd_load_idx(struct sched_domain *sd,
2084 enum cpu_idle_type idle)
2085 {
2086 int load_idx;
2087
2088 switch (idle) {
2089 case CPU_NOT_IDLE:
2090 load_idx = sd->busy_idx;
2091 break;
2092
2093 case CPU_NEWLY_IDLE:
2094 load_idx = sd->newidle_idx;
2095 break;
2096 default:
2097 load_idx = sd->idle_idx;
2098 break;
2099 }
2100
2101 return load_idx;
2102 }
2103
2104
2105 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2106 /**
2107 * init_sd_power_savings_stats - Initialize power savings statistics for
2108 * the given sched_domain, during load balancing.
2109 *
2110 * @sd: Sched domain whose power-savings statistics are to be initialized.
2111 * @sds: Variable containing the statistics for sd.
2112 * @idle: Idle status of the CPU at which we're performing load-balancing.
2113 */
2114 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2115 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2116 {
2117 /*
2118 * Busy processors will not participate in power savings
2119 * balance.
2120 */
2121 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2122 sds->power_savings_balance = 0;
2123 else {
2124 sds->power_savings_balance = 1;
2125 sds->min_nr_running = ULONG_MAX;
2126 sds->leader_nr_running = 0;
2127 }
2128 }
2129
2130 /**
2131 * update_sd_power_savings_stats - Update the power saving stats for a
2132 * sched_domain while performing load balancing.
2133 *
2134 * @group: sched_group belonging to the sched_domain under consideration.
2135 * @sds: Variable containing the statistics of the sched_domain
2136 * @local_group: Does group contain the CPU for which we're performing
2137 * load balancing ?
2138 * @sgs: Variable containing the statistics of the group.
2139 */
2140 static inline void update_sd_power_savings_stats(struct sched_group *group,
2141 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2142 {
2143
2144 if (!sds->power_savings_balance)
2145 return;
2146
2147 /*
2148 * If the local group is idle or completely loaded
2149 * no need to do power savings balance at this domain
2150 */
2151 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2152 !sds->this_nr_running))
2153 sds->power_savings_balance = 0;
2154
2155 /*
2156 * If a group is already running at full capacity or idle,
2157 * don't include that group in power savings calculations
2158 */
2159 if (!sds->power_savings_balance ||
2160 sgs->sum_nr_running >= sgs->group_capacity ||
2161 !sgs->sum_nr_running)
2162 return;
2163
2164 /*
2165 * Calculate the group which has the least non-idle load.
2166 * This is the group from where we need to pick up the load
2167 * for saving power
2168 */
2169 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2170 (sgs->sum_nr_running == sds->min_nr_running &&
2171 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2172 sds->group_min = group;
2173 sds->min_nr_running = sgs->sum_nr_running;
2174 sds->min_load_per_task = sgs->sum_weighted_load /
2175 sgs->sum_nr_running;
2176 }
2177
2178 /*
2179 * Calculate the group which is almost near its
2180 * capacity but still has some space to pick up some load
2181 * from other group and save more power
2182 */
2183 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2184 return;
2185
2186 if (sgs->sum_nr_running > sds->leader_nr_running ||
2187 (sgs->sum_nr_running == sds->leader_nr_running &&
2188 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2189 sds->group_leader = group;
2190 sds->leader_nr_running = sgs->sum_nr_running;
2191 }
2192 }
2193
2194 /**
2195 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2196 * @sds: Variable containing the statistics of the sched_domain
2197 * under consideration.
2198 * @this_cpu: Cpu at which we're currently performing load-balancing.
2199 * @imbalance: Variable to store the imbalance.
2200 *
2201 * Description:
2202 * Check if we have potential to perform some power-savings balance.
2203 * If yes, set the busiest group to be the least loaded group in the
2204 * sched_domain, so that it's CPUs can be put to idle.
2205 *
2206 * Returns 1 if there is potential to perform power-savings balance.
2207 * Else returns 0.
2208 */
2209 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2210 int this_cpu, unsigned long *imbalance)
2211 {
2212 if (!sds->power_savings_balance)
2213 return 0;
2214
2215 if (sds->this != sds->group_leader ||
2216 sds->group_leader == sds->group_min)
2217 return 0;
2218
2219 *imbalance = sds->min_load_per_task;
2220 sds->busiest = sds->group_min;
2221
2222 return 1;
2223
2224 }
2225 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2226 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2227 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2228 {
2229 return;
2230 }
2231
2232 static inline void update_sd_power_savings_stats(struct sched_group *group,
2233 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2234 {
2235 return;
2236 }
2237
2238 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2239 int this_cpu, unsigned long *imbalance)
2240 {
2241 return 0;
2242 }
2243 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2244
2245
2246 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2247 {
2248 return SCHED_LOAD_SCALE;
2249 }
2250
2251 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2252 {
2253 return default_scale_freq_power(sd, cpu);
2254 }
2255
2256 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2257 {
2258 unsigned long weight = sd->span_weight;
2259 unsigned long smt_gain = sd->smt_gain;
2260
2261 smt_gain /= weight;
2262
2263 return smt_gain;
2264 }
2265
2266 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2267 {
2268 return default_scale_smt_power(sd, cpu);
2269 }
2270
2271 unsigned long scale_rt_power(int cpu)
2272 {
2273 struct rq *rq = cpu_rq(cpu);
2274 u64 total, available;
2275
2276 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2277
2278 if (unlikely(total < rq->rt_avg)) {
2279 /* Ensures that power won't end up being negative */
2280 available = 0;
2281 } else {
2282 available = total - rq->rt_avg;
2283 }
2284
2285 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2286 total = SCHED_LOAD_SCALE;
2287
2288 total >>= SCHED_LOAD_SHIFT;
2289
2290 return div_u64(available, total);
2291 }
2292
2293 static void update_cpu_power(struct sched_domain *sd, int cpu)
2294 {
2295 unsigned long weight = sd->span_weight;
2296 unsigned long power = SCHED_LOAD_SCALE;
2297 struct sched_group *sdg = sd->groups;
2298
2299 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2300 if (sched_feat(ARCH_POWER))
2301 power *= arch_scale_smt_power(sd, cpu);
2302 else
2303 power *= default_scale_smt_power(sd, cpu);
2304
2305 power >>= SCHED_LOAD_SHIFT;
2306 }
2307
2308 sdg->cpu_power_orig = power;
2309
2310 if (sched_feat(ARCH_POWER))
2311 power *= arch_scale_freq_power(sd, cpu);
2312 else
2313 power *= default_scale_freq_power(sd, cpu);
2314
2315 power >>= SCHED_LOAD_SHIFT;
2316
2317 power *= scale_rt_power(cpu);
2318 power >>= SCHED_LOAD_SHIFT;
2319
2320 if (!power)
2321 power = 1;
2322
2323 cpu_rq(cpu)->cpu_power = power;
2324 sdg->cpu_power = power;
2325 }
2326
2327 static void update_group_power(struct sched_domain *sd, int cpu)
2328 {
2329 struct sched_domain *child = sd->child;
2330 struct sched_group *group, *sdg = sd->groups;
2331 unsigned long power;
2332
2333 if (!child) {
2334 update_cpu_power(sd, cpu);
2335 return;
2336 }
2337
2338 power = 0;
2339
2340 group = child->groups;
2341 do {
2342 power += group->cpu_power;
2343 group = group->next;
2344 } while (group != child->groups);
2345
2346 sdg->cpu_power = power;
2347 }
2348
2349 /*
2350 * Try and fix up capacity for tiny siblings, this is needed when
2351 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2352 * which on its own isn't powerful enough.
