[PATCH] sched: simplify bitmap definition
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
53 #include <asm/tlb.h>
54
55 #include <asm/unistd.h>
56
57 /*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66 /*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75 /*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81 /*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
93 #define EXIT_WEIGHT 3
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101 /*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135 #ifdef CONFIG_SMP
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139 #else
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142 #endif
143
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147 #define DELTA(p) \
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
150
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161 /*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
173 static unsigned int task_timeslice(task_t *p)
174 {
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179 }
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183 /*
184 * These are the runqueue data structures:
185 */
186
187 typedef struct runqueue runqueue_t;
188
189 struct prio_array {
190 unsigned int nr_active;
191 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
192 struct list_head queue[MAX_PRIO];
193 };
194
195 /*
196 * This is the main, per-CPU runqueue data structure.
197 *
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
201 */
202 struct runqueue {
203 spinlock_t lock;
204
205 /*
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
208 */
209 unsigned long nr_running;
210 #ifdef CONFIG_SMP
211 unsigned long cpu_load[3];
212 #endif
213 unsigned long long nr_switches;
214
215 /*
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
220 */
221 unsigned long nr_uninterruptible;
222
223 unsigned long expired_timestamp;
224 unsigned long long timestamp_last_tick;
225 task_t *curr, *idle;
226 struct mm_struct *prev_mm;
227 prio_array_t *active, *expired, arrays[2];
228 int best_expired_prio;
229 atomic_t nr_iowait;
230
231 #ifdef CONFIG_SMP
232 struct sched_domain *sd;
233
234 /* For active balancing */
235 int active_balance;
236 int push_cpu;
237
238 task_t *migration_thread;
239 struct list_head migration_queue;
240 #endif
241
242 #ifdef CONFIG_SCHEDSTATS
243 /* latency stats */
244 struct sched_info rq_sched_info;
245
246 /* sys_sched_yield() stats */
247 unsigned long yld_exp_empty;
248 unsigned long yld_act_empty;
249 unsigned long yld_both_empty;
250 unsigned long yld_cnt;
251
252 /* schedule() stats */
253 unsigned long sched_switch;
254 unsigned long sched_cnt;
255 unsigned long sched_goidle;
256
257 /* try_to_wake_up() stats */
258 unsigned long ttwu_cnt;
259 unsigned long ttwu_local;
260 #endif
261 };
262
263 static DEFINE_PER_CPU(struct runqueue, runqueues);
264
265 /*
266 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
267 * See detach_destroy_domains: synchronize_sched for details.
268 *
269 * The domain tree of any CPU may only be accessed from within
270 * preempt-disabled sections.
271 */
272 #define for_each_domain(cpu, domain) \
273 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274
275 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
276 #define this_rq() (&__get_cpu_var(runqueues))
277 #define task_rq(p) cpu_rq(task_cpu(p))
278 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279
280 #ifndef prepare_arch_switch
281 # define prepare_arch_switch(next) do { } while (0)
282 #endif
283 #ifndef finish_arch_switch
284 # define finish_arch_switch(prev) do { } while (0)
285 #endif
286
287 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
288 static inline int task_running(runqueue_t *rq, task_t *p)
289 {
290 return rq->curr == p;
291 }
292
293 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
294 {
295 }
296
297 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
298 {
299 #ifdef CONFIG_DEBUG_SPINLOCK
300 /* this is a valid case when another task releases the spinlock */
301 rq->lock.owner = current;
302 #endif
303 spin_unlock_irq(&rq->lock);
304 }
305
306 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
307 static inline int task_running(runqueue_t *rq, task_t *p)
308 {
309 #ifdef CONFIG_SMP
310 return p->oncpu;
311 #else
312 return rq->curr == p;
313 #endif
314 }
315
316 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
317 {
318 #ifdef CONFIG_SMP
319 /*
320 * We can optimise this out completely for !SMP, because the
321 * SMP rebalancing from interrupt is the only thing that cares
322 * here.
323 */
324 next->oncpu = 1;
325 #endif
326 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
327 spin_unlock_irq(&rq->lock);
328 #else
329 spin_unlock(&rq->lock);
330 #endif
331 }
332
333 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
334 {
335 #ifdef CONFIG_SMP
336 /*
337 * After ->oncpu is cleared, the task can be moved to a different CPU.
338 * We must ensure this doesn't happen until the switch is completely
339 * finished.
340 */
341 smp_wmb();
342 prev->oncpu = 0;
343 #endif
344 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
345 local_irq_enable();
346 #endif
347 }
348 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
349
350 /*
351 * task_rq_lock - lock the runqueue a given task resides on and disable
352 * interrupts. Note the ordering: we can safely lookup the task_rq without
353 * explicitly disabling preemption.
354 */
355 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
356 __acquires(rq->lock)
357 {
358 struct runqueue *rq;
359
360 repeat_lock_task:
361 local_irq_save(*flags);
362 rq = task_rq(p);
363 spin_lock(&rq->lock);
364 if (unlikely(rq != task_rq(p))) {
365 spin_unlock_irqrestore(&rq->lock, *flags);
366 goto repeat_lock_task;
367 }
368 return rq;
369 }
370
371 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
372 __releases(rq->lock)
373 {
374 spin_unlock_irqrestore(&rq->lock, *flags);
375 }
376
377 #ifdef CONFIG_SCHEDSTATS
378 /*
379 * bump this up when changing the output format or the meaning of an existing
380 * format, so that tools can adapt (or abort)
381 */
382 #define SCHEDSTAT_VERSION 12
383
384 static int show_schedstat(struct seq_file *seq, void *v)
385 {
386 int cpu;
387
388 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
389 seq_printf(seq, "timestamp %lu\n", jiffies);
390 for_each_online_cpu(cpu) {
391 runqueue_t *rq = cpu_rq(cpu);
392 #ifdef CONFIG_SMP
393 struct sched_domain *sd;
394 int dcnt = 0;
395 #endif
396
397 /* runqueue-specific stats */
398 seq_printf(seq,
399 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
400 cpu, rq->yld_both_empty,
401 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
402 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
403 rq->ttwu_cnt, rq->ttwu_local,
404 rq->rq_sched_info.cpu_time,
405 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
406
407 seq_printf(seq, "\n");
408
409 #ifdef CONFIG_SMP
410 /* domain-specific stats */
411 preempt_disable();
412 for_each_domain(cpu, sd) {
413 enum idle_type itype;
414 char mask_str[NR_CPUS];
415
416 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
417 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
418 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
419 itype++) {
420 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
421 sd->lb_cnt[itype],
422 sd->lb_balanced[itype],
423 sd->lb_failed[itype],
424 sd->lb_imbalance[itype],
425 sd->lb_gained[itype],
426 sd->lb_hot_gained[itype],
427 sd->lb_nobusyq[itype],
428 sd->lb_nobusyg[itype]);
429 }
430 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
431 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
432 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
433 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
434 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
435 }
436 preempt_enable();
437 #endif
438 }
439 return 0;
440 }
441
442 static int schedstat_open(struct inode *inode, struct file *file)
443 {
444 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
445 char *buf = kmalloc(size, GFP_KERNEL);
446 struct seq_file *m;
447 int res;
448
449 if (!buf)
450 return -ENOMEM;
451 res = single_open(file, show_schedstat, NULL);
452 if (!res) {
453 m = file->private_data;
454 m->buf = buf;
455 m->size = size;
456 } else
457 kfree(buf);
458 return res;
459 }
460
461 struct file_operations proc_schedstat_operations = {
462 .open = schedstat_open,
463 .read = seq_read,
464 .llseek = seq_lseek,
465 .release = single_release,
466 };
467
468 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
469 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
470 #else /* !CONFIG_SCHEDSTATS */
471 # define schedstat_inc(rq, field) do { } while (0)
472 # define schedstat_add(rq, field, amt) do { } while (0)
473 #endif
474
475 /*
476 * rq_lock - lock a given runqueue and disable interrupts.
477 */
478 static inline runqueue_t *this_rq_lock(void)
479 __acquires(rq->lock)
480 {
481 runqueue_t *rq;
482
483 local_irq_disable();
484 rq = this_rq();
485 spin_lock(&rq->lock);
486
487 return rq;
488 }
489
490 #ifdef CONFIG_SCHEDSTATS
491 /*
492 * Called when a process is dequeued from the active array and given
493 * the cpu. We should note that with the exception of interactive
494 * tasks, the expired queue will become the active queue after the active
495 * queue is empty, without explicitly dequeuing and requeuing tasks in the
496 * expired queue. (Interactive tasks may be requeued directly to the
497 * active queue, thus delaying tasks in the expired queue from running;
498 * see scheduler_tick()).
499 *
500 * This function is only called from sched_info_arrive(), rather than
501 * dequeue_task(). Even though a task may be queued and dequeued multiple
502 * times as it is shuffled about, we're really interested in knowing how
503 * long it was from the *first* time it was queued to the time that it
504 * finally hit a cpu.
505 */
506 static inline void sched_info_dequeued(task_t *t)
507 {
508 t->sched_info.last_queued = 0;
509 }
510
511 /*
512 * Called when a task finally hits the cpu. We can now calculate how
513 * long it was waiting to run. We also note when it began so that we
514 * can keep stats on how long its timeslice is.
515 */
516 static void sched_info_arrive(task_t *t)
517 {
518 unsigned long now = jiffies, diff = 0;
519 struct runqueue *rq = task_rq(t);
520
521 if (t->sched_info.last_queued)
522 diff = now - t->sched_info.last_queued;
523 sched_info_dequeued(t);
524 t->sched_info.run_delay += diff;
525 t->sched_info.last_arrival = now;
526 t->sched_info.pcnt++;
527
528 if (!rq)
529 return;
530
531 rq->rq_sched_info.run_delay += diff;
532 rq->rq_sched_info.pcnt++;
533 }
534
535 /*
536 * Called when a process is queued into either the active or expired
537 * array. The time is noted and later used to determine how long we
538 * had to wait for us to reach the cpu. Since the expired queue will
539 * become the active queue after active queue is empty, without dequeuing
540 * and requeuing any tasks, we are interested in queuing to either. It
541 * is unusual but not impossible for tasks to be dequeued and immediately
542 * requeued in the same or another array: this can happen in sched_yield(),
543 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
544 * to runqueue.
545 *
546 * This function is only called from enqueue_task(), but also only updates
547 * the timestamp if it is already not set. It's assumed that
548 * sched_info_dequeued() will clear that stamp when appropriate.
549 */
550 static inline void sched_info_queued(task_t *t)
551 {
552 if (!t->sched_info.last_queued)
553 t->sched_info.last_queued = jiffies;
554 }
555
556 /*
557 * Called when a process ceases being the active-running process, either
558 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 */
560 static inline void sched_info_depart(task_t *t)
561 {
562 struct runqueue *rq = task_rq(t);
563 unsigned long diff = jiffies - t->sched_info.last_arrival;
564
565 t->sched_info.cpu_time += diff;
566
567 if (rq)
568 rq->rq_sched_info.cpu_time += diff;
569 }
570
571 /*
572 * Called when tasks are switched involuntarily due, typically, to expiring
573 * their time slice. (This may also be called when switching to or from
574 * the idle task.) We are only called when prev != next.
575 */
576 static inline void sched_info_switch(task_t *prev, task_t *next)
577 {
578 struct runqueue *rq = task_rq(prev);
579
580 /*
581 * prev now departs the cpu. It's not interesting to record
582 * stats about how efficient we were at scheduling the idle
583 * process, however.
584 */
585 if (prev != rq->idle)
586 sched_info_depart(prev);
587
588 if (next != rq->idle)
589 sched_info_arrive(next);
590 }
591 #else
592 #define sched_info_queued(t) do { } while (0)
593 #define sched_info_switch(t, next) do { } while (0)
594 #endif /* CONFIG_SCHEDSTATS */
595
596 /*
597 * Adding/removing a task to/from a priority array:
598 */
599 static void dequeue_task(struct task_struct *p, prio_array_t *array)
600 {
601 array->nr_active--;
602 list_del(&p->run_list);
603 if (list_empty(array->queue + p->prio))
604 __clear_bit(p->prio, array->bitmap);
605 }
606
607 static void enqueue_task(struct task_struct *p, prio_array_t *array)
608 {
609 sched_info_queued(p);
610 list_add_tail(&p->run_list, array->queue + p->prio);
611 __set_bit(p->prio, array->bitmap);
612 array->nr_active++;
613 p->array = array;
614 }
615
616 /*
617 * Put task to the end of the run list without the overhead of dequeue
618 * followed by enqueue.
619 */
620 static void requeue_task(struct task_struct *p, prio_array_t *array)
621 {
622 list_move_tail(&p->run_list, array->queue + p->prio);
623 }
624
625 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
626 {
627 list_add(&p->run_list, array->queue + p->prio);
628 __set_bit(p->prio, array->bitmap);
629 array->nr_active++;
630 p->array = array;
631 }
632
633 /*
634 * effective_prio - return the priority that is based on the static
635 * priority but is modified by bonuses/penalties.
636 *
637 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
638 * into the -5 ... 0 ... +5 bonus/penalty range.
639 *
640 * We use 25% of the full 0...39 priority range so that:
641 *
642 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
643 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 *
645 * Both properties are important to certain workloads.
646 */
647 static int effective_prio(task_t *p)
648 {
649 int bonus, prio;
650
651 if (rt_task(p))
652 return p->prio;
653
654 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
655
656 prio = p->static_prio - bonus;
657 if (prio < MAX_RT_PRIO)
658 prio = MAX_RT_PRIO;
659 if (prio > MAX_PRIO-1)
660 prio = MAX_PRIO-1;
661 return prio;
662 }
663
664 /*
665 * __activate_task - move a task to the runqueue.
666 */
667 static void __activate_task(task_t *p, runqueue_t *rq)
668 {
669 prio_array_t *target = rq->active;
670
671 if (batch_task(p))
672 target = rq->expired;
673 enqueue_task(p, target);
674 rq->nr_running++;
675 }
676
677 /*
678 * __activate_idle_task - move idle task to the _front_ of runqueue.
679 */
680 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
681 {
682 enqueue_task_head(p, rq->active);
683 rq->nr_running++;
684 }
685
686 static int recalc_task_prio(task_t *p, unsigned long long now)
687 {
688 /* Caller must always ensure 'now >= p->timestamp' */
689 unsigned long long __sleep_time = now - p->timestamp;
690 unsigned long sleep_time;
691
692 if (batch_task(p))
693 sleep_time = 0;
694 else {
695 if (__sleep_time > NS_MAX_SLEEP_AVG)
696 sleep_time = NS_MAX_SLEEP_AVG;
697 else
698 sleep_time = (unsigned long)__sleep_time;
699 }
700
701 if (likely(sleep_time > 0)) {
702 /*
703 * User tasks that sleep a long time are categorised as
704 * idle. They will only have their sleep_avg increased to a
705 * level that makes them just interactive priority to stay
706 * active yet prevent them suddenly becoming cpu hogs and
707 * starving other processes.
708 */
709 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
710 unsigned long ceiling;
711
712 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
713 DEF_TIMESLICE);
714 if (p->sleep_avg < ceiling)
715 p->sleep_avg = ceiling;
716 } else {
717 /*
718 * Tasks waking from uninterruptible sleep are
719 * limited in their sleep_avg rise as they
720 * are likely to be waiting on I/O
721 */
722 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
723 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
724 sleep_time = 0;
725 else if (p->sleep_avg + sleep_time >=
726 INTERACTIVE_SLEEP(p)) {
727 p->sleep_avg = INTERACTIVE_SLEEP(p);
728 sleep_time = 0;
729 }
730 }
731
732 /*
733 * This code gives a bonus to interactive tasks.
734 *
735 * The boost works by updating the 'average sleep time'
736 * value here, based on ->timestamp. The more time a
737 * task spends sleeping, the higher the average gets -
738 * and the higher the priority boost gets as well.
739 */
740 p->sleep_avg += sleep_time;
741
742 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
743 p->sleep_avg = NS_MAX_SLEEP_AVG;
744 }
745 }
746
747 return effective_prio(p);
748 }
749
750 /*
751 * activate_task - move a task to the runqueue and do priority recalculation
752 *
753 * Update all the scheduling statistics stuff. (sleep average
754 * calculation, priority modifiers, etc.)
755 */
756 static void activate_task(task_t *p, runqueue_t *rq, int local)
757 {
758 unsigned long long now;
759
760 now = sched_clock();
761 #ifdef CONFIG_SMP
762 if (!local) {
763 /* Compensate for drifting sched_clock */
764 runqueue_t *this_rq = this_rq();
765 now = (now - this_rq->timestamp_last_tick)
766 + rq->timestamp_last_tick;
767 }
768 #endif
769
770 if (!rt_task(p))
771 p->prio = recalc_task_prio(p, now);
772
773 /*
774 * This checks to make sure it's not an uninterruptible task
775 * that is now waking up.
776 */
777 if (p->sleep_type == SLEEP_NORMAL) {
778 /*
779 * Tasks which were woken up by interrupts (ie. hw events)
780 * are most likely of interactive nature. So we give them
781 * the credit of extending their sleep time to the period
782 * of time they spend on the runqueue, waiting for execution
783 * on a CPU, first time around:
784 */
785 if (in_interrupt())
786 p->sleep_type = SLEEP_INTERRUPTED;
787 else {
788 /*
789 * Normal first-time wakeups get a credit too for
790 * on-runqueue time, but it will be weighted down:
791 */
792 p->sleep_type = SLEEP_INTERACTIVE;
793 }
794 }
795 p->timestamp = now;
796
797 __activate_task(p, rq);
798 }
799
800 /*
801 * deactivate_task - remove a task from the runqueue.
802 */
803 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
804 {
805 rq->nr_running--;
806 dequeue_task(p, p->array);
807 p->array = NULL;
808 }
809
810 /*
811 * resched_task - mark a task 'to be rescheduled now'.
812 *
813 * On UP this means the setting of the need_resched flag, on SMP it
814 * might also involve a cross-CPU call to trigger the scheduler on
815 * the target CPU.
816 */
817 #ifdef CONFIG_SMP
818
819 #ifndef tsk_is_polling
820 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
821 #endif
822
823 static void resched_task(task_t *p)
824 {
825 int cpu;
826
827 assert_spin_locked(&task_rq(p)->lock);
828
829 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
830 return;
831
832 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
833
834 cpu = task_cpu(p);
835 if (cpu == smp_processor_id())
836 return;
837
838 /* NEED_RESCHED must be visible before we test polling */
839 smp_mb();
840 if (!tsk_is_polling(p))
841 smp_send_reschedule(cpu);
842 }
843 #else
844 static inline void resched_task(task_t *p)
845 {
846 assert_spin_locked(&task_rq(p)->lock);
847 set_tsk_need_resched(p);
848 }
849 #endif
850
851 /**
852 * task_curr - is this task currently executing on a CPU?
853 * @p: the task in question.
854 */
855 inline int task_curr(const task_t *p)
856 {
857 return cpu_curr(task_cpu(p)) == p;
858 }
859
860 #ifdef CONFIG_SMP
861 typedef struct {
862 struct list_head list;
863
864 task_t *task;
865 int dest_cpu;
866
867 struct completion done;
868 } migration_req_t;
869
870 /*
871 * The task's runqueue lock must be held.
872 * Returns true if you have to wait for migration thread.
873 */
874 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
875 {
876 runqueue_t *rq = task_rq(p);
877
878 /*
879 * If the task is not on a runqueue (and not running), then
880 * it is sufficient to simply update the task's cpu field.
881 */
882 if (!p->array && !task_running(rq, p)) {
883 set_task_cpu(p, dest_cpu);
884 return 0;
885 }
886
887 init_completion(&req->done);
888 req->task = p;
889 req->dest_cpu = dest_cpu;
890 list_add(&req->list, &rq->migration_queue);
891 return 1;
892 }
893
894 /*
895 * wait_task_inactive - wait for a thread to unschedule.
896 *
897 * The caller must ensure that the task *will* unschedule sometime soon,
898 * else this function might spin for a *long* time. This function can't
899 * be called with interrupts off, or it may introduce deadlock with
900 * smp_call_function() if an IPI is sent by the same process we are
901 * waiting to become inactive.
902 */
903 void wait_task_inactive(task_t *p)
904 {
905 unsigned long flags;
906 runqueue_t *rq;
907 int preempted;
908
909 repeat:
910 rq = task_rq_lock(p, &flags);
911 /* Must be off runqueue entirely, not preempted. */
912 if (unlikely(p->array || task_running(rq, p))) {
913 /* If it's preempted, we yield. It could be a while. */
914 preempted = !task_running(rq, p);
915 task_rq_unlock(rq, &flags);
916 cpu_relax();
917 if (preempted)
918 yield();
919 goto repeat;
920 }
921 task_rq_unlock(rq, &flags);
922 }
923
924 /***
925 * kick_process - kick a running thread to enter/exit the kernel
926 * @p: the to-be-kicked thread
927 *
928 * Cause a process which is running on another CPU to enter
929 * kernel-mode, without any delay. (to get signals handled.)
930 *
931 * NOTE: this function doesnt have to take the runqueue lock,
932 * because all it wants to ensure is that the remote task enters
933 * the kernel. If the IPI races and the task has been migrated
934 * to another CPU then no harm is done and the purpose has been
935 * achieved as well.
936 */
937 void kick_process(task_t *p)
938 {
939 int cpu;
940
941 preempt_disable();
942 cpu = task_cpu(p);
943 if ((cpu != smp_processor_id()) && task_curr(p))
944 smp_send_reschedule(cpu);
945 preempt_enable();
946 }
947
948 /*
949 * Return a low guess at the load of a migration-source cpu.
950 *
951 * We want to under-estimate the load of migration sources, to
952 * balance conservatively.
953 */
954 static inline unsigned long source_load(int cpu, int type)
955 {
956 runqueue_t *rq = cpu_rq(cpu);
957 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
958 if (type == 0)
959 return load_now;
960
961 return min(rq->cpu_load[type-1], load_now);
962 }
963
964 /*
965 * Return a high guess at the load of a migration-target cpu
966 */
967 static inline unsigned long target_load(int cpu, int type)
968 {
969 runqueue_t *rq = cpu_rq(cpu);
970 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
971 if (type == 0)
972 return load_now;
973
974 return max(rq->cpu_load[type-1], load_now);
975 }
976
977 /*
978 * find_idlest_group finds and returns the least busy CPU group within the
979 * domain.
