[PATCH] unnecessary long index i in sched
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
53 #include <asm/tlb.h>
54
55 #include <asm/unistd.h>
56
57 /*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66 /*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75 /*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81 /*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
93 #define EXIT_WEIGHT 3
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101 /*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135 #ifdef CONFIG_SMP
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139 #else
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142 #endif
143
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147 #define DELTA(p) \
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
150
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161 /*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
173 static unsigned int task_timeslice(task_t *p)
174 {
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179 }
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183 /*
184 * These are the runqueue data structures:
185 */
186
187 typedef struct runqueue runqueue_t;
188
189 struct prio_array {
190 unsigned int nr_active;
191 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
192 struct list_head queue[MAX_PRIO];
193 };
194
195 /*
196 * This is the main, per-CPU runqueue data structure.
197 *
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
201 */
202 struct runqueue {
203 spinlock_t lock;
204
205 /*
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
208 */
209 unsigned long nr_running;
210 #ifdef CONFIG_SMP
211 unsigned long cpu_load[3];
212 #endif
213 unsigned long long nr_switches;
214
215 /*
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
220 */
221 unsigned long nr_uninterruptible;
222
223 unsigned long expired_timestamp;
224 unsigned long long timestamp_last_tick;
225 task_t *curr, *idle;
226 struct mm_struct *prev_mm;
227 prio_array_t *active, *expired, arrays[2];
228 int best_expired_prio;
229 atomic_t nr_iowait;
230
231 #ifdef CONFIG_SMP
232 struct sched_domain *sd;
233
234 /* For active balancing */
235 int active_balance;
236 int push_cpu;
237
238 task_t *migration_thread;
239 struct list_head migration_queue;
240 #endif
241
242 #ifdef CONFIG_SCHEDSTATS
243 /* latency stats */
244 struct sched_info rq_sched_info;
245
246 /* sys_sched_yield() stats */
247 unsigned long yld_exp_empty;
248 unsigned long yld_act_empty;
249 unsigned long yld_both_empty;
250 unsigned long yld_cnt;
251
252 /* schedule() stats */
253 unsigned long sched_switch;
254 unsigned long sched_cnt;
255 unsigned long sched_goidle;
256
257 /* try_to_wake_up() stats */
258 unsigned long ttwu_cnt;
259 unsigned long ttwu_local;
260 #endif
261 };
262
263 static DEFINE_PER_CPU(struct runqueue, runqueues);
264
265 /*
266 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
267 * See detach_destroy_domains: synchronize_sched for details.
268 *
269 * The domain tree of any CPU may only be accessed from within
270 * preempt-disabled sections.
271 */
272 #define for_each_domain(cpu, domain) \
273 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274
275 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
276 #define this_rq() (&__get_cpu_var(runqueues))
277 #define task_rq(p) cpu_rq(task_cpu(p))
278 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279
280 #ifndef prepare_arch_switch
281 # define prepare_arch_switch(next) do { } while (0)
282 #endif
283 #ifndef finish_arch_switch
284 # define finish_arch_switch(prev) do { } while (0)
285 #endif
286
287 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
288 static inline int task_running(runqueue_t *rq, task_t *p)
289 {
290 return rq->curr == p;
291 }
292
293 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
294 {
295 }
296
297 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
298 {
299 #ifdef CONFIG_DEBUG_SPINLOCK
300 /* this is a valid case when another task releases the spinlock */
301 rq->lock.owner = current;
302 #endif
303 spin_unlock_irq(&rq->lock);
304 }
305
306 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
307 static inline int task_running(runqueue_t *rq, task_t *p)
308 {
309 #ifdef CONFIG_SMP
310 return p->oncpu;
311 #else
312 return rq->curr == p;
313 #endif
314 }
315
316 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
317 {
318 #ifdef CONFIG_SMP
319 /*
320 * We can optimise this out completely for !SMP, because the
321 * SMP rebalancing from interrupt is the only thing that cares
322 * here.
323 */
324 next->oncpu = 1;
325 #endif
326 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
327 spin_unlock_irq(&rq->lock);
328 #else
329 spin_unlock(&rq->lock);
330 #endif
331 }
332
333 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
334 {
335 #ifdef CONFIG_SMP
336 /*
337 * After ->oncpu is cleared, the task can be moved to a different CPU.
338 * We must ensure this doesn't happen until the switch is completely
339 * finished.
340 */
341 smp_wmb();
342 prev->oncpu = 0;
343 #endif
344 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
345 local_irq_enable();
346 #endif
347 }
348 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
349
350 /*
351 * task_rq_lock - lock the runqueue a given task resides on and disable
352 * interrupts. Note the ordering: we can safely lookup the task_rq without
353 * explicitly disabling preemption.
354 */
355 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
356 __acquires(rq->lock)
357 {
358 struct runqueue *rq;
359
360 repeat_lock_task:
361 local_irq_save(*flags);
362 rq = task_rq(p);
363 spin_lock(&rq->lock);
364 if (unlikely(rq != task_rq(p))) {
365 spin_unlock_irqrestore(&rq->lock, *flags);
366 goto repeat_lock_task;
367 }
368 return rq;
369 }
370
371 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
372 __releases(rq->lock)
373 {
374 spin_unlock_irqrestore(&rq->lock, *flags);
375 }
376
377 #ifdef CONFIG_SCHEDSTATS
378 /*
379 * bump this up when changing the output format or the meaning of an existing
380 * format, so that tools can adapt (or abort)
381 */
382 #define SCHEDSTAT_VERSION 12
383
384 static int show_schedstat(struct seq_file *seq, void *v)
385 {
386 int cpu;
387
388 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
389 seq_printf(seq, "timestamp %lu\n", jiffies);
390 for_each_online_cpu(cpu) {
391 runqueue_t *rq = cpu_rq(cpu);
392 #ifdef CONFIG_SMP
393 struct sched_domain *sd;
394 int dcnt = 0;
395 #endif
396
397 /* runqueue-specific stats */
398 seq_printf(seq,
399 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
400 cpu, rq->yld_both_empty,
401 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
402 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
403 rq->ttwu_cnt, rq->ttwu_local,
404 rq->rq_sched_info.cpu_time,
405 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
406
407 seq_printf(seq, "\n");
408
409 #ifdef CONFIG_SMP
410 /* domain-specific stats */
411 preempt_disable();
412 for_each_domain(cpu, sd) {
413 enum idle_type itype;
414 char mask_str[NR_CPUS];
415
416 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
417 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
418 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
419 itype++) {
420 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
421 sd->lb_cnt[itype],
422 sd->lb_balanced[itype],
423 sd->lb_failed[itype],
424 sd->lb_imbalance[itype],
425 sd->lb_gained[itype],
426 sd->lb_hot_gained[itype],
427 sd->lb_nobusyq[itype],
428 sd->lb_nobusyg[itype]);
429 }
430 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
431 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
432 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
433 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
434 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
435 }
436 preempt_enable();
437 #endif
438 }
439 return 0;
440 }
441
442 static int schedstat_open(struct inode *inode, struct file *file)
443 {
444 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
445 char *buf = kmalloc(size, GFP_KERNEL);
446 struct seq_file *m;
447 int res;
448
449 if (!buf)
450 return -ENOMEM;
451 res = single_open(file, show_schedstat, NULL);
452 if (!res) {
453 m = file->private_data;
454 m->buf = buf;
455 m->size = size;
456 } else
457 kfree(buf);
458 return res;
459 }
460
461 struct file_operations proc_schedstat_operations = {
462 .open = schedstat_open,
463 .read = seq_read,
464 .llseek = seq_lseek,
465 .release = single_release,
466 };
467
468 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
469 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
470 #else /* !CONFIG_SCHEDSTATS */
471 # define schedstat_inc(rq, field) do { } while (0)
472 # define schedstat_add(rq, field, amt) do { } while (0)
473 #endif
474
475 /*
476 * rq_lock - lock a given runqueue and disable interrupts.
477 */
478 static inline runqueue_t *this_rq_lock(void)
479 __acquires(rq->lock)
480 {
481 runqueue_t *rq;
482
483 local_irq_disable();
484 rq = this_rq();
485 spin_lock(&rq->lock);
486
487 return rq;
488 }
489
490 #ifdef CONFIG_SCHEDSTATS
491 /*
492 * Called when a process is dequeued from the active array and given
493 * the cpu. We should note that with the exception of interactive
494 * tasks, the expired queue will become the active queue after the active
495 * queue is empty, without explicitly dequeuing and requeuing tasks in the
496 * expired queue. (Interactive tasks may be requeued directly to the
497 * active queue, thus delaying tasks in the expired queue from running;
498 * see scheduler_tick()).
499 *
500 * This function is only called from sched_info_arrive(), rather than
501 * dequeue_task(). Even though a task may be queued and dequeued multiple
502 * times as it is shuffled about, we're really interested in knowing how
503 * long it was from the *first* time it was queued to the time that it
504 * finally hit a cpu.
505 */
506 static inline void sched_info_dequeued(task_t *t)
507 {
508 t->sched_info.last_queued = 0;
509 }
510
511 /*
512 * Called when a task finally hits the cpu. We can now calculate how
513 * long it was waiting to run. We also note when it began so that we
514 * can keep stats on how long its timeslice is.
515 */
516 static void sched_info_arrive(task_t *t)
517 {
518 unsigned long now = jiffies, diff = 0;
519 struct runqueue *rq = task_rq(t);
520
521 if (t->sched_info.last_queued)
522 diff = now - t->sched_info.last_queued;
523 sched_info_dequeued(t);
524 t->sched_info.run_delay += diff;
525 t->sched_info.last_arrival = now;
526 t->sched_info.pcnt++;
527
528 if (!rq)
529 return;
530
531 rq->rq_sched_info.run_delay += diff;
532 rq->rq_sched_info.pcnt++;
533 }
534
535 /*
536 * Called when a process is queued into either the active or expired
537 * array. The time is noted and later used to determine how long we
538 * had to wait for us to reach the cpu. Since the expired queue will
539 * become the active queue after active queue is empty, without dequeuing
540 * and requeuing any tasks, we are interested in queuing to either. It
541 * is unusual but not impossible for tasks to be dequeued and immediately
542 * requeued in the same or another array: this can happen in sched_yield(),
543 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
544 * to runqueue.
545 *
546 * This function is only called from enqueue_task(), but also only updates
547 * the timestamp if it is already not set. It's assumed that
548 * sched_info_dequeued() will clear that stamp when appropriate.
549 */
550 static inline void sched_info_queued(task_t *t)
551 {
552 if (!t->sched_info.last_queued)
553 t->sched_info.last_queued = jiffies;
554 }
555
556 /*
557 * Called when a process ceases being the active-running process, either
558 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 */
560 static inline void sched_info_depart(task_t *t)
561 {
562 struct runqueue *rq = task_rq(t);
563 unsigned long diff = jiffies - t->sched_info.last_arrival;
564
565 t->sched_info.cpu_time += diff;
566
567 if (rq)
568 rq->rq_sched_info.cpu_time += diff;
569 }
570
571 /*
572 * Called when tasks are switched involuntarily due, typically, to expiring
573 * their time slice. (This may also be called when switching to or from
574 * the idle task.) We are only called when prev != next.
575 */
576 static inline void sched_info_switch(task_t *prev, task_t *next)
577 {
578 struct runqueue *rq = task_rq(prev);
579
580 /*
581 * prev now departs the cpu. It's not interesting to record
582 * stats about how efficient we were at scheduling the idle
583 * process, however.
584 */
585 if (prev != rq->idle)
586 sched_info_depart(prev);
587
588 if (next != rq->idle)
589 sched_info_arrive(next);
590 }
591 #else
592 #define sched_info_queued(t) do { } while (0)
593 #define sched_info_switch(t, next) do { } while (0)
594 #endif /* CONFIG_SCHEDSTATS */
595
596 /*
597 * Adding/removing a task to/from a priority array:
598 */
599 static void dequeue_task(struct task_struct *p, prio_array_t *array)
600 {
601 array->nr_active--;
602 list_del(&p->run_list);
603 if (list_empty(array->queue + p->prio))
604 __clear_bit(p->prio, array->bitmap);
605 }
606
607 static void enqueue_task(struct task_struct *p, prio_array_t *array)
608 {
609 sched_info_queued(p);
610 list_add_tail(&p->run_list, array->queue + p->prio);
611 __set_bit(p->prio, array->bitmap);
612 array->nr_active++;
613 p->array = array;
614 }
615
616 /*
617 * Put task to the end of the run list without the overhead of dequeue
618 * followed by enqueue.
619 */
620 static void requeue_task(struct task_struct *p, prio_array_t *array)
621 {
622 list_move_tail(&p->run_list, array->queue + p->prio);
623 }
624
625 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
626 {
627 list_add(&p->run_list, array->queue + p->prio);
628 __set_bit(p->prio, array->bitmap);
629 array->nr_active++;
630 p->array = array;
631 }
632
633 /*
634 * effective_prio - return the priority that is based on the static
635 * priority but is modified by bonuses/penalties.
636 *
637 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
638 * into the -5 ... 0 ... +5 bonus/penalty range.
639 *
640 * We use 25% of the full 0...39 priority range so that:
641 *
642 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
643 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 *
645 * Both properties are important to certain workloads.
646 */
647 static int effective_prio(task_t *p)
648 {
649 int bonus, prio;
650
651 if (rt_task(p))
652 return p->prio;
653
654 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
655
656 prio = p->static_prio - bonus;
657 if (prio < MAX_RT_PRIO)
658 prio = MAX_RT_PRIO;
659 if (prio > MAX_PRIO-1)
660 prio = MAX_PRIO-1;
661 return prio;
662 }
663
664 /*
665 * __activate_task - move a task to the runqueue.
666 */
667 static void __activate_task(task_t *p, runqueue_t *rq)
668 {
669 prio_array_t *target = rq->active;
670
671 if (batch_task(p))
672 target = rq->expired;
673 enqueue_task(p, target);
674 rq->nr_running++;
675 }
676
677 /*
678 * __activate_idle_task - move idle task to the _front_ of runqueue.
679 */
680 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
681 {
682 enqueue_task_head(p, rq->active);
683 rq->nr_running++;
684 }
685
686 static int recalc_task_prio(task_t *p, unsigned long long now)
687 {
688 /* Caller must always ensure 'now >= p->timestamp' */
689 unsigned long sleep_time = now - p->timestamp;
690
691 if (batch_task(p))
692 sleep_time = 0;
693
694 if (likely(sleep_time > 0)) {
695 /*
696 * This ceiling is set to the lowest priority that would allow
697 * a task to be reinserted into the active array on timeslice
698 * completion.
699 */
700 unsigned long ceiling = INTERACTIVE_SLEEP(p);
701
702 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
703 /*
704 * Prevents user tasks from achieving best priority
705 * with one single large enough sleep.
706 */
707 p->sleep_avg = ceiling;
708 /*
709 * Using INTERACTIVE_SLEEP() as a ceiling places a
710 * nice(0) task 1ms sleep away from promotion, and
711 * gives it 700ms to round-robin with no chance of
712 * being demoted. This is more than generous, so
713 * mark this sleep as non-interactive to prevent the
714 * on-runqueue bonus logic from intervening should
715 * this task not receive cpu immediately.
716 */
717 p->sleep_type = SLEEP_NONINTERACTIVE;
718 } else {
719 /*
720 * Tasks waking from uninterruptible sleep are
721 * limited in their sleep_avg rise as they
722 * are likely to be waiting on I/O
723 */
724 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
725 if (p->sleep_avg >= ceiling)
726 sleep_time = 0;
727 else if (p->sleep_avg + sleep_time >=
728 ceiling) {
729 p->sleep_avg = ceiling;
730 sleep_time = 0;
731 }
732 }
733
734 /*
735 * This code gives a bonus to interactive tasks.
736 *
737 * The boost works by updating the 'average sleep time'
738 * value here, based on ->timestamp. The more time a
739 * task spends sleeping, the higher the average gets -
740 * and the higher the priority boost gets as well.
741 */
742 p->sleep_avg += sleep_time;
743
744 }
745 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
746 p->sleep_avg = NS_MAX_SLEEP_AVG;
747 }
748
749 return effective_prio(p);
750 }
751
752 /*
753 * activate_task - move a task to the runqueue and do priority recalculation
754 *
755 * Update all the scheduling statistics stuff. (sleep average
756 * calculation, priority modifiers, etc.)
757 */
758 static void activate_task(task_t *p, runqueue_t *rq, int local)
759 {
760 unsigned long long now;
761
762 now = sched_clock();
763 #ifdef CONFIG_SMP
764 if (!local) {
765 /* Compensate for drifting sched_clock */
766 runqueue_t *this_rq = this_rq();
767 now = (now - this_rq->timestamp_last_tick)
768 + rq->timestamp_last_tick;
769 }
770 #endif
771
772 if (!rt_task(p))
773 p->prio = recalc_task_prio(p, now);
774
775 /*
776 * This checks to make sure it's not an uninterruptible task
777 * that is now waking up.
778 */
779 if (p->sleep_type == SLEEP_NORMAL) {
780 /*
781 * Tasks which were woken up by interrupts (ie. hw events)
782 * are most likely of interactive nature. So we give them
783 * the credit of extending their sleep time to the period
784 * of time they spend on the runqueue, waiting for execution
785 * on a CPU, first time around:
786 */
787 if (in_interrupt())
788 p->sleep_type = SLEEP_INTERRUPTED;
789 else {
790 /*
791 * Normal first-time wakeups get a credit too for
792 * on-runqueue time, but it will be weighted down:
793 */
794 p->sleep_type = SLEEP_INTERACTIVE;
795 }
796 }
797 p->timestamp = now;
798
799 __activate_task(p, rq);
800 }
801
802 /*
803 * deactivate_task - remove a task from the runqueue.
804 */
805 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
806 {
807 rq->nr_running--;
808 dequeue_task(p, p->array);
809 p->array = NULL;
810 }
811
812 /*
813 * resched_task - mark a task 'to be rescheduled now'.
814 *
815 * On UP this means the setting of the need_resched flag, on SMP it
816 * might also involve a cross-CPU call to trigger the scheduler on
817 * the target CPU.
818 */
819 #ifdef CONFIG_SMP
820
821 #ifndef tsk_is_polling
822 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
823 #endif
824
825 static void resched_task(task_t *p)
826 {
827 int cpu;
828
829 assert_spin_locked(&task_rq(p)->lock);
830
831 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
832 return;
833
834 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
835
836 cpu = task_cpu(p);
837 if (cpu == smp_processor_id())
838 return;
839
840 /* NEED_RESCHED must be visible before we test polling */
841 smp_mb();
842 if (!tsk_is_polling(p))
843 smp_send_reschedule(cpu);
844 }
845 #else
846 static inline void resched_task(task_t *p)
847 {
848 assert_spin_locked(&task_rq(p)->lock);
849 set_tsk_need_resched(p);
850 }
851 #endif
852
853 /**
854 * task_curr - is this task currently executing on a CPU?
855 * @p: the task in question.
856 */
857 inline int task_curr(const task_t *p)
858 {
859 return cpu_curr(task_cpu(p)) == p;
860 }
861
862 #ifdef CONFIG_SMP
863 typedef struct {
864 struct list_head list;
865
866 task_t *task;
867 int dest_cpu;
868
869 struct completion done;
870 } migration_req_t;
871
872 /*
873 * The task's runqueue lock must be held.
874 * Returns true if you have to wait for migration thread.
875 */
876 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
877 {
878 runqueue_t *rq = task_rq(p);
879
880 /*
881 * If the task is not on a runqueue (and not running), then
882 * it is sufficient to simply update the task's cpu field.
883 */
884 if (!p->array && !task_running(rq, p)) {
885 set_task_cpu(p, dest_cpu);
886 return 0;
887 }
888
889 init_completion(&req->done);
890 req->task = p;
891 req->dest_cpu = dest_cpu;
892 list_add(&req->list, &rq->migration_queue);
893 return 1;
894 }
895
896 /*
897 * wait_task_inactive - wait for a thread to unschedule.
898 *
899 * The caller must ensure that the task *will* unschedule sometime soon,
900 * else this function might spin for a *long* time. This function can't
901 * be called with interrupts off, or it may introduce deadlock with
902 * smp_call_function() if an IPI is sent by the same process we are
903 * waiting to become inactive.
904 */
905 void wait_task_inactive(task_t *p)
906 {
907 unsigned long flags;
908 runqueue_t *rq;
909 int preempted;
910
911 repeat:
912 rq = task_rq_lock(p, &flags);
913 /* Must be off runqueue entirely, not preempted. */
914 if (unlikely(p->array || task_running(rq, p))) {
915 /* If it's preempted, we yield. It could be a while. */
916 preempted = !task_running(rq, p);
917 task_rq_unlock(rq, &flags);
918 cpu_relax();
919 if (preempted)
920 yield();
921 goto repeat;
922 }
923 task_rq_unlock(rq, &flags);
924 }
925
926 /***
927 * kick_process - kick a running thread to enter/exit the kernel
928 * @p: the to-be-kicked thread
929 *
930 * Cause a process which is running on another CPU to enter
931 * kernel-mode, without any delay. (to get signals handled.)
932 *
933 * NOTE: this function doesnt have to take the runqueue lock,
934 * because all it wants to ensure is that the remote task enters
935 * the kernel. If the IPI races and the task has been migrated
936 * to another CPU then no harm is done and the purpose has been
937 * achieved as well.
938 */
939 void kick_process(task_t *p)
940 {
941 int cpu;
942
943 preempt_disable();
944 cpu = task_cpu(p);
945 if ((cpu != smp_processor_id()) && task_curr(p))
946 smp_send_reschedule(cpu);
947 preempt_enable();
948 }
949
950 /*
951 * Return a low guess at the load of a migration-source cpu.
952 *
953 * We want to under-estimate the load of migration sources, to
954 * balance conservatively.
955 */
956 static inline unsigned long source_load(int cpu, int type)
957 {
958 runqueue_t *rq = cpu_rq(cpu);
959 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
960 if (type == 0)
961 return load_now;
962
963 return min(rq->cpu_load[type-1], load_now);
964 }
965
966 /*
967 * Return a high guess at the load of a migration-target cpu
968 */
969 static inline unsigned long target_load(int cpu, int type)
970 {
971 runqueue_t *rq = cpu_rq(cpu);
972 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
973 if (type == 0)
974 return load_now;
975
976 return max(rq->cpu_load[type-1], load_now);
977 }
978
979 /*
980 * find_idlest_group finds and returns the least busy CPU group within the
981 * domain.