2353 *
2354 * See update_sd_pick_busiest() and check_asym_packing().
2355 */
2356 static inline int
2357 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2358 {
2359 /*
2360 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2361 */
2362 if (sd->level != SD_LV_SIBLING)
2363 return 0;
2364
2365 /*
2366 * If ~90% of the cpu_power is still there, we're good.
2367 */
2368 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2369 return 1;
2370
2371 return 0;
2372 }
2373
2374 /**
2375 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2376 * @sd: The sched_domain whose statistics are to be updated.
2377 * @group: sched_group whose statistics are to be updated.
2378 * @this_cpu: Cpu for which load balance is currently performed.
2379 * @idle: Idle status of this_cpu
2380 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2381 * @sd_idle: Idle status of the sched_domain containing group.
2382 * @local_group: Does group contain this_cpu.
2383 * @cpus: Set of cpus considered for load balancing.
2384 * @balance: Should we balance.
2385 * @sgs: variable to hold the statistics for this group.
2386 */
2387 static inline void update_sg_lb_stats(struct sched_domain *sd,
2388 struct sched_group *group, int this_cpu,
2389 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2390 int local_group, const struct cpumask *cpus,
2391 int *balance, struct sg_lb_stats *sgs)
2392 {
2393 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2394 int i;
2395 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2396 unsigned long avg_load_per_task = 0;
2397
2398 if (local_group)
2399 balance_cpu = group_first_cpu(group);
2400
2401 /* Tally up the load of all CPUs in the group */
2402 max_cpu_load = 0;
2403 min_cpu_load = ~0UL;
2404 max_nr_running = 0;
2405
2406 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2407 struct rq *rq = cpu_rq(i);
2408
2409 if (*sd_idle && rq->nr_running)
2410 *sd_idle = 0;
2411
2412 /* Bias balancing toward cpus of our domain */
2413 if (local_group) {
2414 if (idle_cpu(i) && !first_idle_cpu) {
2415 first_idle_cpu = 1;
2416 balance_cpu = i;
2417 }
2418
2419 load = target_load(i, load_idx);
2420 } else {
2421 load = source_load(i, load_idx);
2422 if (load > max_cpu_load) {
2423 max_cpu_load = load;
2424 max_nr_running = rq->nr_running;
2425 }
2426 if (min_cpu_load > load)
2427 min_cpu_load = load;
2428 }
2429
2430 sgs->group_load += load;
2431 sgs->sum_nr_running += rq->nr_running;
2432 sgs->sum_weighted_load += weighted_cpuload(i);
2433 if (idle_cpu(i))
2434 sgs->idle_cpus++;
2435 }
2436
2437 /*
2438 * First idle cpu or the first cpu(busiest) in this sched group
2439 * is eligible for doing load balancing at this and above
2440 * domains. In the newly idle case, we will allow all the cpu's
2441 * to do the newly idle load balance.
2442 */
2443 if (idle != CPU_NEWLY_IDLE && local_group) {
2444 if (balance_cpu != this_cpu) {
2445 *balance = 0;
2446 return;
2447 }
2448 update_group_power(sd, this_cpu);
2449 }
2450
2451 /* Adjust by relative CPU power of the group */
2452 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2453
2454 /*
2455 * Consider the group unbalanced when the imbalance is larger
2456 * than the average weight of two tasks.
2457 *
2458 * APZ: with cgroup the avg task weight can vary wildly and
2459 * might not be a suitable number - should we keep a
2460 * normalized nr_running number somewhere that negates
2461 * the hierarchy?
2462 */
2463 if (sgs->sum_nr_running)
2464 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2465
2466 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2467 sgs->group_imb = 1;
2468
2469 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2470 if (!sgs->group_capacity)
2471 sgs->group_capacity = fix_small_capacity(sd, group);
2472 sgs->group_weight = group->group_weight;
2473
2474 if (sgs->group_capacity > sgs->sum_nr_running)
2475 sgs->group_has_capacity = 1;
2476 }
2477
2478 /**
2479 * update_sd_pick_busiest - return 1 on busiest group
2480 * @sd: sched_domain whose statistics are to be checked
2481 * @sds: sched_domain statistics
2482 * @sg: sched_group candidate to be checked for being the busiest
2483 * @sgs: sched_group statistics
2484 * @this_cpu: the current cpu
2485 *
2486 * Determine if @sg is a busier group than the previously selected
2487 * busiest group.
2488 */
2489 static bool update_sd_pick_busiest(struct sched_domain *sd,
2490 struct sd_lb_stats *sds,
2491 struct sched_group *sg,
2492 struct sg_lb_stats *sgs,
2493 int this_cpu)
2494 {
2495 if (sgs->avg_load <= sds->max_load)
2496 return false;
2497
2498 if (sgs->sum_nr_running > sgs->group_capacity)
2499 return true;
2500
2501 if (sgs->group_imb)
2502 return true;
2503
2504 /*
2505 * ASYM_PACKING needs to move all the work to the lowest
2506 * numbered CPUs in the group, therefore mark all groups
2507 * higher than ourself as busy.
2508 */
2509 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2510 this_cpu < group_first_cpu(sg)) {
2511 if (!sds->busiest)
2512 return true;
2513
2514 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2515 return true;
2516 }
2517
2518 return false;
2519 }
2520
2521 /**
2522 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2523 * @sd: sched_domain whose statistics are to be updated.
2524 * @this_cpu: Cpu for which load balance is currently performed.
2525 * @idle: Idle status of this_cpu
2526 * @sd_idle: Idle status of the sched_domain containing sg.
2527 * @cpus: Set of cpus considered for load balancing.
2528 * @balance: Should we balance.
2529 * @sds: variable to hold the statistics for this sched_domain.
2530 */
2531 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2532 enum cpu_idle_type idle, int *sd_idle,
2533 const struct cpumask *cpus, int *balance,
2534 struct sd_lb_stats *sds)
2535 {
2536 struct sched_domain *child = sd->child;
2537 struct sched_group *sg = sd->groups;
2538 struct sg_lb_stats sgs;
2539 int load_idx, prefer_sibling = 0;
2540
2541 if (child && child->flags & SD_PREFER_SIBLING)
2542 prefer_sibling = 1;
2543
2544 init_sd_power_savings_stats(sd, sds, idle);
2545 load_idx = get_sd_load_idx(sd, idle);
2546
2547 do {
2548 int local_group;
2549
2550 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2551 memset(&sgs, 0, sizeof(sgs));
2552 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2553 local_group, cpus, balance, &sgs);
2554
2555 if (local_group && !(*balance))
2556 return;
2557
2558 sds->total_load += sgs.group_load;
2559 sds->total_pwr += sg->cpu_power;
2560
2561 /*
2562 * In case the child domain prefers tasks go to siblings
2563 * first, lower the sg capacity to one so that we'll try
2564 * and move all the excess tasks away. We lower the capacity
2565 * of a group only if the local group has the capacity to fit
2566 * these excess tasks, i.e. nr_running < group_capacity. The
2567 * extra check prevents the case where you always pull from the
2568 * heaviest group when it is already under-utilized (possible
2569 * with a large weight task outweighs the tasks on the system).
