Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
80 static inline struct task_struct *task_of(struct sched_entity *se)
81 {
82 return container_of(se, struct task_struct, se);
83 }
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101 {
102 return p->se.cfs_rq;
103 }
104
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107 {
108 return se->cfs_rq;
109 }
110
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113 {
114 return grp->my_q;
115 }
116
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121 {
122 return cfs_rq->tg->cfs_rq[this_cpu];
123 }
124
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129 /* Do the two (enqueued) entities belong to the same group ? */
130 static inline int
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
132 {
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137 }
138
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
140 {
141 return se->parent;
142 }
143
144 #else /* CONFIG_FAIR_GROUP_SCHED */
145
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147 {
148 return container_of(cfs_rq, struct rq, cfs);
149 }
150
151 #define entity_is_task(se) 1
152
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
155
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157 {
158 return &task_rq(p)->cfs;
159 }
160
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162 {
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167 }
168
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171 {
172 return NULL;
173 }
174
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176 {
177 return &cpu_rq(this_cpu)->cfs;
178 }
179
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183 static inline int
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
185 {
186 return 1;
187 }
188
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
190 {
191 return NULL;
192 }
193
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
195
196
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202 {
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208 }
209
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
211 {
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217 }
218
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220 {
221 return se->vruntime - cfs_rq->min_vruntime;
222 }
223
224 /*
225 * Enqueue an entity into the rb-tree:
226 */
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 {
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
257 if (leftmost) {
258 cfs_rq->rb_leftmost = &se->run_node;
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
269 }
270
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272 {
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
288
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
293 }
294
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296 {
297 return cfs_rq->rb_leftmost;
298 }
299
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301 {
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303 }
304
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306 {
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308
309 if (!last)
310 return NULL;
311
312 return rb_entry(last, struct sched_entity, run_node);
313 }
314
315 /**************************************************************
316 * Scheduling class statistics methods:
317 */
318
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323 {
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333 }
334 #endif
335
336 /*
337 * delta *= w / rw
338 */
339 static inline unsigned long
340 calc_delta_weight(unsigned long delta, struct sched_entity *se)
341 {
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
345 }
346
347 return delta;
348 }
349
350 /*
351 * delta *= rw / w
352 */
353 static inline unsigned long
354 calc_delta_fair(unsigned long delta, struct sched_entity *se)
355 {
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
359 }
360
361 return delta;
362 }
363
364 /*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
372 static u64 __sched_period(unsigned long nr_running)
373 {
374 u64 period = sysctl_sched_latency;
375 unsigned long nr_latency = sched_nr_latency;
376
377 if (unlikely(nr_running > nr_latency)) {
378 period = sysctl_sched_min_granularity;
379 period *= nr_running;
380 }
381
382 return period;
383 }
384
385 /*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*w/rw
390 */
391 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392 {
393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 }
395
396 /*
397 * We calculate the vruntime slice of a to be inserted task
398 *
399 * vs = s*rw/w = p
400 */
401 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 unsigned long nr_running = cfs_rq->nr_running;
404
405 if (!se->on_rq)
406 nr_running++;
407
408 return __sched_period(nr_running);
409 }
410
411 /*
412 * Update the current task's runtime statistics. Skip current tasks that
413 * are not in our scheduling class.
414 */
415 static inline void
416 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
417 unsigned long delta_exec)
418 {
419 unsigned long delta_exec_weighted;
420
421 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
422
423 curr->sum_exec_runtime += delta_exec;
424 schedstat_add(cfs_rq, exec_clock, delta_exec);
425 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
426 curr->vruntime += delta_exec_weighted;
427 }
428
429 static void update_curr(struct cfs_rq *cfs_rq)
430 {
431 struct sched_entity *curr = cfs_rq->curr;
432 u64 now = rq_of(cfs_rq)->clock;
433 unsigned long delta_exec;
434
435 if (unlikely(!curr))
436 return;
437
438 /*
439 * Get the amount of time the current task was running