982 */
983 static struct sched_group *
984 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
985 {
986 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
987 unsigned long min_load = ULONG_MAX, this_load = 0;
988 int load_idx = sd->forkexec_idx;
989 int imbalance = 100 + (sd->imbalance_pct-100)/2;
990
991 do {
992 unsigned long load, avg_load;
993 int local_group;
994 int i;
995
996 /* Skip over this group if it has no CPUs allowed */
997 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
998 goto nextgroup;
999
1000 local_group = cpu_isset(this_cpu, group->cpumask);
1001
1002 /* Tally up the load of all CPUs in the group */
1003 avg_load = 0;
1004
1005 for_each_cpu_mask(i, group->cpumask) {
1006 /* Bias balancing toward cpus of our domain */
1007 if (local_group)
1008 load = source_load(i, load_idx);
1009 else
1010 load = target_load(i, load_idx);
1011
1012 avg_load += load;
1013 }
1014
1015 /* Adjust by relative CPU power of the group */
1016 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1017
1018 if (local_group) {
1019 this_load = avg_load;
1020 this = group;
1021 } else if (avg_load < min_load) {
1022 min_load = avg_load;
1023 idlest = group;
1024 }
1025 nextgroup:
1026 group = group->next;
1027 } while (group != sd->groups);
1028
1029 if (!idlest || 100*this_load < imbalance*min_load)
1030 return NULL;
1031 return idlest;
1032 }
1033
1034 /*
1035 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1036 */
1037 static int
1038 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1039 {
1040 cpumask_t tmp;
1041 unsigned long load, min_load = ULONG_MAX;
1042 int idlest = -1;
1043 int i;
1044
1045 /* Traverse only the allowed CPUs */
1046 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1047
1048 for_each_cpu_mask(i, tmp) {
1049 load = source_load(i, 0);
1050
1051 if (load < min_load || (load == min_load && i == this_cpu)) {
1052 min_load = load;
1053 idlest = i;
1054 }
1055 }
1056
1057 return idlest;
1058 }
1059
1060 /*
1061 * sched_balance_self: balance the current task (running on cpu) in domains
1062 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1063 * SD_BALANCE_EXEC.
1064 *
1065 * Balance, ie. select the least loaded group.
1066 *
1067 * Returns the target CPU number, or the same CPU if no balancing is needed.
1068 *
1069 * preempt must be disabled.
1070 */
1071 static int sched_balance_self(int cpu, int flag)
1072 {
1073 struct task_struct *t = current;
1074 struct sched_domain *tmp, *sd = NULL;
1075
1076 for_each_domain(cpu, tmp) {
1077 if (tmp->flags & flag)
1078 sd = tmp;
1079 }
1080
1081 while (sd) {
1082 cpumask_t span;
1083 struct sched_group *group;
1084 int new_cpu;
1085 int weight;
1086
1087 span = sd->span;
1088 group = find_idlest_group(sd, t, cpu);
1089 if (!group)
1090 goto nextlevel;
1091
1092 new_cpu = find_idlest_cpu(group, t, cpu);
1093 if (new_cpu == -1 || new_cpu == cpu)
1094 goto nextlevel;
1095
1096 /* Now try balancing at a lower domain level */
1097 cpu = new_cpu;
1098 nextlevel:
1099 sd = NULL;
1100 weight = cpus_weight(span);
1101 for_each_domain(cpu, tmp) {
1102 if (weight <= cpus_weight(tmp->span))
1103 break;
1104 if (tmp->flags & flag)
1105 sd = tmp;
1106 }
1107 /* while loop will break here if sd == NULL */
1108 }
1109
1110 return cpu;
1111 }
1112
1113 #endif /* CONFIG_SMP */
1114
1115 /*
1116 * wake_idle() will wake a task on an idle cpu if task->cpu is
1117 * not idle and an idle cpu is available. The span of cpus to
1118 * search starts with cpus closest then further out as needed,
1119 * so we always favor a closer, idle cpu.
1120 *
1121 * Returns the CPU we should wake onto.
1122 */
1123 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1124 static int wake_idle(int cpu, task_t *p)
1125 {
1126 cpumask_t tmp;
1127 struct sched_domain *sd;
1128 int i;
1129
1130 if (idle_cpu(cpu))
1131 return cpu;
1132
1133 for_each_domain(cpu, sd) {
1134 if (sd->flags & SD_WAKE_IDLE) {
1135 cpus_and(tmp, sd->span, p->cpus_allowed);
1136 for_each_cpu_mask(i, tmp) {
1137 if (idle_cpu(i))
1138 return i;
1139 }
1140 }
1141 else
1142 break;
1143 }
1144 return cpu;
1145 }
1146 #else
1147 static inline int wake_idle(int cpu, task_t *p)
1148 {
1149 return cpu;
1150 }
1151 #endif
1152
1153 /***
1154 * try_to_wake_up - wake up a thread
1155 * @p: the to-be-woken-up thread
1156 * @state: the mask of task states that can be woken
1157 * @sync: do a synchronous wakeup?
1158 *
1159 * Put it on the run-queue if it's not already there. The "current"
1160 * thread is always on the run-queue (except when the actual
1161 * re-schedule is in progress), and as such you're allowed to do
1162 * the simpler "current->state = TASK_RUNNING" to mark yourself
1163 * runnable without the overhead of this.
1164 *
1165 * returns failure only if the task is already active.
1166 */
1167 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1168 {
1169 int cpu, this_cpu, success = 0;
1170 unsigned long flags;
1171 long old_state;
1172 runqueue_t *rq;
1173 #ifdef CONFIG_SMP
1174 unsigned long load, this_load;
1175 struct sched_domain *sd, *this_sd = NULL;
1176 int new_cpu;
1177 #endif
1178
1179 rq = task_rq_lock(p, &flags);
1180 old_state = p->state;
1181 if (!(old_state & state))
1182 goto out;
1183
1184 if (p->array)
1185 goto out_running;
1186
1187 cpu = task_cpu(p);
1188 this_cpu = smp_processor_id();
1189
1190 #ifdef CONFIG_SMP
1191 if (unlikely(task_running(rq, p)))
1192 goto out_activate;
1193
1194 new_cpu = cpu;
1195
1196 schedstat_inc(rq, ttwu_cnt);
1197 if (cpu == this_cpu) {
1198 schedstat_inc(rq, ttwu_local);
1199 goto out_set_cpu;
1200 }
1201
1202 for_each_domain(this_cpu, sd) {
1203 if (cpu_isset(cpu, sd->span)) {
1204 schedstat_inc(sd, ttwu_wake_remote);
1205 this_sd = sd;
1206 break;
1207 }
1208 }
1209
1210 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1211 goto out_set_cpu;
1212
1213 /*
1214 * Check for affine wakeup and passive balancing possibilities.
1215 */
1216 if (this_sd) {
1217 int idx = this_sd->wake_idx;
1218 unsigned int imbalance;
1219
1220 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1221
1222 load = source_load(cpu, idx);
1223 this_load = target_load(this_cpu, idx);
1224
1225 new_cpu = this_cpu; /* Wake to this CPU if we can */
1226
1227 if (this_sd->flags & SD_WAKE_AFFINE) {
1228 unsigned long tl = this_load;
1229 /*
1230 * If sync wakeup then subtract the (maximum possible)
1231 * effect of the currently running task from the load
1232 * of the current CPU:
1233 */
1234 if (sync)
1235 tl -= SCHED_LOAD_SCALE;
1236
1237 if ((tl <= load &&
1238 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1239 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1240 /*
1241 * This domain has SD_WAKE_AFFINE and
1242 * p is cache cold in this domain, and
1243 * there is no bad imbalance.
1244 */
1245 schedstat_inc(this_sd, ttwu_move_affine);
1246 goto out_set_cpu;
1247 }
1248 }
1249
1250 /*
1251 * Start passive balancing when half the imbalance_pct
1252 * limit is reached.
1253 */
1254 if (this_sd->flags & SD_WAKE_BALANCE) {
1255 if (imbalance*this_load <= 100*load) {
1256 schedstat_inc(this_sd, ttwu_move_balance);
1257 goto out_set_cpu;
1258 }
1259 }
1260 }
1261
1262 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1263 out_set_cpu:
1264 new_cpu = wake_idle(new_cpu, p);
1265 if (new_cpu != cpu) {
1266 set_task_cpu(p, new_cpu);
1267 task_rq_unlock(rq, &flags);
1268 /* might preempt at this point */
1269 rq = task_rq_lock(p, &flags);
1270 old_state = p->state;
1271 if (!(old_state & state))
1272 goto out;
1273 if (p->array)
1274 goto out_running;
1275
1276 this_cpu = smp_processor_id();
1277 cpu = task_cpu(p);
1278 }
1279
1280 out_activate:
1281 #endif /* CONFIG_SMP */
1282 if (old_state == TASK_UNINTERRUPTIBLE) {
1283 rq->nr_uninterruptible--;
1284 /*
1285 * Tasks on involuntary sleep don't earn
1286 * sleep_avg beyond just interactive state.
1287 */
1288 p->sleep_type = SLEEP_NONINTERACTIVE;
1289 } else
1290
1291 /*
1292 * Tasks that have marked their sleep as noninteractive get
1293 * woken up with their sleep average not weighted in an
1294 * interactive way.
1295 */
1296 if (old_state & TASK_NONINTERACTIVE)
1297 p->sleep_type = SLEEP_NONINTERACTIVE;
1298
1299
1300 activate_task(p, rq, cpu == this_cpu);
1301 /*
1302 * Sync wakeups (i.e. those types of wakeups where the waker
1303 * has indicated that it will leave the CPU in short order)
1304 * don't trigger a preemption, if the woken up task will run on
1305 * this cpu. (in this case the 'I will reschedule' promise of
1306 * the waker guarantees that the freshly woken up task is going
1307 * to be considered on this CPU.)
1308 */
1309 if (!sync || cpu != this_cpu) {
1310 if (TASK_PREEMPTS_CURR(p, rq))
1311 resched_task(rq->curr);
1312 }
1313 success = 1;
1314
1315 out_running:
1316 p->state = TASK_RUNNING;
1317 out:
1318 task_rq_unlock(rq, &flags);
1319
1320 return success;
1321 }
1322
1323 int fastcall wake_up_process(task_t *p)
1324 {
1325 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1326 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1327 }
1328
1329 EXPORT_SYMBOL(wake_up_process);
1330
1331 int fastcall wake_up_state(task_t *p, unsigned int state)
1332 {
1333 return try_to_wake_up(p, state, 0);
1334 }
1335
1336 /*
1337 * Perform scheduler related setup for a newly forked process p.
1338 * p is forked by current.
1339 */
1340 void fastcall sched_fork(task_t *p, int clone_flags)
1341 {
1342 int cpu = get_cpu();
1343
1344 #ifdef CONFIG_SMP
1345 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1346 #endif
1347 set_task_cpu(p, cpu);
1348
1349 /*
1350 * We mark the process as running here, but have not actually
1351 * inserted it onto the runqueue yet. This guarantees that
1352 * nobody will actually run it, and a signal or other external
1353 * event cannot wake it up and insert it on the runqueue either.
1354 */
1355 p->state = TASK_RUNNING;
1356 INIT_LIST_HEAD(&p->run_list);
1357 p->array = NULL;
1358 #ifdef CONFIG_SCHEDSTATS
1359 memset(&p->sched_info, 0, sizeof(p->sched_info));
1360 #endif
1361 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1362 p->oncpu = 0;
1363 #endif
1364 #ifdef CONFIG_PREEMPT
1365 /* Want to start with kernel preemption disabled. */
1366 task_thread_info(p)->preempt_count = 1;
1367 #endif
1368 /*
1369 * Share the timeslice between parent and child, thus the
1370 * total amount of pending timeslices in the system doesn't change,
1371 * resulting in more scheduling fairness.
1372 */
1373 local_irq_disable();
1374 p->time_slice = (current->time_slice + 1) >> 1;
1375 /*
1376 * The remainder of the first timeslice might be recovered by
1377 * the parent if the child exits early enough.
1378 */
1379 p->first_time_slice = 1;
1380 current->time_slice >>= 1;
1381 p->timestamp = sched_clock();
1382 if (unlikely(!current->time_slice)) {
1383 /*
1384 * This case is rare, it happens when the parent has only
1385 * a single jiffy left from its timeslice. Taking the
1386 * runqueue lock is not a problem.
1387 */
1388 current->time_slice = 1;
1389 scheduler_tick();
1390 }
1391 local_irq_enable();
1392 put_cpu();
1393 }
1394
1395 /*
1396 * wake_up_new_task - wake up a newly created task for the first time.
1397 *
1398 * This function will do some initial scheduler statistics housekeeping
1399 * that must be done for every newly created context, then puts the task
1400 * on the runqueue and wakes it.
1401 */
1402 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1403 {
1404 unsigned long flags;
1405 int this_cpu, cpu;
1406 runqueue_t *rq, *this_rq;
1407
1408 rq = task_rq_lock(p, &flags);
1409 BUG_ON(p->state != TASK_RUNNING);
1410 this_cpu = smp_processor_id();
1411 cpu = task_cpu(p);
1412
1413 /*
1414 * We decrease the sleep average of forking parents
1415 * and children as well, to keep max-interactive tasks
1416 * from forking tasks that are max-interactive. The parent
1417 * (current) is done further down, under its lock.
1418 */
1419 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1420 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1421
1422 p->prio = effective_prio(p);
1423
1424 if (likely(cpu == this_cpu)) {
1425 if (!(clone_flags & CLONE_VM)) {
1426 /*
1427 * The VM isn't cloned, so we're in a good position to
1428 * do child-runs-first in anticipation of an exec. This
1429 * usually avoids a lot of COW overhead.
1430 */
1431 if (unlikely(!current->array))
1432 __activate_task(p, rq);
1433 else {
1434 p->prio = current->prio;
1435 list_add_tail(&p->run_list, &current->run_list);
1436 p->array = current->array;
1437 p->array->nr_active++;
1438 rq->nr_running++;
1439 }
1440 set_need_resched();
1441 } else
1442 /* Run child last */
1443 __activate_task(p, rq);
1444 /*
1445 * We skip the following code due to cpu == this_cpu
1446 *
1447 * task_rq_unlock(rq, &flags);
1448 * this_rq = task_rq_lock(current, &flags);
1449 */
1450 this_rq = rq;
1451 } else {
1452 this_rq = cpu_rq(this_cpu);
1453
1454 /*
1455 * Not the local CPU - must adjust timestamp. This should
1456 * get optimised away in the !CONFIG_SMP case.
1457 */
1458 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1459 + rq->timestamp_last_tick;
1460 __activate_task(p, rq);
1461 if (TASK_PREEMPTS_CURR(p, rq))
1462 resched_task(rq->curr);
1463
1464 /*
1465 * Parent and child are on different CPUs, now get the
1466 * parent runqueue to update the parent's ->sleep_avg:
1467 */
1468 task_rq_unlock(rq, &flags);
1469 this_rq = task_rq_lock(current, &flags);
1470 }
1471 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1472 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1473 task_rq_unlock(this_rq, &flags);
1474 }
1475
1476 /*
1477 * Potentially available exiting-child timeslices are
1478 * retrieved here - this way the parent does not get
1479 * penalized for creating too many threads.
1480 *
1481 * (this cannot be used to 'generate' timeslices
1482 * artificially, because any timeslice recovered here
1483 * was given away by the parent in the first place.)
1484 */
1485 void fastcall sched_exit(task_t *p)
1486 {
1487 unsigned long flags;
1488 runqueue_t *rq;
1489
1490 /*
1491 * If the child was a (relative-) CPU hog then decrease
1492 * the sleep_avg of the parent as well.
1493 */
1494 rq = task_rq_lock(p->parent, &flags);
1495 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1496 p->parent->time_slice += p->time_slice;
1497 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1498 p->parent->time_slice = task_timeslice(p);
1499 }
1500 if (p->sleep_avg < p->parent->sleep_avg)
1501 p->parent->sleep_avg = p->parent->sleep_avg /
1502 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1503 (EXIT_WEIGHT + 1);
1504 task_rq_unlock(rq, &flags);
1505 }
1506
1507 /**
1508 * prepare_task_switch - prepare to switch tasks
1509 * @rq: the runqueue preparing to switch
1510 * @next: the task we are going to switch to.
1511 *
1512 * This is called with the rq lock held and interrupts off. It must
1513 * be paired with a subsequent finish_task_switch after the context
1514 * switch.
1515 *
1516 * prepare_task_switch sets up locking and calls architecture specific
1517 * hooks.
1518 */
1519 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1520 {
1521 prepare_lock_switch(rq, next);
1522 prepare_arch_switch(next);
1523 }
1524
1525 /**
1526 * finish_task_switch - clean up after a task-switch
1527 * @rq: runqueue associated with task-switch
1528 * @prev: the thread we just switched away from.
1529 *
1530 * finish_task_switch must be called after the context switch, paired
1531 * with a prepare_task_switch call before the context switch.
1532 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1533 * and do any other architecture-specific cleanup actions.
1534 *
1535 * Note that we may have delayed dropping an mm in context_switch(). If
1536 * so, we finish that here outside of the runqueue lock. (Doing it
1537 * with the lock held can cause deadlocks; see schedule() for
1538 * details.)
1539 */
1540 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1541 __releases(rq->lock)
1542 {
1543 struct mm_struct *mm = rq->prev_mm;
1544 unsigned long prev_task_flags;
1545
1546 rq->prev_mm = NULL;
1547
1548 /*
1549 * A task struct has one reference for the use as "current".
1550 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1551 * calls schedule one last time. The schedule call will never return,
1552 * and the scheduled task must drop that reference.
1553 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1554 * still held, otherwise prev could be scheduled on another cpu, die
1555 * there before we look at prev->state, and then the reference would
1556 * be dropped twice.
1557 * Manfred Spraul <manfred@colorfullife.com>
1558 */
1559 prev_task_flags = prev->flags;
1560 finish_arch_switch(prev);
1561 finish_lock_switch(rq, prev);
1562 if (mm)
1563 mmdrop(mm);
1564 if (unlikely(prev_task_flags & PF_DEAD)) {
1565 /*
1566 * Remove function-return probe instances associated with this
1567 * task and put them back on the free list.
1568 */
1569 kprobe_flush_task(prev);
1570 put_task_struct(prev);
1571 }
1572 }
1573
1574 /**
1575 * schedule_tail - first thing a freshly forked thread must call.
1576 * @prev: the thread we just switched away from.
1577 */
1578 asmlinkage void schedule_tail(task_t *prev)
1579 __releases(rq->lock)
1580 {
1581 runqueue_t *rq = this_rq();
1582 finish_task_switch(rq, prev);
1583 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1584 /* In this case, finish_task_switch does not reenable preemption */
1585 preempt_enable();
1586 #endif
1587 if (current->set_child_tid)
1588 put_user(current->pid, current->set_child_tid);
1589 }
1590
1591 /*
1592 * context_switch - switch to the new MM and the new
1593 * thread's register state.
1594 */
1595 static inline
1596 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1597 {
1598 struct mm_struct *mm = next->mm;
1599 struct mm_struct *oldmm = prev->active_mm;
1600
1601 if (unlikely(!mm)) {
1602 next->active_mm = oldmm;
1603 atomic_inc(&oldmm->mm_count);
1604 enter_lazy_tlb(oldmm, next);
1605 } else
1606 switch_mm(oldmm, mm, next);
1607
1608 if (unlikely(!prev->mm)) {
1609 prev->active_mm = NULL;
1610 WARN_ON(rq->prev_mm);
1611 rq->prev_mm = oldmm;
1612 }
1613
1614 /* Here we just switch the register state and the stack. */
1615 switch_to(prev, next, prev);
1616
1617 return prev;
1618 }
1619
1620 /*
1621 * nr_running, nr_uninterruptible and nr_context_switches:
1622 *
1623 * externally visible scheduler statistics: current number of runnable
1624 * threads, current number of uninterruptible-sleeping threads, total
1625 * number of context switches performed since bootup.
1626 */
1627 unsigned long nr_running(void)
1628 {
1629 unsigned long i, sum = 0;
1630
1631 for_each_online_cpu(i)
1632 sum += cpu_rq(i)->nr_running;
1633
1634 return sum;
1635 }
1636
1637 unsigned long nr_uninterruptible(void)
1638 {
1639 unsigned long i, sum = 0;
1640
1641 for_each_possible_cpu(i)
1642 sum += cpu_rq(i)->nr_uninterruptible;
1643
1644 /*
1645 * Since we read the counters lockless, it might be slightly
1646 * inaccurate. Do not allow it to go below zero though:
1647 */
1648 if (unlikely((long)sum < 0))
1649 sum = 0;
1650
1651 return sum;
1652 }
1653
1654 unsigned long long nr_context_switches(void)
1655 {
1656 int i;
1657 unsigned long long sum = 0;
1658
1659 for_each_possible_cpu(i)
1660 sum += cpu_rq(i)->nr_switches;
1661
1662 return sum;
1663 }
1664
1665 unsigned long nr_iowait(void)
1666 {
1667 unsigned long i, sum = 0;
1668
1669 for_each_possible_cpu(i)
1670 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1671
1672 return sum;
1673 }
1674
1675 unsigned long nr_active(void)
1676 {
1677 unsigned long i, running = 0, uninterruptible = 0;
1678
1679 for_each_online_cpu(i) {
1680 running += cpu_rq(i)->nr_running;
1681 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1682 }
1683
1684 if (unlikely((long)uninterruptible < 0))
1685 uninterruptible = 0;
1686
1687 return running + uninterruptible;
1688 }
1689
1690 #ifdef CONFIG_SMP
1691
1692 /*
1693 * double_rq_lock - safely lock two runqueues
1694 *
1695 * Note this does not disable interrupts like task_rq_lock,
1696 * you need to do so manually before calling.
1697 */
1698 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1699 __acquires(rq1->lock)
1700 __acquires(rq2->lock)
1701 {
1702 if (rq1 == rq2) {
1703 spin_lock(&rq1->lock);
1704 __acquire(rq2->lock); /* Fake it out ;) */
1705 } else {
1706 if (rq1 < rq2) {
1707 spin_lock(&rq1->lock);
1708 spin_lock(&rq2->lock);
1709 } else {
1710 spin_lock(&rq2->lock);
1711 spin_lock(&rq1->lock);
1712 }
1713 }
1714 }
1715
1716 /*
1717 * double_rq_unlock - safely unlock two runqueues
1718 *
1719 * Note this does not restore interrupts like task_rq_unlock,
1720 * you need to do so manually after calling.
1721 */
1722 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1723 __releases(rq1->lock)
1724 __releases(rq2->lock)
1725 {
1726 spin_unlock(&rq1->lock);
1727 if (rq1 != rq2)
1728 spin_unlock(&rq2->lock);
1729 else
1730 __release(rq2->lock);
1731 }
1732
1733 /*
1734 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1735 */
1736 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1737 __releases(this_rq->lock)
1738 __acquires(busiest->lock)
1739 __acquires(this_rq->lock)
1740 {
1741 if (unlikely(!spin_trylock(&busiest->lock))) {
1742 if (busiest < this_rq) {
1743 spin_unlock(&this_rq->lock);
1744 spin_lock(&busiest->lock);
1745 spin_lock(&this_rq->lock);
1746 } else
1747 spin_lock(&busiest->lock);
1748 }
1749 }
1750
1751 /*
1752 * If dest_cpu is allowed for this process, migrate the task to it.
