[PATCH] lockdep: annotate scheduler runqueue locks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <linux/kprobes.h>
54 #include <asm/tlb.h>
55
56 #include <asm/unistd.h>
57
58 /*
59 * Convert user-nice values [ -20 ... 0 ... 19 ]
60 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 * and back.
62 */
63 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
64 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
65 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66
67 /*
68 * 'User priority' is the nice value converted to something we
69 * can work with better when scaling various scheduler parameters,
70 * it's a [ 0 ... 39 ] range.
71 */
72 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
73 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
74 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75
76 /*
77 * Some helpers for converting nanosecond timing to jiffy resolution
78 */
79 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
80 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81
82 /*
83 * These are the 'tuning knobs' of the scheduler:
84 *
85 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
86 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
87 * Timeslices get refilled after they expire.
88 */
89 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
90 #define DEF_TIMESLICE (100 * HZ / 1000)
91 #define ON_RUNQUEUE_WEIGHT 30
92 #define CHILD_PENALTY 95
93 #define PARENT_PENALTY 100
94 #define EXIT_WEIGHT 3
95 #define PRIO_BONUS_RATIO 25
96 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
97 #define INTERACTIVE_DELTA 2
98 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
99 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
100 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101
102 /*
103 * If a task is 'interactive' then we reinsert it in the active
104 * array after it has expired its current timeslice. (it will not
105 * continue to run immediately, it will still roundrobin with
106 * other interactive tasks.)
107 *
108 * This part scales the interactivity limit depending on niceness.
109 *
110 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
111 * Here are a few examples of different nice levels:
112 *
113 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
114 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
115 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 *
119 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
120 * priority range a task can explore, a value of '1' means the
121 * task is rated interactive.)
122 *
123 * Ie. nice +19 tasks can never get 'interactive' enough to be
124 * reinserted into the active array. And only heavily CPU-hog nice -20
125 * tasks will be expired. Default nice 0 tasks are somewhere between,
126 * it takes some effort for them to get interactive, but it's not
127 * too hard.
128 */
129
130 #define CURRENT_BONUS(p) \
131 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 MAX_SLEEP_AVG)
133
134 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135
136 #ifdef CONFIG_SMP
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 num_online_cpus())
140 #else
141 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
142 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #endif
144
145 #define SCALE(v1,v1_max,v2_max) \
146 (v1) * (v2_max) / (v1_max)
147
148 #define DELTA(p) \
149 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
150 INTERACTIVE_DELTA)
151
152 #define TASK_INTERACTIVE(p) \
153 ((p)->prio <= (p)->static_prio - DELTA(p))
154
155 #define INTERACTIVE_SLEEP(p) \
156 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
157 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158
159 #define TASK_PREEMPTS_CURR(p, rq) \
160 ((p)->prio < (rq)->curr->prio)
161
162 /*
163 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
164 * to time slice values: [800ms ... 100ms ... 5ms]
165 *
166 * The higher a thread's priority, the bigger timeslices
167 * it gets during one round of execution. But even the lowest
168 * priority thread gets MIN_TIMESLICE worth of execution time.
169 */
170
171 #define SCALE_PRIO(x, prio) \
172 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
173
174 static unsigned int static_prio_timeslice(int static_prio)
175 {
176 if (static_prio < NICE_TO_PRIO(0))
177 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
178 else
179 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
180 }
181
182 static inline unsigned int task_timeslice(task_t *p)
183 {
184 return static_prio_timeslice(p->static_prio);
185 }
186
187 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
188 < (long long) (sd)->cache_hot_time)
189
190 /*
191 * These are the runqueue data structures:
192 */
193
194 typedef struct runqueue runqueue_t;
195
196 struct prio_array {
197 unsigned int nr_active;
198 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
199 struct list_head queue[MAX_PRIO];
200 };
201
202 /*
203 * This is the main, per-CPU runqueue data structure.
204 *
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
208 */
209 struct runqueue {
210 spinlock_t lock;
211
212 /*
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
215 */
216 unsigned long nr_running;
217 unsigned long raw_weighted_load;
218 #ifdef CONFIG_SMP
219 unsigned long cpu_load[3];
220 #endif
221 unsigned long long nr_switches;
222
223 /*
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
228 */
229 unsigned long nr_uninterruptible;
230
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
233 task_t *curr, *idle;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
237 atomic_t nr_iowait;
238
239 #ifdef CONFIG_SMP
240 struct sched_domain *sd;
241
242 /* For active balancing */
243 int active_balance;
244 int push_cpu;
245
246 task_t *migration_thread;
247 struct list_head migration_queue;
248 #endif
249
250 #ifdef CONFIG_SCHEDSTATS
251 /* latency stats */
252 struct sched_info rq_sched_info;
253
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
259
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
264
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
268 #endif
269 struct lock_class_key rq_lock_key;
270 };
271
272 static DEFINE_PER_CPU(struct runqueue, runqueues);
273
274 /*
275 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
276 * See detach_destroy_domains: synchronize_sched for details.
277 *
278 * The domain tree of any CPU may only be accessed from within
279 * preempt-disabled sections.
280 */
281 #define for_each_domain(cpu, domain) \
282 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
283
284 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
285 #define this_rq() (&__get_cpu_var(runqueues))
286 #define task_rq(p) cpu_rq(task_cpu(p))
287 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
288
289 #ifndef prepare_arch_switch
290 # define prepare_arch_switch(next) do { } while (0)
291 #endif
292 #ifndef finish_arch_switch
293 # define finish_arch_switch(prev) do { } while (0)
294 #endif
295
296 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
297 static inline int task_running(runqueue_t *rq, task_t *p)
298 {
299 return rq->curr == p;
300 }
301
302 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
303 {
304 }
305
306 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
307 {
308 #ifdef CONFIG_DEBUG_SPINLOCK
309 /* this is a valid case when another task releases the spinlock */
310 rq->lock.owner = current;
311 #endif
312 /*
313 * If we are tracking spinlock dependencies then we have to
314 * fix up the runqueue lock - which gets 'carried over' from
315 * prev into current:
316 */
317 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
318
319 spin_unlock_irq(&rq->lock);
320 }
321
322 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
323 static inline int task_running(runqueue_t *rq, task_t *p)
324 {
325 #ifdef CONFIG_SMP
326 return p->oncpu;
327 #else
328 return rq->curr == p;
329 #endif
330 }
331
332 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
333 {
334 #ifdef CONFIG_SMP
335 /*
336 * We can optimise this out completely for !SMP, because the
337 * SMP rebalancing from interrupt is the only thing that cares
338 * here.
339 */
340 next->oncpu = 1;
341 #endif
342 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
343 spin_unlock_irq(&rq->lock);
344 #else
345 spin_unlock(&rq->lock);
346 #endif
347 }
348
349 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
350 {
351 #ifdef CONFIG_SMP
352 /*
353 * After ->oncpu is cleared, the task can be moved to a different CPU.
354 * We must ensure this doesn't happen until the switch is completely
355 * finished.
356 */
357 smp_wmb();
358 prev->oncpu = 0;
359 #endif
360 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
361 local_irq_enable();
362 #endif
363 }
364 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
365
366 /*
367 * __task_rq_lock - lock the runqueue a given task resides on.
368 * Must be called interrupts disabled.
369 */
370 static inline runqueue_t *__task_rq_lock(task_t *p)
371 __acquires(rq->lock)
372 {
373 struct runqueue *rq;
374
375 repeat_lock_task:
376 rq = task_rq(p);
377 spin_lock(&rq->lock);
378 if (unlikely(rq != task_rq(p))) {
379 spin_unlock(&rq->lock);
380 goto repeat_lock_task;
381 }
382 return rq;
383 }
384
385 /*
386 * task_rq_lock - lock the runqueue a given task resides on and disable
387 * interrupts. Note the ordering: we can safely lookup the task_rq without
388 * explicitly disabling preemption.
389 */
390 static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
391 __acquires(rq->lock)
392 {
393 struct runqueue *rq;
394
395 repeat_lock_task:
396 local_irq_save(*flags);
397 rq = task_rq(p);
398 spin_lock(&rq->lock);
399 if (unlikely(rq != task_rq(p))) {
400 spin_unlock_irqrestore(&rq->lock, *flags);
401 goto repeat_lock_task;
402 }
403 return rq;
404 }
405
406 static inline void __task_rq_unlock(runqueue_t *rq)
407 __releases(rq->lock)
408 {
409 spin_unlock(&rq->lock);
410 }
411
412 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
413 __releases(rq->lock)
414 {
415 spin_unlock_irqrestore(&rq->lock, *flags);
416 }
417
418 #ifdef CONFIG_SCHEDSTATS
419 /*
420 * bump this up when changing the output format or the meaning of an existing
421 * format, so that tools can adapt (or abort)
422 */
423 #define SCHEDSTAT_VERSION 12
424
425 static int show_schedstat(struct seq_file *seq, void *v)
426 {
427 int cpu;
428
429 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
430 seq_printf(seq, "timestamp %lu\n", jiffies);
431 for_each_online_cpu(cpu) {
432 runqueue_t *rq = cpu_rq(cpu);
433 #ifdef CONFIG_SMP
434 struct sched_domain *sd;
435 int dcnt = 0;
436 #endif
437
438 /* runqueue-specific stats */
439 seq_printf(seq,
440 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
441 cpu, rq->yld_both_empty,
442 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
443 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
444 rq->ttwu_cnt, rq->ttwu_local,
445 rq->rq_sched_info.cpu_time,
446 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
447
448 seq_printf(seq, "\n");
449
450 #ifdef CONFIG_SMP
451 /* domain-specific stats */
452 preempt_disable();
453 for_each_domain(cpu, sd) {
454 enum idle_type itype;
455 char mask_str[NR_CPUS];
456
457 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
458 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
459 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
460 itype++) {
461 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
462 sd->lb_cnt[itype],
463 sd->lb_balanced[itype],
464 sd->lb_failed[itype],
465 sd->lb_imbalance[itype],
466 sd->lb_gained[itype],
467 sd->lb_hot_gained[itype],
468 sd->lb_nobusyq[itype],
469 sd->lb_nobusyg[itype]);
470 }
471 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
472 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
473 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
474 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
475 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
476 }
477 preempt_enable();
478 #endif
479 }
480 return 0;
481 }
482
483 static int schedstat_open(struct inode *inode, struct file *file)
484 {
485 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
486 char *buf = kmalloc(size, GFP_KERNEL);
487 struct seq_file *m;
488 int res;
489
490 if (!buf)
491 return -ENOMEM;
492 res = single_open(file, show_schedstat, NULL);
493 if (!res) {
494 m = file->private_data;
495 m->buf = buf;
496 m->size = size;
497 } else
498 kfree(buf);
499 return res;
500 }
501
502 struct file_operations proc_schedstat_operations = {
503 .open = schedstat_open,
504 .read = seq_read,
505 .llseek = seq_lseek,
506 .release = single_release,
507 };
508
509 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
510 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
511 #else /* !CONFIG_SCHEDSTATS */
512 # define schedstat_inc(rq, field) do { } while (0)
513 # define schedstat_add(rq, field, amt) do { } while (0)
514 #endif
515
516 /*
517 * rq_lock - lock a given runqueue and disable interrupts.
518 */
519 static inline runqueue_t *this_rq_lock(void)
520 __acquires(rq->lock)
521 {
522 runqueue_t *rq;
523
524 local_irq_disable();
525 rq = this_rq();
526 spin_lock(&rq->lock);
527
528 return rq;
529 }
530
531 #ifdef CONFIG_SCHEDSTATS
532 /*
533 * Called when a process is dequeued from the active array and given
534 * the cpu. We should note that with the exception of interactive
535 * tasks, the expired queue will become the active queue after the active
536 * queue is empty, without explicitly dequeuing and requeuing tasks in the
537 * expired queue. (Interactive tasks may be requeued directly to the
538 * active queue, thus delaying tasks in the expired queue from running;
539 * see scheduler_tick()).
540 *
541 * This function is only called from sched_info_arrive(), rather than
542 * dequeue_task(). Even though a task may be queued and dequeued multiple
543 * times as it is shuffled about, we're really interested in knowing how
544 * long it was from the *first* time it was queued to the time that it
545 * finally hit a cpu.
546 */
547 static inline void sched_info_dequeued(task_t *t)
548 {
549 t->sched_info.last_queued = 0;
550 }
551
552 /*
553 * Called when a task finally hits the cpu. We can now calculate how
554 * long it was waiting to run. We also note when it began so that we
555 * can keep stats on how long its timeslice is.
556 */
557 static void sched_info_arrive(task_t *t)
558 {
559 unsigned long now = jiffies, diff = 0;
560 struct runqueue *rq = task_rq(t);
561
562 if (t->sched_info.last_queued)
563 diff = now - t->sched_info.last_queued;
564 sched_info_dequeued(t);
565 t->sched_info.run_delay += diff;
566 t->sched_info.last_arrival = now;
567 t->sched_info.pcnt++;
568
569 if (!rq)
570 return;
571
572 rq->rq_sched_info.run_delay += diff;
573 rq->rq_sched_info.pcnt++;
574 }
575
576 /*
577 * Called when a process is queued into either the active or expired
578 * array. The time is noted and later used to determine how long we
579 * had to wait for us to reach the cpu. Since the expired queue will
580 * become the active queue after active queue is empty, without dequeuing
581 * and requeuing any tasks, we are interested in queuing to either. It
582 * is unusual but not impossible for tasks to be dequeued and immediately
583 * requeued in the same or another array: this can happen in sched_yield(),
584 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
585 * to runqueue.
586 *
587 * This function is only called from enqueue_task(), but also only updates
588 * the timestamp if it is already not set. It's assumed that
589 * sched_info_dequeued() will clear that stamp when appropriate.
590 */
591 static inline void sched_info_queued(task_t *t)
592 {
593 if (!t->sched_info.last_queued)
594 t->sched_info.last_queued = jiffies;
595 }
596
597 /*
598 * Called when a process ceases being the active-running process, either
599 * voluntarily or involuntarily. Now we can calculate how long we ran.
600 */
601 static inline void sched_info_depart(task_t *t)
602 {
603 struct runqueue *rq = task_rq(t);
604 unsigned long diff = jiffies - t->sched_info.last_arrival;
605
606 t->sched_info.cpu_time += diff;
607
608 if (rq)
609 rq->rq_sched_info.cpu_time += diff;
610 }
611
612 /*
613 * Called when tasks are switched involuntarily due, typically, to expiring
614 * their time slice. (This may also be called when switching to or from
615 * the idle task.) We are only called when prev != next.
616 */
617 static inline void sched_info_switch(task_t *prev, task_t *next)
618 {
619 struct runqueue *rq = task_rq(prev);
620
621 /*
622 * prev now departs the cpu. It's not interesting to record
623 * stats about how efficient we were at scheduling the idle
624 * process, however.
625 */
626 if (prev != rq->idle)
627 sched_info_depart(prev);
628
629 if (next != rq->idle)
630 sched_info_arrive(next);
631 }
632 #else
633 #define sched_info_queued(t) do { } while (0)
634 #define sched_info_switch(t, next) do { } while (0)
635 #endif /* CONFIG_SCHEDSTATS */
636
637 /*
638 * Adding/removing a task to/from a priority array:
639 */
640 static void dequeue_task(struct task_struct *p, prio_array_t *array)
641 {
642 array->nr_active--;
643 list_del(&p->run_list);
644 if (list_empty(array->queue + p->prio))
645 __clear_bit(p->prio, array->bitmap);
646 }
647
648 static void enqueue_task(struct task_struct *p, prio_array_t *array)
649 {
650 sched_info_queued(p);
651 list_add_tail(&p->run_list, array->queue + p->prio);
652 __set_bit(p->prio, array->bitmap);
653 array->nr_active++;
654 p->array = array;
655 }
656
657 /*
658 * Put task to the end of the run list without the overhead of dequeue
659 * followed by enqueue.
660 */
661 static void requeue_task(struct task_struct *p, prio_array_t *array)
662 {
663 list_move_tail(&p->run_list, array->queue + p->prio);
664 }
665
666 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
667 {
668 list_add(&p->run_list, array->queue + p->prio);
669 __set_bit(p->prio, array->bitmap);
670 array->nr_active++;
671 p->array = array;
672 }
673
674 /*
675 * __normal_prio - return the priority that is based on the static
676 * priority but is modified by bonuses/penalties.
677 *
678 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
679 * into the -5 ... 0 ... +5 bonus/penalty range.
680 *
681 * We use 25% of the full 0...39 priority range so that:
682 *
683 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
684 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
685 *
686 * Both properties are important to certain workloads.
687 */
688
689 static inline int __normal_prio(task_t *p)
690 {
691 int bonus, prio;
692
693 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
694
695 prio = p->static_prio - bonus;
696 if (prio < MAX_RT_PRIO)
697 prio = MAX_RT_PRIO;
698 if (prio > MAX_PRIO-1)
699 prio = MAX_PRIO-1;
700 return prio;
701 }
702
703 /*
704 * To aid in avoiding the subversion of "niceness" due to uneven distribution
705 * of tasks with abnormal "nice" values across CPUs the contribution that
706 * each task makes to its run queue's load is weighted according to its
707 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
708 * scaled version of the new time slice allocation that they receive on time
709 * slice expiry etc.
710 */
711
712 /*
713 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
714 * If static_prio_timeslice() is ever changed to break this assumption then
715 * this code will need modification
716 */
717 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
718 #define LOAD_WEIGHT(lp) \
719 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
720 #define PRIO_TO_LOAD_WEIGHT(prio) \
721 LOAD_WEIGHT(static_prio_timeslice(prio))
722 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
723 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
724
725 static void set_load_weight(task_t *p)
726 {
727 if (has_rt_policy(p)) {
728 #ifdef CONFIG_SMP
729 if (p == task_rq(p)->migration_thread)
730 /*
731 * The migration thread does the actual balancing.
732 * Giving its load any weight will skew balancing
733 * adversely.
734 */
735 p->load_weight = 0;
736 else
737 #endif
738 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
739 } else
740 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
741 }
742
743 static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
744 {
745 rq->raw_weighted_load += p->load_weight;
746 }
747
748 static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
749 {
750 rq->raw_weighted_load -= p->load_weight;
751 }
752
753 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
754 {
755 rq->nr_running++;
756 inc_raw_weighted_load(rq, p);
757 }
758
759 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
760 {
761 rq->nr_running--;
762 dec_raw_weighted_load(rq, p);
763 }
764
765 /*
766 * Calculate the expected normal priority: i.e. priority
767 * without taking RT-inheritance into account. Might be
768 * boosted by interactivity modifiers. Changes upon fork,
769 * setprio syscalls, and whenever the interactivity
770 * estimator recalculates.
771 */
772 static inline int normal_prio(task_t *p)
773 {
774 int prio;
775
776 if (has_rt_policy(p))
777 prio = MAX_RT_PRIO-1 - p->rt_priority;
778 else
779 prio = __normal_prio(p);
780 return prio;
781 }
782
783 /*
784 * Calculate the current priority, i.e. the priority
785 * taken into account by the scheduler. This value might
786 * be boosted by RT tasks, or might be boosted by
787 * interactivity modifiers. Will be RT if the task got
788 * RT-boosted. If not then it returns p->normal_prio.
789 */
790 static int effective_prio(task_t *p)
791 {
792 p->normal_prio = normal_prio(p);
793 /*
794 * If we are RT tasks or we were boosted to RT priority,
795 * keep the priority unchanged. Otherwise, update priority
796 * to the normal priority:
797 */
798 if (!rt_prio(p->prio))
799 return p->normal_prio;
800 return p->prio;
801 }
802
803 /*
804 * __activate_task - move a task to the runqueue.
805 */
806 static void __activate_task(task_t *p, runqueue_t *rq)
807 {
808 prio_array_t *target = rq->active;
809
810 if (batch_task(p))
811 target = rq->expired;
812 enqueue_task(p, target);
813 inc_nr_running(p, rq);
814 }
815
816 /*
817 * __activate_idle_task - move idle task to the _front_ of runqueue.
818 */
819 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
820 {
821 enqueue_task_head(p, rq->active);
822 inc_nr_running(p, rq);
823 }
824
825 /*
826 * Recalculate p->normal_prio and p->prio after having slept,
827 * updating the sleep-average too:
828 */
829 static int recalc_task_prio(task_t *p, unsigned long long now)
830 {
831 /* Caller must always ensure 'now >= p->timestamp' */
832 unsigned long sleep_time = now - p->timestamp;
833
834 if (batch_task(p))
835 sleep_time = 0;
836
837 if (likely(sleep_time > 0)) {
838 /*
839 * This ceiling is set to the lowest priority that would allow
840 * a task to be reinserted into the active array on timeslice
841 * completion.
842 */
843 unsigned long ceiling = INTERACTIVE_SLEEP(p);
844
845 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
846 /*
847 * Prevents user tasks from achieving best priority
848 * with one single large enough sleep.
849 */
850 p->sleep_avg = ceiling;
851 /*
852 * Using INTERACTIVE_SLEEP() as a ceiling places a
853 * nice(0) task 1ms sleep away from promotion, and
854 * gives it 700ms to round-robin with no chance of
855 * being demoted. This is more than generous, so
856 * mark this sleep as non-interactive to prevent the
857 * on-runqueue bonus logic from intervening should
858 * this task not receive cpu immediately.
859 */
860 p->sleep_type = SLEEP_NONINTERACTIVE;
861 } else {
862 /*
863 * Tasks waking from uninterruptible sleep are
864 * limited in their sleep_avg rise as they
865 * are likely to be waiting on I/O
866 */
867 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
868 if (p->sleep_avg >= ceiling)
869 sleep_time = 0;
870 else if (p->sleep_avg + sleep_time >=
871 ceiling) {
872 p->sleep_avg = ceiling;
873 sleep_time = 0;
874 }
875 }
876
877 /*
878 * This code gives a bonus to interactive tasks.
879 *
880 * The boost works by updating the 'average sleep time'
881 * value here, based on ->timestamp. The more time a
882 * task spends sleeping, the higher the average gets -
883 * and the higher the priority boost gets as well.
884 */
885 p->sleep_avg += sleep_time;
886
887 }
888 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
889 p->sleep_avg = NS_MAX_SLEEP_AVG;
890 }
891
892 return effective_prio(p);
893 }
894
895 /*
896 * activate_task - move a task to the runqueue and do priority recalculation
897 *
898 * Update all the scheduling statistics stuff. (sleep average
899 * calculation, priority modifiers, etc.)
900 */
901 static void activate_task(task_t *p, runqueue_t *rq, int local)
902 {
903 unsigned long long now;
904
905 now = sched_clock();
906 #ifdef CONFIG_SMP
907 if (!local) {
908 /* Compensate for drifting sched_clock */
909 runqueue_t *this_rq = this_rq();
910 now = (now - this_rq->timestamp_last_tick)
911 + rq->timestamp_last_tick;
912 }
913 #endif
914
915 if (!rt_task(p))
916 p->prio = recalc_task_prio(p, now);
917
918 /*
919 * This checks to make sure it's not an uninterruptible task
920 * that is now waking up.
921 */
922 if (p->sleep_type == SLEEP_NORMAL) {
923 /*
924 * Tasks which were woken up by interrupts (ie. hw events)
925 * are most likely of interactive nature. So we give them
926 * the credit of extending their sleep time to the period
927 * of time they spend on the runqueue, waiting for execution
928 * on a CPU, first time around:
929 */
930 if (in_interrupt())
931 p->sleep_type = SLEEP_INTERRUPTED;
932 else {
933 /*
934 * Normal first-time wakeups get a credit too for
935 * on-runqueue time, but it will be weighted down:
936 */
937 p->sleep_type = SLEEP_INTERACTIVE;
938 }
939 }
940 p->timestamp = now;
941
942 __activate_task(p, rq);
943 }
944
945 /*
946 * deactivate_task - remove a task from the runqueue.
947 */
948 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
949 {
950 dec_nr_running(p, rq);
951 dequeue_task(p, p->array);
952 p->array = NULL;
953 }
954
955 /*
956 * resched_task - mark a task 'to be rescheduled now'.
957 *
958 * On UP this means the setting of the need_resched flag, on SMP it
959 * might also involve a cross-CPU call to trigger the scheduler on
960 * the target CPU.
961 */
962 #ifdef CONFIG_SMP
963
964 #ifndef tsk_is_polling
965 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
966 #endif
967
968 static void resched_task(task_t *p)
969 {
970 int cpu;
971
972 assert_spin_locked(&task_rq(p)->lock);
973
974 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
975 return;
976
977 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
978
979 cpu = task_cpu(p);
980 if (cpu == smp_processor_id())
981 return;
982
983 /* NEED_RESCHED must be visible before we test polling */
984 smp_mb();
985 if (!tsk_is_polling(p))
986 smp_send_reschedule(cpu);
987 }
988 #else
989 static inline void resched_task(task_t *p)
990 {
991 assert_spin_locked(&task_rq(p)->lock);
992 set_tsk_need_resched(p);
993 }
994 #endif
995
996 /**
997 * task_curr - is this task currently executing on a CPU?
998 * @p: the task in question.
999 */
1000 inline int task_curr(const task_t *p)
1001 {
1002 return cpu_curr(task_cpu(p)) == p;
1003 }
1004
1005 /* Used instead of source_load when we know the type == 0 */
1006 unsigned long weighted_cpuload(const int cpu)
1007 {
1008 return cpu_rq(cpu)->raw_weighted_load;
1009 }
1010
1011 #ifdef CONFIG_SMP
1012 typedef struct {
1013 struct list_head list;
1014
1015 task_t *task;
1016 int dest_cpu;
1017
1018 struct completion done;
1019 } migration_req_t;
1020
1021 /*
1022 * The task's runqueue lock must be held.