980 */
981 static struct sched_group *
982 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
983 {
984 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
985 unsigned long min_load = ULONG_MAX, this_load = 0;
986 int load_idx = sd->forkexec_idx;
987 int imbalance = 100 + (sd->imbalance_pct-100)/2;
988
989 do {
990 unsigned long load, avg_load;
991 int local_group;
992 int i;
993
994 /* Skip over this group if it has no CPUs allowed */
995 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
996 goto nextgroup;
997
998 local_group = cpu_isset(this_cpu, group->cpumask);
999
1000 /* Tally up the load of all CPUs in the group */
1001 avg_load = 0;
1002
1003 for_each_cpu_mask(i, group->cpumask) {
1004 /* Bias balancing toward cpus of our domain */
1005 if (local_group)
1006 load = source_load(i, load_idx);
1007 else
1008 load = target_load(i, load_idx);
1009
1010 avg_load += load;
1011 }
1012
1013 /* Adjust by relative CPU power of the group */
1014 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1015
1016 if (local_group) {
1017 this_load = avg_load;
1018 this = group;
1019 } else if (avg_load < min_load) {
1020 min_load = avg_load;
1021 idlest = group;
1022 }
1023 nextgroup:
1024 group = group->next;
1025 } while (group != sd->groups);
1026
1027 if (!idlest || 100*this_load < imbalance*min_load)
1028 return NULL;
1029 return idlest;
1030 }
1031
1032 /*
1033 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1034 */
1035 static int
1036 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1037 {
1038 cpumask_t tmp;
1039 unsigned long load, min_load = ULONG_MAX;
1040 int idlest = -1;
1041 int i;
1042
1043 /* Traverse only the allowed CPUs */
1044 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1045
1046 for_each_cpu_mask(i, tmp) {
1047 load = source_load(i, 0);
1048
1049 if (load < min_load || (load == min_load && i == this_cpu)) {
1050 min_load = load;
1051 idlest = i;
1052 }
1053 }
1054
1055 return idlest;
1056 }
1057
1058 /*
1059 * sched_balance_self: balance the current task (running on cpu) in domains
1060 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1061 * SD_BALANCE_EXEC.
1062 *
1063 * Balance, ie. select the least loaded group.
1064 *
1065 * Returns the target CPU number, or the same CPU if no balancing is needed.
1066 *
1067 * preempt must be disabled.
1068 */
1069 static int sched_balance_self(int cpu, int flag)
1070 {
1071 struct task_struct *t = current;
1072 struct sched_domain *tmp, *sd = NULL;
1073
1074 for_each_domain(cpu, tmp) {
1075 if (tmp->flags & flag)
1076 sd = tmp;
1077 }
1078
1079 while (sd) {
1080 cpumask_t span;
1081 struct sched_group *group;
1082 int new_cpu;
1083 int weight;
1084
1085 span = sd->span;
1086 group = find_idlest_group(sd, t, cpu);
1087 if (!group)
1088 goto nextlevel;
1089
1090 new_cpu = find_idlest_cpu(group, t, cpu);
1091 if (new_cpu == -1 || new_cpu == cpu)
1092 goto nextlevel;
1093
1094 /* Now try balancing at a lower domain level */
1095 cpu = new_cpu;
1096 nextlevel:
1097 sd = NULL;
1098 weight = cpus_weight(span);
1099 for_each_domain(cpu, tmp) {
1100 if (weight <= cpus_weight(tmp->span))
1101 break;
1102 if (tmp->flags & flag)
1103 sd = tmp;
1104 }
1105 /* while loop will break here if sd == NULL */
1106 }
1107
1108 return cpu;
1109 }
1110
1111 #endif /* CONFIG_SMP */
1112
1113 /*
1114 * wake_idle() will wake a task on an idle cpu if task->cpu is
1115 * not idle and an idle cpu is available. The span of cpus to
1116 * search starts with cpus closest then further out as needed,
1117 * so we always favor a closer, idle cpu.
1118 *
1119 * Returns the CPU we should wake onto.
1120 */
1121 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1122 static int wake_idle(int cpu, task_t *p)
1123 {
1124 cpumask_t tmp;
1125 struct sched_domain *sd;
1126 int i;
1127
1128 if (idle_cpu(cpu))
1129 return cpu;
1130
1131 for_each_domain(cpu, sd) {
1132 if (sd->flags & SD_WAKE_IDLE) {
1133 cpus_and(tmp, sd->span, p->cpus_allowed);
1134 for_each_cpu_mask(i, tmp) {
1135 if (idle_cpu(i))
1136 return i;
1137 }
1138 }
1139 else
1140 break;
1141 }
1142 return cpu;
1143 }
1144 #else
1145 static inline int wake_idle(int cpu, task_t *p)
1146 {
1147 return cpu;
1148 }
1149 #endif
1150
1151 /***
1152 * try_to_wake_up - wake up a thread
1153 * @p: the to-be-woken-up thread
1154 * @state: the mask of task states that can be woken
1155 * @sync: do a synchronous wakeup?
1156 *
1157 * Put it on the run-queue if it's not already there. The "current"
1158 * thread is always on the run-queue (except when the actual
1159 * re-schedule is in progress), and as such you're allowed to do
1160 * the simpler "current->state = TASK_RUNNING" to mark yourself
1161 * runnable without the overhead of this.
1162 *
1163 * returns failure only if the task is already active.
1164 */
1165 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1166 {
1167 int cpu, this_cpu, success = 0;
1168 unsigned long flags;
1169 long old_state;
1170 runqueue_t *rq;
1171 #ifdef CONFIG_SMP
1172 unsigned long load, this_load;
1173 struct sched_domain *sd, *this_sd = NULL;
1174 int new_cpu;
1175 #endif
1176
1177 rq = task_rq_lock(p, &flags);
1178 old_state = p->state;
1179 if (!(old_state & state))
1180 goto out;
1181
1182 if (p->array)
1183 goto out_running;
1184
1185 cpu = task_cpu(p);
1186 this_cpu = smp_processor_id();
1187
1188 #ifdef CONFIG_SMP
1189 if (unlikely(task_running(rq, p)))
1190 goto out_activate;
1191
1192 new_cpu = cpu;
1193
1194 schedstat_inc(rq, ttwu_cnt);
1195 if (cpu == this_cpu) {
1196 schedstat_inc(rq, ttwu_local);
1197 goto out_set_cpu;
1198 }
1199
1200 for_each_domain(this_cpu, sd) {
1201 if (cpu_isset(cpu, sd->span)) {
1202 schedstat_inc(sd, ttwu_wake_remote);
1203 this_sd = sd;
1204 break;
1205 }
1206 }
1207
1208 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1209 goto out_set_cpu;
1210
1211 /*
1212 * Check for affine wakeup and passive balancing possibilities.
1213 */
1214 if (this_sd) {
1215 int idx = this_sd->wake_idx;
1216 unsigned int imbalance;
1217
1218 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1219
1220 load = source_load(cpu, idx);
1221 this_load = target_load(this_cpu, idx);
1222
1223 new_cpu = this_cpu; /* Wake to this CPU if we can */
1224
1225 if (this_sd->flags & SD_WAKE_AFFINE) {
1226 unsigned long tl = this_load;
1227 /*
1228 * If sync wakeup then subtract the (maximum possible)
1229 * effect of the currently running task from the load
1230 * of the current CPU:
1231 */
1232 if (sync)
1233 tl -= SCHED_LOAD_SCALE;
1234
1235 if ((tl <= load &&
1236 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1237 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1238 /*
1239 * This domain has SD_WAKE_AFFINE and
1240 * p is cache cold in this domain, and
1241 * there is no bad imbalance.
1242 */
1243 schedstat_inc(this_sd, ttwu_move_affine);
1244 goto out_set_cpu;
1245 }
1246 }
1247
1248 /*
1249 * Start passive balancing when half the imbalance_pct
1250 * limit is reached.
1251 */
1252 if (this_sd->flags & SD_WAKE_BALANCE) {
1253 if (imbalance*this_load <= 100*load) {
1254 schedstat_inc(this_sd, ttwu_move_balance);
1255 goto out_set_cpu;
1256 }
1257 }
1258 }
1259
1260 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1261 out_set_cpu:
1262 new_cpu = wake_idle(new_cpu, p);
1263 if (new_cpu != cpu) {
1264 set_task_cpu(p, new_cpu);
1265 task_rq_unlock(rq, &flags);
1266 /* might preempt at this point */
1267 rq = task_rq_lock(p, &flags);
1268 old_state = p->state;
1269 if (!(old_state & state))
1270 goto out;
1271 if (p->array)
1272 goto out_running;
1273
1274 this_cpu = smp_processor_id();
1275 cpu = task_cpu(p);
1276 }
1277
1278 out_activate:
1279 #endif /* CONFIG_SMP */
1280 if (old_state == TASK_UNINTERRUPTIBLE) {
1281 rq->nr_uninterruptible--;
1282 /*
1283 * Tasks on involuntary sleep don't earn
1284 * sleep_avg beyond just interactive state.
1285 */
1286 p->sleep_type = SLEEP_NONINTERACTIVE;
1287 } else
1288
1289 /*
1290 * Tasks that have marked their sleep as noninteractive get
1291 * woken up with their sleep average not weighted in an
1292 * interactive way.
1293 */
1294 if (old_state & TASK_NONINTERACTIVE)
1295 p->sleep_type = SLEEP_NONINTERACTIVE;
1296
1297
1298 activate_task(p, rq, cpu == this_cpu);
1299 /*
1300 * Sync wakeups (i.e. those types of wakeups where the waker
1301 * has indicated that it will leave the CPU in short order)
1302 * don't trigger a preemption, if the woken up task will run on
1303 * this cpu. (in this case the 'I will reschedule' promise of
1304 * the waker guarantees that the freshly woken up task is going
1305 * to be considered on this CPU.)
1306 */
1307 if (!sync || cpu != this_cpu) {
1308 if (TASK_PREEMPTS_CURR(p, rq))
1309 resched_task(rq->curr);
1310 }
1311 success = 1;
1312
1313 out_running:
1314 p->state = TASK_RUNNING;
1315 out:
1316 task_rq_unlock(rq, &flags);
1317
1318 return success;
1319 }
1320
1321 int fastcall wake_up_process(task_t *p)
1322 {
1323 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1324 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1325 }
1326
1327 EXPORT_SYMBOL(wake_up_process);
1328
1329 int fastcall wake_up_state(task_t *p, unsigned int state)
1330 {
1331 return try_to_wake_up(p, state, 0);
1332 }
1333
1334 /*
1335 * Perform scheduler related setup for a newly forked process p.
1336 * p is forked by current.
1337 */
1338 void fastcall sched_fork(task_t *p, int clone_flags)
1339 {
1340 int cpu = get_cpu();
1341
1342 #ifdef CONFIG_SMP
1343 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1344 #endif
1345 set_task_cpu(p, cpu);
1346
1347 /*
1348 * We mark the process as running here, but have not actually
1349 * inserted it onto the runqueue yet. This guarantees that
1350 * nobody will actually run it, and a signal or other external
1351 * event cannot wake it up and insert it on the runqueue either.
1352 */
1353 p->state = TASK_RUNNING;
1354 INIT_LIST_HEAD(&p->run_list);
1355 p->array = NULL;
1356 #ifdef CONFIG_SCHEDSTATS
1357 memset(&p->sched_info, 0, sizeof(p->sched_info));
1358 #endif
1359 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1360 p->oncpu = 0;
1361 #endif
1362 #ifdef CONFIG_PREEMPT
1363 /* Want to start with kernel preemption disabled. */
1364 task_thread_info(p)->preempt_count = 1;
1365 #endif
1366 /*
1367 * Share the timeslice between parent and child, thus the
1368 * total amount of pending timeslices in the system doesn't change,
1369 * resulting in more scheduling fairness.
1370 */
1371 local_irq_disable();
1372 p->time_slice = (current->time_slice + 1) >> 1;
1373 /*
1374 * The remainder of the first timeslice might be recovered by
1375 * the parent if the child exits early enough.
1376 */
1377 p->first_time_slice = 1;
1378 current->time_slice >>= 1;
1379 p->timestamp = sched_clock();
1380 if (unlikely(!current->time_slice)) {
1381 /*
1382 * This case is rare, it happens when the parent has only
1383 * a single jiffy left from its timeslice. Taking the
1384 * runqueue lock is not a problem.
1385 */
1386 current->time_slice = 1;
1387 scheduler_tick();
1388 }
1389 local_irq_enable();
1390 put_cpu();
1391 }
1392
1393 /*
1394 * wake_up_new_task - wake up a newly created task for the first time.
1395 *
1396 * This function will do some initial scheduler statistics housekeeping
1397 * that must be done for every newly created context, then puts the task
1398 * on the runqueue and wakes it.
1399 */
1400 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1401 {
1402 unsigned long flags;
1403 int this_cpu, cpu;
1404 runqueue_t *rq, *this_rq;
1405
1406 rq = task_rq_lock(p, &flags);
1407 BUG_ON(p->state != TASK_RUNNING);
1408 this_cpu = smp_processor_id();
1409 cpu = task_cpu(p);
1410
1411 /*
1412 * We decrease the sleep average of forking parents
1413 * and children as well, to keep max-interactive tasks
1414 * from forking tasks that are max-interactive. The parent
1415 * (current) is done further down, under its lock.
1416 */
1417 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1418 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1419
1420 p->prio = effective_prio(p);
1421
1422 if (likely(cpu == this_cpu)) {
1423 if (!(clone_flags & CLONE_VM)) {
1424 /*
1425 * The VM isn't cloned, so we're in a good position to
1426 * do child-runs-first in anticipation of an exec. This
1427 * usually avoids a lot of COW overhead.
1428 */
1429 if (unlikely(!current->array))
1430 __activate_task(p, rq);
1431 else {
1432 p->prio = current->prio;
1433 list_add_tail(&p->run_list, &current->run_list);
1434 p->array = current->array;
1435 p->array->nr_active++;
1436 rq->nr_running++;
1437 }
1438 set_need_resched();
1439 } else
1440 /* Run child last */
1441 __activate_task(p, rq);
1442 /*
1443 * We skip the following code due to cpu == this_cpu
1444 *
1445 * task_rq_unlock(rq, &flags);
1446 * this_rq = task_rq_lock(current, &flags);
1447 */
1448 this_rq = rq;
1449 } else {
1450 this_rq = cpu_rq(this_cpu);
1451
1452 /*
1453 * Not the local CPU - must adjust timestamp. This should
1454 * get optimised away in the !CONFIG_SMP case.
1455 */
1456 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1457 + rq->timestamp_last_tick;
1458 __activate_task(p, rq);
1459 if (TASK_PREEMPTS_CURR(p, rq))
1460 resched_task(rq->curr);
1461
1462 /*
1463 * Parent and child are on different CPUs, now get the
1464 * parent runqueue to update the parent's ->sleep_avg:
1465 */
1466 task_rq_unlock(rq, &flags);
1467 this_rq = task_rq_lock(current, &flags);
1468 }
1469 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1470 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1471 task_rq_unlock(this_rq, &flags);
1472 }
1473
1474 /*
1475 * Potentially available exiting-child timeslices are
1476 * retrieved here - this way the parent does not get
1477 * penalized for creating too many threads.
1478 *
1479 * (this cannot be used to 'generate' timeslices
1480 * artificially, because any timeslice recovered here
1481 * was given away by the parent in the first place.)
1482 */
1483 void fastcall sched_exit(task_t *p)
1484 {
1485 unsigned long flags;
1486 runqueue_t *rq;
1487
1488 /*
1489 * If the child was a (relative-) CPU hog then decrease
1490 * the sleep_avg of the parent as well.
1491 */
1492 rq = task_rq_lock(p->parent, &flags);
1493 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1494 p->parent->time_slice += p->time_slice;
1495 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1496 p->parent->time_slice = task_timeslice(p);
1497 }
1498 if (p->sleep_avg < p->parent->sleep_avg)
1499 p->parent->sleep_avg = p->parent->sleep_avg /
1500 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1501 (EXIT_WEIGHT + 1);
1502 task_rq_unlock(rq, &flags);
1503 }
1504
1505 /**
1506 * prepare_task_switch - prepare to switch tasks
1507 * @rq: the runqueue preparing to switch
1508 * @next: the task we are going to switch to.
1509 *
1510 * This is called with the rq lock held and interrupts off. It must
1511 * be paired with a subsequent finish_task_switch after the context
1512 * switch.
1513 *
1514 * prepare_task_switch sets up locking and calls architecture specific
1515 * hooks.
1516 */
1517 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1518 {
1519 prepare_lock_switch(rq, next);
1520 prepare_arch_switch(next);
1521 }
1522
1523 /**
1524 * finish_task_switch - clean up after a task-switch
1525 * @rq: runqueue associated with task-switch
1526 * @prev: the thread we just switched away from.
1527 *
1528 * finish_task_switch must be called after the context switch, paired
1529 * with a prepare_task_switch call before the context switch.
1530 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1531 * and do any other architecture-specific cleanup actions.
1532 *
1533 * Note that we may have delayed dropping an mm in context_switch(). If
1534 * so, we finish that here outside of the runqueue lock. (Doing it
1535 * with the lock held can cause deadlocks; see schedule() for
1536 * details.)
1537 */
1538 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1539 __releases(rq->lock)
1540 {
1541 struct mm_struct *mm = rq->prev_mm;
1542 unsigned long prev_task_flags;
1543
1544 rq->prev_mm = NULL;
1545
1546 /*
1547 * A task struct has one reference for the use as "current".
1548 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1549 * calls schedule one last time. The schedule call will never return,
1550 * and the scheduled task must drop that reference.
1551 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1552 * still held, otherwise prev could be scheduled on another cpu, die
1553 * there before we look at prev->state, and then the reference would
1554 * be dropped twice.
1555 * Manfred Spraul <manfred@colorfullife.com>
1556 */
1557 prev_task_flags = prev->flags;
1558 finish_arch_switch(prev);
1559 finish_lock_switch(rq, prev);
1560 if (mm)
1561 mmdrop(mm);
1562 if (unlikely(prev_task_flags & PF_DEAD)) {
1563 /*
1564 * Remove function-return probe instances associated with this
1565 * task and put them back on the free list.
1566 */
1567 kprobe_flush_task(prev);
1568 put_task_struct(prev);
1569 }
1570 }
1571
1572 /**
1573 * schedule_tail - first thing a freshly forked thread must call.
1574 * @prev: the thread we just switched away from.
1575 */
1576 asmlinkage void schedule_tail(task_t *prev)
1577 __releases(rq->lock)
1578 {
1579 runqueue_t *rq = this_rq();
1580 finish_task_switch(rq, prev);
1581 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1582 /* In this case, finish_task_switch does not reenable preemption */
1583 preempt_enable();
1584 #endif
1585 if (current->set_child_tid)
1586 put_user(current->pid, current->set_child_tid);
1587 }
1588
1589 /*
1590 * context_switch - switch to the new MM and the new
1591 * thread's register state.
1592 */
1593 static inline
1594 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1595 {
1596 struct mm_struct *mm = next->mm;
1597 struct mm_struct *oldmm = prev->active_mm;
1598
1599 if (unlikely(!mm)) {
1600 next->active_mm = oldmm;
1601 atomic_inc(&oldmm->mm_count);
1602 enter_lazy_tlb(oldmm, next);
1603 } else
1604 switch_mm(oldmm, mm, next);
1605
1606 if (unlikely(!prev->mm)) {
1607 prev->active_mm = NULL;
1608 WARN_ON(rq->prev_mm);
1609 rq->prev_mm = oldmm;
1610 }
1611
1612 /* Here we just switch the register state and the stack. */
1613 switch_to(prev, next, prev);
1614
1615 return prev;
1616 }
1617
1618 /*
1619 * nr_running, nr_uninterruptible and nr_context_switches:
1620 *
1621 * externally visible scheduler statistics: current number of runnable
1622 * threads, current number of uninterruptible-sleeping threads, total
1623 * number of context switches performed since bootup.
1624 */
1625 unsigned long nr_running(void)
1626 {
1627 unsigned long i, sum = 0;
1628
1629 for_each_online_cpu(i)
1630 sum += cpu_rq(i)->nr_running;
1631
1632 return sum;
1633 }
1634
1635 unsigned long nr_uninterruptible(void)
1636 {
1637 unsigned long i, sum = 0;
1638
1639 for_each_possible_cpu(i)
1640 sum += cpu_rq(i)->nr_uninterruptible;
1641
1642 /*
1643 * Since we read the counters lockless, it might be slightly
1644 * inaccurate. Do not allow it to go below zero though:
1645 */
1646 if (unlikely((long)sum < 0))
1647 sum = 0;
1648
1649 return sum;
1650 }
1651
1652 unsigned long long nr_context_switches(void)
1653 {
1654 unsigned long long i, sum = 0;
1655
1656 for_each_possible_cpu(i)
1657 sum += cpu_rq(i)->nr_switches;
1658
1659 return sum;
1660 }
1661
1662 unsigned long nr_iowait(void)
1663 {
1664 unsigned long i, sum = 0;
1665
1666 for_each_possible_cpu(i)
1667 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1668
1669 return sum;
1670 }
1671
1672 unsigned long nr_active(void)
1673 {
1674 unsigned long i, running = 0, uninterruptible = 0;
1675
1676 for_each_online_cpu(i) {
1677 running += cpu_rq(i)->nr_running;
1678 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1679 }
1680
1681 if (unlikely((long)uninterruptible < 0))
1682 uninterruptible = 0;
1683
1684 return running + uninterruptible;
1685 }
1686
1687 #ifdef CONFIG_SMP
1688
1689 /*
1690 * double_rq_lock - safely lock two runqueues
1691 *
1692 * Note this does not disable interrupts like task_rq_lock,
1693 * you need to do so manually before calling.
1694 */
1695 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1696 __acquires(rq1->lock)
1697 __acquires(rq2->lock)
1698 {
1699 if (rq1 == rq2) {
1700 spin_lock(&rq1->lock);
1701 __acquire(rq2->lock); /* Fake it out ;) */
1702 } else {
1703 if (rq1 < rq2) {
1704 spin_lock(&rq1->lock);
1705 spin_lock(&rq2->lock);
1706 } else {
1707 spin_lock(&rq2->lock);
1708 spin_lock(&rq1->lock);
1709 }
1710 }
1711 }
1712
1713 /*
1714 * double_rq_unlock - safely unlock two runqueues
1715 *
1716 * Note this does not restore interrupts like task_rq_unlock,
1717 * you need to do so manually after calling.
1718 */
1719 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1720 __releases(rq1->lock)
1721 __releases(rq2->lock)
1722 {
1723 spin_unlock(&rq1->lock);
1724 if (rq1 != rq2)
1725 spin_unlock(&rq2->lock);
1726 else
1727 __release(rq2->lock);
1728 }
1729
1730 /*
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 */
1733 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1734 __releases(this_rq->lock)
1735 __acquires(busiest->lock)
1736 __acquires(this_rq->lock)
1737 {
1738 if (unlikely(!spin_trylock(&busiest->lock))) {
1739 if (busiest < this_rq) {
1740 spin_unlock(&this_rq->lock);
1741 spin_lock(&busiest->lock);
1742 spin_lock(&this_rq->lock);
1743 } else
1744 spin_lock(&busiest->lock);
1745 }
1746 }
1747
1748 /*
1749 * If dest_cpu is allowed for this process, migrate the task to it.