1753 * This is accomplished by forcing the cpu_allowed mask to only
1754 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1755 * the cpu_allowed mask is restored.
1756 */
1757 static void sched_migrate_task(task_t *p, int dest_cpu)
1758 {
1759 migration_req_t req;
1760 runqueue_t *rq;
1761 unsigned long flags;
1762
1763 rq = task_rq_lock(p, &flags);
1764 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1765 || unlikely(cpu_is_offline(dest_cpu)))
1766 goto out;
1767
1768 /* force the process onto the specified CPU */
1769 if (migrate_task(p, dest_cpu, &req)) {
1770 /* Need to wait for migration thread (might exit: take ref). */
1771 struct task_struct *mt = rq->migration_thread;
1772 get_task_struct(mt);
1773 task_rq_unlock(rq, &flags);
1774 wake_up_process(mt);
1775 put_task_struct(mt);
1776 wait_for_completion(&req.done);
1777 return;
1778 }
1779 out:
1780 task_rq_unlock(rq, &flags);
1781 }
1782
1783 /*
1784 * sched_exec - execve() is a valuable balancing opportunity, because at
1785 * this point the task has the smallest effective memory and cache footprint.
1786 */
1787 void sched_exec(void)
1788 {
1789 int new_cpu, this_cpu = get_cpu();
1790 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1791 put_cpu();
1792 if (new_cpu != this_cpu)
1793 sched_migrate_task(current, new_cpu);
1794 }
1795
1796 /*
1797 * pull_task - move a task from a remote runqueue to the local runqueue.
1798 * Both runqueues must be locked.
1799 */
1800 static
1801 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1802 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1803 {
1804 dequeue_task(p, src_array);
1805 src_rq->nr_running--;
1806 set_task_cpu(p, this_cpu);
1807 this_rq->nr_running++;
1808 enqueue_task(p, this_array);
1809 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1810 + this_rq->timestamp_last_tick;
1811 /*
1812 * Note that idle threads have a prio of MAX_PRIO, for this test
1813 * to be always true for them.
1814 */
1815 if (TASK_PREEMPTS_CURR(p, this_rq))
1816 resched_task(this_rq->curr);
1817 }
1818
1819 /*
1820 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1821 */
1822 static
1823 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1824 struct sched_domain *sd, enum idle_type idle,
1825 int *all_pinned)
1826 {
1827 /*
1828 * We do not migrate tasks that are:
1829 * 1) running (obviously), or
1830 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1831 * 3) are cache-hot on their current CPU.
1832 */
1833 if (!cpu_isset(this_cpu, p->cpus_allowed))
1834 return 0;
1835 *all_pinned = 0;
1836
1837 if (task_running(rq, p))
1838 return 0;
1839
1840 /*
1841 * Aggressive migration if:
1842 * 1) task is cache cold, or
1843 * 2) too many balance attempts have failed.
1844 */
1845
1846 if (sd->nr_balance_failed > sd->cache_nice_tries)
1847 return 1;
1848
1849 if (task_hot(p, rq->timestamp_last_tick, sd))
1850 return 0;
1851 return 1;
1852 }
1853
1854 /*
1855 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1856 * as part of a balancing operation within "domain". Returns the number of
1857 * tasks moved.
1858 *
1859 * Called with both runqueues locked.
1860 */
1861 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1862 unsigned long max_nr_move, struct sched_domain *sd,
1863 enum idle_type idle, int *all_pinned)
1864 {
1865 prio_array_t *array, *dst_array;
1866 struct list_head *head, *curr;
1867 int idx, pulled = 0, pinned = 0;
1868 task_t *tmp;
1869
1870 if (max_nr_move == 0)
1871 goto out;
1872
1873 pinned = 1;
1874
1875 /*
1876 * We first consider expired tasks. Those will likely not be
1877 * executed in the near future, and they are most likely to
1878 * be cache-cold, thus switching CPUs has the least effect
1879 * on them.
1880 */
1881 if (busiest->expired->nr_active) {
1882 array = busiest->expired;
1883 dst_array = this_rq->expired;
1884 } else {
1885 array = busiest->active;
1886 dst_array = this_rq->active;
1887 }
1888
1889 new_array:
1890 /* Start searching at priority 0: */
1891 idx = 0;
1892 skip_bitmap:
1893 if (!idx)
1894 idx = sched_find_first_bit(array->bitmap);
1895 else
1896 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1897 if (idx >= MAX_PRIO) {
1898 if (array == busiest->expired && busiest->active->nr_active) {
1899 array = busiest->active;
1900 dst_array = this_rq->active;
1901 goto new_array;
1902 }
1903 goto out;
1904 }
1905
1906 head = array->queue + idx;
1907 curr = head->prev;
1908 skip_queue:
1909 tmp = list_entry(curr, task_t, run_list);
1910
1911 curr = curr->prev;
1912
1913 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1914 if (curr != head)
1915 goto skip_queue;
1916 idx++;
1917 goto skip_bitmap;
1918 }
1919
1920 #ifdef CONFIG_SCHEDSTATS
1921 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1922 schedstat_inc(sd, lb_hot_gained[idle]);
1923 #endif
1924
1925 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1926 pulled++;
1927
1928 /* We only want to steal up to the prescribed number of tasks. */
1929 if (pulled < max_nr_move) {
1930 if (curr != head)
1931 goto skip_queue;
1932 idx++;
1933 goto skip_bitmap;
1934 }
1935 out:
1936 /*
1937 * Right now, this is the only place pull_task() is called,
1938 * so we can safely collect pull_task() stats here rather than
1939 * inside pull_task().
1940 */
1941 schedstat_add(sd, lb_gained[idle], pulled);
1942
1943 if (all_pinned)
1944 *all_pinned = pinned;
1945 return pulled;
1946 }
1947
1948 /*
1949 * find_busiest_group finds and returns the busiest CPU group within the
1950 * domain. It calculates and returns the number of tasks which should be
1951 * moved to restore balance via the imbalance parameter.
1952 */
1953 static struct sched_group *
1954 find_busiest_group(struct sched_domain *sd, int this_cpu,
1955 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1956 {
1957 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1958 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1959 unsigned long max_pull;
1960 int load_idx;
1961
1962 max_load = this_load = total_load = total_pwr = 0;
1963 if (idle == NOT_IDLE)
1964 load_idx = sd->busy_idx;
1965 else if (idle == NEWLY_IDLE)
1966 load_idx = sd->newidle_idx;
1967 else
1968 load_idx = sd->idle_idx;
1969
1970 do {
1971 unsigned long load;
1972 int local_group;
1973 int i;
1974
1975 local_group = cpu_isset(this_cpu, group->cpumask);
1976
1977 /* Tally up the load of all CPUs in the group */
1978 avg_load = 0;
1979
1980 for_each_cpu_mask(i, group->cpumask) {
1981 if (*sd_idle && !idle_cpu(i))
1982 *sd_idle = 0;
1983
1984 /* Bias balancing toward cpus of our domain */
1985 if (local_group)
1986 load = target_load(i, load_idx);
1987 else
1988 load = source_load(i, load_idx);
1989
1990 avg_load += load;
1991 }
1992
1993 total_load += avg_load;
1994 total_pwr += group->cpu_power;
1995
1996 /* Adjust by relative CPU power of the group */
1997 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1998
1999 if (local_group) {
2000 this_load = avg_load;
2001 this = group;
2002 } else if (avg_load > max_load) {
2003 max_load = avg_load;
2004 busiest = group;
2005 }
2006 group = group->next;
2007 } while (group != sd->groups);
2008
2009 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2010 goto out_balanced;
2011
2012 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2013
2014 if (this_load >= avg_load ||
2015 100*max_load <= sd->imbalance_pct*this_load)
2016 goto out_balanced;
2017
2018 /*
2019 * We're trying to get all the cpus to the average_load, so we don't
2020 * want to push ourselves above the average load, nor do we wish to
2021 * reduce the max loaded cpu below the average load, as either of these
2022 * actions would just result in more rebalancing later, and ping-pong
2023 * tasks around. Thus we look for the minimum possible imbalance.
2024 * Negative imbalances (*we* are more loaded than anyone else) will
2025 * be counted as no imbalance for these purposes -- we can't fix that
2026 * by pulling tasks to us. Be careful of negative numbers as they'll
2027 * appear as very large values with unsigned longs.
2028 */
2029
2030 /* Don't want to pull so many tasks that a group would go idle */
2031 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2032
2033 /* How much load to actually move to equalise the imbalance */
2034 *imbalance = min(max_pull * busiest->cpu_power,
2035 (avg_load - this_load) * this->cpu_power)
2036 / SCHED_LOAD_SCALE;
2037
2038 if (*imbalance < SCHED_LOAD_SCALE) {
2039 unsigned long pwr_now = 0, pwr_move = 0;
2040 unsigned long tmp;
2041
2042 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2043 *imbalance = 1;
2044 return busiest;
2045 }
2046
2047 /*
2048 * OK, we don't have enough imbalance to justify moving tasks,
2049 * however we may be able to increase total CPU power used by
2050 * moving them.
2051 */
2052
2053 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2054 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2055 pwr_now /= SCHED_LOAD_SCALE;
2056
2057 /* Amount of load we'd subtract */
2058 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2059 if (max_load > tmp)
2060 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2061 max_load - tmp);
2062
2063 /* Amount of load we'd add */
2064 if (max_load*busiest->cpu_power <
2065 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2066 tmp = max_load*busiest->cpu_power/this->cpu_power;
2067 else
2068 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2069 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2070 pwr_move /= SCHED_LOAD_SCALE;
2071
2072 /* Move if we gain throughput */
2073 if (pwr_move <= pwr_now)
2074 goto out_balanced;
2075
2076 *imbalance = 1;
2077 return busiest;
2078 }
2079
2080 /* Get rid of the scaling factor, rounding down as we divide */
2081 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2082 return busiest;
2083
2084 out_balanced:
2085
2086 *imbalance = 0;
2087 return NULL;
2088 }
2089
2090 /*
2091 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2092 */
2093 static runqueue_t *find_busiest_queue(struct sched_group *group,
2094 enum idle_type idle)
2095 {
2096 unsigned long load, max_load = 0;
2097 runqueue_t *busiest = NULL;
2098 int i;
2099
2100 for_each_cpu_mask(i, group->cpumask) {
2101 load = source_load(i, 0);
2102
2103 if (load > max_load) {
2104 max_load = load;
2105 busiest = cpu_rq(i);
2106 }
2107 }
2108
2109 return busiest;
2110 }
2111
2112 /*
2113 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2114 * so long as it is large enough.
2115 */
2116 #define MAX_PINNED_INTERVAL 512
2117
2118 /*
2119 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2120 * tasks if there is an imbalance.
2121 *
2122 * Called with this_rq unlocked.
2123 */
2124 static int load_balance(int this_cpu, runqueue_t *this_rq,
2125 struct sched_domain *sd, enum idle_type idle)
2126 {
2127 struct sched_group *group;
2128 runqueue_t *busiest;
2129 unsigned long imbalance;
2130 int nr_moved, all_pinned = 0;
2131 int active_balance = 0;
2132 int sd_idle = 0;
2133
2134 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2135 sd_idle = 1;
2136
2137 schedstat_inc(sd, lb_cnt[idle]);
2138
2139 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2140 if (!group) {
2141 schedstat_inc(sd, lb_nobusyg[idle]);
2142 goto out_balanced;
2143 }
2144
2145 busiest = find_busiest_queue(group, idle);
2146 if (!busiest) {
2147 schedstat_inc(sd, lb_nobusyq[idle]);
2148 goto out_balanced;
2149 }
2150
2151 BUG_ON(busiest == this_rq);
2152
2153 schedstat_add(sd, lb_imbalance[idle], imbalance);
2154
2155 nr_moved = 0;
2156 if (busiest->nr_running > 1) {
2157 /*
2158 * Attempt to move tasks. If find_busiest_group has found
2159 * an imbalance but busiest->nr_running <= 1, the group is
2160 * still unbalanced. nr_moved simply stays zero, so it is
2161 * correctly treated as an imbalance.
2162 */
2163 double_rq_lock(this_rq, busiest);
2164 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2165 imbalance, sd, idle, &all_pinned);
2166 double_rq_unlock(this_rq, busiest);
2167
2168 /* All tasks on this runqueue were pinned by CPU affinity */
2169 if (unlikely(all_pinned))
2170 goto out_balanced;
2171 }
2172
2173 if (!nr_moved) {
2174 schedstat_inc(sd, lb_failed[idle]);
2175 sd->nr_balance_failed++;
2176
2177 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2178
2179 spin_lock(&busiest->lock);
2180
2181 /* don't kick the migration_thread, if the curr
2182 * task on busiest cpu can't be moved to this_cpu
2183 */
2184 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2185 spin_unlock(&busiest->lock);
2186 all_pinned = 1;
2187 goto out_one_pinned;
2188 }
2189
2190 if (!busiest->active_balance) {
2191 busiest->active_balance = 1;
2192 busiest->push_cpu = this_cpu;
2193 active_balance = 1;
2194 }
2195 spin_unlock(&busiest->lock);
2196 if (active_balance)
2197 wake_up_process(busiest->migration_thread);
2198
2199 /*
2200 * We've kicked active balancing, reset the failure
2201 * counter.
2202 */
2203 sd->nr_balance_failed = sd->cache_nice_tries+1;
2204 }
2205 } else
2206 sd->nr_balance_failed = 0;
2207
2208 if (likely(!active_balance)) {
2209 /* We were unbalanced, so reset the balancing interval */
2210 sd->balance_interval = sd->min_interval;
2211 } else {
2212 /*
2213 * If we've begun active balancing, start to back off. This
2214 * case may not be covered by the all_pinned logic if there
2215 * is only 1 task on the busy runqueue (because we don't call
2216 * move_tasks).
2217 */
2218 if (sd->balance_interval < sd->max_interval)
2219 sd->balance_interval *= 2;
2220 }
2221
2222 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2223 return -1;
2224 return nr_moved;
2225
2226 out_balanced:
2227 schedstat_inc(sd, lb_balanced[idle]);
2228
2229 sd->nr_balance_failed = 0;
2230
2231 out_one_pinned:
2232 /* tune up the balancing interval */
2233 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2234 (sd->balance_interval < sd->max_interval))
2235 sd->balance_interval *= 2;
2236
2237 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2238 return -1;
2239 return 0;
2240 }
2241
2242 /*
2243 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2244 * tasks if there is an imbalance.
2245 *
2246 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2247 * this_rq is locked.
2248 */
2249 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2250 struct sched_domain *sd)
2251 {
2252 struct sched_group *group;
2253 runqueue_t *busiest = NULL;
2254 unsigned long imbalance;
2255 int nr_moved = 0;
2256 int sd_idle = 0;
2257
2258 if (sd->flags & SD_SHARE_CPUPOWER)
2259 sd_idle = 1;
2260
2261 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2262 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2263 if (!group) {
2264 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2265 goto out_balanced;
2266 }
2267
2268 busiest = find_busiest_queue(group, NEWLY_IDLE);
2269 if (!busiest) {
2270 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2271 goto out_balanced;
2272 }
2273
2274 BUG_ON(busiest == this_rq);
2275
2276 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2277
2278 nr_moved = 0;
2279 if (busiest->nr_running > 1) {
2280 /* Attempt to move tasks */
2281 double_lock_balance(this_rq, busiest);
2282 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2283 imbalance, sd, NEWLY_IDLE, NULL);
2284 spin_unlock(&busiest->lock);
2285 }
2286
2287 if (!nr_moved) {
2288 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2289 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2290 return -1;
2291 } else
2292 sd->nr_balance_failed = 0;
2293
2294 return nr_moved;
2295
2296 out_balanced:
2297 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2298 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2299 return -1;
2300 sd->nr_balance_failed = 0;
2301 return 0;
2302 }
2303
2304 /*
2305 * idle_balance is called by schedule() if this_cpu is about to become
2306 * idle. Attempts to pull tasks from other CPUs.
2307 */
2308 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2309 {
2310 struct sched_domain *sd;
2311
2312 for_each_domain(this_cpu, sd) {
2313 if (sd->flags & SD_BALANCE_NEWIDLE) {
2314 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2315 /* We've pulled tasks over so stop searching */
2316 break;
2317 }
2318 }
2319 }
2320 }
2321
2322 /*
2323 * active_load_balance is run by migration threads. It pushes running tasks
2324 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2325 * running on each physical CPU where possible, and avoids physical /
2326 * logical imbalances.
2327 *
2328 * Called with busiest_rq locked.
2329 */
2330 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2331 {
2332 struct sched_domain *sd;
2333 runqueue_t *target_rq;
2334 int target_cpu = busiest_rq->push_cpu;
2335
2336 if (busiest_rq->nr_running <= 1)
2337 /* no task to move */
2338 return;
2339
2340 target_rq = cpu_rq(target_cpu);
2341
2342 /*
2343 * This condition is "impossible", if it occurs
2344 * we need to fix it. Originally reported by
2345 * Bjorn Helgaas on a 128-cpu setup.
2346 */
2347 BUG_ON(busiest_rq == target_rq);
2348
2349 /* move a task from busiest_rq to target_rq */
2350 double_lock_balance(busiest_rq, target_rq);
2351
2352 /* Search for an sd spanning us and the target CPU. */
2353 for_each_domain(target_cpu, sd) {
2354 if ((sd->flags & SD_LOAD_BALANCE) &&
2355 cpu_isset(busiest_cpu, sd->span))
2356 break;
2357 }
2358
2359 if (unlikely(sd == NULL))
2360 goto out;
2361
2362 schedstat_inc(sd, alb_cnt);
2363
2364 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2365 schedstat_inc(sd, alb_pushed);
2366 else
2367 schedstat_inc(sd, alb_failed);
2368 out:
2369 spin_unlock(&target_rq->lock);
2370 }
2371
2372 /*
2373 * rebalance_tick will get called every timer tick, on every CPU.
2374 *
2375 * It checks each scheduling domain to see if it is due to be balanced,
2376 * and initiates a balancing operation if so.
2377 *
2378 * Balancing parameters are set up in arch_init_sched_domains.
2379 */
2380
2381 /* Don't have all balancing operations going off at once */
2382 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2383
2384 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2385 enum idle_type idle)
2386 {
2387 unsigned long old_load, this_load;
2388 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2389 struct sched_domain *sd;
2390 int i;
2391
2392 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2393 /* Update our load */
2394 for (i = 0; i < 3; i++) {
2395 unsigned long new_load = this_load;
2396 int scale = 1 << i;
2397 old_load = this_rq->cpu_load[i];
2398 /*
2399 * Round up the averaging division if load is increasing. This
2400 * prevents us from getting stuck on 9 if the load is 10, for
2401 * example.
2402 */
2403 if (new_load > old_load)
2404 new_load += scale-1;
2405 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2406 }
2407
2408 for_each_domain(this_cpu, sd) {
2409 unsigned long interval;
2410
2411 if (!(sd->flags & SD_LOAD_BALANCE))
2412 continue;
2413
2414 interval = sd->balance_interval;
2415 if (idle != SCHED_IDLE)
2416 interval *= sd->busy_factor;
2417
2418 /* scale ms to jiffies */
2419 interval = msecs_to_jiffies(interval);
2420 if (unlikely(!interval))
2421 interval = 1;
2422
2423 if (j - sd->last_balance >= interval) {
2424 if (load_balance(this_cpu, this_rq, sd, idle)) {
2425 /*
2426 * We've pulled tasks over so either we're no
2427 * longer idle, or one of our SMT siblings is
2428 * not idle.
2429 */
2430 idle = NOT_IDLE;
2431 }
2432 sd->last_balance += interval;
2433 }
2434 }
2435 }
2436 #else
2437 /*
2438 * on UP we do not need to balance between CPUs:
2439 */
2440 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2441 {
2442 }
2443 static inline void idle_balance(int cpu, runqueue_t *rq)
2444 {
2445 }
2446 #endif
2447
2448 static inline int wake_priority_sleeper(runqueue_t *rq)
2449 {
2450 int ret = 0;
2451 #ifdef CONFIG_SCHED_SMT
2452 spin_lock(&rq->lock);
2453 /*
2454 * If an SMT sibling task has been put to sleep for priority
2455 * reasons reschedule the idle task to see if it can now run.
2456 */
2457 if (rq->nr_running) {
2458 resched_task(rq->idle);
2459 ret = 1;
2460 }
2461 spin_unlock(&rq->lock);
2462 #endif
2463 return ret;
2464 }
2465
2466 DEFINE_PER_CPU(struct kernel_stat, kstat);
2467
2468 EXPORT_PER_CPU_SYMBOL(kstat);
2469
2470 /*
2471 * This is called on clock ticks and on context switches.
2472 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2473 */
2474 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2475 unsigned long long now)
2476 {
2477 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2478 p->sched_time += now - last;
2479 }
2480
2481 /*
2482 * Return current->sched_time plus any more ns on the sched_clock
2483 * that have not yet been banked.
2484 */
2485 unsigned long long current_sched_time(const task_t *tsk)
2486 {
2487 unsigned long long ns;
2488 unsigned long flags;
2489 local_irq_save(flags);
2490 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2491 ns = tsk->sched_time + (sched_clock() - ns);
2492 local_irq_restore(flags);
2493 return ns;
2494 }
2495
2496 /*
2497 * We place interactive tasks back into the active array, if possible.
2498 *
2499 * To guarantee that this does not starve expired tasks we ignore the
2500 * interactivity of a task if the first expired task had to wait more
2501 * than a 'reasonable' amount of time. This deadline timeout is
2502 * load-dependent, as the frequency of array switched decreases with
2503 * increasing number of running tasks. We also ignore the interactivity
2504 * if a better static_prio task has expired:
2505 */
2506 #define EXPIRED_STARVING(rq) \
2507 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2508 (jiffies - (rq)->expired_timestamp >= \
2509 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2510 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2511
2512 /*
2513 * Account user cpu time to a process.
2514 * @p: the process that the cpu time gets accounted to
2515 * @hardirq_offset: the offset to subtract from hardirq_count()
2516 * @cputime: the cpu time spent in user space since the last update
2517 */
2518 void account_user_time(struct task_struct *p, cputime_t cputime)
2519 {
2520 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2521 cputime64_t tmp;
2522
2523 p->utime = cputime_add(p->utime, cputime);
2524
2525 /* Add user time to cpustat. */
2526 tmp = cputime_to_cputime64(cputime);
2527 if (TASK_NICE(p) > 0)
2528 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2529 else
2530 cpustat->user = cputime64_add(cpustat->user, tmp);
2531 }
2532
2533 /*
2534 * Account system cpu time to a process.