1023 * Returns true if you have to wait for migration thread.
1024 */
1025 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
1026 {
1027 runqueue_t *rq = task_rq(p);
1028
1029 /*
1030 * If the task is not on a runqueue (and not running), then
1031 * it is sufficient to simply update the task's cpu field.
1032 */
1033 if (!p->array && !task_running(rq, p)) {
1034 set_task_cpu(p, dest_cpu);
1035 return 0;
1036 }
1037
1038 init_completion(&req->done);
1039 req->task = p;
1040 req->dest_cpu = dest_cpu;
1041 list_add(&req->list, &rq->migration_queue);
1042 return 1;
1043 }
1044
1045 /*
1046 * wait_task_inactive - wait for a thread to unschedule.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054 void wait_task_inactive(task_t *p)
1055 {
1056 unsigned long flags;
1057 runqueue_t *rq;
1058 int preempted;
1059
1060 repeat:
1061 rq = task_rq_lock(p, &flags);
1062 /* Must be off runqueue entirely, not preempted. */
1063 if (unlikely(p->array || task_running(rq, p))) {
1064 /* If it's preempted, we yield. It could be a while. */
1065 preempted = !task_running(rq, p);
1066 task_rq_unlock(rq, &flags);
1067 cpu_relax();
1068 if (preempted)
1069 yield();
1070 goto repeat;
1071 }
1072 task_rq_unlock(rq, &flags);
1073 }
1074
1075 /***
1076 * kick_process - kick a running thread to enter/exit the kernel
1077 * @p: the to-be-kicked thread
1078 *
1079 * Cause a process which is running on another CPU to enter
1080 * kernel-mode, without any delay. (to get signals handled.)
1081 *
1082 * NOTE: this function doesnt have to take the runqueue lock,
1083 * because all it wants to ensure is that the remote task enters
1084 * the kernel. If the IPI races and the task has been migrated
1085 * to another CPU then no harm is done and the purpose has been
1086 * achieved as well.
1087 */
1088 void kick_process(task_t *p)
1089 {
1090 int cpu;
1091
1092 preempt_disable();
1093 cpu = task_cpu(p);
1094 if ((cpu != smp_processor_id()) && task_curr(p))
1095 smp_send_reschedule(cpu);
1096 preempt_enable();
1097 }
1098
1099 /*
1100 * Return a low guess at the load of a migration-source cpu weighted
1101 * according to the scheduling class and "nice" value.
1102 *
1103 * We want to under-estimate the load of migration sources, to
1104 * balance conservatively.
1105 */
1106 static inline unsigned long source_load(int cpu, int type)
1107 {
1108 runqueue_t *rq = cpu_rq(cpu);
1109
1110 if (type == 0)
1111 return rq->raw_weighted_load;
1112
1113 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1114 }
1115
1116 /*
1117 * Return a high guess at the load of a migration-target cpu weighted
1118 * according to the scheduling class and "nice" value.
1119 */
1120 static inline unsigned long target_load(int cpu, int type)
1121 {
1122 runqueue_t *rq = cpu_rq(cpu);
1123
1124 if (type == 0)
1125 return rq->raw_weighted_load;
1126
1127 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1128 }
1129
1130 /*
1131 * Return the average load per task on the cpu's run queue
1132 */
1133 static inline unsigned long cpu_avg_load_per_task(int cpu)
1134 {
1135 runqueue_t *rq = cpu_rq(cpu);
1136 unsigned long n = rq->nr_running;
1137
1138 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1139 }
1140
1141 /*
1142 * find_idlest_group finds and returns the least busy CPU group within the
1143 * domain.
1144 */
1145 static struct sched_group *
1146 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1147 {
1148 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1149 unsigned long min_load = ULONG_MAX, this_load = 0;
1150 int load_idx = sd->forkexec_idx;
1151 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1152
1153 do {
1154 unsigned long load, avg_load;
1155 int local_group;
1156 int i;
1157
1158 /* Skip over this group if it has no CPUs allowed */
1159 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1160 goto nextgroup;
1161
1162 local_group = cpu_isset(this_cpu, group->cpumask);
1163
1164 /* Tally up the load of all CPUs in the group */
1165 avg_load = 0;
1166
1167 for_each_cpu_mask(i, group->cpumask) {
1168 /* Bias balancing toward cpus of our domain */
1169 if (local_group)
1170 load = source_load(i, load_idx);
1171 else
1172 load = target_load(i, load_idx);
1173
1174 avg_load += load;
1175 }
1176
1177 /* Adjust by relative CPU power of the group */
1178 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1179
1180 if (local_group) {
1181 this_load = avg_load;
1182 this = group;
1183 } else if (avg_load < min_load) {
1184 min_load = avg_load;
1185 idlest = group;
1186 }
1187 nextgroup:
1188 group = group->next;
1189 } while (group != sd->groups);
1190
1191 if (!idlest || 100*this_load < imbalance*min_load)
1192 return NULL;
1193 return idlest;
1194 }
1195
1196 /*
1197 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1198 */
1199 static int
1200 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1201 {
1202 cpumask_t tmp;
1203 unsigned long load, min_load = ULONG_MAX;
1204 int idlest = -1;
1205 int i;
1206
1207 /* Traverse only the allowed CPUs */
1208 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1209
1210 for_each_cpu_mask(i, tmp) {
1211 load = weighted_cpuload(i);
1212
1213 if (load < min_load || (load == min_load && i == this_cpu)) {
1214 min_load = load;
1215 idlest = i;
1216 }
1217 }
1218
1219 return idlest;
1220 }
1221
1222 /*
1223 * sched_balance_self: balance the current task (running on cpu) in domains
1224 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1225 * SD_BALANCE_EXEC.
1226 *
1227 * Balance, ie. select the least loaded group.
1228 *
1229 * Returns the target CPU number, or the same CPU if no balancing is needed.
1230 *
1231 * preempt must be disabled.
1232 */
1233 static int sched_balance_self(int cpu, int flag)
1234 {
1235 struct task_struct *t = current;
1236 struct sched_domain *tmp, *sd = NULL;
1237
1238 for_each_domain(cpu, tmp) {
1239 /*
1240 * If power savings logic is enabled for a domain, stop there.
1241 */
1242 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1243 break;
1244 if (tmp->flags & flag)
1245 sd = tmp;
1246 }
1247
1248 while (sd) {
1249 cpumask_t span;
1250 struct sched_group *group;
1251 int new_cpu;
1252 int weight;
1253
1254 span = sd->span;
1255 group = find_idlest_group(sd, t, cpu);
1256 if (!group)
1257 goto nextlevel;
1258
1259 new_cpu = find_idlest_cpu(group, t, cpu);
1260 if (new_cpu == -1 || new_cpu == cpu)
1261 goto nextlevel;
1262
1263 /* Now try balancing at a lower domain level */
1264 cpu = new_cpu;
1265 nextlevel:
1266 sd = NULL;
1267 weight = cpus_weight(span);
1268 for_each_domain(cpu, tmp) {
1269 if (weight <= cpus_weight(tmp->span))
1270 break;
1271 if (tmp->flags & flag)
1272 sd = tmp;
1273 }
1274 /* while loop will break here if sd == NULL */
1275 }
1276
1277 return cpu;
1278 }
1279
1280 #endif /* CONFIG_SMP */
1281
1282 /*
1283 * wake_idle() will wake a task on an idle cpu if task->cpu is
1284 * not idle and an idle cpu is available. The span of cpus to
1285 * search starts with cpus closest then further out as needed,
1286 * so we always favor a closer, idle cpu.
1287 *
1288 * Returns the CPU we should wake onto.
1289 */
1290 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1291 static int wake_idle(int cpu, task_t *p)
1292 {
1293 cpumask_t tmp;
1294 struct sched_domain *sd;
1295 int i;
1296
1297 if (idle_cpu(cpu))
1298 return cpu;
1299
1300 for_each_domain(cpu, sd) {
1301 if (sd->flags & SD_WAKE_IDLE) {
1302 cpus_and(tmp, sd->span, p->cpus_allowed);
1303 for_each_cpu_mask(i, tmp) {
1304 if (idle_cpu(i))
1305 return i;
1306 }
1307 }
1308 else
1309 break;
1310 }
1311 return cpu;
1312 }
1313 #else
1314 static inline int wake_idle(int cpu, task_t *p)
1315 {
1316 return cpu;
1317 }
1318 #endif
1319
1320 /***
1321 * try_to_wake_up - wake up a thread
1322 * @p: the to-be-woken-up thread
1323 * @state: the mask of task states that can be woken
1324 * @sync: do a synchronous wakeup?
1325 *
1326 * Put it on the run-queue if it's not already there. The "current"
1327 * thread is always on the run-queue (except when the actual
1328 * re-schedule is in progress), and as such you're allowed to do
1329 * the simpler "current->state = TASK_RUNNING" to mark yourself
1330 * runnable without the overhead of this.
1331 *
1332 * returns failure only if the task is already active.
1333 */
1334 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1335 {
1336 int cpu, this_cpu, success = 0;
1337 unsigned long flags;
1338 long old_state;
1339 runqueue_t *rq;
1340 #ifdef CONFIG_SMP
1341 unsigned long load, this_load;
1342 struct sched_domain *sd, *this_sd = NULL;
1343 int new_cpu;
1344 #endif
1345
1346 rq = task_rq_lock(p, &flags);
1347 old_state = p->state;
1348 if (!(old_state & state))
1349 goto out;
1350
1351 if (p->array)
1352 goto out_running;
1353
1354 cpu = task_cpu(p);
1355 this_cpu = smp_processor_id();
1356
1357 #ifdef CONFIG_SMP
1358 if (unlikely(task_running(rq, p)))
1359 goto out_activate;
1360
1361 new_cpu = cpu;
1362
1363 schedstat_inc(rq, ttwu_cnt);
1364 if (cpu == this_cpu) {
1365 schedstat_inc(rq, ttwu_local);
1366 goto out_set_cpu;
1367 }
1368
1369 for_each_domain(this_cpu, sd) {
1370 if (cpu_isset(cpu, sd->span)) {
1371 schedstat_inc(sd, ttwu_wake_remote);
1372 this_sd = sd;
1373 break;
1374 }
1375 }
1376
1377 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1378 goto out_set_cpu;
1379
1380 /*
1381 * Check for affine wakeup and passive balancing possibilities.
1382 */
1383 if (this_sd) {
1384 int idx = this_sd->wake_idx;
1385 unsigned int imbalance;
1386
1387 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1388
1389 load = source_load(cpu, idx);
1390 this_load = target_load(this_cpu, idx);
1391
1392 new_cpu = this_cpu; /* Wake to this CPU if we can */
1393
1394 if (this_sd->flags & SD_WAKE_AFFINE) {
1395 unsigned long tl = this_load;
1396 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1397
1398 /*
1399 * If sync wakeup then subtract the (maximum possible)
1400 * effect of the currently running task from the load
1401 * of the current CPU:
1402 */
1403 if (sync)
1404 tl -= current->load_weight;
1405
1406 if ((tl <= load &&
1407 tl + target_load(cpu, idx) <= tl_per_task) ||
1408 100*(tl + p->load_weight) <= imbalance*load) {
1409 /*
1410 * This domain has SD_WAKE_AFFINE and
1411 * p is cache cold in this domain, and
1412 * there is no bad imbalance.
1413 */
1414 schedstat_inc(this_sd, ttwu_move_affine);
1415 goto out_set_cpu;
1416 }
1417 }
1418
1419 /*
1420 * Start passive balancing when half the imbalance_pct
1421 * limit is reached.
1422 */
1423 if (this_sd->flags & SD_WAKE_BALANCE) {
1424 if (imbalance*this_load <= 100*load) {
1425 schedstat_inc(this_sd, ttwu_move_balance);
1426 goto out_set_cpu;
1427 }
1428 }
1429 }
1430
1431 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1432 out_set_cpu:
1433 new_cpu = wake_idle(new_cpu, p);
1434 if (new_cpu != cpu) {
1435 set_task_cpu(p, new_cpu);
1436 task_rq_unlock(rq, &flags);
1437 /* might preempt at this point */
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442 if (p->array)
1443 goto out_running;
1444
1445 this_cpu = smp_processor_id();
1446 cpu = task_cpu(p);
1447 }
1448
1449 out_activate:
1450 #endif /* CONFIG_SMP */
1451 if (old_state == TASK_UNINTERRUPTIBLE) {
1452 rq->nr_uninterruptible--;
1453 /*
1454 * Tasks on involuntary sleep don't earn
1455 * sleep_avg beyond just interactive state.
1456 */
1457 p->sleep_type = SLEEP_NONINTERACTIVE;
1458 } else
1459
1460 /*
1461 * Tasks that have marked their sleep as noninteractive get
1462 * woken up with their sleep average not weighted in an
1463 * interactive way.
1464 */
1465 if (old_state & TASK_NONINTERACTIVE)
1466 p->sleep_type = SLEEP_NONINTERACTIVE;
1467
1468
1469 activate_task(p, rq, cpu == this_cpu);
1470 /*
1471 * Sync wakeups (i.e. those types of wakeups where the waker
1472 * has indicated that it will leave the CPU in short order)
1473 * don't trigger a preemption, if the woken up task will run on
1474 * this cpu. (in this case the 'I will reschedule' promise of
1475 * the waker guarantees that the freshly woken up task is going
1476 * to be considered on this CPU.)
1477 */
1478 if (!sync || cpu != this_cpu) {
1479 if (TASK_PREEMPTS_CURR(p, rq))
1480 resched_task(rq->curr);
1481 }
1482 success = 1;
1483
1484 out_running:
1485 p->state = TASK_RUNNING;
1486 out:
1487 task_rq_unlock(rq, &flags);
1488
1489 return success;
1490 }
1491
1492 int fastcall wake_up_process(task_t *p)
1493 {
1494 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1495 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1496 }
1497
1498 EXPORT_SYMBOL(wake_up_process);
1499
1500 int fastcall wake_up_state(task_t *p, unsigned int state)
1501 {
1502 return try_to_wake_up(p, state, 0);
1503 }
1504
1505 /*
1506 * Perform scheduler related setup for a newly forked process p.
1507 * p is forked by current.
1508 */
1509 void fastcall sched_fork(task_t *p, int clone_flags)
1510 {
1511 int cpu = get_cpu();
1512
1513 #ifdef CONFIG_SMP
1514 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1515 #endif
1516 set_task_cpu(p, cpu);
1517
1518 /*
1519 * We mark the process as running here, but have not actually
1520 * inserted it onto the runqueue yet. This guarantees that
1521 * nobody will actually run it, and a signal or other external
1522 * event cannot wake it up and insert it on the runqueue either.
1523 */
1524 p->state = TASK_RUNNING;
1525
1526 /*
1527 * Make sure we do not leak PI boosting priority to the child:
1528 */
1529 p->prio = current->normal_prio;
1530
1531 INIT_LIST_HEAD(&p->run_list);
1532 p->array = NULL;
1533 #ifdef CONFIG_SCHEDSTATS
1534 memset(&p->sched_info, 0, sizeof(p->sched_info));
1535 #endif
1536 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1537 p->oncpu = 0;
1538 #endif
1539 #ifdef CONFIG_PREEMPT
1540 /* Want to start with kernel preemption disabled. */
1541 task_thread_info(p)->preempt_count = 1;
1542 #endif
1543 /*
1544 * Share the timeslice between parent and child, thus the
1545 * total amount of pending timeslices in the system doesn't change,
1546 * resulting in more scheduling fairness.
1547 */
1548 local_irq_disable();
1549 p->time_slice = (current->time_slice + 1) >> 1;
1550 /*
1551 * The remainder of the first timeslice might be recovered by
1552 * the parent if the child exits early enough.
1553 */
1554 p->first_time_slice = 1;
1555 current->time_slice >>= 1;
1556 p->timestamp = sched_clock();
1557 if (unlikely(!current->time_slice)) {
1558 /*
1559 * This case is rare, it happens when the parent has only
1560 * a single jiffy left from its timeslice. Taking the
1561 * runqueue lock is not a problem.
1562 */
1563 current->time_slice = 1;
1564 scheduler_tick();
1565 }
1566 local_irq_enable();
1567 put_cpu();
1568 }
1569
1570 /*
1571 * wake_up_new_task - wake up a newly created task for the first time.
1572 *
1573 * This function will do some initial scheduler statistics housekeeping
1574 * that must be done for every newly created context, then puts the task
1575 * on the runqueue and wakes it.
1576 */
1577 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1578 {
1579 unsigned long flags;
1580 int this_cpu, cpu;
1581 runqueue_t *rq, *this_rq;
1582
1583 rq = task_rq_lock(p, &flags);
1584 BUG_ON(p->state != TASK_RUNNING);
1585 this_cpu = smp_processor_id();
1586 cpu = task_cpu(p);
1587
1588 /*
1589 * We decrease the sleep average of forking parents
1590 * and children as well, to keep max-interactive tasks
1591 * from forking tasks that are max-interactive. The parent
1592 * (current) is done further down, under its lock.
1593 */
1594 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1595 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1596
1597 p->prio = effective_prio(p);
1598
1599 if (likely(cpu == this_cpu)) {
1600 if (!(clone_flags & CLONE_VM)) {
1601 /*
1602 * The VM isn't cloned, so we're in a good position to
1603 * do child-runs-first in anticipation of an exec. This
1604 * usually avoids a lot of COW overhead.
1605 */
1606 if (unlikely(!current->array))
1607 __activate_task(p, rq);
1608 else {
1609 p->prio = current->prio;
1610 p->normal_prio = current->normal_prio;
1611 list_add_tail(&p->run_list, &current->run_list);
1612 p->array = current->array;
1613 p->array->nr_active++;
1614 inc_nr_running(p, rq);
1615 }
1616 set_need_resched();
1617 } else
1618 /* Run child last */
1619 __activate_task(p, rq);
1620 /*
1621 * We skip the following code due to cpu == this_cpu
1622 *
1623 * task_rq_unlock(rq, &flags);
1624 * this_rq = task_rq_lock(current, &flags);
1625 */
1626 this_rq = rq;
1627 } else {
1628 this_rq = cpu_rq(this_cpu);
1629
1630 /*
1631 * Not the local CPU - must adjust timestamp. This should
1632 * get optimised away in the !CONFIG_SMP case.
1633 */
1634 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1635 + rq->timestamp_last_tick;
1636 __activate_task(p, rq);
1637 if (TASK_PREEMPTS_CURR(p, rq))
1638 resched_task(rq->curr);
1639
1640 /*
1641 * Parent and child are on different CPUs, now get the
1642 * parent runqueue to update the parent's ->sleep_avg:
1643 */
1644 task_rq_unlock(rq, &flags);
1645 this_rq = task_rq_lock(current, &flags);
1646 }
1647 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1648 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1649 task_rq_unlock(this_rq, &flags);
1650 }
1651
1652 /*
1653 * Potentially available exiting-child timeslices are
1654 * retrieved here - this way the parent does not get
1655 * penalized for creating too many threads.
1656 *
1657 * (this cannot be used to 'generate' timeslices
1658 * artificially, because any timeslice recovered here
1659 * was given away by the parent in the first place.)
1660 */
1661 void fastcall sched_exit(task_t *p)
1662 {
1663 unsigned long flags;
1664 runqueue_t *rq;
1665
1666 /*
1667 * If the child was a (relative-) CPU hog then decrease
1668 * the sleep_avg of the parent as well.
1669 */
1670 rq = task_rq_lock(p->parent, &flags);
1671 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1672 p->parent->time_slice += p->time_slice;
1673 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1674 p->parent->time_slice = task_timeslice(p);
1675 }
1676 if (p->sleep_avg < p->parent->sleep_avg)
1677 p->parent->sleep_avg = p->parent->sleep_avg /
1678 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1679 (EXIT_WEIGHT + 1);
1680 task_rq_unlock(rq, &flags);
1681 }
1682
1683 /**
1684 * prepare_task_switch - prepare to switch tasks
1685 * @rq: the runqueue preparing to switch
1686 * @next: the task we are going to switch to.
1687 *
1688 * This is called with the rq lock held and interrupts off. It must
1689 * be paired with a subsequent finish_task_switch after the context
1690 * switch.
1691 *
1692 * prepare_task_switch sets up locking and calls architecture specific
1693 * hooks.
1694 */
1695 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1696 {
1697 prepare_lock_switch(rq, next);
1698 prepare_arch_switch(next);
1699 }
1700
1701 /**
1702 * finish_task_switch - clean up after a task-switch
1703 * @rq: runqueue associated with task-switch
1704 * @prev: the thread we just switched away from.
1705 *
1706 * finish_task_switch must be called after the context switch, paired
1707 * with a prepare_task_switch call before the context switch.
1708 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1709 * and do any other architecture-specific cleanup actions.
1710 *
1711 * Note that we may have delayed dropping an mm in context_switch(). If
1712 * so, we finish that here outside of the runqueue lock. (Doing it
1713 * with the lock held can cause deadlocks; see schedule() for
1714 * details.)
1715 */
1716 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1717 __releases(rq->lock)
1718 {
1719 struct mm_struct *mm = rq->prev_mm;
1720 unsigned long prev_task_flags;
1721
1722 rq->prev_mm = NULL;
1723
1724 /*
1725 * A task struct has one reference for the use as "current".
1726 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1727 * calls schedule one last time. The schedule call will never return,
1728 * and the scheduled task must drop that reference.
1729 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1730 * still held, otherwise prev could be scheduled on another cpu, die
1731 * there before we look at prev->state, and then the reference would
1732 * be dropped twice.
1733 * Manfred Spraul <manfred@colorfullife.com>
1734 */
1735 prev_task_flags = prev->flags;
1736 finish_arch_switch(prev);
1737 finish_lock_switch(rq, prev);
1738 if (mm)
1739 mmdrop(mm);
1740 if (unlikely(prev_task_flags & PF_DEAD)) {
1741 /*
1742 * Remove function-return probe instances associated with this
1743 * task and put them back on the free list.
1744 */
1745 kprobe_flush_task(prev);
1746 put_task_struct(prev);
1747 }
1748 }
1749
1750 /**
1751 * schedule_tail - first thing a freshly forked thread must call.
1752 * @prev: the thread we just switched away from.
1753 */
1754 asmlinkage void schedule_tail(task_t *prev)
1755 __releases(rq->lock)
1756 {
1757 runqueue_t *rq = this_rq();
1758 finish_task_switch(rq, prev);
1759 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1760 /* In this case, finish_task_switch does not reenable preemption */
1761 preempt_enable();
1762 #endif
1763 if (current->set_child_tid)
1764 put_user(current->pid, current->set_child_tid);
1765 }
1766
1767 /*
1768 * context_switch - switch to the new MM and the new
1769 * thread's register state.
1770 */
1771 static inline
1772 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1773 {
1774 struct mm_struct *mm = next->mm;
1775 struct mm_struct *oldmm = prev->active_mm;
1776
1777 if (unlikely(!mm)) {
1778 next->active_mm = oldmm;
1779 atomic_inc(&oldmm->mm_count);
1780 enter_lazy_tlb(oldmm, next);
1781 } else
1782 switch_mm(oldmm, mm, next);
1783
1784 if (unlikely(!prev->mm)) {
1785 prev->active_mm = NULL;
1786 WARN_ON(rq->prev_mm);
1787 rq->prev_mm = oldmm;
1788 }
1789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1790
1791 /* Here we just switch the register state and the stack. */
1792 switch_to(prev, next, prev);
1793
1794 return prev;
1795 }
1796
1797 /*
1798 * nr_running, nr_uninterruptible and nr_context_switches:
1799 *
1800 * externally visible scheduler statistics: current number of runnable
1801 * threads, current number of uninterruptible-sleeping threads, total
1802 * number of context switches performed since bootup.
1803 */
1804 unsigned long nr_running(void)
1805 {
1806 unsigned long i, sum = 0;
1807
1808 for_each_online_cpu(i)
1809 sum += cpu_rq(i)->nr_running;
1810
1811 return sum;
1812 }
1813
1814 unsigned long nr_uninterruptible(void)
1815 {
1816 unsigned long i, sum = 0;
1817
1818 for_each_possible_cpu(i)
1819 sum += cpu_rq(i)->nr_uninterruptible;
1820
1821 /*
1822 * Since we read the counters lockless, it might be slightly
1823 * inaccurate. Do not allow it to go below zero though:
1824 */
1825 if (unlikely((long)sum < 0))
1826 sum = 0;
1827
1828 return sum;
1829 }
1830
1831 unsigned long long nr_context_switches(void)
1832 {
1833 int i;
1834 unsigned long long sum = 0;
1835
1836 for_each_possible_cpu(i)
1837 sum += cpu_rq(i)->nr_switches;
1838
1839 return sum;
1840 }
1841
1842 unsigned long nr_iowait(void)
1843 {
1844 unsigned long i, sum = 0;
1845
1846 for_each_possible_cpu(i)
1847 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1848
1849 return sum;
1850 }
1851
1852 unsigned long nr_active(void)
1853 {
1854 unsigned long i, running = 0, uninterruptible = 0;
1855
1856 for_each_online_cpu(i) {
1857 running += cpu_rq(i)->nr_running;
1858 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1859 }
1860
1861 if (unlikely((long)uninterruptible < 0))
1862 uninterruptible = 0;
1863
1864 return running + uninterruptible;
1865 }
1866
1867 #ifdef CONFIG_SMP
1868
1869 /*
1870 * double_rq_lock - safely lock two runqueues
1871 *
1872 * Note this does not disable interrupts like task_rq_lock,
1873 * you need to do so manually before calling.