1750 * This is accomplished by forcing the cpu_allowed mask to only
1751 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1752 * the cpu_allowed mask is restored.
1753 */
1754 static void sched_migrate_task(task_t *p, int dest_cpu)
1755 {
1756 migration_req_t req;
1757 runqueue_t *rq;
1758 unsigned long flags;
1759
1760 rq = task_rq_lock(p, &flags);
1761 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1762 || unlikely(cpu_is_offline(dest_cpu)))
1763 goto out;
1764
1765 /* force the process onto the specified CPU */
1766 if (migrate_task(p, dest_cpu, &req)) {
1767 /* Need to wait for migration thread (might exit: take ref). */
1768 struct task_struct *mt = rq->migration_thread;
1769 get_task_struct(mt);
1770 task_rq_unlock(rq, &flags);
1771 wake_up_process(mt);
1772 put_task_struct(mt);
1773 wait_for_completion(&req.done);
1774 return;
1775 }
1776 out:
1777 task_rq_unlock(rq, &flags);
1778 }
1779
1780 /*
1781 * sched_exec - execve() is a valuable balancing opportunity, because at
1782 * this point the task has the smallest effective memory and cache footprint.
1783 */
1784 void sched_exec(void)
1785 {
1786 int new_cpu, this_cpu = get_cpu();
1787 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1788 put_cpu();
1789 if (new_cpu != this_cpu)
1790 sched_migrate_task(current, new_cpu);
1791 }
1792
1793 /*
1794 * pull_task - move a task from a remote runqueue to the local runqueue.
1795 * Both runqueues must be locked.
1796 */
1797 static
1798 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1799 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1800 {
1801 dequeue_task(p, src_array);
1802 src_rq->nr_running--;
1803 set_task_cpu(p, this_cpu);
1804 this_rq->nr_running++;
1805 enqueue_task(p, this_array);
1806 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1807 + this_rq->timestamp_last_tick;
1808 /*
1809 * Note that idle threads have a prio of MAX_PRIO, for this test
1810 * to be always true for them.
1811 */
1812 if (TASK_PREEMPTS_CURR(p, this_rq))
1813 resched_task(this_rq->curr);
1814 }
1815
1816 /*
1817 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1818 */
1819 static
1820 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1821 struct sched_domain *sd, enum idle_type idle,
1822 int *all_pinned)
1823 {
1824 /*
1825 * We do not migrate tasks that are:
1826 * 1) running (obviously), or
1827 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1828 * 3) are cache-hot on their current CPU.
1829 */
1830 if (!cpu_isset(this_cpu, p->cpus_allowed))
1831 return 0;
1832 *all_pinned = 0;
1833
1834 if (task_running(rq, p))
1835 return 0;
1836
1837 /*
1838 * Aggressive migration if:
1839 * 1) task is cache cold, or
1840 * 2) too many balance attempts have failed.
1841 */
1842
1843 if (sd->nr_balance_failed > sd->cache_nice_tries)
1844 return 1;
1845
1846 if (task_hot(p, rq->timestamp_last_tick, sd))
1847 return 0;
1848 return 1;
1849 }
1850
1851 /*
1852 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1853 * as part of a balancing operation within "domain". Returns the number of
1854 * tasks moved.
1855 *
1856 * Called with both runqueues locked.
1857 */
1858 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1859 unsigned long max_nr_move, struct sched_domain *sd,
1860 enum idle_type idle, int *all_pinned)
1861 {
1862 prio_array_t *array, *dst_array;
1863 struct list_head *head, *curr;
1864 int idx, pulled = 0, pinned = 0;
1865 task_t *tmp;
1866
1867 if (max_nr_move == 0)
1868 goto out;
1869
1870 pinned = 1;
1871
1872 /*
1873 * We first consider expired tasks. Those will likely not be
1874 * executed in the near future, and they are most likely to
1875 * be cache-cold, thus switching CPUs has the least effect
1876 * on them.
1877 */
1878 if (busiest->expired->nr_active) {
1879 array = busiest->expired;
1880 dst_array = this_rq->expired;
1881 } else {
1882 array = busiest->active;
1883 dst_array = this_rq->active;
1884 }
1885
1886 new_array:
1887 /* Start searching at priority 0: */
1888 idx = 0;
1889 skip_bitmap:
1890 if (!idx)
1891 idx = sched_find_first_bit(array->bitmap);
1892 else
1893 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1894 if (idx >= MAX_PRIO) {
1895 if (array == busiest->expired && busiest->active->nr_active) {
1896 array = busiest->active;
1897 dst_array = this_rq->active;
1898 goto new_array;
1899 }
1900 goto out;
1901 }
1902
1903 head = array->queue + idx;
1904 curr = head->prev;
1905 skip_queue:
1906 tmp = list_entry(curr, task_t, run_list);
1907
1908 curr = curr->prev;
1909
1910 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1911 if (curr != head)
1912 goto skip_queue;
1913 idx++;
1914 goto skip_bitmap;
1915 }
1916
1917 #ifdef CONFIG_SCHEDSTATS
1918 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1919 schedstat_inc(sd, lb_hot_gained[idle]);
1920 #endif
1921
1922 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1923 pulled++;
1924
1925 /* We only want to steal up to the prescribed number of tasks. */
1926 if (pulled < max_nr_move) {
1927 if (curr != head)
1928 goto skip_queue;
1929 idx++;
1930 goto skip_bitmap;
1931 }
1932 out:
1933 /*
1934 * Right now, this is the only place pull_task() is called,
1935 * so we can safely collect pull_task() stats here rather than
1936 * inside pull_task().
1937 */
1938 schedstat_add(sd, lb_gained[idle], pulled);
1939
1940 if (all_pinned)
1941 *all_pinned = pinned;
1942 return pulled;
1943 }
1944
1945 /*
1946 * find_busiest_group finds and returns the busiest CPU group within the
1947 * domain. It calculates and returns the number of tasks which should be
1948 * moved to restore balance via the imbalance parameter.
1949 */
1950 static struct sched_group *
1951 find_busiest_group(struct sched_domain *sd, int this_cpu,
1952 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1953 {
1954 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1955 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1956 unsigned long max_pull;
1957 int load_idx;
1958
1959 max_load = this_load = total_load = total_pwr = 0;
1960 if (idle == NOT_IDLE)
1961 load_idx = sd->busy_idx;
1962 else if (idle == NEWLY_IDLE)
1963 load_idx = sd->newidle_idx;
1964 else
1965 load_idx = sd->idle_idx;
1966
1967 do {
1968 unsigned long load;
1969 int local_group;
1970 int i;
1971
1972 local_group = cpu_isset(this_cpu, group->cpumask);
1973
1974 /* Tally up the load of all CPUs in the group */
1975 avg_load = 0;
1976
1977 for_each_cpu_mask(i, group->cpumask) {
1978 if (*sd_idle && !idle_cpu(i))
1979 *sd_idle = 0;
1980
1981 /* Bias balancing toward cpus of our domain */
1982 if (local_group)
1983 load = target_load(i, load_idx);
1984 else
1985 load = source_load(i, load_idx);
1986
1987 avg_load += load;
1988 }
1989
1990 total_load += avg_load;
1991 total_pwr += group->cpu_power;
1992
1993 /* Adjust by relative CPU power of the group */
1994 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1995
1996 if (local_group) {
1997 this_load = avg_load;
1998 this = group;
1999 } else if (avg_load > max_load) {
2000 max_load = avg_load;
2001 busiest = group;
2002 }
2003 group = group->next;
2004 } while (group != sd->groups);
2005
2006 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2007 goto out_balanced;
2008
2009 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2010
2011 if (this_load >= avg_load ||
2012 100*max_load <= sd->imbalance_pct*this_load)
2013 goto out_balanced;
2014
2015 /*
2016 * We're trying to get all the cpus to the average_load, so we don't
2017 * want to push ourselves above the average load, nor do we wish to
2018 * reduce the max loaded cpu below the average load, as either of these
2019 * actions would just result in more rebalancing later, and ping-pong
2020 * tasks around. Thus we look for the minimum possible imbalance.
2021 * Negative imbalances (*we* are more loaded than anyone else) will
2022 * be counted as no imbalance for these purposes -- we can't fix that
2023 * by pulling tasks to us. Be careful of negative numbers as they'll
2024 * appear as very large values with unsigned longs.
2025 */
2026
2027 /* Don't want to pull so many tasks that a group would go idle */
2028 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2029
2030 /* How much load to actually move to equalise the imbalance */
2031 *imbalance = min(max_pull * busiest->cpu_power,
2032 (avg_load - this_load) * this->cpu_power)
2033 / SCHED_LOAD_SCALE;
2034
2035 if (*imbalance < SCHED_LOAD_SCALE) {
2036 unsigned long pwr_now = 0, pwr_move = 0;
2037 unsigned long tmp;
2038
2039 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2040 *imbalance = 1;
2041 return busiest;
2042 }
2043
2044 /*
2045 * OK, we don't have enough imbalance to justify moving tasks,
2046 * however we may be able to increase total CPU power used by
2047 * moving them.
2048 */
2049
2050 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2051 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2052 pwr_now /= SCHED_LOAD_SCALE;
2053
2054 /* Amount of load we'd subtract */
2055 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2056 if (max_load > tmp)
2057 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2058 max_load - tmp);
2059
2060 /* Amount of load we'd add */
2061 if (max_load*busiest->cpu_power <
2062 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2063 tmp = max_load*busiest->cpu_power/this->cpu_power;
2064 else
2065 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2066 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2067 pwr_move /= SCHED_LOAD_SCALE;
2068
2069 /* Move if we gain throughput */
2070 if (pwr_move <= pwr_now)
2071 goto out_balanced;
2072
2073 *imbalance = 1;
2074 return busiest;
2075 }
2076
2077 /* Get rid of the scaling factor, rounding down as we divide */
2078 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2079 return busiest;
2080
2081 out_balanced:
2082
2083 *imbalance = 0;
2084 return NULL;
2085 }
2086
2087 /*
2088 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2089 */
2090 static runqueue_t *find_busiest_queue(struct sched_group *group,
2091 enum idle_type idle)
2092 {
2093 unsigned long load, max_load = 0;
2094 runqueue_t *busiest = NULL;
2095 int i;
2096
2097 for_each_cpu_mask(i, group->cpumask) {
2098 load = source_load(i, 0);
2099
2100 if (load > max_load) {
2101 max_load = load;
2102 busiest = cpu_rq(i);
2103 }
2104 }
2105
2106 return busiest;
2107 }
2108
2109 /*
2110 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2111 * so long as it is large enough.
2112 */
2113 #define MAX_PINNED_INTERVAL 512
2114
2115 /*
2116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2117 * tasks if there is an imbalance.
2118 *
2119 * Called with this_rq unlocked.
2120 */
2121 static int load_balance(int this_cpu, runqueue_t *this_rq,
2122 struct sched_domain *sd, enum idle_type idle)
2123 {
2124 struct sched_group *group;
2125 runqueue_t *busiest;
2126 unsigned long imbalance;
2127 int nr_moved, all_pinned = 0;
2128 int active_balance = 0;
2129 int sd_idle = 0;
2130
2131 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2132 sd_idle = 1;
2133
2134 schedstat_inc(sd, lb_cnt[idle]);
2135
2136 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2137 if (!group) {
2138 schedstat_inc(sd, lb_nobusyg[idle]);
2139 goto out_balanced;
2140 }
2141
2142 busiest = find_busiest_queue(group, idle);
2143 if (!busiest) {
2144 schedstat_inc(sd, lb_nobusyq[idle]);
2145 goto out_balanced;
2146 }
2147
2148 BUG_ON(busiest == this_rq);
2149
2150 schedstat_add(sd, lb_imbalance[idle], imbalance);
2151
2152 nr_moved = 0;
2153 if (busiest->nr_running > 1) {
2154 /*
2155 * Attempt to move tasks. If find_busiest_group has found
2156 * an imbalance but busiest->nr_running <= 1, the group is
2157 * still unbalanced. nr_moved simply stays zero, so it is
2158 * correctly treated as an imbalance.
2159 */
2160 double_rq_lock(this_rq, busiest);
2161 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2162 imbalance, sd, idle, &all_pinned);
2163 double_rq_unlock(this_rq, busiest);
2164
2165 /* All tasks on this runqueue were pinned by CPU affinity */
2166 if (unlikely(all_pinned))
2167 goto out_balanced;
2168 }
2169
2170 if (!nr_moved) {
2171 schedstat_inc(sd, lb_failed[idle]);
2172 sd->nr_balance_failed++;
2173
2174 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2175
2176 spin_lock(&busiest->lock);
2177
2178 /* don't kick the migration_thread, if the curr
2179 * task on busiest cpu can't be moved to this_cpu
2180 */
2181 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2182 spin_unlock(&busiest->lock);
2183 all_pinned = 1;
2184 goto out_one_pinned;
2185 }
2186
2187 if (!busiest->active_balance) {
2188 busiest->active_balance = 1;
2189 busiest->push_cpu = this_cpu;
2190 active_balance = 1;
2191 }
2192 spin_unlock(&busiest->lock);
2193 if (active_balance)
2194 wake_up_process(busiest->migration_thread);
2195
2196 /*
2197 * We've kicked active balancing, reset the failure
2198 * counter.
2199 */
2200 sd->nr_balance_failed = sd->cache_nice_tries+1;
2201 }
2202 } else
2203 sd->nr_balance_failed = 0;
2204
2205 if (likely(!active_balance)) {
2206 /* We were unbalanced, so reset the balancing interval */
2207 sd->balance_interval = sd->min_interval;
2208 } else {
2209 /*
2210 * If we've begun active balancing, start to back off. This
2211 * case may not be covered by the all_pinned logic if there
2212 * is only 1 task on the busy runqueue (because we don't call
2213 * move_tasks).
2214 */
2215 if (sd->balance_interval < sd->max_interval)
2216 sd->balance_interval *= 2;
2217 }
2218
2219 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2220 return -1;
2221 return nr_moved;
2222
2223 out_balanced:
2224 schedstat_inc(sd, lb_balanced[idle]);
2225
2226 sd->nr_balance_failed = 0;
2227
2228 out_one_pinned:
2229 /* tune up the balancing interval */
2230 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2231 (sd->balance_interval < sd->max_interval))
2232 sd->balance_interval *= 2;
2233
2234 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2235 return -1;
2236 return 0;
2237 }
2238
2239 /*
2240 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2241 * tasks if there is an imbalance.
2242 *
2243 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2244 * this_rq is locked.
2245 */
2246 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2247 struct sched_domain *sd)
2248 {
2249 struct sched_group *group;
2250 runqueue_t *busiest = NULL;
2251 unsigned long imbalance;
2252 int nr_moved = 0;
2253 int sd_idle = 0;
2254
2255 if (sd->flags & SD_SHARE_CPUPOWER)
2256 sd_idle = 1;
2257
2258 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2259 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2260 if (!group) {
2261 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2262 goto out_balanced;
2263 }
2264
2265 busiest = find_busiest_queue(group, NEWLY_IDLE);
2266 if (!busiest) {
2267 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2268 goto out_balanced;
2269 }
2270
2271 BUG_ON(busiest == this_rq);
2272
2273 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2274
2275 nr_moved = 0;
2276 if (busiest->nr_running > 1) {
2277 /* Attempt to move tasks */
2278 double_lock_balance(this_rq, busiest);
2279 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2280 imbalance, sd, NEWLY_IDLE, NULL);
2281 spin_unlock(&busiest->lock);
2282 }
2283
2284 if (!nr_moved) {
2285 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2286 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2287 return -1;
2288 } else
2289 sd->nr_balance_failed = 0;
2290
2291 return nr_moved;
2292
2293 out_balanced:
2294 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2295 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2296 return -1;
2297 sd->nr_balance_failed = 0;
2298 return 0;
2299 }
2300
2301 /*
2302 * idle_balance is called by schedule() if this_cpu is about to become
2303 * idle. Attempts to pull tasks from other CPUs.
2304 */
2305 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2306 {
2307 struct sched_domain *sd;
2308
2309 for_each_domain(this_cpu, sd) {
2310 if (sd->flags & SD_BALANCE_NEWIDLE) {
2311 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2312 /* We've pulled tasks over so stop searching */
2313 break;
2314 }
2315 }
2316 }
2317 }
2318
2319 /*
2320 * active_load_balance is run by migration threads. It pushes running tasks
2321 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2322 * running on each physical CPU where possible, and avoids physical /
2323 * logical imbalances.
2324 *
2325 * Called with busiest_rq locked.
2326 */
2327 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2328 {
2329 struct sched_domain *sd;
2330 runqueue_t *target_rq;
2331 int target_cpu = busiest_rq->push_cpu;
2332
2333 if (busiest_rq->nr_running <= 1)
2334 /* no task to move */
2335 return;
2336
2337 target_rq = cpu_rq(target_cpu);
2338
2339 /*
2340 * This condition is "impossible", if it occurs
2341 * we need to fix it. Originally reported by
2342 * Bjorn Helgaas on a 128-cpu setup.
2343 */
2344 BUG_ON(busiest_rq == target_rq);
2345
2346 /* move a task from busiest_rq to target_rq */
2347 double_lock_balance(busiest_rq, target_rq);
2348
2349 /* Search for an sd spanning us and the target CPU. */
2350 for_each_domain(target_cpu, sd) {
2351 if ((sd->flags & SD_LOAD_BALANCE) &&
2352 cpu_isset(busiest_cpu, sd->span))
2353 break;
2354 }
2355
2356 if (unlikely(sd == NULL))
2357 goto out;
2358
2359 schedstat_inc(sd, alb_cnt);
2360
2361 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2362 schedstat_inc(sd, alb_pushed);
2363 else
2364 schedstat_inc(sd, alb_failed);
2365 out:
2366 spin_unlock(&target_rq->lock);
2367 }
2368
2369 /*
2370 * rebalance_tick will get called every timer tick, on every CPU.
2371 *
2372 * It checks each scheduling domain to see if it is due to be balanced,
2373 * and initiates a balancing operation if so.
2374 *
2375 * Balancing parameters are set up in arch_init_sched_domains.
2376 */
2377
2378 /* Don't have all balancing operations going off at once */
2379 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2380
2381 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2382 enum idle_type idle)
2383 {
2384 unsigned long old_load, this_load;
2385 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2386 struct sched_domain *sd;
2387 int i;
2388
2389 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2390 /* Update our load */
2391 for (i = 0; i < 3; i++) {
2392 unsigned long new_load = this_load;
2393 int scale = 1 << i;
2394 old_load = this_rq->cpu_load[i];
2395 /*
2396 * Round up the averaging division if load is increasing. This
2397 * prevents us from getting stuck on 9 if the load is 10, for
2398 * example.
2399 */
2400 if (new_load > old_load)
2401 new_load += scale-1;
2402 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2403 }
2404
2405 for_each_domain(this_cpu, sd) {
2406 unsigned long interval;
2407
2408 if (!(sd->flags & SD_LOAD_BALANCE))
2409 continue;
2410
2411 interval = sd->balance_interval;
2412 if (idle != SCHED_IDLE)
2413 interval *= sd->busy_factor;
2414
2415 /* scale ms to jiffies */
2416 interval = msecs_to_jiffies(interval);
2417 if (unlikely(!interval))
2418 interval = 1;
2419
2420 if (j - sd->last_balance >= interval) {
2421 if (load_balance(this_cpu, this_rq, sd, idle)) {
2422 /*
2423 * We've pulled tasks over so either we're no
2424 * longer idle, or one of our SMT siblings is
2425 * not idle.
2426 */
2427 idle = NOT_IDLE;
2428 }
2429 sd->last_balance += interval;
2430 }
2431 }
2432 }
2433 #else
2434 /*
2435 * on UP we do not need to balance between CPUs:
2436 */
2437 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2438 {
2439 }
2440 static inline void idle_balance(int cpu, runqueue_t *rq)
2441 {
2442 }
2443 #endif
2444
2445 static inline int wake_priority_sleeper(runqueue_t *rq)
2446 {
2447 int ret = 0;
2448 #ifdef CONFIG_SCHED_SMT
2449 spin_lock(&rq->lock);
2450 /*
2451 * If an SMT sibling task has been put to sleep for priority
2452 * reasons reschedule the idle task to see if it can now run.
2453 */
2454 if (rq->nr_running) {
2455 resched_task(rq->idle);
2456 ret = 1;
2457 }
2458 spin_unlock(&rq->lock);
2459 #endif
2460 return ret;
2461 }
2462
2463 DEFINE_PER_CPU(struct kernel_stat, kstat);
2464
2465 EXPORT_PER_CPU_SYMBOL(kstat);
2466
2467 /*
2468 * This is called on clock ticks and on context switches.
2469 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2470 */
2471 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2472 unsigned long long now)
2473 {
2474 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2475 p->sched_time += now - last;
2476 }
2477
2478 /*
2479 * Return current->sched_time plus any more ns on the sched_clock
2480 * that have not yet been banked.
2481 */
2482 unsigned long long current_sched_time(const task_t *tsk)
2483 {
2484 unsigned long long ns;
2485 unsigned long flags;
2486 local_irq_save(flags);
2487 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2488 ns = tsk->sched_time + (sched_clock() - ns);
2489 local_irq_restore(flags);
2490 return ns;
2491 }
2492
2493 /*
2494 * We place interactive tasks back into the active array, if possible.
2495 *
2496 * To guarantee that this does not starve expired tasks we ignore the
2497 * interactivity of a task if the first expired task had to wait more
2498 * than a 'reasonable' amount of time. This deadline timeout is
2499 * load-dependent, as the frequency of array switched decreases with
2500 * increasing number of running tasks. We also ignore the interactivity
2501 * if a better static_prio task has expired:
2502 */
2503 #define EXPIRED_STARVING(rq) \
2504 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2505 (jiffies - (rq)->expired_timestamp >= \
2506 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2507 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2508
2509 /*
2510 * Account user cpu time to a process.
2511 * @p: the process that the cpu time gets accounted to
2512 * @hardirq_offset: the offset to subtract from hardirq_count()
2513 * @cputime: the cpu time spent in user space since the last update
2514 */
2515 void account_user_time(struct task_struct *p, cputime_t cputime)
2516 {
2517 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2518 cputime64_t tmp;
2519
2520 p->utime = cputime_add(p->utime, cputime);
2521
2522 /* Add user time to cpustat. */
2523 tmp = cputime_to_cputime64(cputime);
2524 if (TASK_NICE(p) > 0)
2525 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2526 else
2527 cpustat->user = cputime64_add(cpustat->user, tmp);
2528 }
2529
2530 /*
2531 * Account system cpu time to a process.
