sched: introduce a mutex and corresponding API to serialize access to doms_curarray
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 struct rcu_head rcu;
173 };
174
175 /* Default task group's sched entity on each cpu */
176 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
177 /* Default task group's cfs_rq on each cpu */
178 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
179
180 static struct sched_entity *init_sched_entity_p[NR_CPUS];
181 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
182
183 /* task_group_mutex serializes add/remove of task groups and also changes to
184 * a task group's cpu shares.
185 */
186 static DEFINE_MUTEX(task_group_mutex);
187
188 /* doms_cur_mutex serializes access to doms_cur[] array */
189 static DEFINE_MUTEX(doms_cur_mutex);
190
191 /* Default task group.
192 * Every task in system belong to this group at bootup.
193 */
194 struct task_group init_task_group = {
195 .se = init_sched_entity_p,
196 .cfs_rq = init_cfs_rq_p,
197 };
198
199 #ifdef CONFIG_FAIR_USER_SCHED
200 # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
201 #else
202 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
203 #endif
204
205 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
206
207 /* return group to which a task belongs */
208 static inline struct task_group *task_group(struct task_struct *p)
209 {
210 struct task_group *tg;
211
212 #ifdef CONFIG_FAIR_USER_SCHED
213 tg = p->user->tg;
214 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
215 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
216 struct task_group, css);
217 #else
218 tg = &init_task_group;
219 #endif
220 return tg;
221 }
222
223 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
224 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
225 {
226 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
227 p->se.parent = task_group(p)->se[cpu];
228 }
229
230 static inline void lock_task_group_list(void)
231 {
232 mutex_lock(&task_group_mutex);
233 }
234
235 static inline void unlock_task_group_list(void)
236 {
237 mutex_unlock(&task_group_mutex);
238 }
239
240 static inline void lock_doms_cur(void)
241 {
242 mutex_lock(&doms_cur_mutex);
243 }
244
245 static inline void unlock_doms_cur(void)
246 {
247 mutex_unlock(&doms_cur_mutex);
248 }
249
250 #else
251
252 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
253 static inline void lock_task_group_list(void) { }
254 static inline void unlock_task_group_list(void) { }
255 static inline void lock_doms_cur(void) { }
256 static inline void unlock_doms_cur(void) { }
257
258 #endif /* CONFIG_FAIR_GROUP_SCHED */
259
260 /* CFS-related fields in a runqueue */
261 struct cfs_rq {
262 struct load_weight load;
263 unsigned long nr_running;
264
265 u64 exec_clock;
266 u64 min_vruntime;
267
268 struct rb_root tasks_timeline;
269 struct rb_node *rb_leftmost;
270 struct rb_node *rb_load_balance_curr;
271 /* 'curr' points to currently running entity on this cfs_rq.
272 * It is set to NULL otherwise (i.e when none are currently running).
273 */
274 struct sched_entity *curr;
275
276 unsigned long nr_spread_over;
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
280
281 /*
282 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
283 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
284 * (like users, containers etc.)
285 *
286 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
287 * list is used during load balance.
288 */
289 struct list_head leaf_cfs_rq_list;
290 struct task_group *tg; /* group that "owns" this runqueue */
291 #endif
292 };
293
294 /* Real-Time classes' related field in a runqueue: */
295 struct rt_rq {
296 struct rt_prio_array active;
297 int rt_load_balance_idx;
298 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
299 };
300
301 /*
302 * This is the main, per-CPU runqueue data structure.
303 *
304 * Locking rule: those places that want to lock multiple runqueues
305 * (such as the load balancing or the thread migration code), lock
306 * acquire operations must be ordered by ascending &runqueue.
307 */
308 struct rq {
309 /* runqueue lock: */
310 spinlock_t lock;
311
312 /*
313 * nr_running and cpu_load should be in the same cacheline because
314 * remote CPUs use both these fields when doing load calculation.
315 */
316 unsigned long nr_running;
317 #define CPU_LOAD_IDX_MAX 5
318 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
319 unsigned char idle_at_tick;
320 #ifdef CONFIG_NO_HZ
321 unsigned char in_nohz_recently;
322 #endif
323 /* capture load from *all* tasks on this cpu: */
324 struct load_weight load;
325 unsigned long nr_load_updates;
326 u64 nr_switches;
327
328 struct cfs_rq cfs;
329 #ifdef CONFIG_FAIR_GROUP_SCHED
330 /* list of leaf cfs_rq on this cpu: */
331 struct list_head leaf_cfs_rq_list;
332 #endif
333 struct rt_rq rt;
334
335 /*
336 * This is part of a global counter where only the total sum
337 * over all CPUs matters. A task can increase this counter on
338 * one CPU and if it got migrated afterwards it may decrease
339 * it on another CPU. Always updated under the runqueue lock:
340 */
341 unsigned long nr_uninterruptible;
342
343 struct task_struct *curr, *idle;
344 unsigned long next_balance;
345 struct mm_struct *prev_mm;
346
347 u64 clock, prev_clock_raw;
348 s64 clock_max_delta;
349
350 unsigned int clock_warps, clock_overflows;
351 u64 idle_clock;
352 unsigned int clock_deep_idle_events;
353 u64 tick_timestamp;
354
355 atomic_t nr_iowait;
356
357 #ifdef CONFIG_SMP
358 struct sched_domain *sd;
359
360 /* For active balancing */
361 int active_balance;
362 int push_cpu;
363 /* cpu of this runqueue: */
364 int cpu;
365
366 struct task_struct *migration_thread;
367 struct list_head migration_queue;
368 #endif
369
370 #ifdef CONFIG_SCHEDSTATS
371 /* latency stats */
372 struct sched_info rq_sched_info;
373
374 /* sys_sched_yield() stats */
375 unsigned int yld_exp_empty;
376 unsigned int yld_act_empty;
377 unsigned int yld_both_empty;
378 unsigned int yld_count;
379
380 /* schedule() stats */
381 unsigned int sched_switch;
382 unsigned int sched_count;
383 unsigned int sched_goidle;
384
385 /* try_to_wake_up() stats */
386 unsigned int ttwu_count;
387 unsigned int ttwu_local;
388
389 /* BKL stats */
390 unsigned int bkl_count;
391 #endif
392 struct lock_class_key rq_lock_key;
393 };
394
395 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
396 static DEFINE_MUTEX(sched_hotcpu_mutex);
397
398 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
399 {
400 rq->curr->sched_class->check_preempt_curr(rq, p);
401 }
402
403 static inline int cpu_of(struct rq *rq)
404 {
405 #ifdef CONFIG_SMP
406 return rq->cpu;
407 #else
408 return 0;
409 #endif
410 }
411
412 /*
413 * Update the per-runqueue clock, as finegrained as the platform can give
414 * us, but without assuming monotonicity, etc.:
415 */
416 static void __update_rq_clock(struct rq *rq)
417 {
418 u64 prev_raw = rq->prev_clock_raw;
419 u64 now = sched_clock();
420 s64 delta = now - prev_raw;
421 u64 clock = rq->clock;
422
423 #ifdef CONFIG_SCHED_DEBUG
424 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
425 #endif
426 /*
427 * Protect against sched_clock() occasionally going backwards:
428 */
429 if (unlikely(delta < 0)) {
430 clock++;
431 rq->clock_warps++;
432 } else {
433 /*
434 * Catch too large forward jumps too:
435 */
436 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
437 if (clock < rq->tick_timestamp + TICK_NSEC)
438 clock = rq->tick_timestamp + TICK_NSEC;
439 else
440 clock++;
441 rq->clock_overflows++;
442 } else {
443 if (unlikely(delta > rq->clock_max_delta))
444 rq->clock_max_delta = delta;
445 clock += delta;
446 }
447 }
448
449 rq->prev_clock_raw = now;
450 rq->clock = clock;
451 }
452
453 static void update_rq_clock(struct rq *rq)
454 {
455 if (likely(smp_processor_id() == cpu_of(rq)))
456 __update_rq_clock(rq);
457 }
458
459 /*
460 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
461 * See detach_destroy_domains: synchronize_sched for details.
462 *
463 * The domain tree of any CPU may only be accessed from within
464 * preempt-disabled sections.
465 */
466 #define for_each_domain(cpu, __sd) \
467 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
468
469 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
470 #define this_rq() (&__get_cpu_var(runqueues))
471 #define task_rq(p) cpu_rq(task_cpu(p))
472 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
473
474 /*
475 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
476 */
477 #ifdef CONFIG_SCHED_DEBUG
478 # define const_debug __read_mostly
479 #else
480 # define const_debug static const
481 #endif
482
483 /*
484 * Debugging: various feature bits
485 */
486 enum {
487 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
488 SCHED_FEAT_WAKEUP_PREEMPT = 2,
489 SCHED_FEAT_START_DEBIT = 4,
490 SCHED_FEAT_TREE_AVG = 8,
491 SCHED_FEAT_APPROX_AVG = 16,
492 };
493
494 const_debug unsigned int sysctl_sched_features =
495 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
496 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
497 SCHED_FEAT_START_DEBIT * 1 |
498 SCHED_FEAT_TREE_AVG * 0 |
499 SCHED_FEAT_APPROX_AVG * 0;
500
501 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
502
503 /*
504 * Number of tasks to iterate in a single balance run.
505 * Limited because this is done with IRQs disabled.
506 */
507 const_debug unsigned int sysctl_sched_nr_migrate = 32;
508
509 /*
510 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
511 * clock constructed from sched_clock():
512 */
513 unsigned long long cpu_clock(int cpu)
514 {
515 unsigned long long now;
516 unsigned long flags;
517 struct rq *rq;
518
519 local_irq_save(flags);
520 rq = cpu_rq(cpu);
521 /*
522 * Only call sched_clock() if the scheduler has already been
523 * initialized (some code might call cpu_clock() very early):
524 */
525 if (rq->idle)
526 update_rq_clock(rq);
527 now = rq->clock;
528 local_irq_restore(flags);
529
530 return now;
531 }
532 EXPORT_SYMBOL_GPL(cpu_clock);
533
534 #ifndef prepare_arch_switch
535 # define prepare_arch_switch(next) do { } while (0)
536 #endif
537 #ifndef finish_arch_switch
538 # define finish_arch_switch(prev) do { } while (0)
539 #endif
540
541 static inline int task_current(struct rq *rq, struct task_struct *p)
542 {
543 return rq->curr == p;
544 }
545
546 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
547 static inline int task_running(struct rq *rq, struct task_struct *p)
548 {
549 return task_current(rq, p);
550 }
551
552 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
553 {
554 }
555
556 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
557 {
558 #ifdef CONFIG_DEBUG_SPINLOCK
559 /* this is a valid case when another task releases the spinlock */
560 rq->lock.owner = current;
561 #endif
562 /*
563 * If we are tracking spinlock dependencies then we have to
564 * fix up the runqueue lock - which gets 'carried over' from
565 * prev into current:
566 */
567 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
568
569 spin_unlock_irq(&rq->lock);
570 }
571
572 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
573 static inline int task_running(struct rq *rq, struct task_struct *p)
574 {
575 #ifdef CONFIG_SMP
576 return p->oncpu;
577 #else
578 return task_current(rq, p);
579 #endif
580 }
581
582 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
583 {
584 #ifdef CONFIG_SMP
585 /*
586 * We can optimise this out completely for !SMP, because the
587 * SMP rebalancing from interrupt is the only thing that cares
588 * here.
589 */
590 next->oncpu = 1;
591 #endif
592 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
593 spin_unlock_irq(&rq->lock);
594 #else
595 spin_unlock(&rq->lock);
596 #endif
597 }
598
599 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
600 {
601 #ifdef CONFIG_SMP
602 /*
603 * After ->oncpu is cleared, the task can be moved to a different CPU.
604 * We must ensure this doesn't happen until the switch is completely
605 * finished.
606 */
607 smp_wmb();
608 prev->oncpu = 0;
609 #endif
610 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
611 local_irq_enable();
612 #endif
613 }
614 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
615
616 /*
617 * __task_rq_lock - lock the runqueue a given task resides on.
618 * Must be called interrupts disabled.
619 */
620 static inline struct rq *__task_rq_lock(struct task_struct *p)
621 __acquires(rq->lock)
622 {
623 for (;;) {
624 struct rq *rq = task_rq(p);
625 spin_lock(&rq->lock);
626 if (likely(rq == task_rq(p)))
627 return rq;
628 spin_unlock(&rq->lock);
629 }
630 }
631
632 /*
633 * task_rq_lock - lock the runqueue a given task resides on and disable
634 * interrupts. Note the ordering: we can safely lookup the task_rq without
635 * explicitly disabling preemption.
636 */
637 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
638 __acquires(rq->lock)
639 {
640 struct rq *rq;
641
642 for (;;) {
643 local_irq_save(*flags);
644 rq = task_rq(p);
645 spin_lock(&rq->lock);
646 if (likely(rq == task_rq(p)))
647 return rq;
648 spin_unlock_irqrestore(&rq->lock, *flags);
649 }
650 }
651
652 static void __task_rq_unlock(struct rq *rq)
653 __releases(rq->lock)
654 {
655 spin_unlock(&rq->lock);
656 }
657
658 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
659 __releases(rq->lock)
660 {
661 spin_unlock_irqrestore(&rq->lock, *flags);
662 }
663
664 /*
665 * this_rq_lock - lock this runqueue and disable interrupts.
666 */
667 static struct rq *this_rq_lock(void)
668 __acquires(rq->lock)
669 {
670 struct rq *rq;
671
672 local_irq_disable();
673 rq = this_rq();
674 spin_lock(&rq->lock);
675
676 return rq;
677 }
678
679 /*
680 * We are going deep-idle (irqs are disabled):
681 */
682 void sched_clock_idle_sleep_event(void)
683 {
684 struct rq *rq = cpu_rq(smp_processor_id());
685
686 spin_lock(&rq->lock);
687 __update_rq_clock(rq);
688 spin_unlock(&rq->lock);
689 rq->clock_deep_idle_events++;
690 }
691 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
692
693 /*
694 * We just idled delta nanoseconds (called with irqs disabled):
695 */
696 void sched_clock_idle_wakeup_event(u64 delta_ns)
697 {
698 struct rq *rq = cpu_rq(smp_processor_id());
699 u64 now = sched_clock();
700
701 touch_softlockup_watchdog();
702 rq->idle_clock += delta_ns;
703 /*
704 * Override the previous timestamp and ignore all
705 * sched_clock() deltas that occured while we idled,
706 * and use the PM-provided delta_ns to advance the
707 * rq clock:
708 */
709 spin_lock(&rq->lock);
710 rq->prev_clock_raw = now;
711 rq->clock += delta_ns;
712 spin_unlock(&rq->lock);
713 }
714 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
715
716 /*
717 * resched_task - mark a task 'to be rescheduled now'.
718 *
719 * On UP this means the setting of the need_resched flag, on SMP it
720 * might also involve a cross-CPU call to trigger the scheduler on
721 * the target CPU.
722 */
723 #ifdef CONFIG_SMP
724
725 #ifndef tsk_is_polling
726 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
727 #endif
728
729 static void resched_task(struct task_struct *p)
730 {
731 int cpu;
732
733 assert_spin_locked(&task_rq(p)->lock);
734
735 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
736 return;
737
738 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
739
740 cpu = task_cpu(p);
741 if (cpu == smp_processor_id())
742 return;
743
744 /* NEED_RESCHED must be visible before we test polling */
745 smp_mb();
746 if (!tsk_is_polling(p))
747 smp_send_reschedule(cpu);
748 }
749
750 static void resched_cpu(int cpu)
751 {
752 struct rq *rq = cpu_rq(cpu);
753 unsigned long flags;
754
755 if (!spin_trylock_irqsave(&rq->lock, flags))
756 return;
757 resched_task(cpu_curr(cpu));
758 spin_unlock_irqrestore(&rq->lock, flags);
759 }
760 #else
761 static inline void resched_task(struct task_struct *p)
762 {
763 assert_spin_locked(&task_rq(p)->lock);
764 set_tsk_need_resched(p);
765 }
766 #endif
767
768 #if BITS_PER_LONG == 32
769 # define WMULT_CONST (~0UL)
770 #else
771 # define WMULT_CONST (1UL << 32)
772 #endif
773
774 #define WMULT_SHIFT 32
775
776 /*
777 * Shift right and round:
778 */
779 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
780
781 static unsigned long
782 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
783 struct load_weight *lw)
784 {
785 u64 tmp;
786
787 if (unlikely(!lw->inv_weight))
788 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
789
790 tmp = (u64)delta_exec * weight;
791 /*
792 * Check whether we'd overflow the 64-bit multiplication:
793 */
794 if (unlikely(tmp > WMULT_CONST))
795 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
796 WMULT_SHIFT/2);
797 else
798 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
799
800 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
801 }
802
803 static inline unsigned long
804 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
805 {
806 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
807 }
808
809 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
810 {
811 lw->weight += inc;
812 }
813
814 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
815 {
816 lw->weight -= dec;
817 }
818
819 /*
820 * To aid in avoiding the subversion of "niceness" due to uneven distribution
821 * of tasks with abnormal "nice" values across CPUs the contribution that
822 * each task makes to its run queue's load is weighted according to its
823 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
824 * scaled version of the new time slice allocation that they receive on time
825 * slice expiry etc.
826 */
827
828 #define WEIGHT_IDLEPRIO 2
829 #define WMULT_IDLEPRIO (1 << 31)
830
831 /*
832 * Nice levels are multiplicative, with a gentle 10% change for every
833 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
834 * nice 1, it will get ~10% less CPU time than another CPU-bound task
835 * that remained on nice 0.
836 *
837 * The "10% effect" is relative and cumulative: from _any_ nice level,
838 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
839 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
840 * If a task goes up by ~10% and another task goes down by ~10% then
841 * the relative distance between them is ~25%.)
842 */
843 static const int prio_to_weight[40] = {
844 /* -20 */ 88761, 71755, 56483, 46273, 36291,
845 /* -15 */ 29154, 23254, 18705, 14949, 11916,
846 /* -10 */ 9548, 7620, 6100, 4904, 3906,
847 /* -5 */ 3121, 2501, 1991, 1586, 1277,
848 /* 0 */ 1024, 820, 655, 526, 423,
849 /* 5 */ 335, 272, 215, 172, 137,
850 /* 10 */ 110, 87, 70, 56, 45,
851 /* 15 */ 36, 29, 23, 18, 15,
852 };
853
854 /*
855 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
856 *
857 * In cases where the weight does not change often, we can use the
858 * precalculated inverse to speed up arithmetics by turning divisions
859 * into multiplications:
860 */
861 static const u32 prio_to_wmult[40] = {
862 /* -20 */ 48388, 59856, 76040, 92818, 118348,
863 /* -15 */ 147320, 184698, 229616, 287308, 360437,
864 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
865 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
866 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
867 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
868 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
869 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
870 };
871
872 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
873
874 /*
875 * runqueue iterator, to support SMP load-balancing between different
876 * scheduling classes, without having to expose their internal data
877 * structures to the load-balancing proper:
878 */
879 struct rq_iterator {
880 void *arg;
881 struct task_struct *(*start)(void *);
882 struct task_struct *(*next)(void *);
883 };
884
885 #ifdef CONFIG_SMP
886 static unsigned long
887 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
888 unsigned long max_load_move, struct sched_domain *sd,
889 enum cpu_idle_type idle, int *all_pinned,
890 int *this_best_prio, struct rq_iterator *iterator);
891
892 static int
893 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
894 struct sched_domain *sd, enum cpu_idle_type idle,
895 struct rq_iterator *iterator);
896 #endif
897
898 #ifdef CONFIG_CGROUP_CPUACCT
899 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
900 #else
901 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
902 #endif
903
904 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
905 {
906 update_load_add(&rq->load, load);
907 }
908
909 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
910 {
911 update_load_sub(&rq->load, load);
912 }
913
914 #include "sched_stats.h"
915 #include "sched_idletask.c"
916 #include "sched_fair.c"
917 #include "sched_rt.c"
918 #ifdef CONFIG_SCHED_DEBUG
919 # include "sched_debug.c"
920 #endif
921
922 #define sched_class_highest (&rt_sched_class)
923
924 static void inc_nr_running(struct task_struct *p, struct rq *rq)
925 {
926 rq->nr_running++;
927 }
928
929 static void dec_nr_running(struct task_struct *p, struct rq *rq)
930 {
931 rq->nr_running--;
932 }
933
934 static void set_load_weight(struct task_struct *p)
935 {
936 if (task_has_rt_policy(p)) {
937 p->se.load.weight = prio_to_weight[0] * 2;
938 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
939 return;
940 }
941
942 /*
943 * SCHED_IDLE tasks get minimal weight:
944 */
945 if (p->policy == SCHED_IDLE) {
946 p->se.load.weight = WEIGHT_IDLEPRIO;
947 p->se.load.inv_weight = WMULT_IDLEPRIO;
948 return;
949 }
950
951 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
952 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
953 }
954
955 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
956 {
957 sched_info_queued(p);
958 p->sched_class->enqueue_task(rq, p, wakeup);
959 p->se.on_rq = 1;
960 }
961
962 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
963 {
964 p->sched_class->dequeue_task(rq, p, sleep);
965 p->se.on_rq = 0;
966 }
967
968 /*
969 * __normal_prio - return the priority that is based on the static prio
970 */
971 static inline int __normal_prio(struct task_struct *p)
972 {
973 return p->static_prio;
974 }
975
976 /*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
983 static inline int normal_prio(struct task_struct *p)
984 {
985 int prio;
986
987 if (task_has_rt_policy(p))
988 prio = MAX_RT_PRIO-1 - p->rt_priority;
989 else
990 prio = __normal_prio(p);
991 return prio;
992 }
993
994 /*
995 * Calculate the current priority, i.e. the priority
996 * taken into account by the scheduler. This value might
997 * be boosted by RT tasks, or might be boosted by
998 * interactivity modifiers. Will be RT if the task got
999 * RT-boosted. If not then it returns p->normal_prio.
1000 */
1001 static int effective_prio(struct task_struct *p)
1002 {
1003 p->normal_prio = normal_prio(p);
1004 /*
1005 * If we are RT tasks or we were boosted to RT priority,
1006 * keep the priority unchanged. Otherwise, update priority
1007 * to the normal priority:
1008 */
1009 if (!rt_prio(p->prio))
1010 return p->normal_prio;
1011 return p->prio;
1012 }
1013
1014 /*
1015 * activate_task - move a task to the runqueue.
1016 */
1017 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1018 {
1019 if (p->state == TASK_UNINTERRUPTIBLE)
1020 rq->nr_uninterruptible--;
1021
1022 enqueue_task(rq, p, wakeup);
1023 inc_nr_running(p, rq);
1024 }
1025
1026 /*
1027 * deactivate_task - remove a task from the runqueue.