2570 */
2571 if (prefer_sibling && !local_group && sds->this_has_capacity)
2572 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2573
2574 if (local_group) {
2575 sds->this_load = sgs.avg_load;
2576 sds->this = sg;
2577 sds->this_nr_running = sgs.sum_nr_running;
2578 sds->this_load_per_task = sgs.sum_weighted_load;
2579 sds->this_has_capacity = sgs.group_has_capacity;
2580 sds->this_idle_cpus = sgs.idle_cpus;
2581 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2582 sds->max_load = sgs.avg_load;
2583 sds->busiest = sg;
2584 sds->busiest_nr_running = sgs.sum_nr_running;
2585 sds->busiest_idle_cpus = sgs.idle_cpus;
2586 sds->busiest_group_capacity = sgs.group_capacity;
2587 sds->busiest_load_per_task = sgs.sum_weighted_load;
2588 sds->busiest_has_capacity = sgs.group_has_capacity;
2589 sds->busiest_group_weight = sgs.group_weight;
2590 sds->group_imb = sgs.group_imb;
2591 }
2592
2593 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2594 sg = sg->next;
2595 } while (sg != sd->groups);
2596 }
2597
2598 int __weak arch_sd_sibling_asym_packing(void)
2599 {
2600 return 0*SD_ASYM_PACKING;
2601 }
2602
2603 /**
2604 * check_asym_packing - Check to see if the group is packed into the
2605 * sched doman.
2606 *
2607 * This is primarily intended to used at the sibling level. Some
2608 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2609 * case of POWER7, it can move to lower SMT modes only when higher
2610 * threads are idle. When in lower SMT modes, the threads will
2611 * perform better since they share less core resources. Hence when we
2612 * have idle threads, we want them to be the higher ones.
2613 *
2614 * This packing function is run on idle threads. It checks to see if
2615 * the busiest CPU in this domain (core in the P7 case) has a higher
2616 * CPU number than the packing function is being run on. Here we are
2617 * assuming lower CPU number will be equivalent to lower a SMT thread
2618 * number.
2619 *
2620 * Returns 1 when packing is required and a task should be moved to
2621 * this CPU. The amount of the imbalance is returned in *imbalance.
2622 *
2623 * @sd: The sched_domain whose packing is to be checked.
2624 * @sds: Statistics of the sched_domain which is to be packed
2625 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2626 * @imbalance: returns amount of imbalanced due to packing.
2627 */
2628 static int check_asym_packing(struct sched_domain *sd,
2629 struct sd_lb_stats *sds,
2630 int this_cpu, unsigned long *imbalance)
2631 {
2632 int busiest_cpu;
2633
2634 if (!(sd->flags & SD_ASYM_PACKING))
2635 return 0;
2636
2637 if (!sds->busiest)
2638 return 0;
2639
2640 busiest_cpu = group_first_cpu(sds->busiest);
2641 if (this_cpu > busiest_cpu)
2642 return 0;
2643
2644 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2645 SCHED_LOAD_SCALE);
2646 return 1;
2647 }
2648
2649 /**
2650 * fix_small_imbalance - Calculate the minor imbalance that exists
2651 * amongst the groups of a sched_domain, during
2652 * load balancing.
2653 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2654 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2655 * @imbalance: Variable to store the imbalance.
2656 */
2657 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2658 int this_cpu, unsigned long *imbalance)
2659 {
2660 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2661 unsigned int imbn = 2;
2662 unsigned long scaled_busy_load_per_task;
2663
2664 if (sds->this_nr_running) {
2665 sds->this_load_per_task /= sds->this_nr_running;
2666 if (sds->busiest_load_per_task >
2667 sds->this_load_per_task)
2668 imbn = 1;
2669 } else
2670 sds->this_load_per_task =
2671 cpu_avg_load_per_task(this_cpu);
2672
2673 scaled_busy_load_per_task = sds->busiest_load_per_task
2674 * SCHED_LOAD_SCALE;
2675 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2676
2677 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2678 (scaled_busy_load_per_task * imbn)) {
2679 *imbalance = sds->busiest_load_per_task;
2680 return;
2681 }
2682
2683 /*
2684 * OK, we don't have enough imbalance to justify moving tasks,
2685 * however we may be able to increase total CPU power used by
2686 * moving them.
2687 */
2688
2689 pwr_now += sds->busiest->cpu_power *
2690 min(sds->busiest_load_per_task, sds->max_load);
2691 pwr_now += sds->this->cpu_power *
2692 min(sds->this_load_per_task, sds->this_load);
2693 pwr_now /= SCHED_LOAD_SCALE;
2694
2695 /* Amount of load we'd subtract */
2696 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2697 sds->busiest->cpu_power;
2698 if (sds->max_load > tmp)
2699 pwr_move += sds->busiest->cpu_power *
2700 min(sds->busiest_load_per_task, sds->max_load - tmp);
2701
2702 /* Amount of load we'd add */
2703 if (sds->max_load * sds->busiest->cpu_power <
2704 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2705 tmp = (sds->max_load * sds->busiest->cpu_power) /
2706 sds->this->cpu_power;
2707 else
2708 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2709 sds->this->cpu_power;
2710 pwr_move += sds->this->cpu_power *
2711 min(sds->this_load_per_task, sds->this_load + tmp);
2712 pwr_move /= SCHED_LOAD_SCALE;
2713
2714 /* Move if we gain throughput */
2715 if (pwr_move > pwr_now)
2716 *imbalance = sds->busiest_load_per_task;
2717 }
2718
2719 /**
2720 * calculate_imbalance - Calculate the amount of imbalance present within the
2721 * groups of a given sched_domain during load balance.
2722 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2723 * @this_cpu: Cpu for which currently load balance is being performed.
2724 * @imbalance: The variable to store the imbalance.
2725 */
2726 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2727 unsigned long *imbalance)
2728 {
2729 unsigned long max_pull, load_above_capacity = ~0UL;
2730
2731 sds->busiest_load_per_task /= sds->busiest_nr_running;
2732 if (sds->group_imb) {
2733 sds->busiest_load_per_task =
2734 min(sds->busiest_load_per_task, sds->avg_load);
2735 }
2736
2737 /*
2738 * In the presence of smp nice balancing, certain scenarios can have
2739 * max load less than avg load(as we skip the groups at or below
2740 * its cpu_power, while calculating max_load..)
2741 */
2742 if (sds->max_load < sds->avg_load) {
2743 *imbalance = 0;
2744 return fix_small_imbalance(sds, this_cpu, imbalance);
2745 }
2746
2747 if (!sds->group_imb) {
2748 /*
2749 * Don't want to pull so many tasks that a group would go idle.
2750 */
2751 load_above_capacity = (sds->busiest_nr_running -
2752 sds->busiest_group_capacity);
2753
2754 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2755
2756 load_above_capacity /= sds->busiest->cpu_power;
2757 }
2758
2759 /*
2760 * We're trying to get all the cpus to the average_load, so we don't
2761 * want to push ourselves above the average load, nor do we wish to
2762 * reduce the max loaded cpu below the average load. At the same time,
2763 * we also don't want to reduce the group load below the group capacity
2764 * (so that we can implement power-savings policies etc). Thus we look
2765 * for the minimum possible imbalance.
2766 * Be careful of negative numbers as they'll appear as very large values
2767 * with unsigned longs.