1874 */
1875 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1876 __acquires(rq1->lock)
1877 __acquires(rq2->lock)
1878 {
1879 if (rq1 == rq2) {
1880 spin_lock(&rq1->lock);
1881 __acquire(rq2->lock); /* Fake it out ;) */
1882 } else {
1883 if (rq1 < rq2) {
1884 spin_lock(&rq1->lock);
1885 spin_lock(&rq2->lock);
1886 } else {
1887 spin_lock(&rq2->lock);
1888 spin_lock(&rq1->lock);
1889 }
1890 }
1891 }
1892
1893 /*
1894 * double_rq_unlock - safely unlock two runqueues
1895 *
1896 * Note this does not restore interrupts like task_rq_unlock,
1897 * you need to do so manually after calling.
1898 */
1899 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1900 __releases(rq1->lock)
1901 __releases(rq2->lock)
1902 {
1903 spin_unlock(&rq1->lock);
1904 if (rq1 != rq2)
1905 spin_unlock(&rq2->lock);
1906 else
1907 __release(rq2->lock);
1908 }
1909
1910 /*
1911 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1912 */
1913 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1914 __releases(this_rq->lock)
1915 __acquires(busiest->lock)
1916 __acquires(this_rq->lock)
1917 {
1918 if (unlikely(!spin_trylock(&busiest->lock))) {
1919 if (busiest < this_rq) {
1920 spin_unlock(&this_rq->lock);
1921 spin_lock(&busiest->lock);
1922 spin_lock(&this_rq->lock);
1923 } else
1924 spin_lock(&busiest->lock);
1925 }
1926 }
1927
1928 /*
1929 * If dest_cpu is allowed for this process, migrate the task to it.
1930 * This is accomplished by forcing the cpu_allowed mask to only
1931 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1932 * the cpu_allowed mask is restored.
1933 */
1934 static void sched_migrate_task(task_t *p, int dest_cpu)
1935 {
1936 migration_req_t req;
1937 runqueue_t *rq;
1938 unsigned long flags;
1939
1940 rq = task_rq_lock(p, &flags);
1941 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1942 || unlikely(cpu_is_offline(dest_cpu)))
1943 goto out;
1944
1945 /* force the process onto the specified CPU */
1946 if (migrate_task(p, dest_cpu, &req)) {
1947 /* Need to wait for migration thread (might exit: take ref). */
1948 struct task_struct *mt = rq->migration_thread;
1949 get_task_struct(mt);
1950 task_rq_unlock(rq, &flags);
1951 wake_up_process(mt);
1952 put_task_struct(mt);
1953 wait_for_completion(&req.done);
1954 return;
1955 }
1956 out:
1957 task_rq_unlock(rq, &flags);
1958 }
1959
1960 /*
1961 * sched_exec - execve() is a valuable balancing opportunity, because at
1962 * this point the task has the smallest effective memory and cache footprint.
1963 */
1964 void sched_exec(void)
1965 {
1966 int new_cpu, this_cpu = get_cpu();
1967 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1968 put_cpu();
1969 if (new_cpu != this_cpu)
1970 sched_migrate_task(current, new_cpu);
1971 }
1972
1973 /*
1974 * pull_task - move a task from a remote runqueue to the local runqueue.
1975 * Both runqueues must be locked.
1976 */
1977 static
1978 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1979 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1980 {
1981 dequeue_task(p, src_array);
1982 dec_nr_running(p, src_rq);
1983 set_task_cpu(p, this_cpu);
1984 inc_nr_running(p, this_rq);
1985 enqueue_task(p, this_array);
1986 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1987 + this_rq->timestamp_last_tick;
1988 /*
1989 * Note that idle threads have a prio of MAX_PRIO, for this test
1990 * to be always true for them.
1991 */
1992 if (TASK_PREEMPTS_CURR(p, this_rq))
1993 resched_task(this_rq->curr);
1994 }
1995
1996 /*
1997 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1998 */
1999 static
2000 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
2001 struct sched_domain *sd, enum idle_type idle,
2002 int *all_pinned)
2003 {
2004 /*
2005 * We do not migrate tasks that are:
2006 * 1) running (obviously), or
2007 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2008 * 3) are cache-hot on their current CPU.
2009 */
2010 if (!cpu_isset(this_cpu, p->cpus_allowed))
2011 return 0;
2012 *all_pinned = 0;
2013
2014 if (task_running(rq, p))
2015 return 0;
2016
2017 /*
2018 * Aggressive migration if:
2019 * 1) task is cache cold, or
2020 * 2) too many balance attempts have failed.
2021 */
2022
2023 if (sd->nr_balance_failed > sd->cache_nice_tries)
2024 return 1;
2025
2026 if (task_hot(p, rq->timestamp_last_tick, sd))
2027 return 0;
2028 return 1;
2029 }
2030
2031 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2032 /*
2033 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2034 * load from busiest to this_rq, as part of a balancing operation within
2035 * "domain". Returns the number of tasks moved.
2036 *
2037 * Called with both runqueues locked.
2038 */
2039 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2040 unsigned long max_nr_move, unsigned long max_load_move,
2041 struct sched_domain *sd, enum idle_type idle,
2042 int *all_pinned)
2043 {
2044 prio_array_t *array, *dst_array;
2045 struct list_head *head, *curr;
2046 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2047 int busiest_best_prio_seen;
2048 int skip_for_load; /* skip the task based on weighted load issues */
2049 long rem_load_move;
2050 task_t *tmp;
2051
2052 if (max_nr_move == 0 || max_load_move == 0)
2053 goto out;
2054
2055 rem_load_move = max_load_move;
2056 pinned = 1;
2057 this_best_prio = rq_best_prio(this_rq);
2058 busiest_best_prio = rq_best_prio(busiest);
2059 /*
2060 * Enable handling of the case where there is more than one task
2061 * with the best priority. If the current running task is one
2062 * of those with prio==busiest_best_prio we know it won't be moved
2063 * and therefore it's safe to override the skip (based on load) of
2064 * any task we find with that prio.
2065 */
2066 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
2067
2068 /*
2069 * We first consider expired tasks. Those will likely not be
2070 * executed in the near future, and they are most likely to
2071 * be cache-cold, thus switching CPUs has the least effect
2072 * on them.
2073 */
2074 if (busiest->expired->nr_active) {
2075 array = busiest->expired;
2076 dst_array = this_rq->expired;
2077 } else {
2078 array = busiest->active;
2079 dst_array = this_rq->active;
2080 }
2081
2082 new_array:
2083 /* Start searching at priority 0: */
2084 idx = 0;
2085 skip_bitmap:
2086 if (!idx)
2087 idx = sched_find_first_bit(array->bitmap);
2088 else
2089 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2090 if (idx >= MAX_PRIO) {
2091 if (array == busiest->expired && busiest->active->nr_active) {
2092 array = busiest->active;
2093 dst_array = this_rq->active;
2094 goto new_array;
2095 }
2096 goto out;
2097 }
2098
2099 head = array->queue + idx;
2100 curr = head->prev;
2101 skip_queue:
2102 tmp = list_entry(curr, task_t, run_list);
2103
2104 curr = curr->prev;
2105
2106 /*
2107 * To help distribute high priority tasks accross CPUs we don't
2108 * skip a task if it will be the highest priority task (i.e. smallest
2109 * prio value) on its new queue regardless of its load weight
2110 */
2111 skip_for_load = tmp->load_weight > rem_load_move;
2112 if (skip_for_load && idx < this_best_prio)
2113 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2114 if (skip_for_load ||
2115 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2116 busiest_best_prio_seen |= idx == busiest_best_prio;
2117 if (curr != head)
2118 goto skip_queue;
2119 idx++;
2120 goto skip_bitmap;
2121 }
2122
2123 #ifdef CONFIG_SCHEDSTATS
2124 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2125 schedstat_inc(sd, lb_hot_gained[idle]);
2126 #endif
2127
2128 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2129 pulled++;
2130 rem_load_move -= tmp->load_weight;
2131
2132 /*
2133 * We only want to steal up to the prescribed number of tasks
2134 * and the prescribed amount of weighted load.
2135 */
2136 if (pulled < max_nr_move && rem_load_move > 0) {
2137 if (idx < this_best_prio)
2138 this_best_prio = idx;
2139 if (curr != head)
2140 goto skip_queue;
2141 idx++;
2142 goto skip_bitmap;
2143 }
2144 out:
2145 /*
2146 * Right now, this is the only place pull_task() is called,
2147 * so we can safely collect pull_task() stats here rather than
2148 * inside pull_task().
2149 */
2150 schedstat_add(sd, lb_gained[idle], pulled);
2151
2152 if (all_pinned)
2153 *all_pinned = pinned;
2154 return pulled;
2155 }
2156
2157 /*
2158 * find_busiest_group finds and returns the busiest CPU group within the
2159 * domain. It calculates and returns the amount of weighted load which should be
2160 * moved to restore balance via the imbalance parameter.
2161 */
2162 static struct sched_group *
2163 find_busiest_group(struct sched_domain *sd, int this_cpu,
2164 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2165 {
2166 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2168 unsigned long max_pull;
2169 unsigned long busiest_load_per_task, busiest_nr_running;
2170 unsigned long this_load_per_task, this_nr_running;
2171 int load_idx;
2172 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2173 int power_savings_balance = 1;
2174 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2175 unsigned long min_nr_running = ULONG_MAX;
2176 struct sched_group *group_min = NULL, *group_leader = NULL;
2177 #endif
2178
2179 max_load = this_load = total_load = total_pwr = 0;
2180 busiest_load_per_task = busiest_nr_running = 0;
2181 this_load_per_task = this_nr_running = 0;
2182 if (idle == NOT_IDLE)
2183 load_idx = sd->busy_idx;
2184 else if (idle == NEWLY_IDLE)
2185 load_idx = sd->newidle_idx;
2186 else
2187 load_idx = sd->idle_idx;
2188
2189 do {
2190 unsigned long load, group_capacity;
2191 int local_group;
2192 int i;
2193 unsigned long sum_nr_running, sum_weighted_load;
2194
2195 local_group = cpu_isset(this_cpu, group->cpumask);
2196
2197 /* Tally up the load of all CPUs in the group */
2198 sum_weighted_load = sum_nr_running = avg_load = 0;
2199
2200 for_each_cpu_mask(i, group->cpumask) {
2201 runqueue_t *rq = cpu_rq(i);
2202
2203 if (*sd_idle && !idle_cpu(i))
2204 *sd_idle = 0;
2205
2206 /* Bias balancing toward cpus of our domain */
2207 if (local_group)
2208 load = target_load(i, load_idx);
2209 else
2210 load = source_load(i, load_idx);
2211
2212 avg_load += load;
2213 sum_nr_running += rq->nr_running;
2214 sum_weighted_load += rq->raw_weighted_load;
2215 }
2216
2217 total_load += avg_load;
2218 total_pwr += group->cpu_power;
2219
2220 /* Adjust by relative CPU power of the group */
2221 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2222
2223 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2224
2225 if (local_group) {
2226 this_load = avg_load;
2227 this = group;
2228 this_nr_running = sum_nr_running;
2229 this_load_per_task = sum_weighted_load;
2230 } else if (avg_load > max_load &&
2231 sum_nr_running > group_capacity) {
2232 max_load = avg_load;
2233 busiest = group;
2234 busiest_nr_running = sum_nr_running;
2235 busiest_load_per_task = sum_weighted_load;
2236 }
2237
2238 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2239 /*
2240 * Busy processors will not participate in power savings
2241 * balance.
2242 */
2243 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2244 goto group_next;
2245
2246 /*
2247 * If the local group is idle or completely loaded
2248 * no need to do power savings balance at this domain
2249 */
2250 if (local_group && (this_nr_running >= group_capacity ||
2251 !this_nr_running))
2252 power_savings_balance = 0;
2253
2254 /*
2255 * If a group is already running at full capacity or idle,
2256 * don't include that group in power savings calculations
2257 */
2258 if (!power_savings_balance || sum_nr_running >= group_capacity
2259 || !sum_nr_running)
2260 goto group_next;
2261
2262 /*
2263 * Calculate the group which has the least non-idle load.
2264 * This is the group from where we need to pick up the load
2265 * for saving power
2266 */
2267 if ((sum_nr_running < min_nr_running) ||
2268 (sum_nr_running == min_nr_running &&
2269 first_cpu(group->cpumask) <
2270 first_cpu(group_min->cpumask))) {
2271 group_min = group;
2272 min_nr_running = sum_nr_running;
2273 min_load_per_task = sum_weighted_load /
2274 sum_nr_running;
2275 }
2276
2277 /*
2278 * Calculate the group which is almost near its
2279 * capacity but still has some space to pick up some load
2280 * from other group and save more power
2281 */
2282 if (sum_nr_running <= group_capacity - 1)
2283 if (sum_nr_running > leader_nr_running ||
2284 (sum_nr_running == leader_nr_running &&
2285 first_cpu(group->cpumask) >
2286 first_cpu(group_leader->cpumask))) {
2287 group_leader = group;
2288 leader_nr_running = sum_nr_running;
2289 }
2290
2291 group_next:
2292 #endif
2293 group = group->next;
2294 } while (group != sd->groups);
2295
2296 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2297 goto out_balanced;
2298
2299 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2300
2301 if (this_load >= avg_load ||
2302 100*max_load <= sd->imbalance_pct*this_load)
2303 goto out_balanced;
2304
2305 busiest_load_per_task /= busiest_nr_running;
2306 /*
2307 * We're trying to get all the cpus to the average_load, so we don't
2308 * want to push ourselves above the average load, nor do we wish to
2309 * reduce the max loaded cpu below the average load, as either of these
2310 * actions would just result in more rebalancing later, and ping-pong
2311 * tasks around. Thus we look for the minimum possible imbalance.
2312 * Negative imbalances (*we* are more loaded than anyone else) will
2313 * be counted as no imbalance for these purposes -- we can't fix that
2314 * by pulling tasks to us. Be careful of negative numbers as they'll
2315 * appear as very large values with unsigned longs.
2316 */
2317 if (max_load <= busiest_load_per_task)
2318 goto out_balanced;
2319
2320 /*
2321 * In the presence of smp nice balancing, certain scenarios can have
2322 * max load less than avg load(as we skip the groups at or below
2323 * its cpu_power, while calculating max_load..)
2324 */
2325 if (max_load < avg_load) {
2326 *imbalance = 0;
2327 goto small_imbalance;
2328 }
2329
2330 /* Don't want to pull so many tasks that a group would go idle */
2331 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2332
2333 /* How much load to actually move to equalise the imbalance */
2334 *imbalance = min(max_pull * busiest->cpu_power,
2335 (avg_load - this_load) * this->cpu_power)
2336 / SCHED_LOAD_SCALE;
2337
2338 /*
2339 * if *imbalance is less than the average load per runnable task
2340 * there is no gaurantee that any tasks will be moved so we'll have
2341 * a think about bumping its value to force at least one task to be
2342 * moved
2343 */
2344 if (*imbalance < busiest_load_per_task) {
2345 unsigned long pwr_now, pwr_move;
2346 unsigned long tmp;
2347 unsigned int imbn;
2348
2349 small_imbalance:
2350 pwr_move = pwr_now = 0;
2351 imbn = 2;
2352 if (this_nr_running) {
2353 this_load_per_task /= this_nr_running;
2354 if (busiest_load_per_task > this_load_per_task)
2355 imbn = 1;
2356 } else
2357 this_load_per_task = SCHED_LOAD_SCALE;
2358
2359 if (max_load - this_load >= busiest_load_per_task * imbn) {
2360 *imbalance = busiest_load_per_task;
2361 return busiest;
2362 }
2363
2364 /*
2365 * OK, we don't have enough imbalance to justify moving tasks,
2366 * however we may be able to increase total CPU power used by
2367 * moving them.
2368 */
2369
2370 pwr_now += busiest->cpu_power *
2371 min(busiest_load_per_task, max_load);
2372 pwr_now += this->cpu_power *
2373 min(this_load_per_task, this_load);
2374 pwr_now /= SCHED_LOAD_SCALE;
2375
2376 /* Amount of load we'd subtract */
2377 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2378 if (max_load > tmp)
2379 pwr_move += busiest->cpu_power *
2380 min(busiest_load_per_task, max_load - tmp);
2381
2382 /* Amount of load we'd add */
2383 if (max_load*busiest->cpu_power <
2384 busiest_load_per_task*SCHED_LOAD_SCALE)
2385 tmp = max_load*busiest->cpu_power/this->cpu_power;
2386 else
2387 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2388 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2389 pwr_move /= SCHED_LOAD_SCALE;
2390
2391 /* Move if we gain throughput */
2392 if (pwr_move <= pwr_now)
2393 goto out_balanced;
2394
2395 *imbalance = busiest_load_per_task;
2396 }
2397
2398 return busiest;
2399
2400 out_balanced:
2401 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2402 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2403 goto ret;
2404
2405 if (this == group_leader && group_leader != group_min) {
2406 *imbalance = min_load_per_task;
2407 return group_min;
2408 }
2409 ret:
2410 #endif
2411 *imbalance = 0;
2412 return NULL;
2413 }
2414
2415 /*
2416 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2417 */
2418 static runqueue_t *find_busiest_queue(struct sched_group *group,
2419 enum idle_type idle, unsigned long imbalance)
2420 {
2421 unsigned long max_load = 0;
2422 runqueue_t *busiest = NULL, *rqi;
2423 int i;
2424
2425 for_each_cpu_mask(i, group->cpumask) {
2426 rqi = cpu_rq(i);
2427
2428 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2429 continue;
2430
2431 if (rqi->raw_weighted_load > max_load) {
2432 max_load = rqi->raw_weighted_load;
2433 busiest = rqi;
2434 }
2435 }
2436
2437 return busiest;
2438 }
2439
2440 /*
2441 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2442 * so long as it is large enough.
2443 */
2444 #define MAX_PINNED_INTERVAL 512
2445
2446 #define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
2447 /*
2448 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2449 * tasks if there is an imbalance.
2450 *
2451 * Called with this_rq unlocked.
2452 */
2453 static int load_balance(int this_cpu, runqueue_t *this_rq,
2454 struct sched_domain *sd, enum idle_type idle)
2455 {
2456 struct sched_group *group;
2457 runqueue_t *busiest;
2458 unsigned long imbalance;
2459 int nr_moved, all_pinned = 0;
2460 int active_balance = 0;
2461 int sd_idle = 0;
2462
2463 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2464 !sched_smt_power_savings)
2465 sd_idle = 1;
2466
2467 schedstat_inc(sd, lb_cnt[idle]);
2468
2469 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2470 if (!group) {
2471 schedstat_inc(sd, lb_nobusyg[idle]);
2472 goto out_balanced;
2473 }
2474
2475 busiest = find_busiest_queue(group, idle, imbalance);
2476 if (!busiest) {
2477 schedstat_inc(sd, lb_nobusyq[idle]);
2478 goto out_balanced;
2479 }
2480
2481 BUG_ON(busiest == this_rq);
2482
2483 schedstat_add(sd, lb_imbalance[idle], imbalance);
2484
2485 nr_moved = 0;
2486 if (busiest->nr_running > 1) {
2487 /*
2488 * Attempt to move tasks. If find_busiest_group has found
2489 * an imbalance but busiest->nr_running <= 1, the group is
2490 * still unbalanced. nr_moved simply stays zero, so it is
2491 * correctly treated as an imbalance.
2492 */
2493 double_rq_lock(this_rq, busiest);
2494 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2495 minus_1_or_zero(busiest->nr_running),
2496 imbalance, sd, idle, &all_pinned);
2497 double_rq_unlock(this_rq, busiest);
2498
2499 /* All tasks on this runqueue were pinned by CPU affinity */
2500 if (unlikely(all_pinned))
2501 goto out_balanced;
2502 }
2503
2504 if (!nr_moved) {
2505 schedstat_inc(sd, lb_failed[idle]);
2506 sd->nr_balance_failed++;
2507
2508 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2509
2510 spin_lock(&busiest->lock);
2511
2512 /* don't kick the migration_thread, if the curr
2513 * task on busiest cpu can't be moved to this_cpu
2514 */
2515 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2516 spin_unlock(&busiest->lock);
2517 all_pinned = 1;
2518 goto out_one_pinned;
2519 }
2520
2521 if (!busiest->active_balance) {
2522 busiest->active_balance = 1;
2523 busiest->push_cpu = this_cpu;
2524 active_balance = 1;
2525 }
2526 spin_unlock(&busiest->lock);
2527 if (active_balance)
2528 wake_up_process(busiest->migration_thread);
2529
2530 /*
2531 * We've kicked active balancing, reset the failure
2532 * counter.
2533 */
2534 sd->nr_balance_failed = sd->cache_nice_tries+1;
2535 }
2536 } else
2537 sd->nr_balance_failed = 0;
2538
2539 if (likely(!active_balance)) {
2540 /* We were unbalanced, so reset the balancing interval */
2541 sd->balance_interval = sd->min_interval;
2542 } else {
2543 /*
2544 * If we've begun active balancing, start to back off. This
2545 * case may not be covered by the all_pinned logic if there
2546 * is only 1 task on the busy runqueue (because we don't call
2547 * move_tasks).
2548 */
2549 if (sd->balance_interval < sd->max_interval)
2550 sd->balance_interval *= 2;
2551 }
2552
2553 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2554 !sched_smt_power_savings)
2555 return -1;
2556 return nr_moved;
2557
2558 out_balanced:
2559 schedstat_inc(sd, lb_balanced[idle]);
2560
2561 sd->nr_balance_failed = 0;
2562
2563 out_one_pinned:
2564 /* tune up the balancing interval */
2565 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2566 (sd->balance_interval < sd->max_interval))
2567 sd->balance_interval *= 2;
2568
2569 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2570 return -1;
2571 return 0;
2572 }
2573
2574 /*
2575 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2576 * tasks if there is an imbalance.
2577 *
2578 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2579 * this_rq is locked.
2580 */
2581 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2582 struct sched_domain *sd)
2583 {
2584 struct sched_group *group;
2585 runqueue_t *busiest = NULL;
2586 unsigned long imbalance;
2587 int nr_moved = 0;
2588 int sd_idle = 0;
2589
2590 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2591 sd_idle = 1;
2592
2593 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2594 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2595 if (!group) {
2596 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2597 goto out_balanced;
2598 }
2599
2600 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2601 if (!busiest) {
2602 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2603 goto out_balanced;
2604 }
2605
2606 BUG_ON(busiest == this_rq);
2607
2608 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2609
2610 nr_moved = 0;
2611 if (busiest->nr_running > 1) {
2612 /* Attempt to move tasks */
2613 double_lock_balance(this_rq, busiest);
2614 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2615 minus_1_or_zero(busiest->nr_running),
2616 imbalance, sd, NEWLY_IDLE, NULL);
2617 spin_unlock(&busiest->lock);
2618 }
2619
2620 if (!nr_moved) {
2621 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2622 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2623 return -1;
2624 } else
2625 sd->nr_balance_failed = 0;
2626
2627 return nr_moved;
2628
2629 out_balanced:
2630 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2631 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2632 return -1;
2633 sd->nr_balance_failed = 0;
2634 return 0;
2635 }
2636
2637 /*
2638 * idle_balance is called by schedule() if this_cpu is about to become
2639 * idle. Attempts to pull tasks from other CPUs.
2640 */
2641 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2642 {
2643 struct sched_domain *sd;
2644
2645 for_each_domain(this_cpu, sd) {
2646 if (sd->flags & SD_BALANCE_NEWIDLE) {
2647 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2648 /* We've pulled tasks over so stop searching */
2649 break;
2650 }
2651 }
2652 }
2653 }
2654
2655 /*
2656 * active_load_balance is run by migration threads. It pushes running tasks
2657 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2658 * running on each physical CPU where possible, and avoids physical /
2659 * logical imbalances.
2660 *
2661 * Called with busiest_rq locked.
2662 */
2663 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2664 {
2665 struct sched_domain *sd;
2666 runqueue_t *target_rq;
2667 int target_cpu = busiest_rq->push_cpu;
2668
2669 if (busiest_rq->nr_running <= 1)
2670 /* no task to move */
2671 return;
2672
2673 target_rq = cpu_rq(target_cpu);
2674
2675 /*
2676 * This condition is "impossible", if it occurs
2677 * we need to fix it. Originally reported by
2678 * Bjorn Helgaas on a 128-cpu setup.
2679 */
2680 BUG_ON(busiest_rq == target_rq);
2681
2682 /* move a task from busiest_rq to target_rq */
2683 double_lock_balance(busiest_rq, target_rq);
2684
2685 /* Search for an sd spanning us and the target CPU. */
2686 for_each_domain(target_cpu, sd) {
2687 if ((sd->flags & SD_LOAD_BALANCE) &&
2688 cpu_isset(busiest_cpu, sd->span))
2689 break;
2690 }
2691
2692 if (unlikely(sd == NULL))
2693 goto out;
2694
2695 schedstat_inc(sd, alb_cnt);
2696
2697 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2698 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
2699 schedstat_inc(sd, alb_pushed);
2700 else
2701 schedstat_inc(sd, alb_failed);
2702 out:
2703 spin_unlock(&target_rq->lock);
2704 }
2705
2706 /*
2707 * rebalance_tick will get called every timer tick, on every CPU.