1028 */
1029 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1030 {
1031 if (p->state == TASK_UNINTERRUPTIBLE)
1032 rq->nr_uninterruptible++;
1033
1034 dequeue_task(rq, p, sleep);
1035 dec_nr_running(p, rq);
1036 }
1037
1038 /**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
1042 inline int task_curr(const struct task_struct *p)
1043 {
1044 return cpu_curr(task_cpu(p)) == p;
1045 }
1046
1047 /* Used instead of source_load when we know the type == 0 */
1048 unsigned long weighted_cpuload(const int cpu)
1049 {
1050 return cpu_rq(cpu)->load.weight;
1051 }
1052
1053 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1054 {
1055 set_task_cfs_rq(p, cpu);
1056 #ifdef CONFIG_SMP
1057 /*
1058 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1059 * successfuly executed on another CPU. We must ensure that updates of
1060 * per-task data have been completed by this moment.
1061 */
1062 smp_wmb();
1063 task_thread_info(p)->cpu = cpu;
1064 #endif
1065 }
1066
1067 #ifdef CONFIG_SMP
1068
1069 /*
1070 * Is this task likely cache-hot:
1071 */
1072 static inline int
1073 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1074 {
1075 s64 delta;
1076
1077 if (p->sched_class != &fair_sched_class)
1078 return 0;
1079
1080 if (sysctl_sched_migration_cost == -1)
1081 return 1;
1082 if (sysctl_sched_migration_cost == 0)
1083 return 0;
1084
1085 delta = now - p->se.exec_start;
1086
1087 return delta < (s64)sysctl_sched_migration_cost;
1088 }
1089
1090
1091 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1092 {
1093 int old_cpu = task_cpu(p);
1094 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1095 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1096 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1097 u64 clock_offset;
1098
1099 clock_offset = old_rq->clock - new_rq->clock;
1100
1101 #ifdef CONFIG_SCHEDSTATS
1102 if (p->se.wait_start)
1103 p->se.wait_start -= clock_offset;
1104 if (p->se.sleep_start)
1105 p->se.sleep_start -= clock_offset;
1106 if (p->se.block_start)
1107 p->se.block_start -= clock_offset;
1108 if (old_cpu != new_cpu) {
1109 schedstat_inc(p, se.nr_migrations);
1110 if (task_hot(p, old_rq->clock, NULL))
1111 schedstat_inc(p, se.nr_forced2_migrations);
1112 }
1113 #endif
1114 p->se.vruntime -= old_cfsrq->min_vruntime -
1115 new_cfsrq->min_vruntime;
1116
1117 __set_task_cpu(p, new_cpu);
1118 }
1119
1120 struct migration_req {
1121 struct list_head list;
1122
1123 struct task_struct *task;
1124 int dest_cpu;
1125
1126 struct completion done;
1127 };
1128
1129 /*
1130 * The task's runqueue lock must be held.
1131 * Returns true if you have to wait for migration thread.
1132 */
1133 static int
1134 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1135 {
1136 struct rq *rq = task_rq(p);
1137
1138 /*
1139 * If the task is not on a runqueue (and not running), then
1140 * it is sufficient to simply update the task's cpu field.
1141 */
1142 if (!p->se.on_rq && !task_running(rq, p)) {
1143 set_task_cpu(p, dest_cpu);
1144 return 0;
1145 }
1146
1147 init_completion(&req->done);
1148 req->task = p;
1149 req->dest_cpu = dest_cpu;
1150 list_add(&req->list, &rq->migration_queue);
1151
1152 return 1;
1153 }
1154
1155 /*
1156 * wait_task_inactive - wait for a thread to unschedule.
1157 *
1158 * The caller must ensure that the task *will* unschedule sometime soon,
1159 * else this function might spin for a *long* time. This function can't
1160 * be called with interrupts off, or it may introduce deadlock with
1161 * smp_call_function() if an IPI is sent by the same process we are
1162 * waiting to become inactive.
1163 */
1164 void wait_task_inactive(struct task_struct *p)
1165 {
1166 unsigned long flags;
1167 int running, on_rq;
1168 struct rq *rq;
1169
1170 for (;;) {
1171 /*
1172 * We do the initial early heuristics without holding
1173 * any task-queue locks at all. We'll only try to get
1174 * the runqueue lock when things look like they will
1175 * work out!
1176 */
1177 rq = task_rq(p);
1178
1179 /*
1180 * If the task is actively running on another CPU
1181 * still, just relax and busy-wait without holding
1182 * any locks.
1183 *
1184 * NOTE! Since we don't hold any locks, it's not
1185 * even sure that "rq" stays as the right runqueue!
1186 * But we don't care, since "task_running()" will
1187 * return false if the runqueue has changed and p
1188 * is actually now running somewhere else!
1189 */
1190 while (task_running(rq, p))
1191 cpu_relax();
1192
1193 /*
1194 * Ok, time to look more closely! We need the rq
1195 * lock now, to be *sure*. If we're wrong, we'll
1196 * just go back and repeat.
1197 */
1198 rq = task_rq_lock(p, &flags);
1199 running = task_running(rq, p);
1200 on_rq = p->se.on_rq;
1201 task_rq_unlock(rq, &flags);
1202
1203 /*
1204 * Was it really running after all now that we
1205 * checked with the proper locks actually held?
1206 *
1207 * Oops. Go back and try again..
1208 */
1209 if (unlikely(running)) {
1210 cpu_relax();
1211 continue;
1212 }
1213
1214 /*
1215 * It's not enough that it's not actively running,
1216 * it must be off the runqueue _entirely_, and not
1217 * preempted!
1218 *
1219 * So if it wa still runnable (but just not actively
1220 * running right now), it's preempted, and we should
1221 * yield - it could be a while.
1222 */
1223 if (unlikely(on_rq)) {
1224 schedule_timeout_uninterruptible(1);
1225 continue;
1226 }
1227
1228 /*
1229 * Ahh, all good. It wasn't running, and it wasn't
1230 * runnable, which means that it will never become
1231 * running in the future either. We're all done!
1232 */
1233 break;
1234 }
1235 }
1236
1237 /***
1238 * kick_process - kick a running thread to enter/exit the kernel
1239 * @p: the to-be-kicked thread
1240 *
1241 * Cause a process which is running on another CPU to enter
1242 * kernel-mode, without any delay. (to get signals handled.)
1243 *
1244 * NOTE: this function doesnt have to take the runqueue lock,
1245 * because all it wants to ensure is that the remote task enters
1246 * the kernel. If the IPI races and the task has been migrated
1247 * to another CPU then no harm is done and the purpose has been
1248 * achieved as well.
1249 */
1250 void kick_process(struct task_struct *p)
1251 {
1252 int cpu;
1253
1254 preempt_disable();
1255 cpu = task_cpu(p);
1256 if ((cpu != smp_processor_id()) && task_curr(p))
1257 smp_send_reschedule(cpu);
1258 preempt_enable();
1259 }
1260
1261 /*
1262 * Return a low guess at the load of a migration-source cpu weighted
1263 * according to the scheduling class and "nice" value.
1264 *
1265 * We want to under-estimate the load of migration sources, to
1266 * balance conservatively.
1267 */
1268 static unsigned long source_load(int cpu, int type)
1269 {
1270 struct rq *rq = cpu_rq(cpu);
1271 unsigned long total = weighted_cpuload(cpu);
1272
1273 if (type == 0)
1274 return total;
1275
1276 return min(rq->cpu_load[type-1], total);
1277 }
1278
1279 /*
1280 * Return a high guess at the load of a migration-target cpu weighted
1281 * according to the scheduling class and "nice" value.
1282 */
1283 static unsigned long target_load(int cpu, int type)
1284 {
1285 struct rq *rq = cpu_rq(cpu);
1286 unsigned long total = weighted_cpuload(cpu);
1287
1288 if (type == 0)
1289 return total;
1290
1291 return max(rq->cpu_load[type-1], total);
1292 }
1293
1294 /*
1295 * Return the average load per task on the cpu's run queue
1296 */
1297 static inline unsigned long cpu_avg_load_per_task(int cpu)
1298 {
1299 struct rq *rq = cpu_rq(cpu);
1300 unsigned long total = weighted_cpuload(cpu);
1301 unsigned long n = rq->nr_running;
1302
1303 return n ? total / n : SCHED_LOAD_SCALE;
1304 }
1305
1306 /*
1307 * find_idlest_group finds and returns the least busy CPU group within the
1308 * domain.
1309 */
1310 static struct sched_group *
1311 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1312 {
1313 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1314 unsigned long min_load = ULONG_MAX, this_load = 0;
1315 int load_idx = sd->forkexec_idx;
1316 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1317
1318 do {
1319 unsigned long load, avg_load;
1320 int local_group;
1321 int i;
1322
1323 /* Skip over this group if it has no CPUs allowed */
1324 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1325 continue;
1326
1327 local_group = cpu_isset(this_cpu, group->cpumask);
1328
1329 /* Tally up the load of all CPUs in the group */
1330 avg_load = 0;
1331
1332 for_each_cpu_mask(i, group->cpumask) {
1333 /* Bias balancing toward cpus of our domain */
1334 if (local_group)
1335 load = source_load(i, load_idx);
1336 else
1337 load = target_load(i, load_idx);
1338
1339 avg_load += load;
1340 }
1341
1342 /* Adjust by relative CPU power of the group */
1343 avg_load = sg_div_cpu_power(group,
1344 avg_load * SCHED_LOAD_SCALE);
1345
1346 if (local_group) {
1347 this_load = avg_load;
1348 this = group;
1349 } else if (avg_load < min_load) {
1350 min_load = avg_load;
1351 idlest = group;
1352 }
1353 } while (group = group->next, group != sd->groups);
1354
1355 if (!idlest || 100*this_load < imbalance*min_load)
1356 return NULL;
1357 return idlest;
1358 }
1359
1360 /*
1361 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1362 */
1363 static int
1364 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1365 {
1366 cpumask_t tmp;
1367 unsigned long load, min_load = ULONG_MAX;
1368 int idlest = -1;
1369 int i;
1370
1371 /* Traverse only the allowed CPUs */
1372 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1373
1374 for_each_cpu_mask(i, tmp) {
1375 load = weighted_cpuload(i);
1376
1377 if (load < min_load || (load == min_load && i == this_cpu)) {
1378 min_load = load;
1379 idlest = i;
1380 }
1381 }
1382
1383 return idlest;
1384 }
1385
1386 /*
1387 * sched_balance_self: balance the current task (running on cpu) in domains
1388 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1389 * SD_BALANCE_EXEC.
1390 *
1391 * Balance, ie. select the least loaded group.
1392 *
1393 * Returns the target CPU number, or the same CPU if no balancing is needed.
1394 *
1395 * preempt must be disabled.
1396 */
1397 static int sched_balance_self(int cpu, int flag)
1398 {
1399 struct task_struct *t = current;
1400 struct sched_domain *tmp, *sd = NULL;
1401
1402 for_each_domain(cpu, tmp) {
1403 /*
1404 * If power savings logic is enabled for a domain, stop there.
1405 */
1406 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1407 break;
1408 if (tmp->flags & flag)
1409 sd = tmp;
1410 }
1411
1412 while (sd) {
1413 cpumask_t span;
1414 struct sched_group *group;
1415 int new_cpu, weight;
1416
1417 if (!(sd->flags & flag)) {
1418 sd = sd->child;
1419 continue;
1420 }
1421
1422 span = sd->span;
1423 group = find_idlest_group(sd, t, cpu);
1424 if (!group) {
1425 sd = sd->child;
1426 continue;
1427 }
1428
1429 new_cpu = find_idlest_cpu(group, t, cpu);
1430 if (new_cpu == -1 || new_cpu == cpu) {
1431 /* Now try balancing at a lower domain level of cpu */
1432 sd = sd->child;
1433 continue;
1434 }
1435
1436 /* Now try balancing at a lower domain level of new_cpu */
1437 cpu = new_cpu;
1438 sd = NULL;
1439 weight = cpus_weight(span);
1440 for_each_domain(cpu, tmp) {
1441 if (weight <= cpus_weight(tmp->span))
1442 break;
1443 if (tmp->flags & flag)
1444 sd = tmp;
1445 }
1446 /* while loop will break here if sd == NULL */
1447 }
1448
1449 return cpu;
1450 }
1451
1452 #endif /* CONFIG_SMP */
1453
1454 /*
1455 * wake_idle() will wake a task on an idle cpu if task->cpu is
1456 * not idle and an idle cpu is available. The span of cpus to
1457 * search starts with cpus closest then further out as needed,
1458 * so we always favor a closer, idle cpu.
1459 *
1460 * Returns the CPU we should wake onto.
1461 */
1462 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1463 static int wake_idle(int cpu, struct task_struct *p)
1464 {
1465 cpumask_t tmp;
1466 struct sched_domain *sd;
1467 int i;
1468
1469 /*
1470 * If it is idle, then it is the best cpu to run this task.
1471 *
1472 * This cpu is also the best, if it has more than one task already.
1473 * Siblings must be also busy(in most cases) as they didn't already
1474 * pickup the extra load from this cpu and hence we need not check
1475 * sibling runqueue info. This will avoid the checks and cache miss
1476 * penalities associated with that.
1477 */
1478 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1479 return cpu;
1480
1481 for_each_domain(cpu, sd) {
1482 if (sd->flags & SD_WAKE_IDLE) {
1483 cpus_and(tmp, sd->span, p->cpus_allowed);
1484 for_each_cpu_mask(i, tmp) {
1485 if (idle_cpu(i)) {
1486 if (i != task_cpu(p)) {
1487 schedstat_inc(p,
1488 se.nr_wakeups_idle);
1489 }
1490 return i;
1491 }
1492 }
1493 } else {
1494 break;
1495 }
1496 }
1497 return cpu;
1498 }
1499 #else
1500 static inline int wake_idle(int cpu, struct task_struct *p)
1501 {
1502 return cpu;
1503 }
1504 #endif
1505
1506 /***
1507 * try_to_wake_up - wake up a thread
1508 * @p: the to-be-woken-up thread
1509 * @state: the mask of task states that can be woken
1510 * @sync: do a synchronous wakeup?
1511 *
1512 * Put it on the run-queue if it's not already there. The "current"
1513 * thread is always on the run-queue (except when the actual
1514 * re-schedule is in progress), and as such you're allowed to do
1515 * the simpler "current->state = TASK_RUNNING" to mark yourself
1516 * runnable without the overhead of this.
1517 *
1518 * returns failure only if the task is already active.
1519 */
1520 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1521 {
1522 int cpu, orig_cpu, this_cpu, success = 0;
1523 unsigned long flags;
1524 long old_state;
1525 struct rq *rq;
1526 #ifdef CONFIG_SMP
1527 struct sched_domain *sd, *this_sd = NULL;
1528 unsigned long load, this_load;
1529 int new_cpu;
1530 #endif
1531
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
1536
1537 if (p->se.on_rq)
1538 goto out_running;
1539
1540 cpu = task_cpu(p);
1541 orig_cpu = cpu;
1542 this_cpu = smp_processor_id();
1543
1544 #ifdef CONFIG_SMP
1545 if (unlikely(task_running(rq, p)))
1546 goto out_activate;
1547
1548 new_cpu = cpu;
1549
1550 schedstat_inc(rq, ttwu_count);
1551 if (cpu == this_cpu) {
1552 schedstat_inc(rq, ttwu_local);
1553 goto out_set_cpu;
1554 }
1555
1556 for_each_domain(this_cpu, sd) {
1557 if (cpu_isset(cpu, sd->span)) {
1558 schedstat_inc(sd, ttwu_wake_remote);
1559 this_sd = sd;
1560 break;
1561 }
1562 }
1563
1564 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1565 goto out_set_cpu;
1566
1567 /*
1568 * Check for affine wakeup and passive balancing possibilities.
1569 */
1570 if (this_sd) {
1571 int idx = this_sd->wake_idx;
1572 unsigned int imbalance;
1573
1574 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1575
1576 load = source_load(cpu, idx);
1577 this_load = target_load(this_cpu, idx);
1578
1579 new_cpu = this_cpu; /* Wake to this CPU if we can */
1580
1581 if (this_sd->flags & SD_WAKE_AFFINE) {
1582 unsigned long tl = this_load;
1583 unsigned long tl_per_task;
1584
1585 /*
1586 * Attract cache-cold tasks on sync wakeups:
1587 */
1588 if (sync && !task_hot(p, rq->clock, this_sd))
1589 goto out_set_cpu;
1590
1591 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1592 tl_per_task = cpu_avg_load_per_task(this_cpu);
1593
1594 /*
1595 * If sync wakeup then subtract the (maximum possible)
1596 * effect of the currently running task from the load
1597 * of the current CPU:
1598 */
1599 if (sync)
1600 tl -= current->se.load.weight;
1601
1602 if ((tl <= load &&
1603 tl + target_load(cpu, idx) <= tl_per_task) ||
1604 100*(tl + p->se.load.weight) <= imbalance*load) {
1605 /*
1606 * This domain has SD_WAKE_AFFINE and
1607 * p is cache cold in this domain, and
1608 * there is no bad imbalance.
1609 */
1610 schedstat_inc(this_sd, ttwu_move_affine);
1611 schedstat_inc(p, se.nr_wakeups_affine);
1612 goto out_set_cpu;
1613 }
1614 }
1615
1616 /*
1617 * Start passive balancing when half the imbalance_pct
1618 * limit is reached.
1619 */
1620 if (this_sd->flags & SD_WAKE_BALANCE) {
1621 if (imbalance*this_load <= 100*load) {
1622 schedstat_inc(this_sd, ttwu_move_balance);
1623 schedstat_inc(p, se.nr_wakeups_passive);
1624 goto out_set_cpu;
1625 }
1626 }
1627 }
1628
1629 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1630 out_set_cpu:
1631 new_cpu = wake_idle(new_cpu, p);
1632 if (new_cpu != cpu) {
1633 set_task_cpu(p, new_cpu);
1634 task_rq_unlock(rq, &flags);
1635 /* might preempt at this point */
1636 rq = task_rq_lock(p, &flags);
1637 old_state = p->state;
1638 if (!(old_state & state))
1639 goto out;
1640 if (p->se.on_rq)
1641 goto out_running;
1642
1643 this_cpu = smp_processor_id();
1644 cpu = task_cpu(p);
1645 }
1646
1647 out_activate:
1648 #endif /* CONFIG_SMP */
1649 schedstat_inc(p, se.nr_wakeups);
1650 if (sync)
1651 schedstat_inc(p, se.nr_wakeups_sync);
1652 if (orig_cpu != cpu)
1653 schedstat_inc(p, se.nr_wakeups_migrate);
1654 if (cpu == this_cpu)
1655 schedstat_inc(p, se.nr_wakeups_local);
1656 else
1657 schedstat_inc(p, se.nr_wakeups_remote);
1658 update_rq_clock(rq);
1659 activate_task(rq, p, 1);
1660 check_preempt_curr(rq, p);
1661 success = 1;
1662
1663 out_running:
1664 p->state = TASK_RUNNING;
1665 out:
1666 task_rq_unlock(rq, &flags);
1667
1668 return success;
1669 }
1670
1671 int fastcall wake_up_process(struct task_struct *p)
1672 {
1673 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1674 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1675 }
1676 EXPORT_SYMBOL(wake_up_process);
1677
1678 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1679 {
1680 return try_to_wake_up(p, state, 0);
1681 }
1682
1683 /*
1684 * Perform scheduler related setup for a newly forked process p.
1685 * p is forked by current.
1686 *
1687 * __sched_fork() is basic setup used by init_idle() too:
1688 */
1689 static void __sched_fork(struct task_struct *p)
1690 {
1691 p->se.exec_start = 0;
1692 p->se.sum_exec_runtime = 0;
1693 p->se.prev_sum_exec_runtime = 0;
1694
1695 #ifdef CONFIG_SCHEDSTATS
1696 p->se.wait_start = 0;
1697 p->se.sum_sleep_runtime = 0;
1698 p->se.sleep_start = 0;
1699 p->se.block_start = 0;
1700 p->se.sleep_max = 0;
1701 p->se.block_max = 0;
1702 p->se.exec_max = 0;
1703 p->se.slice_max = 0;
1704 p->se.wait_max = 0;
1705 #endif
1706
1707 INIT_LIST_HEAD(&p->run_list);
1708 p->se.on_rq = 0;
1709
1710 #ifdef CONFIG_PREEMPT_NOTIFIERS
1711 INIT_HLIST_HEAD(&p->preempt_notifiers);
1712 #endif
1713
1714 /*
1715 * We mark the process as running here, but have not actually
1716 * inserted it onto the runqueue yet. This guarantees that
1717 * nobody will actually run it, and a signal or other external
1718 * event cannot wake it up and insert it on the runqueue either.
1719 */
1720 p->state = TASK_RUNNING;
1721 }
1722
1723 /*
1724 * fork()/clone()-time setup:
1725 */
1726 void sched_fork(struct task_struct *p, int clone_flags)
1727 {
1728 int cpu = get_cpu();
1729
1730 __sched_fork(p);
1731
1732 #ifdef CONFIG_SMP
1733 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1734 #endif
1735 set_task_cpu(p, cpu);
1736
1737 /*
1738 * Make sure we do not leak PI boosting priority to the child:
1739 */
1740 p->prio = current->normal_prio;
1741 if (!rt_prio(p->prio))
1742 p->sched_class = &fair_sched_class;
1743
1744 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1745 if (likely(sched_info_on()))
1746 memset(&p->sched_info, 0, sizeof(p->sched_info));
1747 #endif
1748 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1749 p->oncpu = 0;
1750 #endif
1751 #ifdef CONFIG_PREEMPT
1752 /* Want to start with kernel preemption disabled. */
1753 task_thread_info(p)->preempt_count = 1;
1754 #endif
1755 put_cpu();
1756 }
1757
1758 /*
1759 * wake_up_new_task - wake up a newly created task for the first time.
1760 *
1761 * This function will do some initial scheduler statistics housekeeping
1762 * that must be done for every newly created context, then puts the task
1763 * on the runqueue and wakes it.
1764 */
1765 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1766 {
1767 unsigned long flags;
1768 struct rq *rq;
1769
1770 rq = task_rq_lock(p, &flags);
1771 BUG_ON(p->state != TASK_RUNNING);
1772 update_rq_clock(rq);
1773
1774 p->prio = effective_prio(p);
1775
1776 if (!p->sched_class->task_new || !current->se.on_rq) {
1777 activate_task(rq, p, 0);
1778 } else {
1779 /*
1780 * Let the scheduling class do new task startup
1781 * management (if any):
1782 */
1783 p->sched_class->task_new(rq, p);
1784 inc_nr_running(p, rq);
1785 }
1786 check_preempt_curr(rq, p);
1787 task_rq_unlock(rq, &flags);
1788 }
1789
1790 #ifdef CONFIG_PREEMPT_NOTIFIERS
1791
1792 /**
1793 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1794 * @notifier: notifier struct to register
1795 */
1796 void preempt_notifier_register(struct preempt_notifier *notifier)
1797 {
1798 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1799 }
1800 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1801
1802 /**
1803 * preempt_notifier_unregister - no longer interested in preemption notifications
1804 * @notifier: notifier struct to unregister
1805 *
1806 * This is safe to call from within a preemption notifier.