440 * since the last time we changed load (this cannot
441 * overflow on 32 bits):
442 */
443 delta_exec = (unsigned long)(now - curr->exec_start);
444
445 __update_curr(cfs_rq, curr, delta_exec);
446 curr->exec_start = now;
447
448 if (entity_is_task(curr)) {
449 struct task_struct *curtask = task_of(curr);
450
451 cpuacct_charge(curtask, delta_exec);
452 }
453 }
454
455 static inline void
456 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
457 {
458 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
459 }
460
461 /*
462 * Task is being enqueued - update stats:
463 */
464 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
465 {
466 /*
467 * Are we enqueueing a waiting task? (for current tasks
468 * a dequeue/enqueue event is a NOP)
469 */
470 if (se != cfs_rq->curr)
471 update_stats_wait_start(cfs_rq, se);
472 }
473
474 static void
475 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
476 {
477 schedstat_set(se->wait_max, max(se->wait_max,
478 rq_of(cfs_rq)->clock - se->wait_start));
479 schedstat_set(se->wait_count, se->wait_count + 1);
480 schedstat_set(se->wait_sum, se->wait_sum +
481 rq_of(cfs_rq)->clock - se->wait_start);
482 schedstat_set(se->wait_start, 0);
483 }
484
485 static inline void
486 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 /*
489 * Mark the end of the wait period if dequeueing a
490 * waiting task:
491 */
492 if (se != cfs_rq->curr)
493 update_stats_wait_end(cfs_rq, se);
494 }
495
496 /*
497 * We are picking a new current task - update its stats:
498 */
499 static inline void
500 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 {
502 /*
503 * We are starting a new run period:
504 */
505 se->exec_start = rq_of(cfs_rq)->clock;
506 }
507
508 /**************************************************
509 * Scheduling class queueing methods:
510 */
511
512 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
513 static void
514 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
515 {
516 cfs_rq->task_weight += weight;
517 }
518 #else
519 static inline void
520 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
521 {
522 }
523 #endif
524
525 static void
526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 update_load_add(&cfs_rq->load, se->load.weight);
529 if (!parent_entity(se))
530 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
531 if (entity_is_task(se)) {
532 add_cfs_task_weight(cfs_rq, se->load.weight);
533 list_add(&se->group_node, &cfs_rq->tasks);
534 }
535 cfs_rq->nr_running++;
536 se->on_rq = 1;
537 }
538
539 static void
540 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
541 {
542 update_load_sub(&cfs_rq->load, se->load.weight);
543 if (!parent_entity(se))
544 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
545 if (entity_is_task(se)) {
546 add_cfs_task_weight(cfs_rq, -se->load.weight);
547 list_del_init(&se->group_node);
548 }
549 cfs_rq->nr_running--;
550 se->on_rq = 0;
551 }
552
553 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
554 {
555 #ifdef CONFIG_SCHEDSTATS
556 if (se->sleep_start) {
557 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
558 struct task_struct *tsk = task_of(se);
559
560 if ((s64)delta < 0)
561 delta = 0;
562
563 if (unlikely(delta > se->sleep_max))
564 se->sleep_max = delta;
565
566 se->sleep_start = 0;
567 se->sum_sleep_runtime += delta;
568
569 account_scheduler_latency(tsk, delta >> 10, 1);
570 }
571 if (se->block_start) {
572 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
573 struct task_struct *tsk = task_of(se);
574
575 if ((s64)delta < 0)
576 delta = 0;
577
578 if (unlikely(delta > se->block_max))
579 se->block_max = delta;
580
581 se->block_start = 0;
582 se->sum_sleep_runtime += delta;
583
584 /*
585 * Blocking time is in units of nanosecs, so shift by 20 to
586 * get a milliseconds-range estimation of the amount of
587 * time that the task spent sleeping:
588 */
589 if (unlikely(prof_on == SLEEP_PROFILING)) {
590
591 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
592 delta >> 20);
593 }
594 account_scheduler_latency(tsk, delta >> 10, 0);
595 }
596 #endif
597 }
598
599 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601 #ifdef CONFIG_SCHED_DEBUG
602 s64 d = se->vruntime - cfs_rq->min_vruntime;
603
604 if (d < 0)
605 d = -d;
606
607 if (d > 3*sysctl_sched_latency)
608 schedstat_inc(cfs_rq, nr_spread_over);
609 #endif
610 }
611
612 static void
613 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
614 {
615 u64 vruntime;
616
617 if (first_fair(cfs_rq)) {
618 vruntime = min_vruntime(cfs_rq->min_vruntime,
619 __pick_next_entity(cfs_rq)->vruntime);
620 } else
621 vruntime = cfs_rq->min_vruntime;
622
623 /*
624 * The 'current' period is already promised to the current tasks,
625 * however the extra weight of the new task will slow them down a
626 * little, place the new task so that it fits in the slot that
627 * stays open at the end.
628 */
629 if (initial && sched_feat(START_DEBIT))
630 vruntime += sched_vslice_add(cfs_rq, se);
631
632 if (!initial) {
633 /* sleeps upto a single latency don't count. */
634 if (sched_feat(NEW_FAIR_SLEEPERS)) {
635 unsigned long thresh = sysctl_sched_latency;
636
637 /*
638 * convert the sleeper threshold into virtual time
639 */
640 if (sched_feat(NORMALIZED_SLEEPER))
641 thresh = calc_delta_fair(thresh, se);
642
643 vruntime -= thresh;
644 }
645
646 /* ensure we never gain time by being placed backwards. */
647 vruntime = max_vruntime(se->vruntime, vruntime);
648 }
649
650 se->vruntime = vruntime;
651 }
652
653 static void
654 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
655 {
656 /*
657 * Update run-time statistics of the 'current'.