2708 *
2709 * It checks each scheduling domain to see if it is due to be balanced,
2710 * and initiates a balancing operation if so.
2711 *
2712 * Balancing parameters are set up in arch_init_sched_domains.
2713 */
2714
2715 /* Don't have all balancing operations going off at once */
2716 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2717
2718 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2719 enum idle_type idle)
2720 {
2721 unsigned long old_load, this_load;
2722 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2723 struct sched_domain *sd;
2724 int i;
2725
2726 this_load = this_rq->raw_weighted_load;
2727 /* Update our load */
2728 for (i = 0; i < 3; i++) {
2729 unsigned long new_load = this_load;
2730 int scale = 1 << i;
2731 old_load = this_rq->cpu_load[i];
2732 /*
2733 * Round up the averaging division if load is increasing. This
2734 * prevents us from getting stuck on 9 if the load is 10, for
2735 * example.
2736 */
2737 if (new_load > old_load)
2738 new_load += scale-1;
2739 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2740 }
2741
2742 for_each_domain(this_cpu, sd) {
2743 unsigned long interval;
2744
2745 if (!(sd->flags & SD_LOAD_BALANCE))
2746 continue;
2747
2748 interval = sd->balance_interval;
2749 if (idle != SCHED_IDLE)
2750 interval *= sd->busy_factor;
2751
2752 /* scale ms to jiffies */
2753 interval = msecs_to_jiffies(interval);
2754 if (unlikely(!interval))
2755 interval = 1;
2756
2757 if (j - sd->last_balance >= interval) {
2758 if (load_balance(this_cpu, this_rq, sd, idle)) {
2759 /*
2760 * We've pulled tasks over so either we're no
2761 * longer idle, or one of our SMT siblings is
2762 * not idle.
2763 */
2764 idle = NOT_IDLE;
2765 }
2766 sd->last_balance += interval;
2767 }
2768 }
2769 }
2770 #else
2771 /*
2772 * on UP we do not need to balance between CPUs:
2773 */
2774 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2775 {
2776 }
2777 static inline void idle_balance(int cpu, runqueue_t *rq)
2778 {
2779 }
2780 #endif
2781
2782 static inline int wake_priority_sleeper(runqueue_t *rq)
2783 {
2784 int ret = 0;
2785 #ifdef CONFIG_SCHED_SMT
2786 spin_lock(&rq->lock);
2787 /*
2788 * If an SMT sibling task has been put to sleep for priority
2789 * reasons reschedule the idle task to see if it can now run.
2790 */
2791 if (rq->nr_running) {
2792 resched_task(rq->idle);
2793 ret = 1;
2794 }
2795 spin_unlock(&rq->lock);
2796 #endif
2797 return ret;
2798 }
2799
2800 DEFINE_PER_CPU(struct kernel_stat, kstat);
2801
2802 EXPORT_PER_CPU_SYMBOL(kstat);
2803
2804 /*
2805 * This is called on clock ticks and on context switches.
2806 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2807 */
2808 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2809 unsigned long long now)
2810 {
2811 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2812 p->sched_time += now - last;
2813 }
2814
2815 /*
2816 * Return current->sched_time plus any more ns on the sched_clock
2817 * that have not yet been banked.
2818 */
2819 unsigned long long current_sched_time(const task_t *tsk)
2820 {
2821 unsigned long long ns;
2822 unsigned long flags;
2823 local_irq_save(flags);
2824 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2825 ns = tsk->sched_time + (sched_clock() - ns);
2826 local_irq_restore(flags);
2827 return ns;
2828 }
2829
2830 /*
2831 * We place interactive tasks back into the active array, if possible.
2832 *
2833 * To guarantee that this does not starve expired tasks we ignore the
2834 * interactivity of a task if the first expired task had to wait more
2835 * than a 'reasonable' amount of time. This deadline timeout is
2836 * load-dependent, as the frequency of array switched decreases with
2837 * increasing number of running tasks. We also ignore the interactivity
2838 * if a better static_prio task has expired:
2839 */
2840 #define EXPIRED_STARVING(rq) \
2841 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2842 (jiffies - (rq)->expired_timestamp >= \
2843 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2844 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2845
2846 /*
2847 * Account user cpu time to a process.
2848 * @p: the process that the cpu time gets accounted to
2849 * @hardirq_offset: the offset to subtract from hardirq_count()
2850 * @cputime: the cpu time spent in user space since the last update
2851 */
2852 void account_user_time(struct task_struct *p, cputime_t cputime)
2853 {
2854 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2855 cputime64_t tmp;
2856
2857 p->utime = cputime_add(p->utime, cputime);
2858
2859 /* Add user time to cpustat. */
2860 tmp = cputime_to_cputime64(cputime);
2861 if (TASK_NICE(p) > 0)
2862 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2863 else
2864 cpustat->user = cputime64_add(cpustat->user, tmp);
2865 }
2866
2867 /*
2868 * Account system cpu time to a process.
2869 * @p: the process that the cpu time gets accounted to
2870 * @hardirq_offset: the offset to subtract from hardirq_count()
2871 * @cputime: the cpu time spent in kernel space since the last update
2872 */
2873 void account_system_time(struct task_struct *p, int hardirq_offset,
2874 cputime_t cputime)
2875 {
2876 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2877 runqueue_t *rq = this_rq();
2878 cputime64_t tmp;
2879
2880 p->stime = cputime_add(p->stime, cputime);
2881
2882 /* Add system time to cpustat. */
2883 tmp = cputime_to_cputime64(cputime);
2884 if (hardirq_count() - hardirq_offset)
2885 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2886 else if (softirq_count())
2887 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2888 else if (p != rq->idle)
2889 cpustat->system = cputime64_add(cpustat->system, tmp);
2890 else if (atomic_read(&rq->nr_iowait) > 0)
2891 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2892 else
2893 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2894 /* Account for system time used */
2895 acct_update_integrals(p);
2896 }
2897
2898 /*
2899 * Account for involuntary wait time.
2900 * @p: the process from which the cpu time has been stolen
2901 * @steal: the cpu time spent in involuntary wait
2902 */
2903 void account_steal_time(struct task_struct *p, cputime_t steal)
2904 {
2905 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2906 cputime64_t tmp = cputime_to_cputime64(steal);
2907 runqueue_t *rq = this_rq();
2908
2909 if (p == rq->idle) {
2910 p->stime = cputime_add(p->stime, steal);
2911 if (atomic_read(&rq->nr_iowait) > 0)
2912 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2913 else
2914 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2915 } else
2916 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2917 }
2918
2919 /*
2920 * This function gets called by the timer code, with HZ frequency.
2921 * We call it with interrupts disabled.
2922 *
2923 * It also gets called by the fork code, when changing the parent's
2924 * timeslices.
2925 */
2926 void scheduler_tick(void)
2927 {
2928 int cpu = smp_processor_id();
2929 runqueue_t *rq = this_rq();
2930 task_t *p = current;
2931 unsigned long long now = sched_clock();
2932
2933 update_cpu_clock(p, rq, now);
2934
2935 rq->timestamp_last_tick = now;
2936
2937 if (p == rq->idle) {
2938 if (wake_priority_sleeper(rq))
2939 goto out;
2940 rebalance_tick(cpu, rq, SCHED_IDLE);
2941 return;
2942 }
2943
2944 /* Task might have expired already, but not scheduled off yet */
2945 if (p->array != rq->active) {
2946 set_tsk_need_resched(p);
2947 goto out;
2948 }
2949 spin_lock(&rq->lock);
2950 /*
2951 * The task was running during this tick - update the
2952 * time slice counter. Note: we do not update a thread's
2953 * priority until it either goes to sleep or uses up its
2954 * timeslice. This makes it possible for interactive tasks
2955 * to use up their timeslices at their highest priority levels.
2956 */
2957 if (rt_task(p)) {
2958 /*
2959 * RR tasks need a special form of timeslice management.
2960 * FIFO tasks have no timeslices.
2961 */
2962 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2963 p->time_slice = task_timeslice(p);
2964 p->first_time_slice = 0;
2965 set_tsk_need_resched(p);
2966
2967 /* put it at the end of the queue: */
2968 requeue_task(p, rq->active);
2969 }
2970 goto out_unlock;
2971 }
2972 if (!--p->time_slice) {
2973 dequeue_task(p, rq->active);
2974 set_tsk_need_resched(p);
2975 p->prio = effective_prio(p);
2976 p->time_slice = task_timeslice(p);
2977 p->first_time_slice = 0;
2978
2979 if (!rq->expired_timestamp)
2980 rq->expired_timestamp = jiffies;
2981 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2982 enqueue_task(p, rq->expired);
2983 if (p->static_prio < rq->best_expired_prio)
2984 rq->best_expired_prio = p->static_prio;
2985 } else
2986 enqueue_task(p, rq->active);
2987 } else {
2988 /*
2989 * Prevent a too long timeslice allowing a task to monopolize
2990 * the CPU. We do this by splitting up the timeslice into
2991 * smaller pieces.
2992 *
2993 * Note: this does not mean the task's timeslices expire or
2994 * get lost in any way, they just might be preempted by
2995 * another task of equal priority. (one with higher
2996 * priority would have preempted this task already.) We
2997 * requeue this task to the end of the list on this priority
2998 * level, which is in essence a round-robin of tasks with
2999 * equal priority.
3000 *
3001 * This only applies to tasks in the interactive
3002 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3003 */
3004 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3005 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3006 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3007 (p->array == rq->active)) {
3008
3009 requeue_task(p, rq->active);
3010 set_tsk_need_resched(p);
3011 }
3012 }
3013 out_unlock:
3014 spin_unlock(&rq->lock);
3015 out:
3016 rebalance_tick(cpu, rq, NOT_IDLE);
3017 }
3018
3019 #ifdef CONFIG_SCHED_SMT
3020 static inline void wakeup_busy_runqueue(runqueue_t *rq)
3021 {
3022 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3023 if (rq->curr == rq->idle && rq->nr_running)
3024 resched_task(rq->idle);
3025 }
3026
3027 /*
3028 * Called with interrupt disabled and this_rq's runqueue locked.
3029 */
3030 static void wake_sleeping_dependent(int this_cpu)
3031 {
3032 struct sched_domain *tmp, *sd = NULL;
3033 int i;
3034
3035 for_each_domain(this_cpu, tmp) {
3036 if (tmp->flags & SD_SHARE_CPUPOWER) {
3037 sd = tmp;
3038 break;
3039 }
3040 }
3041
3042 if (!sd)
3043 return;
3044
3045 for_each_cpu_mask(i, sd->span) {
3046 runqueue_t *smt_rq = cpu_rq(i);
3047
3048 if (i == this_cpu)
3049 continue;
3050 if (unlikely(!spin_trylock(&smt_rq->lock)))
3051 continue;
3052
3053 wakeup_busy_runqueue(smt_rq);
3054 spin_unlock(&smt_rq->lock);
3055 }
3056 }
3057
3058 /*
3059 * number of 'lost' timeslices this task wont be able to fully
3060 * utilize, if another task runs on a sibling. This models the
3061 * slowdown effect of other tasks running on siblings:
3062 */
3063 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
3064 {
3065 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3066 }
3067
3068 /*
3069 * To minimise lock contention and not have to drop this_rq's runlock we only
3070 * trylock the sibling runqueues and bypass those runqueues if we fail to
3071 * acquire their lock. As we only trylock the normal locking order does not
3072 * need to be obeyed.
3073 */
3074 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
3075 {
3076 struct sched_domain *tmp, *sd = NULL;
3077 int ret = 0, i;
3078
3079 /* kernel/rt threads do not participate in dependent sleeping */
3080 if (!p->mm || rt_task(p))
3081 return 0;
3082
3083 for_each_domain(this_cpu, tmp) {
3084 if (tmp->flags & SD_SHARE_CPUPOWER) {
3085 sd = tmp;
3086 break;
3087 }
3088 }
3089
3090 if (!sd)
3091 return 0;
3092
3093 for_each_cpu_mask(i, sd->span) {
3094 runqueue_t *smt_rq;
3095 task_t *smt_curr;
3096
3097 if (i == this_cpu)
3098 continue;
3099
3100 smt_rq = cpu_rq(i);
3101 if (unlikely(!spin_trylock(&smt_rq->lock)))
3102 continue;
3103
3104 smt_curr = smt_rq->curr;
3105
3106 if (!smt_curr->mm)
3107 goto unlock;
3108
3109 /*
3110 * If a user task with lower static priority than the
3111 * running task on the SMT sibling is trying to schedule,
3112 * delay it till there is proportionately less timeslice
3113 * left of the sibling task to prevent a lower priority
3114 * task from using an unfair proportion of the
3115 * physical cpu's resources. -ck
3116 */
3117 if (rt_task(smt_curr)) {
3118 /*
3119 * With real time tasks we run non-rt tasks only
3120 * per_cpu_gain% of the time.
3121 */
3122 if ((jiffies % DEF_TIMESLICE) >
3123 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3124 ret = 1;
3125 } else {
3126 if (smt_curr->static_prio < p->static_prio &&
3127 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3128 smt_slice(smt_curr, sd) > task_timeslice(p))
3129 ret = 1;
3130 }
3131 unlock:
3132 spin_unlock(&smt_rq->lock);
3133 }
3134 return ret;
3135 }
3136 #else
3137 static inline void wake_sleeping_dependent(int this_cpu)
3138 {
3139 }
3140
3141 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3142 task_t *p)
3143 {
3144 return 0;
3145 }
3146 #endif
3147
3148 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3149
3150 void fastcall add_preempt_count(int val)
3151 {
3152 /*
3153 * Underflow?
3154 */
3155 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3156 return;
3157 preempt_count() += val;
3158 /*
3159 * Spinlock count overflowing soon?
3160 */
3161 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3162 }
3163 EXPORT_SYMBOL(add_preempt_count);
3164
3165 void fastcall sub_preempt_count(int val)
3166 {
3167 /*
3168 * Underflow?
3169 */
3170 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3171 return;
3172 /*
3173 * Is the spinlock portion underflowing?
3174 */
3175 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3176 !(preempt_count() & PREEMPT_MASK)))
3177 return;
3178
3179 preempt_count() -= val;
3180 }
3181 EXPORT_SYMBOL(sub_preempt_count);
3182
3183 #endif
3184
3185 static inline int interactive_sleep(enum sleep_type sleep_type)
3186 {
3187 return (sleep_type == SLEEP_INTERACTIVE ||
3188 sleep_type == SLEEP_INTERRUPTED);
3189 }
3190
3191 /*
3192 * schedule() is the main scheduler function.
3193 */
3194 asmlinkage void __sched schedule(void)
3195 {
3196 long *switch_count;
3197 task_t *prev, *next;
3198 runqueue_t *rq;
3199 prio_array_t *array;
3200 struct list_head *queue;
3201 unsigned long long now;
3202 unsigned long run_time;
3203 int cpu, idx, new_prio;
3204
3205 /*
3206 * Test if we are atomic. Since do_exit() needs to call into
3207 * schedule() atomically, we ignore that path for now.
3208 * Otherwise, whine if we are scheduling when we should not be.
3209 */
3210 if (unlikely(in_atomic() && !current->exit_state)) {
3211 printk(KERN_ERR "BUG: scheduling while atomic: "
3212 "%s/0x%08x/%d\n",
3213 current->comm, preempt_count(), current->pid);
3214 dump_stack();
3215 }
3216 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3217
3218 need_resched:
3219 preempt_disable();
3220 prev = current;
3221 release_kernel_lock(prev);
3222 need_resched_nonpreemptible:
3223 rq = this_rq();
3224
3225 /*
3226 * The idle thread is not allowed to schedule!
3227 * Remove this check after it has been exercised a bit.
3228 */
3229 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3230 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3231 dump_stack();
3232 }
3233
3234 schedstat_inc(rq, sched_cnt);
3235 now = sched_clock();
3236 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3237 run_time = now - prev->timestamp;
3238 if (unlikely((long long)(now - prev->timestamp) < 0))
3239 run_time = 0;
3240 } else
3241 run_time = NS_MAX_SLEEP_AVG;
3242
3243 /*
3244 * Tasks charged proportionately less run_time at high sleep_avg to
3245 * delay them losing their interactive status
3246 */
3247 run_time /= (CURRENT_BONUS(prev) ? : 1);
3248
3249 spin_lock_irq(&rq->lock);
3250
3251 if (unlikely(prev->flags & PF_DEAD))
3252 prev->state = EXIT_DEAD;
3253
3254 switch_count = &prev->nivcsw;
3255 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3256 switch_count = &prev->nvcsw;
3257 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3258 unlikely(signal_pending(prev))))
3259 prev->state = TASK_RUNNING;
3260 else {
3261 if (prev->state == TASK_UNINTERRUPTIBLE)
3262 rq->nr_uninterruptible++;
3263 deactivate_task(prev, rq);
3264 }
3265 }
3266
3267 cpu = smp_processor_id();
3268 if (unlikely(!rq->nr_running)) {
3269 idle_balance(cpu, rq);
3270 if (!rq->nr_running) {
3271 next = rq->idle;
3272 rq->expired_timestamp = 0;
3273 wake_sleeping_dependent(cpu);
3274 goto switch_tasks;
3275 }
3276 }
3277
3278 array = rq->active;
3279 if (unlikely(!array->nr_active)) {
3280 /*
3281 * Switch the active and expired arrays.
3282 */
3283 schedstat_inc(rq, sched_switch);
3284 rq->active = rq->expired;
3285 rq->expired = array;
3286 array = rq->active;
3287 rq->expired_timestamp = 0;
3288 rq->best_expired_prio = MAX_PRIO;
3289 }
3290
3291 idx = sched_find_first_bit(array->bitmap);
3292 queue = array->queue + idx;
3293 next = list_entry(queue->next, task_t, run_list);
3294
3295 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3296 unsigned long long delta = now - next->timestamp;
3297 if (unlikely((long long)(now - next->timestamp) < 0))
3298 delta = 0;
3299
3300 if (next->sleep_type == SLEEP_INTERACTIVE)
3301 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3302
3303 array = next->array;
3304 new_prio = recalc_task_prio(next, next->timestamp + delta);
3305
3306 if (unlikely(next->prio != new_prio)) {
3307 dequeue_task(next, array);
3308 next->prio = new_prio;
3309 enqueue_task(next, array);
3310 }
3311 }
3312 next->sleep_type = SLEEP_NORMAL;
3313 if (dependent_sleeper(cpu, rq, next))
3314 next = rq->idle;
3315 switch_tasks:
3316 if (next == rq->idle)
3317 schedstat_inc(rq, sched_goidle);
3318 prefetch(next);
3319 prefetch_stack(next);
3320 clear_tsk_need_resched(prev);
3321 rcu_qsctr_inc(task_cpu(prev));
3322
3323 update_cpu_clock(prev, rq, now);
3324
3325 prev->sleep_avg -= run_time;
3326 if ((long)prev->sleep_avg <= 0)
3327 prev->sleep_avg = 0;
3328 prev->timestamp = prev->last_ran = now;
3329
3330 sched_info_switch(prev, next);
3331 if (likely(prev != next)) {
3332 next->timestamp = now;
3333 rq->nr_switches++;
3334 rq->curr = next;
3335 ++*switch_count;
3336
3337 prepare_task_switch(rq, next);
3338 prev = context_switch(rq, prev, next);
3339 barrier();
3340 /*
3341 * this_rq must be evaluated again because prev may have moved
3342 * CPUs since it called schedule(), thus the 'rq' on its stack
3343 * frame will be invalid.
3344 */
3345 finish_task_switch(this_rq(), prev);
3346 } else
3347 spin_unlock_irq(&rq->lock);
3348
3349 prev = current;
3350 if (unlikely(reacquire_kernel_lock(prev) < 0))
3351 goto need_resched_nonpreemptible;
3352 preempt_enable_no_resched();
3353 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3354 goto need_resched;
3355 }
3356
3357 EXPORT_SYMBOL(schedule);
3358
3359 #ifdef CONFIG_PREEMPT
3360 /*
3361 * this is is the entry point to schedule() from in-kernel preemption
3362 * off of preempt_enable. Kernel preemptions off return from interrupt
3363 * occur there and call schedule directly.
3364 */
3365 asmlinkage void __sched preempt_schedule(void)
3366 {
3367 struct thread_info *ti = current_thread_info();
3368 #ifdef CONFIG_PREEMPT_BKL
3369 struct task_struct *task = current;
3370 int saved_lock_depth;
3371 #endif
3372 /*
3373 * If there is a non-zero preempt_count or interrupts are disabled,
3374 * we do not want to preempt the current task. Just return..
3375 */
3376 if (unlikely(ti->preempt_count || irqs_disabled()))
3377 return;
3378
3379 need_resched:
3380 add_preempt_count(PREEMPT_ACTIVE);
3381 /*
3382 * We keep the big kernel semaphore locked, but we
3383 * clear ->lock_depth so that schedule() doesnt
3384 * auto-release the semaphore:
3385 */
3386 #ifdef CONFIG_PREEMPT_BKL
3387 saved_lock_depth = task->lock_depth;
3388 task->lock_depth = -1;
3389 #endif
3390 schedule();
3391 #ifdef CONFIG_PREEMPT_BKL
3392 task->lock_depth = saved_lock_depth;
3393 #endif
3394 sub_preempt_count(PREEMPT_ACTIVE);
3395
3396 /* we could miss a preemption opportunity between schedule and now */
3397 barrier();
3398 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3399 goto need_resched;
3400 }
3401
3402 EXPORT_SYMBOL(preempt_schedule);
3403
3404 /*
3405 * this is is the entry point to schedule() from kernel preemption
3406 * off of irq context.
3407 * Note, that this is called and return with irqs disabled. This will
3408 * protect us against recursive calling from irq.
3409 */
3410 asmlinkage void __sched preempt_schedule_irq(void)
3411 {
3412 struct thread_info *ti = current_thread_info();
3413 #ifdef CONFIG_PREEMPT_BKL
3414 struct task_struct *task = current;
3415 int saved_lock_depth;
3416 #endif
3417 /* Catch callers which need to be fixed*/
3418 BUG_ON(ti->preempt_count || !irqs_disabled());
3419
3420 need_resched:
3421 add_preempt_count(PREEMPT_ACTIVE);
3422 /*
3423 * We keep the big kernel semaphore locked, but we
3424 * clear ->lock_depth so that schedule() doesnt
3425 * auto-release the semaphore:
3426 */
3427 #ifdef CONFIG_PREEMPT_BKL
3428 saved_lock_depth = task->lock_depth;
3429 task->lock_depth = -1;
3430 #endif
3431 local_irq_enable();
3432 schedule();
3433 local_irq_disable();
3434 #ifdef CONFIG_PREEMPT_BKL
3435 task->lock_depth = saved_lock_depth;
3436 #endif
3437 sub_preempt_count(PREEMPT_ACTIVE);
3438
3439 /* we could miss a preemption opportunity between schedule and now */
3440 barrier();
3441 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3442 goto need_resched;
3443 }
3444
3445 #endif /* CONFIG_PREEMPT */
3446
3447 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3448 void *key)
3449 {
3450 task_t *p = curr->private;
3451 return try_to_wake_up(p, mode, sync);
3452 }
3453
3454 EXPORT_SYMBOL(default_wake_function);
3455
3456 /*
3457 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3458 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3459 * number) then we wake all the non-exclusive tasks and one exclusive task.
3460 *
3461 * There are circumstances in which we can try to wake a task which has already
3462 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3463 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3464 */
3465 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3466 int nr_exclusive, int sync, void *key)
3467 {
3468 struct list_head *tmp, *next;
3469
3470 list_for_each_safe(tmp, next, &q->task_list) {
3471 wait_queue_t *curr;
3472 unsigned flags;
3473 curr = list_entry(tmp, wait_queue_t, task_list);
3474 flags = curr->flags;
3475 if (curr->func(curr, mode, sync, key) &&
3476 (flags & WQ_FLAG_EXCLUSIVE) &&
3477 !--nr_exclusive)
3478 break;
3479 }
3480 }
3481
3482 /**
3483 * __wake_up - wake up threads blocked on a waitqueue.
3484 * @q: the waitqueue
3485 * @mode: which threads
3486 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3487 * @key: is directly passed to the wakeup function
3488 */
3489 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3490 int nr_exclusive, void *key)
3491 {
3492 unsigned long flags;
3493
3494 spin_lock_irqsave(&q->lock, flags);
3495 __wake_up_common(q, mode, nr_exclusive, 0, key);
3496 spin_unlock_irqrestore(&q->lock, flags);
3497 }
3498
3499 EXPORT_SYMBOL(__wake_up);
3500
3501 /*
3502 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3503 */
3504 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3505 {
3506 __wake_up_common(q, mode, 1, 0, NULL);
3507 }
3508
3509 /**
3510 * __wake_up_sync - wake up threads blocked on a waitqueue.
3511 * @q: the waitqueue
3512 * @mode: which threads
3513 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3514 *
3515 * The sync wakeup differs that the waker knows that it will schedule
3516 * away soon, so while the target thread will be woken up, it will not
3517 * be migrated to another CPU - ie. the two threads are 'synchronized'
3518 * with each other. This can prevent needless bouncing between CPUs.
3519 *
3520 * On UP it can prevent extra preemption.