1807 */
1808 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1809 {
1810 hlist_del(&notifier->link);
1811 }
1812 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1813
1814 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1815 {
1816 struct preempt_notifier *notifier;
1817 struct hlist_node *node;
1818
1819 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1820 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1821 }
1822
1823 static void
1824 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1825 struct task_struct *next)
1826 {
1827 struct preempt_notifier *notifier;
1828 struct hlist_node *node;
1829
1830 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1831 notifier->ops->sched_out(notifier, next);
1832 }
1833
1834 #else
1835
1836 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1837 {
1838 }
1839
1840 static void
1841 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1842 struct task_struct *next)
1843 {
1844 }
1845
1846 #endif
1847
1848 /**
1849 * prepare_task_switch - prepare to switch tasks
1850 * @rq: the runqueue preparing to switch
1851 * @prev: the current task that is being switched out
1852 * @next: the task we are going to switch to.
1853 *
1854 * This is called with the rq lock held and interrupts off. It must
1855 * be paired with a subsequent finish_task_switch after the context
1856 * switch.
1857 *
1858 * prepare_task_switch sets up locking and calls architecture specific
1859 * hooks.
1860 */
1861 static inline void
1862 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1863 struct task_struct *next)
1864 {
1865 fire_sched_out_preempt_notifiers(prev, next);
1866 prepare_lock_switch(rq, next);
1867 prepare_arch_switch(next);
1868 }
1869
1870 /**
1871 * finish_task_switch - clean up after a task-switch
1872 * @rq: runqueue associated with task-switch
1873 * @prev: the thread we just switched away from.
1874 *
1875 * finish_task_switch must be called after the context switch, paired
1876 * with a prepare_task_switch call before the context switch.
1877 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1878 * and do any other architecture-specific cleanup actions.
1879 *
1880 * Note that we may have delayed dropping an mm in context_switch(). If
1881 * so, we finish that here outside of the runqueue lock. (Doing it
1882 * with the lock held can cause deadlocks; see schedule() for
1883 * details.)
1884 */
1885 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1886 __releases(rq->lock)
1887 {
1888 struct mm_struct *mm = rq->prev_mm;
1889 long prev_state;
1890
1891 rq->prev_mm = NULL;
1892
1893 /*
1894 * A task struct has one reference for the use as "current".
1895 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1896 * schedule one last time. The schedule call will never return, and
1897 * the scheduled task must drop that reference.
1898 * The test for TASK_DEAD must occur while the runqueue locks are
1899 * still held, otherwise prev could be scheduled on another cpu, die
1900 * there before we look at prev->state, and then the reference would
1901 * be dropped twice.
1902 * Manfred Spraul <manfred@colorfullife.com>
1903 */
1904 prev_state = prev->state;
1905 finish_arch_switch(prev);
1906 finish_lock_switch(rq, prev);
1907 fire_sched_in_preempt_notifiers(current);
1908 if (mm)
1909 mmdrop(mm);
1910 if (unlikely(prev_state == TASK_DEAD)) {
1911 /*
1912 * Remove function-return probe instances associated with this
1913 * task and put them back on the free list.
1914 */
1915 kprobe_flush_task(prev);
1916 put_task_struct(prev);
1917 }
1918 }
1919
1920 /**
1921 * schedule_tail - first thing a freshly forked thread must call.
1922 * @prev: the thread we just switched away from.
1923 */
1924 asmlinkage void schedule_tail(struct task_struct *prev)
1925 __releases(rq->lock)
1926 {
1927 struct rq *rq = this_rq();
1928
1929 finish_task_switch(rq, prev);
1930 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1931 /* In this case, finish_task_switch does not reenable preemption */
1932 preempt_enable();
1933 #endif
1934 if (current->set_child_tid)
1935 put_user(task_pid_vnr(current), current->set_child_tid);
1936 }
1937
1938 /*
1939 * context_switch - switch to the new MM and the new
1940 * thread's register state.
1941 */
1942 static inline void
1943 context_switch(struct rq *rq, struct task_struct *prev,
1944 struct task_struct *next)
1945 {
1946 struct mm_struct *mm, *oldmm;
1947
1948 prepare_task_switch(rq, prev, next);
1949 mm = next->mm;
1950 oldmm = prev->active_mm;
1951 /*
1952 * For paravirt, this is coupled with an exit in switch_to to
1953 * combine the page table reload and the switch backend into
1954 * one hypercall.
1955 */
1956 arch_enter_lazy_cpu_mode();
1957
1958 if (unlikely(!mm)) {
1959 next->active_mm = oldmm;
1960 atomic_inc(&oldmm->mm_count);
1961 enter_lazy_tlb(oldmm, next);
1962 } else
1963 switch_mm(oldmm, mm, next);
1964
1965 if (unlikely(!prev->mm)) {
1966 prev->active_mm = NULL;
1967 rq->prev_mm = oldmm;
1968 }
1969 /*
1970 * Since the runqueue lock will be released by the next
1971 * task (which is an invalid locking op but in the case
1972 * of the scheduler it's an obvious special-case), so we
1973 * do an early lockdep release here:
1974 */
1975 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1976 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1977 #endif
1978
1979 /* Here we just switch the register state and the stack. */
1980 switch_to(prev, next, prev);
1981
1982 barrier();
1983 /*
1984 * this_rq must be evaluated again because prev may have moved
1985 * CPUs since it called schedule(), thus the 'rq' on its stack
1986 * frame will be invalid.
1987 */
1988 finish_task_switch(this_rq(), prev);
1989 }
1990
1991 /*
1992 * nr_running, nr_uninterruptible and nr_context_switches:
1993 *
1994 * externally visible scheduler statistics: current number of runnable
1995 * threads, current number of uninterruptible-sleeping threads, total
1996 * number of context switches performed since bootup.
1997 */
1998 unsigned long nr_running(void)
1999 {
2000 unsigned long i, sum = 0;
2001
2002 for_each_online_cpu(i)
2003 sum += cpu_rq(i)->nr_running;
2004
2005 return sum;
2006 }
2007
2008 unsigned long nr_uninterruptible(void)
2009 {
2010 unsigned long i, sum = 0;
2011
2012 for_each_possible_cpu(i)
2013 sum += cpu_rq(i)->nr_uninterruptible;
2014
2015 /*
2016 * Since we read the counters lockless, it might be slightly
2017 * inaccurate. Do not allow it to go below zero though:
2018 */
2019 if (unlikely((long)sum < 0))
2020 sum = 0;
2021
2022 return sum;
2023 }
2024
2025 unsigned long long nr_context_switches(void)
2026 {
2027 int i;
2028 unsigned long long sum = 0;
2029
2030 for_each_possible_cpu(i)
2031 sum += cpu_rq(i)->nr_switches;
2032
2033 return sum;
2034 }
2035
2036 unsigned long nr_iowait(void)
2037 {
2038 unsigned long i, sum = 0;
2039
2040 for_each_possible_cpu(i)
2041 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2042
2043 return sum;
2044 }
2045
2046 unsigned long nr_active(void)
2047 {
2048 unsigned long i, running = 0, uninterruptible = 0;
2049
2050 for_each_online_cpu(i) {
2051 running += cpu_rq(i)->nr_running;
2052 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2053 }
2054
2055 if (unlikely((long)uninterruptible < 0))
2056 uninterruptible = 0;
2057
2058 return running + uninterruptible;
2059 }
2060
2061 /*
2062 * Update rq->cpu_load[] statistics. This function is usually called every
2063 * scheduler tick (TICK_NSEC).
2064 */
2065 static void update_cpu_load(struct rq *this_rq)
2066 {
2067 unsigned long this_load = this_rq->load.weight;
2068 int i, scale;
2069
2070 this_rq->nr_load_updates++;
2071
2072 /* Update our load: */
2073 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2074 unsigned long old_load, new_load;
2075
2076 /* scale is effectively 1 << i now, and >> i divides by scale */
2077
2078 old_load = this_rq->cpu_load[i];
2079 new_load = this_load;
2080 /*
2081 * Round up the averaging division if load is increasing. This
2082 * prevents us from getting stuck on 9 if the load is 10, for
2083 * example.
2084 */
2085 if (new_load > old_load)
2086 new_load += scale-1;
2087 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2088 }
2089 }
2090
2091 #ifdef CONFIG_SMP
2092
2093 /*
2094 * double_rq_lock - safely lock two runqueues
2095 *
2096 * Note this does not disable interrupts like task_rq_lock,
2097 * you need to do so manually before calling.
2098 */
2099 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2100 __acquires(rq1->lock)
2101 __acquires(rq2->lock)
2102 {
2103 BUG_ON(!irqs_disabled());
2104 if (rq1 == rq2) {
2105 spin_lock(&rq1->lock);
2106 __acquire(rq2->lock); /* Fake it out ;) */
2107 } else {
2108 if (rq1 < rq2) {
2109 spin_lock(&rq1->lock);
2110 spin_lock(&rq2->lock);
2111 } else {
2112 spin_lock(&rq2->lock);
2113 spin_lock(&rq1->lock);
2114 }
2115 }
2116 update_rq_clock(rq1);
2117 update_rq_clock(rq2);
2118 }
2119
2120 /*
2121 * double_rq_unlock - safely unlock two runqueues
2122 *
2123 * Note this does not restore interrupts like task_rq_unlock,
2124 * you need to do so manually after calling.
2125 */
2126 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2127 __releases(rq1->lock)
2128 __releases(rq2->lock)
2129 {
2130 spin_unlock(&rq1->lock);
2131 if (rq1 != rq2)
2132 spin_unlock(&rq2->lock);
2133 else
2134 __release(rq2->lock);
2135 }
2136
2137 /*
2138 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2139 */
2140 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2141 __releases(this_rq->lock)
2142 __acquires(busiest->lock)
2143 __acquires(this_rq->lock)
2144 {
2145 if (unlikely(!irqs_disabled())) {
2146 /* printk() doesn't work good under rq->lock */
2147 spin_unlock(&this_rq->lock);
2148 BUG_ON(1);
2149 }
2150 if (unlikely(!spin_trylock(&busiest->lock))) {
2151 if (busiest < this_rq) {
2152 spin_unlock(&this_rq->lock);
2153 spin_lock(&busiest->lock);
2154 spin_lock(&this_rq->lock);
2155 } else
2156 spin_lock(&busiest->lock);
2157 }
2158 }
2159
2160 /*
2161 * If dest_cpu is allowed for this process, migrate the task to it.
2162 * This is accomplished by forcing the cpu_allowed mask to only
2163 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2164 * the cpu_allowed mask is restored.
2165 */
2166 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2167 {
2168 struct migration_req req;
2169 unsigned long flags;
2170 struct rq *rq;
2171
2172 rq = task_rq_lock(p, &flags);
2173 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2174 || unlikely(cpu_is_offline(dest_cpu)))
2175 goto out;
2176
2177 /* force the process onto the specified CPU */
2178 if (migrate_task(p, dest_cpu, &req)) {
2179 /* Need to wait for migration thread (might exit: take ref). */
2180 struct task_struct *mt = rq->migration_thread;
2181
2182 get_task_struct(mt);
2183 task_rq_unlock(rq, &flags);
2184 wake_up_process(mt);
2185 put_task_struct(mt);
2186 wait_for_completion(&req.done);
2187
2188 return;
2189 }
2190 out:
2191 task_rq_unlock(rq, &flags);
2192 }
2193
2194 /*
2195 * sched_exec - execve() is a valuable balancing opportunity, because at
2196 * this point the task has the smallest effective memory and cache footprint.
2197 */
2198 void sched_exec(void)
2199 {
2200 int new_cpu, this_cpu = get_cpu();
2201 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2202 put_cpu();
2203 if (new_cpu != this_cpu)
2204 sched_migrate_task(current, new_cpu);
2205 }
2206
2207 /*
2208 * pull_task - move a task from a remote runqueue to the local runqueue.
2209 * Both runqueues must be locked.
2210 */
2211 static void pull_task(struct rq *src_rq, struct task_struct *p,
2212 struct rq *this_rq, int this_cpu)
2213 {
2214 deactivate_task(src_rq, p, 0);
2215 set_task_cpu(p, this_cpu);
2216 activate_task(this_rq, p, 0);
2217 /*
2218 * Note that idle threads have a prio of MAX_PRIO, for this test
2219 * to be always true for them.
2220 */
2221 check_preempt_curr(this_rq, p);
2222 }
2223
2224 /*
2225 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2226 */
2227 static
2228 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2229 struct sched_domain *sd, enum cpu_idle_type idle,
2230 int *all_pinned)
2231 {
2232 /*
2233 * We do not migrate tasks that are:
2234 * 1) running (obviously), or
2235 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2236 * 3) are cache-hot on their current CPU.
2237 */
2238 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2239 schedstat_inc(p, se.nr_failed_migrations_affine);
2240 return 0;
2241 }
2242 *all_pinned = 0;
2243
2244 if (task_running(rq, p)) {
2245 schedstat_inc(p, se.nr_failed_migrations_running);
2246 return 0;
2247 }
2248
2249 /*
2250 * Aggressive migration if:
2251 * 1) task is cache cold, or
2252 * 2) too many balance attempts have failed.
2253 */
2254
2255 if (!task_hot(p, rq->clock, sd) ||
2256 sd->nr_balance_failed > sd->cache_nice_tries) {
2257 #ifdef CONFIG_SCHEDSTATS
2258 if (task_hot(p, rq->clock, sd)) {
2259 schedstat_inc(sd, lb_hot_gained[idle]);
2260 schedstat_inc(p, se.nr_forced_migrations);
2261 }
2262 #endif
2263 return 1;
2264 }
2265
2266 if (task_hot(p, rq->clock, sd)) {
2267 schedstat_inc(p, se.nr_failed_migrations_hot);
2268 return 0;
2269 }
2270 return 1;
2271 }
2272
2273 static unsigned long
2274 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2275 unsigned long max_load_move, struct sched_domain *sd,
2276 enum cpu_idle_type idle, int *all_pinned,
2277 int *this_best_prio, struct rq_iterator *iterator)
2278 {
2279 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2280 struct task_struct *p;
2281 long rem_load_move = max_load_move;
2282
2283 if (max_load_move == 0)
2284 goto out;
2285
2286 pinned = 1;
2287
2288 /*
2289 * Start the load-balancing iterator:
2290 */
2291 p = iterator->start(iterator->arg);
2292 next:
2293 if (!p || loops++ > sysctl_sched_nr_migrate)
2294 goto out;
2295 /*
2296 * To help distribute high priority tasks across CPUs we don't
2297 * skip a task if it will be the highest priority task (i.e. smallest
2298 * prio value) on its new queue regardless of its load weight
2299 */
2300 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2301 SCHED_LOAD_SCALE_FUZZ;
2302 if ((skip_for_load && p->prio >= *this_best_prio) ||
2303 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2304 p = iterator->next(iterator->arg);
2305 goto next;
2306 }
2307
2308 pull_task(busiest, p, this_rq, this_cpu);
2309 pulled++;
2310 rem_load_move -= p->se.load.weight;
2311
2312 /*
2313 * We only want to steal up to the prescribed amount of weighted load.
2314 */
2315 if (rem_load_move > 0) {
2316 if (p->prio < *this_best_prio)
2317 *this_best_prio = p->prio;
2318 p = iterator->next(iterator->arg);
2319 goto next;
2320 }
2321 out:
2322 /*
2323 * Right now, this is one of only two places pull_task() is called,
2324 * so we can safely collect pull_task() stats here rather than
2325 * inside pull_task().
2326 */
2327 schedstat_add(sd, lb_gained[idle], pulled);
2328
2329 if (all_pinned)
2330 *all_pinned = pinned;
2331
2332 return max_load_move - rem_load_move;
2333 }
2334
2335 /*
2336 * move_tasks tries to move up to max_load_move weighted load from busiest to
2337 * this_rq, as part of a balancing operation within domain "sd".
2338 * Returns 1 if successful and 0 otherwise.
2339 *
2340 * Called with both runqueues locked.
2341 */
2342 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2343 unsigned long max_load_move,
2344 struct sched_domain *sd, enum cpu_idle_type idle,
2345 int *all_pinned)
2346 {
2347 const struct sched_class *class = sched_class_highest;
2348 unsigned long total_load_moved = 0;
2349 int this_best_prio = this_rq->curr->prio;
2350
2351 do {
2352 total_load_moved +=
2353 class->load_balance(this_rq, this_cpu, busiest,
2354 max_load_move - total_load_moved,
2355 sd, idle, all_pinned, &this_best_prio);
2356 class = class->next;
2357 } while (class && max_load_move > total_load_moved);
2358
2359 return total_load_moved > 0;
2360 }
2361
2362 static int
2363 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2364 struct sched_domain *sd, enum cpu_idle_type idle,
2365 struct rq_iterator *iterator)
2366 {
2367 struct task_struct *p = iterator->start(iterator->arg);
2368 int pinned = 0;
2369
2370 while (p) {
2371 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2372 pull_task(busiest, p, this_rq, this_cpu);
2373 /*
2374 * Right now, this is only the second place pull_task()
2375 * is called, so we can safely collect pull_task()
2376 * stats here rather than inside pull_task().
2377 */
2378 schedstat_inc(sd, lb_gained[idle]);
2379
2380 return 1;
2381 }
2382 p = iterator->next(iterator->arg);
2383 }
2384
2385 return 0;
2386 }
2387
2388 /*
2389 * move_one_task tries to move exactly one task from busiest to this_rq, as
2390 * part of active balancing operations within "domain".
2391 * Returns 1 if successful and 0 otherwise.
2392 *
2393 * Called with both runqueues locked.
2394 */
2395 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2396 struct sched_domain *sd, enum cpu_idle_type idle)
2397 {
2398 const struct sched_class *class;
2399
2400 for (class = sched_class_highest; class; class = class->next)
2401 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2402 return 1;
2403
2404 return 0;
2405 }
2406
2407 /*
2408 * find_busiest_group finds and returns the busiest CPU group within the
2409 * domain. It calculates and returns the amount of weighted load which
2410 * should be moved to restore balance via the imbalance parameter.
2411 */
2412 static struct sched_group *
2413 find_busiest_group(struct sched_domain *sd, int this_cpu,
2414 unsigned long *imbalance, enum cpu_idle_type idle,
2415 int *sd_idle, cpumask_t *cpus, int *balance)
2416 {
2417 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2418 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2419 unsigned long max_pull;
2420 unsigned long busiest_load_per_task, busiest_nr_running;
2421 unsigned long this_load_per_task, this_nr_running;
2422 int load_idx, group_imb = 0;
2423 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2424 int power_savings_balance = 1;
2425 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2426 unsigned long min_nr_running = ULONG_MAX;
2427 struct sched_group *group_min = NULL, *group_leader = NULL;
2428 #endif
2429
2430 max_load = this_load = total_load = total_pwr = 0;
2431 busiest_load_per_task = busiest_nr_running = 0;
2432 this_load_per_task = this_nr_running = 0;
2433 if (idle == CPU_NOT_IDLE)
2434 load_idx = sd->busy_idx;
2435 else if (idle == CPU_NEWLY_IDLE)
2436 load_idx = sd->newidle_idx;
2437 else
2438 load_idx = sd->idle_idx;
2439
2440 do {
2441 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2442 int local_group;
2443 int i;
2444 int __group_imb = 0;
2445 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2446 unsigned long sum_nr_running, sum_weighted_load;
2447
2448 local_group = cpu_isset(this_cpu, group->cpumask);
2449
2450 if (local_group)
2451 balance_cpu = first_cpu(group->cpumask);
2452
2453 /* Tally up the load of all CPUs in the group */
2454 sum_weighted_load = sum_nr_running = avg_load = 0;
2455 max_cpu_load = 0;
2456 min_cpu_load = ~0UL;
2457
2458 for_each_cpu_mask(i, group->cpumask) {
2459 struct rq *rq;
2460
2461 if (!cpu_isset(i, *cpus))
2462 continue;
2463
2464 rq = cpu_rq(i);
2465
2466 if (*sd_idle && rq->nr_running)
2467 *sd_idle = 0;
2468
2469 /* Bias balancing toward cpus of our domain */
2470 if (local_group) {
2471 if (idle_cpu(i) && !first_idle_cpu) {
2472 first_idle_cpu = 1;
2473 balance_cpu = i;
2474 }
2475
2476 load = target_load(i, load_idx);
2477 } else {
2478 load = source_load(i, load_idx);
2479 if (load > max_cpu_load)
2480 max_cpu_load = load;
2481 if (min_cpu_load > load)
2482 min_cpu_load = load;
2483 }
2484
2485 avg_load += load;
2486 sum_nr_running += rq->nr_running;
2487 sum_weighted_load += weighted_cpuload(i);
2488 }
2489
2490 /*
2491 * First idle cpu or the first cpu(busiest) in this sched group
2492 * is eligible for doing load balancing at this and above
2493 * domains. In the newly idle case, we will allow all the cpu's
2494 * to do the newly idle load balance.
2495 */
2496 if (idle != CPU_NEWLY_IDLE && local_group &&
2497 balance_cpu != this_cpu && balance) {
2498 *balance = 0;
2499 goto ret;
2500 }
2501
2502 total_load += avg_load;
2503 total_pwr += group->__cpu_power;
2504
2505 /* Adjust by relative CPU power of the group */
2506 avg_load = sg_div_cpu_power(group,
2507 avg_load * SCHED_LOAD_SCALE);
2508
2509 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2510 __group_imb = 1;
2511
2512 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2513
2514 if (local_group) {
2515 this_load = avg_load;
2516 this = group;
2517 this_nr_running = sum_nr_running;
2518 this_load_per_task = sum_weighted_load;
2519 } else if (avg_load > max_load &&
2520 (sum_nr_running > group_capacity || __group_imb)) {
2521 max_load = avg_load;
2522 busiest = group;
2523 busiest_nr_running = sum_nr_running;
2524 busiest_load_per_task = sum_weighted_load;
2525 group_imb = __group_imb;
2526 }
2527
2528 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2529 /*
2530 * Busy processors will not participate in power savings
2531 * balance.
2532 */
2533 if (idle == CPU_NOT_IDLE ||
2534 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2535 goto group_next;
2536
2537 /*
2538 * If the local group is idle or completely loaded
2539 * no need to do power savings balance at this domain
2540 */
2541 if (local_group && (this_nr_running >= group_capacity ||
2542 !this_nr_running))
2543 power_savings_balance = 0;
2544
2545 /*
2546 * If a group is already running at full capacity or idle,
2547 * don't include that group in power savings calculations
2548 */
2549 if (!power_savings_balance || sum_nr_running >= group_capacity
2550 || !sum_nr_running)
2551 goto group_next;
2552
2553 /*
2554 * Calculate the group which has the least non-idle load.