2532 * @p: the process that the cpu time gets accounted to
2533 * @hardirq_offset: the offset to subtract from hardirq_count()
2534 * @cputime: the cpu time spent in kernel space since the last update
2535 */
2536 void account_system_time(struct task_struct *p, int hardirq_offset,
2537 cputime_t cputime)
2538 {
2539 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2540 runqueue_t *rq = this_rq();
2541 cputime64_t tmp;
2542
2543 p->stime = cputime_add(p->stime, cputime);
2544
2545 /* Add system time to cpustat. */
2546 tmp = cputime_to_cputime64(cputime);
2547 if (hardirq_count() - hardirq_offset)
2548 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2549 else if (softirq_count())
2550 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2551 else if (p != rq->idle)
2552 cpustat->system = cputime64_add(cpustat->system, tmp);
2553 else if (atomic_read(&rq->nr_iowait) > 0)
2554 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2555 else
2556 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2557 /* Account for system time used */
2558 acct_update_integrals(p);
2559 }
2560
2561 /*
2562 * Account for involuntary wait time.
2563 * @p: the process from which the cpu time has been stolen
2564 * @steal: the cpu time spent in involuntary wait
2565 */
2566 void account_steal_time(struct task_struct *p, cputime_t steal)
2567 {
2568 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2569 cputime64_t tmp = cputime_to_cputime64(steal);
2570 runqueue_t *rq = this_rq();
2571
2572 if (p == rq->idle) {
2573 p->stime = cputime_add(p->stime, steal);
2574 if (atomic_read(&rq->nr_iowait) > 0)
2575 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2576 else
2577 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2578 } else
2579 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2580 }
2581
2582 /*
2583 * This function gets called by the timer code, with HZ frequency.
2584 * We call it with interrupts disabled.
2585 *
2586 * It also gets called by the fork code, when changing the parent's
2587 * timeslices.
2588 */
2589 void scheduler_tick(void)
2590 {
2591 int cpu = smp_processor_id();
2592 runqueue_t *rq = this_rq();
2593 task_t *p = current;
2594 unsigned long long now = sched_clock();
2595
2596 update_cpu_clock(p, rq, now);
2597
2598 rq->timestamp_last_tick = now;
2599
2600 if (p == rq->idle) {
2601 if (wake_priority_sleeper(rq))
2602 goto out;
2603 rebalance_tick(cpu, rq, SCHED_IDLE);
2604 return;
2605 }
2606
2607 /* Task might have expired already, but not scheduled off yet */
2608 if (p->array != rq->active) {
2609 set_tsk_need_resched(p);
2610 goto out;
2611 }
2612 spin_lock(&rq->lock);
2613 /*
2614 * The task was running during this tick - update the
2615 * time slice counter. Note: we do not update a thread's
2616 * priority until it either goes to sleep or uses up its
2617 * timeslice. This makes it possible for interactive tasks
2618 * to use up their timeslices at their highest priority levels.
2619 */
2620 if (rt_task(p)) {
2621 /*
2622 * RR tasks need a special form of timeslice management.
2623 * FIFO tasks have no timeslices.
2624 */
2625 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2626 p->time_slice = task_timeslice(p);
2627 p->first_time_slice = 0;
2628 set_tsk_need_resched(p);
2629
2630 /* put it at the end of the queue: */
2631 requeue_task(p, rq->active);
2632 }
2633 goto out_unlock;
2634 }
2635 if (!--p->time_slice) {
2636 dequeue_task(p, rq->active);
2637 set_tsk_need_resched(p);
2638 p->prio = effective_prio(p);
2639 p->time_slice = task_timeslice(p);
2640 p->first_time_slice = 0;
2641
2642 if (!rq->expired_timestamp)
2643 rq->expired_timestamp = jiffies;
2644 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2645 enqueue_task(p, rq->expired);
2646 if (p->static_prio < rq->best_expired_prio)
2647 rq->best_expired_prio = p->static_prio;
2648 } else
2649 enqueue_task(p, rq->active);
2650 } else {
2651 /*
2652 * Prevent a too long timeslice allowing a task to monopolize
2653 * the CPU. We do this by splitting up the timeslice into
2654 * smaller pieces.
2655 *
2656 * Note: this does not mean the task's timeslices expire or
2657 * get lost in any way, they just might be preempted by
2658 * another task of equal priority. (one with higher
2659 * priority would have preempted this task already.) We
2660 * requeue this task to the end of the list on this priority
2661 * level, which is in essence a round-robin of tasks with
2662 * equal priority.
2663 *
2664 * This only applies to tasks in the interactive
2665 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2666 */
2667 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2668 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2669 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2670 (p->array == rq->active)) {
2671
2672 requeue_task(p, rq->active);
2673 set_tsk_need_resched(p);
2674 }
2675 }
2676 out_unlock:
2677 spin_unlock(&rq->lock);
2678 out:
2679 rebalance_tick(cpu, rq, NOT_IDLE);
2680 }
2681
2682 #ifdef CONFIG_SCHED_SMT
2683 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2684 {
2685 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2686 if (rq->curr == rq->idle && rq->nr_running)
2687 resched_task(rq->idle);
2688 }
2689
2690 /*
2691 * Called with interrupt disabled and this_rq's runqueue locked.
2692 */
2693 static void wake_sleeping_dependent(int this_cpu)
2694 {
2695 struct sched_domain *tmp, *sd = NULL;
2696 int i;
2697
2698 for_each_domain(this_cpu, tmp) {
2699 if (tmp->flags & SD_SHARE_CPUPOWER) {
2700 sd = tmp;
2701 break;
2702 }
2703 }
2704
2705 if (!sd)
2706 return;
2707
2708 for_each_cpu_mask(i, sd->span) {
2709 runqueue_t *smt_rq = cpu_rq(i);
2710
2711 if (i == this_cpu)
2712 continue;
2713 if (unlikely(!spin_trylock(&smt_rq->lock)))
2714 continue;
2715
2716 wakeup_busy_runqueue(smt_rq);
2717 spin_unlock(&smt_rq->lock);
2718 }
2719 }
2720
2721 /*
2722 * number of 'lost' timeslices this task wont be able to fully
2723 * utilize, if another task runs on a sibling. This models the
2724 * slowdown effect of other tasks running on siblings:
2725 */
2726 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2727 {
2728 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2729 }
2730
2731 /*
2732 * To minimise lock contention and not have to drop this_rq's runlock we only
2733 * trylock the sibling runqueues and bypass those runqueues if we fail to
2734 * acquire their lock. As we only trylock the normal locking order does not
2735 * need to be obeyed.
2736 */
2737 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
2738 {
2739 struct sched_domain *tmp, *sd = NULL;
2740 int ret = 0, i;
2741
2742 /* kernel/rt threads do not participate in dependent sleeping */
2743 if (!p->mm || rt_task(p))
2744 return 0;
2745
2746 for_each_domain(this_cpu, tmp) {
2747 if (tmp->flags & SD_SHARE_CPUPOWER) {
2748 sd = tmp;
2749 break;
2750 }
2751 }
2752
2753 if (!sd)
2754 return 0;
2755
2756 for_each_cpu_mask(i, sd->span) {
2757 runqueue_t *smt_rq;
2758 task_t *smt_curr;
2759
2760 if (i == this_cpu)
2761 continue;
2762
2763 smt_rq = cpu_rq(i);
2764 if (unlikely(!spin_trylock(&smt_rq->lock)))
2765 continue;
2766
2767 smt_curr = smt_rq->curr;
2768
2769 if (!smt_curr->mm)
2770 goto unlock;
2771
2772 /*
2773 * If a user task with lower static priority than the
2774 * running task on the SMT sibling is trying to schedule,
2775 * delay it till there is proportionately less timeslice
2776 * left of the sibling task to prevent a lower priority
2777 * task from using an unfair proportion of the
2778 * physical cpu's resources. -ck
2779 */
2780 if (rt_task(smt_curr)) {
2781 /*
2782 * With real time tasks we run non-rt tasks only
2783 * per_cpu_gain% of the time.
2784 */
2785 if ((jiffies % DEF_TIMESLICE) >
2786 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2787 ret = 1;
2788 } else {
2789 if (smt_curr->static_prio < p->static_prio &&
2790 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2791 smt_slice(smt_curr, sd) > task_timeslice(p))
2792 ret = 1;
2793 }
2794 unlock:
2795 spin_unlock(&smt_rq->lock);
2796 }
2797 return ret;
2798 }
2799 #else
2800 static inline void wake_sleeping_dependent(int this_cpu)
2801 {
2802 }
2803
2804 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
2805 task_t *p)
2806 {
2807 return 0;
2808 }
2809 #endif
2810
2811 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2812
2813 void fastcall add_preempt_count(int val)
2814 {
2815 /*
2816 * Underflow?
2817 */
2818 BUG_ON((preempt_count() < 0));
2819 preempt_count() += val;
2820 /*
2821 * Spinlock count overflowing soon?
2822 */
2823 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2824 }
2825 EXPORT_SYMBOL(add_preempt_count);
2826
2827 void fastcall sub_preempt_count(int val)
2828 {
2829 /*
2830 * Underflow?
2831 */
2832 BUG_ON(val > preempt_count());
2833 /*
2834 * Is the spinlock portion underflowing?
2835 */
2836 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2837 preempt_count() -= val;
2838 }
2839 EXPORT_SYMBOL(sub_preempt_count);
2840
2841 #endif
2842
2843 static inline int interactive_sleep(enum sleep_type sleep_type)
2844 {
2845 return (sleep_type == SLEEP_INTERACTIVE ||
2846 sleep_type == SLEEP_INTERRUPTED);
2847 }
2848
2849 /*
2850 * schedule() is the main scheduler function.
2851 */
2852 asmlinkage void __sched schedule(void)
2853 {
2854 long *switch_count;
2855 task_t *prev, *next;
2856 runqueue_t *rq;
2857 prio_array_t *array;
2858 struct list_head *queue;
2859 unsigned long long now;
2860 unsigned long run_time;
2861 int cpu, idx, new_prio;
2862
2863 /*
2864 * Test if we are atomic. Since do_exit() needs to call into
2865 * schedule() atomically, we ignore that path for now.
2866 * Otherwise, whine if we are scheduling when we should not be.
2867 */
2868 if (unlikely(in_atomic() && !current->exit_state)) {
2869 printk(KERN_ERR "BUG: scheduling while atomic: "
2870 "%s/0x%08x/%d\n",
2871 current->comm, preempt_count(), current->pid);
2872 dump_stack();
2873 }
2874 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2875
2876 need_resched:
2877 preempt_disable();
2878 prev = current;
2879 release_kernel_lock(prev);
2880 need_resched_nonpreemptible:
2881 rq = this_rq();
2882
2883 /*
2884 * The idle thread is not allowed to schedule!
2885 * Remove this check after it has been exercised a bit.
2886 */
2887 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2888 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2889 dump_stack();
2890 }
2891
2892 schedstat_inc(rq, sched_cnt);
2893 now = sched_clock();
2894 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2895 run_time = now - prev->timestamp;
2896 if (unlikely((long long)(now - prev->timestamp) < 0))
2897 run_time = 0;
2898 } else
2899 run_time = NS_MAX_SLEEP_AVG;
2900
2901 /*
2902 * Tasks charged proportionately less run_time at high sleep_avg to
2903 * delay them losing their interactive status
2904 */
2905 run_time /= (CURRENT_BONUS(prev) ? : 1);
2906
2907 spin_lock_irq(&rq->lock);
2908
2909 if (unlikely(prev->flags & PF_DEAD))
2910 prev->state = EXIT_DEAD;
2911
2912 switch_count = &prev->nivcsw;
2913 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2914 switch_count = &prev->nvcsw;
2915 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2916 unlikely(signal_pending(prev))))
2917 prev->state = TASK_RUNNING;
2918 else {
2919 if (prev->state == TASK_UNINTERRUPTIBLE)
2920 rq->nr_uninterruptible++;
2921 deactivate_task(prev, rq);
2922 }
2923 }
2924
2925 cpu = smp_processor_id();
2926 if (unlikely(!rq->nr_running)) {
2927 idle_balance(cpu, rq);
2928 if (!rq->nr_running) {
2929 next = rq->idle;
2930 rq->expired_timestamp = 0;
2931 wake_sleeping_dependent(cpu);
2932 goto switch_tasks;
2933 }
2934 }
2935
2936 array = rq->active;
2937 if (unlikely(!array->nr_active)) {
2938 /*
2939 * Switch the active and expired arrays.
2940 */
2941 schedstat_inc(rq, sched_switch);
2942 rq->active = rq->expired;
2943 rq->expired = array;
2944 array = rq->active;
2945 rq->expired_timestamp = 0;
2946 rq->best_expired_prio = MAX_PRIO;
2947 }
2948
2949 idx = sched_find_first_bit(array->bitmap);
2950 queue = array->queue + idx;
2951 next = list_entry(queue->next, task_t, run_list);
2952
2953 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
2954 unsigned long long delta = now - next->timestamp;
2955 if (unlikely((long long)(now - next->timestamp) < 0))
2956 delta = 0;
2957
2958 if (next->sleep_type == SLEEP_INTERACTIVE)
2959 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2960
2961 array = next->array;
2962 new_prio = recalc_task_prio(next, next->timestamp + delta);
2963
2964 if (unlikely(next->prio != new_prio)) {
2965 dequeue_task(next, array);
2966 next->prio = new_prio;
2967 enqueue_task(next, array);
2968 }
2969 }
2970 next->sleep_type = SLEEP_NORMAL;
2971 if (dependent_sleeper(cpu, rq, next))
2972 next = rq->idle;
2973 switch_tasks:
2974 if (next == rq->idle)
2975 schedstat_inc(rq, sched_goidle);
2976 prefetch(next);
2977 prefetch_stack(next);
2978 clear_tsk_need_resched(prev);
2979 rcu_qsctr_inc(task_cpu(prev));
2980
2981 update_cpu_clock(prev, rq, now);
2982
2983 prev->sleep_avg -= run_time;
2984 if ((long)prev->sleep_avg <= 0)
2985 prev->sleep_avg = 0;
2986 prev->timestamp = prev->last_ran = now;
2987
2988 sched_info_switch(prev, next);
2989 if (likely(prev != next)) {
2990 next->timestamp = now;
2991 rq->nr_switches++;
2992 rq->curr = next;
2993 ++*switch_count;
2994
2995 prepare_task_switch(rq, next);
2996 prev = context_switch(rq, prev, next);
2997 barrier();
2998 /*
2999 * this_rq must be evaluated again because prev may have moved
3000 * CPUs since it called schedule(), thus the 'rq' on its stack
3001 * frame will be invalid.
3002 */
3003 finish_task_switch(this_rq(), prev);
3004 } else
3005 spin_unlock_irq(&rq->lock);
3006
3007 prev = current;
3008 if (unlikely(reacquire_kernel_lock(prev) < 0))
3009 goto need_resched_nonpreemptible;
3010 preempt_enable_no_resched();
3011 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3012 goto need_resched;
3013 }
3014
3015 EXPORT_SYMBOL(schedule);
3016
3017 #ifdef CONFIG_PREEMPT
3018 /*
3019 * this is is the entry point to schedule() from in-kernel preemption
3020 * off of preempt_enable. Kernel preemptions off return from interrupt
3021 * occur there and call schedule directly.
3022 */
3023 asmlinkage void __sched preempt_schedule(void)
3024 {
3025 struct thread_info *ti = current_thread_info();
3026 #ifdef CONFIG_PREEMPT_BKL
3027 struct task_struct *task = current;
3028 int saved_lock_depth;
3029 #endif
3030 /*
3031 * If there is a non-zero preempt_count or interrupts are disabled,
3032 * we do not want to preempt the current task. Just return..
3033 */
3034 if (unlikely(ti->preempt_count || irqs_disabled()))
3035 return;
3036
3037 need_resched:
3038 add_preempt_count(PREEMPT_ACTIVE);
3039 /*
3040 * We keep the big kernel semaphore locked, but we
3041 * clear ->lock_depth so that schedule() doesnt
3042 * auto-release the semaphore:
3043 */
3044 #ifdef CONFIG_PREEMPT_BKL
3045 saved_lock_depth = task->lock_depth;
3046 task->lock_depth = -1;
3047 #endif
3048 schedule();
3049 #ifdef CONFIG_PREEMPT_BKL
3050 task->lock_depth = saved_lock_depth;
3051 #endif
3052 sub_preempt_count(PREEMPT_ACTIVE);
3053
3054 /* we could miss a preemption opportunity between schedule and now */
3055 barrier();
3056 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3057 goto need_resched;
3058 }
3059
3060 EXPORT_SYMBOL(preempt_schedule);
3061
3062 /*
3063 * this is is the entry point to schedule() from kernel preemption
3064 * off of irq context.
3065 * Note, that this is called and return with irqs disabled. This will
3066 * protect us against recursive calling from irq.
3067 */
3068 asmlinkage void __sched preempt_schedule_irq(void)
3069 {
3070 struct thread_info *ti = current_thread_info();
3071 #ifdef CONFIG_PREEMPT_BKL
3072 struct task_struct *task = current;
3073 int saved_lock_depth;
3074 #endif
3075 /* Catch callers which need to be fixed*/
3076 BUG_ON(ti->preempt_count || !irqs_disabled());
3077
3078 need_resched:
3079 add_preempt_count(PREEMPT_ACTIVE);
3080 /*
3081 * We keep the big kernel semaphore locked, but we
3082 * clear ->lock_depth so that schedule() doesnt
3083 * auto-release the semaphore:
3084 */
3085 #ifdef CONFIG_PREEMPT_BKL
3086 saved_lock_depth = task->lock_depth;
3087 task->lock_depth = -1;
3088 #endif
3089 local_irq_enable();
3090 schedule();
3091 local_irq_disable();
3092 #ifdef CONFIG_PREEMPT_BKL
3093 task->lock_depth = saved_lock_depth;
3094 #endif
3095 sub_preempt_count(PREEMPT_ACTIVE);
3096
3097 /* we could miss a preemption opportunity between schedule and now */
3098 barrier();
3099 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3100 goto need_resched;
3101 }
3102
3103 #endif /* CONFIG_PREEMPT */
3104
3105 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3106 void *key)
3107 {
3108 task_t *p = curr->private;
3109 return try_to_wake_up(p, mode, sync);
3110 }
3111
3112 EXPORT_SYMBOL(default_wake_function);
3113
3114 /*
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3118 *
3119 * There are circumstances in which we can try to wake a task which has already
3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3122 */
3123 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3124 int nr_exclusive, int sync, void *key)
3125 {
3126 struct list_head *tmp, *next;
3127
3128 list_for_each_safe(tmp, next, &q->task_list) {
3129 wait_queue_t *curr;
3130 unsigned flags;
3131 curr = list_entry(tmp, wait_queue_t, task_list);
3132 flags = curr->flags;
3133 if (curr->func(curr, mode, sync, key) &&
3134 (flags & WQ_FLAG_EXCLUSIVE) &&
3135 !--nr_exclusive)
3136 break;
3137 }
3138 }
3139
3140 /**
3141 * __wake_up - wake up threads blocked on a waitqueue.
3142 * @q: the waitqueue
3143 * @mode: which threads
3144 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3145 * @key: is directly passed to the wakeup function
3146 */
3147 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3148 int nr_exclusive, void *key)
3149 {
3150 unsigned long flags;
3151
3152 spin_lock_irqsave(&q->lock, flags);
3153 __wake_up_common(q, mode, nr_exclusive, 0, key);
3154 spin_unlock_irqrestore(&q->lock, flags);
3155 }
3156
3157 EXPORT_SYMBOL(__wake_up);
3158
3159 /*
3160 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3161 */
3162 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3163 {
3164 __wake_up_common(q, mode, 1, 0, NULL);
3165 }
3166
3167 /**
3168 * __wake_up_sync - wake up threads blocked on a waitqueue.
3169 * @q: the waitqueue
3170 * @mode: which threads
3171 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3172 *
3173 * The sync wakeup differs that the waker knows that it will schedule
3174 * away soon, so while the target thread will be woken up, it will not
3175 * be migrated to another CPU - ie. the two threads are 'synchronized'
3176 * with each other. This can prevent needless bouncing between CPUs.
3177 *
3178 * On UP it can prevent extra preemption.