2535 * @p: the process that the cpu time gets accounted to
2536 * @hardirq_offset: the offset to subtract from hardirq_count()
2537 * @cputime: the cpu time spent in kernel space since the last update
2538 */
2539 void account_system_time(struct task_struct *p, int hardirq_offset,
2540 cputime_t cputime)
2541 {
2542 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2543 runqueue_t *rq = this_rq();
2544 cputime64_t tmp;
2545
2546 p->stime = cputime_add(p->stime, cputime);
2547
2548 /* Add system time to cpustat. */
2549 tmp = cputime_to_cputime64(cputime);
2550 if (hardirq_count() - hardirq_offset)
2551 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2552 else if (softirq_count())
2553 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2554 else if (p != rq->idle)
2555 cpustat->system = cputime64_add(cpustat->system, tmp);
2556 else if (atomic_read(&rq->nr_iowait) > 0)
2557 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2558 else
2559 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2560 /* Account for system time used */
2561 acct_update_integrals(p);
2562 }
2563
2564 /*
2565 * Account for involuntary wait time.
2566 * @p: the process from which the cpu time has been stolen
2567 * @steal: the cpu time spent in involuntary wait
2568 */
2569 void account_steal_time(struct task_struct *p, cputime_t steal)
2570 {
2571 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2572 cputime64_t tmp = cputime_to_cputime64(steal);
2573 runqueue_t *rq = this_rq();
2574
2575 if (p == rq->idle) {
2576 p->stime = cputime_add(p->stime, steal);
2577 if (atomic_read(&rq->nr_iowait) > 0)
2578 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2579 else
2580 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2581 } else
2582 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2583 }
2584
2585 /*
2586 * This function gets called by the timer code, with HZ frequency.
2587 * We call it with interrupts disabled.
2588 *
2589 * It also gets called by the fork code, when changing the parent's
2590 * timeslices.
2591 */
2592 void scheduler_tick(void)
2593 {
2594 int cpu = smp_processor_id();
2595 runqueue_t *rq = this_rq();
2596 task_t *p = current;
2597 unsigned long long now = sched_clock();
2598
2599 update_cpu_clock(p, rq, now);
2600
2601 rq->timestamp_last_tick = now;
2602
2603 if (p == rq->idle) {
2604 if (wake_priority_sleeper(rq))
2605 goto out;
2606 rebalance_tick(cpu, rq, SCHED_IDLE);
2607 return;
2608 }
2609
2610 /* Task might have expired already, but not scheduled off yet */
2611 if (p->array != rq->active) {
2612 set_tsk_need_resched(p);
2613 goto out;
2614 }
2615 spin_lock(&rq->lock);
2616 /*
2617 * The task was running during this tick - update the
2618 * time slice counter. Note: we do not update a thread's
2619 * priority until it either goes to sleep or uses up its
2620 * timeslice. This makes it possible for interactive tasks
2621 * to use up their timeslices at their highest priority levels.
2622 */
2623 if (rt_task(p)) {
2624 /*
2625 * RR tasks need a special form of timeslice management.
2626 * FIFO tasks have no timeslices.
2627 */
2628 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2629 p->time_slice = task_timeslice(p);
2630 p->first_time_slice = 0;
2631 set_tsk_need_resched(p);
2632
2633 /* put it at the end of the queue: */
2634 requeue_task(p, rq->active);
2635 }
2636 goto out_unlock;
2637 }
2638 if (!--p->time_slice) {
2639 dequeue_task(p, rq->active);
2640 set_tsk_need_resched(p);
2641 p->prio = effective_prio(p);
2642 p->time_slice = task_timeslice(p);
2643 p->first_time_slice = 0;
2644
2645 if (!rq->expired_timestamp)
2646 rq->expired_timestamp = jiffies;
2647 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2648 enqueue_task(p, rq->expired);
2649 if (p->static_prio < rq->best_expired_prio)
2650 rq->best_expired_prio = p->static_prio;
2651 } else
2652 enqueue_task(p, rq->active);
2653 } else {
2654 /*
2655 * Prevent a too long timeslice allowing a task to monopolize
2656 * the CPU. We do this by splitting up the timeslice into
2657 * smaller pieces.
2658 *
2659 * Note: this does not mean the task's timeslices expire or
2660 * get lost in any way, they just might be preempted by
2661 * another task of equal priority. (one with higher
2662 * priority would have preempted this task already.) We
2663 * requeue this task to the end of the list on this priority
2664 * level, which is in essence a round-robin of tasks with
2665 * equal priority.
2666 *
2667 * This only applies to tasks in the interactive
2668 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2669 */
2670 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2671 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2672 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2673 (p->array == rq->active)) {
2674
2675 requeue_task(p, rq->active);
2676 set_tsk_need_resched(p);
2677 }
2678 }
2679 out_unlock:
2680 spin_unlock(&rq->lock);
2681 out:
2682 rebalance_tick(cpu, rq, NOT_IDLE);
2683 }
2684
2685 #ifdef CONFIG_SCHED_SMT
2686 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2687 {
2688 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2689 if (rq->curr == rq->idle && rq->nr_running)
2690 resched_task(rq->idle);
2691 }
2692
2693 /*
2694 * Called with interrupt disabled and this_rq's runqueue locked.
2695 */
2696 static void wake_sleeping_dependent(int this_cpu)
2697 {
2698 struct sched_domain *tmp, *sd = NULL;
2699 int i;
2700
2701 for_each_domain(this_cpu, tmp) {
2702 if (tmp->flags & SD_SHARE_CPUPOWER) {
2703 sd = tmp;
2704 break;
2705 }
2706 }
2707
2708 if (!sd)
2709 return;
2710
2711 for_each_cpu_mask(i, sd->span) {
2712 runqueue_t *smt_rq = cpu_rq(i);
2713
2714 if (i == this_cpu)
2715 continue;
2716 if (unlikely(!spin_trylock(&smt_rq->lock)))
2717 continue;
2718
2719 wakeup_busy_runqueue(smt_rq);
2720 spin_unlock(&smt_rq->lock);
2721 }
2722 }
2723
2724 /*
2725 * number of 'lost' timeslices this task wont be able to fully
2726 * utilize, if another task runs on a sibling. This models the
2727 * slowdown effect of other tasks running on siblings:
2728 */
2729 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2730 {
2731 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2732 }
2733
2734 /*
2735 * To minimise lock contention and not have to drop this_rq's runlock we only
2736 * trylock the sibling runqueues and bypass those runqueues if we fail to
2737 * acquire their lock. As we only trylock the normal locking order does not
2738 * need to be obeyed.
2739 */
2740 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
2741 {
2742 struct sched_domain *tmp, *sd = NULL;
2743 int ret = 0, i;
2744
2745 /* kernel/rt threads do not participate in dependent sleeping */
2746 if (!p->mm || rt_task(p))
2747 return 0;
2748
2749 for_each_domain(this_cpu, tmp) {
2750 if (tmp->flags & SD_SHARE_CPUPOWER) {
2751 sd = tmp;
2752 break;
2753 }
2754 }
2755
2756 if (!sd)
2757 return 0;
2758
2759 for_each_cpu_mask(i, sd->span) {
2760 runqueue_t *smt_rq;
2761 task_t *smt_curr;
2762
2763 if (i == this_cpu)
2764 continue;
2765
2766 smt_rq = cpu_rq(i);
2767 if (unlikely(!spin_trylock(&smt_rq->lock)))
2768 continue;
2769
2770 smt_curr = smt_rq->curr;
2771
2772 if (!smt_curr->mm)
2773 goto unlock;
2774
2775 /*
2776 * If a user task with lower static priority than the
2777 * running task on the SMT sibling is trying to schedule,
2778 * delay it till there is proportionately less timeslice
2779 * left of the sibling task to prevent a lower priority
2780 * task from using an unfair proportion of the
2781 * physical cpu's resources. -ck
2782 */
2783 if (rt_task(smt_curr)) {
2784 /*
2785 * With real time tasks we run non-rt tasks only
2786 * per_cpu_gain% of the time.
2787 */
2788 if ((jiffies % DEF_TIMESLICE) >
2789 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2790 ret = 1;
2791 } else {
2792 if (smt_curr->static_prio < p->static_prio &&
2793 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2794 smt_slice(smt_curr, sd) > task_timeslice(p))
2795 ret = 1;
2796 }
2797 unlock:
2798 spin_unlock(&smt_rq->lock);
2799 }
2800 return ret;
2801 }
2802 #else
2803 static inline void wake_sleeping_dependent(int this_cpu)
2804 {
2805 }
2806
2807 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
2808 task_t *p)
2809 {
2810 return 0;
2811 }
2812 #endif
2813
2814 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2815
2816 void fastcall add_preempt_count(int val)
2817 {
2818 /*
2819 * Underflow?
2820 */
2821 BUG_ON((preempt_count() < 0));
2822 preempt_count() += val;
2823 /*
2824 * Spinlock count overflowing soon?
2825 */
2826 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2827 }
2828 EXPORT_SYMBOL(add_preempt_count);
2829
2830 void fastcall sub_preempt_count(int val)
2831 {
2832 /*
2833 * Underflow?
2834 */
2835 BUG_ON(val > preempt_count());
2836 /*
2837 * Is the spinlock portion underflowing?
2838 */
2839 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2840 preempt_count() -= val;
2841 }
2842 EXPORT_SYMBOL(sub_preempt_count);
2843
2844 #endif
2845
2846 static inline int interactive_sleep(enum sleep_type sleep_type)
2847 {
2848 return (sleep_type == SLEEP_INTERACTIVE ||
2849 sleep_type == SLEEP_INTERRUPTED);
2850 }
2851
2852 /*
2853 * schedule() is the main scheduler function.
2854 */
2855 asmlinkage void __sched schedule(void)
2856 {
2857 long *switch_count;
2858 task_t *prev, *next;
2859 runqueue_t *rq;
2860 prio_array_t *array;
2861 struct list_head *queue;
2862 unsigned long long now;
2863 unsigned long run_time;
2864 int cpu, idx, new_prio;
2865
2866 /*
2867 * Test if we are atomic. Since do_exit() needs to call into
2868 * schedule() atomically, we ignore that path for now.
2869 * Otherwise, whine if we are scheduling when we should not be.
2870 */
2871 if (unlikely(in_atomic() && !current->exit_state)) {
2872 printk(KERN_ERR "BUG: scheduling while atomic: "
2873 "%s/0x%08x/%d\n",
2874 current->comm, preempt_count(), current->pid);
2875 dump_stack();
2876 }
2877 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2878
2879 need_resched:
2880 preempt_disable();
2881 prev = current;
2882 release_kernel_lock(prev);
2883 need_resched_nonpreemptible:
2884 rq = this_rq();
2885
2886 /*
2887 * The idle thread is not allowed to schedule!
2888 * Remove this check after it has been exercised a bit.
2889 */
2890 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2891 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2892 dump_stack();
2893 }
2894
2895 schedstat_inc(rq, sched_cnt);
2896 now = sched_clock();
2897 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2898 run_time = now - prev->timestamp;
2899 if (unlikely((long long)(now - prev->timestamp) < 0))
2900 run_time = 0;
2901 } else
2902 run_time = NS_MAX_SLEEP_AVG;
2903
2904 /*
2905 * Tasks charged proportionately less run_time at high sleep_avg to
2906 * delay them losing their interactive status
2907 */
2908 run_time /= (CURRENT_BONUS(prev) ? : 1);
2909
2910 spin_lock_irq(&rq->lock);
2911
2912 if (unlikely(prev->flags & PF_DEAD))
2913 prev->state = EXIT_DEAD;
2914
2915 switch_count = &prev->nivcsw;
2916 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2917 switch_count = &prev->nvcsw;
2918 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2919 unlikely(signal_pending(prev))))
2920 prev->state = TASK_RUNNING;
2921 else {
2922 if (prev->state == TASK_UNINTERRUPTIBLE)
2923 rq->nr_uninterruptible++;
2924 deactivate_task(prev, rq);
2925 }
2926 }
2927
2928 cpu = smp_processor_id();
2929 if (unlikely(!rq->nr_running)) {
2930 idle_balance(cpu, rq);
2931 if (!rq->nr_running) {
2932 next = rq->idle;
2933 rq->expired_timestamp = 0;
2934 wake_sleeping_dependent(cpu);
2935 goto switch_tasks;
2936 }
2937 }
2938
2939 array = rq->active;
2940 if (unlikely(!array->nr_active)) {
2941 /*
2942 * Switch the active and expired arrays.
2943 */
2944 schedstat_inc(rq, sched_switch);
2945 rq->active = rq->expired;
2946 rq->expired = array;
2947 array = rq->active;
2948 rq->expired_timestamp = 0;
2949 rq->best_expired_prio = MAX_PRIO;
2950 }
2951
2952 idx = sched_find_first_bit(array->bitmap);
2953 queue = array->queue + idx;
2954 next = list_entry(queue->next, task_t, run_list);
2955
2956 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
2957 unsigned long long delta = now - next->timestamp;
2958 if (unlikely((long long)(now - next->timestamp) < 0))
2959 delta = 0;
2960
2961 if (next->sleep_type == SLEEP_INTERACTIVE)
2962 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2963
2964 array = next->array;
2965 new_prio = recalc_task_prio(next, next->timestamp + delta);
2966
2967 if (unlikely(next->prio != new_prio)) {
2968 dequeue_task(next, array);
2969 next->prio = new_prio;
2970 enqueue_task(next, array);
2971 }
2972 }
2973 next->sleep_type = SLEEP_NORMAL;
2974 if (dependent_sleeper(cpu, rq, next))
2975 next = rq->idle;
2976 switch_tasks:
2977 if (next == rq->idle)
2978 schedstat_inc(rq, sched_goidle);
2979 prefetch(next);
2980 prefetch_stack(next);
2981 clear_tsk_need_resched(prev);
2982 rcu_qsctr_inc(task_cpu(prev));
2983
2984 update_cpu_clock(prev, rq, now);
2985
2986 prev->sleep_avg -= run_time;
2987 if ((long)prev->sleep_avg <= 0)
2988 prev->sleep_avg = 0;
2989 prev->timestamp = prev->last_ran = now;
2990
2991 sched_info_switch(prev, next);
2992 if (likely(prev != next)) {
2993 next->timestamp = now;
2994 rq->nr_switches++;
2995 rq->curr = next;
2996 ++*switch_count;
2997
2998 prepare_task_switch(rq, next);
2999 prev = context_switch(rq, prev, next);
3000 barrier();
3001 /*
3002 * this_rq must be evaluated again because prev may have moved
3003 * CPUs since it called schedule(), thus the 'rq' on its stack
3004 * frame will be invalid.
3005 */
3006 finish_task_switch(this_rq(), prev);
3007 } else
3008 spin_unlock_irq(&rq->lock);
3009
3010 prev = current;
3011 if (unlikely(reacquire_kernel_lock(prev) < 0))
3012 goto need_resched_nonpreemptible;
3013 preempt_enable_no_resched();
3014 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3015 goto need_resched;
3016 }
3017
3018 EXPORT_SYMBOL(schedule);
3019
3020 #ifdef CONFIG_PREEMPT
3021 /*
3022 * this is is the entry point to schedule() from in-kernel preemption
3023 * off of preempt_enable. Kernel preemptions off return from interrupt
3024 * occur there and call schedule directly.
3025 */
3026 asmlinkage void __sched preempt_schedule(void)
3027 {
3028 struct thread_info *ti = current_thread_info();
3029 #ifdef CONFIG_PREEMPT_BKL
3030 struct task_struct *task = current;
3031 int saved_lock_depth;
3032 #endif
3033 /*
3034 * If there is a non-zero preempt_count or interrupts are disabled,
3035 * we do not want to preempt the current task. Just return..
3036 */
3037 if (unlikely(ti->preempt_count || irqs_disabled()))
3038 return;
3039
3040 need_resched:
3041 add_preempt_count(PREEMPT_ACTIVE);
3042 /*
3043 * We keep the big kernel semaphore locked, but we
3044 * clear ->lock_depth so that schedule() doesnt
3045 * auto-release the semaphore:
3046 */
3047 #ifdef CONFIG_PREEMPT_BKL
3048 saved_lock_depth = task->lock_depth;
3049 task->lock_depth = -1;
3050 #endif
3051 schedule();
3052 #ifdef CONFIG_PREEMPT_BKL
3053 task->lock_depth = saved_lock_depth;
3054 #endif
3055 sub_preempt_count(PREEMPT_ACTIVE);
3056
3057 /* we could miss a preemption opportunity between schedule and now */
3058 barrier();
3059 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3060 goto need_resched;
3061 }
3062
3063 EXPORT_SYMBOL(preempt_schedule);
3064
3065 /*
3066 * this is is the entry point to schedule() from kernel preemption
3067 * off of irq context.
3068 * Note, that this is called and return with irqs disabled. This will
3069 * protect us against recursive calling from irq.
3070 */
3071 asmlinkage void __sched preempt_schedule_irq(void)
3072 {
3073 struct thread_info *ti = current_thread_info();
3074 #ifdef CONFIG_PREEMPT_BKL
3075 struct task_struct *task = current;
3076 int saved_lock_depth;
3077 #endif
3078 /* Catch callers which need to be fixed*/
3079 BUG_ON(ti->preempt_count || !irqs_disabled());
3080
3081 need_resched:
3082 add_preempt_count(PREEMPT_ACTIVE);
3083 /*
3084 * We keep the big kernel semaphore locked, but we
3085 * clear ->lock_depth so that schedule() doesnt
3086 * auto-release the semaphore:
3087 */
3088 #ifdef CONFIG_PREEMPT_BKL
3089 saved_lock_depth = task->lock_depth;
3090 task->lock_depth = -1;
3091 #endif
3092 local_irq_enable();
3093 schedule();
3094 local_irq_disable();
3095 #ifdef CONFIG_PREEMPT_BKL
3096 task->lock_depth = saved_lock_depth;
3097 #endif
3098 sub_preempt_count(PREEMPT_ACTIVE);
3099
3100 /* we could miss a preemption opportunity between schedule and now */
3101 barrier();
3102 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3103 goto need_resched;
3104 }
3105
3106 #endif /* CONFIG_PREEMPT */
3107
3108 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3109 void *key)
3110 {
3111 task_t *p = curr->private;
3112 return try_to_wake_up(p, mode, sync);
3113 }
3114
3115 EXPORT_SYMBOL(default_wake_function);
3116
3117 /*
3118 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3119 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3120 * number) then we wake all the non-exclusive tasks and one exclusive task.
3121 *
3122 * There are circumstances in which we can try to wake a task which has already
3123 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3124 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3125 */
3126 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3127 int nr_exclusive, int sync, void *key)
3128 {
3129 struct list_head *tmp, *next;
3130
3131 list_for_each_safe(tmp, next, &q->task_list) {
3132 wait_queue_t *curr;
3133 unsigned flags;
3134 curr = list_entry(tmp, wait_queue_t, task_list);
3135 flags = curr->flags;
3136 if (curr->func(curr, mode, sync, key) &&
3137 (flags & WQ_FLAG_EXCLUSIVE) &&
3138 !--nr_exclusive)
3139 break;
3140 }
3141 }
3142
3143 /**
3144 * __wake_up - wake up threads blocked on a waitqueue.
3145 * @q: the waitqueue
3146 * @mode: which threads
3147 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3148 * @key: is directly passed to the wakeup function
3149 */
3150 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3151 int nr_exclusive, void *key)
3152 {
3153 unsigned long flags;
3154
3155 spin_lock_irqsave(&q->lock, flags);
3156 __wake_up_common(q, mode, nr_exclusive, 0, key);
3157 spin_unlock_irqrestore(&q->lock, flags);
3158 }
3159
3160 EXPORT_SYMBOL(__wake_up);
3161
3162 /*
3163 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3164 */
3165 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3166 {
3167 __wake_up_common(q, mode, 1, 0, NULL);
3168 }
3169
3170 /**
3171 * __wake_up_sync - wake up threads blocked on a waitqueue.
3172 * @q: the waitqueue
3173 * @mode: which threads
3174 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3175 *
3176 * The sync wakeup differs that the waker knows that it will schedule
3177 * away soon, so while the target thread will be woken up, it will not
3178 * be migrated to another CPU - ie. the two threads are 'synchronized'
3179 * with each other. This can prevent needless bouncing between CPUs.
3180 *
3181 * On UP it can prevent extra preemption.