2768 */
2769 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2770
2771 /* How much load to actually move to equalise the imbalance */
2772 *imbalance = min(max_pull * sds->busiest->cpu_power,
2773 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2774 / SCHED_LOAD_SCALE;
2775
2776 /*
2777 * if *imbalance is less than the average load per runnable task
2778 * there is no gaurantee that any tasks will be moved so we'll have
2779 * a think about bumping its value to force at least one task to be
2780 * moved
2781 */
2782 if (*imbalance < sds->busiest_load_per_task)
2783 return fix_small_imbalance(sds, this_cpu, imbalance);
2784
2785 }
2786
2787 /******* find_busiest_group() helpers end here *********************/
2788
2789 /**
2790 * find_busiest_group - Returns the busiest group within the sched_domain
2791 * if there is an imbalance. If there isn't an imbalance, and
2792 * the user has opted for power-savings, it returns a group whose
2793 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2794 * such a group exists.
2795 *
2796 * Also calculates the amount of weighted load which should be moved
2797 * to restore balance.
2798 *
2799 * @sd: The sched_domain whose busiest group is to be returned.
2800 * @this_cpu: The cpu for which load balancing is currently being performed.
2801 * @imbalance: Variable which stores amount of weighted load which should
2802 * be moved to restore balance/put a group to idle.
2803 * @idle: The idle status of this_cpu.
2804 * @sd_idle: The idleness of sd
2805 * @cpus: The set of CPUs under consideration for load-balancing.
2806 * @balance: Pointer to a variable indicating if this_cpu
2807 * is the appropriate cpu to perform load balancing at this_level.
2808 *
2809 * Returns: - the busiest group if imbalance exists.
2810 * - If no imbalance and user has opted for power-savings balance,
2811 * return the least loaded group whose CPUs can be
2812 * put to idle by rebalancing its tasks onto our group.
2813 */
2814 static struct sched_group *
2815 find_busiest_group(struct sched_domain *sd, int this_cpu,
2816 unsigned long *imbalance, enum cpu_idle_type idle,
2817 int *sd_idle, const struct cpumask *cpus, int *balance)
2818 {
2819 struct sd_lb_stats sds;
2820
2821 memset(&sds, 0, sizeof(sds));
2822
2823 /*
2824 * Compute the various statistics relavent for load balancing at
2825 * this level.
2826 */
2827 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2828 balance, &sds);
2829
2830 /* Cases where imbalance does not exist from POV of this_cpu */
2831 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2832 * at this level.
2833 * 2) There is no busy sibling group to pull from.
2834 * 3) This group is the busiest group.
2835 * 4) This group is more busy than the avg busieness at this
2836 * sched_domain.
2837 * 5) The imbalance is within the specified limit.
2838 *
2839 * Note: when doing newidle balance, if the local group has excess
2840 * capacity (i.e. nr_running < group_capacity) and the busiest group
2841 * does not have any capacity, we force a load balance to pull tasks
2842 * to the local group. In this case, we skip past checks 3, 4 and 5.
2843 */
2844 if (!(*balance))
2845 goto ret;
2846
2847 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
2848 check_asym_packing(sd, &sds, this_cpu, imbalance))
2849 return sds.busiest;
2850
2851 if (!sds.busiest || sds.busiest_nr_running == 0)
2852 goto out_balanced;
2853
2854 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
2855 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
2856 !sds.busiest_has_capacity)
2857 goto force_balance;
2858
2859 if (sds.this_load >= sds.max_load)
2860 goto out_balanced;
2861
2862 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2863
2864 if (sds.this_load >= sds.avg_load)
2865 goto out_balanced;
2866
2867 /*
2868 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
2869 * And to check for busy balance use !idle_cpu instead of
2870 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
2871 * even when they are idle.
2872 */
2873 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
2874 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2875 goto out_balanced;
2876 } else {
2877 /*
2878 * This cpu is idle. If the busiest group load doesn't
2879 * have more tasks than the number of available cpu's and
2880 * there is no imbalance between this and busiest group
2881 * wrt to idle cpu's, it is balanced.
2882 */
2883 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
2884 sds.busiest_nr_running <= sds.busiest_group_weight)
2885 goto out_balanced;
2886 }
2887
2888 force_balance:
2889 /* Looks like there is an imbalance. Compute it */
2890 calculate_imbalance(&sds, this_cpu, imbalance);
2891 return sds.busiest;
2892
2893 out_balanced:
2894 /*
2895 * There is no obvious imbalance. But check if we can do some balancing
2896 * to save power.
2897 */
2898 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2899 return sds.busiest;
2900 ret:
2901 *imbalance = 0;
2902 return NULL;
2903 }
2904
2905 /*
2906 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2907 */
2908 static struct rq *
2909 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
2910 enum cpu_idle_type idle, unsigned long imbalance,
2911 const struct cpumask *cpus)
2912 {
2913 struct rq *busiest = NULL, *rq;
2914 unsigned long max_load = 0;
2915 int i;
2916
2917 for_each_cpu(i, sched_group_cpus(group)) {
2918 unsigned long power = power_of(i);
2919 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2920 unsigned long wl;
2921
2922 if (!capacity)
2923 capacity = fix_small_capacity(sd, group);
2924
2925 if (!cpumask_test_cpu(i, cpus))
2926 continue;
2927
2928 rq = cpu_rq(i);
2929 wl = weighted_cpuload(i);
2930
2931 /*
2932 * When comparing with imbalance, use weighted_cpuload()
2933 * which is not scaled with the cpu power.
2934 */
2935 if (capacity && rq->nr_running == 1 && wl > imbalance)
2936 continue;
2937
2938 /*
2939 * For the load comparisons with the other cpu's, consider
2940 * the weighted_cpuload() scaled with the cpu power, so that
2941 * the load can be moved away from the cpu that is potentially
2942 * running at a lower capacity.
2943 */
2944 wl = (wl * SCHED_LOAD_SCALE) / power;
2945
2946 if (wl > max_load) {
2947 max_load = wl;
2948 busiest = rq;
2949 }
2950 }
2951
2952 return busiest;
2953 }
2954
2955 /*
2956 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2957 * so long as it is large enough.
2958 */
2959 #define MAX_PINNED_INTERVAL 512
2960
2961 /* Working cpumask for load_balance and load_balance_newidle. */
2962 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2963
2964 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
2965 int busiest_cpu, int this_cpu)
2966 {
2967 if (idle == CPU_NEWLY_IDLE) {
2968
2969 /*
2970 * ASYM_PACKING needs to force migrate tasks from busy but
2971 * higher numbered CPUs in order to pack all tasks in the
2972 * lowest numbered CPUs.
2973 */
2974 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
2975 return 1;
2976
2977 /*
2978 * The only task running in a non-idle cpu can be moved to this
2979 * cpu in an attempt to completely freeup the other CPU
2980 * package.
2981 *
2982 * The package power saving logic comes from
2983 * find_busiest_group(). If there are no imbalance, then
2984 * f_b_g() will return NULL. However when sched_mc={1,2} then
2985 * f_b_g() will select a group from which a running task may be
2986 * pulled to this cpu in order to make the other package idle.
2987 * If there is no opportunity to make a package idle and if
2988 * there are no imbalance, then f_b_g() will return NULL and no
2989 * action will be taken in load_balance_newidle().
2990 *
2991 * Under normal task pull operation due to imbalance, there
2992 * will be more than one task in the source run queue and
2993 * move_tasks() will succeed. ld_moved will be true and this
2994 * active balance code will not be triggered.