3179 */
3180 void fastcall
3181 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3182 {
3183 unsigned long flags;
3184 int sync = 1;
3185
3186 if (unlikely(!q))
3187 return;
3188
3189 if (unlikely(!nr_exclusive))
3190 sync = 0;
3191
3192 spin_lock_irqsave(&q->lock, flags);
3193 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3194 spin_unlock_irqrestore(&q->lock, flags);
3195 }
3196 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3197
3198 void fastcall complete(struct completion *x)
3199 {
3200 unsigned long flags;
3201
3202 spin_lock_irqsave(&x->wait.lock, flags);
3203 x->done++;
3204 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3205 1, 0, NULL);
3206 spin_unlock_irqrestore(&x->wait.lock, flags);
3207 }
3208 EXPORT_SYMBOL(complete);
3209
3210 void fastcall complete_all(struct completion *x)
3211 {
3212 unsigned long flags;
3213
3214 spin_lock_irqsave(&x->wait.lock, flags);
3215 x->done += UINT_MAX/2;
3216 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3217 0, 0, NULL);
3218 spin_unlock_irqrestore(&x->wait.lock, flags);
3219 }
3220 EXPORT_SYMBOL(complete_all);
3221
3222 void fastcall __sched wait_for_completion(struct completion *x)
3223 {
3224 might_sleep();
3225 spin_lock_irq(&x->wait.lock);
3226 if (!x->done) {
3227 DECLARE_WAITQUEUE(wait, current);
3228
3229 wait.flags |= WQ_FLAG_EXCLUSIVE;
3230 __add_wait_queue_tail(&x->wait, &wait);
3231 do {
3232 __set_current_state(TASK_UNINTERRUPTIBLE);
3233 spin_unlock_irq(&x->wait.lock);
3234 schedule();
3235 spin_lock_irq(&x->wait.lock);
3236 } while (!x->done);
3237 __remove_wait_queue(&x->wait, &wait);
3238 }
3239 x->done--;
3240 spin_unlock_irq(&x->wait.lock);
3241 }
3242 EXPORT_SYMBOL(wait_for_completion);
3243
3244 unsigned long fastcall __sched
3245 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3246 {
3247 might_sleep();
3248
3249 spin_lock_irq(&x->wait.lock);
3250 if (!x->done) {
3251 DECLARE_WAITQUEUE(wait, current);
3252
3253 wait.flags |= WQ_FLAG_EXCLUSIVE;
3254 __add_wait_queue_tail(&x->wait, &wait);
3255 do {
3256 __set_current_state(TASK_UNINTERRUPTIBLE);
3257 spin_unlock_irq(&x->wait.lock);
3258 timeout = schedule_timeout(timeout);
3259 spin_lock_irq(&x->wait.lock);
3260 if (!timeout) {
3261 __remove_wait_queue(&x->wait, &wait);
3262 goto out;
3263 }
3264 } while (!x->done);
3265 __remove_wait_queue(&x->wait, &wait);
3266 }
3267 x->done--;
3268 out:
3269 spin_unlock_irq(&x->wait.lock);
3270 return timeout;
3271 }
3272 EXPORT_SYMBOL(wait_for_completion_timeout);
3273
3274 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3275 {
3276 int ret = 0;
3277
3278 might_sleep();
3279
3280 spin_lock_irq(&x->wait.lock);
3281 if (!x->done) {
3282 DECLARE_WAITQUEUE(wait, current);
3283
3284 wait.flags |= WQ_FLAG_EXCLUSIVE;
3285 __add_wait_queue_tail(&x->wait, &wait);
3286 do {
3287 if (signal_pending(current)) {
3288 ret = -ERESTARTSYS;
3289 __remove_wait_queue(&x->wait, &wait);
3290 goto out;
3291 }
3292 __set_current_state(TASK_INTERRUPTIBLE);
3293 spin_unlock_irq(&x->wait.lock);
3294 schedule();
3295 spin_lock_irq(&x->wait.lock);
3296 } while (!x->done);
3297 __remove_wait_queue(&x->wait, &wait);
3298 }
3299 x->done--;
3300 out:
3301 spin_unlock_irq(&x->wait.lock);
3302
3303 return ret;
3304 }
3305 EXPORT_SYMBOL(wait_for_completion_interruptible);
3306
3307 unsigned long fastcall __sched
3308 wait_for_completion_interruptible_timeout(struct completion *x,
3309 unsigned long timeout)
3310 {
3311 might_sleep();
3312
3313 spin_lock_irq(&x->wait.lock);
3314 if (!x->done) {
3315 DECLARE_WAITQUEUE(wait, current);
3316
3317 wait.flags |= WQ_FLAG_EXCLUSIVE;
3318 __add_wait_queue_tail(&x->wait, &wait);
3319 do {
3320 if (signal_pending(current)) {
3321 timeout = -ERESTARTSYS;
3322 __remove_wait_queue(&x->wait, &wait);
3323 goto out;
3324 }
3325 __set_current_state(TASK_INTERRUPTIBLE);
3326 spin_unlock_irq(&x->wait.lock);
3327 timeout = schedule_timeout(timeout);
3328 spin_lock_irq(&x->wait.lock);
3329 if (!timeout) {
3330 __remove_wait_queue(&x->wait, &wait);
3331 goto out;
3332 }
3333 } while (!x->done);
3334 __remove_wait_queue(&x->wait, &wait);
3335 }
3336 x->done--;
3337 out:
3338 spin_unlock_irq(&x->wait.lock);
3339 return timeout;
3340 }
3341 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3342
3343
3344 #define SLEEP_ON_VAR \
3345 unsigned long flags; \
3346 wait_queue_t wait; \
3347 init_waitqueue_entry(&wait, current);
3348
3349 #define SLEEP_ON_HEAD \
3350 spin_lock_irqsave(&q->lock,flags); \
3351 __add_wait_queue(q, &wait); \
3352 spin_unlock(&q->lock);
3353
3354 #define SLEEP_ON_TAIL \
3355 spin_lock_irq(&q->lock); \
3356 __remove_wait_queue(q, &wait); \
3357 spin_unlock_irqrestore(&q->lock, flags);
3358
3359 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3360 {
3361 SLEEP_ON_VAR
3362
3363 current->state = TASK_INTERRUPTIBLE;
3364
3365 SLEEP_ON_HEAD
3366 schedule();
3367 SLEEP_ON_TAIL
3368 }
3369
3370 EXPORT_SYMBOL(interruptible_sleep_on);
3371
3372 long fastcall __sched
3373 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3374 {
3375 SLEEP_ON_VAR
3376
3377 current->state = TASK_INTERRUPTIBLE;
3378
3379 SLEEP_ON_HEAD
3380 timeout = schedule_timeout(timeout);
3381 SLEEP_ON_TAIL
3382
3383 return timeout;
3384 }
3385
3386 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3387
3388 void fastcall __sched sleep_on(wait_queue_head_t *q)
3389 {
3390 SLEEP_ON_VAR
3391
3392 current->state = TASK_UNINTERRUPTIBLE;
3393
3394 SLEEP_ON_HEAD
3395 schedule();
3396 SLEEP_ON_TAIL
3397 }
3398
3399 EXPORT_SYMBOL(sleep_on);
3400
3401 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3402 {
3403 SLEEP_ON_VAR
3404
3405 current->state = TASK_UNINTERRUPTIBLE;
3406
3407 SLEEP_ON_HEAD
3408 timeout = schedule_timeout(timeout);
3409 SLEEP_ON_TAIL
3410
3411 return timeout;
3412 }
3413
3414 EXPORT_SYMBOL(sleep_on_timeout);
3415
3416 void set_user_nice(task_t *p, long nice)
3417 {
3418 unsigned long flags;
3419 prio_array_t *array;
3420 runqueue_t *rq;
3421 int old_prio, new_prio, delta;
3422
3423 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3424 return;
3425 /*
3426 * We have to be careful, if called from sys_setpriority(),
3427 * the task might be in the middle of scheduling on another CPU.
3428 */
3429 rq = task_rq_lock(p, &flags);
3430 /*
3431 * The RT priorities are set via sched_setscheduler(), but we still
3432 * allow the 'normal' nice value to be set - but as expected
3433 * it wont have any effect on scheduling until the task is
3434 * not SCHED_NORMAL/SCHED_BATCH:
3435 */
3436 if (rt_task(p)) {
3437 p->static_prio = NICE_TO_PRIO(nice);
3438 goto out_unlock;
3439 }
3440 array = p->array;
3441 if (array)
3442 dequeue_task(p, array);
3443
3444 old_prio = p->prio;
3445 new_prio = NICE_TO_PRIO(nice);
3446 delta = new_prio - old_prio;
3447 p->static_prio = NICE_TO_PRIO(nice);
3448 p->prio += delta;
3449
3450 if (array) {
3451 enqueue_task(p, array);
3452 /*
3453 * If the task increased its priority or is running and
3454 * lowered its priority, then reschedule its CPU:
3455 */
3456 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3457 resched_task(rq->curr);
3458 }
3459 out_unlock:
3460 task_rq_unlock(rq, &flags);
3461 }
3462
3463 EXPORT_SYMBOL(set_user_nice);
3464
3465 /*
3466 * can_nice - check if a task can reduce its nice value
3467 * @p: task
3468 * @nice: nice value
3469 */
3470 int can_nice(const task_t *p, const int nice)
3471 {
3472 /* convert nice value [19,-20] to rlimit style value [1,40] */
3473 int nice_rlim = 20 - nice;
3474 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3475 capable(CAP_SYS_NICE));
3476 }
3477
3478 #ifdef __ARCH_WANT_SYS_NICE
3479
3480 /*
3481 * sys_nice - change the priority of the current process.
3482 * @increment: priority increment
3483 *
3484 * sys_setpriority is a more generic, but much slower function that
3485 * does similar things.
3486 */
3487 asmlinkage long sys_nice(int increment)
3488 {
3489 int retval;
3490 long nice;
3491
3492 /*
3493 * Setpriority might change our priority at the same moment.
3494 * We don't have to worry. Conceptually one call occurs first
3495 * and we have a single winner.
3496 */
3497 if (increment < -40)
3498 increment = -40;
3499 if (increment > 40)
3500 increment = 40;
3501
3502 nice = PRIO_TO_NICE(current->static_prio) + increment;
3503 if (nice < -20)
3504 nice = -20;
3505 if (nice > 19)
3506 nice = 19;
3507
3508 if (increment < 0 && !can_nice(current, nice))
3509 return -EPERM;
3510
3511 retval = security_task_setnice(current, nice);
3512 if (retval)
3513 return retval;
3514
3515 set_user_nice(current, nice);
3516 return 0;
3517 }
3518
3519 #endif
3520
3521 /**
3522 * task_prio - return the priority value of a given task.
3523 * @p: the task in question.
3524 *
3525 * This is the priority value as seen by users in /proc.
3526 * RT tasks are offset by -200. Normal tasks are centered
3527 * around 0, value goes from -16 to +15.
3528 */
3529 int task_prio(const task_t *p)
3530 {
3531 return p->prio - MAX_RT_PRIO;
3532 }
3533
3534 /**
3535 * task_nice - return the nice value of a given task.
3536 * @p: the task in question.
3537 */
3538 int task_nice(const task_t *p)
3539 {
3540 return TASK_NICE(p);
3541 }
3542 EXPORT_SYMBOL_GPL(task_nice);
3543
3544 /**
3545 * idle_cpu - is a given cpu idle currently?
3546 * @cpu: the processor in question.
3547 */
3548 int idle_cpu(int cpu)
3549 {
3550 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3551 }
3552
3553 /**
3554 * idle_task - return the idle task for a given cpu.
3555 * @cpu: the processor in question.
3556 */
3557 task_t *idle_task(int cpu)
3558 {
3559 return cpu_rq(cpu)->idle;
3560 }
3561
3562 /**
3563 * find_process_by_pid - find a process with a matching PID value.
3564 * @pid: the pid in question.
3565 */
3566 static inline task_t *find_process_by_pid(pid_t pid)
3567 {
3568 return pid ? find_task_by_pid(pid) : current;
3569 }
3570
3571 /* Actually do priority change: must hold rq lock. */
3572 static void __setscheduler(struct task_struct *p, int policy, int prio)
3573 {
3574 BUG_ON(p->array);
3575 p->policy = policy;
3576 p->rt_priority = prio;
3577 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3578 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3579 } else {
3580 p->prio = p->static_prio;
3581 /*
3582 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3583 */
3584 if (policy == SCHED_BATCH)
3585 p->sleep_avg = 0;
3586 }
3587 }
3588
3589 /**
3590 * sched_setscheduler - change the scheduling policy and/or RT priority of
3591 * a thread.
3592 * @p: the task in question.
3593 * @policy: new policy.
3594 * @param: structure containing the new RT priority.
3595 */
3596 int sched_setscheduler(struct task_struct *p, int policy,
3597 struct sched_param *param)
3598 {
3599 int retval;
3600 int oldprio, oldpolicy = -1;
3601 prio_array_t *array;
3602 unsigned long flags;
3603 runqueue_t *rq;
3604
3605 recheck:
3606 /* double check policy once rq lock held */
3607 if (policy < 0)
3608 policy = oldpolicy = p->policy;
3609 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3610 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3611 return -EINVAL;
3612 /*
3613 * Valid priorities for SCHED_FIFO and SCHED_RR are
3614 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3615 * SCHED_BATCH is 0.
3616 */
3617 if (param->sched_priority < 0 ||
3618 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3619 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3620 return -EINVAL;
3621 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3622 != (param->sched_priority == 0))
3623 return -EINVAL;
3624
3625 /*
3626 * Allow unprivileged RT tasks to decrease priority:
3627 */
3628 if (!capable(CAP_SYS_NICE)) {
3629 /*
3630 * can't change policy, except between SCHED_NORMAL
3631 * and SCHED_BATCH:
3632 */
3633 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3634 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3635 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3636 return -EPERM;
3637 /* can't increase priority */
3638 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3639 param->sched_priority > p->rt_priority &&
3640 param->sched_priority >
3641 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3642 return -EPERM;
3643 /* can't change other user's priorities */
3644 if ((current->euid != p->euid) &&
3645 (current->euid != p->uid))
3646 return -EPERM;
3647 }
3648
3649 retval = security_task_setscheduler(p, policy, param);
3650 if (retval)
3651 return retval;
3652 /*
3653 * To be able to change p->policy safely, the apropriate
3654 * runqueue lock must be held.
3655 */
3656 rq = task_rq_lock(p, &flags);
3657 /* recheck policy now with rq lock held */
3658 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3659 policy = oldpolicy = -1;
3660 task_rq_unlock(rq, &flags);
3661 goto recheck;
3662 }
3663 array = p->array;
3664 if (array)
3665 deactivate_task(p, rq);
3666 oldprio = p->prio;
3667 __setscheduler(p, policy, param->sched_priority);
3668 if (array) {
3669 __activate_task(p, rq);
3670 /*
3671 * Reschedule if we are currently running on this runqueue and
3672 * our priority decreased, or if we are not currently running on
3673 * this runqueue and our priority is higher than the current's
3674 */
3675 if (task_running(rq, p)) {
3676 if (p->prio > oldprio)
3677 resched_task(rq->curr);
3678 } else if (TASK_PREEMPTS_CURR(p, rq))
3679 resched_task(rq->curr);
3680 }
3681 task_rq_unlock(rq, &flags);
3682 return 0;
3683 }
3684 EXPORT_SYMBOL_GPL(sched_setscheduler);
3685
3686 static int
3687 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3688 {
3689 int retval;
3690 struct sched_param lparam;
3691 struct task_struct *p;
3692
3693 if (!param || pid < 0)
3694 return -EINVAL;
3695 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3696 return -EFAULT;
3697 read_lock_irq(&tasklist_lock);
3698 p = find_process_by_pid(pid);
3699 if (!p) {
3700 read_unlock_irq(&tasklist_lock);
3701 return -ESRCH;
3702 }
3703 retval = sched_setscheduler(p, policy, &lparam);
3704 read_unlock_irq(&tasklist_lock);
3705 return retval;
3706 }
3707
3708 /**
3709 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3710 * @pid: the pid in question.
3711 * @policy: new policy.
3712 * @param: structure containing the new RT priority.
3713 */
3714 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3715 struct sched_param __user *param)
3716 {
3717 /* negative values for policy are not valid */
3718 if (policy < 0)
3719 return -EINVAL;
3720
3721 return do_sched_setscheduler(pid, policy, param);
3722 }
3723
3724 /**
3725 * sys_sched_setparam - set/change the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the new RT priority.
3728 */
3729 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3730 {
3731 return do_sched_setscheduler(pid, -1, param);
3732 }
3733
3734 /**
3735 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3736 * @pid: the pid in question.
3737 */
3738 asmlinkage long sys_sched_getscheduler(pid_t pid)
3739 {
3740 int retval = -EINVAL;
3741 task_t *p;
3742
3743 if (pid < 0)
3744 goto out_nounlock;
3745
3746 retval = -ESRCH;
3747 read_lock(&tasklist_lock);
3748 p = find_process_by_pid(pid);
3749 if (p) {
3750 retval = security_task_getscheduler(p);
3751 if (!retval)
3752 retval = p->policy;
3753 }
3754 read_unlock(&tasklist_lock);
3755
3756 out_nounlock:
3757 return retval;
3758 }
3759
3760 /**
3761 * sys_sched_getscheduler - get the RT priority of a thread
3762 * @pid: the pid in question.
3763 * @param: structure containing the RT priority.
3764 */
3765 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3766 {
3767 struct sched_param lp;
3768 int retval = -EINVAL;
3769 task_t *p;
3770
3771 if (!param || pid < 0)
3772 goto out_nounlock;
3773
3774 read_lock(&tasklist_lock);
3775 p = find_process_by_pid(pid);
3776 retval = -ESRCH;
3777 if (!p)
3778 goto out_unlock;
3779
3780 retval = security_task_getscheduler(p);
3781 if (retval)
3782 goto out_unlock;
3783
3784 lp.sched_priority = p->rt_priority;
3785 read_unlock(&tasklist_lock);
3786
3787 /*
3788 * This one might sleep, we cannot do it with a spinlock held ...
3789 */
3790 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3791
3792 out_nounlock:
3793 return retval;
3794
3795 out_unlock:
3796 read_unlock(&tasklist_lock);
3797 return retval;
3798 }
3799
3800 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3801 {
3802 task_t *p;
3803 int retval;
3804 cpumask_t cpus_allowed;
3805
3806 lock_cpu_hotplug();
3807 read_lock(&tasklist_lock);
3808
3809 p = find_process_by_pid(pid);
3810 if (!p) {
3811 read_unlock(&tasklist_lock);
3812 unlock_cpu_hotplug();
3813 return -ESRCH;
3814 }
3815
3816 /*
3817 * It is not safe to call set_cpus_allowed with the
3818 * tasklist_lock held. We will bump the task_struct's
3819 * usage count and then drop tasklist_lock.
3820 */
3821 get_task_struct(p);
3822 read_unlock(&tasklist_lock);
3823
3824 retval = -EPERM;
3825 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3826 !capable(CAP_SYS_NICE))
3827 goto out_unlock;
3828
3829 retval = security_task_setscheduler(p, 0, NULL);
3830 if (retval)
3831 goto out_unlock;
3832
3833 cpus_allowed = cpuset_cpus_allowed(p);
3834 cpus_and(new_mask, new_mask, cpus_allowed);
3835 retval = set_cpus_allowed(p, new_mask);
3836
3837 out_unlock:
3838 put_task_struct(p);
3839 unlock_cpu_hotplug();
3840 return retval;
3841 }
3842
3843 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3844 cpumask_t *new_mask)
3845 {
3846 if (len < sizeof(cpumask_t)) {
3847 memset(new_mask, 0, sizeof(cpumask_t));
3848 } else if (len > sizeof(cpumask_t)) {
3849 len = sizeof(cpumask_t);
3850 }
3851 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3852 }
3853
3854 /**
3855 * sys_sched_setaffinity - set the cpu affinity of a process
3856 * @pid: pid of the process
3857 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3858 * @user_mask_ptr: user-space pointer to the new cpu mask
3859 */
3860 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3861 unsigned long __user *user_mask_ptr)
3862 {
3863 cpumask_t new_mask;
3864 int retval;
3865
3866 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3867 if (retval)
3868 return retval;
3869
3870 return sched_setaffinity(pid, new_mask);
3871 }
3872
3873 /*
3874 * Represents all cpu's present in the system
3875 * In systems capable of hotplug, this map could dynamically grow
3876 * as new cpu's are detected in the system via any platform specific
3877 * method, such as ACPI for e.g.
3878 */
3879
3880 cpumask_t cpu_present_map __read_mostly;
3881 EXPORT_SYMBOL(cpu_present_map);
3882
3883 #ifndef CONFIG_SMP
3884 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3885 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3886 #endif
3887
3888 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3889 {
3890 int retval;
3891 task_t *p;
3892
3893 lock_cpu_hotplug();
3894 read_lock(&tasklist_lock);
3895
3896 retval = -ESRCH;
3897 p = find_process_by_pid(pid);
3898 if (!p)
3899 goto out_unlock;
3900
3901 retval = security_task_getscheduler(p);
3902 if (retval)
3903 goto out_unlock;
3904
3905 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3906
3907 out_unlock:
3908 read_unlock(&tasklist_lock);
3909 unlock_cpu_hotplug();
3910 if (retval)
3911 return retval;
3912
3913 return 0;
3914 }
3915
3916 /**
3917 * sys_sched_getaffinity - get the cpu affinity of a process
3918 * @pid: pid of the process
3919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3920 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3921 */
3922 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3923 unsigned long __user *user_mask_ptr)
3924 {
3925 int ret;
3926 cpumask_t mask;
3927
3928 if (len < sizeof(cpumask_t))
3929 return -EINVAL;
3930
3931 ret = sched_getaffinity(pid, &mask);
3932 if (ret < 0)
3933 return ret;
3934
3935 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3936 return -EFAULT;
3937
3938 return sizeof(cpumask_t);
3939 }
3940
3941 /**
3942 * sys_sched_yield - yield the current processor to other threads.
3943 *
3944 * this function yields the current CPU by moving the calling thread
3945 * to the expired array. If there are no other threads running on this
3946 * CPU then this function will return.
3947 */
3948 asmlinkage long sys_sched_yield(void)
3949 {
3950 runqueue_t *rq = this_rq_lock();
3951 prio_array_t *array = current->array;
3952 prio_array_t *target = rq->expired;
3953
3954 schedstat_inc(rq, yld_cnt);
3955 /*
3956 * We implement yielding by moving the task into the expired
3957 * queue.
3958 *
3959 * (special rule: RT tasks will just roundrobin in the active
3960 * array.)
3961 */
3962 if (rt_task(current))
3963 target = rq->active;
3964
3965 if (array->nr_active == 1) {
3966 schedstat_inc(rq, yld_act_empty);
3967 if (!rq->expired->nr_active)
3968 schedstat_inc(rq, yld_both_empty);
3969 } else if (!rq->expired->nr_active)
3970 schedstat_inc(rq, yld_exp_empty);
3971
3972 if (array != target) {
3973 dequeue_task(current, array);
3974 enqueue_task(current, target);
3975 } else
3976 /*
3977 * requeue_task is cheaper so perform that if possible.
3978 */
3979 requeue_task(current, array);
3980
3981 /*
3982 * Since we are going to call schedule() anyway, there's
3983 * no need to preempt or enable interrupts:
3984 */
3985 __release(rq->lock);
3986 _raw_spin_unlock(&rq->lock);
3987 preempt_enable_no_resched();
3988
3989 schedule();
3990
3991 return 0;
3992 }
3993
3994 static inline void __cond_resched(void)
3995 {
3996 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
3997 __might_sleep(__FILE__, __LINE__);
3998 #endif
3999 /*
4000 * The BKS might be reacquired before we have dropped
4001 * PREEMPT_ACTIVE, which could trigger a second
4002 * cond_resched() call.
4003 */
4004 if (unlikely(preempt_count()))
4005 return;
4006 if (unlikely(system_state != SYSTEM_RUNNING))
4007 return;
4008 do {
4009 add_preempt_count(PREEMPT_ACTIVE);
4010 schedule();
4011 sub_preempt_count(PREEMPT_ACTIVE);
4012 } while (need_resched());
4013 }
4014
4015 int __sched cond_resched(void)
4016 {
4017 if (need_resched()) {
4018 __cond_resched();
4019 return 1;
4020 }
4021 return 0;
4022 }
4023
4024 EXPORT_SYMBOL(cond_resched);
4025
4026 /*
4027 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4028 * call schedule, and on return reacquire the lock.
4029 *
4030 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4031 * operations here to prevent schedule() from being called twice (once via
4032 * spin_unlock(), once by hand).
4033 */
4034 int cond_resched_lock(spinlock_t *lock)
4035 {
4036 int ret = 0;
4037
4038 if (need_lockbreak(lock)) {
4039 spin_unlock(lock);
4040 cpu_relax();
4041 ret = 1;
4042 spin_lock(lock);
4043 }
4044 if (need_resched()) {
4045 _raw_spin_unlock(lock);
4046 preempt_enable_no_resched();
4047 __cond_resched();
4048 ret = 1;
4049 spin_lock(lock);
4050 }
4051 return ret;
4052 }
4053
4054 EXPORT_SYMBOL(cond_resched_lock);
4055
4056 int __sched cond_resched_softirq(void)
4057 {
4058 BUG_ON(!in_softirq());
4059
4060 if (need_resched()) {
4061 __local_bh_enable();
4062 __cond_resched();
4063 local_bh_disable();
4064 return 1;
4065 }
4066 return 0;
4067 }
4068
4069 EXPORT_SYMBOL(cond_resched_softirq);
4070
4071
4072 /**
4073 * yield - yield the current processor to other threads.