3182 */
3183 void fastcall
3184 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3185 {
3186 unsigned long flags;
3187 int sync = 1;
3188
3189 if (unlikely(!q))
3190 return;
3191
3192 if (unlikely(!nr_exclusive))
3193 sync = 0;
3194
3195 spin_lock_irqsave(&q->lock, flags);
3196 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3197 spin_unlock_irqrestore(&q->lock, flags);
3198 }
3199 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3200
3201 void fastcall complete(struct completion *x)
3202 {
3203 unsigned long flags;
3204
3205 spin_lock_irqsave(&x->wait.lock, flags);
3206 x->done++;
3207 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3208 1, 0, NULL);
3209 spin_unlock_irqrestore(&x->wait.lock, flags);
3210 }
3211 EXPORT_SYMBOL(complete);
3212
3213 void fastcall complete_all(struct completion *x)
3214 {
3215 unsigned long flags;
3216
3217 spin_lock_irqsave(&x->wait.lock, flags);
3218 x->done += UINT_MAX/2;
3219 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3220 0, 0, NULL);
3221 spin_unlock_irqrestore(&x->wait.lock, flags);
3222 }
3223 EXPORT_SYMBOL(complete_all);
3224
3225 void fastcall __sched wait_for_completion(struct completion *x)
3226 {
3227 might_sleep();
3228 spin_lock_irq(&x->wait.lock);
3229 if (!x->done) {
3230 DECLARE_WAITQUEUE(wait, current);
3231
3232 wait.flags |= WQ_FLAG_EXCLUSIVE;
3233 __add_wait_queue_tail(&x->wait, &wait);
3234 do {
3235 __set_current_state(TASK_UNINTERRUPTIBLE);
3236 spin_unlock_irq(&x->wait.lock);
3237 schedule();
3238 spin_lock_irq(&x->wait.lock);
3239 } while (!x->done);
3240 __remove_wait_queue(&x->wait, &wait);
3241 }
3242 x->done--;
3243 spin_unlock_irq(&x->wait.lock);
3244 }
3245 EXPORT_SYMBOL(wait_for_completion);
3246
3247 unsigned long fastcall __sched
3248 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3249 {
3250 might_sleep();
3251
3252 spin_lock_irq(&x->wait.lock);
3253 if (!x->done) {
3254 DECLARE_WAITQUEUE(wait, current);
3255
3256 wait.flags |= WQ_FLAG_EXCLUSIVE;
3257 __add_wait_queue_tail(&x->wait, &wait);
3258 do {
3259 __set_current_state(TASK_UNINTERRUPTIBLE);
3260 spin_unlock_irq(&x->wait.lock);
3261 timeout = schedule_timeout(timeout);
3262 spin_lock_irq(&x->wait.lock);
3263 if (!timeout) {
3264 __remove_wait_queue(&x->wait, &wait);
3265 goto out;
3266 }
3267 } while (!x->done);
3268 __remove_wait_queue(&x->wait, &wait);
3269 }
3270 x->done--;
3271 out:
3272 spin_unlock_irq(&x->wait.lock);
3273 return timeout;
3274 }
3275 EXPORT_SYMBOL(wait_for_completion_timeout);
3276
3277 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3278 {
3279 int ret = 0;
3280
3281 might_sleep();
3282
3283 spin_lock_irq(&x->wait.lock);
3284 if (!x->done) {
3285 DECLARE_WAITQUEUE(wait, current);
3286
3287 wait.flags |= WQ_FLAG_EXCLUSIVE;
3288 __add_wait_queue_tail(&x->wait, &wait);
3289 do {
3290 if (signal_pending(current)) {
3291 ret = -ERESTARTSYS;
3292 __remove_wait_queue(&x->wait, &wait);
3293 goto out;
3294 }
3295 __set_current_state(TASK_INTERRUPTIBLE);
3296 spin_unlock_irq(&x->wait.lock);
3297 schedule();
3298 spin_lock_irq(&x->wait.lock);
3299 } while (!x->done);
3300 __remove_wait_queue(&x->wait, &wait);
3301 }
3302 x->done--;
3303 out:
3304 spin_unlock_irq(&x->wait.lock);
3305
3306 return ret;
3307 }
3308 EXPORT_SYMBOL(wait_for_completion_interruptible);
3309
3310 unsigned long fastcall __sched
3311 wait_for_completion_interruptible_timeout(struct completion *x,
3312 unsigned long timeout)
3313 {
3314 might_sleep();
3315
3316 spin_lock_irq(&x->wait.lock);
3317 if (!x->done) {
3318 DECLARE_WAITQUEUE(wait, current);
3319
3320 wait.flags |= WQ_FLAG_EXCLUSIVE;
3321 __add_wait_queue_tail(&x->wait, &wait);
3322 do {
3323 if (signal_pending(current)) {
3324 timeout = -ERESTARTSYS;
3325 __remove_wait_queue(&x->wait, &wait);
3326 goto out;
3327 }
3328 __set_current_state(TASK_INTERRUPTIBLE);
3329 spin_unlock_irq(&x->wait.lock);
3330 timeout = schedule_timeout(timeout);
3331 spin_lock_irq(&x->wait.lock);
3332 if (!timeout) {
3333 __remove_wait_queue(&x->wait, &wait);
3334 goto out;
3335 }
3336 } while (!x->done);
3337 __remove_wait_queue(&x->wait, &wait);
3338 }
3339 x->done--;
3340 out:
3341 spin_unlock_irq(&x->wait.lock);
3342 return timeout;
3343 }
3344 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3345
3346
3347 #define SLEEP_ON_VAR \
3348 unsigned long flags; \
3349 wait_queue_t wait; \
3350 init_waitqueue_entry(&wait, current);
3351
3352 #define SLEEP_ON_HEAD \
3353 spin_lock_irqsave(&q->lock,flags); \
3354 __add_wait_queue(q, &wait); \
3355 spin_unlock(&q->lock);
3356
3357 #define SLEEP_ON_TAIL \
3358 spin_lock_irq(&q->lock); \
3359 __remove_wait_queue(q, &wait); \
3360 spin_unlock_irqrestore(&q->lock, flags);
3361
3362 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3363 {
3364 SLEEP_ON_VAR
3365
3366 current->state = TASK_INTERRUPTIBLE;
3367
3368 SLEEP_ON_HEAD
3369 schedule();
3370 SLEEP_ON_TAIL
3371 }
3372
3373 EXPORT_SYMBOL(interruptible_sleep_on);
3374
3375 long fastcall __sched
3376 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3377 {
3378 SLEEP_ON_VAR
3379
3380 current->state = TASK_INTERRUPTIBLE;
3381
3382 SLEEP_ON_HEAD
3383 timeout = schedule_timeout(timeout);
3384 SLEEP_ON_TAIL
3385
3386 return timeout;
3387 }
3388
3389 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3390
3391 void fastcall __sched sleep_on(wait_queue_head_t *q)
3392 {
3393 SLEEP_ON_VAR
3394
3395 current->state = TASK_UNINTERRUPTIBLE;
3396
3397 SLEEP_ON_HEAD
3398 schedule();
3399 SLEEP_ON_TAIL
3400 }
3401
3402 EXPORT_SYMBOL(sleep_on);
3403
3404 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3405 {
3406 SLEEP_ON_VAR
3407
3408 current->state = TASK_UNINTERRUPTIBLE;
3409
3410 SLEEP_ON_HEAD
3411 timeout = schedule_timeout(timeout);
3412 SLEEP_ON_TAIL
3413
3414 return timeout;
3415 }
3416
3417 EXPORT_SYMBOL(sleep_on_timeout);
3418
3419 void set_user_nice(task_t *p, long nice)
3420 {
3421 unsigned long flags;
3422 prio_array_t *array;
3423 runqueue_t *rq;
3424 int old_prio, new_prio, delta;
3425
3426 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3427 return;
3428 /*
3429 * We have to be careful, if called from sys_setpriority(),
3430 * the task might be in the middle of scheduling on another CPU.
3431 */
3432 rq = task_rq_lock(p, &flags);
3433 /*
3434 * The RT priorities are set via sched_setscheduler(), but we still
3435 * allow the 'normal' nice value to be set - but as expected
3436 * it wont have any effect on scheduling until the task is
3437 * not SCHED_NORMAL/SCHED_BATCH:
3438 */
3439 if (rt_task(p)) {
3440 p->static_prio = NICE_TO_PRIO(nice);
3441 goto out_unlock;
3442 }
3443 array = p->array;
3444 if (array)
3445 dequeue_task(p, array);
3446
3447 old_prio = p->prio;
3448 new_prio = NICE_TO_PRIO(nice);
3449 delta = new_prio - old_prio;
3450 p->static_prio = NICE_TO_PRIO(nice);
3451 p->prio += delta;
3452
3453 if (array) {
3454 enqueue_task(p, array);
3455 /*
3456 * If the task increased its priority or is running and
3457 * lowered its priority, then reschedule its CPU:
3458 */
3459 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3460 resched_task(rq->curr);
3461 }
3462 out_unlock:
3463 task_rq_unlock(rq, &flags);
3464 }
3465
3466 EXPORT_SYMBOL(set_user_nice);
3467
3468 /*
3469 * can_nice - check if a task can reduce its nice value
3470 * @p: task
3471 * @nice: nice value
3472 */
3473 int can_nice(const task_t *p, const int nice)
3474 {
3475 /* convert nice value [19,-20] to rlimit style value [1,40] */
3476 int nice_rlim = 20 - nice;
3477 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3478 capable(CAP_SYS_NICE));
3479 }
3480
3481 #ifdef __ARCH_WANT_SYS_NICE
3482
3483 /*
3484 * sys_nice - change the priority of the current process.
3485 * @increment: priority increment
3486 *
3487 * sys_setpriority is a more generic, but much slower function that
3488 * does similar things.
3489 */
3490 asmlinkage long sys_nice(int increment)
3491 {
3492 int retval;
3493 long nice;
3494
3495 /*
3496 * Setpriority might change our priority at the same moment.
3497 * We don't have to worry. Conceptually one call occurs first
3498 * and we have a single winner.
3499 */
3500 if (increment < -40)
3501 increment = -40;
3502 if (increment > 40)
3503 increment = 40;
3504
3505 nice = PRIO_TO_NICE(current->static_prio) + increment;
3506 if (nice < -20)
3507 nice = -20;
3508 if (nice > 19)
3509 nice = 19;
3510
3511 if (increment < 0 && !can_nice(current, nice))
3512 return -EPERM;
3513
3514 retval = security_task_setnice(current, nice);
3515 if (retval)
3516 return retval;
3517
3518 set_user_nice(current, nice);
3519 return 0;
3520 }
3521
3522 #endif
3523
3524 /**
3525 * task_prio - return the priority value of a given task.
3526 * @p: the task in question.
3527 *
3528 * This is the priority value as seen by users in /proc.
3529 * RT tasks are offset by -200. Normal tasks are centered
3530 * around 0, value goes from -16 to +15.
3531 */
3532 int task_prio(const task_t *p)
3533 {
3534 return p->prio - MAX_RT_PRIO;
3535 }
3536
3537 /**
3538 * task_nice - return the nice value of a given task.
3539 * @p: the task in question.
3540 */
3541 int task_nice(const task_t *p)
3542 {
3543 return TASK_NICE(p);
3544 }
3545 EXPORT_SYMBOL_GPL(task_nice);
3546
3547 /**
3548 * idle_cpu - is a given cpu idle currently?
3549 * @cpu: the processor in question.
3550 */
3551 int idle_cpu(int cpu)
3552 {
3553 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3554 }
3555
3556 /**
3557 * idle_task - return the idle task for a given cpu.
3558 * @cpu: the processor in question.
3559 */
3560 task_t *idle_task(int cpu)
3561 {
3562 return cpu_rq(cpu)->idle;
3563 }
3564
3565 /**
3566 * find_process_by_pid - find a process with a matching PID value.
3567 * @pid: the pid in question.
3568 */
3569 static inline task_t *find_process_by_pid(pid_t pid)
3570 {
3571 return pid ? find_task_by_pid(pid) : current;
3572 }
3573
3574 /* Actually do priority change: must hold rq lock. */
3575 static void __setscheduler(struct task_struct *p, int policy, int prio)
3576 {
3577 BUG_ON(p->array);
3578 p->policy = policy;
3579 p->rt_priority = prio;
3580 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3581 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3582 } else {
3583 p->prio = p->static_prio;
3584 /*
3585 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3586 */
3587 if (policy == SCHED_BATCH)
3588 p->sleep_avg = 0;
3589 }
3590 }
3591
3592 /**
3593 * sched_setscheduler - change the scheduling policy and/or RT priority of
3594 * a thread.
3595 * @p: the task in question.
3596 * @policy: new policy.
3597 * @param: structure containing the new RT priority.
3598 */
3599 int sched_setscheduler(struct task_struct *p, int policy,
3600 struct sched_param *param)
3601 {
3602 int retval;
3603 int oldprio, oldpolicy = -1;
3604 prio_array_t *array;
3605 unsigned long flags;
3606 runqueue_t *rq;
3607
3608 recheck:
3609 /* double check policy once rq lock held */
3610 if (policy < 0)
3611 policy = oldpolicy = p->policy;
3612 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3613 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3614 return -EINVAL;
3615 /*
3616 * Valid priorities for SCHED_FIFO and SCHED_RR are
3617 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3618 * SCHED_BATCH is 0.
3619 */
3620 if (param->sched_priority < 0 ||
3621 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3622 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3623 return -EINVAL;
3624 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3625 != (param->sched_priority == 0))
3626 return -EINVAL;
3627
3628 /*
3629 * Allow unprivileged RT tasks to decrease priority:
3630 */
3631 if (!capable(CAP_SYS_NICE)) {
3632 /*
3633 * can't change policy, except between SCHED_NORMAL
3634 * and SCHED_BATCH:
3635 */
3636 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3637 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3638 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3639 return -EPERM;
3640 /* can't increase priority */
3641 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3642 param->sched_priority > p->rt_priority &&
3643 param->sched_priority >
3644 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3645 return -EPERM;
3646 /* can't change other user's priorities */
3647 if ((current->euid != p->euid) &&
3648 (current->euid != p->uid))
3649 return -EPERM;
3650 }
3651
3652 retval = security_task_setscheduler(p, policy, param);
3653 if (retval)
3654 return retval;
3655 /*
3656 * To be able to change p->policy safely, the apropriate
3657 * runqueue lock must be held.
3658 */
3659 rq = task_rq_lock(p, &flags);
3660 /* recheck policy now with rq lock held */
3661 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3662 policy = oldpolicy = -1;
3663 task_rq_unlock(rq, &flags);
3664 goto recheck;
3665 }
3666 array = p->array;
3667 if (array)
3668 deactivate_task(p, rq);
3669 oldprio = p->prio;
3670 __setscheduler(p, policy, param->sched_priority);
3671 if (array) {
3672 __activate_task(p, rq);
3673 /*
3674 * Reschedule if we are currently running on this runqueue and
3675 * our priority decreased, or if we are not currently running on
3676 * this runqueue and our priority is higher than the current's
3677 */
3678 if (task_running(rq, p)) {
3679 if (p->prio > oldprio)
3680 resched_task(rq->curr);
3681 } else if (TASK_PREEMPTS_CURR(p, rq))
3682 resched_task(rq->curr);
3683 }
3684 task_rq_unlock(rq, &flags);
3685 return 0;
3686 }
3687 EXPORT_SYMBOL_GPL(sched_setscheduler);
3688
3689 static int
3690 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3691 {
3692 int retval;
3693 struct sched_param lparam;
3694 struct task_struct *p;
3695
3696 if (!param || pid < 0)
3697 return -EINVAL;
3698 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3699 return -EFAULT;
3700 read_lock_irq(&tasklist_lock);
3701 p = find_process_by_pid(pid);
3702 if (!p) {
3703 read_unlock_irq(&tasklist_lock);
3704 return -ESRCH;
3705 }
3706 retval = sched_setscheduler(p, policy, &lparam);
3707 read_unlock_irq(&tasklist_lock);
3708 return retval;
3709 }
3710
3711 /**
3712 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3713 * @pid: the pid in question.
3714 * @policy: new policy.
3715 * @param: structure containing the new RT priority.
3716 */
3717 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3718 struct sched_param __user *param)
3719 {
3720 /* negative values for policy are not valid */
3721 if (policy < 0)
3722 return -EINVAL;
3723
3724 return do_sched_setscheduler(pid, policy, param);
3725 }
3726
3727 /**
3728 * sys_sched_setparam - set/change the RT priority of a thread
3729 * @pid: the pid in question.
3730 * @param: structure containing the new RT priority.
3731 */
3732 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3733 {
3734 return do_sched_setscheduler(pid, -1, param);
3735 }
3736
3737 /**
3738 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3739 * @pid: the pid in question.
3740 */
3741 asmlinkage long sys_sched_getscheduler(pid_t pid)
3742 {
3743 int retval = -EINVAL;
3744 task_t *p;
3745
3746 if (pid < 0)
3747 goto out_nounlock;
3748
3749 retval = -ESRCH;
3750 read_lock(&tasklist_lock);
3751 p = find_process_by_pid(pid);
3752 if (p) {
3753 retval = security_task_getscheduler(p);
3754 if (!retval)
3755 retval = p->policy;
3756 }
3757 read_unlock(&tasklist_lock);
3758
3759 out_nounlock:
3760 return retval;
3761 }
3762
3763 /**
3764 * sys_sched_getscheduler - get the RT priority of a thread
3765 * @pid: the pid in question.
3766 * @param: structure containing the RT priority.
3767 */
3768 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3769 {
3770 struct sched_param lp;
3771 int retval = -EINVAL;
3772 task_t *p;
3773
3774 if (!param || pid < 0)
3775 goto out_nounlock;
3776
3777 read_lock(&tasklist_lock);
3778 p = find_process_by_pid(pid);
3779 retval = -ESRCH;
3780 if (!p)
3781 goto out_unlock;
3782
3783 retval = security_task_getscheduler(p);
3784 if (retval)
3785 goto out_unlock;
3786
3787 lp.sched_priority = p->rt_priority;
3788 read_unlock(&tasklist_lock);
3789
3790 /*
3791 * This one might sleep, we cannot do it with a spinlock held ...
3792 */
3793 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3794
3795 out_nounlock:
3796 return retval;
3797
3798 out_unlock:
3799 read_unlock(&tasklist_lock);
3800 return retval;
3801 }
3802
3803 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3804 {
3805 task_t *p;
3806 int retval;
3807 cpumask_t cpus_allowed;
3808
3809 lock_cpu_hotplug();
3810 read_lock(&tasklist_lock);
3811
3812 p = find_process_by_pid(pid);
3813 if (!p) {
3814 read_unlock(&tasklist_lock);
3815 unlock_cpu_hotplug();
3816 return -ESRCH;
3817 }
3818
3819 /*
3820 * It is not safe to call set_cpus_allowed with the
3821 * tasklist_lock held. We will bump the task_struct's
3822 * usage count and then drop tasklist_lock.
3823 */
3824 get_task_struct(p);
3825 read_unlock(&tasklist_lock);
3826
3827 retval = -EPERM;
3828 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3829 !capable(CAP_SYS_NICE))
3830 goto out_unlock;
3831
3832 retval = security_task_setscheduler(p, 0, NULL);
3833 if (retval)
3834 goto out_unlock;
3835
3836 cpus_allowed = cpuset_cpus_allowed(p);
3837 cpus_and(new_mask, new_mask, cpus_allowed);
3838 retval = set_cpus_allowed(p, new_mask);
3839
3840 out_unlock:
3841 put_task_struct(p);
3842 unlock_cpu_hotplug();
3843 return retval;
3844 }
3845
3846 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3847 cpumask_t *new_mask)
3848 {
3849 if (len < sizeof(cpumask_t)) {
3850 memset(new_mask, 0, sizeof(cpumask_t));
3851 } else if (len > sizeof(cpumask_t)) {
3852 len = sizeof(cpumask_t);
3853 }
3854 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3855 }
3856
3857 /**
3858 * sys_sched_setaffinity - set the cpu affinity of a process
3859 * @pid: pid of the process
3860 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3861 * @user_mask_ptr: user-space pointer to the new cpu mask
3862 */
3863 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3864 unsigned long __user *user_mask_ptr)
3865 {
3866 cpumask_t new_mask;
3867 int retval;
3868
3869 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3870 if (retval)
3871 return retval;
3872
3873 return sched_setaffinity(pid, new_mask);
3874 }
3875
3876 /*
3877 * Represents all cpu's present in the system
3878 * In systems capable of hotplug, this map could dynamically grow
3879 * as new cpu's are detected in the system via any platform specific
3880 * method, such as ACPI for e.g.
3881 */
3882
3883 cpumask_t cpu_present_map __read_mostly;
3884 EXPORT_SYMBOL(cpu_present_map);
3885
3886 #ifndef CONFIG_SMP
3887 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3888 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3889 #endif
3890
3891 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3892 {
3893 int retval;
3894 task_t *p;
3895
3896 lock_cpu_hotplug();
3897 read_lock(&tasklist_lock);
3898
3899 retval = -ESRCH;
3900 p = find_process_by_pid(pid);
3901 if (!p)
3902 goto out_unlock;
3903
3904 retval = security_task_getscheduler(p);
3905 if (retval)
3906 goto out_unlock;
3907
3908 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3909
3910 out_unlock:
3911 read_unlock(&tasklist_lock);
3912 unlock_cpu_hotplug();
3913 if (retval)
3914 return retval;
3915
3916 return 0;
3917 }
3918
3919 /**
3920 * sys_sched_getaffinity - get the cpu affinity of a process
3921 * @pid: pid of the process
3922 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3923 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3924 */
3925 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3926 unsigned long __user *user_mask_ptr)
3927 {
3928 int ret;
3929 cpumask_t mask;
3930
3931 if (len < sizeof(cpumask_t))
3932 return -EINVAL;
3933
3934 ret = sched_getaffinity(pid, &mask);
3935 if (ret < 0)
3936 return ret;
3937
3938 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3939 return -EFAULT;
3940
3941 return sizeof(cpumask_t);
3942 }
3943
3944 /**
3945 * sys_sched_yield - yield the current processor to other threads.
3946 *
3947 * this function yields the current CPU by moving the calling thread
3948 * to the expired array. If there are no other threads running on this
3949 * CPU then this function will return.
3950 */
3951 asmlinkage long sys_sched_yield(void)
3952 {
3953 runqueue_t *rq = this_rq_lock();
3954 prio_array_t *array = current->array;
3955 prio_array_t *target = rq->expired;
3956
3957 schedstat_inc(rq, yld_cnt);
3958 /*
3959 * We implement yielding by moving the task into the expired
3960 * queue.
3961 *
3962 * (special rule: RT tasks will just roundrobin in the active
3963 * array.)
3964 */
3965 if (rt_task(current))
3966 target = rq->active;
3967
3968 if (array->nr_active == 1) {
3969 schedstat_inc(rq, yld_act_empty);
3970 if (!rq->expired->nr_active)
3971 schedstat_inc(rq, yld_both_empty);
3972 } else if (!rq->expired->nr_active)
3973 schedstat_inc(rq, yld_exp_empty);
3974
3975 if (array != target) {
3976 dequeue_task(current, array);
3977 enqueue_task(current, target);
3978 } else
3979 /*
3980 * requeue_task is cheaper so perform that if possible.
3981 */
3982 requeue_task(current, array);
3983
3984 /*
3985 * Since we are going to call schedule() anyway, there's
3986 * no need to preempt or enable interrupts:
3987 */
3988 __release(rq->lock);
3989 _raw_spin_unlock(&rq->lock);
3990 preempt_enable_no_resched();
3991
3992 schedule();
3993
3994 return 0;
3995 }
3996
3997 static inline void __cond_resched(void)
3998 {
3999 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4000 __might_sleep(__FILE__, __LINE__);
4001 #endif
4002 /*
4003 * The BKS might be reacquired before we have dropped
4004 * PREEMPT_ACTIVE, which could trigger a second
4005 * cond_resched() call.
4006 */
4007 if (unlikely(preempt_count()))
4008 return;
4009 if (unlikely(system_state != SYSTEM_RUNNING))
4010 return;
4011 do {
4012 add_preempt_count(PREEMPT_ACTIVE);
4013 schedule();
4014 sub_preempt_count(PREEMPT_ACTIVE);
4015 } while (need_resched());
4016 }
4017
4018 int __sched cond_resched(void)
4019 {
4020 if (need_resched()) {
4021 __cond_resched();
4022 return 1;
4023 }
4024 return 0;
4025 }
4026
4027 EXPORT_SYMBOL(cond_resched);
4028
4029 /*
4030 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4031 * call schedule, and on return reacquire the lock.
4032 *
4033 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4034 * operations here to prevent schedule() from being called twice (once via
4035 * spin_unlock(), once by hand).