2995 */
2996 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2997 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2998 return 0;
2999
3000 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3001 return 0;
3002 }
3003
3004 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3005 }
3006
3007 static int active_load_balance_cpu_stop(void *data);
3008
3009 /*
3010 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3011 * tasks if there is an imbalance.
3012 */
3013 static int load_balance(int this_cpu, struct rq *this_rq,
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *balance)
3016 {
3017 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3018 struct sched_group *group;
3019 unsigned long imbalance;
3020 struct rq *busiest;
3021 unsigned long flags;
3022 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3023
3024 cpumask_copy(cpus, cpu_active_mask);
3025
3026 /*
3027 * When power savings policy is enabled for the parent domain, idle
3028 * sibling can pick up load irrespective of busy siblings. In this case,
3029 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3030 * portraying it as CPU_NOT_IDLE.
3031 */
3032 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3033 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3034 sd_idle = 1;
3035
3036 schedstat_inc(sd, lb_count[idle]);
3037
3038 redo:
3039 update_shares(sd);
3040 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3041 cpus, balance);
3042
3043 if (*balance == 0)
3044 goto out_balanced;
3045
3046 if (!group) {
3047 schedstat_inc(sd, lb_nobusyg[idle]);
3048 goto out_balanced;
3049 }
3050
3051 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3052 if (!busiest) {
3053 schedstat_inc(sd, lb_nobusyq[idle]);
3054 goto out_balanced;
3055 }
3056
3057 BUG_ON(busiest == this_rq);
3058
3059 schedstat_add(sd, lb_imbalance[idle], imbalance);
3060
3061 ld_moved = 0;
3062 if (busiest->nr_running > 1) {
3063 /*
3064 * Attempt to move tasks. If find_busiest_group has found
3065 * an imbalance but busiest->nr_running <= 1, the group is
3066 * still unbalanced. ld_moved simply stays zero, so it is
3067 * correctly treated as an imbalance.
3068 */
3069 local_irq_save(flags);
3070 double_rq_lock(this_rq, busiest);
3071 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3072 imbalance, sd, idle, &all_pinned);
3073 double_rq_unlock(this_rq, busiest);
3074 local_irq_restore(flags);
3075
3076 /*
3077 * some other cpu did the load balance for us.
3078 */
3079 if (ld_moved && this_cpu != smp_processor_id())
3080 resched_cpu(this_cpu);
3081
3082 /* All tasks on this runqueue were pinned by CPU affinity */
3083 if (unlikely(all_pinned)) {
3084 cpumask_clear_cpu(cpu_of(busiest), cpus);
3085 if (!cpumask_empty(cpus))
3086 goto redo;
3087 goto out_balanced;
3088 }
3089 }
3090
3091 if (!ld_moved) {
3092 schedstat_inc(sd, lb_failed[idle]);
3093 /*
3094 * Increment the failure counter only on periodic balance.
3095 * We do not want newidle balance, which can be very
3096 * frequent, pollute the failure counter causing
3097 * excessive cache_hot migrations and active balances.
3098 */
3099 if (idle != CPU_NEWLY_IDLE)
3100 sd->nr_balance_failed++;
3101
3102 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3103 this_cpu)) {
3104 raw_spin_lock_irqsave(&busiest->lock, flags);
3105
3106 /* don't kick the active_load_balance_cpu_stop,
3107 * if the curr task on busiest cpu can't be
3108 * moved to this_cpu
3109 */
3110 if (!cpumask_test_cpu(this_cpu,
3111 &busiest->curr->cpus_allowed)) {
3112 raw_spin_unlock_irqrestore(&busiest->lock,
3113 flags);
3114 all_pinned = 1;
3115 goto out_one_pinned;
3116 }
3117
3118 /*
3119 * ->active_balance synchronizes accesses to
3120 * ->active_balance_work. Once set, it's cleared
3121 * only after active load balance is finished.
3122 */
3123 if (!busiest->active_balance) {
3124 busiest->active_balance = 1;
3125 busiest->push_cpu = this_cpu;
3126 active_balance = 1;
3127 }
3128 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3129
3130 if (active_balance)
3131 stop_one_cpu_nowait(cpu_of(busiest),
3132 active_load_balance_cpu_stop, busiest,
3133 &busiest->active_balance_work);
3134
3135 /*
3136 * We've kicked active balancing, reset the failure
3137 * counter.
3138 */
3139 sd->nr_balance_failed = sd->cache_nice_tries+1;
3140 }
3141 } else
3142 sd->nr_balance_failed = 0;
3143
3144 if (likely(!active_balance)) {
3145 /* We were unbalanced, so reset the balancing interval */
3146 sd->balance_interval = sd->min_interval;
3147 } else {
3148 /*
3149 * If we've begun active balancing, start to back off. This
3150 * case may not be covered by the all_pinned logic if there
3151 * is only 1 task on the busy runqueue (because we don't call
3152 * move_tasks).
3153 */
3154 if (sd->balance_interval < sd->max_interval)
3155 sd->balance_interval *= 2;
3156 }
3157
3158 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3159 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3160 ld_moved = -1;
3161
3162 goto out;
3163
3164 out_balanced:
3165 schedstat_inc(sd, lb_balanced[idle]);
3166
3167 sd->nr_balance_failed = 0;
3168
3169 out_one_pinned:
3170 /* tune up the balancing interval */
3171 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3172 (sd->balance_interval < sd->max_interval))
3173 sd->balance_interval *= 2;
3174
3175 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3176 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3177 ld_moved = -1;
3178 else
3179 ld_moved = 0;
3180 out:
3181 if (ld_moved)
3182 update_shares(sd);
3183 return ld_moved;
3184 }
3185
3186 /*
3187 * idle_balance is called by schedule() if this_cpu is about to become
3188 * idle. Attempts to pull tasks from other CPUs.
3189 */
3190 static void idle_balance(int this_cpu, struct rq *this_rq)
3191 {
3192 struct sched_domain *sd;
3193 int pulled_task = 0;
3194 unsigned long next_balance = jiffies + HZ;
3195
3196 this_rq->idle_stamp = this_rq->clock;
3197
3198 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3199 return;
3200
3201 /*
3202 * Drop the rq->lock, but keep IRQ/preempt disabled.
3203 */
3204 raw_spin_unlock(&this_rq->lock);
3205
3206 for_each_domain(this_cpu, sd) {
3207 unsigned long interval;
3208 int balance = 1;
3209
3210 if (!(sd->flags & SD_LOAD_BALANCE))
3211 continue;
3212
3213 if (sd->flags & SD_BALANCE_NEWIDLE) {
3214 /* If we've pulled tasks over stop searching: */
3215 pulled_task = load_balance(this_cpu, this_rq,
3216 sd, CPU_NEWLY_IDLE, &balance);
3217 }
3218
3219 interval = msecs_to_jiffies(sd->balance_interval);
3220 if (time_after(next_balance, sd->last_balance + interval))
3221 next_balance = sd->last_balance + interval;
3222 if (pulled_task)
3223 break;
3224 }
3225
3226 raw_spin_lock(&this_rq->lock);
3227
3228 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3229 /*
3230 * We are going idle. next_balance may be set based on
3231 * a busy processor. So reset next_balance.
3232 */
3233 this_rq->next_balance = next_balance;
3234 }
3235 }
3236
3237 /*
3238 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3239 * running tasks off the busiest CPU onto idle CPUs. It requires at
3240 * least 1 task to be running on each physical CPU where possible, and
3241 * avoids physical / logical imbalances.