3521 */
3522 void fastcall
3523 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3524 {
3525 unsigned long flags;
3526 int sync = 1;
3527
3528 if (unlikely(!q))
3529 return;
3530
3531 if (unlikely(!nr_exclusive))
3532 sync = 0;
3533
3534 spin_lock_irqsave(&q->lock, flags);
3535 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3536 spin_unlock_irqrestore(&q->lock, flags);
3537 }
3538 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3539
3540 void fastcall complete(struct completion *x)
3541 {
3542 unsigned long flags;
3543
3544 spin_lock_irqsave(&x->wait.lock, flags);
3545 x->done++;
3546 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3547 1, 0, NULL);
3548 spin_unlock_irqrestore(&x->wait.lock, flags);
3549 }
3550 EXPORT_SYMBOL(complete);
3551
3552 void fastcall complete_all(struct completion *x)
3553 {
3554 unsigned long flags;
3555
3556 spin_lock_irqsave(&x->wait.lock, flags);
3557 x->done += UINT_MAX/2;
3558 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3559 0, 0, NULL);
3560 spin_unlock_irqrestore(&x->wait.lock, flags);
3561 }
3562 EXPORT_SYMBOL(complete_all);
3563
3564 void fastcall __sched wait_for_completion(struct completion *x)
3565 {
3566 might_sleep();
3567 spin_lock_irq(&x->wait.lock);
3568 if (!x->done) {
3569 DECLARE_WAITQUEUE(wait, current);
3570
3571 wait.flags |= WQ_FLAG_EXCLUSIVE;
3572 __add_wait_queue_tail(&x->wait, &wait);
3573 do {
3574 __set_current_state(TASK_UNINTERRUPTIBLE);
3575 spin_unlock_irq(&x->wait.lock);
3576 schedule();
3577 spin_lock_irq(&x->wait.lock);
3578 } while (!x->done);
3579 __remove_wait_queue(&x->wait, &wait);
3580 }
3581 x->done--;
3582 spin_unlock_irq(&x->wait.lock);
3583 }
3584 EXPORT_SYMBOL(wait_for_completion);
3585
3586 unsigned long fastcall __sched
3587 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3588 {
3589 might_sleep();
3590
3591 spin_lock_irq(&x->wait.lock);
3592 if (!x->done) {
3593 DECLARE_WAITQUEUE(wait, current);
3594
3595 wait.flags |= WQ_FLAG_EXCLUSIVE;
3596 __add_wait_queue_tail(&x->wait, &wait);
3597 do {
3598 __set_current_state(TASK_UNINTERRUPTIBLE);
3599 spin_unlock_irq(&x->wait.lock);
3600 timeout = schedule_timeout(timeout);
3601 spin_lock_irq(&x->wait.lock);
3602 if (!timeout) {
3603 __remove_wait_queue(&x->wait, &wait);
3604 goto out;
3605 }
3606 } while (!x->done);
3607 __remove_wait_queue(&x->wait, &wait);
3608 }
3609 x->done--;
3610 out:
3611 spin_unlock_irq(&x->wait.lock);
3612 return timeout;
3613 }
3614 EXPORT_SYMBOL(wait_for_completion_timeout);
3615
3616 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3617 {
3618 int ret = 0;
3619
3620 might_sleep();
3621
3622 spin_lock_irq(&x->wait.lock);
3623 if (!x->done) {
3624 DECLARE_WAITQUEUE(wait, current);
3625
3626 wait.flags |= WQ_FLAG_EXCLUSIVE;
3627 __add_wait_queue_tail(&x->wait, &wait);
3628 do {
3629 if (signal_pending(current)) {
3630 ret = -ERESTARTSYS;
3631 __remove_wait_queue(&x->wait, &wait);
3632 goto out;
3633 }
3634 __set_current_state(TASK_INTERRUPTIBLE);
3635 spin_unlock_irq(&x->wait.lock);
3636 schedule();
3637 spin_lock_irq(&x->wait.lock);
3638 } while (!x->done);
3639 __remove_wait_queue(&x->wait, &wait);
3640 }
3641 x->done--;
3642 out:
3643 spin_unlock_irq(&x->wait.lock);
3644
3645 return ret;
3646 }
3647 EXPORT_SYMBOL(wait_for_completion_interruptible);
3648
3649 unsigned long fastcall __sched
3650 wait_for_completion_interruptible_timeout(struct completion *x,
3651 unsigned long timeout)
3652 {
3653 might_sleep();
3654
3655 spin_lock_irq(&x->wait.lock);
3656 if (!x->done) {
3657 DECLARE_WAITQUEUE(wait, current);
3658
3659 wait.flags |= WQ_FLAG_EXCLUSIVE;
3660 __add_wait_queue_tail(&x->wait, &wait);
3661 do {
3662 if (signal_pending(current)) {
3663 timeout = -ERESTARTSYS;
3664 __remove_wait_queue(&x->wait, &wait);
3665 goto out;
3666 }
3667 __set_current_state(TASK_INTERRUPTIBLE);
3668 spin_unlock_irq(&x->wait.lock);
3669 timeout = schedule_timeout(timeout);
3670 spin_lock_irq(&x->wait.lock);
3671 if (!timeout) {
3672 __remove_wait_queue(&x->wait, &wait);
3673 goto out;
3674 }
3675 } while (!x->done);
3676 __remove_wait_queue(&x->wait, &wait);
3677 }
3678 x->done--;
3679 out:
3680 spin_unlock_irq(&x->wait.lock);
3681 return timeout;
3682 }
3683 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3684
3685
3686 #define SLEEP_ON_VAR \
3687 unsigned long flags; \
3688 wait_queue_t wait; \
3689 init_waitqueue_entry(&wait, current);
3690
3691 #define SLEEP_ON_HEAD \
3692 spin_lock_irqsave(&q->lock,flags); \
3693 __add_wait_queue(q, &wait); \
3694 spin_unlock(&q->lock);
3695
3696 #define SLEEP_ON_TAIL \
3697 spin_lock_irq(&q->lock); \
3698 __remove_wait_queue(q, &wait); \
3699 spin_unlock_irqrestore(&q->lock, flags);
3700
3701 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3702 {
3703 SLEEP_ON_VAR
3704
3705 current->state = TASK_INTERRUPTIBLE;
3706
3707 SLEEP_ON_HEAD
3708 schedule();
3709 SLEEP_ON_TAIL
3710 }
3711
3712 EXPORT_SYMBOL(interruptible_sleep_on);
3713
3714 long fastcall __sched
3715 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3716 {
3717 SLEEP_ON_VAR
3718
3719 current->state = TASK_INTERRUPTIBLE;
3720
3721 SLEEP_ON_HEAD
3722 timeout = schedule_timeout(timeout);
3723 SLEEP_ON_TAIL
3724
3725 return timeout;
3726 }
3727
3728 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3729
3730 void fastcall __sched sleep_on(wait_queue_head_t *q)
3731 {
3732 SLEEP_ON_VAR
3733
3734 current->state = TASK_UNINTERRUPTIBLE;
3735
3736 SLEEP_ON_HEAD
3737 schedule();
3738 SLEEP_ON_TAIL
3739 }
3740
3741 EXPORT_SYMBOL(sleep_on);
3742
3743 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3744 {
3745 SLEEP_ON_VAR
3746
3747 current->state = TASK_UNINTERRUPTIBLE;
3748
3749 SLEEP_ON_HEAD
3750 timeout = schedule_timeout(timeout);
3751 SLEEP_ON_TAIL
3752
3753 return timeout;
3754 }
3755
3756 EXPORT_SYMBOL(sleep_on_timeout);
3757
3758 #ifdef CONFIG_RT_MUTEXES
3759
3760 /*
3761 * rt_mutex_setprio - set the current priority of a task
3762 * @p: task
3763 * @prio: prio value (kernel-internal form)
3764 *
3765 * This function changes the 'effective' priority of a task. It does
3766 * not touch ->normal_prio like __setscheduler().
3767 *
3768 * Used by the rt_mutex code to implement priority inheritance logic.
3769 */
3770 void rt_mutex_setprio(task_t *p, int prio)
3771 {
3772 unsigned long flags;
3773 prio_array_t *array;
3774 runqueue_t *rq;
3775 int oldprio;
3776
3777 BUG_ON(prio < 0 || prio > MAX_PRIO);
3778
3779 rq = task_rq_lock(p, &flags);
3780
3781 oldprio = p->prio;
3782 array = p->array;
3783 if (array)
3784 dequeue_task(p, array);
3785 p->prio = prio;
3786
3787 if (array) {
3788 /*
3789 * If changing to an RT priority then queue it
3790 * in the active array!
3791 */
3792 if (rt_task(p))
3793 array = rq->active;
3794 enqueue_task(p, array);
3795 /*
3796 * Reschedule if we are currently running on this runqueue and
3797 * our priority decreased, or if we are not currently running on
3798 * this runqueue and our priority is higher than the current's
3799 */
3800 if (task_running(rq, p)) {
3801 if (p->prio > oldprio)
3802 resched_task(rq->curr);
3803 } else if (TASK_PREEMPTS_CURR(p, rq))
3804 resched_task(rq->curr);
3805 }
3806 task_rq_unlock(rq, &flags);
3807 }
3808
3809 #endif
3810
3811 void set_user_nice(task_t *p, long nice)
3812 {
3813 unsigned long flags;
3814 prio_array_t *array;
3815 runqueue_t *rq;
3816 int old_prio, delta;
3817
3818 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3819 return;
3820 /*
3821 * We have to be careful, if called from sys_setpriority(),
3822 * the task might be in the middle of scheduling on another CPU.
3823 */
3824 rq = task_rq_lock(p, &flags);
3825 /*
3826 * The RT priorities are set via sched_setscheduler(), but we still
3827 * allow the 'normal' nice value to be set - but as expected
3828 * it wont have any effect on scheduling until the task is
3829 * not SCHED_NORMAL/SCHED_BATCH:
3830 */
3831 if (has_rt_policy(p)) {
3832 p->static_prio = NICE_TO_PRIO(nice);
3833 goto out_unlock;
3834 }
3835 array = p->array;
3836 if (array) {
3837 dequeue_task(p, array);
3838 dec_raw_weighted_load(rq, p);
3839 }
3840
3841 p->static_prio = NICE_TO_PRIO(nice);
3842 set_load_weight(p);
3843 old_prio = p->prio;
3844 p->prio = effective_prio(p);
3845 delta = p->prio - old_prio;
3846
3847 if (array) {
3848 enqueue_task(p, array);
3849 inc_raw_weighted_load(rq, p);
3850 /*
3851 * If the task increased its priority or is running and
3852 * lowered its priority, then reschedule its CPU:
3853 */
3854 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3855 resched_task(rq->curr);
3856 }
3857 out_unlock:
3858 task_rq_unlock(rq, &flags);
3859 }
3860 EXPORT_SYMBOL(set_user_nice);
3861
3862 /*
3863 * can_nice - check if a task can reduce its nice value
3864 * @p: task
3865 * @nice: nice value
3866 */
3867 int can_nice(const task_t *p, const int nice)
3868 {
3869 /* convert nice value [19,-20] to rlimit style value [1,40] */
3870 int nice_rlim = 20 - nice;
3871 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3872 capable(CAP_SYS_NICE));
3873 }
3874
3875 #ifdef __ARCH_WANT_SYS_NICE
3876
3877 /*
3878 * sys_nice - change the priority of the current process.
3879 * @increment: priority increment
3880 *
3881 * sys_setpriority is a more generic, but much slower function that
3882 * does similar things.
3883 */
3884 asmlinkage long sys_nice(int increment)
3885 {
3886 int retval;
3887 long nice;
3888
3889 /*
3890 * Setpriority might change our priority at the same moment.
3891 * We don't have to worry. Conceptually one call occurs first
3892 * and we have a single winner.
3893 */
3894 if (increment < -40)
3895 increment = -40;
3896 if (increment > 40)
3897 increment = 40;
3898
3899 nice = PRIO_TO_NICE(current->static_prio) + increment;
3900 if (nice < -20)
3901 nice = -20;
3902 if (nice > 19)
3903 nice = 19;
3904
3905 if (increment < 0 && !can_nice(current, nice))
3906 return -EPERM;
3907
3908 retval = security_task_setnice(current, nice);
3909 if (retval)
3910 return retval;
3911
3912 set_user_nice(current, nice);
3913 return 0;
3914 }
3915
3916 #endif
3917
3918 /**
3919 * task_prio - return the priority value of a given task.
3920 * @p: the task in question.
3921 *
3922 * This is the priority value as seen by users in /proc.
3923 * RT tasks are offset by -200. Normal tasks are centered
3924 * around 0, value goes from -16 to +15.
3925 */
3926 int task_prio(const task_t *p)
3927 {
3928 return p->prio - MAX_RT_PRIO;
3929 }
3930
3931 /**
3932 * task_nice - return the nice value of a given task.
3933 * @p: the task in question.
3934 */
3935 int task_nice(const task_t *p)
3936 {
3937 return TASK_NICE(p);
3938 }
3939 EXPORT_SYMBOL_GPL(task_nice);
3940
3941 /**
3942 * idle_cpu - is a given cpu idle currently?
3943 * @cpu: the processor in question.
3944 */
3945 int idle_cpu(int cpu)
3946 {
3947 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3948 }
3949
3950 /**
3951 * idle_task - return the idle task for a given cpu.
3952 * @cpu: the processor in question.
3953 */
3954 task_t *idle_task(int cpu)
3955 {
3956 return cpu_rq(cpu)->idle;
3957 }
3958
3959 /**
3960 * find_process_by_pid - find a process with a matching PID value.
3961 * @pid: the pid in question.
3962 */
3963 static inline task_t *find_process_by_pid(pid_t pid)
3964 {
3965 return pid ? find_task_by_pid(pid) : current;
3966 }
3967
3968 /* Actually do priority change: must hold rq lock. */
3969 static void __setscheduler(struct task_struct *p, int policy, int prio)
3970 {
3971 BUG_ON(p->array);
3972 p->policy = policy;
3973 p->rt_priority = prio;
3974 p->normal_prio = normal_prio(p);
3975 /* we are holding p->pi_lock already */
3976 p->prio = rt_mutex_getprio(p);
3977 /*
3978 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3979 */
3980 if (policy == SCHED_BATCH)
3981 p->sleep_avg = 0;
3982 set_load_weight(p);
3983 }
3984
3985 /**
3986 * sched_setscheduler - change the scheduling policy and/or RT priority of
3987 * a thread.
3988 * @p: the task in question.
3989 * @policy: new policy.
3990 * @param: structure containing the new RT priority.
3991 */
3992 int sched_setscheduler(struct task_struct *p, int policy,
3993 struct sched_param *param)
3994 {
3995 int retval;
3996 int oldprio, oldpolicy = -1;
3997 prio_array_t *array;
3998 unsigned long flags;
3999 runqueue_t *rq;
4000
4001 /* may grab non-irq protected spin_locks */
4002 BUG_ON(in_interrupt());
4003 recheck:
4004 /* double check policy once rq lock held */
4005 if (policy < 0)
4006 policy = oldpolicy = p->policy;
4007 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4008 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4009 return -EINVAL;
4010 /*
4011 * Valid priorities for SCHED_FIFO and SCHED_RR are
4012 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4013 * SCHED_BATCH is 0.
4014 */
4015 if (param->sched_priority < 0 ||
4016 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4017 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4018 return -EINVAL;
4019 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4020 != (param->sched_priority == 0))
4021 return -EINVAL;
4022
4023 /*
4024 * Allow unprivileged RT tasks to decrease priority:
4025 */
4026 if (!capable(CAP_SYS_NICE)) {
4027 /*
4028 * can't change policy, except between SCHED_NORMAL
4029 * and SCHED_BATCH:
4030 */
4031 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4032 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4033 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4034 return -EPERM;
4035 /* can't increase priority */
4036 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
4037 param->sched_priority > p->rt_priority &&
4038 param->sched_priority >
4039 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4040 return -EPERM;
4041 /* can't change other user's priorities */
4042 if ((current->euid != p->euid) &&
4043 (current->euid != p->uid))
4044 return -EPERM;
4045 }
4046
4047 retval = security_task_setscheduler(p, policy, param);
4048 if (retval)
4049 return retval;
4050 /*
4051 * make sure no PI-waiters arrive (or leave) while we are
4052 * changing the priority of the task:
4053 */
4054 spin_lock_irqsave(&p->pi_lock, flags);
4055 /*
4056 * To be able to change p->policy safely, the apropriate
4057 * runqueue lock must be held.
4058 */
4059 rq = __task_rq_lock(p);
4060 /* recheck policy now with rq lock held */
4061 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4062 policy = oldpolicy = -1;
4063 __task_rq_unlock(rq);
4064 spin_unlock_irqrestore(&p->pi_lock, flags);
4065 goto recheck;
4066 }
4067 array = p->array;
4068 if (array)
4069 deactivate_task(p, rq);
4070 oldprio = p->prio;
4071 __setscheduler(p, policy, param->sched_priority);
4072 if (array) {
4073 __activate_task(p, rq);
4074 /*
4075 * Reschedule if we are currently running on this runqueue and
4076 * our priority decreased, or if we are not currently running on
4077 * this runqueue and our priority is higher than the current's
4078 */
4079 if (task_running(rq, p)) {
4080 if (p->prio > oldprio)
4081 resched_task(rq->curr);
4082 } else if (TASK_PREEMPTS_CURR(p, rq))
4083 resched_task(rq->curr);
4084 }
4085 __task_rq_unlock(rq);
4086 spin_unlock_irqrestore(&p->pi_lock, flags);
4087
4088 rt_mutex_adjust_pi(p);
4089
4090 return 0;
4091 }
4092 EXPORT_SYMBOL_GPL(sched_setscheduler);
4093
4094 static int
4095 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4096 {
4097 int retval;
4098 struct sched_param lparam;
4099 struct task_struct *p;
4100
4101 if (!param || pid < 0)
4102 return -EINVAL;
4103 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4104 return -EFAULT;
4105 read_lock_irq(&tasklist_lock);
4106 p = find_process_by_pid(pid);
4107 if (!p) {
4108 read_unlock_irq(&tasklist_lock);
4109 return -ESRCH;
4110 }
4111 get_task_struct(p);
4112 read_unlock_irq(&tasklist_lock);
4113 retval = sched_setscheduler(p, policy, &lparam);
4114 put_task_struct(p);
4115 return retval;
4116 }
4117
4118 /**
4119 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4120 * @pid: the pid in question.
4121 * @policy: new policy.
4122 * @param: structure containing the new RT priority.
4123 */
4124 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4125 struct sched_param __user *param)
4126 {
4127 /* negative values for policy are not valid */
4128 if (policy < 0)
4129 return -EINVAL;
4130
4131 return do_sched_setscheduler(pid, policy, param);
4132 }
4133
4134 /**
4135 * sys_sched_setparam - set/change the RT priority of a thread
4136 * @pid: the pid in question.
4137 * @param: structure containing the new RT priority.
4138 */
4139 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4140 {
4141 return do_sched_setscheduler(pid, -1, param);
4142 }
4143
4144 /**
4145 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4146 * @pid: the pid in question.
4147 */
4148 asmlinkage long sys_sched_getscheduler(pid_t pid)
4149 {
4150 int retval = -EINVAL;
4151 task_t *p;
4152
4153 if (pid < 0)
4154 goto out_nounlock;
4155
4156 retval = -ESRCH;
4157 read_lock(&tasklist_lock);
4158 p = find_process_by_pid(pid);
4159 if (p) {
4160 retval = security_task_getscheduler(p);
4161 if (!retval)
4162 retval = p->policy;
4163 }
4164 read_unlock(&tasklist_lock);
4165
4166 out_nounlock:
4167 return retval;
4168 }
4169
4170 /**
4171 * sys_sched_getscheduler - get the RT priority of a thread
4172 * @pid: the pid in question.
4173 * @param: structure containing the RT priority.
4174 */
4175 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4176 {
4177 struct sched_param lp;
4178 int retval = -EINVAL;
4179 task_t *p;
4180
4181 if (!param || pid < 0)
4182 goto out_nounlock;
4183
4184 read_lock(&tasklist_lock);
4185 p = find_process_by_pid(pid);
4186 retval = -ESRCH;
4187 if (!p)
4188 goto out_unlock;
4189
4190 retval = security_task_getscheduler(p);
4191 if (retval)
4192 goto out_unlock;
4193
4194 lp.sched_priority = p->rt_priority;
4195 read_unlock(&tasklist_lock);
4196
4197 /*
4198 * This one might sleep, we cannot do it with a spinlock held ...
4199 */
4200 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4201
4202 out_nounlock:
4203 return retval;
4204
4205 out_unlock:
4206 read_unlock(&tasklist_lock);
4207 return retval;
4208 }
4209
4210 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4211 {
4212 task_t *p;
4213 int retval;
4214 cpumask_t cpus_allowed;
4215
4216 lock_cpu_hotplug();
4217 read_lock(&tasklist_lock);
4218
4219 p = find_process_by_pid(pid);
4220 if (!p) {
4221 read_unlock(&tasklist_lock);
4222 unlock_cpu_hotplug();
4223 return -ESRCH;
4224 }
4225
4226 /*
4227 * It is not safe to call set_cpus_allowed with the
4228 * tasklist_lock held. We will bump the task_struct's
4229 * usage count and then drop tasklist_lock.
4230 */
4231 get_task_struct(p);
4232 read_unlock(&tasklist_lock);
4233
4234 retval = -EPERM;
4235 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4236 !capable(CAP_SYS_NICE))
4237 goto out_unlock;
4238
4239 retval = security_task_setscheduler(p, 0, NULL);
4240 if (retval)
4241 goto out_unlock;
4242
4243 cpus_allowed = cpuset_cpus_allowed(p);
4244 cpus_and(new_mask, new_mask, cpus_allowed);
4245 retval = set_cpus_allowed(p, new_mask);
4246
4247 out_unlock:
4248 put_task_struct(p);
4249 unlock_cpu_hotplug();
4250 return retval;
4251 }
4252
4253 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4254 cpumask_t *new_mask)
4255 {
4256 if (len < sizeof(cpumask_t)) {
4257 memset(new_mask, 0, sizeof(cpumask_t));
4258 } else if (len > sizeof(cpumask_t)) {
4259 len = sizeof(cpumask_t);
4260 }
4261 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4262 }
4263
4264 /**
4265 * sys_sched_setaffinity - set the cpu affinity of a process
4266 * @pid: pid of the process
4267 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4268 * @user_mask_ptr: user-space pointer to the new cpu mask
4269 */
4270 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4271 unsigned long __user *user_mask_ptr)
4272 {
4273 cpumask_t new_mask;
4274 int retval;
4275
4276 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4277 if (retval)
4278 return retval;
4279
4280 return sched_setaffinity(pid, new_mask);
4281 }
4282
4283 /*
4284 * Represents all cpu's present in the system
4285 * In systems capable of hotplug, this map could dynamically grow
4286 * as new cpu's are detected in the system via any platform specific
4287 * method, such as ACPI for e.g.
4288 */
4289
4290 cpumask_t cpu_present_map __read_mostly;
4291 EXPORT_SYMBOL(cpu_present_map);
4292
4293 #ifndef CONFIG_SMP
4294 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4295 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4296 #endif
4297
4298 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4299 {
4300 int retval;
4301 task_t *p;
4302
4303 lock_cpu_hotplug();
4304 read_lock(&tasklist_lock);
4305
4306 retval = -ESRCH;
4307 p = find_process_by_pid(pid);
4308 if (!p)
4309 goto out_unlock;
4310
4311 retval = security_task_getscheduler(p);
4312 if (retval)
4313 goto out_unlock;
4314
4315 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4316
4317 out_unlock:
4318 read_unlock(&tasklist_lock);
4319 unlock_cpu_hotplug();
4320 if (retval)
4321 return retval;
4322
4323 return 0;
4324 }
4325
4326 /**
4327 * sys_sched_getaffinity - get the cpu affinity of a process
4328 * @pid: pid of the process
4329 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4330 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4331 */
4332 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4333 unsigned long __user *user_mask_ptr)
4334 {
4335 int ret;
4336 cpumask_t mask;
4337
4338 if (len < sizeof(cpumask_t))
4339 return -EINVAL;
4340
4341 ret = sched_getaffinity(pid, &mask);
4342 if (ret < 0)
4343 return ret;
4344
4345 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4346 return -EFAULT;
4347
4348 return sizeof(cpumask_t);
4349 }
4350
4351 /**
4352 * sys_sched_yield - yield the current processor to other threads.
4353 *
4354 * this function yields the current CPU by moving the calling thread
4355 * to the expired array. If there are no other threads running on this
4356 * CPU then this function will return.
4357 */
4358 asmlinkage long sys_sched_yield(void)
4359 {
4360 runqueue_t *rq = this_rq_lock();
4361 prio_array_t *array = current->array;
4362 prio_array_t *target = rq->expired;
4363
4364 schedstat_inc(rq, yld_cnt);
4365 /*
4366 * We implement yielding by moving the task into the expired
4367 * queue.
4368 *
4369 * (special rule: RT tasks will just roundrobin in the active
4370 * array.)