4036 */
4037 int cond_resched_lock(spinlock_t *lock)
4038 {
4039 int ret = 0;
4040
4041 if (need_lockbreak(lock)) {
4042 spin_unlock(lock);
4043 cpu_relax();
4044 ret = 1;
4045 spin_lock(lock);
4046 }
4047 if (need_resched()) {
4048 _raw_spin_unlock(lock);
4049 preempt_enable_no_resched();
4050 __cond_resched();
4051 ret = 1;
4052 spin_lock(lock);
4053 }
4054 return ret;
4055 }
4056
4057 EXPORT_SYMBOL(cond_resched_lock);
4058
4059 int __sched cond_resched_softirq(void)
4060 {
4061 BUG_ON(!in_softirq());
4062
4063 if (need_resched()) {
4064 __local_bh_enable();
4065 __cond_resched();
4066 local_bh_disable();
4067 return 1;
4068 }
4069 return 0;
4070 }
4071
4072 EXPORT_SYMBOL(cond_resched_softirq);
4073
4074
4075 /**
4076 * yield - yield the current processor to other threads.
4077 *
4078 * this is a shortcut for kernel-space yielding - it marks the
4079 * thread runnable and calls sys_sched_yield().
4080 */
4081 void __sched yield(void)
4082 {
4083 set_current_state(TASK_RUNNING);
4084 sys_sched_yield();
4085 }
4086
4087 EXPORT_SYMBOL(yield);
4088
4089 /*
4090 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4091 * that process accounting knows that this is a task in IO wait state.
4092 *
4093 * But don't do that if it is a deliberate, throttling IO wait (this task
4094 * has set its backing_dev_info: the queue against which it should throttle)
4095 */
4096 void __sched io_schedule(void)
4097 {
4098 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4099
4100 atomic_inc(&rq->nr_iowait);
4101 schedule();
4102 atomic_dec(&rq->nr_iowait);
4103 }
4104
4105 EXPORT_SYMBOL(io_schedule);
4106
4107 long __sched io_schedule_timeout(long timeout)
4108 {
4109 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4110 long ret;
4111
4112 atomic_inc(&rq->nr_iowait);
4113 ret = schedule_timeout(timeout);
4114 atomic_dec(&rq->nr_iowait);
4115 return ret;
4116 }
4117
4118 /**
4119 * sys_sched_get_priority_max - return maximum RT priority.
4120 * @policy: scheduling class.
4121 *
4122 * this syscall returns the maximum rt_priority that can be used
4123 * by a given scheduling class.
4124 */
4125 asmlinkage long sys_sched_get_priority_max(int policy)
4126 {
4127 int ret = -EINVAL;
4128
4129 switch (policy) {
4130 case SCHED_FIFO:
4131 case SCHED_RR:
4132 ret = MAX_USER_RT_PRIO-1;
4133 break;
4134 case SCHED_NORMAL:
4135 case SCHED_BATCH:
4136 ret = 0;
4137 break;
4138 }
4139 return ret;
4140 }
4141
4142 /**
4143 * sys_sched_get_priority_min - return minimum RT priority.
4144 * @policy: scheduling class.
4145 *
4146 * this syscall returns the minimum rt_priority that can be used
4147 * by a given scheduling class.
4148 */
4149 asmlinkage long sys_sched_get_priority_min(int policy)
4150 {
4151 int ret = -EINVAL;
4152
4153 switch (policy) {
4154 case SCHED_FIFO:
4155 case SCHED_RR:
4156 ret = 1;
4157 break;
4158 case SCHED_NORMAL:
4159 case SCHED_BATCH:
4160 ret = 0;
4161 }
4162 return ret;
4163 }
4164
4165 /**
4166 * sys_sched_rr_get_interval - return the default timeslice of a process.
4167 * @pid: pid of the process.
4168 * @interval: userspace pointer to the timeslice value.
4169 *
4170 * this syscall writes the default timeslice value of a given process
4171 * into the user-space timespec buffer. A value of '0' means infinity.
4172 */
4173 asmlinkage
4174 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4175 {
4176 int retval = -EINVAL;
4177 struct timespec t;
4178 task_t *p;
4179
4180 if (pid < 0)
4181 goto out_nounlock;
4182
4183 retval = -ESRCH;
4184 read_lock(&tasklist_lock);
4185 p = find_process_by_pid(pid);
4186 if (!p)
4187 goto out_unlock;
4188
4189 retval = security_task_getscheduler(p);
4190 if (retval)
4191 goto out_unlock;
4192
4193 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4194 0 : task_timeslice(p), &t);
4195 read_unlock(&tasklist_lock);
4196 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4197 out_nounlock:
4198 return retval;
4199 out_unlock:
4200 read_unlock(&tasklist_lock);
4201 return retval;
4202 }
4203
4204 static inline struct task_struct *eldest_child(struct task_struct *p)
4205 {
4206 if (list_empty(&p->children)) return NULL;
4207 return list_entry(p->children.next,struct task_struct,sibling);
4208 }
4209
4210 static inline struct task_struct *older_sibling(struct task_struct *p)
4211 {
4212 if (p->sibling.prev==&p->parent->children) return NULL;
4213 return list_entry(p->sibling.prev,struct task_struct,sibling);
4214 }
4215
4216 static inline struct task_struct *younger_sibling(struct task_struct *p)
4217 {
4218 if (p->sibling.next==&p->parent->children) return NULL;
4219 return list_entry(p->sibling.next,struct task_struct,sibling);
4220 }
4221
4222 static void show_task(task_t *p)
4223 {
4224 task_t *relative;
4225 unsigned state;
4226 unsigned long free = 0;
4227 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4228
4229 printk("%-13.13s ", p->comm);
4230 state = p->state ? __ffs(p->state) + 1 : 0;
4231 if (state < ARRAY_SIZE(stat_nam))
4232 printk(stat_nam[state]);
4233 else
4234 printk("?");
4235 #if (BITS_PER_LONG == 32)
4236 if (state == TASK_RUNNING)
4237 printk(" running ");
4238 else
4239 printk(" %08lX ", thread_saved_pc(p));
4240 #else
4241 if (state == TASK_RUNNING)
4242 printk(" running task ");
4243 else
4244 printk(" %016lx ", thread_saved_pc(p));
4245 #endif
4246 #ifdef CONFIG_DEBUG_STACK_USAGE
4247 {
4248 unsigned long *n = end_of_stack(p);
4249 while (!*n)
4250 n++;
4251 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4252 }
4253 #endif
4254 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4255 if ((relative = eldest_child(p)))
4256 printk("%5d ", relative->pid);
4257 else
4258 printk(" ");
4259 if ((relative = younger_sibling(p)))
4260 printk("%7d", relative->pid);
4261 else
4262 printk(" ");
4263 if ((relative = older_sibling(p)))
4264 printk(" %5d", relative->pid);
4265 else
4266 printk(" ");
4267 if (!p->mm)
4268 printk(" (L-TLB)\n");
4269 else
4270 printk(" (NOTLB)\n");
4271
4272 if (state != TASK_RUNNING)
4273 show_stack(p, NULL);
4274 }
4275
4276 void show_state(void)
4277 {
4278 task_t *g, *p;
4279
4280 #if (BITS_PER_LONG == 32)
4281 printk("\n"
4282 " sibling\n");
4283 printk(" task PC pid father child younger older\n");
4284 #else
4285 printk("\n"
4286 " sibling\n");
4287 printk(" task PC pid father child younger older\n");
4288 #endif
4289 read_lock(&tasklist_lock);
4290 do_each_thread(g, p) {
4291 /*
4292 * reset the NMI-timeout, listing all files on a slow
4293 * console might take alot of time:
4294 */
4295 touch_nmi_watchdog();
4296 show_task(p);
4297 } while_each_thread(g, p);
4298
4299 read_unlock(&tasklist_lock);
4300 mutex_debug_show_all_locks();
4301 }
4302
4303 /**
4304 * init_idle - set up an idle thread for a given CPU
4305 * @idle: task in question
4306 * @cpu: cpu the idle task belongs to
4307 *
4308 * NOTE: this function does not set the idle thread's NEED_RESCHED
4309 * flag, to make booting more robust.
4310 */
4311 void __devinit init_idle(task_t *idle, int cpu)
4312 {
4313 runqueue_t *rq = cpu_rq(cpu);
4314 unsigned long flags;
4315
4316 idle->timestamp = sched_clock();
4317 idle->sleep_avg = 0;
4318 idle->array = NULL;
4319 idle->prio = MAX_PRIO;
4320 idle->state = TASK_RUNNING;
4321 idle->cpus_allowed = cpumask_of_cpu(cpu);
4322 set_task_cpu(idle, cpu);
4323
4324 spin_lock_irqsave(&rq->lock, flags);
4325 rq->curr = rq->idle = idle;
4326 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4327 idle->oncpu = 1;
4328 #endif
4329 spin_unlock_irqrestore(&rq->lock, flags);
4330
4331 /* Set the preempt count _outside_ the spinlocks! */
4332 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4333 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4334 #else
4335 task_thread_info(idle)->preempt_count = 0;
4336 #endif
4337 }
4338
4339 /*
4340 * In a system that switches off the HZ timer nohz_cpu_mask
4341 * indicates which cpus entered this state. This is used
4342 * in the rcu update to wait only for active cpus. For system
4343 * which do not switch off the HZ timer nohz_cpu_mask should
4344 * always be CPU_MASK_NONE.
4345 */
4346 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4347
4348 #ifdef CONFIG_SMP
4349 /*
4350 * This is how migration works:
4351 *
4352 * 1) we queue a migration_req_t structure in the source CPU's
4353 * runqueue and wake up that CPU's migration thread.
4354 * 2) we down() the locked semaphore => thread blocks.
4355 * 3) migration thread wakes up (implicitly it forces the migrated
4356 * thread off the CPU)
4357 * 4) it gets the migration request and checks whether the migrated
4358 * task is still in the wrong runqueue.
4359 * 5) if it's in the wrong runqueue then the migration thread removes
4360 * it and puts it into the right queue.
4361 * 6) migration thread up()s the semaphore.
4362 * 7) we wake up and the migration is done.
4363 */
4364
4365 /*
4366 * Change a given task's CPU affinity. Migrate the thread to a
4367 * proper CPU and schedule it away if the CPU it's executing on
4368 * is removed from the allowed bitmask.
4369 *
4370 * NOTE: the caller must have a valid reference to the task, the
4371 * task must not exit() & deallocate itself prematurely. The
4372 * call is not atomic; no spinlocks may be held.
4373 */
4374 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4375 {
4376 unsigned long flags;
4377 int ret = 0;
4378 migration_req_t req;
4379 runqueue_t *rq;
4380
4381 rq = task_rq_lock(p, &flags);
4382 if (!cpus_intersects(new_mask, cpu_online_map)) {
4383 ret = -EINVAL;
4384 goto out;
4385 }
4386
4387 p->cpus_allowed = new_mask;
4388 /* Can the task run on the task's current CPU? If so, we're done */
4389 if (cpu_isset(task_cpu(p), new_mask))
4390 goto out;
4391
4392 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4393 /* Need help from migration thread: drop lock and wait. */
4394 task_rq_unlock(rq, &flags);
4395 wake_up_process(rq->migration_thread);
4396 wait_for_completion(&req.done);
4397 tlb_migrate_finish(p->mm);
4398 return 0;
4399 }
4400 out:
4401 task_rq_unlock(rq, &flags);
4402 return ret;
4403 }
4404
4405 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4406
4407 /*
4408 * Move (not current) task off this cpu, onto dest cpu. We're doing
4409 * this because either it can't run here any more (set_cpus_allowed()
4410 * away from this CPU, or CPU going down), or because we're
4411 * attempting to rebalance this task on exec (sched_exec).
4412 *
4413 * So we race with normal scheduler movements, but that's OK, as long
4414 * as the task is no longer on this CPU.
4415 */
4416 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4417 {
4418 runqueue_t *rq_dest, *rq_src;
4419
4420 if (unlikely(cpu_is_offline(dest_cpu)))
4421 return;
4422
4423 rq_src = cpu_rq(src_cpu);
4424 rq_dest = cpu_rq(dest_cpu);
4425
4426 double_rq_lock(rq_src, rq_dest);
4427 /* Already moved. */
4428 if (task_cpu(p) != src_cpu)
4429 goto out;
4430 /* Affinity changed (again). */
4431 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4432 goto out;
4433
4434 set_task_cpu(p, dest_cpu);
4435 if (p->array) {
4436 /*
4437 * Sync timestamp with rq_dest's before activating.
4438 * The same thing could be achieved by doing this step
4439 * afterwards, and pretending it was a local activate.
4440 * This way is cleaner and logically correct.
4441 */
4442 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4443 + rq_dest->timestamp_last_tick;
4444 deactivate_task(p, rq_src);
4445 activate_task(p, rq_dest, 0);
4446 if (TASK_PREEMPTS_CURR(p, rq_dest))
4447 resched_task(rq_dest->curr);
4448 }
4449
4450 out:
4451 double_rq_unlock(rq_src, rq_dest);
4452 }
4453
4454 /*
4455 * migration_thread - this is a highprio system thread that performs
4456 * thread migration by bumping thread off CPU then 'pushing' onto
4457 * another runqueue.
4458 */
4459 static int migration_thread(void *data)
4460 {
4461 runqueue_t *rq;
4462 int cpu = (long)data;
4463
4464 rq = cpu_rq(cpu);
4465 BUG_ON(rq->migration_thread != current);
4466
4467 set_current_state(TASK_INTERRUPTIBLE);
4468 while (!kthread_should_stop()) {
4469 struct list_head *head;
4470 migration_req_t *req;
4471
4472 try_to_freeze();
4473
4474 spin_lock_irq(&rq->lock);
4475
4476 if (cpu_is_offline(cpu)) {
4477 spin_unlock_irq(&rq->lock);
4478 goto wait_to_die;
4479 }
4480
4481 if (rq->active_balance) {
4482 active_load_balance(rq, cpu);
4483 rq->active_balance = 0;
4484 }
4485
4486 head = &rq->migration_queue;
4487
4488 if (list_empty(head)) {
4489 spin_unlock_irq(&rq->lock);
4490 schedule();
4491 set_current_state(TASK_INTERRUPTIBLE);
4492 continue;
4493 }
4494 req = list_entry(head->next, migration_req_t, list);
4495 list_del_init(head->next);
4496
4497 spin_unlock(&rq->lock);
4498 __migrate_task(req->task, cpu, req->dest_cpu);
4499 local_irq_enable();
4500
4501 complete(&req->done);
4502 }
4503 __set_current_state(TASK_RUNNING);
4504 return 0;
4505
4506 wait_to_die:
4507 /* Wait for kthread_stop */
4508 set_current_state(TASK_INTERRUPTIBLE);
4509 while (!kthread_should_stop()) {
4510 schedule();
4511 set_current_state(TASK_INTERRUPTIBLE);
4512 }
4513 __set_current_state(TASK_RUNNING);
4514 return 0;
4515 }
4516
4517 #ifdef CONFIG_HOTPLUG_CPU
4518 /* Figure out where task on dead CPU should go, use force if neccessary. */
4519 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4520 {
4521 int dest_cpu;
4522 cpumask_t mask;
4523
4524 /* On same node? */
4525 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4526 cpus_and(mask, mask, tsk->cpus_allowed);
4527 dest_cpu = any_online_cpu(mask);
4528
4529 /* On any allowed CPU? */
4530 if (dest_cpu == NR_CPUS)
4531 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4532
4533 /* No more Mr. Nice Guy. */
4534 if (dest_cpu == NR_CPUS) {
4535 cpus_setall(tsk->cpus_allowed);
4536 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4537
4538 /*
4539 * Don't tell them about moving exiting tasks or
4540 * kernel threads (both mm NULL), since they never
4541 * leave kernel.
4542 */
4543 if (tsk->mm && printk_ratelimit())
4544 printk(KERN_INFO "process %d (%s) no "
4545 "longer affine to cpu%d\n",
4546 tsk->pid, tsk->comm, dead_cpu);
4547 }
4548 __migrate_task(tsk, dead_cpu, dest_cpu);
4549 }
4550
4551 /*
4552 * While a dead CPU has no uninterruptible tasks queued at this point,
4553 * it might still have a nonzero ->nr_uninterruptible counter, because
4554 * for performance reasons the counter is not stricly tracking tasks to
4555 * their home CPUs. So we just add the counter to another CPU's counter,
4556 * to keep the global sum constant after CPU-down:
4557 */
4558 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4559 {
4560 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4561 unsigned long flags;
4562
4563 local_irq_save(flags);
4564 double_rq_lock(rq_src, rq_dest);
4565 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4566 rq_src->nr_uninterruptible = 0;
4567 double_rq_unlock(rq_src, rq_dest);
4568 local_irq_restore(flags);
4569 }
4570
4571 /* Run through task list and migrate tasks from the dead cpu. */
4572 static void migrate_live_tasks(int src_cpu)
4573 {
4574 struct task_struct *tsk, *t;
4575
4576 write_lock_irq(&tasklist_lock);
4577
4578 do_each_thread(t, tsk) {
4579 if (tsk == current)
4580 continue;
4581
4582 if (task_cpu(tsk) == src_cpu)
4583 move_task_off_dead_cpu(src_cpu, tsk);
4584 } while_each_thread(t, tsk);
4585
4586 write_unlock_irq(&tasklist_lock);
4587 }
4588
4589 /* Schedules idle task to be the next runnable task on current CPU.
4590 * It does so by boosting its priority to highest possible and adding it to
4591 * the _front_ of runqueue. Used by CPU offline code.
4592 */
4593 void sched_idle_next(void)
4594 {
4595 int cpu = smp_processor_id();
4596 runqueue_t *rq = this_rq();
4597 struct task_struct *p = rq->idle;
4598 unsigned long flags;
4599
4600 /* cpu has to be offline */
4601 BUG_ON(cpu_online(cpu));
4602
4603 /* Strictly not necessary since rest of the CPUs are stopped by now
4604 * and interrupts disabled on current cpu.
4605 */
4606 spin_lock_irqsave(&rq->lock, flags);
4607
4608 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4609 /* Add idle task to _front_ of it's priority queue */
4610 __activate_idle_task(p, rq);
4611
4612 spin_unlock_irqrestore(&rq->lock, flags);
4613 }
4614
4615 /* Ensures that the idle task is using init_mm right before its cpu goes
4616 * offline.
4617 */
4618 void idle_task_exit(void)
4619 {
4620 struct mm_struct *mm = current->active_mm;
4621
4622 BUG_ON(cpu_online(smp_processor_id()));
4623
4624 if (mm != &init_mm)
4625 switch_mm(mm, &init_mm, current);
4626 mmdrop(mm);
4627 }
4628
4629 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4630 {
4631 struct runqueue *rq = cpu_rq(dead_cpu);
4632
4633 /* Must be exiting, otherwise would be on tasklist. */
4634 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4635
4636 /* Cannot have done final schedule yet: would have vanished. */
4637 BUG_ON(tsk->flags & PF_DEAD);
4638
4639 get_task_struct(tsk);
4640
4641 /*
4642 * Drop lock around migration; if someone else moves it,
4643 * that's OK. No task can be added to this CPU, so iteration is
4644 * fine.
4645 */
4646 spin_unlock_irq(&rq->lock);
4647 move_task_off_dead_cpu(dead_cpu, tsk);
4648 spin_lock_irq(&rq->lock);
4649
4650 put_task_struct(tsk);
4651 }
4652
4653 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4654 static void migrate_dead_tasks(unsigned int dead_cpu)
4655 {
4656 unsigned arr, i;
4657 struct runqueue *rq = cpu_rq(dead_cpu);
4658
4659 for (arr = 0; arr < 2; arr++) {
4660 for (i = 0; i < MAX_PRIO; i++) {
4661 struct list_head *list = &rq->arrays[arr].queue[i];
4662 while (!list_empty(list))
4663 migrate_dead(dead_cpu,
4664 list_entry(list->next, task_t,
4665 run_list));
4666 }
4667 }
4668 }
4669 #endif /* CONFIG_HOTPLUG_CPU */
4670
4671 /*
4672 * migration_call - callback that gets triggered when a CPU is added.
4673 * Here we can start up the necessary migration thread for the new CPU.
4674 */
4675 static int __cpuinit migration_call(struct notifier_block *nfb,
4676 unsigned long action,
4677 void *hcpu)
4678 {
4679 int cpu = (long)hcpu;
4680 struct task_struct *p;
4681 struct runqueue *rq;
4682 unsigned long flags;
4683
4684 switch (action) {
4685 case CPU_UP_PREPARE:
4686 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4687 if (IS_ERR(p))
4688 return NOTIFY_BAD;
4689 p->flags |= PF_NOFREEZE;
4690 kthread_bind(p, cpu);
4691 /* Must be high prio: stop_machine expects to yield to it. */
4692 rq = task_rq_lock(p, &flags);
4693 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4694 task_rq_unlock(rq, &flags);
4695 cpu_rq(cpu)->migration_thread = p;
4696 break;
4697 case CPU_ONLINE:
4698 /* Strictly unneccessary, as first user will wake it. */
4699 wake_up_process(cpu_rq(cpu)->migration_thread);
4700 break;
4701 #ifdef CONFIG_HOTPLUG_CPU
4702 case CPU_UP_CANCELED:
4703 if (!cpu_rq(cpu)->migration_thread)
4704 break;
4705 /* Unbind it from offline cpu so it can run. Fall thru. */
4706 kthread_bind(cpu_rq(cpu)->migration_thread,
4707 any_online_cpu(cpu_online_map));
4708 kthread_stop(cpu_rq(cpu)->migration_thread);
4709 cpu_rq(cpu)->migration_thread = NULL;
4710 break;
4711 case CPU_DEAD:
4712 migrate_live_tasks(cpu);
4713 rq = cpu_rq(cpu);
4714 kthread_stop(rq->migration_thread);
4715 rq->migration_thread = NULL;
4716 /* Idle task back to normal (off runqueue, low prio) */
4717 rq = task_rq_lock(rq->idle, &flags);
4718 deactivate_task(rq->idle, rq);
4719 rq->idle->static_prio = MAX_PRIO;
4720 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4721 migrate_dead_tasks(cpu);
4722 task_rq_unlock(rq, &flags);
4723 migrate_nr_uninterruptible(rq);
4724 BUG_ON(rq->nr_running != 0);
4725
4726 /* No need to migrate the tasks: it was best-effort if
4727 * they didn't do lock_cpu_hotplug(). Just wake up
4728 * the requestors. */
4729 spin_lock_irq(&rq->lock);
4730 while (!list_empty(&rq->migration_queue)) {
4731 migration_req_t *req;
4732 req = list_entry(rq->migration_queue.next,
4733 migration_req_t, list);
4734 list_del_init(&req->list);
4735 complete(&req->done);
4736 }
4737 spin_unlock_irq(&rq->lock);
4738 break;
4739 #endif
4740 }
4741 return NOTIFY_OK;
4742 }
4743
4744 /* Register at highest priority so that task migration (migrate_all_tasks)
4745 * happens before everything else.