3242 */
3243 static int active_load_balance_cpu_stop(void *data)
3244 {
3245 struct rq *busiest_rq = data;
3246 int busiest_cpu = cpu_of(busiest_rq);
3247 int target_cpu = busiest_rq->push_cpu;
3248 struct rq *target_rq = cpu_rq(target_cpu);
3249 struct sched_domain *sd;
3250
3251 raw_spin_lock_irq(&busiest_rq->lock);
3252
3253 /* make sure the requested cpu hasn't gone down in the meantime */
3254 if (unlikely(busiest_cpu != smp_processor_id() ||
3255 !busiest_rq->active_balance))
3256 goto out_unlock;
3257
3258 /* Is there any task to move? */
3259 if (busiest_rq->nr_running <= 1)
3260 goto out_unlock;
3261
3262 /*
3263 * This condition is "impossible", if it occurs
3264 * we need to fix it. Originally reported by
3265 * Bjorn Helgaas on a 128-cpu setup.
3266 */
3267 BUG_ON(busiest_rq == target_rq);
3268
3269 /* move a task from busiest_rq to target_rq */
3270 double_lock_balance(busiest_rq, target_rq);
3271
3272 /* Search for an sd spanning us and the target CPU. */
3273 for_each_domain(target_cpu, sd) {
3274 if ((sd->flags & SD_LOAD_BALANCE) &&
3275 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3276 break;
3277 }
3278
3279 if (likely(sd)) {
3280 schedstat_inc(sd, alb_count);
3281
3282 if (move_one_task(target_rq, target_cpu, busiest_rq,
3283 sd, CPU_IDLE))
3284 schedstat_inc(sd, alb_pushed);
3285 else
3286 schedstat_inc(sd, alb_failed);
3287 }
3288 double_unlock_balance(busiest_rq, target_rq);
3289 out_unlock:
3290 busiest_rq->active_balance = 0;
3291 raw_spin_unlock_irq(&busiest_rq->lock);
3292 return 0;
3293 }
3294
3295 #ifdef CONFIG_NO_HZ
3296
3297 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3298
3299 static void trigger_sched_softirq(void *data)
3300 {
3301 raise_softirq_irqoff(SCHED_SOFTIRQ);
3302 }
3303
3304 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3305 {
3306 csd->func = trigger_sched_softirq;
3307 csd->info = NULL;
3308 csd->flags = 0;
3309 csd->priv = 0;
3310 }
3311
3312 /*
3313 * idle load balancing details
3314 * - One of the idle CPUs nominates itself as idle load_balancer, while
3315 * entering idle.
3316 * - This idle load balancer CPU will also go into tickless mode when
3317 * it is idle, just like all other idle CPUs
3318 * - When one of the busy CPUs notice that there may be an idle rebalancing
3319 * needed, they will kick the idle load balancer, which then does idle
3320 * load balancing for all the idle CPUs.
3321 */
3322 static struct {
3323 atomic_t load_balancer;
3324 atomic_t first_pick_cpu;
3325 atomic_t second_pick_cpu;
3326 cpumask_var_t idle_cpus_mask;
3327 cpumask_var_t grp_idle_mask;
3328 unsigned long next_balance; /* in jiffy units */
3329 } nohz ____cacheline_aligned;
3330
3331 int get_nohz_load_balancer(void)
3332 {
3333 return atomic_read(&nohz.load_balancer);
3334 }
3335
3336 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3337 /**
3338 * lowest_flag_domain - Return lowest sched_domain containing flag.
3339 * @cpu: The cpu whose lowest level of sched domain is to
3340 * be returned.
3341 * @flag: The flag to check for the lowest sched_domain
3342 * for the given cpu.
3343 *
3344 * Returns the lowest sched_domain of a cpu which contains the given flag.
3345 */
3346 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3347 {
3348 struct sched_domain *sd;
3349
3350 for_each_domain(cpu, sd)
3351 if (sd && (sd->flags & flag))
3352 break;
3353
3354 return sd;
3355 }
3356
3357 /**
3358 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3359 * @cpu: The cpu whose domains we're iterating over.
3360 * @sd: variable holding the value of the power_savings_sd
3361 * for cpu.
3362 * @flag: The flag to filter the sched_domains to be iterated.
3363 *
3364 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3365 * set, starting from the lowest sched_domain to the highest.
3366 */
3367 #define for_each_flag_domain(cpu, sd, flag) \
3368 for (sd = lowest_flag_domain(cpu, flag); \
3369 (sd && (sd->flags & flag)); sd = sd->parent)
3370
3371 /**
3372 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3373 * @ilb_group: group to be checked for semi-idleness
3374 *
3375 * Returns: 1 if the group is semi-idle. 0 otherwise.
3376 *
3377 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3378 * and atleast one non-idle CPU. This helper function checks if the given
3379 * sched_group is semi-idle or not.
3380 */
3381 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3382 {
3383 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3384 sched_group_cpus(ilb_group));
3385
3386 /*
3387 * A sched_group is semi-idle when it has atleast one busy cpu
3388 * and atleast one idle cpu.
3389 */
3390 if (cpumask_empty(nohz.grp_idle_mask))
3391 return 0;
3392
3393 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3394 return 0;
3395
3396 return 1;
3397 }
3398 /**
3399 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3400 * @cpu: The cpu which is nominating a new idle_load_balancer.
3401 *
3402 * Returns: Returns the id of the idle load balancer if it exists,
3403 * Else, returns >= nr_cpu_ids.
3404 *
3405 * This algorithm picks the idle load balancer such that it belongs to a
3406 * semi-idle powersavings sched_domain. The idea is to try and avoid
3407 * completely idle packages/cores just for the purpose of idle load balancing
3408 * when there are other idle cpu's which are better suited for that job.
3409 */
3410 static int find_new_ilb(int cpu)
3411 {
3412 struct sched_domain *sd;
3413 struct sched_group *ilb_group;
3414
3415 /*
3416 * Have idle load balancer selection from semi-idle packages only
3417 * when power-aware load balancing is enabled
3418 */
3419 if (!(sched_smt_power_savings || sched_mc_power_savings))
3420 goto out_done;
3421
3422 /*
3423 * Optimize for the case when we have no idle CPUs or only one
3424 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3425 */
3426 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3427 goto out_done;
3428
3429 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3430 ilb_group = sd->groups;
3431
3432 do {
3433 if (is_semi_idle_group(ilb_group))
3434 return cpumask_first(nohz.grp_idle_mask);
3435
3436 ilb_group = ilb_group->next;
3437
3438 } while (ilb_group != sd->groups);
3439 }
3440
3441 out_done:
3442 return nr_cpu_ids;
3443 }
3444 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3445 static inline int find_new_ilb(int call_cpu)
3446 {
3447 return nr_cpu_ids;
3448 }
3449 #endif
3450
3451 /*
3452 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3453 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3454 * CPU (if there is one).
3455 */
3456 static void nohz_balancer_kick(int cpu)
3457 {
3458 int ilb_cpu;
3459
3460 nohz.next_balance++;
3461
3462 ilb_cpu = get_nohz_load_balancer();
3463
3464 if (ilb_cpu >= nr_cpu_ids) {
3465 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3466 if (ilb_cpu >= nr_cpu_ids)
3467 return;
3468 }
3469
3470 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3471 struct call_single_data *cp;
3472
3473 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3474 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3475 __smp_call_function_single(ilb_cpu, cp, 0);
3476 }
3477 return;
3478 }
3479
3480 /*
3481 * This routine will try to nominate the ilb (idle load balancing)
3482 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3483 * load balancing on behalf of all those cpus.