658 */
659 update_curr(cfs_rq);
660 account_entity_enqueue(cfs_rq, se);
661
662 if (wakeup) {
663 place_entity(cfs_rq, se, 0);
664 enqueue_sleeper(cfs_rq, se);
665 }
666
667 update_stats_enqueue(cfs_rq, se);
668 check_spread(cfs_rq, se);
669 if (se != cfs_rq->curr)
670 __enqueue_entity(cfs_rq, se);
671 }
672
673 static void
674 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
675 {
676 /*
677 * Update run-time statistics of the 'current'.
678 */
679 update_curr(cfs_rq);
680
681 update_stats_dequeue(cfs_rq, se);
682 if (sleep) {
683 #ifdef CONFIG_SCHEDSTATS
684 if (entity_is_task(se)) {
685 struct task_struct *tsk = task_of(se);
686
687 if (tsk->state & TASK_INTERRUPTIBLE)
688 se->sleep_start = rq_of(cfs_rq)->clock;
689 if (tsk->state & TASK_UNINTERRUPTIBLE)
690 se->block_start = rq_of(cfs_rq)->clock;
691 }
692 #endif
693 }
694
695 if (se != cfs_rq->curr)
696 __dequeue_entity(cfs_rq, se);
697 account_entity_dequeue(cfs_rq, se);
698 }
699
700 /*
701 * Preempt the current task with a newly woken task if needed:
702 */
703 static void
704 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
705 {
706 unsigned long ideal_runtime, delta_exec;
707
708 ideal_runtime = sched_slice(cfs_rq, curr);
709 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
710 if (delta_exec > ideal_runtime)
711 resched_task(rq_of(cfs_rq)->curr);
712 }
713
714 static void
715 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 /* 'current' is not kept within the tree. */
718 if (se->on_rq) {
719 /*
720 * Any task has to be enqueued before it get to execute on
721 * a CPU. So account for the time it spent waiting on the
722 * runqueue.
723 */
724 update_stats_wait_end(cfs_rq, se);
725 __dequeue_entity(cfs_rq, se);
726 }
727
728 update_stats_curr_start(cfs_rq, se);
729 cfs_rq->curr = se;
730 #ifdef CONFIG_SCHEDSTATS
731 /*
732 * Track our maximum slice length, if the CPU's load is at
733 * least twice that of our own weight (i.e. dont track it
734 * when there are only lesser-weight tasks around):
735 */
736 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
737 se->slice_max = max(se->slice_max,
738 se->sum_exec_runtime - se->prev_sum_exec_runtime);
739 }
740 #endif
741 se->prev_sum_exec_runtime = se->sum_exec_runtime;
742 }
743
744 static struct sched_entity *
745 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 struct rq *rq = rq_of(cfs_rq);
748 u64 pair_slice = rq->clock - cfs_rq->pair_start;
749
750 if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
751 cfs_rq->pair_start = rq->clock;
752 return se;
753 }
754
755 return cfs_rq->next;
756 }
757
758 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
759 {
760 struct sched_entity *se = NULL;
761
762 if (first_fair(cfs_rq)) {
763 se = __pick_next_entity(cfs_rq);
764 se = pick_next(cfs_rq, se);
765 set_next_entity(cfs_rq, se);
766 }
767
768 return se;
769 }
770
771 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
772 {
773 /*
774 * If still on the runqueue then deactivate_task()
775 * was not called and update_curr() has to be done:
776 */
777 if (prev->on_rq)
778 update_curr(cfs_rq);
779
780 check_spread(cfs_rq, prev);
781 if (prev->on_rq) {
782 update_stats_wait_start(cfs_rq, prev);
783 /* Put 'current' back into the tree. */
784 __enqueue_entity(cfs_rq, prev);
785 }
786 cfs_rq->curr = NULL;
787 }
788
789 static void
790 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
791 {
792 /*
793 * Update run-time statistics of the 'current'.
794 */
795 update_curr(cfs_rq);
796
797 #ifdef CONFIG_SCHED_HRTICK
798 /*
799 * queued ticks are scheduled to match the slice, so don't bother
800 * validating it and just reschedule.