4074 *
4075 * this is a shortcut for kernel-space yielding - it marks the
4076 * thread runnable and calls sys_sched_yield().
4077 */
4078 void __sched yield(void)
4079 {
4080 set_current_state(TASK_RUNNING);
4081 sys_sched_yield();
4082 }
4083
4084 EXPORT_SYMBOL(yield);
4085
4086 /*
4087 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4088 * that process accounting knows that this is a task in IO wait state.
4089 *
4090 * But don't do that if it is a deliberate, throttling IO wait (this task
4091 * has set its backing_dev_info: the queue against which it should throttle)
4092 */
4093 void __sched io_schedule(void)
4094 {
4095 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4096
4097 atomic_inc(&rq->nr_iowait);
4098 schedule();
4099 atomic_dec(&rq->nr_iowait);
4100 }
4101
4102 EXPORT_SYMBOL(io_schedule);
4103
4104 long __sched io_schedule_timeout(long timeout)
4105 {
4106 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4107 long ret;
4108
4109 atomic_inc(&rq->nr_iowait);
4110 ret = schedule_timeout(timeout);
4111 atomic_dec(&rq->nr_iowait);
4112 return ret;
4113 }
4114
4115 /**
4116 * sys_sched_get_priority_max - return maximum RT priority.
4117 * @policy: scheduling class.
4118 *
4119 * this syscall returns the maximum rt_priority that can be used
4120 * by a given scheduling class.
4121 */
4122 asmlinkage long sys_sched_get_priority_max(int policy)
4123 {
4124 int ret = -EINVAL;
4125
4126 switch (policy) {
4127 case SCHED_FIFO:
4128 case SCHED_RR:
4129 ret = MAX_USER_RT_PRIO-1;
4130 break;
4131 case SCHED_NORMAL:
4132 case SCHED_BATCH:
4133 ret = 0;
4134 break;
4135 }
4136 return ret;
4137 }
4138
4139 /**
4140 * sys_sched_get_priority_min - return minimum RT priority.
4141 * @policy: scheduling class.
4142 *
4143 * this syscall returns the minimum rt_priority that can be used
4144 * by a given scheduling class.
4145 */
4146 asmlinkage long sys_sched_get_priority_min(int policy)
4147 {
4148 int ret = -EINVAL;
4149
4150 switch (policy) {
4151 case SCHED_FIFO:
4152 case SCHED_RR:
4153 ret = 1;
4154 break;
4155 case SCHED_NORMAL:
4156 case SCHED_BATCH:
4157 ret = 0;
4158 }
4159 return ret;
4160 }
4161
4162 /**
4163 * sys_sched_rr_get_interval - return the default timeslice of a process.
4164 * @pid: pid of the process.
4165 * @interval: userspace pointer to the timeslice value.
4166 *
4167 * this syscall writes the default timeslice value of a given process
4168 * into the user-space timespec buffer. A value of '0' means infinity.
4169 */
4170 asmlinkage
4171 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4172 {
4173 int retval = -EINVAL;
4174 struct timespec t;
4175 task_t *p;
4176
4177 if (pid < 0)
4178 goto out_nounlock;
4179
4180 retval = -ESRCH;
4181 read_lock(&tasklist_lock);
4182 p = find_process_by_pid(pid);
4183 if (!p)
4184 goto out_unlock;
4185
4186 retval = security_task_getscheduler(p);
4187 if (retval)
4188 goto out_unlock;
4189
4190 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4191 0 : task_timeslice(p), &t);
4192 read_unlock(&tasklist_lock);
4193 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4194 out_nounlock:
4195 return retval;
4196 out_unlock:
4197 read_unlock(&tasklist_lock);
4198 return retval;
4199 }
4200
4201 static inline struct task_struct *eldest_child(struct task_struct *p)
4202 {
4203 if (list_empty(&p->children)) return NULL;
4204 return list_entry(p->children.next,struct task_struct,sibling);
4205 }
4206
4207 static inline struct task_struct *older_sibling(struct task_struct *p)
4208 {
4209 if (p->sibling.prev==&p->parent->children) return NULL;
4210 return list_entry(p->sibling.prev,struct task_struct,sibling);
4211 }
4212
4213 static inline struct task_struct *younger_sibling(struct task_struct *p)
4214 {
4215 if (p->sibling.next==&p->parent->children) return NULL;
4216 return list_entry(p->sibling.next,struct task_struct,sibling);
4217 }
4218
4219 static void show_task(task_t *p)
4220 {
4221 task_t *relative;
4222 unsigned state;
4223 unsigned long free = 0;
4224 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4225
4226 printk("%-13.13s ", p->comm);
4227 state = p->state ? __ffs(p->state) + 1 : 0;
4228 if (state < ARRAY_SIZE(stat_nam))
4229 printk(stat_nam[state]);
4230 else
4231 printk("?");
4232 #if (BITS_PER_LONG == 32)
4233 if (state == TASK_RUNNING)
4234 printk(" running ");
4235 else
4236 printk(" %08lX ", thread_saved_pc(p));
4237 #else
4238 if (state == TASK_RUNNING)
4239 printk(" running task ");
4240 else
4241 printk(" %016lx ", thread_saved_pc(p));
4242 #endif
4243 #ifdef CONFIG_DEBUG_STACK_USAGE
4244 {
4245 unsigned long *n = end_of_stack(p);
4246 while (!*n)
4247 n++;
4248 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4249 }
4250 #endif
4251 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4252 if ((relative = eldest_child(p)))
4253 printk("%5d ", relative->pid);
4254 else
4255 printk(" ");
4256 if ((relative = younger_sibling(p)))
4257 printk("%7d", relative->pid);
4258 else
4259 printk(" ");
4260 if ((relative = older_sibling(p)))
4261 printk(" %5d", relative->pid);
4262 else
4263 printk(" ");
4264 if (!p->mm)
4265 printk(" (L-TLB)\n");
4266 else
4267 printk(" (NOTLB)\n");
4268
4269 if (state != TASK_RUNNING)
4270 show_stack(p, NULL);
4271 }
4272
4273 void show_state(void)
4274 {
4275 task_t *g, *p;
4276
4277 #if (BITS_PER_LONG == 32)
4278 printk("\n"
4279 " sibling\n");
4280 printk(" task PC pid father child younger older\n");
4281 #else
4282 printk("\n"
4283 " sibling\n");
4284 printk(" task PC pid father child younger older\n");
4285 #endif
4286 read_lock(&tasklist_lock);
4287 do_each_thread(g, p) {
4288 /*
4289 * reset the NMI-timeout, listing all files on a slow
4290 * console might take alot of time:
4291 */
4292 touch_nmi_watchdog();
4293 show_task(p);
4294 } while_each_thread(g, p);
4295
4296 read_unlock(&tasklist_lock);
4297 mutex_debug_show_all_locks();
4298 }
4299
4300 /**
4301 * init_idle - set up an idle thread for a given CPU
4302 * @idle: task in question
4303 * @cpu: cpu the idle task belongs to
4304 *
4305 * NOTE: this function does not set the idle thread's NEED_RESCHED
4306 * flag, to make booting more robust.
4307 */
4308 void __devinit init_idle(task_t *idle, int cpu)
4309 {
4310 runqueue_t *rq = cpu_rq(cpu);
4311 unsigned long flags;
4312
4313 idle->timestamp = sched_clock();
4314 idle->sleep_avg = 0;
4315 idle->array = NULL;
4316 idle->prio = MAX_PRIO;
4317 idle->state = TASK_RUNNING;
4318 idle->cpus_allowed = cpumask_of_cpu(cpu);
4319 set_task_cpu(idle, cpu);
4320
4321 spin_lock_irqsave(&rq->lock, flags);
4322 rq->curr = rq->idle = idle;
4323 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4324 idle->oncpu = 1;
4325 #endif
4326 spin_unlock_irqrestore(&rq->lock, flags);
4327
4328 /* Set the preempt count _outside_ the spinlocks! */
4329 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4330 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4331 #else
4332 task_thread_info(idle)->preempt_count = 0;
4333 #endif
4334 }
4335
4336 /*
4337 * In a system that switches off the HZ timer nohz_cpu_mask
4338 * indicates which cpus entered this state. This is used
4339 * in the rcu update to wait only for active cpus. For system
4340 * which do not switch off the HZ timer nohz_cpu_mask should
4341 * always be CPU_MASK_NONE.
4342 */
4343 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4344
4345 #ifdef CONFIG_SMP
4346 /*
4347 * This is how migration works:
4348 *
4349 * 1) we queue a migration_req_t structure in the source CPU's
4350 * runqueue and wake up that CPU's migration thread.
4351 * 2) we down() the locked semaphore => thread blocks.
4352 * 3) migration thread wakes up (implicitly it forces the migrated
4353 * thread off the CPU)
4354 * 4) it gets the migration request and checks whether the migrated
4355 * task is still in the wrong runqueue.
4356 * 5) if it's in the wrong runqueue then the migration thread removes
4357 * it and puts it into the right queue.
4358 * 6) migration thread up()s the semaphore.
4359 * 7) we wake up and the migration is done.
4360 */
4361
4362 /*
4363 * Change a given task's CPU affinity. Migrate the thread to a
4364 * proper CPU and schedule it away if the CPU it's executing on
4365 * is removed from the allowed bitmask.
4366 *
4367 * NOTE: the caller must have a valid reference to the task, the
4368 * task must not exit() & deallocate itself prematurely. The
4369 * call is not atomic; no spinlocks may be held.
4370 */
4371 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4372 {
4373 unsigned long flags;
4374 int ret = 0;
4375 migration_req_t req;
4376 runqueue_t *rq;
4377
4378 rq = task_rq_lock(p, &flags);
4379 if (!cpus_intersects(new_mask, cpu_online_map)) {
4380 ret = -EINVAL;
4381 goto out;
4382 }
4383
4384 p->cpus_allowed = new_mask;
4385 /* Can the task run on the task's current CPU? If so, we're done */
4386 if (cpu_isset(task_cpu(p), new_mask))
4387 goto out;
4388
4389 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4390 /* Need help from migration thread: drop lock and wait. */
4391 task_rq_unlock(rq, &flags);
4392 wake_up_process(rq->migration_thread);
4393 wait_for_completion(&req.done);
4394 tlb_migrate_finish(p->mm);
4395 return 0;
4396 }
4397 out:
4398 task_rq_unlock(rq, &flags);
4399 return ret;
4400 }
4401
4402 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4403
4404 /*
4405 * Move (not current) task off this cpu, onto dest cpu. We're doing
4406 * this because either it can't run here any more (set_cpus_allowed()
4407 * away from this CPU, or CPU going down), or because we're
4408 * attempting to rebalance this task on exec (sched_exec).
4409 *
4410 * So we race with normal scheduler movements, but that's OK, as long
4411 * as the task is no longer on this CPU.
4412 */
4413 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4414 {
4415 runqueue_t *rq_dest, *rq_src;
4416
4417 if (unlikely(cpu_is_offline(dest_cpu)))
4418 return;
4419
4420 rq_src = cpu_rq(src_cpu);
4421 rq_dest = cpu_rq(dest_cpu);
4422
4423 double_rq_lock(rq_src, rq_dest);
4424 /* Already moved. */
4425 if (task_cpu(p) != src_cpu)
4426 goto out;
4427 /* Affinity changed (again). */
4428 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4429 goto out;
4430
4431 set_task_cpu(p, dest_cpu);
4432 if (p->array) {
4433 /*
4434 * Sync timestamp with rq_dest's before activating.
4435 * The same thing could be achieved by doing this step
4436 * afterwards, and pretending it was a local activate.
4437 * This way is cleaner and logically correct.
4438 */
4439 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4440 + rq_dest->timestamp_last_tick;
4441 deactivate_task(p, rq_src);
4442 activate_task(p, rq_dest, 0);
4443 if (TASK_PREEMPTS_CURR(p, rq_dest))
4444 resched_task(rq_dest->curr);
4445 }
4446
4447 out:
4448 double_rq_unlock(rq_src, rq_dest);
4449 }
4450
4451 /*
4452 * migration_thread - this is a highprio system thread that performs
4453 * thread migration by bumping thread off CPU then 'pushing' onto
4454 * another runqueue.
4455 */
4456 static int migration_thread(void *data)
4457 {
4458 runqueue_t *rq;
4459 int cpu = (long)data;
4460
4461 rq = cpu_rq(cpu);
4462 BUG_ON(rq->migration_thread != current);
4463
4464 set_current_state(TASK_INTERRUPTIBLE);
4465 while (!kthread_should_stop()) {
4466 struct list_head *head;
4467 migration_req_t *req;
4468
4469 try_to_freeze();
4470
4471 spin_lock_irq(&rq->lock);
4472
4473 if (cpu_is_offline(cpu)) {
4474 spin_unlock_irq(&rq->lock);
4475 goto wait_to_die;
4476 }
4477
4478 if (rq->active_balance) {
4479 active_load_balance(rq, cpu);
4480 rq->active_balance = 0;
4481 }
4482
4483 head = &rq->migration_queue;
4484
4485 if (list_empty(head)) {
4486 spin_unlock_irq(&rq->lock);
4487 schedule();
4488 set_current_state(TASK_INTERRUPTIBLE);
4489 continue;
4490 }
4491 req = list_entry(head->next, migration_req_t, list);
4492 list_del_init(head->next);
4493
4494 spin_unlock(&rq->lock);
4495 __migrate_task(req->task, cpu, req->dest_cpu);
4496 local_irq_enable();
4497
4498 complete(&req->done);
4499 }
4500 __set_current_state(TASK_RUNNING);
4501 return 0;
4502
4503 wait_to_die:
4504 /* Wait for kthread_stop */
4505 set_current_state(TASK_INTERRUPTIBLE);
4506 while (!kthread_should_stop()) {
4507 schedule();
4508 set_current_state(TASK_INTERRUPTIBLE);
4509 }
4510 __set_current_state(TASK_RUNNING);
4511 return 0;
4512 }
4513
4514 #ifdef CONFIG_HOTPLUG_CPU
4515 /* Figure out where task on dead CPU should go, use force if neccessary. */
4516 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4517 {
4518 int dest_cpu;
4519 cpumask_t mask;
4520
4521 /* On same node? */
4522 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4523 cpus_and(mask, mask, tsk->cpus_allowed);
4524 dest_cpu = any_online_cpu(mask);
4525
4526 /* On any allowed CPU? */
4527 if (dest_cpu == NR_CPUS)
4528 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4529
4530 /* No more Mr. Nice Guy. */
4531 if (dest_cpu == NR_CPUS) {
4532 cpus_setall(tsk->cpus_allowed);
4533 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4534
4535 /*
4536 * Don't tell them about moving exiting tasks or
4537 * kernel threads (both mm NULL), since they never
4538 * leave kernel.
4539 */
4540 if (tsk->mm && printk_ratelimit())
4541 printk(KERN_INFO "process %d (%s) no "
4542 "longer affine to cpu%d\n",
4543 tsk->pid, tsk->comm, dead_cpu);
4544 }
4545 __migrate_task(tsk, dead_cpu, dest_cpu);
4546 }
4547
4548 /*
4549 * While a dead CPU has no uninterruptible tasks queued at this point,
4550 * it might still have a nonzero ->nr_uninterruptible counter, because
4551 * for performance reasons the counter is not stricly tracking tasks to
4552 * their home CPUs. So we just add the counter to another CPU's counter,
4553 * to keep the global sum constant after CPU-down:
4554 */
4555 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4556 {
4557 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4558 unsigned long flags;
4559
4560 local_irq_save(flags);
4561 double_rq_lock(rq_src, rq_dest);
4562 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4563 rq_src->nr_uninterruptible = 0;
4564 double_rq_unlock(rq_src, rq_dest);
4565 local_irq_restore(flags);
4566 }
4567
4568 /* Run through task list and migrate tasks from the dead cpu. */
4569 static void migrate_live_tasks(int src_cpu)
4570 {
4571 struct task_struct *tsk, *t;
4572
4573 write_lock_irq(&tasklist_lock);
4574
4575 do_each_thread(t, tsk) {
4576 if (tsk == current)
4577 continue;
4578
4579 if (task_cpu(tsk) == src_cpu)
4580 move_task_off_dead_cpu(src_cpu, tsk);
4581 } while_each_thread(t, tsk);
4582
4583 write_unlock_irq(&tasklist_lock);
4584 }
4585
4586 /* Schedules idle task to be the next runnable task on current CPU.
4587 * It does so by boosting its priority to highest possible and adding it to
4588 * the _front_ of runqueue. Used by CPU offline code.
4589 */
4590 void sched_idle_next(void)
4591 {
4592 int cpu = smp_processor_id();
4593 runqueue_t *rq = this_rq();
4594 struct task_struct *p = rq->idle;
4595 unsigned long flags;
4596
4597 /* cpu has to be offline */
4598 BUG_ON(cpu_online(cpu));
4599
4600 /* Strictly not necessary since rest of the CPUs are stopped by now
4601 * and interrupts disabled on current cpu.
4602 */
4603 spin_lock_irqsave(&rq->lock, flags);
4604
4605 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4606 /* Add idle task to _front_ of it's priority queue */
4607 __activate_idle_task(p, rq);
4608
4609 spin_unlock_irqrestore(&rq->lock, flags);
4610 }
4611
4612 /* Ensures that the idle task is using init_mm right before its cpu goes
4613 * offline.
4614 */
4615 void idle_task_exit(void)
4616 {
4617 struct mm_struct *mm = current->active_mm;
4618
4619 BUG_ON(cpu_online(smp_processor_id()));
4620
4621 if (mm != &init_mm)
4622 switch_mm(mm, &init_mm, current);
4623 mmdrop(mm);
4624 }
4625
4626 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4627 {
4628 struct runqueue *rq = cpu_rq(dead_cpu);
4629
4630 /* Must be exiting, otherwise would be on tasklist. */
4631 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4632
4633 /* Cannot have done final schedule yet: would have vanished. */
4634 BUG_ON(tsk->flags & PF_DEAD);
4635
4636 get_task_struct(tsk);
4637
4638 /*
4639 * Drop lock around migration; if someone else moves it,
4640 * that's OK. No task can be added to this CPU, so iteration is
4641 * fine.
4642 */
4643 spin_unlock_irq(&rq->lock);
4644 move_task_off_dead_cpu(dead_cpu, tsk);
4645 spin_lock_irq(&rq->lock);
4646
4647 put_task_struct(tsk);
4648 }
4649
4650 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4651 static void migrate_dead_tasks(unsigned int dead_cpu)
4652 {
4653 unsigned arr, i;
4654 struct runqueue *rq = cpu_rq(dead_cpu);
4655
4656 for (arr = 0; arr < 2; arr++) {
4657 for (i = 0; i < MAX_PRIO; i++) {
4658 struct list_head *list = &rq->arrays[arr].queue[i];
4659 while (!list_empty(list))
4660 migrate_dead(dead_cpu,
4661 list_entry(list->next, task_t,
4662 run_list));
4663 }
4664 }
4665 }
4666 #endif /* CONFIG_HOTPLUG_CPU */
4667
4668 /*
4669 * migration_call - callback that gets triggered when a CPU is added.
4670 * Here we can start up the necessary migration thread for the new CPU.
4671 */
4672 static int __cpuinit migration_call(struct notifier_block *nfb,
4673 unsigned long action,
4674 void *hcpu)
4675 {
4676 int cpu = (long)hcpu;
4677 struct task_struct *p;
4678 struct runqueue *rq;
4679 unsigned long flags;
4680
4681 switch (action) {
4682 case CPU_UP_PREPARE:
4683 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4684 if (IS_ERR(p))
4685 return NOTIFY_BAD;
4686 p->flags |= PF_NOFREEZE;
4687 kthread_bind(p, cpu);
4688 /* Must be high prio: stop_machine expects to yield to it. */
4689 rq = task_rq_lock(p, &flags);
4690 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4691 task_rq_unlock(rq, &flags);
4692 cpu_rq(cpu)->migration_thread = p;
4693 break;
4694 case CPU_ONLINE:
4695 /* Strictly unneccessary, as first user will wake it. */
4696 wake_up_process(cpu_rq(cpu)->migration_thread);
4697 break;
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 case CPU_UP_CANCELED:
4700 if (!cpu_rq(cpu)->migration_thread)
4701 break;
4702 /* Unbind it from offline cpu so it can run. Fall thru. */
4703 kthread_bind(cpu_rq(cpu)->migration_thread,
4704 any_online_cpu(cpu_online_map));
4705 kthread_stop(cpu_rq(cpu)->migration_thread);
4706 cpu_rq(cpu)->migration_thread = NULL;
4707 break;
4708 case CPU_DEAD:
4709 migrate_live_tasks(cpu);
4710 rq = cpu_rq(cpu);
4711 kthread_stop(rq->migration_thread);
4712 rq->migration_thread = NULL;
4713 /* Idle task back to normal (off runqueue, low prio) */
4714 rq = task_rq_lock(rq->idle, &flags);
4715 deactivate_task(rq->idle, rq);
4716 rq->idle->static_prio = MAX_PRIO;
4717 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4718 migrate_dead_tasks(cpu);
4719 task_rq_unlock(rq, &flags);
4720 migrate_nr_uninterruptible(rq);
4721 BUG_ON(rq->nr_running != 0);
4722
4723 /* No need to migrate the tasks: it was best-effort if
4724 * they didn't do lock_cpu_hotplug(). Just wake up
4725 * the requestors. */
4726 spin_lock_irq(&rq->lock);
4727 while (!list_empty(&rq->migration_queue)) {
4728 migration_req_t *req;
4729 req = list_entry(rq->migration_queue.next,
4730 migration_req_t, list);
4731 list_del_init(&req->list);
4732 complete(&req->done);
4733 }
4734 spin_unlock_irq(&rq->lock);
4735 break;
4736 #endif
4737 }
4738 return NOTIFY_OK;
4739 }
4740
4741 /* Register at highest priority so that task migration (migrate_all_tasks)
4742 * happens before everything else.