3484 *
3485 * When the ilb owner becomes busy, we will not have new ilb owner until some
3486 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3487 * idle load balancing by kicking one of the idle CPUs.
3488 *
3489 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3490 * ilb owner CPU in future (when there is a need for idle load balancing on
3491 * behalf of all idle CPUs).
3492 */
3493 void select_nohz_load_balancer(int stop_tick)
3494 {
3495 int cpu = smp_processor_id();
3496
3497 if (stop_tick) {
3498 if (!cpu_active(cpu)) {
3499 if (atomic_read(&nohz.load_balancer) != cpu)
3500 return;
3501
3502 /*
3503 * If we are going offline and still the leader,
3504 * give up!
3505 */
3506 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3507 nr_cpu_ids) != cpu)
3508 BUG();
3509
3510 return;
3511 }
3512
3513 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3514
3515 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3516 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3517 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3518 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3519
3520 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3521 int new_ilb;
3522
3523 /* make me the ilb owner */
3524 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3525 cpu) != nr_cpu_ids)
3526 return;
3527
3528 /*
3529 * Check to see if there is a more power-efficient
3530 * ilb.
3531 */
3532 new_ilb = find_new_ilb(cpu);
3533 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3534 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3535 resched_cpu(new_ilb);
3536 return;
3537 }
3538 return;
3539 }
3540 } else {
3541 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3542 return;
3543
3544 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3545
3546 if (atomic_read(&nohz.load_balancer) == cpu)
3547 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3548 nr_cpu_ids) != cpu)
3549 BUG();
3550 }
3551 return;
3552 }
3553 #endif
3554
3555 static DEFINE_SPINLOCK(balancing);
3556
3557 /*
3558 * It checks each scheduling domain to see if it is due to be balanced,
3559 * and initiates a balancing operation if so.
3560 *
3561 * Balancing parameters are set up in arch_init_sched_domains.
3562 */
3563 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3564 {
3565 int balance = 1;
3566 struct rq *rq = cpu_rq(cpu);
3567 unsigned long interval;
3568 struct sched_domain *sd;
3569 /* Earliest time when we have to do rebalance again */
3570 unsigned long next_balance = jiffies + 60*HZ;
3571 int update_next_balance = 0;
3572 int need_serialize;
3573
3574 for_each_domain(cpu, sd) {
3575 if (!(sd->flags & SD_LOAD_BALANCE))
3576 continue;
3577
3578 interval = sd->balance_interval;
3579 if (idle != CPU_IDLE)
3580 interval *= sd->busy_factor;
3581
3582 /* scale ms to jiffies */
3583 interval = msecs_to_jiffies(interval);
3584 if (unlikely(!interval))
3585 interval = 1;
3586 if (interval > HZ*NR_CPUS/10)
3587 interval = HZ*NR_CPUS/10;
3588
3589 need_serialize = sd->flags & SD_SERIALIZE;
3590
3591 if (need_serialize) {
3592 if (!spin_trylock(&balancing))
3593 goto out;
3594 }
3595
3596 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3597 if (load_balance(cpu, rq, sd, idle, &balance)) {
3598 /*
3599 * We've pulled tasks over so either we're no
3600 * longer idle, or one of our SMT siblings is
3601 * not idle.
3602 */
3603 idle = CPU_NOT_IDLE;
3604 }
3605 sd->last_balance = jiffies;
3606 }
3607 if (need_serialize)
3608 spin_unlock(&balancing);
3609 out:
3610 if (time_after(next_balance, sd->last_balance + interval)) {
3611 next_balance = sd->last_balance + interval;
3612 update_next_balance = 1;
3613 }
3614
3615 /*
3616 * Stop the load balance at this level. There is another
3617 * CPU in our sched group which is doing load balancing more
3618 * actively.
3619 */
3620 if (!balance)
3621 break;
3622 }
3623
3624 /*
3625 * next_balance will be updated only when there is a need.
3626 * When the cpu is attached to null domain for ex, it will not be
3627 * updated.
3628 */
3629 if (likely(update_next_balance))
3630 rq->next_balance = next_balance;
3631 }
3632
3633 #ifdef CONFIG_NO_HZ
3634 /*
3635 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3636 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3637 */
3638 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3639 {
3640 struct rq *this_rq = cpu_rq(this_cpu);
3641 struct rq *rq;
3642 int balance_cpu;
3643
3644 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3645 return;
3646
3647 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3648 if (balance_cpu == this_cpu)
3649 continue;
3650
3651 /*
3652 * If this cpu gets work to do, stop the load balancing
3653 * work being done for other cpus. Next load
3654 * balancing owner will pick it up.
3655 */
3656 if (need_resched()) {
3657 this_rq->nohz_balance_kick = 0;
3658 break;
3659 }
3660
3661 raw_spin_lock_irq(&this_rq->lock);
3662 update_rq_clock(this_rq);
3663 update_cpu_load(this_rq);
3664 raw_spin_unlock_irq(&this_rq->lock);
3665
3666 rebalance_domains(balance_cpu, CPU_IDLE);
3667
3668 rq = cpu_rq(balance_cpu);
3669 if (time_after(this_rq->next_balance, rq->next_balance))
3670 this_rq->next_balance = rq->next_balance;
3671 }
3672 nohz.next_balance = this_rq->next_balance;
3673 this_rq->nohz_balance_kick = 0;
3674 }
3675
3676 /*
3677 * Current heuristic for kicking the idle load balancer
3678 * - first_pick_cpu is the one of the busy CPUs. It will kick
3679 * idle load balancer when it has more than one process active. This
3680 * eliminates the need for idle load balancing altogether when we have
3681 * only one running process in the system (common case).
3682 * - If there are more than one busy CPU, idle load balancer may have
3683 * to run for active_load_balance to happen (i.e., two busy CPUs are
3684 * SMT or core siblings and can run better if they move to different
3685 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3686 * which will kick idle load balancer as soon as it has any load.
3687 */
3688 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3689 {
3690 unsigned long now = jiffies;
3691 int ret;
3692 int first_pick_cpu, second_pick_cpu;
3693
3694 if (time_before(now, nohz.next_balance))
3695 return 0;
3696
3697 if (rq->idle_at_tick)
3698 return 0;
3699
3700 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3701 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3702
3703 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3704 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3705 return 0;
3706
3707 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3708 if (ret == nr_cpu_ids || ret == cpu) {
3709 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3710 if (rq->nr_running > 1)
3711 return 1;
3712 } else {
3713 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3714 if (ret == nr_cpu_ids || ret == cpu) {
3715 if (rq->nr_running)
3716 return 1;
3717 }
3718 }
3719 return 0;
3720 }
3721 #else
3722 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3723 #endif
3724
3725 /*
3726 * run_rebalance_domains is triggered when needed from the scheduler tick.
3727 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3728 */
3729 static void run_rebalance_domains(struct softirq_action *h)
3730 {
3731 int this_cpu = smp_processor_id();
3732 struct rq *this_rq = cpu_rq(this_cpu);
3733 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3734 CPU_IDLE : CPU_NOT_IDLE;
3735
3736 rebalance_domains(this_cpu, idle);
3737
3738 /*
3739 * If this cpu has a pending nohz_balance_kick, then do the
3740 * balancing on behalf of the other idle cpus whose ticks are
3741 * stopped.