4371 */
4372 if (rt_task(current))
4373 target = rq->active;
4374
4375 if (array->nr_active == 1) {
4376 schedstat_inc(rq, yld_act_empty);
4377 if (!rq->expired->nr_active)
4378 schedstat_inc(rq, yld_both_empty);
4379 } else if (!rq->expired->nr_active)
4380 schedstat_inc(rq, yld_exp_empty);
4381
4382 if (array != target) {
4383 dequeue_task(current, array);
4384 enqueue_task(current, target);
4385 } else
4386 /*
4387 * requeue_task is cheaper so perform that if possible.
4388 */
4389 requeue_task(current, array);
4390
4391 /*
4392 * Since we are going to call schedule() anyway, there's
4393 * no need to preempt or enable interrupts:
4394 */
4395 __release(rq->lock);
4396 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4397 _raw_spin_unlock(&rq->lock);
4398 preempt_enable_no_resched();
4399
4400 schedule();
4401
4402 return 0;
4403 }
4404
4405 static inline int __resched_legal(void)
4406 {
4407 if (unlikely(preempt_count()))
4408 return 0;
4409 if (unlikely(system_state != SYSTEM_RUNNING))
4410 return 0;
4411 return 1;
4412 }
4413
4414 static void __cond_resched(void)
4415 {
4416 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4417 __might_sleep(__FILE__, __LINE__);
4418 #endif
4419 /*
4420 * The BKS might be reacquired before we have dropped
4421 * PREEMPT_ACTIVE, which could trigger a second
4422 * cond_resched() call.
4423 */
4424 do {
4425 add_preempt_count(PREEMPT_ACTIVE);
4426 schedule();
4427 sub_preempt_count(PREEMPT_ACTIVE);
4428 } while (need_resched());
4429 }
4430
4431 int __sched cond_resched(void)
4432 {
4433 if (need_resched() && __resched_legal()) {
4434 __cond_resched();
4435 return 1;
4436 }
4437 return 0;
4438 }
4439 EXPORT_SYMBOL(cond_resched);
4440
4441 /*
4442 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4443 * call schedule, and on return reacquire the lock.
4444 *
4445 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4446 * operations here to prevent schedule() from being called twice (once via
4447 * spin_unlock(), once by hand).
4448 */
4449 int cond_resched_lock(spinlock_t *lock)
4450 {
4451 int ret = 0;
4452
4453 if (need_lockbreak(lock)) {
4454 spin_unlock(lock);
4455 cpu_relax();
4456 ret = 1;
4457 spin_lock(lock);
4458 }
4459 if (need_resched() && __resched_legal()) {
4460 spin_release(&lock->dep_map, 1, _THIS_IP_);
4461 _raw_spin_unlock(lock);
4462 preempt_enable_no_resched();
4463 __cond_resched();
4464 ret = 1;
4465 spin_lock(lock);
4466 }
4467 return ret;
4468 }
4469 EXPORT_SYMBOL(cond_resched_lock);
4470
4471 int __sched cond_resched_softirq(void)
4472 {
4473 BUG_ON(!in_softirq());
4474
4475 if (need_resched() && __resched_legal()) {
4476 raw_local_irq_disable();
4477 _local_bh_enable();
4478 raw_local_irq_enable();
4479 __cond_resched();
4480 local_bh_disable();
4481 return 1;
4482 }
4483 return 0;
4484 }
4485 EXPORT_SYMBOL(cond_resched_softirq);
4486
4487 /**
4488 * yield - yield the current processor to other threads.
4489 *
4490 * this is a shortcut for kernel-space yielding - it marks the
4491 * thread runnable and calls sys_sched_yield().
4492 */
4493 void __sched yield(void)
4494 {
4495 set_current_state(TASK_RUNNING);
4496 sys_sched_yield();
4497 }
4498
4499 EXPORT_SYMBOL(yield);
4500
4501 /*
4502 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4503 * that process accounting knows that this is a task in IO wait state.
4504 *
4505 * But don't do that if it is a deliberate, throttling IO wait (this task
4506 * has set its backing_dev_info: the queue against which it should throttle)
4507 */
4508 void __sched io_schedule(void)
4509 {
4510 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4511
4512 atomic_inc(&rq->nr_iowait);
4513 schedule();
4514 atomic_dec(&rq->nr_iowait);
4515 }
4516
4517 EXPORT_SYMBOL(io_schedule);
4518
4519 long __sched io_schedule_timeout(long timeout)
4520 {
4521 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4522 long ret;
4523
4524 atomic_inc(&rq->nr_iowait);
4525 ret = schedule_timeout(timeout);
4526 atomic_dec(&rq->nr_iowait);
4527 return ret;
4528 }
4529
4530 /**
4531 * sys_sched_get_priority_max - return maximum RT priority.
4532 * @policy: scheduling class.
4533 *
4534 * this syscall returns the maximum rt_priority that can be used
4535 * by a given scheduling class.
4536 */
4537 asmlinkage long sys_sched_get_priority_max(int policy)
4538 {
4539 int ret = -EINVAL;
4540
4541 switch (policy) {
4542 case SCHED_FIFO:
4543 case SCHED_RR:
4544 ret = MAX_USER_RT_PRIO-1;
4545 break;
4546 case SCHED_NORMAL:
4547 case SCHED_BATCH:
4548 ret = 0;
4549 break;
4550 }
4551 return ret;
4552 }
4553
4554 /**
4555 * sys_sched_get_priority_min - return minimum RT priority.
4556 * @policy: scheduling class.
4557 *
4558 * this syscall returns the minimum rt_priority that can be used
4559 * by a given scheduling class.
4560 */
4561 asmlinkage long sys_sched_get_priority_min(int policy)
4562 {
4563 int ret = -EINVAL;
4564
4565 switch (policy) {
4566 case SCHED_FIFO:
4567 case SCHED_RR:
4568 ret = 1;
4569 break;
4570 case SCHED_NORMAL:
4571 case SCHED_BATCH:
4572 ret = 0;
4573 }
4574 return ret;
4575 }
4576
4577 /**
4578 * sys_sched_rr_get_interval - return the default timeslice of a process.
4579 * @pid: pid of the process.
4580 * @interval: userspace pointer to the timeslice value.
4581 *
4582 * this syscall writes the default timeslice value of a given process
4583 * into the user-space timespec buffer. A value of '0' means infinity.
4584 */
4585 asmlinkage
4586 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4587 {
4588 int retval = -EINVAL;
4589 struct timespec t;
4590 task_t *p;
4591
4592 if (pid < 0)
4593 goto out_nounlock;
4594
4595 retval = -ESRCH;
4596 read_lock(&tasklist_lock);
4597 p = find_process_by_pid(pid);
4598 if (!p)
4599 goto out_unlock;
4600
4601 retval = security_task_getscheduler(p);
4602 if (retval)
4603 goto out_unlock;
4604
4605 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4606 0 : task_timeslice(p), &t);
4607 read_unlock(&tasklist_lock);
4608 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4609 out_nounlock:
4610 return retval;
4611 out_unlock:
4612 read_unlock(&tasklist_lock);
4613 return retval;
4614 }
4615
4616 static inline struct task_struct *eldest_child(struct task_struct *p)
4617 {
4618 if (list_empty(&p->children)) return NULL;
4619 return list_entry(p->children.next,struct task_struct,sibling);
4620 }
4621
4622 static inline struct task_struct *older_sibling(struct task_struct *p)
4623 {
4624 if (p->sibling.prev==&p->parent->children) return NULL;
4625 return list_entry(p->sibling.prev,struct task_struct,sibling);
4626 }
4627
4628 static inline struct task_struct *younger_sibling(struct task_struct *p)
4629 {
4630 if (p->sibling.next==&p->parent->children) return NULL;
4631 return list_entry(p->sibling.next,struct task_struct,sibling);
4632 }
4633
4634 static void show_task(task_t *p)
4635 {
4636 task_t *relative;
4637 unsigned state;
4638 unsigned long free = 0;
4639 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4640
4641 printk("%-13.13s ", p->comm);
4642 state = p->state ? __ffs(p->state) + 1 : 0;
4643 if (state < ARRAY_SIZE(stat_nam))
4644 printk(stat_nam[state]);
4645 else
4646 printk("?");
4647 #if (BITS_PER_LONG == 32)
4648 if (state == TASK_RUNNING)
4649 printk(" running ");
4650 else
4651 printk(" %08lX ", thread_saved_pc(p));
4652 #else
4653 if (state == TASK_RUNNING)
4654 printk(" running task ");
4655 else
4656 printk(" %016lx ", thread_saved_pc(p));
4657 #endif
4658 #ifdef CONFIG_DEBUG_STACK_USAGE
4659 {
4660 unsigned long *n = end_of_stack(p);
4661 while (!*n)
4662 n++;
4663 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4664 }
4665 #endif
4666 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4667 if ((relative = eldest_child(p)))
4668 printk("%5d ", relative->pid);
4669 else
4670 printk(" ");
4671 if ((relative = younger_sibling(p)))
4672 printk("%7d", relative->pid);
4673 else
4674 printk(" ");
4675 if ((relative = older_sibling(p)))
4676 printk(" %5d", relative->pid);
4677 else
4678 printk(" ");
4679 if (!p->mm)
4680 printk(" (L-TLB)\n");
4681 else
4682 printk(" (NOTLB)\n");
4683
4684 if (state != TASK_RUNNING)
4685 show_stack(p, NULL);
4686 }
4687
4688 void show_state(void)
4689 {
4690 task_t *g, *p;
4691
4692 #if (BITS_PER_LONG == 32)
4693 printk("\n"
4694 " sibling\n");
4695 printk(" task PC pid father child younger older\n");
4696 #else
4697 printk("\n"
4698 " sibling\n");
4699 printk(" task PC pid father child younger older\n");
4700 #endif
4701 read_lock(&tasklist_lock);
4702 do_each_thread(g, p) {
4703 /*
4704 * reset the NMI-timeout, listing all files on a slow
4705 * console might take alot of time:
4706 */
4707 touch_nmi_watchdog();
4708 show_task(p);
4709 } while_each_thread(g, p);
4710
4711 read_unlock(&tasklist_lock);
4712 debug_show_all_locks();
4713 }
4714
4715 /**
4716 * init_idle - set up an idle thread for a given CPU
4717 * @idle: task in question
4718 * @cpu: cpu the idle task belongs to
4719 *
4720 * NOTE: this function does not set the idle thread's NEED_RESCHED
4721 * flag, to make booting more robust.
4722 */
4723 void __devinit init_idle(task_t *idle, int cpu)
4724 {
4725 runqueue_t *rq = cpu_rq(cpu);
4726 unsigned long flags;
4727
4728 idle->timestamp = sched_clock();
4729 idle->sleep_avg = 0;
4730 idle->array = NULL;
4731 idle->prio = idle->normal_prio = MAX_PRIO;
4732 idle->state = TASK_RUNNING;
4733 idle->cpus_allowed = cpumask_of_cpu(cpu);
4734 set_task_cpu(idle, cpu);
4735
4736 spin_lock_irqsave(&rq->lock, flags);
4737 rq->curr = rq->idle = idle;
4738 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4739 idle->oncpu = 1;
4740 #endif
4741 spin_unlock_irqrestore(&rq->lock, flags);
4742
4743 /* Set the preempt count _outside_ the spinlocks! */
4744 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4745 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4746 #else
4747 task_thread_info(idle)->preempt_count = 0;
4748 #endif
4749 }
4750
4751 /*
4752 * In a system that switches off the HZ timer nohz_cpu_mask
4753 * indicates which cpus entered this state. This is used
4754 * in the rcu update to wait only for active cpus. For system
4755 * which do not switch off the HZ timer nohz_cpu_mask should
4756 * always be CPU_MASK_NONE.
4757 */
4758 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4759
4760 #ifdef CONFIG_SMP
4761 /*
4762 * This is how migration works:
4763 *
4764 * 1) we queue a migration_req_t structure in the source CPU's
4765 * runqueue and wake up that CPU's migration thread.
4766 * 2) we down() the locked semaphore => thread blocks.
4767 * 3) migration thread wakes up (implicitly it forces the migrated
4768 * thread off the CPU)
4769 * 4) it gets the migration request and checks whether the migrated
4770 * task is still in the wrong runqueue.
4771 * 5) if it's in the wrong runqueue then the migration thread removes
4772 * it and puts it into the right queue.
4773 * 6) migration thread up()s the semaphore.
4774 * 7) we wake up and the migration is done.
4775 */
4776
4777 /*
4778 * Change a given task's CPU affinity. Migrate the thread to a
4779 * proper CPU and schedule it away if the CPU it's executing on
4780 * is removed from the allowed bitmask.
4781 *
4782 * NOTE: the caller must have a valid reference to the task, the
4783 * task must not exit() & deallocate itself prematurely. The
4784 * call is not atomic; no spinlocks may be held.
4785 */
4786 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4787 {
4788 unsigned long flags;
4789 int ret = 0;
4790 migration_req_t req;
4791 runqueue_t *rq;
4792
4793 rq = task_rq_lock(p, &flags);
4794 if (!cpus_intersects(new_mask, cpu_online_map)) {
4795 ret = -EINVAL;
4796 goto out;
4797 }
4798
4799 p->cpus_allowed = new_mask;
4800 /* Can the task run on the task's current CPU? If so, we're done */
4801 if (cpu_isset(task_cpu(p), new_mask))
4802 goto out;
4803
4804 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4805 /* Need help from migration thread: drop lock and wait. */
4806 task_rq_unlock(rq, &flags);
4807 wake_up_process(rq->migration_thread);
4808 wait_for_completion(&req.done);
4809 tlb_migrate_finish(p->mm);
4810 return 0;
4811 }
4812 out:
4813 task_rq_unlock(rq, &flags);
4814 return ret;
4815 }
4816
4817 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4818
4819 /*
4820 * Move (not current) task off this cpu, onto dest cpu. We're doing
4821 * this because either it can't run here any more (set_cpus_allowed()
4822 * away from this CPU, or CPU going down), or because we're
4823 * attempting to rebalance this task on exec (sched_exec).
4824 *
4825 * So we race with normal scheduler movements, but that's OK, as long
4826 * as the task is no longer on this CPU.
4827 *
4828 * Returns non-zero if task was successfully migrated.
4829 */
4830 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4831 {
4832 runqueue_t *rq_dest, *rq_src;
4833 int ret = 0;
4834
4835 if (unlikely(cpu_is_offline(dest_cpu)))
4836 return ret;
4837
4838 rq_src = cpu_rq(src_cpu);
4839 rq_dest = cpu_rq(dest_cpu);
4840
4841 double_rq_lock(rq_src, rq_dest);
4842 /* Already moved. */
4843 if (task_cpu(p) != src_cpu)
4844 goto out;
4845 /* Affinity changed (again). */
4846 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4847 goto out;
4848
4849 set_task_cpu(p, dest_cpu);
4850 if (p->array) {
4851 /*
4852 * Sync timestamp with rq_dest's before activating.
4853 * The same thing could be achieved by doing this step
4854 * afterwards, and pretending it was a local activate.
4855 * This way is cleaner and logically correct.
4856 */
4857 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4858 + rq_dest->timestamp_last_tick;
4859 deactivate_task(p, rq_src);
4860 activate_task(p, rq_dest, 0);
4861 if (TASK_PREEMPTS_CURR(p, rq_dest))
4862 resched_task(rq_dest->curr);
4863 }
4864 ret = 1;
4865 out:
4866 double_rq_unlock(rq_src, rq_dest);
4867 return ret;
4868 }
4869
4870 /*
4871 * migration_thread - this is a highprio system thread that performs
4872 * thread migration by bumping thread off CPU then 'pushing' onto
4873 * another runqueue.
4874 */
4875 static int migration_thread(void *data)
4876 {
4877 runqueue_t *rq;
4878 int cpu = (long)data;
4879
4880 rq = cpu_rq(cpu);
4881 BUG_ON(rq->migration_thread != current);
4882
4883 set_current_state(TASK_INTERRUPTIBLE);
4884 while (!kthread_should_stop()) {
4885 struct list_head *head;
4886 migration_req_t *req;
4887
4888 try_to_freeze();
4889
4890 spin_lock_irq(&rq->lock);
4891
4892 if (cpu_is_offline(cpu)) {
4893 spin_unlock_irq(&rq->lock);
4894 goto wait_to_die;
4895 }
4896
4897 if (rq->active_balance) {
4898 active_load_balance(rq, cpu);
4899 rq->active_balance = 0;
4900 }
4901
4902 head = &rq->migration_queue;
4903
4904 if (list_empty(head)) {
4905 spin_unlock_irq(&rq->lock);
4906 schedule();
4907 set_current_state(TASK_INTERRUPTIBLE);
4908 continue;
4909 }
4910 req = list_entry(head->next, migration_req_t, list);
4911 list_del_init(head->next);
4912
4913 spin_unlock(&rq->lock);
4914 __migrate_task(req->task, cpu, req->dest_cpu);
4915 local_irq_enable();
4916
4917 complete(&req->done);
4918 }
4919 __set_current_state(TASK_RUNNING);
4920 return 0;
4921
4922 wait_to_die:
4923 /* Wait for kthread_stop */
4924 set_current_state(TASK_INTERRUPTIBLE);
4925 while (!kthread_should_stop()) {
4926 schedule();
4927 set_current_state(TASK_INTERRUPTIBLE);
4928 }
4929 __set_current_state(TASK_RUNNING);
4930 return 0;
4931 }
4932
4933 #ifdef CONFIG_HOTPLUG_CPU
4934 /* Figure out where task on dead CPU should go, use force if neccessary. */
4935 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4936 {
4937 runqueue_t *rq;
4938 unsigned long flags;
4939 int dest_cpu;
4940 cpumask_t mask;
4941
4942 restart:
4943 /* On same node? */
4944 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4945 cpus_and(mask, mask, tsk->cpus_allowed);
4946 dest_cpu = any_online_cpu(mask);
4947
4948 /* On any allowed CPU? */
4949 if (dest_cpu == NR_CPUS)
4950 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4951
4952 /* No more Mr. Nice Guy. */
4953 if (dest_cpu == NR_CPUS) {
4954 rq = task_rq_lock(tsk, &flags);
4955 cpus_setall(tsk->cpus_allowed);
4956 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4957 task_rq_unlock(rq, &flags);
4958
4959 /*
4960 * Don't tell them about moving exiting tasks or
4961 * kernel threads (both mm NULL), since they never
4962 * leave kernel.
4963 */
4964 if (tsk->mm && printk_ratelimit())
4965 printk(KERN_INFO "process %d (%s) no "
4966 "longer affine to cpu%d\n",
4967 tsk->pid, tsk->comm, dead_cpu);
4968 }
4969 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4970 goto restart;
4971 }
4972
4973 /*
4974 * While a dead CPU has no uninterruptible tasks queued at this point,
4975 * it might still have a nonzero ->nr_uninterruptible counter, because
4976 * for performance reasons the counter is not stricly tracking tasks to
4977 * their home CPUs. So we just add the counter to another CPU's counter,
4978 * to keep the global sum constant after CPU-down:
4979 */
4980 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4981 {
4982 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4983 unsigned long flags;
4984
4985 local_irq_save(flags);
4986 double_rq_lock(rq_src, rq_dest);
4987 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4988 rq_src->nr_uninterruptible = 0;
4989 double_rq_unlock(rq_src, rq_dest);
4990 local_irq_restore(flags);
4991 }
4992
4993 /* Run through task list and migrate tasks from the dead cpu. */
4994 static void migrate_live_tasks(int src_cpu)
4995 {
4996 struct task_struct *tsk, *t;
4997
4998 write_lock_irq(&tasklist_lock);
4999
5000 do_each_thread(t, tsk) {
5001 if (tsk == current)
5002 continue;
5003
5004 if (task_cpu(tsk) == src_cpu)
5005 move_task_off_dead_cpu(src_cpu, tsk);
5006 } while_each_thread(t, tsk);
5007
5008 write_unlock_irq(&tasklist_lock);
5009 }
5010
5011 /* Schedules idle task to be the next runnable task on current CPU.
5012 * It does so by boosting its priority to highest possible and adding it to
5013 * the _front_ of runqueue. Used by CPU offline code.
5014 */
5015 void sched_idle_next(void)
5016 {
5017 int cpu = smp_processor_id();
5018 runqueue_t *rq = this_rq();
5019 struct task_struct *p = rq->idle;
5020 unsigned long flags;
5021
5022 /* cpu has to be offline */
5023 BUG_ON(cpu_online(cpu));
5024
5025 /* Strictly not necessary since rest of the CPUs are stopped by now
5026 * and interrupts disabled on current cpu.
5027 */
5028 spin_lock_irqsave(&rq->lock, flags);
5029
5030 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5031 /* Add idle task to _front_ of it's priority queue */
5032 __activate_idle_task(p, rq);
5033
5034 spin_unlock_irqrestore(&rq->lock, flags);
5035 }
5036
5037 /* Ensures that the idle task is using init_mm right before its cpu goes
5038 * offline.
5039 */
5040 void idle_task_exit(void)
5041 {
5042 struct mm_struct *mm = current->active_mm;
5043
5044 BUG_ON(cpu_online(smp_processor_id()));
5045
5046 if (mm != &init_mm)
5047 switch_mm(mm, &init_mm, current);
5048 mmdrop(mm);
5049 }
5050
5051 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
5052 {
5053 struct runqueue *rq = cpu_rq(dead_cpu);
5054
5055 /* Must be exiting, otherwise would be on tasklist. */
5056 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
5057
5058 /* Cannot have done final schedule yet: would have vanished. */
5059 BUG_ON(tsk->flags & PF_DEAD);
5060
5061 get_task_struct(tsk);
5062
5063 /*
5064 * Drop lock around migration; if someone else moves it,
5065 * that's OK. No task can be added to this CPU, so iteration is
5066 * fine.
5067 */
5068 spin_unlock_irq(&rq->lock);
5069 move_task_off_dead_cpu(dead_cpu, tsk);
5070 spin_lock_irq(&rq->lock);
5071
5072 put_task_struct(tsk);
5073 }
5074
5075 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5076 static void migrate_dead_tasks(unsigned int dead_cpu)
5077 {
5078 unsigned arr, i;
5079 struct runqueue *rq = cpu_rq(dead_cpu);
5080
5081 for (arr = 0; arr < 2; arr++) {
5082 for (i = 0; i < MAX_PRIO; i++) {
5083 struct list_head *list = &rq->arrays[arr].queue[i];
5084 while (!list_empty(list))
5085 migrate_dead(dead_cpu,
5086 list_entry(list->next, task_t,
5087 run_list));
5088 }
5089 }
5090 }
5091 #endif /* CONFIG_HOTPLUG_CPU */
5092
5093 /*
5094 * migration_call - callback that gets triggered when a CPU is added.
5095 * Here we can start up the necessary migration thread for the new CPU.
5096 */
5097 static int __cpuinit migration_call(struct notifier_block *nfb,
5098 unsigned long action,
5099 void *hcpu)
5100 {
5101 int cpu = (long)hcpu;
5102 struct task_struct *p;
5103 struct runqueue *rq;
5104 unsigned long flags;
5105
5106 switch (action) {
5107 case CPU_UP_PREPARE:
5108 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5109 if (IS_ERR(p))
5110 return NOTIFY_BAD;
5111 p->flags |= PF_NOFREEZE;
5112 kthread_bind(p, cpu);
5113 /* Must be high prio: stop_machine expects to yield to it. */
5114 rq = task_rq_lock(p, &flags);
5115 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5116 task_rq_unlock(rq, &flags);
5117 cpu_rq(cpu)->migration_thread = p;
5118 break;
5119 case CPU_ONLINE:
5120 /* Strictly unneccessary, as first user will wake it. */
5121 wake_up_process(cpu_rq(cpu)->migration_thread);
5122 break;
5123 #ifdef CONFIG_HOTPLUG_CPU
5124 case CPU_UP_CANCELED:
5125 if (!cpu_rq(cpu)->migration_thread)
5126 break;
5127 /* Unbind it from offline cpu so it can run. Fall thru. */
5128 kthread_bind(cpu_rq(cpu)->migration_thread,
5129 any_online_cpu(cpu_online_map));
5130 kthread_stop(cpu_rq(cpu)->migration_thread);
5131 cpu_rq(cpu)->migration_thread = NULL;
5132 break;
5133 case CPU_DEAD:
5134 migrate_live_tasks(cpu);
5135 rq = cpu_rq(cpu);
5136 kthread_stop(rq->migration_thread);
5137 rq->migration_thread = NULL;
5138 /* Idle task back to normal (off runqueue, low prio) */
5139 rq = task_rq_lock(rq->idle, &flags);
5140 deactivate_task(rq->idle, rq);
5141 rq->idle->static_prio = MAX_PRIO;
5142 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5143 migrate_dead_tasks(cpu);
5144 task_rq_unlock(rq, &flags);
5145 migrate_nr_uninterruptible(rq);
5146 BUG_ON(rq->nr_running != 0);
5147
5148 /* No need to migrate the tasks: it was best-effort if
5149 * they didn't do lock_cpu_hotplug(). Just wake up
5150 * the requestors. */
5151 spin_lock_irq(&rq->lock);
5152 while (!list_empty(&rq->migration_queue)) {
5153 migration_req_t *req;
5154 req = list_entry(rq->migration_queue.next,
5155 migration_req_t, list);
5156 list_del_init(&req->list);
5157 complete(&req->done);
5158 }
5159 spin_unlock_irq(&rq->lock);
5160 break;
5161 #endif
5162 }
5163 return NOTIFY_OK;
5164 }
5165
5166 /* Register at highest priority so that task migration (migrate_all_tasks)
5167 * happens before everything else.