801 */
802 if (queued) {
803 resched_task(rq_of(cfs_rq)->curr);
804 return;
805 }
806 /*
807 * don't let the period tick interfere with the hrtick preemption
808 */
809 if (!sched_feat(DOUBLE_TICK) &&
810 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
811 return;
812 #endif
813
814 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
815 check_preempt_tick(cfs_rq, curr);
816 }
817
818 /**************************************************
819 * CFS operations on tasks:
820 */
821
822 #ifdef CONFIG_SCHED_HRTICK
823 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
824 {
825 struct sched_entity *se = &p->se;
826 struct cfs_rq *cfs_rq = cfs_rq_of(se);
827
828 WARN_ON(task_rq(p) != rq);
829
830 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
831 u64 slice = sched_slice(cfs_rq, se);
832 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
833 s64 delta = slice - ran;
834
835 if (delta < 0) {
836 if (rq->curr == p)
837 resched_task(p);
838 return;
839 }
840
841 /*
842 * Don't schedule slices shorter than 10000ns, that just
843 * doesn't make sense. Rely on vruntime for fairness.
844 */
845 if (rq->curr != p)
846 delta = max_t(s64, 10000LL, delta);
847
848 hrtick_start(rq, delta);
849 }
850 }
851 #else /* !CONFIG_SCHED_HRTICK */
852 static inline void
853 hrtick_start_fair(struct rq *rq, struct task_struct *p)
854 {
855 }
856 #endif
857
858 /*
859 * The enqueue_task method is called before nr_running is
860 * increased. Here we update the fair scheduling stats and
861 * then put the task into the rbtree:
862 */
863 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
864 {
865 struct cfs_rq *cfs_rq;
866 struct sched_entity *se = &p->se;
867
868 for_each_sched_entity(se) {
869 if (se->on_rq)
870 break;
871 cfs_rq = cfs_rq_of(se);
872 enqueue_entity(cfs_rq, se, wakeup);
873 wakeup = 1;
874 }
875
876 hrtick_start_fair(rq, rq->curr);
877 }
878
879 /*
880 * The dequeue_task method is called before nr_running is
881 * decreased. We remove the task from the rbtree and
882 * update the fair scheduling stats:
883 */
884 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
885 {
886 struct cfs_rq *cfs_rq;
887 struct sched_entity *se = &p->se;
888
889 for_each_sched_entity(se) {
890 cfs_rq = cfs_rq_of(se);
891 dequeue_entity(cfs_rq, se, sleep);
892 /* Don't dequeue parent if it has other entities besides us */
893 if (cfs_rq->load.weight)
894 break;
895 sleep = 1;
896 }
897
898 hrtick_start_fair(rq, rq->curr);
899 }
900
901 /*
902 * sched_yield() support is very simple - we dequeue and enqueue.
903 *
904 * If compat_yield is turned on then we requeue to the end of the tree.
905 */
906 static void yield_task_fair(struct rq *rq)
907 {
908 struct task_struct *curr = rq->curr;
909 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
910 struct sched_entity *rightmost, *se = &curr->se;
911
912 /*
913 * Are we the only task in the tree?
914 */
915 if (unlikely(cfs_rq->nr_running == 1))
916 return;
917
918 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
919 update_rq_clock(rq);
920 /*
921 * Update run-time statistics of the 'current'.
922 */
923 update_curr(cfs_rq);
924
925 return;
926 }
927 /*
928 * Find the rightmost entry in the rbtree:
929 */
930 rightmost = __pick_last_entity(cfs_rq);
931 /*
932 * Already in the rightmost position?
933 */
934 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
935 return;
936
937 /*
938 * Minimally necessary key value to be last in the tree:
939 * Upon rescheduling, sched_class::put_prev_task() will place
940 * 'current' within the tree based on its new key value.
941 */
942 se->vruntime = rightmost->vruntime + 1;
943 }
944
945 /*
946 * wake_idle() will wake a task on an idle cpu if task->cpu is
947 * not idle and an idle cpu is available. The span of cpus to
948 * search starts with cpus closest then further out as needed,
949 * so we always favor a closer, idle cpu.
950 * Domains may include CPUs that are not usable for migration,
951 * hence we need to mask them out (cpu_active_map)
952 *
953 * Returns the CPU we should wake onto.
954 */
955 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
956 static int wake_idle(int cpu, struct task_struct *p)
957 {
958 cpumask_t tmp;
959 struct sched_domain *sd;
960 int i;
961
962 /*
963 * If it is idle, then it is the best cpu to run this task.
964 *
965 * This cpu is also the best, if it has more than one task already.
966 * Siblings must be also busy(in most cases) as they didn't already
967 * pickup the extra load from this cpu and hence we need not check
968 * sibling runqueue info. This will avoid the checks and cache miss
969 * penalities associated with that.