3742 */
3743 nohz_idle_balance(this_cpu, idle);
3744 }
3745
3746 static inline int on_null_domain(int cpu)
3747 {
3748 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3749 }
3750
3751 /*
3752 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3753 */
3754 static inline void trigger_load_balance(struct rq *rq, int cpu)
3755 {
3756 /* Don't need to rebalance while attached to NULL domain */
3757 if (time_after_eq(jiffies, rq->next_balance) &&
3758 likely(!on_null_domain(cpu)))
3759 raise_softirq(SCHED_SOFTIRQ);
3760 #ifdef CONFIG_NO_HZ
3761 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3762 nohz_balancer_kick(cpu);
3763 #endif
3764 }
3765
3766 static void rq_online_fair(struct rq *rq)
3767 {
3768 update_sysctl();
3769 }
3770
3771 static void rq_offline_fair(struct rq *rq)
3772 {
3773 update_sysctl();
3774 }
3775
3776 #else /* CONFIG_SMP */
3777
3778 /*
3779 * on UP we do not need to balance between CPUs:
3780 */
3781 static inline void idle_balance(int cpu, struct rq *rq)
3782 {
3783 }
3784
3785 #endif /* CONFIG_SMP */
3786
3787 /*
3788 * scheduler tick hitting a task of our scheduling class:
3789 */
3790 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3791 {
3792 struct cfs_rq *cfs_rq;
3793 struct sched_entity *se = &curr->se;
3794
3795 for_each_sched_entity(se) {
3796 cfs_rq = cfs_rq_of(se);
3797 entity_tick(cfs_rq, se, queued);
3798 }
3799 }
3800
3801 /*
3802 * called on fork with the child task as argument from the parent's context
3803 * - child not yet on the tasklist
3804 * - preemption disabled
3805 */
3806 static void task_fork_fair(struct task_struct *p)
3807 {
3808 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3809 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3810 int this_cpu = smp_processor_id();
3811 struct rq *rq = this_rq();
3812 unsigned long flags;
3813
3814 raw_spin_lock_irqsave(&rq->lock, flags);
3815
3816 update_rq_clock(rq);
3817
3818 if (unlikely(task_cpu(p) != this_cpu)) {
3819 rcu_read_lock();
3820 __set_task_cpu(p, this_cpu);
3821 rcu_read_unlock();
3822 }
3823
3824 update_curr(cfs_rq);
3825
3826 if (curr)
3827 se->vruntime = curr->vruntime;
3828 place_entity(cfs_rq, se, 1);
3829
3830 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3831 /*
3832 * Upon rescheduling, sched_class::put_prev_task() will place
3833 * 'current' within the tree based on its new key value.
3834 */
3835 swap(curr->vruntime, se->vruntime);
3836 resched_task(rq->curr);
3837 }
3838
3839 se->vruntime -= cfs_rq->min_vruntime;
3840
3841 raw_spin_unlock_irqrestore(&rq->lock, flags);
3842 }
3843
3844 /*
3845 * Priority of the task has changed. Check to see if we preempt
3846 * the current task.
3847 */
3848 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3849 int oldprio, int running)
3850 {
3851 /*
3852 * Reschedule if we are currently running on this runqueue and
3853 * our priority decreased, or if we are not currently running on
3854 * this runqueue and our priority is higher than the current's
3855 */
3856 if (running) {
3857 if (p->prio > oldprio)
3858 resched_task(rq->curr);
3859 } else
3860 check_preempt_curr(rq, p, 0);
3861 }
3862
3863 /*
3864 * We switched to the sched_fair class.
3865 */
3866 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3867 int running)
3868 {
3869 /*
3870 * We were most likely switched from sched_rt, so
3871 * kick off the schedule if running, otherwise just see
3872 * if we can still preempt the current task.
3873 */
3874 if (running)
3875 resched_task(rq->curr);
3876 else
3877 check_preempt_curr(rq, p, 0);
3878 }
3879
3880 /* Account for a task changing its policy or group.
3881 *
3882 * This routine is mostly called to set cfs_rq->curr field when a task
3883 * migrates between groups/classes.
3884 */
3885 static void set_curr_task_fair(struct rq *rq)
3886 {
3887 struct sched_entity *se = &rq->curr->se;
3888
3889 for_each_sched_entity(se)
3890 set_next_entity(cfs_rq_of(se), se);
3891 }
3892
3893 #ifdef CONFIG_FAIR_GROUP_SCHED
3894 static void task_move_group_fair(struct task_struct *p, int on_rq)
3895 {
3896 /*
3897 * If the task was not on the rq at the time of this cgroup movement
3898 * it must have been asleep, sleeping tasks keep their ->vruntime
3899 * absolute on their old rq until wakeup (needed for the fair sleeper
3900 * bonus in place_entity()).
3901 *
3902 * If it was on the rq, we've just 'preempted' it, which does convert
3903 * ->vruntime to a relative base.
3904 *
3905 * Make sure both cases convert their relative position when migrating
3906 * to another cgroup's rq. This does somewhat interfere with the
3907 * fair sleeper stuff for the first placement, but who cares.
3908 */
3909 if (!on_rq)
3910 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
3911 set_task_rq(p, task_cpu(p));
3912 if (!on_rq)
3913 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
3914 }
3915 #endif
3916
3917 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3918 {
3919 struct sched_entity *se = &task->se;
3920 unsigned int rr_interval = 0;
3921
3922 /*
3923 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3924 * idle runqueue:
3925 */
3926 if (rq->cfs.load.weight)
3927 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3928
3929 return rr_interval;
3930 }
3931
3932 /*
3933 * All the scheduling class methods:
3934 */
3935 static const struct sched_class fair_sched_class = {
3936 .next = &idle_sched_class,
3937 .enqueue_task = enqueue_task_fair,
3938 .dequeue_task = dequeue_task_fair,
3939 .yield_task = yield_task_fair,
3940
3941 .check_preempt_curr = check_preempt_wakeup,
3942
3943 .pick_next_task = pick_next_task_fair,
3944 .put_prev_task = put_prev_task_fair,
3945
3946 #ifdef CONFIG_SMP
3947 .select_task_rq = select_task_rq_fair,
3948
3949 .rq_online = rq_online_fair,
3950 .rq_offline = rq_offline_fair,
3951
3952 .task_waking = task_waking_fair,
3953 #endif
3954
3955 .set_curr_task = set_curr_task_fair,
3956 .task_tick = task_tick_fair,
3957 .task_fork = task_fork_fair,
3958
3959 .prio_changed = prio_changed_fair,
3960 .switched_to = switched_to_fair,
3961
3962 .get_rr_interval = get_rr_interval_fair,
3963
3964 #ifdef CONFIG_FAIR_GROUP_SCHED
3965 .task_move_group = task_move_group_fair,
3966 #endif
3967 };
3968
3969 #ifdef CONFIG_SCHED_DEBUG
3970 static void print_cfs_stats(struct seq_file *m, int cpu)
3971 {
3972 struct cfs_rq *cfs_rq;
3973
3974 rcu_read_lock();
3975 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3976 print_cfs_rq(m, cpu, cfs_rq);
3977 rcu_read_unlock();
3978 }
3979 #endif