4743 */
4744 static struct notifier_block __cpuinitdata migration_notifier = {
4745 .notifier_call = migration_call,
4746 .priority = 10
4747 };
4748
4749 int __init migration_init(void)
4750 {
4751 void *cpu = (void *)(long)smp_processor_id();
4752 /* Start one for boot CPU. */
4753 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4754 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4755 register_cpu_notifier(&migration_notifier);
4756 return 0;
4757 }
4758 #endif
4759
4760 #ifdef CONFIG_SMP
4761 #undef SCHED_DOMAIN_DEBUG
4762 #ifdef SCHED_DOMAIN_DEBUG
4763 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4764 {
4765 int level = 0;
4766
4767 if (!sd) {
4768 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4769 return;
4770 }
4771
4772 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4773
4774 do {
4775 int i;
4776 char str[NR_CPUS];
4777 struct sched_group *group = sd->groups;
4778 cpumask_t groupmask;
4779
4780 cpumask_scnprintf(str, NR_CPUS, sd->span);
4781 cpus_clear(groupmask);
4782
4783 printk(KERN_DEBUG);
4784 for (i = 0; i < level + 1; i++)
4785 printk(" ");
4786 printk("domain %d: ", level);
4787
4788 if (!(sd->flags & SD_LOAD_BALANCE)) {
4789 printk("does not load-balance\n");
4790 if (sd->parent)
4791 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4792 break;
4793 }
4794
4795 printk("span %s\n", str);
4796
4797 if (!cpu_isset(cpu, sd->span))
4798 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4799 if (!cpu_isset(cpu, group->cpumask))
4800 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4801
4802 printk(KERN_DEBUG);
4803 for (i = 0; i < level + 2; i++)
4804 printk(" ");
4805 printk("groups:");
4806 do {
4807 if (!group) {
4808 printk("\n");
4809 printk(KERN_ERR "ERROR: group is NULL\n");
4810 break;
4811 }
4812
4813 if (!group->cpu_power) {
4814 printk("\n");
4815 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4816 }
4817
4818 if (!cpus_weight(group->cpumask)) {
4819 printk("\n");
4820 printk(KERN_ERR "ERROR: empty group\n");
4821 }
4822
4823 if (cpus_intersects(groupmask, group->cpumask)) {
4824 printk("\n");
4825 printk(KERN_ERR "ERROR: repeated CPUs\n");
4826 }
4827
4828 cpus_or(groupmask, groupmask, group->cpumask);
4829
4830 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4831 printk(" %s", str);
4832
4833 group = group->next;
4834 } while (group != sd->groups);
4835 printk("\n");
4836
4837 if (!cpus_equal(sd->span, groupmask))
4838 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4839
4840 level++;
4841 sd = sd->parent;
4842
4843 if (sd) {
4844 if (!cpus_subset(groupmask, sd->span))
4845 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4846 }
4847
4848 } while (sd);
4849 }
4850 #else
4851 #define sched_domain_debug(sd, cpu) {}
4852 #endif
4853
4854 static int sd_degenerate(struct sched_domain *sd)
4855 {
4856 if (cpus_weight(sd->span) == 1)
4857 return 1;
4858
4859 /* Following flags need at least 2 groups */
4860 if (sd->flags & (SD_LOAD_BALANCE |
4861 SD_BALANCE_NEWIDLE |
4862 SD_BALANCE_FORK |
4863 SD_BALANCE_EXEC)) {
4864 if (sd->groups != sd->groups->next)
4865 return 0;
4866 }
4867
4868 /* Following flags don't use groups */
4869 if (sd->flags & (SD_WAKE_IDLE |
4870 SD_WAKE_AFFINE |
4871 SD_WAKE_BALANCE))
4872 return 0;
4873
4874 return 1;
4875 }
4876
4877 static int sd_parent_degenerate(struct sched_domain *sd,
4878 struct sched_domain *parent)
4879 {
4880 unsigned long cflags = sd->flags, pflags = parent->flags;
4881
4882 if (sd_degenerate(parent))
4883 return 1;
4884
4885 if (!cpus_equal(sd->span, parent->span))
4886 return 0;
4887
4888 /* Does parent contain flags not in child? */
4889 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4890 if (cflags & SD_WAKE_AFFINE)
4891 pflags &= ~SD_WAKE_BALANCE;
4892 /* Flags needing groups don't count if only 1 group in parent */
4893 if (parent->groups == parent->groups->next) {
4894 pflags &= ~(SD_LOAD_BALANCE |
4895 SD_BALANCE_NEWIDLE |
4896 SD_BALANCE_FORK |
4897 SD_BALANCE_EXEC);
4898 }
4899 if (~cflags & pflags)
4900 return 0;
4901
4902 return 1;
4903 }
4904
4905 /*
4906 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4907 * hold the hotplug lock.
4908 */
4909 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4910 {
4911 runqueue_t *rq = cpu_rq(cpu);
4912 struct sched_domain *tmp;
4913
4914 /* Remove the sched domains which do not contribute to scheduling. */
4915 for (tmp = sd; tmp; tmp = tmp->parent) {
4916 struct sched_domain *parent = tmp->parent;
4917 if (!parent)
4918 break;
4919 if (sd_parent_degenerate(tmp, parent))
4920 tmp->parent = parent->parent;
4921 }
4922
4923 if (sd && sd_degenerate(sd))
4924 sd = sd->parent;
4925
4926 sched_domain_debug(sd, cpu);
4927
4928 rcu_assign_pointer(rq->sd, sd);
4929 }
4930
4931 /* cpus with isolated domains */
4932 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4933
4934 /* Setup the mask of cpus configured for isolated domains */
4935 static int __init isolated_cpu_setup(char *str)
4936 {
4937 int ints[NR_CPUS], i;
4938
4939 str = get_options(str, ARRAY_SIZE(ints), ints);
4940 cpus_clear(cpu_isolated_map);
4941 for (i = 1; i <= ints[0]; i++)
4942 if (ints[i] < NR_CPUS)
4943 cpu_set(ints[i], cpu_isolated_map);
4944 return 1;
4945 }
4946
4947 __setup ("isolcpus=", isolated_cpu_setup);
4948
4949 /*
4950 * init_sched_build_groups takes an array of groups, the cpumask we wish
4951 * to span, and a pointer to a function which identifies what group a CPU
4952 * belongs to. The return value of group_fn must be a valid index into the
4953 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4954 * keep track of groups covered with a cpumask_t).
4955 *
4956 * init_sched_build_groups will build a circular linked list of the groups
4957 * covered by the given span, and will set each group's ->cpumask correctly,
4958 * and ->cpu_power to 0.
4959 */
4960 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4961 int (*group_fn)(int cpu))
4962 {
4963 struct sched_group *first = NULL, *last = NULL;
4964 cpumask_t covered = CPU_MASK_NONE;
4965 int i;
4966
4967 for_each_cpu_mask(i, span) {
4968 int group = group_fn(i);
4969 struct sched_group *sg = &groups[group];
4970 int j;
4971
4972 if (cpu_isset(i, covered))
4973 continue;
4974
4975 sg->cpumask = CPU_MASK_NONE;
4976 sg->cpu_power = 0;
4977
4978 for_each_cpu_mask(j, span) {
4979 if (group_fn(j) != group)
4980 continue;
4981
4982 cpu_set(j, covered);
4983 cpu_set(j, sg->cpumask);
4984 }
4985 if (!first)
4986 first = sg;
4987 if (last)
4988 last->next = sg;
4989 last = sg;
4990 }
4991 last->next = first;
4992 }
4993
4994 #define SD_NODES_PER_DOMAIN 16
4995
4996 /*
4997 * Self-tuning task migration cost measurement between source and target CPUs.
4998 *
4999 * This is done by measuring the cost of manipulating buffers of varying
5000 * sizes. For a given buffer-size here are the steps that are taken:
5001 *
5002 * 1) the source CPU reads+dirties a shared buffer
5003 * 2) the target CPU reads+dirties the same shared buffer
5004 *
5005 * We measure how long they take, in the following 4 scenarios:
5006 *
5007 * - source: CPU1, target: CPU2 | cost1
5008 * - source: CPU2, target: CPU1 | cost2
5009 * - source: CPU1, target: CPU1 | cost3
5010 * - source: CPU2, target: CPU2 | cost4
5011 *
5012 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5013 * the cost of migration.
5014 *
5015 * We then start off from a small buffer-size and iterate up to larger
5016 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5017 * doing a maximum search for the cost. (The maximum cost for a migration
5018 * normally occurs when the working set size is around the effective cache
5019 * size.)
5020 */
5021 #define SEARCH_SCOPE 2
5022 #define MIN_CACHE_SIZE (64*1024U)
5023 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5024 #define ITERATIONS 1
5025 #define SIZE_THRESH 130
5026 #define COST_THRESH 130
5027
5028 /*
5029 * The migration cost is a function of 'domain distance'. Domain
5030 * distance is the number of steps a CPU has to iterate down its
5031 * domain tree to share a domain with the other CPU. The farther
5032 * two CPUs are from each other, the larger the distance gets.
5033 *
5034 * Note that we use the distance only to cache measurement results,
5035 * the distance value is not used numerically otherwise. When two
5036 * CPUs have the same distance it is assumed that the migration
5037 * cost is the same. (this is a simplification but quite practical)
5038 */
5039 #define MAX_DOMAIN_DISTANCE 32
5040
5041 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5042 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5043 /*
5044 * Architectures may override the migration cost and thus avoid
5045 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5046 * virtualized hardware:
5047 */
5048 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5049 CONFIG_DEFAULT_MIGRATION_COST
5050 #else
5051 -1LL
5052 #endif
5053 };
5054
5055 /*
5056 * Allow override of migration cost - in units of microseconds.
5057 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5058 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5059 */
5060 static int __init migration_cost_setup(char *str)
5061 {
5062 int ints[MAX_DOMAIN_DISTANCE+1], i;
5063
5064 str = get_options(str, ARRAY_SIZE(ints), ints);
5065
5066 printk("#ints: %d\n", ints[0]);
5067 for (i = 1; i <= ints[0]; i++) {
5068 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5069 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5070 }
5071 return 1;
5072 }
5073
5074 __setup ("migration_cost=", migration_cost_setup);
5075
5076 /*
5077 * Global multiplier (divisor) for migration-cutoff values,
5078 * in percentiles. E.g. use a value of 150 to get 1.5 times
5079 * longer cache-hot cutoff times.
5080 *
5081 * (We scale it from 100 to 128 to long long handling easier.)
5082 */
5083
5084 #define MIGRATION_FACTOR_SCALE 128
5085
5086 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5087
5088 static int __init setup_migration_factor(char *str)
5089 {
5090 get_option(&str, &migration_factor);
5091 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5092 return 1;
5093 }
5094
5095 __setup("migration_factor=", setup_migration_factor);
5096
5097 /*
5098 * Estimated distance of two CPUs, measured via the number of domains
5099 * we have to pass for the two CPUs to be in the same span:
5100 */
5101 static unsigned long domain_distance(int cpu1, int cpu2)
5102 {
5103 unsigned long distance = 0;
5104 struct sched_domain *sd;
5105
5106 for_each_domain(cpu1, sd) {
5107 WARN_ON(!cpu_isset(cpu1, sd->span));
5108 if (cpu_isset(cpu2, sd->span))
5109 return distance;
5110 distance++;
5111 }
5112 if (distance >= MAX_DOMAIN_DISTANCE) {
5113 WARN_ON(1);
5114 distance = MAX_DOMAIN_DISTANCE-1;
5115 }
5116
5117 return distance;
5118 }
5119
5120 static unsigned int migration_debug;
5121
5122 static int __init setup_migration_debug(char *str)
5123 {
5124 get_option(&str, &migration_debug);
5125 return 1;
5126 }
5127
5128 __setup("migration_debug=", setup_migration_debug);
5129
5130 /*
5131 * Maximum cache-size that the scheduler should try to measure.
5132 * Architectures with larger caches should tune this up during
5133 * bootup. Gets used in the domain-setup code (i.e. during SMP
5134 * bootup).
5135 */
5136 unsigned int max_cache_size;
5137
5138 static int __init setup_max_cache_size(char *str)
5139 {
5140 get_option(&str, &max_cache_size);
5141 return 1;
5142 }
5143
5144 __setup("max_cache_size=", setup_max_cache_size);
5145
5146 /*
5147 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5148 * is the operation that is timed, so we try to generate unpredictable
5149 * cachemisses that still end up filling the L2 cache:
5150 */
5151 static void touch_cache(void *__cache, unsigned long __size)
5152 {
5153 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5154 chunk2 = 2*size/3;
5155 unsigned long *cache = __cache;
5156 int i;
5157
5158 for (i = 0; i < size/6; i += 8) {
5159 switch (i % 6) {
5160 case 0: cache[i]++;
5161 case 1: cache[size-1-i]++;
5162 case 2: cache[chunk1-i]++;
5163 case 3: cache[chunk1+i]++;
5164 case 4: cache[chunk2-i]++;
5165 case 5: cache[chunk2+i]++;
5166 }
5167 }
5168 }
5169
5170 /*
5171 * Measure the cache-cost of one task migration. Returns in units of nsec.
5172 */
5173 static unsigned long long measure_one(void *cache, unsigned long size,
5174 int source, int target)
5175 {
5176 cpumask_t mask, saved_mask;
5177 unsigned long long t0, t1, t2, t3, cost;
5178
5179 saved_mask = current->cpus_allowed;
5180
5181 /*
5182 * Flush source caches to RAM and invalidate them:
5183 */
5184 sched_cacheflush();
5185
5186 /*
5187 * Migrate to the source CPU:
5188 */
5189 mask = cpumask_of_cpu(source);
5190 set_cpus_allowed(current, mask);
5191 WARN_ON(smp_processor_id() != source);
5192
5193 /*
5194 * Dirty the working set:
5195 */
5196 t0 = sched_clock();
5197 touch_cache(cache, size);
5198 t1 = sched_clock();
5199
5200 /*
5201 * Migrate to the target CPU, dirty the L2 cache and access
5202 * the shared buffer. (which represents the working set
5203 * of a migrated task.)
5204 */
5205 mask = cpumask_of_cpu(target);
5206 set_cpus_allowed(current, mask);
5207 WARN_ON(smp_processor_id() != target);
5208
5209 t2 = sched_clock();
5210 touch_cache(cache, size);
5211 t3 = sched_clock();
5212
5213 cost = t1-t0 + t3-t2;
5214
5215 if (migration_debug >= 2)
5216 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5217 source, target, t1-t0, t1-t0, t3-t2, cost);
5218 /*
5219 * Flush target caches to RAM and invalidate them:
5220 */
5221 sched_cacheflush();
5222
5223 set_cpus_allowed(current, saved_mask);
5224
5225 return cost;
5226 }
5227
5228 /*
5229 * Measure a series of task migrations and return the average
5230 * result. Since this code runs early during bootup the system
5231 * is 'undisturbed' and the average latency makes sense.
5232 *
5233 * The algorithm in essence auto-detects the relevant cache-size,
5234 * so it will properly detect different cachesizes for different
5235 * cache-hierarchies, depending on how the CPUs are connected.
5236 *
5237 * Architectures can prime the upper limit of the search range via
5238 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5239 */
5240 static unsigned long long
5241 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5242 {
5243 unsigned long long cost1, cost2;
5244 int i;
5245
5246 /*
5247 * Measure the migration cost of 'size' bytes, over an
5248 * average of 10 runs:
5249 *
5250 * (We perturb the cache size by a small (0..4k)
5251 * value to compensate size/alignment related artifacts.
5252 * We also subtract the cost of the operation done on
5253 * the same CPU.)
5254 */
5255 cost1 = 0;
5256
5257 /*
5258 * dry run, to make sure we start off cache-cold on cpu1,
5259 * and to get any vmalloc pagefaults in advance:
5260 */
5261 measure_one(cache, size, cpu1, cpu2);
5262 for (i = 0; i < ITERATIONS; i++)
5263 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5264
5265 measure_one(cache, size, cpu2, cpu1);
5266 for (i = 0; i < ITERATIONS; i++)
5267 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5268
5269 /*
5270 * (We measure the non-migrating [cached] cost on both
5271 * cpu1 and cpu2, to handle CPUs with different speeds)
5272 */
5273 cost2 = 0;
5274
5275 measure_one(cache, size, cpu1, cpu1);
5276 for (i = 0; i < ITERATIONS; i++)
5277 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5278
5279 measure_one(cache, size, cpu2, cpu2);
5280 for (i = 0; i < ITERATIONS; i++)
5281 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5282
5283 /*
5284 * Get the per-iteration migration cost:
5285 */
5286 do_div(cost1, 2*ITERATIONS);
5287 do_div(cost2, 2*ITERATIONS);
5288
5289 return cost1 - cost2;
5290 }
5291
5292 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5293 {
5294 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5295 unsigned int max_size, size, size_found = 0;
5296 long long cost = 0, prev_cost;
5297 void *cache;
5298
5299 /*
5300 * Search from max_cache_size*5 down to 64K - the real relevant
5301 * cachesize has to lie somewhere inbetween.
5302 */
5303 if (max_cache_size) {
5304 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5305 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5306 } else {
5307 /*
5308 * Since we have no estimation about the relevant
5309 * search range
5310 */
5311 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5312 size = MIN_CACHE_SIZE;
5313 }
5314
5315 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5316 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5317 return 0;
5318 }
5319
5320 /*
5321 * Allocate the working set:
5322 */
5323 cache = vmalloc(max_size);
5324 if (!cache) {
5325 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5326 return 1000000; // return 1 msec on very small boxen
5327 }
5328
5329 while (size <= max_size) {
5330 prev_cost = cost;
5331 cost = measure_cost(cpu1, cpu2, cache, size);
5332
5333 /*
5334 * Update the max:
5335 */
5336 if (cost > 0) {
5337 if (max_cost < cost) {
5338 max_cost = cost;
5339 size_found = size;
5340 }
5341 }
5342 /*
5343 * Calculate average fluctuation, we use this to prevent
5344 * noise from triggering an early break out of the loop:
5345 */
5346 fluct = abs(cost - prev_cost);
5347 avg_fluct = (avg_fluct + fluct)/2;
5348
5349 if (migration_debug)
5350 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5351 cpu1, cpu2, size,
5352 (long)cost / 1000000,
5353 ((long)cost / 100000) % 10,
5354 (long)max_cost / 1000000,
5355 ((long)max_cost / 100000) % 10,
5356 domain_distance(cpu1, cpu2),
5357 cost, avg_fluct);
5358
5359 /*
5360 * If we iterated at least 20% past the previous maximum,
5361 * and the cost has dropped by more than 20% already,
5362 * (taking fluctuations into account) then we assume to
5363 * have found the maximum and break out of the loop early:
5364 */
5365 if (size_found && (size*100 > size_found*SIZE_THRESH))
5366 if (cost+avg_fluct <= 0 ||
5367 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5368
5369 if (migration_debug)
5370 printk("-> found max.\n");
5371 break;
5372 }
5373 /*
5374 * Increase the cachesize in 10% steps:
5375 */
5376 size = size * 10 / 9;
5377 }
5378
5379 if (migration_debug)
5380 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5381 cpu1, cpu2, size_found, max_cost);
5382
5383 vfree(cache);
5384
5385 /*
5386 * A task is considered 'cache cold' if at least 2 times
5387 * the worst-case cost of migration has passed.
5388 *
5389 * (this limit is only listened to if the load-balancing
5390 * situation is 'nice' - if there is a large imbalance we
5391 * ignore it for the sake of CPU utilization and
5392 * processing fairness.)
5393 */
5394 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5395 }
5396
5397 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5398 {
5399 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5400 unsigned long j0, j1, distance, max_distance = 0;
5401 struct sched_domain *sd;
5402
5403 j0 = jiffies;
5404
5405 /*
5406 * First pass - calculate the cacheflush times:
5407 */
5408 for_each_cpu_mask(cpu1, *cpu_map) {
5409 for_each_cpu_mask(cpu2, *cpu_map) {
5410 if (cpu1 == cpu2)
5411 continue;
5412 distance = domain_distance(cpu1, cpu2);
5413 max_distance = max(max_distance, distance);
5414 /*
5415 * No result cached yet?
5416 */
5417 if (migration_cost[distance] == -1LL)
5418 migration_cost[distance] =
5419 measure_migration_cost(cpu1, cpu2);
5420 }
5421 }
5422 /*
5423 * Second pass - update the sched domain hierarchy with
5424 * the new cache-hot-time estimations:
5425 */
5426 for_each_cpu_mask(cpu, *cpu_map) {
5427 distance = 0;
5428 for_each_domain(cpu, sd) {
5429 sd->cache_hot_time = migration_cost[distance];
5430 distance++;
5431 }
5432 }
5433 /*
5434 * Print the matrix:
5435 */
5436 if (migration_debug)
5437 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5438 max_cache_size,
5439 #ifdef CONFIG_X86
5440 cpu_khz/1000
5441 #else
5442 -1
5443 #endif
5444 );
5445 if (system_state == SYSTEM_BOOTING) {
5446 printk("migration_cost=");
5447 for (distance = 0; distance <= max_distance; distance++) {
5448 if (distance)
5449 printk(",");
5450 printk("%ld", (long)migration_cost[distance] / 1000);
5451 }
5452 printk("\n");
5453 }
5454 j1 = jiffies;
5455 if (migration_debug)
5456 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5457
5458 /*
5459 * Move back to the original CPU. NUMA-Q gets confused
5460 * if we migrate to another quad during bootup.
5461 */
5462 if (raw_smp_processor_id() != orig_cpu) {
5463 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5464 saved_mask = current->cpus_allowed;
5465
5466 set_cpus_allowed(current, mask);
5467 set_cpus_allowed(current, saved_mask);
5468 }
5469 }
5470
5471 #ifdef CONFIG_NUMA
5472
5473 /**
5474 * find_next_best_node - find the next node to include in a sched_domain
5475 * @node: node whose sched_domain we're building
5476 * @used_nodes: nodes already in the sched_domain
5477 *
5478 * Find the next node to include in a given scheduling domain. Simply
5479 * finds the closest node not already in the @used_nodes map.
5480 *
5481 * Should use nodemask_t.
5482 */
5483 static int find_next_best_node(int node, unsigned long *used_nodes)
5484 {
5485 int i, n, val, min_val, best_node = 0;
5486
5487 min_val = INT_MAX;
5488
5489 for (i = 0; i < MAX_NUMNODES; i++) {
5490 /* Start at @node */
5491 n = (node + i) % MAX_NUMNODES;
5492
5493 if (!nr_cpus_node(n))
5494 continue;
5495
5496 /* Skip already used nodes */
5497 if (test_bit(n, used_nodes))
5498 continue;
5499
5500 /* Simple min distance search */
5501 val = node_distance(node, n);
5502
5503 if (val < min_val) {
5504 min_val = val;
5505 best_node = n;
5506 }
5507 }
5508
5509 set_bit(best_node, used_nodes);
5510 return best_node;
5511 }
5512
5513 /**
5514 * sched_domain_node_span - get a cpumask for a node's sched_domain
5515 * @node: node whose cpumask we're constructing
5516 * @size: number of nodes to include in this span
5517 *
5518 * Given a node, construct a good cpumask for its sched_domain to span. It
5519 * should be one that prevents unnecessary balancing, but also spreads tasks
5520 * out optimally.