970 */
971 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
972 return cpu;
973
974 for_each_domain(cpu, sd) {
975 if ((sd->flags & SD_WAKE_IDLE)
976 || ((sd->flags & SD_WAKE_IDLE_FAR)
977 && !task_hot(p, task_rq(p)->clock, sd))) {
978 cpus_and(tmp, sd->span, p->cpus_allowed);
979 cpus_and(tmp, tmp, cpu_active_map);
980 for_each_cpu_mask_nr(i, tmp) {
981 if (idle_cpu(i)) {
982 if (i != task_cpu(p)) {
983 schedstat_inc(p,
984 se.nr_wakeups_idle);
985 }
986 return i;
987 }
988 }
989 } else {
990 break;
991 }
992 }
993 return cpu;
994 }
995 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
996 static inline int wake_idle(int cpu, struct task_struct *p)
997 {
998 return cpu;
999 }
1000 #endif
1001
1002 #ifdef CONFIG_SMP
1003
1004 static const struct sched_class fair_sched_class;
1005
1006 #ifdef CONFIG_FAIR_GROUP_SCHED
1007 /*
1008 * effective_load() calculates the load change as seen from the root_task_group
1009 *
1010 * Adding load to a group doesn't make a group heavier, but can cause movement
1011 * of group shares between cpus. Assuming the shares were perfectly aligned one
1012 * can calculate the shift in shares.
1013 *
1014 * The problem is that perfectly aligning the shares is rather expensive, hence
1015 * we try to avoid doing that too often - see update_shares(), which ratelimits
1016 * this change.
1017 *
1018 * We compensate this by not only taking the current delta into account, but
1019 * also considering the delta between when the shares were last adjusted and
1020 * now.
1021 *
1022 * We still saw a performance dip, some tracing learned us that between
1023 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1024 * significantly. Therefore try to bias the error in direction of failing
1025 * the affine wakeup.
1026 *
1027 */
1028 static long effective_load(struct task_group *tg, int cpu,
1029 long wl, long wg)
1030 {
1031 struct sched_entity *se = tg->se[cpu];
1032
1033 if (!tg->parent)
1034 return wl;
1035
1036 /*
1037 * By not taking the decrease of shares on the other cpu into
1038 * account our error leans towards reducing the affine wakeups.
1039 */
1040 if (!wl && sched_feat(ASYM_EFF_LOAD))
1041 return wl;
1042
1043 for_each_sched_entity(se) {
1044 long S, rw, s, a, b;
1045 long more_w;
1046
1047 /*
1048 * Instead of using this increment, also add the difference
1049 * between when the shares were last updated and now.
1050 */
1051 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1052 wl += more_w;
1053 wg += more_w;
1054
1055 S = se->my_q->tg->shares;
1056 s = se->my_q->shares;
1057 rw = se->my_q->rq_weight;
1058
1059 a = S*(rw + wl);
1060 b = S*rw + s*wg;
1061
1062 wl = s*(a-b);
1063
1064 if (likely(b))
1065 wl /= b;
1066
1067 /*
1068 * Assume the group is already running and will
1069 * thus already be accounted for in the weight.
1070 *
1071 * That is, moving shares between CPUs, does not
1072 * alter the group weight.
1073 */
1074 wg = 0;
1075 }
1076
1077 return wl;
1078 }
1079
1080 #else
1081
1082 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1083 unsigned long wl, unsigned long wg)
1084 {
1085 return wl;
1086 }
1087
1088 #endif
1089
1090 static int
1091 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1092 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1093 int idx, unsigned long load, unsigned long this_load,
1094 unsigned int imbalance)
1095 {
1096 struct task_struct *curr = this_rq->curr;
1097 struct task_group *tg;
1098 unsigned long tl = this_load;
1099 unsigned long tl_per_task;
1100 unsigned long weight;
1101 int balanced;
1102
1103 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1104 return 0;
1105
1106 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1107 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1108 p->se.avg_overlap < sysctl_sched_migration_cost)
1109 sync = 1;
1110
1111 /*
1112 * If sync wakeup then subtract the (maximum possible)
1113 * effect of the currently running task from the load
1114 * of the current CPU:
1115 */
1116 if (sync) {
1117 tg = task_group(current);
1118 weight = current->se.load.weight;
1119
1120 tl += effective_load(tg, this_cpu, -weight, -weight);
1121 load += effective_load(tg, prev_cpu, 0, -weight);
1122 }
1123
1124 tg = task_group(p);
1125 weight = p->se.load.weight;
1126
1127 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1128 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1129
1130 /*
1131 * If the currently running task will sleep within
1132 * a reasonable amount of time then attract this newly
1133 * woken task:
1134 */
1135 if (sync && balanced)
1136 return 1;
1137
1138 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1139 tl_per_task = cpu_avg_load_per_task(this_cpu);
1140
1141 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1142 tl_per_task)) {
1143 /*
1144 * This domain has SD_WAKE_AFFINE and
1145 * p is cache cold in this domain, and
1146 * there is no bad imbalance.