2555 * This is the group from where we need to pick up the load
2556 * for saving power
2557 */
2558 if ((sum_nr_running < min_nr_running) ||
2559 (sum_nr_running == min_nr_running &&
2560 first_cpu(group->cpumask) <
2561 first_cpu(group_min->cpumask))) {
2562 group_min = group;
2563 min_nr_running = sum_nr_running;
2564 min_load_per_task = sum_weighted_load /
2565 sum_nr_running;
2566 }
2567
2568 /*
2569 * Calculate the group which is almost near its
2570 * capacity but still has some space to pick up some load
2571 * from other group and save more power
2572 */
2573 if (sum_nr_running <= group_capacity - 1) {
2574 if (sum_nr_running > leader_nr_running ||
2575 (sum_nr_running == leader_nr_running &&
2576 first_cpu(group->cpumask) >
2577 first_cpu(group_leader->cpumask))) {
2578 group_leader = group;
2579 leader_nr_running = sum_nr_running;
2580 }
2581 }
2582 group_next:
2583 #endif
2584 group = group->next;
2585 } while (group != sd->groups);
2586
2587 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2588 goto out_balanced;
2589
2590 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2591
2592 if (this_load >= avg_load ||
2593 100*max_load <= sd->imbalance_pct*this_load)
2594 goto out_balanced;
2595
2596 busiest_load_per_task /= busiest_nr_running;
2597 if (group_imb)
2598 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2599
2600 /*
2601 * We're trying to get all the cpus to the average_load, so we don't
2602 * want to push ourselves above the average load, nor do we wish to
2603 * reduce the max loaded cpu below the average load, as either of these
2604 * actions would just result in more rebalancing later, and ping-pong
2605 * tasks around. Thus we look for the minimum possible imbalance.
2606 * Negative imbalances (*we* are more loaded than anyone else) will
2607 * be counted as no imbalance for these purposes -- we can't fix that
2608 * by pulling tasks to us. Be careful of negative numbers as they'll
2609 * appear as very large values with unsigned longs.
2610 */
2611 if (max_load <= busiest_load_per_task)
2612 goto out_balanced;
2613
2614 /*
2615 * In the presence of smp nice balancing, certain scenarios can have
2616 * max load less than avg load(as we skip the groups at or below
2617 * its cpu_power, while calculating max_load..)
2618 */
2619 if (max_load < avg_load) {
2620 *imbalance = 0;
2621 goto small_imbalance;
2622 }
2623
2624 /* Don't want to pull so many tasks that a group would go idle */
2625 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2626
2627 /* How much load to actually move to equalise the imbalance */
2628 *imbalance = min(max_pull * busiest->__cpu_power,
2629 (avg_load - this_load) * this->__cpu_power)
2630 / SCHED_LOAD_SCALE;
2631
2632 /*
2633 * if *imbalance is less than the average load per runnable task
2634 * there is no gaurantee that any tasks will be moved so we'll have
2635 * a think about bumping its value to force at least one task to be
2636 * moved
2637 */
2638 if (*imbalance < busiest_load_per_task) {
2639 unsigned long tmp, pwr_now, pwr_move;
2640 unsigned int imbn;
2641
2642 small_imbalance:
2643 pwr_move = pwr_now = 0;
2644 imbn = 2;
2645 if (this_nr_running) {
2646 this_load_per_task /= this_nr_running;
2647 if (busiest_load_per_task > this_load_per_task)
2648 imbn = 1;
2649 } else
2650 this_load_per_task = SCHED_LOAD_SCALE;
2651
2652 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2653 busiest_load_per_task * imbn) {
2654 *imbalance = busiest_load_per_task;
2655 return busiest;
2656 }
2657
2658 /*
2659 * OK, we don't have enough imbalance to justify moving tasks,
2660 * however we may be able to increase total CPU power used by
2661 * moving them.
2662 */
2663
2664 pwr_now += busiest->__cpu_power *
2665 min(busiest_load_per_task, max_load);
2666 pwr_now += this->__cpu_power *
2667 min(this_load_per_task, this_load);
2668 pwr_now /= SCHED_LOAD_SCALE;
2669
2670 /* Amount of load we'd subtract */
2671 tmp = sg_div_cpu_power(busiest,
2672 busiest_load_per_task * SCHED_LOAD_SCALE);
2673 if (max_load > tmp)
2674 pwr_move += busiest->__cpu_power *
2675 min(busiest_load_per_task, max_load - tmp);
2676
2677 /* Amount of load we'd add */
2678 if (max_load * busiest->__cpu_power <
2679 busiest_load_per_task * SCHED_LOAD_SCALE)
2680 tmp = sg_div_cpu_power(this,
2681 max_load * busiest->__cpu_power);
2682 else
2683 tmp = sg_div_cpu_power(this,
2684 busiest_load_per_task * SCHED_LOAD_SCALE);
2685 pwr_move += this->__cpu_power *
2686 min(this_load_per_task, this_load + tmp);
2687 pwr_move /= SCHED_LOAD_SCALE;
2688
2689 /* Move if we gain throughput */
2690 if (pwr_move > pwr_now)
2691 *imbalance = busiest_load_per_task;
2692 }
2693
2694 return busiest;
2695
2696 out_balanced:
2697 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2698 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2699 goto ret;
2700
2701 if (this == group_leader && group_leader != group_min) {
2702 *imbalance = min_load_per_task;
2703 return group_min;
2704 }
2705 #endif
2706 ret:
2707 *imbalance = 0;
2708 return NULL;
2709 }
2710
2711 /*
2712 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2713 */
2714 static struct rq *
2715 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2716 unsigned long imbalance, cpumask_t *cpus)
2717 {
2718 struct rq *busiest = NULL, *rq;
2719 unsigned long max_load = 0;
2720 int i;
2721
2722 for_each_cpu_mask(i, group->cpumask) {
2723 unsigned long wl;
2724
2725 if (!cpu_isset(i, *cpus))
2726 continue;
2727
2728 rq = cpu_rq(i);
2729 wl = weighted_cpuload(i);
2730
2731 if (rq->nr_running == 1 && wl > imbalance)
2732 continue;
2733
2734 if (wl > max_load) {
2735 max_load = wl;
2736 busiest = rq;
2737 }
2738 }
2739
2740 return busiest;
2741 }
2742
2743 /*
2744 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2745 * so long as it is large enough.
2746 */
2747 #define MAX_PINNED_INTERVAL 512
2748
2749 /*
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2752 */
2753 static int load_balance(int this_cpu, struct rq *this_rq,
2754 struct sched_domain *sd, enum cpu_idle_type idle,
2755 int *balance)
2756 {
2757 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2758 struct sched_group *group;
2759 unsigned long imbalance;
2760 struct rq *busiest;
2761 cpumask_t cpus = CPU_MASK_ALL;
2762 unsigned long flags;
2763
2764 /*
2765 * When power savings policy is enabled for the parent domain, idle
2766 * sibling can pick up load irrespective of busy siblings. In this case,
2767 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2768 * portraying it as CPU_NOT_IDLE.
2769 */
2770 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2771 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2772 sd_idle = 1;
2773
2774 schedstat_inc(sd, lb_count[idle]);
2775
2776 redo:
2777 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2778 &cpus, balance);
2779
2780 if (*balance == 0)
2781 goto out_balanced;
2782
2783 if (!group) {
2784 schedstat_inc(sd, lb_nobusyg[idle]);
2785 goto out_balanced;
2786 }
2787
2788 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2789 if (!busiest) {
2790 schedstat_inc(sd, lb_nobusyq[idle]);
2791 goto out_balanced;
2792 }
2793
2794 BUG_ON(busiest == this_rq);
2795
2796 schedstat_add(sd, lb_imbalance[idle], imbalance);
2797
2798 ld_moved = 0;
2799 if (busiest->nr_running > 1) {
2800 /*
2801 * Attempt to move tasks. If find_busiest_group has found
2802 * an imbalance but busiest->nr_running <= 1, the group is
2803 * still unbalanced. ld_moved simply stays zero, so it is
2804 * correctly treated as an imbalance.
2805 */
2806 local_irq_save(flags);
2807 double_rq_lock(this_rq, busiest);
2808 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2809 imbalance, sd, idle, &all_pinned);
2810 double_rq_unlock(this_rq, busiest);
2811 local_irq_restore(flags);
2812
2813 /*
2814 * some other cpu did the load balance for us.
2815 */
2816 if (ld_moved && this_cpu != smp_processor_id())
2817 resched_cpu(this_cpu);
2818
2819 /* All tasks on this runqueue were pinned by CPU affinity */
2820 if (unlikely(all_pinned)) {
2821 cpu_clear(cpu_of(busiest), cpus);
2822 if (!cpus_empty(cpus))
2823 goto redo;
2824 goto out_balanced;
2825 }
2826 }
2827
2828 if (!ld_moved) {
2829 schedstat_inc(sd, lb_failed[idle]);
2830 sd->nr_balance_failed++;
2831
2832 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2833
2834 spin_lock_irqsave(&busiest->lock, flags);
2835
2836 /* don't kick the migration_thread, if the curr
2837 * task on busiest cpu can't be moved to this_cpu
2838 */
2839 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2840 spin_unlock_irqrestore(&busiest->lock, flags);
2841 all_pinned = 1;
2842 goto out_one_pinned;
2843 }
2844
2845 if (!busiest->active_balance) {
2846 busiest->active_balance = 1;
2847 busiest->push_cpu = this_cpu;
2848 active_balance = 1;
2849 }
2850 spin_unlock_irqrestore(&busiest->lock, flags);
2851 if (active_balance)
2852 wake_up_process(busiest->migration_thread);
2853
2854 /*
2855 * We've kicked active balancing, reset the failure
2856 * counter.
2857 */
2858 sd->nr_balance_failed = sd->cache_nice_tries+1;
2859 }
2860 } else
2861 sd->nr_balance_failed = 0;
2862
2863 if (likely(!active_balance)) {
2864 /* We were unbalanced, so reset the balancing interval */
2865 sd->balance_interval = sd->min_interval;
2866 } else {
2867 /*
2868 * If we've begun active balancing, start to back off. This
2869 * case may not be covered by the all_pinned logic if there
2870 * is only 1 task on the busy runqueue (because we don't call
2871 * move_tasks).
2872 */
2873 if (sd->balance_interval < sd->max_interval)
2874 sd->balance_interval *= 2;
2875 }
2876
2877 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2878 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2879 return -1;
2880 return ld_moved;
2881
2882 out_balanced:
2883 schedstat_inc(sd, lb_balanced[idle]);
2884
2885 sd->nr_balance_failed = 0;
2886
2887 out_one_pinned:
2888 /* tune up the balancing interval */
2889 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2890 (sd->balance_interval < sd->max_interval))
2891 sd->balance_interval *= 2;
2892
2893 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2894 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2895 return -1;
2896 return 0;
2897 }
2898
2899 /*
2900 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2901 * tasks if there is an imbalance.
2902 *
2903 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2904 * this_rq is locked.
2905 */
2906 static int
2907 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2908 {
2909 struct sched_group *group;
2910 struct rq *busiest = NULL;
2911 unsigned long imbalance;
2912 int ld_moved = 0;
2913 int sd_idle = 0;
2914 int all_pinned = 0;
2915 cpumask_t cpus = CPU_MASK_ALL;
2916
2917 /*
2918 * When power savings policy is enabled for the parent domain, idle
2919 * sibling can pick up load irrespective of busy siblings. In this case,
2920 * let the state of idle sibling percolate up as IDLE, instead of
2921 * portraying it as CPU_NOT_IDLE.
2922 */
2923 if (sd->flags & SD_SHARE_CPUPOWER &&
2924 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2925 sd_idle = 1;
2926
2927 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2928 redo:
2929 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2930 &sd_idle, &cpus, NULL);
2931 if (!group) {
2932 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2933 goto out_balanced;
2934 }
2935
2936 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2937 &cpus);
2938 if (!busiest) {
2939 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2940 goto out_balanced;
2941 }
2942
2943 BUG_ON(busiest == this_rq);
2944
2945 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2946
2947 ld_moved = 0;
2948 if (busiest->nr_running > 1) {
2949 /* Attempt to move tasks */
2950 double_lock_balance(this_rq, busiest);
2951 /* this_rq->clock is already updated */
2952 update_rq_clock(busiest);
2953 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2954 imbalance, sd, CPU_NEWLY_IDLE,
2955 &all_pinned);
2956 spin_unlock(&busiest->lock);
2957
2958 if (unlikely(all_pinned)) {
2959 cpu_clear(cpu_of(busiest), cpus);
2960 if (!cpus_empty(cpus))
2961 goto redo;
2962 }
2963 }
2964
2965 if (!ld_moved) {
2966 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2967 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2968 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2969 return -1;
2970 } else
2971 sd->nr_balance_failed = 0;
2972
2973 return ld_moved;
2974
2975 out_balanced:
2976 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2977 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2978 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2979 return -1;
2980 sd->nr_balance_failed = 0;
2981
2982 return 0;
2983 }
2984
2985 /*
2986 * idle_balance is called by schedule() if this_cpu is about to become
2987 * idle. Attempts to pull tasks from other CPUs.
2988 */
2989 static void idle_balance(int this_cpu, struct rq *this_rq)
2990 {
2991 struct sched_domain *sd;
2992 int pulled_task = -1;
2993 unsigned long next_balance = jiffies + HZ;
2994
2995 for_each_domain(this_cpu, sd) {
2996 unsigned long interval;
2997
2998 if (!(sd->flags & SD_LOAD_BALANCE))
2999 continue;
3000
3001 if (sd->flags & SD_BALANCE_NEWIDLE)
3002 /* If we've pulled tasks over stop searching: */
3003 pulled_task = load_balance_newidle(this_cpu,
3004 this_rq, sd);
3005
3006 interval = msecs_to_jiffies(sd->balance_interval);
3007 if (time_after(next_balance, sd->last_balance + interval))
3008 next_balance = sd->last_balance + interval;
3009 if (pulled_task)
3010 break;
3011 }
3012 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3013 /*
3014 * We are going idle. next_balance may be set based on
3015 * a busy processor. So reset next_balance.
3016 */
3017 this_rq->next_balance = next_balance;
3018 }
3019 }
3020
3021 /*
3022 * active_load_balance is run by migration threads. It pushes running tasks
3023 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3024 * running on each physical CPU where possible, and avoids physical /
3025 * logical imbalances.
3026 *
3027 * Called with busiest_rq locked.
3028 */
3029 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3030 {
3031 int target_cpu = busiest_rq->push_cpu;
3032 struct sched_domain *sd;
3033 struct rq *target_rq;
3034
3035 /* Is there any task to move? */
3036 if (busiest_rq->nr_running <= 1)
3037 return;
3038
3039 target_rq = cpu_rq(target_cpu);
3040
3041 /*
3042 * This condition is "impossible", if it occurs
3043 * we need to fix it. Originally reported by
3044 * Bjorn Helgaas on a 128-cpu setup.
3045 */
3046 BUG_ON(busiest_rq == target_rq);
3047
3048 /* move a task from busiest_rq to target_rq */
3049 double_lock_balance(busiest_rq, target_rq);
3050 update_rq_clock(busiest_rq);
3051 update_rq_clock(target_rq);
3052
3053 /* Search for an sd spanning us and the target CPU. */
3054 for_each_domain(target_cpu, sd) {
3055 if ((sd->flags & SD_LOAD_BALANCE) &&
3056 cpu_isset(busiest_cpu, sd->span))
3057 break;
3058 }
3059
3060 if (likely(sd)) {
3061 schedstat_inc(sd, alb_count);
3062
3063 if (move_one_task(target_rq, target_cpu, busiest_rq,
3064 sd, CPU_IDLE))
3065 schedstat_inc(sd, alb_pushed);
3066 else
3067 schedstat_inc(sd, alb_failed);
3068 }
3069 spin_unlock(&target_rq->lock);
3070 }
3071
3072 #ifdef CONFIG_NO_HZ
3073 static struct {
3074 atomic_t load_balancer;
3075 cpumask_t cpu_mask;
3076 } nohz ____cacheline_aligned = {
3077 .load_balancer = ATOMIC_INIT(-1),
3078 .cpu_mask = CPU_MASK_NONE,
3079 };
3080
3081 /*
3082 * This routine will try to nominate the ilb (idle load balancing)
3083 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3084 * load balancing on behalf of all those cpus. If all the cpus in the system
3085 * go into this tickless mode, then there will be no ilb owner (as there is
3086 * no need for one) and all the cpus will sleep till the next wakeup event
3087 * arrives...
3088 *
3089 * For the ilb owner, tick is not stopped. And this tick will be used
3090 * for idle load balancing. ilb owner will still be part of
3091 * nohz.cpu_mask..
3092 *
3093 * While stopping the tick, this cpu will become the ilb owner if there
3094 * is no other owner. And will be the owner till that cpu becomes busy
3095 * or if all cpus in the system stop their ticks at which point
3096 * there is no need for ilb owner.
3097 *
3098 * When the ilb owner becomes busy, it nominates another owner, during the
3099 * next busy scheduler_tick()
3100 */
3101 int select_nohz_load_balancer(int stop_tick)
3102 {
3103 int cpu = smp_processor_id();
3104
3105 if (stop_tick) {
3106 cpu_set(cpu, nohz.cpu_mask);
3107 cpu_rq(cpu)->in_nohz_recently = 1;
3108
3109 /*
3110 * If we are going offline and still the leader, give up!
3111 */
3112 if (cpu_is_offline(cpu) &&
3113 atomic_read(&nohz.load_balancer) == cpu) {
3114 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3115 BUG();
3116 return 0;
3117 }
3118
3119 /* time for ilb owner also to sleep */
3120 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3121 if (atomic_read(&nohz.load_balancer) == cpu)
3122 atomic_set(&nohz.load_balancer, -1);
3123 return 0;
3124 }
3125
3126 if (atomic_read(&nohz.load_balancer) == -1) {
3127 /* make me the ilb owner */
3128 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3129 return 1;
3130 } else if (atomic_read(&nohz.load_balancer) == cpu)
3131 return 1;
3132 } else {
3133 if (!cpu_isset(cpu, nohz.cpu_mask))
3134 return 0;
3135
3136 cpu_clear(cpu, nohz.cpu_mask);
3137
3138 if (atomic_read(&nohz.load_balancer) == cpu)
3139 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3140 BUG();
3141 }
3142 return 0;
3143 }
3144 #endif
3145
3146 static DEFINE_SPINLOCK(balancing);
3147
3148 /*
3149 * It checks each scheduling domain to see if it is due to be balanced,
3150 * and initiates a balancing operation if so.
3151 *
3152 * Balancing parameters are set up in arch_init_sched_domains.
3153 */
3154 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3155 {
3156 int balance = 1;
3157 struct rq *rq = cpu_rq(cpu);
3158 unsigned long interval;
3159 struct sched_domain *sd;
3160 /* Earliest time when we have to do rebalance again */
3161 unsigned long next_balance = jiffies + 60*HZ;
3162 int update_next_balance = 0;
3163
3164 for_each_domain(cpu, sd) {
3165 if (!(sd->flags & SD_LOAD_BALANCE))
3166 continue;
3167
3168 interval = sd->balance_interval;
3169 if (idle != CPU_IDLE)
3170 interval *= sd->busy_factor;
3171
3172 /* scale ms to jiffies */
3173 interval = msecs_to_jiffies(interval);
3174 if (unlikely(!interval))
3175 interval = 1;
3176 if (interval > HZ*NR_CPUS/10)
3177 interval = HZ*NR_CPUS/10;
3178
3179
3180 if (sd->flags & SD_SERIALIZE) {
3181 if (!spin_trylock(&balancing))
3182 goto out;
3183 }
3184
3185 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3186 if (load_balance(cpu, rq, sd, idle, &balance)) {
3187 /*
3188 * We've pulled tasks over so either we're no
3189 * longer idle, or one of our SMT siblings is
3190 * not idle.
3191 */
3192 idle = CPU_NOT_IDLE;
3193 }
3194 sd->last_balance = jiffies;
3195 }
3196 if (sd->flags & SD_SERIALIZE)
3197 spin_unlock(&balancing);
3198 out:
3199 if (time_after(next_balance, sd->last_balance + interval)) {
3200 next_balance = sd->last_balance + interval;
3201 update_next_balance = 1;
3202 }
3203
3204 /*
3205 * Stop the load balance at this level. There is another
3206 * CPU in our sched group which is doing load balancing more
3207 * actively.
3208 */
3209 if (!balance)
3210 break;
3211 }
3212
3213 /*
3214 * next_balance will be updated only when there is a need.
3215 * When the cpu is attached to null domain for ex, it will not be
3216 * updated.
3217 */
3218 if (likely(update_next_balance))
3219 rq->next_balance = next_balance;
3220 }
3221
3222 /*
3223 * run_rebalance_domains is triggered when needed from the scheduler tick.
3224 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3225 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3226 */
3227 static void run_rebalance_domains(struct softirq_action *h)
3228 {
3229 int this_cpu = smp_processor_id();
3230 struct rq *this_rq = cpu_rq(this_cpu);
3231 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3232 CPU_IDLE : CPU_NOT_IDLE;
3233
3234 rebalance_domains(this_cpu, idle);
3235
3236 #ifdef CONFIG_NO_HZ
3237 /*
3238 * If this cpu is the owner for idle load balancing, then do the
3239 * balancing on behalf of the other idle cpus whose ticks are
3240 * stopped.
3241 */
3242 if (this_rq->idle_at_tick &&
3243 atomic_read(&nohz.load_balancer) == this_cpu) {
3244 cpumask_t cpus = nohz.cpu_mask;
3245 struct rq *rq;
3246 int balance_cpu;
3247
3248 cpu_clear(this_cpu, cpus);
3249 for_each_cpu_mask(balance_cpu, cpus) {
3250 /*
3251 * If this cpu gets work to do, stop the load balancing
3252 * work being done for other cpus. Next load
3253 * balancing owner will pick it up.
3254 */
3255 if (need_resched())
3256 break;
3257
3258 rebalance_domains(balance_cpu, CPU_IDLE);
3259
3260 rq = cpu_rq(balance_cpu);
3261 if (time_after(this_rq->next_balance, rq->next_balance))
3262 this_rq->next_balance = rq->next_balance;
3263 }
3264 }
3265 #endif
3266 }
3267
3268 /*
3269 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3270 *
3271 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3272 * idle load balancing owner or decide to stop the periodic load balancing,
3273 * if the whole system is idle.