4746 */
4747 static struct notifier_block __cpuinitdata migration_notifier = {
4748 .notifier_call = migration_call,
4749 .priority = 10
4750 };
4751
4752 int __init migration_init(void)
4753 {
4754 void *cpu = (void *)(long)smp_processor_id();
4755 /* Start one for boot CPU. */
4756 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4757 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4758 register_cpu_notifier(&migration_notifier);
4759 return 0;
4760 }
4761 #endif
4762
4763 #ifdef CONFIG_SMP
4764 #undef SCHED_DOMAIN_DEBUG
4765 #ifdef SCHED_DOMAIN_DEBUG
4766 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4767 {
4768 int level = 0;
4769
4770 if (!sd) {
4771 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4772 return;
4773 }
4774
4775 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4776
4777 do {
4778 int i;
4779 char str[NR_CPUS];
4780 struct sched_group *group = sd->groups;
4781 cpumask_t groupmask;
4782
4783 cpumask_scnprintf(str, NR_CPUS, sd->span);
4784 cpus_clear(groupmask);
4785
4786 printk(KERN_DEBUG);
4787 for (i = 0; i < level + 1; i++)
4788 printk(" ");
4789 printk("domain %d: ", level);
4790
4791 if (!(sd->flags & SD_LOAD_BALANCE)) {
4792 printk("does not load-balance\n");
4793 if (sd->parent)
4794 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4795 break;
4796 }
4797
4798 printk("span %s\n", str);
4799
4800 if (!cpu_isset(cpu, sd->span))
4801 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4802 if (!cpu_isset(cpu, group->cpumask))
4803 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4804
4805 printk(KERN_DEBUG);
4806 for (i = 0; i < level + 2; i++)
4807 printk(" ");
4808 printk("groups:");
4809 do {
4810 if (!group) {
4811 printk("\n");
4812 printk(KERN_ERR "ERROR: group is NULL\n");
4813 break;
4814 }
4815
4816 if (!group->cpu_power) {
4817 printk("\n");
4818 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4819 }
4820
4821 if (!cpus_weight(group->cpumask)) {
4822 printk("\n");
4823 printk(KERN_ERR "ERROR: empty group\n");
4824 }
4825
4826 if (cpus_intersects(groupmask, group->cpumask)) {
4827 printk("\n");
4828 printk(KERN_ERR "ERROR: repeated CPUs\n");
4829 }
4830
4831 cpus_or(groupmask, groupmask, group->cpumask);
4832
4833 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4834 printk(" %s", str);
4835
4836 group = group->next;
4837 } while (group != sd->groups);
4838 printk("\n");
4839
4840 if (!cpus_equal(sd->span, groupmask))
4841 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4842
4843 level++;
4844 sd = sd->parent;
4845
4846 if (sd) {
4847 if (!cpus_subset(groupmask, sd->span))
4848 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4849 }
4850
4851 } while (sd);
4852 }
4853 #else
4854 #define sched_domain_debug(sd, cpu) {}
4855 #endif
4856
4857 static int sd_degenerate(struct sched_domain *sd)
4858 {
4859 if (cpus_weight(sd->span) == 1)
4860 return 1;
4861
4862 /* Following flags need at least 2 groups */
4863 if (sd->flags & (SD_LOAD_BALANCE |
4864 SD_BALANCE_NEWIDLE |
4865 SD_BALANCE_FORK |
4866 SD_BALANCE_EXEC)) {
4867 if (sd->groups != sd->groups->next)
4868 return 0;
4869 }
4870
4871 /* Following flags don't use groups */
4872 if (sd->flags & (SD_WAKE_IDLE |
4873 SD_WAKE_AFFINE |
4874 SD_WAKE_BALANCE))
4875 return 0;
4876
4877 return 1;
4878 }
4879
4880 static int sd_parent_degenerate(struct sched_domain *sd,
4881 struct sched_domain *parent)
4882 {
4883 unsigned long cflags = sd->flags, pflags = parent->flags;
4884
4885 if (sd_degenerate(parent))
4886 return 1;
4887
4888 if (!cpus_equal(sd->span, parent->span))
4889 return 0;
4890
4891 /* Does parent contain flags not in child? */
4892 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4893 if (cflags & SD_WAKE_AFFINE)
4894 pflags &= ~SD_WAKE_BALANCE;
4895 /* Flags needing groups don't count if only 1 group in parent */
4896 if (parent->groups == parent->groups->next) {
4897 pflags &= ~(SD_LOAD_BALANCE |
4898 SD_BALANCE_NEWIDLE |
4899 SD_BALANCE_FORK |
4900 SD_BALANCE_EXEC);
4901 }
4902 if (~cflags & pflags)
4903 return 0;
4904
4905 return 1;
4906 }
4907
4908 /*
4909 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4910 * hold the hotplug lock.
4911 */
4912 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4913 {
4914 runqueue_t *rq = cpu_rq(cpu);
4915 struct sched_domain *tmp;
4916
4917 /* Remove the sched domains which do not contribute to scheduling. */
4918 for (tmp = sd; tmp; tmp = tmp->parent) {
4919 struct sched_domain *parent = tmp->parent;
4920 if (!parent)
4921 break;
4922 if (sd_parent_degenerate(tmp, parent))
4923 tmp->parent = parent->parent;
4924 }
4925
4926 if (sd && sd_degenerate(sd))
4927 sd = sd->parent;
4928
4929 sched_domain_debug(sd, cpu);
4930
4931 rcu_assign_pointer(rq->sd, sd);
4932 }
4933
4934 /* cpus with isolated domains */
4935 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4936
4937 /* Setup the mask of cpus configured for isolated domains */
4938 static int __init isolated_cpu_setup(char *str)
4939 {
4940 int ints[NR_CPUS], i;
4941
4942 str = get_options(str, ARRAY_SIZE(ints), ints);
4943 cpus_clear(cpu_isolated_map);
4944 for (i = 1; i <= ints[0]; i++)
4945 if (ints[i] < NR_CPUS)
4946 cpu_set(ints[i], cpu_isolated_map);
4947 return 1;
4948 }
4949
4950 __setup ("isolcpus=", isolated_cpu_setup);
4951
4952 /*
4953 * init_sched_build_groups takes an array of groups, the cpumask we wish
4954 * to span, and a pointer to a function which identifies what group a CPU
4955 * belongs to. The return value of group_fn must be a valid index into the
4956 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4957 * keep track of groups covered with a cpumask_t).
4958 *
4959 * init_sched_build_groups will build a circular linked list of the groups
4960 * covered by the given span, and will set each group's ->cpumask correctly,
4961 * and ->cpu_power to 0.
4962 */
4963 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4964 int (*group_fn)(int cpu))
4965 {
4966 struct sched_group *first = NULL, *last = NULL;
4967 cpumask_t covered = CPU_MASK_NONE;
4968 int i;
4969
4970 for_each_cpu_mask(i, span) {
4971 int group = group_fn(i);
4972 struct sched_group *sg = &groups[group];
4973 int j;
4974
4975 if (cpu_isset(i, covered))
4976 continue;
4977
4978 sg->cpumask = CPU_MASK_NONE;
4979 sg->cpu_power = 0;
4980
4981 for_each_cpu_mask(j, span) {
4982 if (group_fn(j) != group)
4983 continue;
4984
4985 cpu_set(j, covered);
4986 cpu_set(j, sg->cpumask);
4987 }
4988 if (!first)
4989 first = sg;
4990 if (last)
4991 last->next = sg;
4992 last = sg;
4993 }
4994 last->next = first;
4995 }
4996
4997 #define SD_NODES_PER_DOMAIN 16
4998
4999 /*
5000 * Self-tuning task migration cost measurement between source and target CPUs.
5001 *
5002 * This is done by measuring the cost of manipulating buffers of varying
5003 * sizes. For a given buffer-size here are the steps that are taken:
5004 *
5005 * 1) the source CPU reads+dirties a shared buffer
5006 * 2) the target CPU reads+dirties the same shared buffer
5007 *
5008 * We measure how long they take, in the following 4 scenarios:
5009 *
5010 * - source: CPU1, target: CPU2 | cost1
5011 * - source: CPU2, target: CPU1 | cost2
5012 * - source: CPU1, target: CPU1 | cost3
5013 * - source: CPU2, target: CPU2 | cost4
5014 *
5015 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5016 * the cost of migration.
5017 *
5018 * We then start off from a small buffer-size and iterate up to larger
5019 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5020 * doing a maximum search for the cost. (The maximum cost for a migration
5021 * normally occurs when the working set size is around the effective cache
5022 * size.)
5023 */
5024 #define SEARCH_SCOPE 2
5025 #define MIN_CACHE_SIZE (64*1024U)
5026 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5027 #define ITERATIONS 1
5028 #define SIZE_THRESH 130
5029 #define COST_THRESH 130
5030
5031 /*
5032 * The migration cost is a function of 'domain distance'. Domain
5033 * distance is the number of steps a CPU has to iterate down its
5034 * domain tree to share a domain with the other CPU. The farther
5035 * two CPUs are from each other, the larger the distance gets.
5036 *
5037 * Note that we use the distance only to cache measurement results,
5038 * the distance value is not used numerically otherwise. When two
5039 * CPUs have the same distance it is assumed that the migration
5040 * cost is the same. (this is a simplification but quite practical)
5041 */
5042 #define MAX_DOMAIN_DISTANCE 32
5043
5044 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5045 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5046 /*
5047 * Architectures may override the migration cost and thus avoid
5048 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5049 * virtualized hardware:
5050 */
5051 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5052 CONFIG_DEFAULT_MIGRATION_COST
5053 #else
5054 -1LL
5055 #endif
5056 };
5057
5058 /*
5059 * Allow override of migration cost - in units of microseconds.
5060 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5061 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5062 */
5063 static int __init migration_cost_setup(char *str)
5064 {
5065 int ints[MAX_DOMAIN_DISTANCE+1], i;
5066
5067 str = get_options(str, ARRAY_SIZE(ints), ints);
5068
5069 printk("#ints: %d\n", ints[0]);
5070 for (i = 1; i <= ints[0]; i++) {
5071 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5072 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5073 }
5074 return 1;
5075 }
5076
5077 __setup ("migration_cost=", migration_cost_setup);
5078
5079 /*
5080 * Global multiplier (divisor) for migration-cutoff values,
5081 * in percentiles. E.g. use a value of 150 to get 1.5 times
5082 * longer cache-hot cutoff times.
5083 *
5084 * (We scale it from 100 to 128 to long long handling easier.)
5085 */
5086
5087 #define MIGRATION_FACTOR_SCALE 128
5088
5089 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5090
5091 static int __init setup_migration_factor(char *str)
5092 {
5093 get_option(&str, &migration_factor);
5094 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5095 return 1;
5096 }
5097
5098 __setup("migration_factor=", setup_migration_factor);
5099
5100 /*
5101 * Estimated distance of two CPUs, measured via the number of domains
5102 * we have to pass for the two CPUs to be in the same span:
5103 */
5104 static unsigned long domain_distance(int cpu1, int cpu2)
5105 {
5106 unsigned long distance = 0;
5107 struct sched_domain *sd;
5108
5109 for_each_domain(cpu1, sd) {
5110 WARN_ON(!cpu_isset(cpu1, sd->span));
5111 if (cpu_isset(cpu2, sd->span))
5112 return distance;
5113 distance++;
5114 }
5115 if (distance >= MAX_DOMAIN_DISTANCE) {
5116 WARN_ON(1);
5117 distance = MAX_DOMAIN_DISTANCE-1;
5118 }
5119
5120 return distance;
5121 }
5122
5123 static unsigned int migration_debug;
5124
5125 static int __init setup_migration_debug(char *str)
5126 {
5127 get_option(&str, &migration_debug);
5128 return 1;
5129 }
5130
5131 __setup("migration_debug=", setup_migration_debug);
5132
5133 /*
5134 * Maximum cache-size that the scheduler should try to measure.
5135 * Architectures with larger caches should tune this up during
5136 * bootup. Gets used in the domain-setup code (i.e. during SMP
5137 * bootup).
5138 */
5139 unsigned int max_cache_size;
5140
5141 static int __init setup_max_cache_size(char *str)
5142 {
5143 get_option(&str, &max_cache_size);
5144 return 1;
5145 }
5146
5147 __setup("max_cache_size=", setup_max_cache_size);
5148
5149 /*
5150 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5151 * is the operation that is timed, so we try to generate unpredictable
5152 * cachemisses that still end up filling the L2 cache:
5153 */
5154 static void touch_cache(void *__cache, unsigned long __size)
5155 {
5156 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5157 chunk2 = 2*size/3;
5158 unsigned long *cache = __cache;
5159 int i;
5160
5161 for (i = 0; i < size/6; i += 8) {
5162 switch (i % 6) {
5163 case 0: cache[i]++;
5164 case 1: cache[size-1-i]++;
5165 case 2: cache[chunk1-i]++;
5166 case 3: cache[chunk1+i]++;
5167 case 4: cache[chunk2-i]++;
5168 case 5: cache[chunk2+i]++;
5169 }
5170 }
5171 }
5172
5173 /*
5174 * Measure the cache-cost of one task migration. Returns in units of nsec.
5175 */
5176 static unsigned long long measure_one(void *cache, unsigned long size,
5177 int source, int target)
5178 {
5179 cpumask_t mask, saved_mask;
5180 unsigned long long t0, t1, t2, t3, cost;
5181
5182 saved_mask = current->cpus_allowed;
5183
5184 /*
5185 * Flush source caches to RAM and invalidate them:
5186 */
5187 sched_cacheflush();
5188
5189 /*
5190 * Migrate to the source CPU:
5191 */
5192 mask = cpumask_of_cpu(source);
5193 set_cpus_allowed(current, mask);
5194 WARN_ON(smp_processor_id() != source);
5195
5196 /*
5197 * Dirty the working set:
5198 */
5199 t0 = sched_clock();
5200 touch_cache(cache, size);
5201 t1 = sched_clock();
5202
5203 /*
5204 * Migrate to the target CPU, dirty the L2 cache and access
5205 * the shared buffer. (which represents the working set
5206 * of a migrated task.)
5207 */
5208 mask = cpumask_of_cpu(target);
5209 set_cpus_allowed(current, mask);
5210 WARN_ON(smp_processor_id() != target);
5211
5212 t2 = sched_clock();
5213 touch_cache(cache, size);
5214 t3 = sched_clock();
5215
5216 cost = t1-t0 + t3-t2;
5217
5218 if (migration_debug >= 2)
5219 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5220 source, target, t1-t0, t1-t0, t3-t2, cost);
5221 /*
5222 * Flush target caches to RAM and invalidate them:
5223 */
5224 sched_cacheflush();
5225
5226 set_cpus_allowed(current, saved_mask);
5227
5228 return cost;
5229 }
5230
5231 /*
5232 * Measure a series of task migrations and return the average
5233 * result. Since this code runs early during bootup the system
5234 * is 'undisturbed' and the average latency makes sense.
5235 *
5236 * The algorithm in essence auto-detects the relevant cache-size,
5237 * so it will properly detect different cachesizes for different
5238 * cache-hierarchies, depending on how the CPUs are connected.
5239 *
5240 * Architectures can prime the upper limit of the search range via
5241 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5242 */
5243 static unsigned long long
5244 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5245 {
5246 unsigned long long cost1, cost2;
5247 int i;
5248
5249 /*
5250 * Measure the migration cost of 'size' bytes, over an
5251 * average of 10 runs:
5252 *
5253 * (We perturb the cache size by a small (0..4k)
5254 * value to compensate size/alignment related artifacts.
5255 * We also subtract the cost of the operation done on
5256 * the same CPU.)
5257 */
5258 cost1 = 0;
5259
5260 /*
5261 * dry run, to make sure we start off cache-cold on cpu1,
5262 * and to get any vmalloc pagefaults in advance:
5263 */
5264 measure_one(cache, size, cpu1, cpu2);
5265 for (i = 0; i < ITERATIONS; i++)
5266 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5267
5268 measure_one(cache, size, cpu2, cpu1);
5269 for (i = 0; i < ITERATIONS; i++)
5270 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5271
5272 /*
5273 * (We measure the non-migrating [cached] cost on both
5274 * cpu1 and cpu2, to handle CPUs with different speeds)
5275 */
5276 cost2 = 0;
5277
5278 measure_one(cache, size, cpu1, cpu1);
5279 for (i = 0; i < ITERATIONS; i++)
5280 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5281
5282 measure_one(cache, size, cpu2, cpu2);
5283 for (i = 0; i < ITERATIONS; i++)
5284 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5285
5286 /*
5287 * Get the per-iteration migration cost:
5288 */
5289 do_div(cost1, 2*ITERATIONS);
5290 do_div(cost2, 2*ITERATIONS);
5291
5292 return cost1 - cost2;
5293 }
5294
5295 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5296 {
5297 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5298 unsigned int max_size, size, size_found = 0;
5299 long long cost = 0, prev_cost;
5300 void *cache;
5301
5302 /*
5303 * Search from max_cache_size*5 down to 64K - the real relevant
5304 * cachesize has to lie somewhere inbetween.
5305 */
5306 if (max_cache_size) {
5307 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5308 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5309 } else {
5310 /*
5311 * Since we have no estimation about the relevant
5312 * search range
5313 */
5314 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5315 size = MIN_CACHE_SIZE;
5316 }
5317
5318 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5319 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5320 return 0;
5321 }
5322
5323 /*
5324 * Allocate the working set:
5325 */
5326 cache = vmalloc(max_size);
5327 if (!cache) {
5328 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5329 return 1000000; // return 1 msec on very small boxen
5330 }
5331
5332 while (size <= max_size) {
5333 prev_cost = cost;
5334 cost = measure_cost(cpu1, cpu2, cache, size);
5335
5336 /*
5337 * Update the max:
5338 */
5339 if (cost > 0) {
5340 if (max_cost < cost) {
5341 max_cost = cost;
5342 size_found = size;
5343 }
5344 }
5345 /*
5346 * Calculate average fluctuation, we use this to prevent
5347 * noise from triggering an early break out of the loop:
5348 */
5349 fluct = abs(cost - prev_cost);
5350 avg_fluct = (avg_fluct + fluct)/2;
5351
5352 if (migration_debug)
5353 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5354 cpu1, cpu2, size,
5355 (long)cost / 1000000,
5356 ((long)cost / 100000) % 10,
5357 (long)max_cost / 1000000,
5358 ((long)max_cost / 100000) % 10,
5359 domain_distance(cpu1, cpu2),
5360 cost, avg_fluct);
5361
5362 /*
5363 * If we iterated at least 20% past the previous maximum,
5364 * and the cost has dropped by more than 20% already,
5365 * (taking fluctuations into account) then we assume to
5366 * have found the maximum and break out of the loop early:
5367 */
5368 if (size_found && (size*100 > size_found*SIZE_THRESH))
5369 if (cost+avg_fluct <= 0 ||
5370 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5371
5372 if (migration_debug)
5373 printk("-> found max.\n");
5374 break;
5375 }
5376 /*
5377 * Increase the cachesize in 10% steps:
5378 */
5379 size = size * 10 / 9;
5380 }
5381
5382 if (migration_debug)
5383 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5384 cpu1, cpu2, size_found, max_cost);
5385
5386 vfree(cache);
5387
5388 /*
5389 * A task is considered 'cache cold' if at least 2 times
5390 * the worst-case cost of migration has passed.
5391 *
5392 * (this limit is only listened to if the load-balancing
5393 * situation is 'nice' - if there is a large imbalance we
5394 * ignore it for the sake of CPU utilization and
5395 * processing fairness.)
5396 */
5397 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5398 }
5399
5400 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5401 {
5402 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5403 unsigned long j0, j1, distance, max_distance = 0;
5404 struct sched_domain *sd;
5405
5406 j0 = jiffies;
5407
5408 /*
5409 * First pass - calculate the cacheflush times:
5410 */
5411 for_each_cpu_mask(cpu1, *cpu_map) {
5412 for_each_cpu_mask(cpu2, *cpu_map) {
5413 if (cpu1 == cpu2)
5414 continue;
5415 distance = domain_distance(cpu1, cpu2);
5416 max_distance = max(max_distance, distance);
5417 /*
5418 * No result cached yet?
5419 */
5420 if (migration_cost[distance] == -1LL)
5421 migration_cost[distance] =
5422 measure_migration_cost(cpu1, cpu2);
5423 }
5424 }
5425 /*
5426 * Second pass - update the sched domain hierarchy with
5427 * the new cache-hot-time estimations:
5428 */
5429 for_each_cpu_mask(cpu, *cpu_map) {
5430 distance = 0;
5431 for_each_domain(cpu, sd) {
5432 sd->cache_hot_time = migration_cost[distance];
5433 distance++;
5434 }
5435 }
5436 /*
5437 * Print the matrix:
5438 */
5439 if (migration_debug)
5440 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5441 max_cache_size,
5442 #ifdef CONFIG_X86
5443 cpu_khz/1000
5444 #else
5445 -1
5446 #endif
5447 );
5448 if (system_state == SYSTEM_BOOTING) {
5449 printk("migration_cost=");
5450 for (distance = 0; distance <= max_distance; distance++) {
5451 if (distance)
5452 printk(",");
5453 printk("%ld", (long)migration_cost[distance] / 1000);
5454 }
5455 printk("\n");
5456 }
5457 j1 = jiffies;
5458 if (migration_debug)
5459 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5460
5461 /*
5462 * Move back to the original CPU. NUMA-Q gets confused
5463 * if we migrate to another quad during bootup.
5464 */
5465 if (raw_smp_processor_id() != orig_cpu) {
5466 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5467 saved_mask = current->cpus_allowed;
5468
5469 set_cpus_allowed(current, mask);
5470 set_cpus_allowed(current, saved_mask);
5471 }
5472 }
5473
5474 #ifdef CONFIG_NUMA
5475
5476 /**
5477 * find_next_best_node - find the next node to include in a sched_domain
5478 * @node: node whose sched_domain we're building
5479 * @used_nodes: nodes already in the sched_domain
5480 *
5481 * Find the next node to include in a given scheduling domain. Simply
5482 * finds the closest node not already in the @used_nodes map.
5483 *
5484 * Should use nodemask_t.
5485 */
5486 static int find_next_best_node(int node, unsigned long *used_nodes)
5487 {
5488 int i, n, val, min_val, best_node = 0;
5489
5490 min_val = INT_MAX;
5491
5492 for (i = 0; i < MAX_NUMNODES; i++) {
5493 /* Start at @node */
5494 n = (node + i) % MAX_NUMNODES;
5495
5496 if (!nr_cpus_node(n))
5497 continue;
5498
5499 /* Skip already used nodes */
5500 if (test_bit(n, used_nodes))
5501 continue;
5502
5503 /* Simple min distance search */
5504 val = node_distance(node, n);
5505
5506 if (val < min_val) {
5507 min_val = val;
5508 best_node = n;
5509 }
5510 }
5511
5512 set_bit(best_node, used_nodes);
5513 return best_node;
5514 }
5515
5516 /**
5517 * sched_domain_node_span - get a cpumask for a node's sched_domain
5518 * @node: node whose cpumask we're constructing
5519 * @size: number of nodes to include in this span
5520 *
5521 * Given a node, construct a good cpumask for its sched_domain to span. It
5522 * should be one that prevents unnecessary balancing, but also spreads tasks
5523 * out optimally.