1147 */
1148 schedstat_inc(this_sd, ttwu_move_affine);
1149 schedstat_inc(p, se.nr_wakeups_affine);
1150
1151 return 1;
1152 }
1153 return 0;
1154 }
1155
1156 static int select_task_rq_fair(struct task_struct *p, int sync)
1157 {
1158 struct sched_domain *sd, *this_sd = NULL;
1159 int prev_cpu, this_cpu, new_cpu;
1160 unsigned long load, this_load;
1161 struct rq *this_rq;
1162 unsigned int imbalance;
1163 int idx;
1164
1165 prev_cpu = task_cpu(p);
1166 this_cpu = smp_processor_id();
1167 this_rq = cpu_rq(this_cpu);
1168 new_cpu = prev_cpu;
1169
1170 if (prev_cpu == this_cpu)
1171 goto out;
1172 /*
1173 * 'this_sd' is the first domain that both
1174 * this_cpu and prev_cpu are present in:
1175 */
1176 for_each_domain(this_cpu, sd) {
1177 if (cpu_isset(prev_cpu, sd->span)) {
1178 this_sd = sd;
1179 break;
1180 }
1181 }
1182
1183 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1184 goto out;
1185
1186 /*
1187 * Check for affine wakeup and passive balancing possibilities.
1188 */
1189 if (!this_sd)
1190 goto out;
1191
1192 idx = this_sd->wake_idx;
1193
1194 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1195
1196 load = source_load(prev_cpu, idx);
1197 this_load = target_load(this_cpu, idx);
1198
1199 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1200 load, this_load, imbalance))
1201 return this_cpu;
1202
1203 /*
1204 * Start passive balancing when half the imbalance_pct
1205 * limit is reached.
1206 */
1207 if (this_sd->flags & SD_WAKE_BALANCE) {
1208 if (imbalance*this_load <= 100*load) {
1209 schedstat_inc(this_sd, ttwu_move_balance);
1210 schedstat_inc(p, se.nr_wakeups_passive);
1211 return this_cpu;
1212 }
1213 }
1214
1215 out:
1216 return wake_idle(new_cpu, p);
1217 }
1218 #endif /* CONFIG_SMP */
1219
1220 static unsigned long wakeup_gran(struct sched_entity *se)
1221 {
1222 unsigned long gran = sysctl_sched_wakeup_granularity;
1223
1224 /*
1225 * More easily preempt - nice tasks, while not making it harder for
1226 * + nice tasks.
1227 */
1228 if (sched_feat(ASYM_GRAN))
1229 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1230
1231 return gran;
1232 }
1233
1234 /*
1235 * Preempt the current task with a newly woken task if needed:
1236 */
1237 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1238 {
1239 struct task_struct *curr = rq->curr;
1240 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1241 struct sched_entity *se = &curr->se, *pse = &p->se;
1242 s64 delta_exec;
1243
1244 if (unlikely(rt_prio(p->prio))) {
1245 update_rq_clock(rq);
1246 update_curr(cfs_rq);
1247 resched_task(curr);
1248 return;
1249 }
1250
1251 if (unlikely(se == pse))
1252 return;
1253
1254 cfs_rq_of(pse)->next = pse;
1255
1256 /*
1257 * We can come here with TIF_NEED_RESCHED already set from new task
1258 * wake up path.
1259 */
1260 if (test_tsk_need_resched(curr))
1261 return;
1262
1263 /*
1264 * Batch tasks do not preempt (their preemption is driven by
1265 * the tick):
1266 */
1267 if (unlikely(p->policy == SCHED_BATCH))
1268 return;
1269
1270 if (!sched_feat(WAKEUP_PREEMPT))
1271 return;
1272
1273 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1274 (se->avg_overlap < sysctl_sched_migration_cost &&
1275 pse->avg_overlap < sysctl_sched_migration_cost))) {
1276 resched_task(curr);
1277 return;
1278 }
1279
1280 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1281 if (delta_exec > wakeup_gran(pse))
1282 resched_task(curr);
1283 }
1284
1285 static struct task_struct *pick_next_task_fair(struct rq *rq)
1286 {
1287 struct task_struct *p;
1288 struct cfs_rq *cfs_rq = &rq->cfs;
1289 struct sched_entity *se;
1290
1291 if (unlikely(!cfs_rq->nr_running))
1292 return NULL;
1293
1294 do {
1295 se = pick_next_entity(cfs_rq);
1296 cfs_rq = group_cfs_rq(se);
1297 } while (cfs_rq);
1298
1299 p = task_of(se);
1300 hrtick_start_fair(rq, p);
1301
1302 return p;
1303 }
1304
1305 /*
1306 * Account for a descheduled task:
1307 */
1308 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1309 {
1310 struct sched_entity *se = &prev->se;
1311 struct cfs_rq *cfs_rq;
1312
1313 for_each_sched_entity(se) {
1314 cfs_rq = cfs_rq_of(se);
1315 put_prev_entity(cfs_rq, se);
1316 }
1317 }
1318
1319 #ifdef CONFIG_SMP
1320 /**************************************************
1321 * Fair scheduling class load-balancing methods:
1322 */
1323
1324 /*
1325 * Load-balancing iterator. Note: while the runqueue stays locked
1326 * during the whole iteration, the current task might be
1327 * dequeued so the iterator has to be dequeue-safe. Here we