3274 */
3275 static inline void trigger_load_balance(struct rq *rq, int cpu)
3276 {
3277 #ifdef CONFIG_NO_HZ
3278 /*
3279 * If we were in the nohz mode recently and busy at the current
3280 * scheduler tick, then check if we need to nominate new idle
3281 * load balancer.
3282 */
3283 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3284 rq->in_nohz_recently = 0;
3285
3286 if (atomic_read(&nohz.load_balancer) == cpu) {
3287 cpu_clear(cpu, nohz.cpu_mask);
3288 atomic_set(&nohz.load_balancer, -1);
3289 }
3290
3291 if (atomic_read(&nohz.load_balancer) == -1) {
3292 /*
3293 * simple selection for now: Nominate the
3294 * first cpu in the nohz list to be the next
3295 * ilb owner.
3296 *
3297 * TBD: Traverse the sched domains and nominate
3298 * the nearest cpu in the nohz.cpu_mask.
3299 */
3300 int ilb = first_cpu(nohz.cpu_mask);
3301
3302 if (ilb != NR_CPUS)
3303 resched_cpu(ilb);
3304 }
3305 }
3306
3307 /*
3308 * If this cpu is idle and doing idle load balancing for all the
3309 * cpus with ticks stopped, is it time for that to stop?
3310 */
3311 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3312 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3313 resched_cpu(cpu);
3314 return;
3315 }
3316
3317 /*
3318 * If this cpu is idle and the idle load balancing is done by
3319 * someone else, then no need raise the SCHED_SOFTIRQ
3320 */
3321 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3322 cpu_isset(cpu, nohz.cpu_mask))
3323 return;
3324 #endif
3325 if (time_after_eq(jiffies, rq->next_balance))
3326 raise_softirq(SCHED_SOFTIRQ);
3327 }
3328
3329 #else /* CONFIG_SMP */
3330
3331 /*
3332 * on UP we do not need to balance between CPUs:
3333 */
3334 static inline void idle_balance(int cpu, struct rq *rq)
3335 {
3336 }
3337
3338 #endif
3339
3340 DEFINE_PER_CPU(struct kernel_stat, kstat);
3341
3342 EXPORT_PER_CPU_SYMBOL(kstat);
3343
3344 /*
3345 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3346 * that have not yet been banked in case the task is currently running.
3347 */
3348 unsigned long long task_sched_runtime(struct task_struct *p)
3349 {
3350 unsigned long flags;
3351 u64 ns, delta_exec;
3352 struct rq *rq;
3353
3354 rq = task_rq_lock(p, &flags);
3355 ns = p->se.sum_exec_runtime;
3356 if (task_current(rq, p)) {
3357 update_rq_clock(rq);
3358 delta_exec = rq->clock - p->se.exec_start;
3359 if ((s64)delta_exec > 0)
3360 ns += delta_exec;
3361 }
3362 task_rq_unlock(rq, &flags);
3363
3364 return ns;
3365 }
3366
3367 /*
3368 * Account user cpu time to a process.
3369 * @p: the process that the cpu time gets accounted to
3370 * @cputime: the cpu time spent in user space since the last update
3371 */
3372 void account_user_time(struct task_struct *p, cputime_t cputime)
3373 {
3374 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3375 cputime64_t tmp;
3376
3377 p->utime = cputime_add(p->utime, cputime);
3378
3379 /* Add user time to cpustat. */
3380 tmp = cputime_to_cputime64(cputime);
3381 if (TASK_NICE(p) > 0)
3382 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3383 else
3384 cpustat->user = cputime64_add(cpustat->user, tmp);
3385 }
3386
3387 /*
3388 * Account guest cpu time to a process.
3389 * @p: the process that the cpu time gets accounted to
3390 * @cputime: the cpu time spent in virtual machine since the last update
3391 */
3392 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3393 {
3394 cputime64_t tmp;
3395 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3396
3397 tmp = cputime_to_cputime64(cputime);
3398
3399 p->utime = cputime_add(p->utime, cputime);
3400 p->gtime = cputime_add(p->gtime, cputime);
3401
3402 cpustat->user = cputime64_add(cpustat->user, tmp);
3403 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3404 }
3405
3406 /*
3407 * Account scaled user cpu time to a process.
3408 * @p: the process that the cpu time gets accounted to
3409 * @cputime: the cpu time spent in user space since the last update
3410 */
3411 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3412 {
3413 p->utimescaled = cputime_add(p->utimescaled, cputime);
3414 }
3415
3416 /*
3417 * Account system cpu time to a process.
3418 * @p: the process that the cpu time gets accounted to
3419 * @hardirq_offset: the offset to subtract from hardirq_count()
3420 * @cputime: the cpu time spent in kernel space since the last update
3421 */
3422 void account_system_time(struct task_struct *p, int hardirq_offset,
3423 cputime_t cputime)
3424 {
3425 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3426 struct rq *rq = this_rq();
3427 cputime64_t tmp;
3428
3429 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3430 return account_guest_time(p, cputime);
3431
3432 p->stime = cputime_add(p->stime, cputime);
3433
3434 /* Add system time to cpustat. */
3435 tmp = cputime_to_cputime64(cputime);
3436 if (hardirq_count() - hardirq_offset)
3437 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3438 else if (softirq_count())
3439 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3440 else if (p != rq->idle)
3441 cpustat->system = cputime64_add(cpustat->system, tmp);
3442 else if (atomic_read(&rq->nr_iowait) > 0)
3443 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3444 else
3445 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3446 /* Account for system time used */
3447 acct_update_integrals(p);
3448 }
3449
3450 /*
3451 * Account scaled system cpu time to a process.
3452 * @p: the process that the cpu time gets accounted to
3453 * @hardirq_offset: the offset to subtract from hardirq_count()
3454 * @cputime: the cpu time spent in kernel space since the last update
3455 */
3456 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3457 {
3458 p->stimescaled = cputime_add(p->stimescaled, cputime);
3459 }
3460
3461 /*
3462 * Account for involuntary wait time.
3463 * @p: the process from which the cpu time has been stolen
3464 * @steal: the cpu time spent in involuntary wait
3465 */
3466 void account_steal_time(struct task_struct *p, cputime_t steal)
3467 {
3468 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3469 cputime64_t tmp = cputime_to_cputime64(steal);
3470 struct rq *rq = this_rq();
3471
3472 if (p == rq->idle) {
3473 p->stime = cputime_add(p->stime, steal);
3474 if (atomic_read(&rq->nr_iowait) > 0)
3475 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3476 else
3477 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3478 } else
3479 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3480 }
3481
3482 /*
3483 * This function gets called by the timer code, with HZ frequency.
3484 * We call it with interrupts disabled.
3485 *
3486 * It also gets called by the fork code, when changing the parent's
3487 * timeslices.
3488 */
3489 void scheduler_tick(void)
3490 {
3491 int cpu = smp_processor_id();
3492 struct rq *rq = cpu_rq(cpu);
3493 struct task_struct *curr = rq->curr;
3494 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3495
3496 spin_lock(&rq->lock);
3497 __update_rq_clock(rq);
3498 /*
3499 * Let rq->clock advance by at least TICK_NSEC:
3500 */
3501 if (unlikely(rq->clock < next_tick))
3502 rq->clock = next_tick;
3503 rq->tick_timestamp = rq->clock;
3504 update_cpu_load(rq);
3505 if (curr != rq->idle) /* FIXME: needed? */
3506 curr->sched_class->task_tick(rq, curr);
3507 spin_unlock(&rq->lock);
3508
3509 #ifdef CONFIG_SMP
3510 rq->idle_at_tick = idle_cpu(cpu);
3511 trigger_load_balance(rq, cpu);
3512 #endif
3513 }
3514
3515 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3516
3517 void fastcall add_preempt_count(int val)
3518 {
3519 /*
3520 * Underflow?
3521 */
3522 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3523 return;
3524 preempt_count() += val;
3525 /*
3526 * Spinlock count overflowing soon?
3527 */
3528 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3529 PREEMPT_MASK - 10);
3530 }
3531 EXPORT_SYMBOL(add_preempt_count);
3532
3533 void fastcall sub_preempt_count(int val)
3534 {
3535 /*
3536 * Underflow?
3537 */
3538 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3539 return;
3540 /*
3541 * Is the spinlock portion underflowing?
3542 */
3543 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3544 !(preempt_count() & PREEMPT_MASK)))
3545 return;
3546
3547 preempt_count() -= val;
3548 }
3549 EXPORT_SYMBOL(sub_preempt_count);
3550
3551 #endif
3552
3553 /*
3554 * Print scheduling while atomic bug:
3555 */
3556 static noinline void __schedule_bug(struct task_struct *prev)
3557 {
3558 struct pt_regs *regs = get_irq_regs();
3559
3560 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3561 prev->comm, prev->pid, preempt_count());
3562
3563 debug_show_held_locks(prev);
3564 if (irqs_disabled())
3565 print_irqtrace_events(prev);
3566
3567 if (regs)
3568 show_regs(regs);
3569 else
3570 dump_stack();
3571 }
3572
3573 /*
3574 * Various schedule()-time debugging checks and statistics:
3575 */
3576 static inline void schedule_debug(struct task_struct *prev)
3577 {
3578 /*
3579 * Test if we are atomic. Since do_exit() needs to call into
3580 * schedule() atomically, we ignore that path for now.
3581 * Otherwise, whine if we are scheduling when we should not be.
3582 */
3583 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3584 __schedule_bug(prev);
3585
3586 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3587
3588 schedstat_inc(this_rq(), sched_count);
3589 #ifdef CONFIG_SCHEDSTATS
3590 if (unlikely(prev->lock_depth >= 0)) {
3591 schedstat_inc(this_rq(), bkl_count);
3592 schedstat_inc(prev, sched_info.bkl_count);
3593 }
3594 #endif
3595 }
3596
3597 /*
3598 * Pick up the highest-prio task:
3599 */
3600 static inline struct task_struct *
3601 pick_next_task(struct rq *rq, struct task_struct *prev)
3602 {
3603 const struct sched_class *class;
3604 struct task_struct *p;
3605
3606 /*
3607 * Optimization: we know that if all tasks are in
3608 * the fair class we can call that function directly:
3609 */
3610 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3611 p = fair_sched_class.pick_next_task(rq);
3612 if (likely(p))
3613 return p;
3614 }
3615
3616 class = sched_class_highest;
3617 for ( ; ; ) {
3618 p = class->pick_next_task(rq);
3619 if (p)
3620 return p;
3621 /*
3622 * Will never be NULL as the idle class always
3623 * returns a non-NULL p:
3624 */
3625 class = class->next;
3626 }
3627 }
3628
3629 /*
3630 * schedule() is the main scheduler function.
3631 */
3632 asmlinkage void __sched schedule(void)
3633 {
3634 struct task_struct *prev, *next;
3635 long *switch_count;
3636 struct rq *rq;
3637 int cpu;
3638
3639 need_resched:
3640 preempt_disable();
3641 cpu = smp_processor_id();
3642 rq = cpu_rq(cpu);
3643 rcu_qsctr_inc(cpu);
3644 prev = rq->curr;
3645 switch_count = &prev->nivcsw;
3646
3647 release_kernel_lock(prev);
3648 need_resched_nonpreemptible:
3649
3650 schedule_debug(prev);
3651
3652 /*
3653 * Do the rq-clock update outside the rq lock:
3654 */
3655 local_irq_disable();
3656 __update_rq_clock(rq);
3657 spin_lock(&rq->lock);
3658 clear_tsk_need_resched(prev);
3659
3660 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3661 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3662 unlikely(signal_pending(prev)))) {
3663 prev->state = TASK_RUNNING;
3664 } else {
3665 deactivate_task(rq, prev, 1);
3666 }
3667 switch_count = &prev->nvcsw;
3668 }
3669
3670 if (unlikely(!rq->nr_running))
3671 idle_balance(cpu, rq);
3672
3673 prev->sched_class->put_prev_task(rq, prev);
3674 next = pick_next_task(rq, prev);
3675
3676 sched_info_switch(prev, next);
3677
3678 if (likely(prev != next)) {
3679 rq->nr_switches++;
3680 rq->curr = next;
3681 ++*switch_count;
3682
3683 context_switch(rq, prev, next); /* unlocks the rq */
3684 } else
3685 spin_unlock_irq(&rq->lock);
3686
3687 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3688 cpu = smp_processor_id();
3689 rq = cpu_rq(cpu);
3690 goto need_resched_nonpreemptible;
3691 }
3692 preempt_enable_no_resched();
3693 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3694 goto need_resched;
3695 }
3696 EXPORT_SYMBOL(schedule);
3697
3698 #ifdef CONFIG_PREEMPT
3699 /*
3700 * this is the entry point to schedule() from in-kernel preemption
3701 * off of preempt_enable. Kernel preemptions off return from interrupt
3702 * occur there and call schedule directly.
3703 */
3704 asmlinkage void __sched preempt_schedule(void)
3705 {
3706 struct thread_info *ti = current_thread_info();
3707 #ifdef CONFIG_PREEMPT_BKL
3708 struct task_struct *task = current;
3709 int saved_lock_depth;
3710 #endif
3711 /*
3712 * If there is a non-zero preempt_count or interrupts are disabled,
3713 * we do not want to preempt the current task. Just return..
3714 */
3715 if (likely(ti->preempt_count || irqs_disabled()))
3716 return;
3717
3718 do {
3719 add_preempt_count(PREEMPT_ACTIVE);
3720
3721 /*
3722 * We keep the big kernel semaphore locked, but we
3723 * clear ->lock_depth so that schedule() doesnt
3724 * auto-release the semaphore:
3725 */
3726 #ifdef CONFIG_PREEMPT_BKL
3727 saved_lock_depth = task->lock_depth;
3728 task->lock_depth = -1;
3729 #endif
3730 schedule();
3731 #ifdef CONFIG_PREEMPT_BKL
3732 task->lock_depth = saved_lock_depth;
3733 #endif
3734 sub_preempt_count(PREEMPT_ACTIVE);
3735
3736 /*
3737 * Check again in case we missed a preemption opportunity
3738 * between schedule and now.
3739 */
3740 barrier();
3741 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3742 }
3743 EXPORT_SYMBOL(preempt_schedule);
3744
3745 /*
3746 * this is the entry point to schedule() from kernel preemption
3747 * off of irq context.
3748 * Note, that this is called and return with irqs disabled. This will
3749 * protect us against recursive calling from irq.
3750 */
3751 asmlinkage void __sched preempt_schedule_irq(void)
3752 {
3753 struct thread_info *ti = current_thread_info();
3754 #ifdef CONFIG_PREEMPT_BKL
3755 struct task_struct *task = current;
3756 int saved_lock_depth;
3757 #endif
3758 /* Catch callers which need to be fixed */
3759 BUG_ON(ti->preempt_count || !irqs_disabled());
3760
3761 do {
3762 add_preempt_count(PREEMPT_ACTIVE);
3763
3764 /*
3765 * We keep the big kernel semaphore locked, but we
3766 * clear ->lock_depth so that schedule() doesnt
3767 * auto-release the semaphore:
3768 */
3769 #ifdef CONFIG_PREEMPT_BKL
3770 saved_lock_depth = task->lock_depth;
3771 task->lock_depth = -1;
3772 #endif
3773 local_irq_enable();
3774 schedule();
3775 local_irq_disable();
3776 #ifdef CONFIG_PREEMPT_BKL
3777 task->lock_depth = saved_lock_depth;
3778 #endif
3779 sub_preempt_count(PREEMPT_ACTIVE);
3780
3781 /*
3782 * Check again in case we missed a preemption opportunity
3783 * between schedule and now.
3784 */
3785 barrier();
3786 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3787 }
3788
3789 #endif /* CONFIG_PREEMPT */
3790
3791 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3792 void *key)
3793 {
3794 return try_to_wake_up(curr->private, mode, sync);
3795 }
3796 EXPORT_SYMBOL(default_wake_function);
3797
3798 /*
3799 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3800 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3801 * number) then we wake all the non-exclusive tasks and one exclusive task.
3802 *
3803 * There are circumstances in which we can try to wake a task which has already
3804 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3805 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3806 */
3807 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3808 int nr_exclusive, int sync, void *key)
3809 {
3810 wait_queue_t *curr, *next;
3811
3812 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3813 unsigned flags = curr->flags;
3814
3815 if (curr->func(curr, mode, sync, key) &&
3816 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3817 break;
3818 }
3819 }
3820
3821 /**
3822 * __wake_up - wake up threads blocked on a waitqueue.
3823 * @q: the waitqueue
3824 * @mode: which threads
3825 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3826 * @key: is directly passed to the wakeup function
3827 */
3828 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3829 int nr_exclusive, void *key)
3830 {
3831 unsigned long flags;
3832
3833 spin_lock_irqsave(&q->lock, flags);
3834 __wake_up_common(q, mode, nr_exclusive, 0, key);
3835 spin_unlock_irqrestore(&q->lock, flags);
3836 }
3837 EXPORT_SYMBOL(__wake_up);
3838
3839 /*
3840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3841 */
3842 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3843 {
3844 __wake_up_common(q, mode, 1, 0, NULL);
3845 }
3846
3847 /**
3848 * __wake_up_sync - wake up threads blocked on a waitqueue.
3849 * @q: the waitqueue
3850 * @mode: which threads
3851 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3852 *
3853 * The sync wakeup differs that the waker knows that it will schedule
3854 * away soon, so while the target thread will be woken up, it will not
3855 * be migrated to another CPU - ie. the two threads are 'synchronized'
3856 * with each other. This can prevent needless bouncing between CPUs.
3857 *
3858 * On UP it can prevent extra preemption.
3859 */
3860 void fastcall
3861 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3862 {
3863 unsigned long flags;
3864 int sync = 1;
3865
3866 if (unlikely(!q))
3867 return;
3868
3869 if (unlikely(!nr_exclusive))
3870 sync = 0;
3871
3872 spin_lock_irqsave(&q->lock, flags);
3873 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3874 spin_unlock_irqrestore(&q->lock, flags);
3875 }
3876 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3877
3878 void complete(struct completion *x)
3879 {
3880 unsigned long flags;
3881
3882 spin_lock_irqsave(&x->wait.lock, flags);
3883 x->done++;
3884 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3885 1, 0, NULL);
3886 spin_unlock_irqrestore(&x->wait.lock, flags);
3887 }
3888 EXPORT_SYMBOL(complete);
3889
3890 void complete_all(struct completion *x)
3891 {
3892 unsigned long flags;
3893
3894 spin_lock_irqsave(&x->wait.lock, flags);
3895 x->done += UINT_MAX/2;
3896 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3897 0, 0, NULL);
3898 spin_unlock_irqrestore(&x->wait.lock, flags);
3899 }
3900 EXPORT_SYMBOL(complete_all);
3901
3902 static inline long __sched
3903 do_wait_for_common(struct completion *x, long timeout, int state)
3904 {
3905 if (!x->done) {
3906 DECLARE_WAITQUEUE(wait, current);
3907
3908 wait.flags |= WQ_FLAG_EXCLUSIVE;
3909 __add_wait_queue_tail(&x->wait, &wait);
3910 do {
3911 if (state == TASK_INTERRUPTIBLE &&
3912 signal_pending(current)) {
3913 __remove_wait_queue(&x->wait, &wait);
3914 return -ERESTARTSYS;
3915 }
3916 __set_current_state(state);
3917 spin_unlock_irq(&x->wait.lock);
3918 timeout = schedule_timeout(timeout);
3919 spin_lock_irq(&x->wait.lock);
3920 if (!timeout) {
3921 __remove_wait_queue(&x->wait, &wait);
3922 return timeout;
3923 }
3924 } while (!x->done);
3925 __remove_wait_queue(&x->wait, &wait);
3926 }
3927 x->done--;
3928 return timeout;
3929 }
3930
3931 static long __sched
3932 wait_for_common(struct completion *x, long timeout, int state)
3933 {
3934 might_sleep();
3935
3936 spin_lock_irq(&x->wait.lock);
3937 timeout = do_wait_for_common(x, timeout, state);
3938 spin_unlock_irq(&x->wait.lock);
3939 return timeout;
3940 }
3941
3942 void __sched wait_for_completion(struct completion *x)
3943 {
3944 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3945 }
3946 EXPORT_SYMBOL(wait_for_completion);
3947
3948 unsigned long __sched
3949 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3950 {
3951 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3952 }
3953 EXPORT_SYMBOL(wait_for_completion_timeout);
3954
3955 int __sched wait_for_completion_interruptible(struct completion *x)
3956 {
3957 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3958 if (t == -ERESTARTSYS)
3959 return t;
3960 return 0;
3961 }
3962 EXPORT_SYMBOL(wait_for_completion_interruptible);
3963
3964 unsigned long __sched
3965 wait_for_completion_interruptible_timeout(struct completion *x,
3966 unsigned long timeout)
3967 {
3968 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3969 }
3970 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3971
3972 static long __sched
3973 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3974 {
3975 unsigned long flags;
3976 wait_queue_t wait;
3977
3978 init_waitqueue_entry(&wait, current);
3979
3980 __set_current_state(state);
3981
3982 spin_lock_irqsave(&q->lock, flags);
3983 __add_wait_queue(q, &wait);
3984 spin_unlock(&q->lock);
3985 timeout = schedule_timeout(timeout);
3986 spin_lock_irq(&q->lock);
3987 __remove_wait_queue(q, &wait);
3988 spin_unlock_irqrestore(&q->lock, flags);
3989
3990 return timeout;
3991 }
3992
3993 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3994 {
3995 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3996 }
3997 EXPORT_SYMBOL(interruptible_sleep_on);
3998
3999 long __sched
4000 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4001 {
4002 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4003 }
4004 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4005
4006 void __sched sleep_on(wait_queue_head_t *q)
4007 {
4008 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4009 }
4010 EXPORT_SYMBOL(sleep_on);
4011
4012 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4013 {
4014 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4015 }
4016 EXPORT_SYMBOL(sleep_on_timeout);
4017
4018 #ifdef CONFIG_RT_MUTEXES
4019
4020 /*
4021 * rt_mutex_setprio - set the current priority of a task
4022 * @p: task
4023 * @prio: prio value (kernel-internal form)
4024 *
4025 * This function changes the 'effective' priority of a task. It does
4026 * not touch ->normal_prio like __setscheduler().
4027 *
4028 * Used by the rt_mutex code to implement priority inheritance logic.