5524 */
5525 static cpumask_t sched_domain_node_span(int node)
5526 {
5527 int i;
5528 cpumask_t span, nodemask;
5529 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5530
5531 cpus_clear(span);
5532 bitmap_zero(used_nodes, MAX_NUMNODES);
5533
5534 nodemask = node_to_cpumask(node);
5535 cpus_or(span, span, nodemask);
5536 set_bit(node, used_nodes);
5537
5538 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5539 int next_node = find_next_best_node(node, used_nodes);
5540 nodemask = node_to_cpumask(next_node);
5541 cpus_or(span, span, nodemask);
5542 }
5543
5544 return span;
5545 }
5546 #endif
5547
5548 /*
5549 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5550 * can switch it on easily if needed.
5551 */
5552 #ifdef CONFIG_SCHED_SMT
5553 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5554 static struct sched_group sched_group_cpus[NR_CPUS];
5555 static int cpu_to_cpu_group(int cpu)
5556 {
5557 return cpu;
5558 }
5559 #endif
5560
5561 #ifdef CONFIG_SCHED_MC
5562 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5563 static struct sched_group sched_group_core[NR_CPUS];
5564 #endif
5565
5566 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5567 static int cpu_to_core_group(int cpu)
5568 {
5569 return first_cpu(cpu_sibling_map[cpu]);
5570 }
5571 #elif defined(CONFIG_SCHED_MC)
5572 static int cpu_to_core_group(int cpu)
5573 {
5574 return cpu;
5575 }
5576 #endif
5577
5578 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5579 static struct sched_group sched_group_phys[NR_CPUS];
5580 static int cpu_to_phys_group(int cpu)
5581 {
5582 #if defined(CONFIG_SCHED_MC)
5583 cpumask_t mask = cpu_coregroup_map(cpu);
5584 return first_cpu(mask);
5585 #elif defined(CONFIG_SCHED_SMT)
5586 return first_cpu(cpu_sibling_map[cpu]);
5587 #else
5588 return cpu;
5589 #endif
5590 }
5591
5592 #ifdef CONFIG_NUMA
5593 /*
5594 * The init_sched_build_groups can't handle what we want to do with node
5595 * groups, so roll our own. Now each node has its own list of groups which
5596 * gets dynamically allocated.
5597 */
5598 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5599 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5600
5601 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5602 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5603
5604 static int cpu_to_allnodes_group(int cpu)
5605 {
5606 return cpu_to_node(cpu);
5607 }
5608 static void init_numa_sched_groups_power(struct sched_group *group_head)
5609 {
5610 struct sched_group *sg = group_head;
5611 int j;
5612
5613 if (!sg)
5614 return;
5615 next_sg:
5616 for_each_cpu_mask(j, sg->cpumask) {
5617 struct sched_domain *sd;
5618
5619 sd = &per_cpu(phys_domains, j);
5620 if (j != first_cpu(sd->groups->cpumask)) {
5621 /*
5622 * Only add "power" once for each
5623 * physical package.
5624 */
5625 continue;
5626 }
5627
5628 sg->cpu_power += sd->groups->cpu_power;
5629 }
5630 sg = sg->next;
5631 if (sg != group_head)
5632 goto next_sg;
5633 }
5634 #endif
5635
5636 /*
5637 * Build sched domains for a given set of cpus and attach the sched domains
5638 * to the individual cpus
5639 */
5640 void build_sched_domains(const cpumask_t *cpu_map)
5641 {
5642 int i;
5643 #ifdef CONFIG_NUMA
5644 struct sched_group **sched_group_nodes = NULL;
5645 struct sched_group *sched_group_allnodes = NULL;
5646
5647 /*
5648 * Allocate the per-node list of sched groups
5649 */
5650 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5651 GFP_ATOMIC);
5652 if (!sched_group_nodes) {
5653 printk(KERN_WARNING "Can not alloc sched group node list\n");
5654 return;
5655 }
5656 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5657 #endif
5658
5659 /*
5660 * Set up domains for cpus specified by the cpu_map.
5661 */
5662 for_each_cpu_mask(i, *cpu_map) {
5663 int group;
5664 struct sched_domain *sd = NULL, *p;
5665 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5666
5667 cpus_and(nodemask, nodemask, *cpu_map);
5668
5669 #ifdef CONFIG_NUMA
5670 if (cpus_weight(*cpu_map)
5671 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5672 if (!sched_group_allnodes) {
5673 sched_group_allnodes
5674 = kmalloc(sizeof(struct sched_group)
5675 * MAX_NUMNODES,
5676 GFP_KERNEL);
5677 if (!sched_group_allnodes) {
5678 printk(KERN_WARNING
5679 "Can not alloc allnodes sched group\n");
5680 break;
5681 }
5682 sched_group_allnodes_bycpu[i]
5683 = sched_group_allnodes;
5684 }
5685 sd = &per_cpu(allnodes_domains, i);
5686 *sd = SD_ALLNODES_INIT;
5687 sd->span = *cpu_map;
5688 group = cpu_to_allnodes_group(i);
5689 sd->groups = &sched_group_allnodes[group];
5690 p = sd;
5691 } else
5692 p = NULL;
5693
5694 sd = &per_cpu(node_domains, i);
5695 *sd = SD_NODE_INIT;
5696 sd->span = sched_domain_node_span(cpu_to_node(i));
5697 sd->parent = p;
5698 cpus_and(sd->span, sd->span, *cpu_map);
5699 #endif
5700
5701 p = sd;
5702 sd = &per_cpu(phys_domains, i);
5703 group = cpu_to_phys_group(i);
5704 *sd = SD_CPU_INIT;
5705 sd->span = nodemask;
5706 sd->parent = p;
5707 sd->groups = &sched_group_phys[group];
5708
5709 #ifdef CONFIG_SCHED_MC
5710 p = sd;
5711 sd = &per_cpu(core_domains, i);
5712 group = cpu_to_core_group(i);
5713 *sd = SD_MC_INIT;
5714 sd->span = cpu_coregroup_map(i);
5715 cpus_and(sd->span, sd->span, *cpu_map);
5716 sd->parent = p;
5717 sd->groups = &sched_group_core[group];
5718 #endif
5719
5720 #ifdef CONFIG_SCHED_SMT
5721 p = sd;
5722 sd = &per_cpu(cpu_domains, i);
5723 group = cpu_to_cpu_group(i);
5724 *sd = SD_SIBLING_INIT;
5725 sd->span = cpu_sibling_map[i];
5726 cpus_and(sd->span, sd->span, *cpu_map);
5727 sd->parent = p;
5728 sd->groups = &sched_group_cpus[group];
5729 #endif
5730 }
5731
5732 #ifdef CONFIG_SCHED_SMT
5733 /* Set up CPU (sibling) groups */
5734 for_each_cpu_mask(i, *cpu_map) {
5735 cpumask_t this_sibling_map = cpu_sibling_map[i];
5736 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5737 if (i != first_cpu(this_sibling_map))
5738 continue;
5739
5740 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5741 &cpu_to_cpu_group);
5742 }
5743 #endif
5744
5745 #ifdef CONFIG_SCHED_MC
5746 /* Set up multi-core groups */
5747 for_each_cpu_mask(i, *cpu_map) {
5748 cpumask_t this_core_map = cpu_coregroup_map(i);
5749 cpus_and(this_core_map, this_core_map, *cpu_map);
5750 if (i != first_cpu(this_core_map))
5751 continue;
5752 init_sched_build_groups(sched_group_core, this_core_map,
5753 &cpu_to_core_group);
5754 }
5755 #endif
5756
5757
5758 /* Set up physical groups */
5759 for (i = 0; i < MAX_NUMNODES; i++) {
5760 cpumask_t nodemask = node_to_cpumask(i);
5761
5762 cpus_and(nodemask, nodemask, *cpu_map);
5763 if (cpus_empty(nodemask))
5764 continue;
5765
5766 init_sched_build_groups(sched_group_phys, nodemask,
5767 &cpu_to_phys_group);
5768 }
5769
5770 #ifdef CONFIG_NUMA
5771 /* Set up node groups */
5772 if (sched_group_allnodes)
5773 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5774 &cpu_to_allnodes_group);
5775
5776 for (i = 0; i < MAX_NUMNODES; i++) {
5777 /* Set up node groups */
5778 struct sched_group *sg, *prev;
5779 cpumask_t nodemask = node_to_cpumask(i);
5780 cpumask_t domainspan;
5781 cpumask_t covered = CPU_MASK_NONE;
5782 int j;
5783
5784 cpus_and(nodemask, nodemask, *cpu_map);
5785 if (cpus_empty(nodemask)) {
5786 sched_group_nodes[i] = NULL;
5787 continue;
5788 }
5789
5790 domainspan = sched_domain_node_span(i);
5791 cpus_and(domainspan, domainspan, *cpu_map);
5792
5793 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5794 sched_group_nodes[i] = sg;
5795 for_each_cpu_mask(j, nodemask) {
5796 struct sched_domain *sd;
5797 sd = &per_cpu(node_domains, j);
5798 sd->groups = sg;
5799 if (sd->groups == NULL) {
5800 /* Turn off balancing if we have no groups */
5801 sd->flags = 0;
5802 }
5803 }
5804 if (!sg) {
5805 printk(KERN_WARNING
5806 "Can not alloc domain group for node %d\n", i);
5807 continue;
5808 }
5809 sg->cpu_power = 0;
5810 sg->cpumask = nodemask;
5811 cpus_or(covered, covered, nodemask);
5812 prev = sg;
5813
5814 for (j = 0; j < MAX_NUMNODES; j++) {
5815 cpumask_t tmp, notcovered;
5816 int n = (i + j) % MAX_NUMNODES;
5817
5818 cpus_complement(notcovered, covered);
5819 cpus_and(tmp, notcovered, *cpu_map);
5820 cpus_and(tmp, tmp, domainspan);
5821 if (cpus_empty(tmp))
5822 break;
5823
5824 nodemask = node_to_cpumask(n);
5825 cpus_and(tmp, tmp, nodemask);
5826 if (cpus_empty(tmp))
5827 continue;
5828
5829 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5830 if (!sg) {
5831 printk(KERN_WARNING
5832 "Can not alloc domain group for node %d\n", j);
5833 break;
5834 }
5835 sg->cpu_power = 0;
5836 sg->cpumask = tmp;
5837 cpus_or(covered, covered, tmp);
5838 prev->next = sg;
5839 prev = sg;
5840 }
5841 prev->next = sched_group_nodes[i];
5842 }
5843 #endif
5844
5845 /* Calculate CPU power for physical packages and nodes */
5846 for_each_cpu_mask(i, *cpu_map) {
5847 int power;
5848 struct sched_domain *sd;
5849 #ifdef CONFIG_SCHED_SMT
5850 sd = &per_cpu(cpu_domains, i);
5851 power = SCHED_LOAD_SCALE;
5852 sd->groups->cpu_power = power;
5853 #endif
5854 #ifdef CONFIG_SCHED_MC
5855 sd = &per_cpu(core_domains, i);
5856 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5857 * SCHED_LOAD_SCALE / 10;
5858 sd->groups->cpu_power = power;
5859
5860 sd = &per_cpu(phys_domains, i);
5861
5862 /*
5863 * This has to be < 2 * SCHED_LOAD_SCALE
5864 * Lets keep it SCHED_LOAD_SCALE, so that
5865 * while calculating NUMA group's cpu_power
5866 * we can simply do
5867 * numa_group->cpu_power += phys_group->cpu_power;
5868 *
5869 * See "only add power once for each physical pkg"
5870 * comment below
5871 */
5872 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5873 #else
5874 sd = &per_cpu(phys_domains, i);
5875 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5876 (cpus_weight(sd->groups->cpumask)-1) / 10;
5877 sd->groups->cpu_power = power;
5878 #endif
5879 }
5880
5881 #ifdef CONFIG_NUMA
5882 for (i = 0; i < MAX_NUMNODES; i++)
5883 init_numa_sched_groups_power(sched_group_nodes[i]);
5884
5885 init_numa_sched_groups_power(sched_group_allnodes);
5886 #endif
5887
5888 /* Attach the domains */
5889 for_each_cpu_mask(i, *cpu_map) {
5890 struct sched_domain *sd;
5891 #ifdef CONFIG_SCHED_SMT
5892 sd = &per_cpu(cpu_domains, i);
5893 #elif defined(CONFIG_SCHED_MC)
5894 sd = &per_cpu(core_domains, i);
5895 #else
5896 sd = &per_cpu(phys_domains, i);
5897 #endif
5898 cpu_attach_domain(sd, i);
5899 }
5900 /*
5901 * Tune cache-hot values:
5902 */
5903 calibrate_migration_costs(cpu_map);
5904 }
5905 /*
5906 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5907 */
5908 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5909 {
5910 cpumask_t cpu_default_map;
5911
5912 /*
5913 * Setup mask for cpus without special case scheduling requirements.
5914 * For now this just excludes isolated cpus, but could be used to
5915 * exclude other special cases in the future.
5916 */
5917 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5918
5919 build_sched_domains(&cpu_default_map);
5920 }
5921
5922 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5923 {
5924 #ifdef CONFIG_NUMA
5925 int i;
5926 int cpu;
5927
5928 for_each_cpu_mask(cpu, *cpu_map) {
5929 struct sched_group *sched_group_allnodes
5930 = sched_group_allnodes_bycpu[cpu];
5931 struct sched_group **sched_group_nodes
5932 = sched_group_nodes_bycpu[cpu];
5933
5934 if (sched_group_allnodes) {
5935 kfree(sched_group_allnodes);
5936 sched_group_allnodes_bycpu[cpu] = NULL;
5937 }
5938
5939 if (!sched_group_nodes)
5940 continue;
5941
5942 for (i = 0; i < MAX_NUMNODES; i++) {
5943 cpumask_t nodemask = node_to_cpumask(i);
5944 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5945
5946 cpus_and(nodemask, nodemask, *cpu_map);
5947 if (cpus_empty(nodemask))
5948 continue;
5949
5950 if (sg == NULL)
5951 continue;
5952 sg = sg->next;
5953 next_sg:
5954 oldsg = sg;
5955 sg = sg->next;
5956 kfree(oldsg);
5957 if (oldsg != sched_group_nodes[i])
5958 goto next_sg;
5959 }
5960 kfree(sched_group_nodes);
5961 sched_group_nodes_bycpu[cpu] = NULL;
5962 }
5963 #endif
5964 }
5965
5966 /*
5967 * Detach sched domains from a group of cpus specified in cpu_map
5968 * These cpus will now be attached to the NULL domain
5969 */
5970 static void detach_destroy_domains(const cpumask_t *cpu_map)
5971 {
5972 int i;
5973
5974 for_each_cpu_mask(i, *cpu_map)
5975 cpu_attach_domain(NULL, i);
5976 synchronize_sched();
5977 arch_destroy_sched_domains(cpu_map);
5978 }
5979
5980 /*
5981 * Partition sched domains as specified by the cpumasks below.
5982 * This attaches all cpus from the cpumasks to the NULL domain,
5983 * waits for a RCU quiescent period, recalculates sched
5984 * domain information and then attaches them back to the
5985 * correct sched domains
5986 * Call with hotplug lock held
5987 */
5988 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5989 {
5990 cpumask_t change_map;
5991
5992 cpus_and(*partition1, *partition1, cpu_online_map);
5993 cpus_and(*partition2, *partition2, cpu_online_map);
5994 cpus_or(change_map, *partition1, *partition2);
5995
5996 /* Detach sched domains from all of the affected cpus */
5997 detach_destroy_domains(&change_map);
5998 if (!cpus_empty(*partition1))
5999 build_sched_domains(partition1);
6000 if (!cpus_empty(*partition2))
6001 build_sched_domains(partition2);
6002 }
6003
6004 #ifdef CONFIG_HOTPLUG_CPU
6005 /*
6006 * Force a reinitialization of the sched domains hierarchy. The domains
6007 * and groups cannot be updated in place without racing with the balancing
6008 * code, so we temporarily attach all running cpus to the NULL domain
6009 * which will prevent rebalancing while the sched domains are recalculated.
6010 */
6011 static int update_sched_domains(struct notifier_block *nfb,
6012 unsigned long action, void *hcpu)
6013 {
6014 switch (action) {
6015 case CPU_UP_PREPARE:
6016 case CPU_DOWN_PREPARE:
6017 detach_destroy_domains(&cpu_online_map);
6018 return NOTIFY_OK;
6019
6020 case CPU_UP_CANCELED:
6021 case CPU_DOWN_FAILED:
6022 case CPU_ONLINE:
6023 case CPU_DEAD:
6024 /*
6025 * Fall through and re-initialise the domains.
6026 */
6027 break;
6028 default:
6029 return NOTIFY_DONE;
6030 }
6031
6032 /* The hotplug lock is already held by cpu_up/cpu_down */
6033 arch_init_sched_domains(&cpu_online_map);
6034
6035 return NOTIFY_OK;
6036 }
6037 #endif
6038
6039 void __init sched_init_smp(void)
6040 {
6041 lock_cpu_hotplug();
6042 arch_init_sched_domains(&cpu_online_map);
6043 unlock_cpu_hotplug();
6044 /* XXX: Theoretical race here - CPU may be hotplugged now */
6045 hotcpu_notifier(update_sched_domains, 0);
6046 }
6047 #else
6048 void __init sched_init_smp(void)
6049 {
6050 }
6051 #endif /* CONFIG_SMP */
6052
6053 int in_sched_functions(unsigned long addr)
6054 {
6055 /* Linker adds these: start and end of __sched functions */
6056 extern char __sched_text_start[], __sched_text_end[];
6057 return in_lock_functions(addr) ||
6058 (addr >= (unsigned long)__sched_text_start
6059 && addr < (unsigned long)__sched_text_end);
6060 }
6061
6062 void __init sched_init(void)
6063 {
6064 runqueue_t *rq;
6065 int i, j, k;
6066
6067 for_each_possible_cpu(i) {
6068 prio_array_t *array;
6069
6070 rq = cpu_rq(i);
6071 spin_lock_init(&rq->lock);
6072 rq->nr_running = 0;
6073 rq->active = rq->arrays;
6074 rq->expired = rq->arrays + 1;
6075 rq->best_expired_prio = MAX_PRIO;
6076
6077 #ifdef CONFIG_SMP
6078 rq->sd = NULL;
6079 for (j = 1; j < 3; j++)
6080 rq->cpu_load[j] = 0;
6081 rq->active_balance = 0;
6082 rq->push_cpu = 0;
6083 rq->migration_thread = NULL;
6084 INIT_LIST_HEAD(&rq->migration_queue);
6085 #endif
6086 atomic_set(&rq->nr_iowait, 0);
6087
6088 for (j = 0; j < 2; j++) {
6089 array = rq->arrays + j;
6090 for (k = 0; k < MAX_PRIO; k++) {
6091 INIT_LIST_HEAD(array->queue + k);
6092 __clear_bit(k, array->bitmap);
6093 }
6094 // delimiter for bitsearch
6095 __set_bit(MAX_PRIO, array->bitmap);
6096 }
6097 }
6098
6099 /*
6100 * The boot idle thread does lazy MMU switching as well:
6101 */
6102 atomic_inc(&init_mm.mm_count);
6103 enter_lazy_tlb(&init_mm, current);
6104
6105 /*
6106 * Make us the idle thread. Technically, schedule() should not be
6107 * called from this thread, however somewhere below it might be,
6108 * but because we are the idle thread, we just pick up running again
6109 * when this runqueue becomes "idle".
6110 */
6111 init_idle(current, smp_processor_id());
6112 }
6113
6114 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6115 void __might_sleep(char *file, int line)
6116 {
6117 #if defined(in_atomic)
6118 static unsigned long prev_jiffy; /* ratelimiting */
6119
6120 if ((in_atomic() || irqs_disabled()) &&
6121 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6122 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6123 return;
6124 prev_jiffy = jiffies;
6125 printk(KERN_ERR "BUG: sleeping function called from invalid"
6126 " context at %s:%d\n", file, line);
6127 printk("in_atomic():%d, irqs_disabled():%d\n",
6128 in_atomic(), irqs_disabled());
6129 dump_stack();
6130 }
6131 #endif
6132 }
6133 EXPORT_SYMBOL(__might_sleep);
6134 #endif
6135
6136 #ifdef CONFIG_MAGIC_SYSRQ
6137 void normalize_rt_tasks(void)
6138 {
6139 struct task_struct *p;
6140 prio_array_t *array;
6141 unsigned long flags;
6142 runqueue_t *rq;
6143
6144 read_lock_irq(&tasklist_lock);
6145 for_each_process(p) {
6146 if (!rt_task(p))
6147 continue;
6148
6149 rq = task_rq_lock(p, &flags);
6150
6151 array = p->array;
6152 if (array)
6153 deactivate_task(p, task_rq(p));
6154 __setscheduler(p, SCHED_NORMAL, 0);
6155 if (array) {
6156 __activate_task(p, task_rq(p));
6157 resched_task(rq->curr);
6158 }
6159
6160 task_rq_unlock(rq, &flags);
6161 }
6162 read_unlock_irq(&tasklist_lock);
6163 }
6164
6165 #endif /* CONFIG_MAGIC_SYSRQ */
6166
6167 #ifdef CONFIG_IA64
6168 /*
6169 * These functions are only useful for the IA64 MCA handling.
6170 *
6171 * They can only be called when the whole system has been
6172 * stopped - every CPU needs to be quiescent, and no scheduling
6173 * activity can take place. Using them for anything else would
6174 * be a serious bug, and as a result, they aren't even visible
6175 * under any other configuration.
6176 */
6177
6178 /**
6179 * curr_task - return the current task for a given cpu.
6180 * @cpu: the processor in question.
6181 *
6182 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6183 */
6184 task_t *curr_task(int cpu)
6185 {
6186 return cpu_curr(cpu);
6187 }
6188
6189 /**
6190 * set_curr_task - set the current task for a given cpu.
6191 * @cpu: the processor in question.
6192 * @p: the task pointer to set.
6193 *
6194 * Description: This function must only be used when non-maskable interrupts
6195 * are serviced on a separate stack. It allows the architecture to switch the
6196 * notion of the current task on a cpu in a non-blocking manner. This function
6197 * must be called with all CPU's synchronized, and interrupts disabled, the
6198 * and caller must save the original value of the current task (see
6199 * curr_task() above) and restore that value before reenabling interrupts and
6200 * re-starting the system.
6201 *
6202 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6203 */
6204 void set_curr_task(int cpu, task_t *p)
6205 {
6206 cpu_curr(cpu) = p;
6207 }
6208
6209 #endif