1328 * achieve that by always pre-iterating before returning
1329 * the current task:
1330 */
1331 static struct task_struct *
1332 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1333 {
1334 struct task_struct *p = NULL;
1335 struct sched_entity *se;
1336
1337 if (next == &cfs_rq->tasks)
1338 return NULL;
1339
1340 se = list_entry(next, struct sched_entity, group_node);
1341 p = task_of(se);
1342 cfs_rq->balance_iterator = next->next;
1343
1344 return p;
1345 }
1346
1347 static struct task_struct *load_balance_start_fair(void *arg)
1348 {
1349 struct cfs_rq *cfs_rq = arg;
1350
1351 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1352 }
1353
1354 static struct task_struct *load_balance_next_fair(void *arg)
1355 {
1356 struct cfs_rq *cfs_rq = arg;
1357
1358 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1359 }
1360
1361 static unsigned long
1362 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 unsigned long max_load_move, struct sched_domain *sd,
1364 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1365 struct cfs_rq *cfs_rq)
1366 {
1367 struct rq_iterator cfs_rq_iterator;
1368
1369 cfs_rq_iterator.start = load_balance_start_fair;
1370 cfs_rq_iterator.next = load_balance_next_fair;
1371 cfs_rq_iterator.arg = cfs_rq;
1372
1373 return balance_tasks(this_rq, this_cpu, busiest,
1374 max_load_move, sd, idle, all_pinned,
1375 this_best_prio, &cfs_rq_iterator);
1376 }
1377
1378 #ifdef CONFIG_FAIR_GROUP_SCHED
1379 static unsigned long
1380 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 unsigned long max_load_move,
1382 struct sched_domain *sd, enum cpu_idle_type idle,
1383 int *all_pinned, int *this_best_prio)
1384 {
1385 long rem_load_move = max_load_move;
1386 int busiest_cpu = cpu_of(busiest);
1387 struct task_group *tg;
1388
1389 rcu_read_lock();
1390 update_h_load(busiest_cpu);
1391
1392 list_for_each_entry_rcu(tg, &task_groups, list) {
1393 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1394 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1395 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1396 u64 rem_load, moved_load;
1397
1398 /*
1399 * empty group
1400 */
1401 if (!busiest_cfs_rq->task_weight)
1402 continue;
1403
1404 rem_load = (u64)rem_load_move * busiest_weight;
1405 rem_load = div_u64(rem_load, busiest_h_load + 1);
1406
1407 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1408 rem_load, sd, idle, all_pinned, this_best_prio,
1409 tg->cfs_rq[busiest_cpu]);
1410
1411 if (!moved_load)
1412 continue;
1413
1414 moved_load *= busiest_h_load;
1415 moved_load = div_u64(moved_load, busiest_weight + 1);
1416
1417 rem_load_move -= moved_load;
1418 if (rem_load_move < 0)
1419 break;
1420 }
1421 rcu_read_unlock();
1422
1423 return max_load_move - rem_load_move;
1424 }
1425 #else
1426 static unsigned long
1427 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1428 unsigned long max_load_move,
1429 struct sched_domain *sd, enum cpu_idle_type idle,
1430 int *all_pinned, int *this_best_prio)
1431 {
1432 return __load_balance_fair(this_rq, this_cpu, busiest,
1433 max_load_move, sd, idle, all_pinned,
1434 this_best_prio, &busiest->cfs);
1435 }
1436 #endif
1437
1438 static int
1439 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1440 struct sched_domain *sd, enum cpu_idle_type idle)
1441 {
1442 struct cfs_rq *busy_cfs_rq;
1443 struct rq_iterator cfs_rq_iterator;
1444
1445 cfs_rq_iterator.start = load_balance_start_fair;
1446 cfs_rq_iterator.next = load_balance_next_fair;
1447
1448 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1449 /*
1450 * pass busy_cfs_rq argument into
1451 * load_balance_[start|next]_fair iterators
1452 */
1453 cfs_rq_iterator.arg = busy_cfs_rq;
1454 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1455 &cfs_rq_iterator))
1456 return 1;
1457 }
1458
1459 return 0;
1460 }
1461 #endif /* CONFIG_SMP */
1462
1463 /*
1464 * scheduler tick hitting a task of our scheduling class:
1465 */
1466 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1467 {
1468 struct cfs_rq *cfs_rq;
1469 struct sched_entity *se = &curr->se;
1470
1471 for_each_sched_entity(se) {
1472 cfs_rq = cfs_rq_of(se);
1473 entity_tick(cfs_rq, se, queued);
1474 }
1475 }
1476
1477 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1478
1479 /*
1480 * Share the fairness runtime between parent and child, thus the
1481 * total amount of pressure for CPU stays equal - new tasks
1482 * get a chance to run but frequent forkers are not allowed to
1483 * monopolize the CPU. Note: the parent runqueue is locked,
1484 * the child is not running yet.