4029 */
4030 void rt_mutex_setprio(struct task_struct *p, int prio)
4031 {
4032 unsigned long flags;
4033 int oldprio, on_rq, running;
4034 struct rq *rq;
4035
4036 BUG_ON(prio < 0 || prio > MAX_PRIO);
4037
4038 rq = task_rq_lock(p, &flags);
4039 update_rq_clock(rq);
4040
4041 oldprio = p->prio;
4042 on_rq = p->se.on_rq;
4043 running = task_current(rq, p);
4044 if (on_rq) {
4045 dequeue_task(rq, p, 0);
4046 if (running)
4047 p->sched_class->put_prev_task(rq, p);
4048 }
4049
4050 if (rt_prio(prio))
4051 p->sched_class = &rt_sched_class;
4052 else
4053 p->sched_class = &fair_sched_class;
4054
4055 p->prio = prio;
4056
4057 if (on_rq) {
4058 if (running)
4059 p->sched_class->set_curr_task(rq);
4060 enqueue_task(rq, p, 0);
4061 /*
4062 * Reschedule if we are currently running on this runqueue and
4063 * our priority decreased, or if we are not currently running on
4064 * this runqueue and our priority is higher than the current's
4065 */
4066 if (running) {
4067 if (p->prio > oldprio)
4068 resched_task(rq->curr);
4069 } else {
4070 check_preempt_curr(rq, p);
4071 }
4072 }
4073 task_rq_unlock(rq, &flags);
4074 }
4075
4076 #endif
4077
4078 void set_user_nice(struct task_struct *p, long nice)
4079 {
4080 int old_prio, delta, on_rq;
4081 unsigned long flags;
4082 struct rq *rq;
4083
4084 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4085 return;
4086 /*
4087 * We have to be careful, if called from sys_setpriority(),
4088 * the task might be in the middle of scheduling on another CPU.
4089 */
4090 rq = task_rq_lock(p, &flags);
4091 update_rq_clock(rq);
4092 /*
4093 * The RT priorities are set via sched_setscheduler(), but we still
4094 * allow the 'normal' nice value to be set - but as expected
4095 * it wont have any effect on scheduling until the task is
4096 * SCHED_FIFO/SCHED_RR:
4097 */
4098 if (task_has_rt_policy(p)) {
4099 p->static_prio = NICE_TO_PRIO(nice);
4100 goto out_unlock;
4101 }
4102 on_rq = p->se.on_rq;
4103 if (on_rq)
4104 dequeue_task(rq, p, 0);
4105
4106 p->static_prio = NICE_TO_PRIO(nice);
4107 set_load_weight(p);
4108 old_prio = p->prio;
4109 p->prio = effective_prio(p);
4110 delta = p->prio - old_prio;
4111
4112 if (on_rq) {
4113 enqueue_task(rq, p, 0);
4114 /*
4115 * If the task increased its priority or is running and
4116 * lowered its priority, then reschedule its CPU:
4117 */
4118 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4119 resched_task(rq->curr);
4120 }
4121 out_unlock:
4122 task_rq_unlock(rq, &flags);
4123 }
4124 EXPORT_SYMBOL(set_user_nice);
4125
4126 /*
4127 * can_nice - check if a task can reduce its nice value
4128 * @p: task
4129 * @nice: nice value
4130 */
4131 int can_nice(const struct task_struct *p, const int nice)
4132 {
4133 /* convert nice value [19,-20] to rlimit style value [1,40] */
4134 int nice_rlim = 20 - nice;
4135
4136 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4137 capable(CAP_SYS_NICE));
4138 }
4139
4140 #ifdef __ARCH_WANT_SYS_NICE
4141
4142 /*
4143 * sys_nice - change the priority of the current process.
4144 * @increment: priority increment
4145 *
4146 * sys_setpriority is a more generic, but much slower function that
4147 * does similar things.
4148 */
4149 asmlinkage long sys_nice(int increment)
4150 {
4151 long nice, retval;
4152
4153 /*
4154 * Setpriority might change our priority at the same moment.
4155 * We don't have to worry. Conceptually one call occurs first
4156 * and we have a single winner.
4157 */
4158 if (increment < -40)
4159 increment = -40;
4160 if (increment > 40)
4161 increment = 40;
4162
4163 nice = PRIO_TO_NICE(current->static_prio) + increment;
4164 if (nice < -20)
4165 nice = -20;
4166 if (nice > 19)
4167 nice = 19;
4168
4169 if (increment < 0 && !can_nice(current, nice))
4170 return -EPERM;
4171
4172 retval = security_task_setnice(current, nice);
4173 if (retval)
4174 return retval;
4175
4176 set_user_nice(current, nice);
4177 return 0;
4178 }
4179
4180 #endif
4181
4182 /**
4183 * task_prio - return the priority value of a given task.
4184 * @p: the task in question.
4185 *
4186 * This is the priority value as seen by users in /proc.
4187 * RT tasks are offset by -200. Normal tasks are centered
4188 * around 0, value goes from -16 to +15.
4189 */
4190 int task_prio(const struct task_struct *p)
4191 {
4192 return p->prio - MAX_RT_PRIO;
4193 }
4194
4195 /**
4196 * task_nice - return the nice value of a given task.
4197 * @p: the task in question.
4198 */
4199 int task_nice(const struct task_struct *p)
4200 {
4201 return TASK_NICE(p);
4202 }
4203 EXPORT_SYMBOL_GPL(task_nice);
4204
4205 /**
4206 * idle_cpu - is a given cpu idle currently?
4207 * @cpu: the processor in question.
4208 */
4209 int idle_cpu(int cpu)
4210 {
4211 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4212 }
4213
4214 /**
4215 * idle_task - return the idle task for a given cpu.
4216 * @cpu: the processor in question.
4217 */
4218 struct task_struct *idle_task(int cpu)
4219 {
4220 return cpu_rq(cpu)->idle;
4221 }
4222
4223 /**
4224 * find_process_by_pid - find a process with a matching PID value.
4225 * @pid: the pid in question.
4226 */
4227 static struct task_struct *find_process_by_pid(pid_t pid)
4228 {
4229 return pid ? find_task_by_vpid(pid) : current;
4230 }
4231
4232 /* Actually do priority change: must hold rq lock. */
4233 static void
4234 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4235 {
4236 BUG_ON(p->se.on_rq);
4237
4238 p->policy = policy;
4239 switch (p->policy) {
4240 case SCHED_NORMAL:
4241 case SCHED_BATCH:
4242 case SCHED_IDLE:
4243 p->sched_class = &fair_sched_class;
4244 break;
4245 case SCHED_FIFO:
4246 case SCHED_RR:
4247 p->sched_class = &rt_sched_class;
4248 break;
4249 }
4250
4251 p->rt_priority = prio;
4252 p->normal_prio = normal_prio(p);
4253 /* we are holding p->pi_lock already */
4254 p->prio = rt_mutex_getprio(p);
4255 set_load_weight(p);
4256 }
4257
4258 /**
4259 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4260 * @p: the task in question.
4261 * @policy: new policy.
4262 * @param: structure containing the new RT priority.
4263 *
4264 * NOTE that the task may be already dead.
4265 */
4266 int sched_setscheduler(struct task_struct *p, int policy,
4267 struct sched_param *param)
4268 {
4269 int retval, oldprio, oldpolicy = -1, on_rq, running;
4270 unsigned long flags;
4271 struct rq *rq;
4272
4273 /* may grab non-irq protected spin_locks */
4274 BUG_ON(in_interrupt());
4275 recheck:
4276 /* double check policy once rq lock held */
4277 if (policy < 0)
4278 policy = oldpolicy = p->policy;
4279 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4280 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4281 policy != SCHED_IDLE)
4282 return -EINVAL;
4283 /*
4284 * Valid priorities for SCHED_FIFO and SCHED_RR are
4285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4286 * SCHED_BATCH and SCHED_IDLE is 0.
4287 */
4288 if (param->sched_priority < 0 ||
4289 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4290 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4291 return -EINVAL;
4292 if (rt_policy(policy) != (param->sched_priority != 0))
4293 return -EINVAL;
4294
4295 /*
4296 * Allow unprivileged RT tasks to decrease priority:
4297 */
4298 if (!capable(CAP_SYS_NICE)) {
4299 if (rt_policy(policy)) {
4300 unsigned long rlim_rtprio;
4301
4302 if (!lock_task_sighand(p, &flags))
4303 return -ESRCH;
4304 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4305 unlock_task_sighand(p, &flags);
4306
4307 /* can't set/change the rt policy */
4308 if (policy != p->policy && !rlim_rtprio)
4309 return -EPERM;
4310
4311 /* can't increase priority */
4312 if (param->sched_priority > p->rt_priority &&
4313 param->sched_priority > rlim_rtprio)
4314 return -EPERM;
4315 }
4316 /*
4317 * Like positive nice levels, dont allow tasks to
4318 * move out of SCHED_IDLE either:
4319 */
4320 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4321 return -EPERM;
4322
4323 /* can't change other user's priorities */
4324 if ((current->euid != p->euid) &&
4325 (current->euid != p->uid))
4326 return -EPERM;
4327 }
4328
4329 retval = security_task_setscheduler(p, policy, param);
4330 if (retval)
4331 return retval;
4332 /*
4333 * make sure no PI-waiters arrive (or leave) while we are
4334 * changing the priority of the task:
4335 */
4336 spin_lock_irqsave(&p->pi_lock, flags);
4337 /*
4338 * To be able to change p->policy safely, the apropriate
4339 * runqueue lock must be held.
4340 */
4341 rq = __task_rq_lock(p);
4342 /* recheck policy now with rq lock held */
4343 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4344 policy = oldpolicy = -1;
4345 __task_rq_unlock(rq);
4346 spin_unlock_irqrestore(&p->pi_lock, flags);
4347 goto recheck;
4348 }
4349 update_rq_clock(rq);
4350 on_rq = p->se.on_rq;
4351 running = task_current(rq, p);
4352 if (on_rq) {
4353 deactivate_task(rq, p, 0);
4354 if (running)
4355 p->sched_class->put_prev_task(rq, p);
4356 }
4357
4358 oldprio = p->prio;
4359 __setscheduler(rq, p, policy, param->sched_priority);
4360
4361 if (on_rq) {
4362 if (running)
4363 p->sched_class->set_curr_task(rq);
4364 activate_task(rq, p, 0);
4365 /*
4366 * Reschedule if we are currently running on this runqueue and
4367 * our priority decreased, or if we are not currently running on
4368 * this runqueue and our priority is higher than the current's
4369 */
4370 if (running) {
4371 if (p->prio > oldprio)
4372 resched_task(rq->curr);
4373 } else {
4374 check_preempt_curr(rq, p);
4375 }
4376 }
4377 __task_rq_unlock(rq);
4378 spin_unlock_irqrestore(&p->pi_lock, flags);
4379
4380 rt_mutex_adjust_pi(p);
4381
4382 return 0;
4383 }
4384 EXPORT_SYMBOL_GPL(sched_setscheduler);
4385
4386 static int
4387 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4388 {
4389 struct sched_param lparam;
4390 struct task_struct *p;
4391 int retval;
4392
4393 if (!param || pid < 0)
4394 return -EINVAL;
4395 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4396 return -EFAULT;
4397
4398 rcu_read_lock();
4399 retval = -ESRCH;
4400 p = find_process_by_pid(pid);
4401 if (p != NULL)
4402 retval = sched_setscheduler(p, policy, &lparam);
4403 rcu_read_unlock();
4404
4405 return retval;
4406 }
4407
4408 /**
4409 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4410 * @pid: the pid in question.
4411 * @policy: new policy.
4412 * @param: structure containing the new RT priority.
4413 */
4414 asmlinkage long
4415 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4416 {
4417 /* negative values for policy are not valid */
4418 if (policy < 0)
4419 return -EINVAL;
4420
4421 return do_sched_setscheduler(pid, policy, param);
4422 }
4423
4424 /**
4425 * sys_sched_setparam - set/change the RT priority of a thread
4426 * @pid: the pid in question.
4427 * @param: structure containing the new RT priority.
4428 */
4429 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4430 {
4431 return do_sched_setscheduler(pid, -1, param);
4432 }
4433
4434 /**
4435 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4436 * @pid: the pid in question.
4437 */
4438 asmlinkage long sys_sched_getscheduler(pid_t pid)
4439 {
4440 struct task_struct *p;
4441 int retval;
4442
4443 if (pid < 0)
4444 return -EINVAL;
4445
4446 retval = -ESRCH;
4447 read_lock(&tasklist_lock);
4448 p = find_process_by_pid(pid);
4449 if (p) {
4450 retval = security_task_getscheduler(p);
4451 if (!retval)
4452 retval = p->policy;
4453 }
4454 read_unlock(&tasklist_lock);
4455 return retval;
4456 }
4457
4458 /**
4459 * sys_sched_getscheduler - get the RT priority of a thread
4460 * @pid: the pid in question.
4461 * @param: structure containing the RT priority.
4462 */
4463 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4464 {
4465 struct sched_param lp;
4466 struct task_struct *p;
4467 int retval;
4468
4469 if (!param || pid < 0)
4470 return -EINVAL;
4471
4472 read_lock(&tasklist_lock);
4473 p = find_process_by_pid(pid);
4474 retval = -ESRCH;
4475 if (!p)
4476 goto out_unlock;
4477
4478 retval = security_task_getscheduler(p);
4479 if (retval)
4480 goto out_unlock;
4481
4482 lp.sched_priority = p->rt_priority;
4483 read_unlock(&tasklist_lock);
4484
4485 /*
4486 * This one might sleep, we cannot do it with a spinlock held ...
4487 */
4488 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4489
4490 return retval;
4491
4492 out_unlock:
4493 read_unlock(&tasklist_lock);
4494 return retval;
4495 }
4496
4497 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4498 {
4499 cpumask_t cpus_allowed;
4500 struct task_struct *p;
4501 int retval;
4502
4503 mutex_lock(&sched_hotcpu_mutex);
4504 read_lock(&tasklist_lock);
4505
4506 p = find_process_by_pid(pid);
4507 if (!p) {
4508 read_unlock(&tasklist_lock);
4509 mutex_unlock(&sched_hotcpu_mutex);
4510 return -ESRCH;
4511 }
4512
4513 /*
4514 * It is not safe to call set_cpus_allowed with the
4515 * tasklist_lock held. We will bump the task_struct's
4516 * usage count and then drop tasklist_lock.
4517 */
4518 get_task_struct(p);
4519 read_unlock(&tasklist_lock);
4520
4521 retval = -EPERM;
4522 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4523 !capable(CAP_SYS_NICE))
4524 goto out_unlock;
4525
4526 retval = security_task_setscheduler(p, 0, NULL);
4527 if (retval)
4528 goto out_unlock;
4529
4530 cpus_allowed = cpuset_cpus_allowed(p);
4531 cpus_and(new_mask, new_mask, cpus_allowed);
4532 again:
4533 retval = set_cpus_allowed(p, new_mask);
4534
4535 if (!retval) {
4536 cpus_allowed = cpuset_cpus_allowed(p);
4537 if (!cpus_subset(new_mask, cpus_allowed)) {
4538 /*
4539 * We must have raced with a concurrent cpuset
4540 * update. Just reset the cpus_allowed to the
4541 * cpuset's cpus_allowed
4542 */
4543 new_mask = cpus_allowed;
4544 goto again;
4545 }
4546 }
4547 out_unlock:
4548 put_task_struct(p);
4549 mutex_unlock(&sched_hotcpu_mutex);
4550 return retval;
4551 }
4552
4553 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4554 cpumask_t *new_mask)
4555 {
4556 if (len < sizeof(cpumask_t)) {
4557 memset(new_mask, 0, sizeof(cpumask_t));
4558 } else if (len > sizeof(cpumask_t)) {
4559 len = sizeof(cpumask_t);
4560 }
4561 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4562 }
4563
4564 /**
4565 * sys_sched_setaffinity - set the cpu affinity of a process
4566 * @pid: pid of the process
4567 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4568 * @user_mask_ptr: user-space pointer to the new cpu mask
4569 */
4570 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4571 unsigned long __user *user_mask_ptr)
4572 {
4573 cpumask_t new_mask;
4574 int retval;
4575
4576 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4577 if (retval)
4578 return retval;
4579
4580 return sched_setaffinity(pid, new_mask);
4581 }
4582
4583 /*
4584 * Represents all cpu's present in the system
4585 * In systems capable of hotplug, this map could dynamically grow
4586 * as new cpu's are detected in the system via any platform specific
4587 * method, such as ACPI for e.g.
4588 */
4589
4590 cpumask_t cpu_present_map __read_mostly;
4591 EXPORT_SYMBOL(cpu_present_map);
4592
4593 #ifndef CONFIG_SMP
4594 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4595 EXPORT_SYMBOL(cpu_online_map);
4596
4597 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4598 EXPORT_SYMBOL(cpu_possible_map);
4599 #endif
4600
4601 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4602 {
4603 struct task_struct *p;
4604 int retval;
4605
4606 mutex_lock(&sched_hotcpu_mutex);
4607 read_lock(&tasklist_lock);
4608
4609 retval = -ESRCH;
4610 p = find_process_by_pid(pid);
4611 if (!p)
4612 goto out_unlock;
4613
4614 retval = security_task_getscheduler(p);
4615 if (retval)
4616 goto out_unlock;
4617
4618 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4619
4620 out_unlock:
4621 read_unlock(&tasklist_lock);
4622 mutex_unlock(&sched_hotcpu_mutex);
4623
4624 return retval;
4625 }
4626
4627 /**
4628 * sys_sched_getaffinity - get the cpu affinity of a process
4629 * @pid: pid of the process
4630 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4631 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4632 */
4633 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4634 unsigned long __user *user_mask_ptr)
4635 {
4636 int ret;
4637 cpumask_t mask;
4638
4639 if (len < sizeof(cpumask_t))
4640 return -EINVAL;
4641
4642 ret = sched_getaffinity(pid, &mask);
4643 if (ret < 0)
4644 return ret;
4645
4646 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4647 return -EFAULT;
4648
4649 return sizeof(cpumask_t);
4650 }
4651
4652 /**
4653 * sys_sched_yield - yield the current processor to other threads.
4654 *
4655 * This function yields the current CPU to other tasks. If there are no
4656 * other threads running on this CPU then this function will return.
4657 */
4658 asmlinkage long sys_sched_yield(void)
4659 {
4660 struct rq *rq = this_rq_lock();
4661
4662 schedstat_inc(rq, yld_count);
4663 current->sched_class->yield_task(rq);
4664
4665 /*
4666 * Since we are going to call schedule() anyway, there's
4667 * no need to preempt or enable interrupts:
4668 */
4669 __release(rq->lock);
4670 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4671 _raw_spin_unlock(&rq->lock);
4672 preempt_enable_no_resched();
4673
4674 schedule();
4675
4676 return 0;
4677 }
4678
4679 static void __cond_resched(void)
4680 {
4681 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4682 __might_sleep(__FILE__, __LINE__);
4683 #endif
4684 /*
4685 * The BKS might be reacquired before we have dropped
4686 * PREEMPT_ACTIVE, which could trigger a second
4687 * cond_resched() call.
4688 */
4689 do {
4690 add_preempt_count(PREEMPT_ACTIVE);
4691 schedule();
4692 sub_preempt_count(PREEMPT_ACTIVE);
4693 } while (need_resched());
4694 }
4695
4696 int __sched cond_resched(void)
4697 {
4698 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4699 system_state == SYSTEM_RUNNING) {
4700 __cond_resched();
4701 return 1;
4702 }
4703 return 0;
4704 }
4705 EXPORT_SYMBOL(cond_resched);
4706
4707 /*
4708 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4709 * call schedule, and on return reacquire the lock.
4710 *
4711 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4712 * operations here to prevent schedule() from being called twice (once via
4713 * spin_unlock(), once by hand).
4714 */
4715 int cond_resched_lock(spinlock_t *lock)
4716 {
4717 int ret = 0;
4718
4719 if (need_lockbreak(lock)) {
4720 spin_unlock(lock);
4721 cpu_relax();
4722 ret = 1;
4723 spin_lock(lock);
4724 }
4725 if (need_resched() && system_state == SYSTEM_RUNNING) {
4726 spin_release(&lock->dep_map, 1, _THIS_IP_);
4727 _raw_spin_unlock(lock);
4728 preempt_enable_no_resched();
4729 __cond_resched();
4730 ret = 1;
4731 spin_lock(lock);
4732 }
4733 return ret;
4734 }
4735 EXPORT_SYMBOL(cond_resched_lock);
4736
4737 int __sched cond_resched_softirq(void)
4738 {
4739 BUG_ON(!in_softirq());
4740
4741 if (need_resched() && system_state == SYSTEM_RUNNING) {
4742 local_bh_enable();
4743 __cond_resched();
4744 local_bh_disable();
4745 return 1;
4746 }
4747 return 0;
4748 }
4749 EXPORT_SYMBOL(cond_resched_softirq);
4750
4751 /**
4752 * yield - yield the current processor to other threads.
4753 *
4754 * This is a shortcut for kernel-space yielding - it marks the
4755 * thread runnable and calls sys_sched_yield().
4756 */
4757 void __sched yield(void)
4758 {
4759 set_current_state(TASK_RUNNING);
4760 sys_sched_yield();
4761 }
4762 EXPORT_SYMBOL(yield);
4763
4764 /*
4765 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4766 * that process accounting knows that this is a task in IO wait state.
4767 *
4768 * But don't do that if it is a deliberate, throttling IO wait (this task
4769 * has set its backing_dev_info: the queue against which it should throttle)
4770 */
4771 void __sched io_schedule(void)
4772 {
4773 struct rq *rq = &__raw_get_cpu_var(runqueues);
4774
4775 delayacct_blkio_start();
4776 atomic_inc(&rq->nr_iowait);
4777 schedule();
4778 atomic_dec(&rq->nr_iowait);
4779 delayacct_blkio_end();
4780 }
4781 EXPORT_SYMBOL(io_schedule);
4782
4783 long __sched io_schedule_timeout(long timeout)
4784 {
4785 struct rq *rq = &__raw_get_cpu_var(runqueues);
4786 long ret;
4787
4788 delayacct_blkio_start();
4789 atomic_inc(&rq->nr_iowait);
4790 ret = schedule_timeout(timeout);
4791 atomic_dec(&rq->nr_iowait);
4792 delayacct_blkio_end();
4793 return ret;
4794 }
4795
4796 /**
4797 * sys_sched_get_priority_max - return maximum RT priority.
4798 * @policy: scheduling class.
4799 *
4800 * this syscall returns the maximum rt_priority that can be used
4801 * by a given scheduling class.
4802 */
4803 asmlinkage long sys_sched_get_priority_max(int policy)
4804 {
4805 int ret = -EINVAL;
4806
4807 switch (policy) {
4808 case SCHED_FIFO:
4809 case SCHED_RR:
4810 ret = MAX_USER_RT_PRIO-1;
4811 break;
4812 case SCHED_NORMAL:
4813 case SCHED_BATCH:
4814 case SCHED_IDLE:
4815 ret = 0;
4816 break;
4817 }
4818 return ret;
4819 }
4820
4821 /**
4822 * sys_sched_get_priority_min - return minimum RT priority.
4823 * @policy: scheduling class.