5521 */
5522 static cpumask_t sched_domain_node_span(int node)
5523 {
5524 int i;
5525 cpumask_t span, nodemask;
5526 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5527
5528 cpus_clear(span);
5529 bitmap_zero(used_nodes, MAX_NUMNODES);
5530
5531 nodemask = node_to_cpumask(node);
5532 cpus_or(span, span, nodemask);
5533 set_bit(node, used_nodes);
5534
5535 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5536 int next_node = find_next_best_node(node, used_nodes);
5537 nodemask = node_to_cpumask(next_node);
5538 cpus_or(span, span, nodemask);
5539 }
5540
5541 return span;
5542 }
5543 #endif
5544
5545 /*
5546 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5547 * can switch it on easily if needed.
5548 */
5549 #ifdef CONFIG_SCHED_SMT
5550 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5551 static struct sched_group sched_group_cpus[NR_CPUS];
5552 static int cpu_to_cpu_group(int cpu)
5553 {
5554 return cpu;
5555 }
5556 #endif
5557
5558 #ifdef CONFIG_SCHED_MC
5559 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5560 static struct sched_group sched_group_core[NR_CPUS];
5561 #endif
5562
5563 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5564 static int cpu_to_core_group(int cpu)
5565 {
5566 return first_cpu(cpu_sibling_map[cpu]);
5567 }
5568 #elif defined(CONFIG_SCHED_MC)
5569 static int cpu_to_core_group(int cpu)
5570 {
5571 return cpu;
5572 }
5573 #endif
5574
5575 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5576 static struct sched_group sched_group_phys[NR_CPUS];
5577 static int cpu_to_phys_group(int cpu)
5578 {
5579 #if defined(CONFIG_SCHED_MC)
5580 cpumask_t mask = cpu_coregroup_map(cpu);
5581 return first_cpu(mask);
5582 #elif defined(CONFIG_SCHED_SMT)
5583 return first_cpu(cpu_sibling_map[cpu]);
5584 #else
5585 return cpu;
5586 #endif
5587 }
5588
5589 #ifdef CONFIG_NUMA
5590 /*
5591 * The init_sched_build_groups can't handle what we want to do with node
5592 * groups, so roll our own. Now each node has its own list of groups which
5593 * gets dynamically allocated.
5594 */
5595 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5596 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5597
5598 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5599 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5600
5601 static int cpu_to_allnodes_group(int cpu)
5602 {
5603 return cpu_to_node(cpu);
5604 }
5605 static void init_numa_sched_groups_power(struct sched_group *group_head)
5606 {
5607 struct sched_group *sg = group_head;
5608 int j;
5609
5610 if (!sg)
5611 return;
5612 next_sg:
5613 for_each_cpu_mask(j, sg->cpumask) {
5614 struct sched_domain *sd;
5615
5616 sd = &per_cpu(phys_domains, j);
5617 if (j != first_cpu(sd->groups->cpumask)) {
5618 /*
5619 * Only add "power" once for each
5620 * physical package.
5621 */
5622 continue;
5623 }
5624
5625 sg->cpu_power += sd->groups->cpu_power;
5626 }
5627 sg = sg->next;
5628 if (sg != group_head)
5629 goto next_sg;
5630 }
5631 #endif
5632
5633 /*
5634 * Build sched domains for a given set of cpus and attach the sched domains
5635 * to the individual cpus
5636 */
5637 void build_sched_domains(const cpumask_t *cpu_map)
5638 {
5639 int i;
5640 #ifdef CONFIG_NUMA
5641 struct sched_group **sched_group_nodes = NULL;
5642 struct sched_group *sched_group_allnodes = NULL;
5643
5644 /*
5645 * Allocate the per-node list of sched groups
5646 */
5647 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5648 GFP_ATOMIC);
5649 if (!sched_group_nodes) {
5650 printk(KERN_WARNING "Can not alloc sched group node list\n");
5651 return;
5652 }
5653 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5654 #endif
5655
5656 /*
5657 * Set up domains for cpus specified by the cpu_map.
5658 */
5659 for_each_cpu_mask(i, *cpu_map) {
5660 int group;
5661 struct sched_domain *sd = NULL, *p;
5662 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5663
5664 cpus_and(nodemask, nodemask, *cpu_map);
5665
5666 #ifdef CONFIG_NUMA
5667 if (cpus_weight(*cpu_map)
5668 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5669 if (!sched_group_allnodes) {
5670 sched_group_allnodes
5671 = kmalloc(sizeof(struct sched_group)
5672 * MAX_NUMNODES,
5673 GFP_KERNEL);
5674 if (!sched_group_allnodes) {
5675 printk(KERN_WARNING
5676 "Can not alloc allnodes sched group\n");
5677 break;
5678 }
5679 sched_group_allnodes_bycpu[i]
5680 = sched_group_allnodes;
5681 }
5682 sd = &per_cpu(allnodes_domains, i);
5683 *sd = SD_ALLNODES_INIT;
5684 sd->span = *cpu_map;
5685 group = cpu_to_allnodes_group(i);
5686 sd->groups = &sched_group_allnodes[group];
5687 p = sd;
5688 } else
5689 p = NULL;
5690
5691 sd = &per_cpu(node_domains, i);
5692 *sd = SD_NODE_INIT;
5693 sd->span = sched_domain_node_span(cpu_to_node(i));
5694 sd->parent = p;
5695 cpus_and(sd->span, sd->span, *cpu_map);
5696 #endif
5697
5698 p = sd;
5699 sd = &per_cpu(phys_domains, i);
5700 group = cpu_to_phys_group(i);
5701 *sd = SD_CPU_INIT;
5702 sd->span = nodemask;
5703 sd->parent = p;
5704 sd->groups = &sched_group_phys[group];
5705
5706 #ifdef CONFIG_SCHED_MC
5707 p = sd;
5708 sd = &per_cpu(core_domains, i);
5709 group = cpu_to_core_group(i);
5710 *sd = SD_MC_INIT;
5711 sd->span = cpu_coregroup_map(i);
5712 cpus_and(sd->span, sd->span, *cpu_map);
5713 sd->parent = p;
5714 sd->groups = &sched_group_core[group];
5715 #endif
5716
5717 #ifdef CONFIG_SCHED_SMT
5718 p = sd;
5719 sd = &per_cpu(cpu_domains, i);
5720 group = cpu_to_cpu_group(i);
5721 *sd = SD_SIBLING_INIT;
5722 sd->span = cpu_sibling_map[i];
5723 cpus_and(sd->span, sd->span, *cpu_map);
5724 sd->parent = p;
5725 sd->groups = &sched_group_cpus[group];
5726 #endif
5727 }
5728
5729 #ifdef CONFIG_SCHED_SMT
5730 /* Set up CPU (sibling) groups */
5731 for_each_cpu_mask(i, *cpu_map) {
5732 cpumask_t this_sibling_map = cpu_sibling_map[i];
5733 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5734 if (i != first_cpu(this_sibling_map))
5735 continue;
5736
5737 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5738 &cpu_to_cpu_group);
5739 }
5740 #endif
5741
5742 #ifdef CONFIG_SCHED_MC
5743 /* Set up multi-core groups */
5744 for_each_cpu_mask(i, *cpu_map) {
5745 cpumask_t this_core_map = cpu_coregroup_map(i);
5746 cpus_and(this_core_map, this_core_map, *cpu_map);
5747 if (i != first_cpu(this_core_map))
5748 continue;
5749 init_sched_build_groups(sched_group_core, this_core_map,
5750 &cpu_to_core_group);
5751 }
5752 #endif
5753
5754
5755 /* Set up physical groups */
5756 for (i = 0; i < MAX_NUMNODES; i++) {
5757 cpumask_t nodemask = node_to_cpumask(i);
5758
5759 cpus_and(nodemask, nodemask, *cpu_map);
5760 if (cpus_empty(nodemask))
5761 continue;
5762
5763 init_sched_build_groups(sched_group_phys, nodemask,
5764 &cpu_to_phys_group);
5765 }
5766
5767 #ifdef CONFIG_NUMA
5768 /* Set up node groups */
5769 if (sched_group_allnodes)
5770 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5771 &cpu_to_allnodes_group);
5772
5773 for (i = 0; i < MAX_NUMNODES; i++) {
5774 /* Set up node groups */
5775 struct sched_group *sg, *prev;
5776 cpumask_t nodemask = node_to_cpumask(i);
5777 cpumask_t domainspan;
5778 cpumask_t covered = CPU_MASK_NONE;
5779 int j;
5780
5781 cpus_and(nodemask, nodemask, *cpu_map);
5782 if (cpus_empty(nodemask)) {
5783 sched_group_nodes[i] = NULL;
5784 continue;
5785 }
5786
5787 domainspan = sched_domain_node_span(i);
5788 cpus_and(domainspan, domainspan, *cpu_map);
5789
5790 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5791 sched_group_nodes[i] = sg;
5792 for_each_cpu_mask(j, nodemask) {
5793 struct sched_domain *sd;
5794 sd = &per_cpu(node_domains, j);
5795 sd->groups = sg;
5796 if (sd->groups == NULL) {
5797 /* Turn off balancing if we have no groups */
5798 sd->flags = 0;
5799 }
5800 }
5801 if (!sg) {
5802 printk(KERN_WARNING
5803 "Can not alloc domain group for node %d\n", i);
5804 continue;
5805 }
5806 sg->cpu_power = 0;
5807 sg->cpumask = nodemask;
5808 cpus_or(covered, covered, nodemask);
5809 prev = sg;
5810
5811 for (j = 0; j < MAX_NUMNODES; j++) {
5812 cpumask_t tmp, notcovered;
5813 int n = (i + j) % MAX_NUMNODES;
5814
5815 cpus_complement(notcovered, covered);
5816 cpus_and(tmp, notcovered, *cpu_map);
5817 cpus_and(tmp, tmp, domainspan);
5818 if (cpus_empty(tmp))
5819 break;
5820
5821 nodemask = node_to_cpumask(n);
5822 cpus_and(tmp, tmp, nodemask);
5823 if (cpus_empty(tmp))
5824 continue;
5825
5826 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5827 if (!sg) {
5828 printk(KERN_WARNING
5829 "Can not alloc domain group for node %d\n", j);
5830 break;
5831 }
5832 sg->cpu_power = 0;
5833 sg->cpumask = tmp;
5834 cpus_or(covered, covered, tmp);
5835 prev->next = sg;
5836 prev = sg;
5837 }
5838 prev->next = sched_group_nodes[i];
5839 }
5840 #endif
5841
5842 /* Calculate CPU power for physical packages and nodes */
5843 for_each_cpu_mask(i, *cpu_map) {
5844 int power;
5845 struct sched_domain *sd;
5846 #ifdef CONFIG_SCHED_SMT
5847 sd = &per_cpu(cpu_domains, i);
5848 power = SCHED_LOAD_SCALE;
5849 sd->groups->cpu_power = power;
5850 #endif
5851 #ifdef CONFIG_SCHED_MC
5852 sd = &per_cpu(core_domains, i);
5853 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5854 * SCHED_LOAD_SCALE / 10;
5855 sd->groups->cpu_power = power;
5856
5857 sd = &per_cpu(phys_domains, i);
5858
5859 /*
5860 * This has to be < 2 * SCHED_LOAD_SCALE
5861 * Lets keep it SCHED_LOAD_SCALE, so that
5862 * while calculating NUMA group's cpu_power
5863 * we can simply do
5864 * numa_group->cpu_power += phys_group->cpu_power;
5865 *
5866 * See "only add power once for each physical pkg"
5867 * comment below
5868 */
5869 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5870 #else
5871 sd = &per_cpu(phys_domains, i);
5872 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5873 (cpus_weight(sd->groups->cpumask)-1) / 10;
5874 sd->groups->cpu_power = power;
5875 #endif
5876 }
5877
5878 #ifdef CONFIG_NUMA
5879 for (i = 0; i < MAX_NUMNODES; i++)
5880 init_numa_sched_groups_power(sched_group_nodes[i]);
5881
5882 init_numa_sched_groups_power(sched_group_allnodes);
5883 #endif
5884
5885 /* Attach the domains */
5886 for_each_cpu_mask(i, *cpu_map) {
5887 struct sched_domain *sd;
5888 #ifdef CONFIG_SCHED_SMT
5889 sd = &per_cpu(cpu_domains, i);
5890 #elif defined(CONFIG_SCHED_MC)
5891 sd = &per_cpu(core_domains, i);
5892 #else
5893 sd = &per_cpu(phys_domains, i);
5894 #endif
5895 cpu_attach_domain(sd, i);
5896 }
5897 /*
5898 * Tune cache-hot values:
5899 */
5900 calibrate_migration_costs(cpu_map);
5901 }
5902 /*
5903 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5904 */
5905 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5906 {
5907 cpumask_t cpu_default_map;
5908
5909 /*
5910 * Setup mask for cpus without special case scheduling requirements.
5911 * For now this just excludes isolated cpus, but could be used to
5912 * exclude other special cases in the future.
5913 */
5914 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5915
5916 build_sched_domains(&cpu_default_map);
5917 }
5918
5919 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5920 {
5921 #ifdef CONFIG_NUMA
5922 int i;
5923 int cpu;
5924
5925 for_each_cpu_mask(cpu, *cpu_map) {
5926 struct sched_group *sched_group_allnodes
5927 = sched_group_allnodes_bycpu[cpu];
5928 struct sched_group **sched_group_nodes
5929 = sched_group_nodes_bycpu[cpu];
5930
5931 if (sched_group_allnodes) {
5932 kfree(sched_group_allnodes);
5933 sched_group_allnodes_bycpu[cpu] = NULL;
5934 }
5935
5936 if (!sched_group_nodes)
5937 continue;
5938
5939 for (i = 0; i < MAX_NUMNODES; i++) {
5940 cpumask_t nodemask = node_to_cpumask(i);
5941 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5942
5943 cpus_and(nodemask, nodemask, *cpu_map);
5944 if (cpus_empty(nodemask))
5945 continue;
5946
5947 if (sg == NULL)
5948 continue;
5949 sg = sg->next;
5950 next_sg:
5951 oldsg = sg;
5952 sg = sg->next;
5953 kfree(oldsg);
5954 if (oldsg != sched_group_nodes[i])
5955 goto next_sg;
5956 }
5957 kfree(sched_group_nodes);
5958 sched_group_nodes_bycpu[cpu] = NULL;
5959 }
5960 #endif
5961 }
5962
5963 /*
5964 * Detach sched domains from a group of cpus specified in cpu_map
5965 * These cpus will now be attached to the NULL domain
5966 */
5967 static void detach_destroy_domains(const cpumask_t *cpu_map)
5968 {
5969 int i;
5970
5971 for_each_cpu_mask(i, *cpu_map)
5972 cpu_attach_domain(NULL, i);
5973 synchronize_sched();
5974 arch_destroy_sched_domains(cpu_map);
5975 }
5976
5977 /*
5978 * Partition sched domains as specified by the cpumasks below.
5979 * This attaches all cpus from the cpumasks to the NULL domain,
5980 * waits for a RCU quiescent period, recalculates sched
5981 * domain information and then attaches them back to the
5982 * correct sched domains
5983 * Call with hotplug lock held
5984 */
5985 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5986 {
5987 cpumask_t change_map;
5988
5989 cpus_and(*partition1, *partition1, cpu_online_map);
5990 cpus_and(*partition2, *partition2, cpu_online_map);
5991 cpus_or(change_map, *partition1, *partition2);
5992
5993 /* Detach sched domains from all of the affected cpus */
5994 detach_destroy_domains(&change_map);
5995 if (!cpus_empty(*partition1))
5996 build_sched_domains(partition1);
5997 if (!cpus_empty(*partition2))
5998 build_sched_domains(partition2);
5999 }
6000
6001 #ifdef CONFIG_HOTPLUG_CPU
6002 /*
6003 * Force a reinitialization of the sched domains hierarchy. The domains
6004 * and groups cannot be updated in place without racing with the balancing
6005 * code, so we temporarily attach all running cpus to the NULL domain
6006 * which will prevent rebalancing while the sched domains are recalculated.
6007 */
6008 static int update_sched_domains(struct notifier_block *nfb,
6009 unsigned long action, void *hcpu)
6010 {
6011 switch (action) {
6012 case CPU_UP_PREPARE:
6013 case CPU_DOWN_PREPARE:
6014 detach_destroy_domains(&cpu_online_map);
6015 return NOTIFY_OK;
6016
6017 case CPU_UP_CANCELED:
6018 case CPU_DOWN_FAILED:
6019 case CPU_ONLINE:
6020 case CPU_DEAD:
6021 /*
6022 * Fall through and re-initialise the domains.
6023 */
6024 break;
6025 default:
6026 return NOTIFY_DONE;
6027 }
6028
6029 /* The hotplug lock is already held by cpu_up/cpu_down */
6030 arch_init_sched_domains(&cpu_online_map);
6031
6032 return NOTIFY_OK;
6033 }
6034 #endif
6035
6036 void __init sched_init_smp(void)
6037 {
6038 lock_cpu_hotplug();
6039 arch_init_sched_domains(&cpu_online_map);
6040 unlock_cpu_hotplug();
6041 /* XXX: Theoretical race here - CPU may be hotplugged now */
6042 hotcpu_notifier(update_sched_domains, 0);
6043 }
6044 #else
6045 void __init sched_init_smp(void)
6046 {
6047 }
6048 #endif /* CONFIG_SMP */
6049
6050 int in_sched_functions(unsigned long addr)
6051 {
6052 /* Linker adds these: start and end of __sched functions */
6053 extern char __sched_text_start[], __sched_text_end[];
6054 return in_lock_functions(addr) ||
6055 (addr >= (unsigned long)__sched_text_start
6056 && addr < (unsigned long)__sched_text_end);
6057 }
6058
6059 void __init sched_init(void)
6060 {
6061 runqueue_t *rq;
6062 int i, j, k;
6063
6064 for_each_possible_cpu(i) {
6065 prio_array_t *array;
6066
6067 rq = cpu_rq(i);
6068 spin_lock_init(&rq->lock);
6069 rq->nr_running = 0;
6070 rq->active = rq->arrays;
6071 rq->expired = rq->arrays + 1;
6072 rq->best_expired_prio = MAX_PRIO;
6073
6074 #ifdef CONFIG_SMP
6075 rq->sd = NULL;
6076 for (j = 1; j < 3; j++)
6077 rq->cpu_load[j] = 0;
6078 rq->active_balance = 0;
6079 rq->push_cpu = 0;
6080 rq->migration_thread = NULL;
6081 INIT_LIST_HEAD(&rq->migration_queue);
6082 #endif
6083 atomic_set(&rq->nr_iowait, 0);
6084
6085 for (j = 0; j < 2; j++) {
6086 array = rq->arrays + j;
6087 for (k = 0; k < MAX_PRIO; k++) {
6088 INIT_LIST_HEAD(array->queue + k);
6089 __clear_bit(k, array->bitmap);
6090 }
6091 // delimiter for bitsearch
6092 __set_bit(MAX_PRIO, array->bitmap);
6093 }
6094 }
6095
6096 /*
6097 * The boot idle thread does lazy MMU switching as well:
6098 */
6099 atomic_inc(&init_mm.mm_count);
6100 enter_lazy_tlb(&init_mm, current);
6101
6102 /*
6103 * Make us the idle thread. Technically, schedule() should not be
6104 * called from this thread, however somewhere below it might be,
6105 * but because we are the idle thread, we just pick up running again
6106 * when this runqueue becomes "idle".
6107 */
6108 init_idle(current, smp_processor_id());
6109 }
6110
6111 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6112 void __might_sleep(char *file, int line)
6113 {
6114 #if defined(in_atomic)
6115 static unsigned long prev_jiffy; /* ratelimiting */
6116
6117 if ((in_atomic() || irqs_disabled()) &&
6118 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6119 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6120 return;
6121 prev_jiffy = jiffies;
6122 printk(KERN_ERR "BUG: sleeping function called from invalid"
6123 " context at %s:%d\n", file, line);
6124 printk("in_atomic():%d, irqs_disabled():%d\n",
6125 in_atomic(), irqs_disabled());
6126 dump_stack();
6127 }
6128 #endif
6129 }
6130 EXPORT_SYMBOL(__might_sleep);
6131 #endif
6132
6133 #ifdef CONFIG_MAGIC_SYSRQ
6134 void normalize_rt_tasks(void)
6135 {
6136 struct task_struct *p;
6137 prio_array_t *array;
6138 unsigned long flags;
6139 runqueue_t *rq;
6140
6141 read_lock_irq(&tasklist_lock);
6142 for_each_process(p) {
6143 if (!rt_task(p))
6144 continue;
6145
6146 rq = task_rq_lock(p, &flags);
6147
6148 array = p->array;
6149 if (array)
6150 deactivate_task(p, task_rq(p));
6151 __setscheduler(p, SCHED_NORMAL, 0);
6152 if (array) {
6153 __activate_task(p, task_rq(p));
6154 resched_task(rq->curr);
6155 }
6156
6157 task_rq_unlock(rq, &flags);
6158 }
6159 read_unlock_irq(&tasklist_lock);
6160 }
6161
6162 #endif /* CONFIG_MAGIC_SYSRQ */
6163
6164 #ifdef CONFIG_IA64
6165 /*
6166 * These functions are only useful for the IA64 MCA handling.
6167 *
6168 * They can only be called when the whole system has been
6169 * stopped - every CPU needs to be quiescent, and no scheduling
6170 * activity can take place. Using them for anything else would
6171 * be a serious bug, and as a result, they aren't even visible
6172 * under any other configuration.
6173 */
6174
6175 /**
6176 * curr_task - return the current task for a given cpu.
6177 * @cpu: the processor in question.
6178 *
6179 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6180 */
6181 task_t *curr_task(int cpu)
6182 {
6183 return cpu_curr(cpu);
6184 }
6185
6186 /**
6187 * set_curr_task - set the current task for a given cpu.
6188 * @cpu: the processor in question.
6189 * @p: the task pointer to set.
6190 *
6191 * Description: This function must only be used when non-maskable interrupts
6192 * are serviced on a separate stack. It allows the architecture to switch the
6193 * notion of the current task on a cpu in a non-blocking manner. This function
6194 * must be called with all CPU's synchronized, and interrupts disabled, the
6195 * and caller must save the original value of the current task (see
6196 * curr_task() above) and restore that value before reenabling interrupts and
6197 * re-starting the system.
6198 *
6199 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6200 */
6201 void set_curr_task(int cpu, task_t *p)
6202 {
6203 cpu_curr(cpu) = p;
6204 }
6205
6206 #endif