5168 */
5169 static struct notifier_block __cpuinitdata migration_notifier = {
5170 .notifier_call = migration_call,
5171 .priority = 10
5172 };
5173
5174 int __init migration_init(void)
5175 {
5176 void *cpu = (void *)(long)smp_processor_id();
5177 /* Start one for boot CPU. */
5178 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5179 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5180 register_cpu_notifier(&migration_notifier);
5181 return 0;
5182 }
5183 #endif
5184
5185 #ifdef CONFIG_SMP
5186 #undef SCHED_DOMAIN_DEBUG
5187 #ifdef SCHED_DOMAIN_DEBUG
5188 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5189 {
5190 int level = 0;
5191
5192 if (!sd) {
5193 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5194 return;
5195 }
5196
5197 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5198
5199 do {
5200 int i;
5201 char str[NR_CPUS];
5202 struct sched_group *group = sd->groups;
5203 cpumask_t groupmask;
5204
5205 cpumask_scnprintf(str, NR_CPUS, sd->span);
5206 cpus_clear(groupmask);
5207
5208 printk(KERN_DEBUG);
5209 for (i = 0; i < level + 1; i++)
5210 printk(" ");
5211 printk("domain %d: ", level);
5212
5213 if (!(sd->flags & SD_LOAD_BALANCE)) {
5214 printk("does not load-balance\n");
5215 if (sd->parent)
5216 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5217 break;
5218 }
5219
5220 printk("span %s\n", str);
5221
5222 if (!cpu_isset(cpu, sd->span))
5223 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5224 if (!cpu_isset(cpu, group->cpumask))
5225 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5226
5227 printk(KERN_DEBUG);
5228 for (i = 0; i < level + 2; i++)
5229 printk(" ");
5230 printk("groups:");
5231 do {
5232 if (!group) {
5233 printk("\n");
5234 printk(KERN_ERR "ERROR: group is NULL\n");
5235 break;
5236 }
5237
5238 if (!group->cpu_power) {
5239 printk("\n");
5240 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5241 }
5242
5243 if (!cpus_weight(group->cpumask)) {
5244 printk("\n");
5245 printk(KERN_ERR "ERROR: empty group\n");
5246 }
5247
5248 if (cpus_intersects(groupmask, group->cpumask)) {
5249 printk("\n");
5250 printk(KERN_ERR "ERROR: repeated CPUs\n");
5251 }
5252
5253 cpus_or(groupmask, groupmask, group->cpumask);
5254
5255 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5256 printk(" %s", str);
5257
5258 group = group->next;
5259 } while (group != sd->groups);
5260 printk("\n");
5261
5262 if (!cpus_equal(sd->span, groupmask))
5263 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5264
5265 level++;
5266 sd = sd->parent;
5267
5268 if (sd) {
5269 if (!cpus_subset(groupmask, sd->span))
5270 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5271 }
5272
5273 } while (sd);
5274 }
5275 #else
5276 #define sched_domain_debug(sd, cpu) {}
5277 #endif
5278
5279 static int sd_degenerate(struct sched_domain *sd)
5280 {
5281 if (cpus_weight(sd->span) == 1)
5282 return 1;
5283
5284 /* Following flags need at least 2 groups */
5285 if (sd->flags & (SD_LOAD_BALANCE |
5286 SD_BALANCE_NEWIDLE |
5287 SD_BALANCE_FORK |
5288 SD_BALANCE_EXEC)) {
5289 if (sd->groups != sd->groups->next)
5290 return 0;
5291 }
5292
5293 /* Following flags don't use groups */
5294 if (sd->flags & (SD_WAKE_IDLE |
5295 SD_WAKE_AFFINE |
5296 SD_WAKE_BALANCE))
5297 return 0;
5298
5299 return 1;
5300 }
5301
5302 static int sd_parent_degenerate(struct sched_domain *sd,
5303 struct sched_domain *parent)
5304 {
5305 unsigned long cflags = sd->flags, pflags = parent->flags;
5306
5307 if (sd_degenerate(parent))
5308 return 1;
5309
5310 if (!cpus_equal(sd->span, parent->span))
5311 return 0;
5312
5313 /* Does parent contain flags not in child? */
5314 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5315 if (cflags & SD_WAKE_AFFINE)
5316 pflags &= ~SD_WAKE_BALANCE;
5317 /* Flags needing groups don't count if only 1 group in parent */
5318 if (parent->groups == parent->groups->next) {
5319 pflags &= ~(SD_LOAD_BALANCE |
5320 SD_BALANCE_NEWIDLE |
5321 SD_BALANCE_FORK |
5322 SD_BALANCE_EXEC);
5323 }
5324 if (~cflags & pflags)
5325 return 0;
5326
5327 return 1;
5328 }
5329
5330 /*
5331 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5332 * hold the hotplug lock.
5333 */
5334 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5335 {
5336 runqueue_t *rq = cpu_rq(cpu);
5337 struct sched_domain *tmp;
5338
5339 /* Remove the sched domains which do not contribute to scheduling. */
5340 for (tmp = sd; tmp; tmp = tmp->parent) {
5341 struct sched_domain *parent = tmp->parent;
5342 if (!parent)
5343 break;
5344 if (sd_parent_degenerate(tmp, parent))
5345 tmp->parent = parent->parent;
5346 }
5347
5348 if (sd && sd_degenerate(sd))
5349 sd = sd->parent;
5350
5351 sched_domain_debug(sd, cpu);
5352
5353 rcu_assign_pointer(rq->sd, sd);
5354 }
5355
5356 /* cpus with isolated domains */
5357 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5358
5359 /* Setup the mask of cpus configured for isolated domains */
5360 static int __init isolated_cpu_setup(char *str)
5361 {
5362 int ints[NR_CPUS], i;
5363
5364 str = get_options(str, ARRAY_SIZE(ints), ints);
5365 cpus_clear(cpu_isolated_map);
5366 for (i = 1; i <= ints[0]; i++)
5367 if (ints[i] < NR_CPUS)
5368 cpu_set(ints[i], cpu_isolated_map);
5369 return 1;
5370 }
5371
5372 __setup ("isolcpus=", isolated_cpu_setup);
5373
5374 /*
5375 * init_sched_build_groups takes an array of groups, the cpumask we wish
5376 * to span, and a pointer to a function which identifies what group a CPU
5377 * belongs to. The return value of group_fn must be a valid index into the
5378 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5379 * keep track of groups covered with a cpumask_t).
5380 *
5381 * init_sched_build_groups will build a circular linked list of the groups
5382 * covered by the given span, and will set each group's ->cpumask correctly,
5383 * and ->cpu_power to 0.
5384 */
5385 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5386 int (*group_fn)(int cpu))
5387 {
5388 struct sched_group *first = NULL, *last = NULL;
5389 cpumask_t covered = CPU_MASK_NONE;
5390 int i;
5391
5392 for_each_cpu_mask(i, span) {
5393 int group = group_fn(i);
5394 struct sched_group *sg = &groups[group];
5395 int j;
5396
5397 if (cpu_isset(i, covered))
5398 continue;
5399
5400 sg->cpumask = CPU_MASK_NONE;
5401 sg->cpu_power = 0;
5402
5403 for_each_cpu_mask(j, span) {
5404 if (group_fn(j) != group)
5405 continue;
5406
5407 cpu_set(j, covered);
5408 cpu_set(j, sg->cpumask);
5409 }
5410 if (!first)
5411 first = sg;
5412 if (last)
5413 last->next = sg;
5414 last = sg;
5415 }
5416 last->next = first;
5417 }
5418
5419 #define SD_NODES_PER_DOMAIN 16
5420
5421 /*
5422 * Self-tuning task migration cost measurement between source and target CPUs.
5423 *
5424 * This is done by measuring the cost of manipulating buffers of varying
5425 * sizes. For a given buffer-size here are the steps that are taken:
5426 *
5427 * 1) the source CPU reads+dirties a shared buffer
5428 * 2) the target CPU reads+dirties the same shared buffer
5429 *
5430 * We measure how long they take, in the following 4 scenarios:
5431 *
5432 * - source: CPU1, target: CPU2 | cost1
5433 * - source: CPU2, target: CPU1 | cost2
5434 * - source: CPU1, target: CPU1 | cost3
5435 * - source: CPU2, target: CPU2 | cost4
5436 *
5437 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5438 * the cost of migration.
5439 *
5440 * We then start off from a small buffer-size and iterate up to larger
5441 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5442 * doing a maximum search for the cost. (The maximum cost for a migration
5443 * normally occurs when the working set size is around the effective cache
5444 * size.)
5445 */
5446 #define SEARCH_SCOPE 2
5447 #define MIN_CACHE_SIZE (64*1024U)
5448 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5449 #define ITERATIONS 1
5450 #define SIZE_THRESH 130
5451 #define COST_THRESH 130
5452
5453 /*
5454 * The migration cost is a function of 'domain distance'. Domain
5455 * distance is the number of steps a CPU has to iterate down its
5456 * domain tree to share a domain with the other CPU. The farther
5457 * two CPUs are from each other, the larger the distance gets.
5458 *
5459 * Note that we use the distance only to cache measurement results,
5460 * the distance value is not used numerically otherwise. When two
5461 * CPUs have the same distance it is assumed that the migration
5462 * cost is the same. (this is a simplification but quite practical)
5463 */
5464 #define MAX_DOMAIN_DISTANCE 32
5465
5466 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5467 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5468 /*
5469 * Architectures may override the migration cost and thus avoid
5470 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5471 * virtualized hardware:
5472 */
5473 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5474 CONFIG_DEFAULT_MIGRATION_COST
5475 #else
5476 -1LL
5477 #endif
5478 };
5479
5480 /*
5481 * Allow override of migration cost - in units of microseconds.
5482 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5483 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5484 */
5485 static int __init migration_cost_setup(char *str)
5486 {
5487 int ints[MAX_DOMAIN_DISTANCE+1], i;
5488
5489 str = get_options(str, ARRAY_SIZE(ints), ints);
5490
5491 printk("#ints: %d\n", ints[0]);
5492 for (i = 1; i <= ints[0]; i++) {
5493 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5494 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5495 }
5496 return 1;
5497 }
5498
5499 __setup ("migration_cost=", migration_cost_setup);
5500
5501 /*
5502 * Global multiplier (divisor) for migration-cutoff values,
5503 * in percentiles. E.g. use a value of 150 to get 1.5 times
5504 * longer cache-hot cutoff times.
5505 *
5506 * (We scale it from 100 to 128 to long long handling easier.)
5507 */
5508
5509 #define MIGRATION_FACTOR_SCALE 128
5510
5511 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5512
5513 static int __init setup_migration_factor(char *str)
5514 {
5515 get_option(&str, &migration_factor);
5516 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5517 return 1;
5518 }
5519
5520 __setup("migration_factor=", setup_migration_factor);
5521
5522 /*
5523 * Estimated distance of two CPUs, measured via the number of domains
5524 * we have to pass for the two CPUs to be in the same span:
5525 */
5526 static unsigned long domain_distance(int cpu1, int cpu2)
5527 {
5528 unsigned long distance = 0;
5529 struct sched_domain *sd;
5530
5531 for_each_domain(cpu1, sd) {
5532 WARN_ON(!cpu_isset(cpu1, sd->span));
5533 if (cpu_isset(cpu2, sd->span))
5534 return distance;
5535 distance++;
5536 }
5537 if (distance >= MAX_DOMAIN_DISTANCE) {
5538 WARN_ON(1);
5539 distance = MAX_DOMAIN_DISTANCE-1;
5540 }
5541
5542 return distance;
5543 }
5544
5545 static unsigned int migration_debug;
5546
5547 static int __init setup_migration_debug(char *str)
5548 {
5549 get_option(&str, &migration_debug);
5550 return 1;
5551 }
5552
5553 __setup("migration_debug=", setup_migration_debug);
5554
5555 /*
5556 * Maximum cache-size that the scheduler should try to measure.
5557 * Architectures with larger caches should tune this up during
5558 * bootup. Gets used in the domain-setup code (i.e. during SMP
5559 * bootup).
5560 */
5561 unsigned int max_cache_size;
5562
5563 static int __init setup_max_cache_size(char *str)
5564 {
5565 get_option(&str, &max_cache_size);
5566 return 1;
5567 }
5568
5569 __setup("max_cache_size=", setup_max_cache_size);
5570
5571 /*
5572 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5573 * is the operation that is timed, so we try to generate unpredictable
5574 * cachemisses that still end up filling the L2 cache:
5575 */
5576 static void touch_cache(void *__cache, unsigned long __size)
5577 {
5578 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5579 chunk2 = 2*size/3;
5580 unsigned long *cache = __cache;
5581 int i;
5582
5583 for (i = 0; i < size/6; i += 8) {
5584 switch (i % 6) {
5585 case 0: cache[i]++;
5586 case 1: cache[size-1-i]++;
5587 case 2: cache[chunk1-i]++;
5588 case 3: cache[chunk1+i]++;
5589 case 4: cache[chunk2-i]++;
5590 case 5: cache[chunk2+i]++;
5591 }
5592 }
5593 }
5594
5595 /*
5596 * Measure the cache-cost of one task migration. Returns in units of nsec.
5597 */
5598 static unsigned long long measure_one(void *cache, unsigned long size,
5599 int source, int target)
5600 {
5601 cpumask_t mask, saved_mask;
5602 unsigned long long t0, t1, t2, t3, cost;
5603
5604 saved_mask = current->cpus_allowed;
5605
5606 /*
5607 * Flush source caches to RAM and invalidate them:
5608 */
5609 sched_cacheflush();
5610
5611 /*
5612 * Migrate to the source CPU:
5613 */
5614 mask = cpumask_of_cpu(source);
5615 set_cpus_allowed(current, mask);
5616 WARN_ON(smp_processor_id() != source);
5617
5618 /*
5619 * Dirty the working set:
5620 */
5621 t0 = sched_clock();
5622 touch_cache(cache, size);
5623 t1 = sched_clock();
5624
5625 /*
5626 * Migrate to the target CPU, dirty the L2 cache and access
5627 * the shared buffer. (which represents the working set
5628 * of a migrated task.)
5629 */
5630 mask = cpumask_of_cpu(target);
5631 set_cpus_allowed(current, mask);
5632 WARN_ON(smp_processor_id() != target);
5633
5634 t2 = sched_clock();
5635 touch_cache(cache, size);
5636 t3 = sched_clock();
5637
5638 cost = t1-t0 + t3-t2;
5639
5640 if (migration_debug >= 2)
5641 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5642 source, target, t1-t0, t1-t0, t3-t2, cost);
5643 /*
5644 * Flush target caches to RAM and invalidate them:
5645 */
5646 sched_cacheflush();
5647
5648 set_cpus_allowed(current, saved_mask);
5649
5650 return cost;
5651 }
5652
5653 /*
5654 * Measure a series of task migrations and return the average
5655 * result. Since this code runs early during bootup the system
5656 * is 'undisturbed' and the average latency makes sense.
5657 *
5658 * The algorithm in essence auto-detects the relevant cache-size,
5659 * so it will properly detect different cachesizes for different
5660 * cache-hierarchies, depending on how the CPUs are connected.
5661 *
5662 * Architectures can prime the upper limit of the search range via
5663 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5664 */
5665 static unsigned long long
5666 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5667 {
5668 unsigned long long cost1, cost2;
5669 int i;
5670
5671 /*
5672 * Measure the migration cost of 'size' bytes, over an
5673 * average of 10 runs:
5674 *
5675 * (We perturb the cache size by a small (0..4k)
5676 * value to compensate size/alignment related artifacts.
5677 * We also subtract the cost of the operation done on
5678 * the same CPU.)
5679 */
5680 cost1 = 0;
5681
5682 /*
5683 * dry run, to make sure we start off cache-cold on cpu1,
5684 * and to get any vmalloc pagefaults in advance:
5685 */
5686 measure_one(cache, size, cpu1, cpu2);
5687 for (i = 0; i < ITERATIONS; i++)
5688 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5689
5690 measure_one(cache, size, cpu2, cpu1);
5691 for (i = 0; i < ITERATIONS; i++)
5692 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5693
5694 /*
5695 * (We measure the non-migrating [cached] cost on both
5696 * cpu1 and cpu2, to handle CPUs with different speeds)
5697 */
5698 cost2 = 0;
5699
5700 measure_one(cache, size, cpu1, cpu1);
5701 for (i = 0; i < ITERATIONS; i++)
5702 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5703
5704 measure_one(cache, size, cpu2, cpu2);
5705 for (i = 0; i < ITERATIONS; i++)
5706 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5707
5708 /*
5709 * Get the per-iteration migration cost:
5710 */
5711 do_div(cost1, 2*ITERATIONS);
5712 do_div(cost2, 2*ITERATIONS);
5713
5714 return cost1 - cost2;
5715 }
5716
5717 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5718 {
5719 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5720 unsigned int max_size, size, size_found = 0;
5721 long long cost = 0, prev_cost;
5722 void *cache;
5723
5724 /*
5725 * Search from max_cache_size*5 down to 64K - the real relevant
5726 * cachesize has to lie somewhere inbetween.
5727 */
5728 if (max_cache_size) {
5729 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5730 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5731 } else {
5732 /*
5733 * Since we have no estimation about the relevant
5734 * search range
5735 */
5736 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5737 size = MIN_CACHE_SIZE;
5738 }
5739
5740 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5741 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5742 return 0;
5743 }
5744
5745 /*
5746 * Allocate the working set:
5747 */
5748 cache = vmalloc(max_size);
5749 if (!cache) {
5750 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5751 return 1000000; // return 1 msec on very small boxen
5752 }
5753
5754 while (size <= max_size) {
5755 prev_cost = cost;
5756 cost = measure_cost(cpu1, cpu2, cache, size);
5757
5758 /*
5759 * Update the max:
5760 */
5761 if (cost > 0) {
5762 if (max_cost < cost) {
5763 max_cost = cost;
5764 size_found = size;
5765 }
5766 }
5767 /*
5768 * Calculate average fluctuation, we use this to prevent
5769 * noise from triggering an early break out of the loop:
5770 */
5771 fluct = abs(cost - prev_cost);
5772 avg_fluct = (avg_fluct + fluct)/2;
5773
5774 if (migration_debug)
5775 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5776 cpu1, cpu2, size,
5777 (long)cost / 1000000,
5778 ((long)cost / 100000) % 10,
5779 (long)max_cost / 1000000,
5780 ((long)max_cost / 100000) % 10,
5781 domain_distance(cpu1, cpu2),
5782 cost, avg_fluct);
5783
5784 /*
5785 * If we iterated at least 20% past the previous maximum,
5786 * and the cost has dropped by more than 20% already,
5787 * (taking fluctuations into account) then we assume to
5788 * have found the maximum and break out of the loop early:
5789 */
5790 if (size_found && (size*100 > size_found*SIZE_THRESH))
5791 if (cost+avg_fluct <= 0 ||
5792 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5793
5794 if (migration_debug)
5795 printk("-> found max.\n");
5796 break;
5797 }
5798 /*
5799 * Increase the cachesize in 10% steps:
5800 */
5801 size = size * 10 / 9;
5802 }
5803
5804 if (migration_debug)
5805 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5806 cpu1, cpu2, size_found, max_cost);
5807
5808 vfree(cache);
5809
5810 /*
5811 * A task is considered 'cache cold' if at least 2 times
5812 * the worst-case cost of migration has passed.
5813 *
5814 * (this limit is only listened to if the load-balancing
5815 * situation is 'nice' - if there is a large imbalance we
5816 * ignore it for the sake of CPU utilization and
5817 * processing fairness.)
5818 */
5819 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5820 }
5821
5822 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5823 {
5824 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5825 unsigned long j0, j1, distance, max_distance = 0;
5826 struct sched_domain *sd;
5827
5828 j0 = jiffies;
5829
5830 /*
5831 * First pass - calculate the cacheflush times:
5832 */
5833 for_each_cpu_mask(cpu1, *cpu_map) {
5834 for_each_cpu_mask(cpu2, *cpu_map) {
5835 if (cpu1 == cpu2)
5836 continue;
5837 distance = domain_distance(cpu1, cpu2);
5838 max_distance = max(max_distance, distance);
5839 /*
5840 * No result cached yet?
5841 */
5842 if (migration_cost[distance] == -1LL)
5843 migration_cost[distance] =
5844 measure_migration_cost(cpu1, cpu2);
5845 }
5846 }
5847 /*
5848 * Second pass - update the sched domain hierarchy with
5849 * the new cache-hot-time estimations:
5850 */
5851 for_each_cpu_mask(cpu, *cpu_map) {
5852 distance = 0;
5853 for_each_domain(cpu, sd) {
5854 sd->cache_hot_time = migration_cost[distance];
5855 distance++;
5856 }
5857 }
5858 /*
5859 * Print the matrix:
5860 */
5861 if (migration_debug)
5862 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5863 max_cache_size,
5864 #ifdef CONFIG_X86
5865 cpu_khz/1000
5866 #else
5867 -1
5868 #endif
5869 );
5870 if (system_state == SYSTEM_BOOTING) {
5871 printk("migration_cost=");
5872 for (distance = 0; distance <= max_distance; distance++) {
5873 if (distance)
5874 printk(",");
5875 printk("%ld", (long)migration_cost[distance] / 1000);
5876 }
5877 printk("\n");
5878 }
5879 j1 = jiffies;
5880 if (migration_debug)
5881 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5882
5883 /*
5884 * Move back to the original CPU. NUMA-Q gets confused
5885 * if we migrate to another quad during bootup.
5886 */
5887 if (raw_smp_processor_id() != orig_cpu) {
5888 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5889 saved_mask = current->cpus_allowed;
5890
5891 set_cpus_allowed(current, mask);
5892 set_cpus_allowed(current, saved_mask);
5893 }
5894 }
5895
5896 #ifdef CONFIG_NUMA
5897
5898 /**
5899 * find_next_best_node - find the next node to include in a sched_domain
5900 * @node: node whose sched_domain we're building
5901 * @used_nodes: nodes already in the sched_domain
5902 *
5903 * Find the next node to include in a given scheduling domain. Simply
5904 * finds the closest node not already in the @used_nodes map.
5905 *
5906 * Should use nodemask_t.
5907 */
5908 static int find_next_best_node(int node, unsigned long *used_nodes)
5909 {
5910 int i, n, val, min_val, best_node = 0;
5911
5912 min_val = INT_MAX;
5913
5914 for (i = 0; i < MAX_NUMNODES; i++) {
5915 /* Start at @node */
5916 n = (node + i) % MAX_NUMNODES;
5917
5918 if (!nr_cpus_node(n))
5919 continue;
5920
5921 /* Skip already used nodes */
5922 if (test_bit(n, used_nodes))
5923 continue;
5924
5925 /* Simple min distance search */
5926 val = node_distance(node, n);
5927
5928 if (val < min_val) {
5929 min_val = val;
5930 best_node = n;
5931 }
5932 }
5933
5934 set_bit(best_node, used_nodes);
5935 return best_node;
5936 }
5937
5938 /**
5939 * sched_domain_node_span - get a cpumask for a node's sched_domain
5940 * @node: node whose cpumask we're constructing
5941 * @size: number of nodes to include in this span
5942 *
5943 * Given a node, construct a good cpumask for its sched_domain to span. It
5944 * should be one that prevents unnecessary balancing, but also spreads tasks
5945 * out optimally.
5946 */
5947 static cpumask_t sched_domain_node_span(int node)
5948 {
5949 int i;
5950 cpumask_t span, nodemask;
5951 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5952
5953 cpus_clear(span);
5954 bitmap_zero(used_nodes, MAX_NUMNODES);
5955
5956 nodemask = node_to_cpumask(node);
5957 cpus_or(span, span, nodemask);
5958 set_bit(node, used_nodes);
5959
5960 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5961 int next_node = find_next_best_node(node, used_nodes);
5962 nodemask = node_to_cpumask(next_node);
5963 cpus_or(span, span, nodemask);
5964 }
5965
5966 return span;
5967 }
5968 #endif
5969
5970 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5971 /*
5972 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5973 * can switch it on easily if needed.
5974 */
5975 #ifdef CONFIG_SCHED_SMT
5976 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5977 static struct sched_group sched_group_cpus[NR_CPUS];
5978 static int cpu_to_cpu_group(int cpu)
5979 {
5980 return cpu;
5981 }
5982 #endif
5983
5984 #ifdef CONFIG_SCHED_MC
5985 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5986 static struct sched_group *sched_group_core_bycpu[NR_CPUS];
5987 #endif
5988
5989 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5990 static int cpu_to_core_group(int cpu)
5991 {
5992 return first_cpu(cpu_sibling_map[cpu]);
5993 }
5994 #elif defined(CONFIG_SCHED_MC)
5995 static int cpu_to_core_group(int cpu)
5996 {
5997 return cpu;
5998 }
5999 #endif
6000
6001 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6002 static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
6003 static int cpu_to_phys_group(int cpu)
6004 {
6005 #if defined(CONFIG_SCHED_MC)
6006 cpumask_t mask = cpu_coregroup_map(cpu);
6007 return first_cpu(mask);
6008 #elif defined(CONFIG_SCHED_SMT)
6009 return first_cpu(cpu_sibling_map[cpu]);
6010 #else
6011 return cpu;
6012 #endif
6013 }
6014
6015 #ifdef CONFIG_NUMA
6016 /*
6017 * The init_sched_build_groups can't handle what we want to do with node
6018 * groups, so roll our own. Now each node has its own list of groups which
6019 * gets dynamically allocated.