4824 *
4825 * this syscall returns the minimum rt_priority that can be used
4826 * by a given scheduling class.
4827 */
4828 asmlinkage long sys_sched_get_priority_min(int policy)
4829 {
4830 int ret = -EINVAL;
4831
4832 switch (policy) {
4833 case SCHED_FIFO:
4834 case SCHED_RR:
4835 ret = 1;
4836 break;
4837 case SCHED_NORMAL:
4838 case SCHED_BATCH:
4839 case SCHED_IDLE:
4840 ret = 0;
4841 }
4842 return ret;
4843 }
4844
4845 /**
4846 * sys_sched_rr_get_interval - return the default timeslice of a process.
4847 * @pid: pid of the process.
4848 * @interval: userspace pointer to the timeslice value.
4849 *
4850 * this syscall writes the default timeslice value of a given process
4851 * into the user-space timespec buffer. A value of '0' means infinity.
4852 */
4853 asmlinkage
4854 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4855 {
4856 struct task_struct *p;
4857 unsigned int time_slice;
4858 int retval;
4859 struct timespec t;
4860
4861 if (pid < 0)
4862 return -EINVAL;
4863
4864 retval = -ESRCH;
4865 read_lock(&tasklist_lock);
4866 p = find_process_by_pid(pid);
4867 if (!p)
4868 goto out_unlock;
4869
4870 retval = security_task_getscheduler(p);
4871 if (retval)
4872 goto out_unlock;
4873
4874 /*
4875 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4876 * tasks that are on an otherwise idle runqueue:
4877 */
4878 time_slice = 0;
4879 if (p->policy == SCHED_RR) {
4880 time_slice = DEF_TIMESLICE;
4881 } else {
4882 struct sched_entity *se = &p->se;
4883 unsigned long flags;
4884 struct rq *rq;
4885
4886 rq = task_rq_lock(p, &flags);
4887 if (rq->cfs.load.weight)
4888 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4889 task_rq_unlock(rq, &flags);
4890 }
4891 read_unlock(&tasklist_lock);
4892 jiffies_to_timespec(time_slice, &t);
4893 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4894 return retval;
4895
4896 out_unlock:
4897 read_unlock(&tasklist_lock);
4898 return retval;
4899 }
4900
4901 static const char stat_nam[] = "RSDTtZX";
4902
4903 static void show_task(struct task_struct *p)
4904 {
4905 unsigned long free = 0;
4906 unsigned state;
4907
4908 state = p->state ? __ffs(p->state) + 1 : 0;
4909 printk(KERN_INFO "%-13.13s %c", p->comm,
4910 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4911 #if BITS_PER_LONG == 32
4912 if (state == TASK_RUNNING)
4913 printk(KERN_CONT " running ");
4914 else
4915 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4916 #else
4917 if (state == TASK_RUNNING)
4918 printk(KERN_CONT " running task ");
4919 else
4920 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4921 #endif
4922 #ifdef CONFIG_DEBUG_STACK_USAGE
4923 {
4924 unsigned long *n = end_of_stack(p);
4925 while (!*n)
4926 n++;
4927 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4928 }
4929 #endif
4930 printk(KERN_CONT "%5lu %5d %6d\n", free,
4931 task_pid_nr(p), task_pid_nr(p->real_parent));
4932
4933 if (state != TASK_RUNNING)
4934 show_stack(p, NULL);
4935 }
4936
4937 void show_state_filter(unsigned long state_filter)
4938 {
4939 struct task_struct *g, *p;
4940
4941 #if BITS_PER_LONG == 32
4942 printk(KERN_INFO
4943 " task PC stack pid father\n");
4944 #else
4945 printk(KERN_INFO
4946 " task PC stack pid father\n");
4947 #endif
4948 read_lock(&tasklist_lock);
4949 do_each_thread(g, p) {
4950 /*
4951 * reset the NMI-timeout, listing all files on a slow
4952 * console might take alot of time:
4953 */
4954 touch_nmi_watchdog();
4955 if (!state_filter || (p->state & state_filter))
4956 show_task(p);
4957 } while_each_thread(g, p);
4958
4959 touch_all_softlockup_watchdogs();
4960
4961 #ifdef CONFIG_SCHED_DEBUG
4962 sysrq_sched_debug_show();
4963 #endif
4964 read_unlock(&tasklist_lock);
4965 /*
4966 * Only show locks if all tasks are dumped:
4967 */
4968 if (state_filter == -1)
4969 debug_show_all_locks();
4970 }
4971
4972 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4973 {
4974 idle->sched_class = &idle_sched_class;
4975 }
4976
4977 /**
4978 * init_idle - set up an idle thread for a given CPU
4979 * @idle: task in question
4980 * @cpu: cpu the idle task belongs to
4981 *
4982 * NOTE: this function does not set the idle thread's NEED_RESCHED
4983 * flag, to make booting more robust.
4984 */
4985 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4986 {
4987 struct rq *rq = cpu_rq(cpu);
4988 unsigned long flags;
4989
4990 __sched_fork(idle);
4991 idle->se.exec_start = sched_clock();
4992
4993 idle->prio = idle->normal_prio = MAX_PRIO;
4994 idle->cpus_allowed = cpumask_of_cpu(cpu);
4995 __set_task_cpu(idle, cpu);
4996
4997 spin_lock_irqsave(&rq->lock, flags);
4998 rq->curr = rq->idle = idle;
4999 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5000 idle->oncpu = 1;
5001 #endif
5002 spin_unlock_irqrestore(&rq->lock, flags);
5003
5004 /* Set the preempt count _outside_ the spinlocks! */
5005 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5006 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5007 #else
5008 task_thread_info(idle)->preempt_count = 0;
5009 #endif
5010 /*
5011 * The idle tasks have their own, simple scheduling class:
5012 */
5013 idle->sched_class = &idle_sched_class;
5014 }
5015
5016 /*
5017 * In a system that switches off the HZ timer nohz_cpu_mask
5018 * indicates which cpus entered this state. This is used
5019 * in the rcu update to wait only for active cpus. For system
5020 * which do not switch off the HZ timer nohz_cpu_mask should
5021 * always be CPU_MASK_NONE.
5022 */
5023 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5024
5025 /*
5026 * Increase the granularity value when there are more CPUs,
5027 * because with more CPUs the 'effective latency' as visible
5028 * to users decreases. But the relationship is not linear,
5029 * so pick a second-best guess by going with the log2 of the
5030 * number of CPUs.
5031 *
5032 * This idea comes from the SD scheduler of Con Kolivas:
5033 */
5034 static inline void sched_init_granularity(void)
5035 {
5036 unsigned int factor = 1 + ilog2(num_online_cpus());
5037 const unsigned long limit = 200000000;
5038
5039 sysctl_sched_min_granularity *= factor;
5040 if (sysctl_sched_min_granularity > limit)
5041 sysctl_sched_min_granularity = limit;
5042
5043 sysctl_sched_latency *= factor;
5044 if (sysctl_sched_latency > limit)
5045 sysctl_sched_latency = limit;
5046
5047 sysctl_sched_wakeup_granularity *= factor;
5048 sysctl_sched_batch_wakeup_granularity *= factor;
5049 }
5050
5051 #ifdef CONFIG_SMP
5052 /*
5053 * This is how migration works:
5054 *
5055 * 1) we queue a struct migration_req structure in the source CPU's
5056 * runqueue and wake up that CPU's migration thread.
5057 * 2) we down() the locked semaphore => thread blocks.
5058 * 3) migration thread wakes up (implicitly it forces the migrated
5059 * thread off the CPU)
5060 * 4) it gets the migration request and checks whether the migrated
5061 * task is still in the wrong runqueue.
5062 * 5) if it's in the wrong runqueue then the migration thread removes
5063 * it and puts it into the right queue.
5064 * 6) migration thread up()s the semaphore.
5065 * 7) we wake up and the migration is done.
5066 */
5067
5068 /*
5069 * Change a given task's CPU affinity. Migrate the thread to a
5070 * proper CPU and schedule it away if the CPU it's executing on
5071 * is removed from the allowed bitmask.
5072 *
5073 * NOTE: the caller must have a valid reference to the task, the
5074 * task must not exit() & deallocate itself prematurely. The
5075 * call is not atomic; no spinlocks may be held.
5076 */
5077 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5078 {
5079 struct migration_req req;
5080 unsigned long flags;
5081 struct rq *rq;
5082 int ret = 0;
5083
5084 rq = task_rq_lock(p, &flags);
5085 if (!cpus_intersects(new_mask, cpu_online_map)) {
5086 ret = -EINVAL;
5087 goto out;
5088 }
5089
5090 p->cpus_allowed = new_mask;
5091 /* Can the task run on the task's current CPU? If so, we're done */
5092 if (cpu_isset(task_cpu(p), new_mask))
5093 goto out;
5094
5095 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5096 /* Need help from migration thread: drop lock and wait. */
5097 task_rq_unlock(rq, &flags);
5098 wake_up_process(rq->migration_thread);
5099 wait_for_completion(&req.done);
5100 tlb_migrate_finish(p->mm);
5101 return 0;
5102 }
5103 out:
5104 task_rq_unlock(rq, &flags);
5105
5106 return ret;
5107 }
5108 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5109
5110 /*
5111 * Move (not current) task off this cpu, onto dest cpu. We're doing
5112 * this because either it can't run here any more (set_cpus_allowed()
5113 * away from this CPU, or CPU going down), or because we're
5114 * attempting to rebalance this task on exec (sched_exec).
5115 *
5116 * So we race with normal scheduler movements, but that's OK, as long
5117 * as the task is no longer on this CPU.
5118 *
5119 * Returns non-zero if task was successfully migrated.
5120 */
5121 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5122 {
5123 struct rq *rq_dest, *rq_src;
5124 int ret = 0, on_rq;
5125
5126 if (unlikely(cpu_is_offline(dest_cpu)))
5127 return ret;
5128
5129 rq_src = cpu_rq(src_cpu);
5130 rq_dest = cpu_rq(dest_cpu);
5131
5132 double_rq_lock(rq_src, rq_dest);
5133 /* Already moved. */
5134 if (task_cpu(p) != src_cpu)
5135 goto out;
5136 /* Affinity changed (again). */
5137 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5138 goto out;
5139
5140 on_rq = p->se.on_rq;
5141 if (on_rq)
5142 deactivate_task(rq_src, p, 0);
5143
5144 set_task_cpu(p, dest_cpu);
5145 if (on_rq) {
5146 activate_task(rq_dest, p, 0);
5147 check_preempt_curr(rq_dest, p);
5148 }
5149 ret = 1;
5150 out:
5151 double_rq_unlock(rq_src, rq_dest);
5152 return ret;
5153 }
5154
5155 /*
5156 * migration_thread - this is a highprio system thread that performs
5157 * thread migration by bumping thread off CPU then 'pushing' onto
5158 * another runqueue.
5159 */
5160 static int migration_thread(void *data)
5161 {
5162 int cpu = (long)data;
5163 struct rq *rq;
5164
5165 rq = cpu_rq(cpu);
5166 BUG_ON(rq->migration_thread != current);
5167
5168 set_current_state(TASK_INTERRUPTIBLE);
5169 while (!kthread_should_stop()) {
5170 struct migration_req *req;
5171 struct list_head *head;
5172
5173 spin_lock_irq(&rq->lock);
5174
5175 if (cpu_is_offline(cpu)) {
5176 spin_unlock_irq(&rq->lock);
5177 goto wait_to_die;
5178 }
5179
5180 if (rq->active_balance) {
5181 active_load_balance(rq, cpu);
5182 rq->active_balance = 0;
5183 }
5184
5185 head = &rq->migration_queue;
5186
5187 if (list_empty(head)) {
5188 spin_unlock_irq(&rq->lock);
5189 schedule();
5190 set_current_state(TASK_INTERRUPTIBLE);
5191 continue;
5192 }
5193 req = list_entry(head->next, struct migration_req, list);
5194 list_del_init(head->next);
5195
5196 spin_unlock(&rq->lock);
5197 __migrate_task(req->task, cpu, req->dest_cpu);
5198 local_irq_enable();
5199
5200 complete(&req->done);
5201 }
5202 __set_current_state(TASK_RUNNING);
5203 return 0;
5204
5205 wait_to_die:
5206 /* Wait for kthread_stop */
5207 set_current_state(TASK_INTERRUPTIBLE);
5208 while (!kthread_should_stop()) {
5209 schedule();
5210 set_current_state(TASK_INTERRUPTIBLE);
5211 }
5212 __set_current_state(TASK_RUNNING);
5213 return 0;
5214 }
5215
5216 #ifdef CONFIG_HOTPLUG_CPU
5217
5218 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5219 {
5220 int ret;
5221
5222 local_irq_disable();
5223 ret = __migrate_task(p, src_cpu, dest_cpu);
5224 local_irq_enable();
5225 return ret;
5226 }
5227
5228 /*
5229 * Figure out where task on dead CPU should go, use force if necessary.
5230 * NOTE: interrupts should be disabled by the caller
5231 */
5232 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5233 {
5234 unsigned long flags;
5235 cpumask_t mask;
5236 struct rq *rq;
5237 int dest_cpu;
5238
5239 do {
5240 /* On same node? */
5241 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5242 cpus_and(mask, mask, p->cpus_allowed);
5243 dest_cpu = any_online_cpu(mask);
5244
5245 /* On any allowed CPU? */
5246 if (dest_cpu == NR_CPUS)
5247 dest_cpu = any_online_cpu(p->cpus_allowed);
5248
5249 /* No more Mr. Nice Guy. */
5250 if (dest_cpu == NR_CPUS) {
5251 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5252 /*
5253 * Try to stay on the same cpuset, where the
5254 * current cpuset may be a subset of all cpus.
5255 * The cpuset_cpus_allowed_locked() variant of
5256 * cpuset_cpus_allowed() will not block. It must be
5257 * called within calls to cpuset_lock/cpuset_unlock.
5258 */
5259 rq = task_rq_lock(p, &flags);
5260 p->cpus_allowed = cpus_allowed;
5261 dest_cpu = any_online_cpu(p->cpus_allowed);
5262 task_rq_unlock(rq, &flags);
5263
5264 /*
5265 * Don't tell them about moving exiting tasks or
5266 * kernel threads (both mm NULL), since they never
5267 * leave kernel.
5268 */
5269 if (p->mm && printk_ratelimit()) {
5270 printk(KERN_INFO "process %d (%s) no "
5271 "longer affine to cpu%d\n",
5272 task_pid_nr(p), p->comm, dead_cpu);
5273 }
5274 }
5275 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5276 }
5277
5278 /*
5279 * While a dead CPU has no uninterruptible tasks queued at this point,
5280 * it might still have a nonzero ->nr_uninterruptible counter, because
5281 * for performance reasons the counter is not stricly tracking tasks to
5282 * their home CPUs. So we just add the counter to another CPU's counter,
5283 * to keep the global sum constant after CPU-down:
5284 */
5285 static void migrate_nr_uninterruptible(struct rq *rq_src)
5286 {
5287 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5288 unsigned long flags;
5289
5290 local_irq_save(flags);
5291 double_rq_lock(rq_src, rq_dest);
5292 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5293 rq_src->nr_uninterruptible = 0;
5294 double_rq_unlock(rq_src, rq_dest);
5295 local_irq_restore(flags);
5296 }
5297
5298 /* Run through task list and migrate tasks from the dead cpu. */
5299 static void migrate_live_tasks(int src_cpu)
5300 {
5301 struct task_struct *p, *t;
5302
5303 read_lock(&tasklist_lock);
5304
5305 do_each_thread(t, p) {
5306 if (p == current)
5307 continue;
5308
5309 if (task_cpu(p) == src_cpu)
5310 move_task_off_dead_cpu(src_cpu, p);
5311 } while_each_thread(t, p);
5312
5313 read_unlock(&tasklist_lock);
5314 }
5315
5316 /*
5317 * Schedules idle task to be the next runnable task on current CPU.
5318 * It does so by boosting its priority to highest possible.
5319 * Used by CPU offline code.
5320 */
5321 void sched_idle_next(void)
5322 {
5323 int this_cpu = smp_processor_id();
5324 struct rq *rq = cpu_rq(this_cpu);
5325 struct task_struct *p = rq->idle;
5326 unsigned long flags;
5327
5328 /* cpu has to be offline */
5329 BUG_ON(cpu_online(this_cpu));
5330
5331 /*
5332 * Strictly not necessary since rest of the CPUs are stopped by now
5333 * and interrupts disabled on the current cpu.
5334 */
5335 spin_lock_irqsave(&rq->lock, flags);
5336
5337 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5338
5339 update_rq_clock(rq);
5340 activate_task(rq, p, 0);
5341
5342 spin_unlock_irqrestore(&rq->lock, flags);
5343 }
5344
5345 /*
5346 * Ensures that the idle task is using init_mm right before its cpu goes
5347 * offline.
5348 */
5349 void idle_task_exit(void)
5350 {
5351 struct mm_struct *mm = current->active_mm;
5352
5353 BUG_ON(cpu_online(smp_processor_id()));
5354
5355 if (mm != &init_mm)
5356 switch_mm(mm, &init_mm, current);
5357 mmdrop(mm);
5358 }
5359
5360 /* called under rq->lock with disabled interrupts */
5361 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5362 {
5363 struct rq *rq = cpu_rq(dead_cpu);
5364
5365 /* Must be exiting, otherwise would be on tasklist. */
5366 BUG_ON(!p->exit_state);
5367
5368 /* Cannot have done final schedule yet: would have vanished. */
5369 BUG_ON(p->state == TASK_DEAD);
5370
5371 get_task_struct(p);
5372
5373 /*
5374 * Drop lock around migration; if someone else moves it,
5375 * that's OK. No task can be added to this CPU, so iteration is
5376 * fine.
5377 */
5378 spin_unlock_irq(&rq->lock);
5379 move_task_off_dead_cpu(dead_cpu, p);
5380 spin_lock_irq(&rq->lock);
5381
5382 put_task_struct(p);
5383 }
5384
5385 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5386 static void migrate_dead_tasks(unsigned int dead_cpu)
5387 {
5388 struct rq *rq = cpu_rq(dead_cpu);
5389 struct task_struct *next;
5390
5391 for ( ; ; ) {
5392 if (!rq->nr_running)
5393 break;
5394 update_rq_clock(rq);
5395 next = pick_next_task(rq, rq->curr);
5396 if (!next)
5397 break;
5398 migrate_dead(dead_cpu, next);
5399
5400 }
5401 }
5402 #endif /* CONFIG_HOTPLUG_CPU */
5403
5404 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5405
5406 static struct ctl_table sd_ctl_dir[] = {
5407 {
5408 .procname = "sched_domain",
5409 .mode = 0555,
5410 },
5411 {0, },
5412 };
5413
5414 static struct ctl_table sd_ctl_root[] = {
5415 {
5416 .ctl_name = CTL_KERN,
5417 .procname = "kernel",
5418 .mode = 0555,
5419 .child = sd_ctl_dir,
5420 },
5421 {0, },
5422 };
5423
5424 static struct ctl_table *sd_alloc_ctl_entry(int n)
5425 {
5426 struct ctl_table *entry =
5427 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5428
5429 return entry;
5430 }
5431
5432 static void sd_free_ctl_entry(struct ctl_table **tablep)
5433 {
5434 struct ctl_table *entry;
5435
5436 /*
5437 * In the intermediate directories, both the child directory and
5438 * procname are dynamically allocated and could fail but the mode
5439 * will always be set. In the lowest directory the names are
5440 * static strings and all have proc handlers.
5441 */
5442 for (entry = *tablep; entry->mode; entry++) {
5443 if (entry->child)
5444 sd_free_ctl_entry(&entry->child);
5445 if (entry->proc_handler == NULL)
5446 kfree(entry->procname);
5447 }
5448
5449 kfree(*tablep);
5450 *tablep = NULL;
5451 }
5452
5453 static void
5454 set_table_entry(struct ctl_table *entry,
5455 const char *procname, void *data, int maxlen,
5456 mode_t mode, proc_handler *proc_handler)
5457 {
5458 entry->procname = procname;
5459 entry->data = data;
5460 entry->maxlen = maxlen;
5461 entry->mode = mode;
5462 entry->proc_handler = proc_handler;
5463 }
5464
5465 static struct ctl_table *
5466 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5467 {
5468 struct ctl_table *table = sd_alloc_ctl_entry(12);
5469
5470 if (table == NULL)
5471 return NULL;
5472
5473 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5474 sizeof(long), 0644, proc_doulongvec_minmax);
5475 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5476 sizeof(long), 0644, proc_doulongvec_minmax);
5477 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5478 sizeof(int), 0644, proc_dointvec_minmax);
5479 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5480 sizeof(int), 0644, proc_dointvec_minmax);
5481 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5482 sizeof(int), 0644, proc_dointvec_minmax);
5483 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5484 sizeof(int), 0644, proc_dointvec_minmax);
5485 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5486 sizeof(int), 0644, proc_dointvec_minmax);
5487 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5488 sizeof(int), 0644, proc_dointvec_minmax);
5489 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5490 sizeof(int), 0644, proc_dointvec_minmax);
5491 set_table_entry(&table[9], "cache_nice_tries",
5492 &sd->cache_nice_tries,
5493 sizeof(int), 0644, proc_dointvec_minmax);
5494 set_table_entry(&table[10], "flags", &sd->flags,
5495 sizeof(int), 0644, proc_dointvec_minmax);
5496 /* &table[11] is terminator */
5497
5498 return table;
5499 }
5500
5501 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5502 {
5503 struct ctl_table *entry, *table;
5504 struct sched_domain *sd;
5505 int domain_num = 0, i;
5506 char buf[32];
5507
5508 for_each_domain(cpu, sd)
5509 domain_num++;
5510 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5511 if (table == NULL)
5512 return NULL;
5513
5514 i = 0;
5515 for_each_domain(cpu, sd) {
5516 snprintf(buf, 32, "domain%d", i);
5517 entry->procname = kstrdup(buf, GFP_KERNEL);
5518 entry->mode = 0555;
5519 entry->child = sd_alloc_ctl_domain_table(sd);
5520 entry++;
5521 i++;
5522 }
5523 return table;
5524 }
5525
5526 static struct ctl_table_header *sd_sysctl_header;
5527 static void register_sched_domain_sysctl(void)
5528 {
5529 int i, cpu_num = num_online_cpus();
5530 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5531 char buf[32];
5532
5533 WARN_ON(sd_ctl_dir[0].child);
5534 sd_ctl_dir[0].child = entry;
5535
5536 if (entry == NULL)
5537 return;
5538
5539 for_each_online_cpu(i) {
5540 snprintf(buf, 32, "cpu%d", i);
5541 entry->procname = kstrdup(buf, GFP_KERNEL);
5542 entry->mode = 0555;
5543 entry->child = sd_alloc_ctl_cpu_table(i);
5544 entry++;
5545 }
5546
5547 WARN_ON(sd_sysctl_header);
5548 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5549 }
5550
5551 /* may be called multiple times per register */
5552 static void unregister_sched_domain_sysctl(void)
5553 {
5554 if (sd_sysctl_header)
5555 unregister_sysctl_table(sd_sysctl_header);
5556 sd_sysctl_header = NULL;
5557 if (sd_ctl_dir[0].child)
5558 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5559 }
5560 #else
5561 static void register_sched_domain_sysctl(void)
5562 {
5563 }
5564 static void unregister_sched_domain_sysctl(void)
5565 {
5566 }
5567 #endif
5568
5569 /*
5570 * migration_call - callback that gets triggered when a CPU is added.