1485 */
1486 static void task_new_fair(struct rq *rq, struct task_struct *p)
1487 {
1488 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1489 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1490 int this_cpu = smp_processor_id();
1491
1492 sched_info_queued(p);
1493
1494 update_curr(cfs_rq);
1495 place_entity(cfs_rq, se, 1);
1496
1497 /* 'curr' will be NULL if the child belongs to a different group */
1498 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1499 curr && curr->vruntime < se->vruntime) {
1500 /*
1501 * Upon rescheduling, sched_class::put_prev_task() will place
1502 * 'current' within the tree based on its new key value.
1503 */
1504 swap(curr->vruntime, se->vruntime);
1505 resched_task(rq->curr);
1506 }
1507
1508 enqueue_task_fair(rq, p, 0);
1509 }
1510
1511 /*
1512 * Priority of the task has changed. Check to see if we preempt
1513 * the current task.
1514 */
1515 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1516 int oldprio, int running)
1517 {
1518 /*
1519 * Reschedule if we are currently running on this runqueue and
1520 * our priority decreased, or if we are not currently running on
1521 * this runqueue and our priority is higher than the current's
1522 */
1523 if (running) {
1524 if (p->prio > oldprio)
1525 resched_task(rq->curr);
1526 } else
1527 check_preempt_curr(rq, p, 0);
1528 }
1529
1530 /*
1531 * We switched to the sched_fair class.
1532 */
1533 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1534 int running)
1535 {
1536 /*
1537 * We were most likely switched from sched_rt, so
1538 * kick off the schedule if running, otherwise just see
1539 * if we can still preempt the current task.
1540 */
1541 if (running)
1542 resched_task(rq->curr);
1543 else
1544 check_preempt_curr(rq, p, 0);
1545 }
1546
1547 /* Account for a task changing its policy or group.
1548 *
1549 * This routine is mostly called to set cfs_rq->curr field when a task
1550 * migrates between groups/classes.
1551 */
1552 static void set_curr_task_fair(struct rq *rq)
1553 {
1554 struct sched_entity *se = &rq->curr->se;
1555
1556 for_each_sched_entity(se)
1557 set_next_entity(cfs_rq_of(se), se);
1558 }
1559
1560 #ifdef CONFIG_FAIR_GROUP_SCHED
1561 static void moved_group_fair(struct task_struct *p)
1562 {
1563 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1564
1565 update_curr(cfs_rq);
1566 place_entity(cfs_rq, &p->se, 1);
1567 }
1568 #endif
1569
1570 /*
1571 * All the scheduling class methods:
1572 */
1573 static const struct sched_class fair_sched_class = {
1574 .next = &idle_sched_class,
1575 .enqueue_task = enqueue_task_fair,
1576 .dequeue_task = dequeue_task_fair,
1577 .yield_task = yield_task_fair,
1578 #ifdef CONFIG_SMP
1579 .select_task_rq = select_task_rq_fair,
1580 #endif /* CONFIG_SMP */
1581
1582 .check_preempt_curr = check_preempt_wakeup,
1583
1584 .pick_next_task = pick_next_task_fair,
1585 .put_prev_task = put_prev_task_fair,
1586
1587 #ifdef CONFIG_SMP
1588 .load_balance = load_balance_fair,
1589 .move_one_task = move_one_task_fair,
1590 #endif
1591
1592 .set_curr_task = set_curr_task_fair,
1593 .task_tick = task_tick_fair,
1594 .task_new = task_new_fair,
1595
1596 .prio_changed = prio_changed_fair,
1597 .switched_to = switched_to_fair,
1598
1599 #ifdef CONFIG_FAIR_GROUP_SCHED
1600 .moved_group = moved_group_fair,
1601 #endif
1602 };
1603
1604 #ifdef CONFIG_SCHED_DEBUG
1605 static void print_cfs_stats(struct seq_file *m, int cpu)
1606 {
1607 struct cfs_rq *cfs_rq;
1608
1609 rcu_read_lock();
1610 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1611 print_cfs_rq(m, cpu, cfs_rq);
1612 rcu_read_unlock();
1613 }
1614 #endif