6020 */
6021 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6022 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6023
6024 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6025 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6026
6027 static int cpu_to_allnodes_group(int cpu)
6028 {
6029 return cpu_to_node(cpu);
6030 }
6031 static void init_numa_sched_groups_power(struct sched_group *group_head)
6032 {
6033 struct sched_group *sg = group_head;
6034 int j;
6035
6036 if (!sg)
6037 return;
6038 next_sg:
6039 for_each_cpu_mask(j, sg->cpumask) {
6040 struct sched_domain *sd;
6041
6042 sd = &per_cpu(phys_domains, j);
6043 if (j != first_cpu(sd->groups->cpumask)) {
6044 /*
6045 * Only add "power" once for each
6046 * physical package.
6047 */
6048 continue;
6049 }
6050
6051 sg->cpu_power += sd->groups->cpu_power;
6052 }
6053 sg = sg->next;
6054 if (sg != group_head)
6055 goto next_sg;
6056 }
6057 #endif
6058
6059 /* Free memory allocated for various sched_group structures */
6060 static void free_sched_groups(const cpumask_t *cpu_map)
6061 {
6062 int cpu;
6063 #ifdef CONFIG_NUMA
6064 int i;
6065
6066 for_each_cpu_mask(cpu, *cpu_map) {
6067 struct sched_group *sched_group_allnodes
6068 = sched_group_allnodes_bycpu[cpu];
6069 struct sched_group **sched_group_nodes
6070 = sched_group_nodes_bycpu[cpu];
6071
6072 if (sched_group_allnodes) {
6073 kfree(sched_group_allnodes);
6074 sched_group_allnodes_bycpu[cpu] = NULL;
6075 }
6076
6077 if (!sched_group_nodes)
6078 continue;
6079
6080 for (i = 0; i < MAX_NUMNODES; i++) {
6081 cpumask_t nodemask = node_to_cpumask(i);
6082 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6083
6084 cpus_and(nodemask, nodemask, *cpu_map);
6085 if (cpus_empty(nodemask))
6086 continue;
6087
6088 if (sg == NULL)
6089 continue;
6090 sg = sg->next;
6091 next_sg:
6092 oldsg = sg;
6093 sg = sg->next;
6094 kfree(oldsg);
6095 if (oldsg != sched_group_nodes[i])
6096 goto next_sg;
6097 }
6098 kfree(sched_group_nodes);
6099 sched_group_nodes_bycpu[cpu] = NULL;
6100 }
6101 #endif
6102 for_each_cpu_mask(cpu, *cpu_map) {
6103 if (sched_group_phys_bycpu[cpu]) {
6104 kfree(sched_group_phys_bycpu[cpu]);
6105 sched_group_phys_bycpu[cpu] = NULL;
6106 }
6107 #ifdef CONFIG_SCHED_MC
6108 if (sched_group_core_bycpu[cpu]) {
6109 kfree(sched_group_core_bycpu[cpu]);
6110 sched_group_core_bycpu[cpu] = NULL;
6111 }
6112 #endif
6113 }
6114 }
6115
6116 /*
6117 * Build sched domains for a given set of cpus and attach the sched domains
6118 * to the individual cpus
6119 */
6120 static int build_sched_domains(const cpumask_t *cpu_map)
6121 {
6122 int i;
6123 struct sched_group *sched_group_phys = NULL;
6124 #ifdef CONFIG_SCHED_MC
6125 struct sched_group *sched_group_core = NULL;
6126 #endif
6127 #ifdef CONFIG_NUMA
6128 struct sched_group **sched_group_nodes = NULL;
6129 struct sched_group *sched_group_allnodes = NULL;
6130
6131 /*
6132 * Allocate the per-node list of sched groups
6133 */
6134 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6135 GFP_KERNEL);
6136 if (!sched_group_nodes) {
6137 printk(KERN_WARNING "Can not alloc sched group node list\n");
6138 return -ENOMEM;
6139 }
6140 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6141 #endif
6142
6143 /*
6144 * Set up domains for cpus specified by the cpu_map.
6145 */
6146 for_each_cpu_mask(i, *cpu_map) {
6147 int group;
6148 struct sched_domain *sd = NULL, *p;
6149 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6150
6151 cpus_and(nodemask, nodemask, *cpu_map);
6152
6153 #ifdef CONFIG_NUMA
6154 if (cpus_weight(*cpu_map)
6155 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6156 if (!sched_group_allnodes) {
6157 sched_group_allnodes
6158 = kmalloc(sizeof(struct sched_group)
6159 * MAX_NUMNODES,
6160 GFP_KERNEL);
6161 if (!sched_group_allnodes) {
6162 printk(KERN_WARNING
6163 "Can not alloc allnodes sched group\n");
6164 goto error;
6165 }
6166 sched_group_allnodes_bycpu[i]
6167 = sched_group_allnodes;
6168 }
6169 sd = &per_cpu(allnodes_domains, i);
6170 *sd = SD_ALLNODES_INIT;
6171 sd->span = *cpu_map;
6172 group = cpu_to_allnodes_group(i);
6173 sd->groups = &sched_group_allnodes[group];
6174 p = sd;
6175 } else
6176 p = NULL;
6177
6178 sd = &per_cpu(node_domains, i);
6179 *sd = SD_NODE_INIT;
6180 sd->span = sched_domain_node_span(cpu_to_node(i));
6181 sd->parent = p;
6182 cpus_and(sd->span, sd->span, *cpu_map);
6183 #endif
6184
6185 if (!sched_group_phys) {
6186 sched_group_phys
6187 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6188 GFP_KERNEL);
6189 if (!sched_group_phys) {
6190 printk (KERN_WARNING "Can not alloc phys sched"
6191 "group\n");
6192 goto error;
6193 }
6194 sched_group_phys_bycpu[i] = sched_group_phys;
6195 }
6196
6197 p = sd;
6198 sd = &per_cpu(phys_domains, i);
6199 group = cpu_to_phys_group(i);
6200 *sd = SD_CPU_INIT;
6201 sd->span = nodemask;
6202 sd->parent = p;
6203 sd->groups = &sched_group_phys[group];
6204
6205 #ifdef CONFIG_SCHED_MC
6206 if (!sched_group_core) {
6207 sched_group_core
6208 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6209 GFP_KERNEL);
6210 if (!sched_group_core) {
6211 printk (KERN_WARNING "Can not alloc core sched"
6212 "group\n");
6213 goto error;
6214 }
6215 sched_group_core_bycpu[i] = sched_group_core;
6216 }
6217
6218 p = sd;
6219 sd = &per_cpu(core_domains, i);
6220 group = cpu_to_core_group(i);
6221 *sd = SD_MC_INIT;
6222 sd->span = cpu_coregroup_map(i);
6223 cpus_and(sd->span, sd->span, *cpu_map);
6224 sd->parent = p;
6225 sd->groups = &sched_group_core[group];
6226 #endif
6227
6228 #ifdef CONFIG_SCHED_SMT
6229 p = sd;
6230 sd = &per_cpu(cpu_domains, i);
6231 group = cpu_to_cpu_group(i);
6232 *sd = SD_SIBLING_INIT;
6233 sd->span = cpu_sibling_map[i];
6234 cpus_and(sd->span, sd->span, *cpu_map);
6235 sd->parent = p;
6236 sd->groups = &sched_group_cpus[group];
6237 #endif
6238 }
6239
6240 #ifdef CONFIG_SCHED_SMT
6241 /* Set up CPU (sibling) groups */
6242 for_each_cpu_mask(i, *cpu_map) {
6243 cpumask_t this_sibling_map = cpu_sibling_map[i];
6244 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6245 if (i != first_cpu(this_sibling_map))
6246 continue;
6247
6248 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6249 &cpu_to_cpu_group);
6250 }
6251 #endif
6252
6253 #ifdef CONFIG_SCHED_MC
6254 /* Set up multi-core groups */
6255 for_each_cpu_mask(i, *cpu_map) {
6256 cpumask_t this_core_map = cpu_coregroup_map(i);
6257 cpus_and(this_core_map, this_core_map, *cpu_map);
6258 if (i != first_cpu(this_core_map))
6259 continue;
6260 init_sched_build_groups(sched_group_core, this_core_map,
6261 &cpu_to_core_group);
6262 }
6263 #endif
6264
6265
6266 /* Set up physical groups */
6267 for (i = 0; i < MAX_NUMNODES; i++) {
6268 cpumask_t nodemask = node_to_cpumask(i);
6269
6270 cpus_and(nodemask, nodemask, *cpu_map);
6271 if (cpus_empty(nodemask))
6272 continue;
6273
6274 init_sched_build_groups(sched_group_phys, nodemask,
6275 &cpu_to_phys_group);
6276 }
6277
6278 #ifdef CONFIG_NUMA
6279 /* Set up node groups */
6280 if (sched_group_allnodes)
6281 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6282 &cpu_to_allnodes_group);
6283
6284 for (i = 0; i < MAX_NUMNODES; i++) {
6285 /* Set up node groups */
6286 struct sched_group *sg, *prev;
6287 cpumask_t nodemask = node_to_cpumask(i);
6288 cpumask_t domainspan;
6289 cpumask_t covered = CPU_MASK_NONE;
6290 int j;
6291
6292 cpus_and(nodemask, nodemask, *cpu_map);
6293 if (cpus_empty(nodemask)) {
6294 sched_group_nodes[i] = NULL;
6295 continue;
6296 }
6297
6298 domainspan = sched_domain_node_span(i);
6299 cpus_and(domainspan, domainspan, *cpu_map);
6300
6301 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6302 if (!sg) {
6303 printk(KERN_WARNING "Can not alloc domain group for "
6304 "node %d\n", i);
6305 goto error;
6306 }
6307 sched_group_nodes[i] = sg;
6308 for_each_cpu_mask(j, nodemask) {
6309 struct sched_domain *sd;
6310 sd = &per_cpu(node_domains, j);
6311 sd->groups = sg;
6312 }
6313 sg->cpu_power = 0;
6314 sg->cpumask = nodemask;
6315 sg->next = sg;
6316 cpus_or(covered, covered, nodemask);
6317 prev = sg;
6318
6319 for (j = 0; j < MAX_NUMNODES; j++) {
6320 cpumask_t tmp, notcovered;
6321 int n = (i + j) % MAX_NUMNODES;
6322
6323 cpus_complement(notcovered, covered);
6324 cpus_and(tmp, notcovered, *cpu_map);
6325 cpus_and(tmp, tmp, domainspan);
6326 if (cpus_empty(tmp))
6327 break;
6328
6329 nodemask = node_to_cpumask(n);
6330 cpus_and(tmp, tmp, nodemask);
6331 if (cpus_empty(tmp))
6332 continue;
6333
6334 sg = kmalloc_node(sizeof(struct sched_group),
6335 GFP_KERNEL, i);
6336 if (!sg) {
6337 printk(KERN_WARNING
6338 "Can not alloc domain group for node %d\n", j);
6339 goto error;
6340 }
6341 sg->cpu_power = 0;
6342 sg->cpumask = tmp;
6343 sg->next = prev->next;
6344 cpus_or(covered, covered, tmp);
6345 prev->next = sg;
6346 prev = sg;
6347 }
6348 }
6349 #endif
6350
6351 /* Calculate CPU power for physical packages and nodes */
6352 #ifdef CONFIG_SCHED_SMT
6353 for_each_cpu_mask(i, *cpu_map) {
6354 struct sched_domain *sd;
6355 sd = &per_cpu(cpu_domains, i);
6356 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6357 }
6358 #endif
6359 #ifdef CONFIG_SCHED_MC
6360 for_each_cpu_mask(i, *cpu_map) {
6361 int power;
6362 struct sched_domain *sd;
6363 sd = &per_cpu(core_domains, i);
6364 if (sched_smt_power_savings)
6365 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6366 else
6367 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6368 * SCHED_LOAD_SCALE / 10;
6369 sd->groups->cpu_power = power;
6370 }
6371 #endif
6372
6373 for_each_cpu_mask(i, *cpu_map) {
6374 struct sched_domain *sd;
6375 #ifdef CONFIG_SCHED_MC
6376 sd = &per_cpu(phys_domains, i);
6377 if (i != first_cpu(sd->groups->cpumask))
6378 continue;
6379
6380 sd->groups->cpu_power = 0;
6381 if (sched_mc_power_savings || sched_smt_power_savings) {
6382 int j;
6383
6384 for_each_cpu_mask(j, sd->groups->cpumask) {
6385 struct sched_domain *sd1;
6386 sd1 = &per_cpu(core_domains, j);
6387 /*
6388 * for each core we will add once
6389 * to the group in physical domain
6390 */
6391 if (j != first_cpu(sd1->groups->cpumask))
6392 continue;
6393
6394 if (sched_smt_power_savings)
6395 sd->groups->cpu_power += sd1->groups->cpu_power;
6396 else
6397 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6398 }
6399 } else
6400 /*
6401 * This has to be < 2 * SCHED_LOAD_SCALE
6402 * Lets keep it SCHED_LOAD_SCALE, so that
6403 * while calculating NUMA group's cpu_power
6404 * we can simply do
6405 * numa_group->cpu_power += phys_group->cpu_power;
6406 *
6407 * See "only add power once for each physical pkg"
6408 * comment below
6409 */
6410 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6411 #else
6412 int power;
6413 sd = &per_cpu(phys_domains, i);
6414 if (sched_smt_power_savings)
6415 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6416 else
6417 power = SCHED_LOAD_SCALE;
6418 sd->groups->cpu_power = power;
6419 #endif
6420 }
6421
6422 #ifdef CONFIG_NUMA
6423 for (i = 0; i < MAX_NUMNODES; i++)
6424 init_numa_sched_groups_power(sched_group_nodes[i]);
6425
6426 init_numa_sched_groups_power(sched_group_allnodes);
6427 #endif
6428
6429 /* Attach the domains */
6430 for_each_cpu_mask(i, *cpu_map) {
6431 struct sched_domain *sd;
6432 #ifdef CONFIG_SCHED_SMT
6433 sd = &per_cpu(cpu_domains, i);
6434 #elif defined(CONFIG_SCHED_MC)
6435 sd = &per_cpu(core_domains, i);
6436 #else
6437 sd = &per_cpu(phys_domains, i);
6438 #endif
6439 cpu_attach_domain(sd, i);
6440 }
6441 /*
6442 * Tune cache-hot values:
6443 */
6444 calibrate_migration_costs(cpu_map);
6445
6446 return 0;
6447
6448 error:
6449 free_sched_groups(cpu_map);
6450 return -ENOMEM;
6451 }
6452 /*
6453 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6454 */
6455 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6456 {
6457 cpumask_t cpu_default_map;
6458 int err;
6459
6460 /*
6461 * Setup mask for cpus without special case scheduling requirements.
6462 * For now this just excludes isolated cpus, but could be used to
6463 * exclude other special cases in the future.
6464 */
6465 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6466
6467 err = build_sched_domains(&cpu_default_map);
6468
6469 return err;
6470 }
6471
6472 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6473 {
6474 free_sched_groups(cpu_map);
6475 }
6476
6477 /*
6478 * Detach sched domains from a group of cpus specified in cpu_map
6479 * These cpus will now be attached to the NULL domain
6480 */
6481 static void detach_destroy_domains(const cpumask_t *cpu_map)
6482 {
6483 int i;
6484
6485 for_each_cpu_mask(i, *cpu_map)
6486 cpu_attach_domain(NULL, i);
6487 synchronize_sched();
6488 arch_destroy_sched_domains(cpu_map);
6489 }
6490
6491 /*
6492 * Partition sched domains as specified by the cpumasks below.
6493 * This attaches all cpus from the cpumasks to the NULL domain,
6494 * waits for a RCU quiescent period, recalculates sched
6495 * domain information and then attaches them back to the
6496 * correct sched domains
6497 * Call with hotplug lock held
6498 */
6499 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6500 {
6501 cpumask_t change_map;
6502 int err = 0;
6503
6504 cpus_and(*partition1, *partition1, cpu_online_map);
6505 cpus_and(*partition2, *partition2, cpu_online_map);
6506 cpus_or(change_map, *partition1, *partition2);
6507
6508 /* Detach sched domains from all of the affected cpus */
6509 detach_destroy_domains(&change_map);
6510 if (!cpus_empty(*partition1))
6511 err = build_sched_domains(partition1);
6512 if (!err && !cpus_empty(*partition2))
6513 err = build_sched_domains(partition2);
6514
6515 return err;
6516 }
6517
6518 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6519 int arch_reinit_sched_domains(void)
6520 {
6521 int err;
6522
6523 lock_cpu_hotplug();
6524 detach_destroy_domains(&cpu_online_map);
6525 err = arch_init_sched_domains(&cpu_online_map);
6526 unlock_cpu_hotplug();
6527
6528 return err;
6529 }
6530
6531 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6532 {
6533 int ret;
6534
6535 if (buf[0] != '0' && buf[0] != '1')
6536 return -EINVAL;
6537
6538 if (smt)
6539 sched_smt_power_savings = (buf[0] == '1');
6540 else
6541 sched_mc_power_savings = (buf[0] == '1');
6542
6543 ret = arch_reinit_sched_domains();
6544
6545 return ret ? ret : count;
6546 }
6547
6548 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6549 {
6550 int err = 0;
6551 #ifdef CONFIG_SCHED_SMT
6552 if (smt_capable())
6553 err = sysfs_create_file(&cls->kset.kobj,
6554 &attr_sched_smt_power_savings.attr);
6555 #endif
6556 #ifdef CONFIG_SCHED_MC
6557 if (!err && mc_capable())
6558 err = sysfs_create_file(&cls->kset.kobj,
6559 &attr_sched_mc_power_savings.attr);
6560 #endif
6561 return err;
6562 }
6563 #endif
6564
6565 #ifdef CONFIG_SCHED_MC
6566 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6567 {
6568 return sprintf(page, "%u\n", sched_mc_power_savings);
6569 }
6570 static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6571 {
6572 return sched_power_savings_store(buf, count, 0);
6573 }
6574 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6575 sched_mc_power_savings_store);
6576 #endif
6577
6578 #ifdef CONFIG_SCHED_SMT
6579 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6580 {
6581 return sprintf(page, "%u\n", sched_smt_power_savings);
6582 }
6583 static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6584 {
6585 return sched_power_savings_store(buf, count, 1);
6586 }
6587 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6588 sched_smt_power_savings_store);
6589 #endif
6590
6591
6592 #ifdef CONFIG_HOTPLUG_CPU
6593 /*
6594 * Force a reinitialization of the sched domains hierarchy. The domains
6595 * and groups cannot be updated in place without racing with the balancing
6596 * code, so we temporarily attach all running cpus to the NULL domain
6597 * which will prevent rebalancing while the sched domains are recalculated.
6598 */
6599 static int update_sched_domains(struct notifier_block *nfb,
6600 unsigned long action, void *hcpu)
6601 {
6602 switch (action) {
6603 case CPU_UP_PREPARE:
6604 case CPU_DOWN_PREPARE:
6605 detach_destroy_domains(&cpu_online_map);
6606 return NOTIFY_OK;
6607
6608 case CPU_UP_CANCELED:
6609 case CPU_DOWN_FAILED:
6610 case CPU_ONLINE:
6611 case CPU_DEAD:
6612 /*
6613 * Fall through and re-initialise the domains.
6614 */
6615 break;
6616 default:
6617 return NOTIFY_DONE;
6618 }
6619
6620 /* The hotplug lock is already held by cpu_up/cpu_down */
6621 arch_init_sched_domains(&cpu_online_map);
6622
6623 return NOTIFY_OK;
6624 }
6625 #endif
6626
6627 void __init sched_init_smp(void)
6628 {
6629 lock_cpu_hotplug();
6630 arch_init_sched_domains(&cpu_online_map);
6631 unlock_cpu_hotplug();
6632 /* XXX: Theoretical race here - CPU may be hotplugged now */
6633 hotcpu_notifier(update_sched_domains, 0);
6634 }
6635 #else
6636 void __init sched_init_smp(void)
6637 {
6638 }
6639 #endif /* CONFIG_SMP */
6640
6641 int in_sched_functions(unsigned long addr)
6642 {
6643 /* Linker adds these: start and end of __sched functions */
6644 extern char __sched_text_start[], __sched_text_end[];
6645 return in_lock_functions(addr) ||
6646 (addr >= (unsigned long)__sched_text_start
6647 && addr < (unsigned long)__sched_text_end);
6648 }
6649
6650 void __init sched_init(void)
6651 {
6652 runqueue_t *rq;
6653 int i, j, k;
6654
6655 for_each_possible_cpu(i) {
6656 prio_array_t *array;
6657
6658 rq = cpu_rq(i);
6659 spin_lock_init(&rq->lock);
6660 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6661 rq->nr_running = 0;
6662 rq->active = rq->arrays;
6663 rq->expired = rq->arrays + 1;
6664 rq->best_expired_prio = MAX_PRIO;
6665
6666 #ifdef CONFIG_SMP
6667 rq->sd = NULL;
6668 for (j = 1; j < 3; j++)
6669 rq->cpu_load[j] = 0;
6670 rq->active_balance = 0;
6671 rq->push_cpu = 0;
6672 rq->migration_thread = NULL;
6673 INIT_LIST_HEAD(&rq->migration_queue);
6674 #endif
6675 atomic_set(&rq->nr_iowait, 0);
6676
6677 for (j = 0; j < 2; j++) {
6678 array = rq->arrays + j;
6679 for (k = 0; k < MAX_PRIO; k++) {
6680 INIT_LIST_HEAD(array->queue + k);
6681 __clear_bit(k, array->bitmap);
6682 }
6683 // delimiter for bitsearch
6684 __set_bit(MAX_PRIO, array->bitmap);
6685 }
6686 }
6687
6688 set_load_weight(&init_task);
6689 /*
6690 * The boot idle thread does lazy MMU switching as well:
6691 */
6692 atomic_inc(&init_mm.mm_count);
6693 enter_lazy_tlb(&init_mm, current);
6694
6695 /*
6696 * Make us the idle thread. Technically, schedule() should not be
6697 * called from this thread, however somewhere below it might be,
6698 * but because we are the idle thread, we just pick up running again
6699 * when this runqueue becomes "idle".
6700 */
6701 init_idle(current, smp_processor_id());
6702 }
6703
6704 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6705 void __might_sleep(char *file, int line)
6706 {
6707 #if defined(in_atomic)
6708 static unsigned long prev_jiffy; /* ratelimiting */
6709
6710 if ((in_atomic() || irqs_disabled()) &&
6711 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6712 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6713 return;
6714 prev_jiffy = jiffies;
6715 printk(KERN_ERR "BUG: sleeping function called from invalid"
6716 " context at %s:%d\n", file, line);
6717 printk("in_atomic():%d, irqs_disabled():%d\n",
6718 in_atomic(), irqs_disabled());
6719 dump_stack();
6720 }
6721 #endif
6722 }
6723 EXPORT_SYMBOL(__might_sleep);
6724 #endif
6725
6726 #ifdef CONFIG_MAGIC_SYSRQ
6727 void normalize_rt_tasks(void)
6728 {
6729 struct task_struct *p;
6730 prio_array_t *array;
6731 unsigned long flags;
6732 runqueue_t *rq;
6733
6734 read_lock_irq(&tasklist_lock);
6735 for_each_process(p) {
6736 if (!rt_task(p))
6737 continue;
6738
6739 spin_lock_irqsave(&p->pi_lock, flags);
6740 rq = __task_rq_lock(p);
6741
6742 array = p->array;
6743 if (array)
6744 deactivate_task(p, task_rq(p));
6745 __setscheduler(p, SCHED_NORMAL, 0);
6746 if (array) {
6747 __activate_task(p, task_rq(p));
6748 resched_task(rq->curr);
6749 }
6750
6751 __task_rq_unlock(rq);
6752 spin_unlock_irqrestore(&p->pi_lock, flags);
6753 }
6754 read_unlock_irq(&tasklist_lock);
6755 }
6756
6757 #endif /* CONFIG_MAGIC_SYSRQ */
6758
6759 #ifdef CONFIG_IA64
6760 /*
6761 * These functions are only useful for the IA64 MCA handling.
6762 *
6763 * They can only be called when the whole system has been
6764 * stopped - every CPU needs to be quiescent, and no scheduling
6765 * activity can take place. Using them for anything else would
6766 * be a serious bug, and as a result, they aren't even visible
6767 * under any other configuration.
6768 */
6769
6770 /**
6771 * curr_task - return the current task for a given cpu.
6772 * @cpu: the processor in question.
6773 *
6774 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6775 */
6776 task_t *curr_task(int cpu)
6777 {
6778 return cpu_curr(cpu);
6779 }
6780
6781 /**
6782 * set_curr_task - set the current task for a given cpu.
6783 * @cpu: the processor in question.
6784 * @p: the task pointer to set.
6785 *
6786 * Description: This function must only be used when non-maskable interrupts
6787 * are serviced on a separate stack. It allows the architecture to switch the
6788 * notion of the current task on a cpu in a non-blocking manner. This function
6789 * must be called with all CPU's synchronized, and interrupts disabled, the
6790 * and caller must save the original value of the current task (see
6791 * curr_task() above) and restore that value before reenabling interrupts and
6792 * re-starting the system.
6793 *
6794 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6795 */
6796 void set_curr_task(int cpu, task_t *p)
6797 {
6798 cpu_curr(cpu) = p;
6799 }
6800
6801 #endif