5571 * Here we can start up the necessary migration thread for the new CPU.
5572 */
5573 static int __cpuinit
5574 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5575 {
5576 struct task_struct *p;
5577 int cpu = (long)hcpu;
5578 unsigned long flags;
5579 struct rq *rq;
5580
5581 switch (action) {
5582 case CPU_LOCK_ACQUIRE:
5583 mutex_lock(&sched_hotcpu_mutex);
5584 break;
5585
5586 case CPU_UP_PREPARE:
5587 case CPU_UP_PREPARE_FROZEN:
5588 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5589 if (IS_ERR(p))
5590 return NOTIFY_BAD;
5591 kthread_bind(p, cpu);
5592 /* Must be high prio: stop_machine expects to yield to it. */
5593 rq = task_rq_lock(p, &flags);
5594 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5595 task_rq_unlock(rq, &flags);
5596 cpu_rq(cpu)->migration_thread = p;
5597 break;
5598
5599 case CPU_ONLINE:
5600 case CPU_ONLINE_FROZEN:
5601 /* Strictly unnecessary, as first user will wake it. */
5602 wake_up_process(cpu_rq(cpu)->migration_thread);
5603 break;
5604
5605 #ifdef CONFIG_HOTPLUG_CPU
5606 case CPU_UP_CANCELED:
5607 case CPU_UP_CANCELED_FROZEN:
5608 if (!cpu_rq(cpu)->migration_thread)
5609 break;
5610 /* Unbind it from offline cpu so it can run. Fall thru. */
5611 kthread_bind(cpu_rq(cpu)->migration_thread,
5612 any_online_cpu(cpu_online_map));
5613 kthread_stop(cpu_rq(cpu)->migration_thread);
5614 cpu_rq(cpu)->migration_thread = NULL;
5615 break;
5616
5617 case CPU_DEAD:
5618 case CPU_DEAD_FROZEN:
5619 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5620 migrate_live_tasks(cpu);
5621 rq = cpu_rq(cpu);
5622 kthread_stop(rq->migration_thread);
5623 rq->migration_thread = NULL;
5624 /* Idle task back to normal (off runqueue, low prio) */
5625 spin_lock_irq(&rq->lock);
5626 update_rq_clock(rq);
5627 deactivate_task(rq, rq->idle, 0);
5628 rq->idle->static_prio = MAX_PRIO;
5629 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5630 rq->idle->sched_class = &idle_sched_class;
5631 migrate_dead_tasks(cpu);
5632 spin_unlock_irq(&rq->lock);
5633 cpuset_unlock();
5634 migrate_nr_uninterruptible(rq);
5635 BUG_ON(rq->nr_running != 0);
5636
5637 /*
5638 * No need to migrate the tasks: it was best-effort if
5639 * they didn't take sched_hotcpu_mutex. Just wake up
5640 * the requestors.
5641 */
5642 spin_lock_irq(&rq->lock);
5643 while (!list_empty(&rq->migration_queue)) {
5644 struct migration_req *req;
5645
5646 req = list_entry(rq->migration_queue.next,
5647 struct migration_req, list);
5648 list_del_init(&req->list);
5649 complete(&req->done);
5650 }
5651 spin_unlock_irq(&rq->lock);
5652 break;
5653 #endif
5654 case CPU_LOCK_RELEASE:
5655 mutex_unlock(&sched_hotcpu_mutex);
5656 break;
5657 }
5658 return NOTIFY_OK;
5659 }
5660
5661 /* Register at highest priority so that task migration (migrate_all_tasks)
5662 * happens before everything else.
5663 */
5664 static struct notifier_block __cpuinitdata migration_notifier = {
5665 .notifier_call = migration_call,
5666 .priority = 10
5667 };
5668
5669 void __init migration_init(void)
5670 {
5671 void *cpu = (void *)(long)smp_processor_id();
5672 int err;
5673
5674 /* Start one for the boot CPU: */
5675 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5676 BUG_ON(err == NOTIFY_BAD);
5677 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5678 register_cpu_notifier(&migration_notifier);
5679 }
5680 #endif
5681
5682 #ifdef CONFIG_SMP
5683
5684 /* Number of possible processor ids */
5685 int nr_cpu_ids __read_mostly = NR_CPUS;
5686 EXPORT_SYMBOL(nr_cpu_ids);
5687
5688 #ifdef CONFIG_SCHED_DEBUG
5689
5690 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5691 {
5692 struct sched_group *group = sd->groups;
5693 cpumask_t groupmask;
5694 char str[NR_CPUS];
5695
5696 cpumask_scnprintf(str, NR_CPUS, sd->span);
5697 cpus_clear(groupmask);
5698
5699 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5700
5701 if (!(sd->flags & SD_LOAD_BALANCE)) {
5702 printk("does not load-balance\n");
5703 if (sd->parent)
5704 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5705 " has parent");
5706 return -1;
5707 }
5708
5709 printk(KERN_CONT "span %s\n", str);
5710
5711 if (!cpu_isset(cpu, sd->span)) {
5712 printk(KERN_ERR "ERROR: domain->span does not contain "
5713 "CPU%d\n", cpu);
5714 }
5715 if (!cpu_isset(cpu, group->cpumask)) {
5716 printk(KERN_ERR "ERROR: domain->groups does not contain"
5717 " CPU%d\n", cpu);
5718 }
5719
5720 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5721 do {
5722 if (!group) {
5723 printk("\n");
5724 printk(KERN_ERR "ERROR: group is NULL\n");
5725 break;
5726 }
5727
5728 if (!group->__cpu_power) {
5729 printk(KERN_CONT "\n");
5730 printk(KERN_ERR "ERROR: domain->cpu_power not "
5731 "set\n");
5732 break;
5733 }
5734
5735 if (!cpus_weight(group->cpumask)) {
5736 printk(KERN_CONT "\n");
5737 printk(KERN_ERR "ERROR: empty group\n");
5738 break;
5739 }
5740
5741 if (cpus_intersects(groupmask, group->cpumask)) {
5742 printk(KERN_CONT "\n");
5743 printk(KERN_ERR "ERROR: repeated CPUs\n");
5744 break;
5745 }
5746
5747 cpus_or(groupmask, groupmask, group->cpumask);
5748
5749 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5750 printk(KERN_CONT " %s", str);
5751
5752 group = group->next;
5753 } while (group != sd->groups);
5754 printk(KERN_CONT "\n");
5755
5756 if (!cpus_equal(sd->span, groupmask))
5757 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5758
5759 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5760 printk(KERN_ERR "ERROR: parent span is not a superset "
5761 "of domain->span\n");
5762 return 0;
5763 }
5764
5765 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5766 {
5767 int level = 0;
5768
5769 if (!sd) {
5770 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5771 return;
5772 }
5773
5774 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5775
5776 for (;;) {
5777 if (sched_domain_debug_one(sd, cpu, level))
5778 break;
5779 level++;
5780 sd = sd->parent;
5781 if (!sd)
5782 break;
5783 }
5784 }
5785 #else
5786 # define sched_domain_debug(sd, cpu) do { } while (0)
5787 #endif
5788
5789 static int sd_degenerate(struct sched_domain *sd)
5790 {
5791 if (cpus_weight(sd->span) == 1)
5792 return 1;
5793
5794 /* Following flags need at least 2 groups */
5795 if (sd->flags & (SD_LOAD_BALANCE |
5796 SD_BALANCE_NEWIDLE |
5797 SD_BALANCE_FORK |
5798 SD_BALANCE_EXEC |
5799 SD_SHARE_CPUPOWER |
5800 SD_SHARE_PKG_RESOURCES)) {
5801 if (sd->groups != sd->groups->next)
5802 return 0;
5803 }
5804
5805 /* Following flags don't use groups */
5806 if (sd->flags & (SD_WAKE_IDLE |
5807 SD_WAKE_AFFINE |
5808 SD_WAKE_BALANCE))
5809 return 0;
5810
5811 return 1;
5812 }
5813
5814 static int
5815 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5816 {
5817 unsigned long cflags = sd->flags, pflags = parent->flags;
5818
5819 if (sd_degenerate(parent))
5820 return 1;
5821
5822 if (!cpus_equal(sd->span, parent->span))
5823 return 0;
5824
5825 /* Does parent contain flags not in child? */
5826 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5827 if (cflags & SD_WAKE_AFFINE)
5828 pflags &= ~SD_WAKE_BALANCE;
5829 /* Flags needing groups don't count if only 1 group in parent */
5830 if (parent->groups == parent->groups->next) {
5831 pflags &= ~(SD_LOAD_BALANCE |
5832 SD_BALANCE_NEWIDLE |
5833 SD_BALANCE_FORK |
5834 SD_BALANCE_EXEC |
5835 SD_SHARE_CPUPOWER |
5836 SD_SHARE_PKG_RESOURCES);
5837 }
5838 if (~cflags & pflags)
5839 return 0;
5840
5841 return 1;
5842 }
5843
5844 /*
5845 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5846 * hold the hotplug lock.
5847 */
5848 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5849 {
5850 struct rq *rq = cpu_rq(cpu);
5851 struct sched_domain *tmp;
5852
5853 /* Remove the sched domains which do not contribute to scheduling. */
5854 for (tmp = sd; tmp; tmp = tmp->parent) {
5855 struct sched_domain *parent = tmp->parent;
5856 if (!parent)
5857 break;
5858 if (sd_parent_degenerate(tmp, parent)) {
5859 tmp->parent = parent->parent;
5860 if (parent->parent)
5861 parent->parent->child = tmp;
5862 }
5863 }
5864
5865 if (sd && sd_degenerate(sd)) {
5866 sd = sd->parent;
5867 if (sd)
5868 sd->child = NULL;
5869 }
5870
5871 sched_domain_debug(sd, cpu);
5872
5873 rcu_assign_pointer(rq->sd, sd);
5874 }
5875
5876 /* cpus with isolated domains */
5877 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5878
5879 /* Setup the mask of cpus configured for isolated domains */
5880 static int __init isolated_cpu_setup(char *str)
5881 {
5882 int ints[NR_CPUS], i;
5883
5884 str = get_options(str, ARRAY_SIZE(ints), ints);
5885 cpus_clear(cpu_isolated_map);
5886 for (i = 1; i <= ints[0]; i++)
5887 if (ints[i] < NR_CPUS)
5888 cpu_set(ints[i], cpu_isolated_map);
5889 return 1;
5890 }
5891
5892 __setup("isolcpus=", isolated_cpu_setup);
5893
5894 /*
5895 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5896 * to a function which identifies what group(along with sched group) a CPU
5897 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5898 * (due to the fact that we keep track of groups covered with a cpumask_t).
5899 *
5900 * init_sched_build_groups will build a circular linked list of the groups
5901 * covered by the given span, and will set each group's ->cpumask correctly,
5902 * and ->cpu_power to 0.
5903 */
5904 static void
5905 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5906 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5907 struct sched_group **sg))
5908 {
5909 struct sched_group *first = NULL, *last = NULL;
5910 cpumask_t covered = CPU_MASK_NONE;
5911 int i;
5912
5913 for_each_cpu_mask(i, span) {
5914 struct sched_group *sg;
5915 int group = group_fn(i, cpu_map, &sg);
5916 int j;
5917
5918 if (cpu_isset(i, covered))
5919 continue;
5920
5921 sg->cpumask = CPU_MASK_NONE;
5922 sg->__cpu_power = 0;
5923
5924 for_each_cpu_mask(j, span) {
5925 if (group_fn(j, cpu_map, NULL) != group)
5926 continue;
5927
5928 cpu_set(j, covered);
5929 cpu_set(j, sg->cpumask);
5930 }
5931 if (!first)
5932 first = sg;
5933 if (last)
5934 last->next = sg;
5935 last = sg;
5936 }
5937 last->next = first;
5938 }
5939
5940 #define SD_NODES_PER_DOMAIN 16
5941
5942 #ifdef CONFIG_NUMA
5943
5944 /**
5945 * find_next_best_node - find the next node to include in a sched_domain
5946 * @node: node whose sched_domain we're building
5947 * @used_nodes: nodes already in the sched_domain
5948 *
5949 * Find the next node to include in a given scheduling domain. Simply
5950 * finds the closest node not already in the @used_nodes map.
5951 *
5952 * Should use nodemask_t.
5953 */
5954 static int find_next_best_node(int node, unsigned long *used_nodes)
5955 {
5956 int i, n, val, min_val, best_node = 0;
5957
5958 min_val = INT_MAX;
5959
5960 for (i = 0; i < MAX_NUMNODES; i++) {
5961 /* Start at @node */
5962 n = (node + i) % MAX_NUMNODES;
5963
5964 if (!nr_cpus_node(n))
5965 continue;
5966
5967 /* Skip already used nodes */
5968 if (test_bit(n, used_nodes))
5969 continue;
5970
5971 /* Simple min distance search */
5972 val = node_distance(node, n);
5973
5974 if (val < min_val) {
5975 min_val = val;
5976 best_node = n;
5977 }
5978 }
5979
5980 set_bit(best_node, used_nodes);
5981 return best_node;
5982 }
5983
5984 /**
5985 * sched_domain_node_span - get a cpumask for a node's sched_domain
5986 * @node: node whose cpumask we're constructing
5987 * @size: number of nodes to include in this span
5988 *
5989 * Given a node, construct a good cpumask for its sched_domain to span. It
5990 * should be one that prevents unnecessary balancing, but also spreads tasks
5991 * out optimally.
5992 */
5993 static cpumask_t sched_domain_node_span(int node)
5994 {
5995 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5996 cpumask_t span, nodemask;
5997 int i;
5998
5999 cpus_clear(span);
6000 bitmap_zero(used_nodes, MAX_NUMNODES);
6001
6002 nodemask = node_to_cpumask(node);
6003 cpus_or(span, span, nodemask);
6004 set_bit(node, used_nodes);
6005
6006 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6007 int next_node = find_next_best_node(node, used_nodes);
6008
6009 nodemask = node_to_cpumask(next_node);
6010 cpus_or(span, span, nodemask);
6011 }
6012
6013 return span;
6014 }
6015 #endif
6016
6017 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6018
6019 /*
6020 * SMT sched-domains:
6021 */
6022 #ifdef CONFIG_SCHED_SMT
6023 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6024 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6025
6026 static int
6027 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6028 {
6029 if (sg)
6030 *sg = &per_cpu(sched_group_cpus, cpu);
6031 return cpu;
6032 }
6033 #endif
6034
6035 /*
6036 * multi-core sched-domains:
6037 */
6038 #ifdef CONFIG_SCHED_MC
6039 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6040 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6041 #endif
6042
6043 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6044 static int
6045 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6046 {
6047 int group;
6048 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6049 cpus_and(mask, mask, *cpu_map);
6050 group = first_cpu(mask);
6051 if (sg)
6052 *sg = &per_cpu(sched_group_core, group);
6053 return group;
6054 }
6055 #elif defined(CONFIG_SCHED_MC)
6056 static int
6057 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6058 {
6059 if (sg)
6060 *sg = &per_cpu(sched_group_core, cpu);
6061 return cpu;
6062 }
6063 #endif
6064
6065 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6066 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6067
6068 static int
6069 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6070 {
6071 int group;
6072 #ifdef CONFIG_SCHED_MC
6073 cpumask_t mask = cpu_coregroup_map(cpu);
6074 cpus_and(mask, mask, *cpu_map);
6075 group = first_cpu(mask);
6076 #elif defined(CONFIG_SCHED_SMT)
6077 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6078 cpus_and(mask, mask, *cpu_map);
6079 group = first_cpu(mask);
6080 #else
6081 group = cpu;
6082 #endif
6083 if (sg)
6084 *sg = &per_cpu(sched_group_phys, group);
6085 return group;
6086 }
6087
6088 #ifdef CONFIG_NUMA
6089 /*
6090 * The init_sched_build_groups can't handle what we want to do with node
6091 * groups, so roll our own. Now each node has its own list of groups which
6092 * gets dynamically allocated.
6093 */
6094 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6095 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6096
6097 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6098 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6099
6100 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6101 struct sched_group **sg)
6102 {
6103 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6104 int group;
6105
6106 cpus_and(nodemask, nodemask, *cpu_map);
6107 group = first_cpu(nodemask);
6108
6109 if (sg)
6110 *sg = &per_cpu(sched_group_allnodes, group);
6111 return group;
6112 }
6113
6114 static void init_numa_sched_groups_power(struct sched_group *group_head)
6115 {
6116 struct sched_group *sg = group_head;
6117 int j;
6118
6119 if (!sg)
6120 return;
6121 do {
6122 for_each_cpu_mask(j, sg->cpumask) {
6123 struct sched_domain *sd;
6124
6125 sd = &per_cpu(phys_domains, j);
6126 if (j != first_cpu(sd->groups->cpumask)) {
6127 /*
6128 * Only add "power" once for each
6129 * physical package.
6130 */
6131 continue;
6132 }
6133
6134 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6135 }
6136 sg = sg->next;
6137 } while (sg != group_head);
6138 }
6139 #endif
6140
6141 #ifdef CONFIG_NUMA
6142 /* Free memory allocated for various sched_group structures */
6143 static void free_sched_groups(const cpumask_t *cpu_map)
6144 {
6145 int cpu, i;
6146
6147 for_each_cpu_mask(cpu, *cpu_map) {
6148 struct sched_group **sched_group_nodes
6149 = sched_group_nodes_bycpu[cpu];
6150
6151 if (!sched_group_nodes)
6152 continue;
6153
6154 for (i = 0; i < MAX_NUMNODES; i++) {
6155 cpumask_t nodemask = node_to_cpumask(i);
6156 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6157
6158 cpus_and(nodemask, nodemask, *cpu_map);
6159 if (cpus_empty(nodemask))
6160 continue;
6161
6162 if (sg == NULL)
6163 continue;
6164 sg = sg->next;
6165 next_sg:
6166 oldsg = sg;
6167 sg = sg->next;
6168 kfree(oldsg);
6169 if (oldsg != sched_group_nodes[i])
6170 goto next_sg;
6171 }
6172 kfree(sched_group_nodes);
6173 sched_group_nodes_bycpu[cpu] = NULL;
6174 }
6175 }
6176 #else
6177 static void free_sched_groups(const cpumask_t *cpu_map)
6178 {
6179 }
6180 #endif
6181
6182 /*
6183 * Initialize sched groups cpu_power.
6184 *
6185 * cpu_power indicates the capacity of sched group, which is used while
6186 * distributing the load between different sched groups in a sched domain.
6187 * Typically cpu_power for all the groups in a sched domain will be same unless
6188 * there are asymmetries in the topology. If there are asymmetries, group
6189 * having more cpu_power will pickup more load compared to the group having
6190 * less cpu_power.
6191 *
6192 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6193 * the maximum number of tasks a group can handle in the presence of other idle
6194 * or lightly loaded groups in the same sched domain.
6195 */
6196 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6197 {
6198 struct sched_domain *child;
6199 struct sched_group *group;
6200
6201 WARN_ON(!sd || !sd->groups);
6202
6203 if (cpu != first_cpu(sd->groups->cpumask))
6204 return;
6205
6206 child = sd->child;
6207
6208 sd->groups->__cpu_power = 0;
6209
6210 /*
6211 * For perf policy, if the groups in child domain share resources
6212 * (for example cores sharing some portions of the cache hierarchy
6213 * or SMT), then set this domain groups cpu_power such that each group
6214 * can handle only one task, when there are other idle groups in the
6215 * same sched domain.
6216 */
6217 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6218 (child->flags &
6219 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6220 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6221 return;
6222 }
6223
6224 /*
6225 * add cpu_power of each child group to this groups cpu_power
6226 */
6227 group = child->groups;
6228 do {
6229 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6230 group = group->next;
6231 } while (group != child->groups);
6232 }
6233
6234 /*
6235 * Build sched domains for a given set of cpus and attach the sched domains
6236 * to the individual cpus
6237 */
6238 static int build_sched_domains(const cpumask_t *cpu_map)
6239 {
6240 int i;
6241 #ifdef CONFIG_NUMA
6242 struct sched_group **sched_group_nodes = NULL;
6243 int sd_allnodes = 0;
6244
6245 /*
6246 * Allocate the per-node list of sched groups
6247 */
6248 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6249 GFP_KERNEL);
6250 if (!sched_group_nodes) {
6251 printk(KERN_WARNING "Can not alloc sched group node list\n");
6252 return -ENOMEM;
6253 }
6254 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6255 #endif
6256
6257 /*
6258 * Set up domains for cpus specified by the cpu_map.
6259 */
6260 for_each_cpu_mask(i, *cpu_map) {
6261 struct sched_domain *sd = NULL, *p;
6262 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6263
6264 cpus_and(nodemask, nodemask, *cpu_map);
6265
6266 #ifdef CONFIG_NUMA
6267 if (cpus_weight(*cpu_map) >
6268 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6269 sd = &per_cpu(allnodes_domains, i);
6270 *sd = SD_ALLNODES_INIT;
6271 sd->span = *cpu_map;
6272 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6273 p = sd;
6274 sd_allnodes = 1;
6275 } else
6276 p = NULL;
6277
6278 sd = &per_cpu(node_domains, i);
6279 *sd = SD_NODE_INIT;
6280 sd->span = sched_domain_node_span(cpu_to_node(i));
6281 sd->parent = p;
6282 if (p)
6283 p->child = sd;
6284 cpus_and(sd->span, sd->span, *cpu_map);
6285 #endif
6286
6287 p = sd;
6288 sd = &per_cpu(phys_domains, i);
6289 *sd = SD_CPU_INIT;
6290 sd->span = nodemask;
6291 sd->parent = p;
6292 if (p)
6293 p->child = sd;
6294 cpu_to_phys_group(i, cpu_map, &sd->groups);
6295
6296 #ifdef CONFIG_SCHED_MC
6297 p = sd;
6298 sd = &per_cpu(core_domains, i);
6299 *sd = SD_MC_INIT;
6300 sd->span = cpu_coregroup_map(i);
6301 cpus_and(sd->span, sd->span, *cpu_map);
6302 sd->parent = p;
6303 p->child = sd;
6304 cpu_to_core_group(i, cpu_map, &sd->groups);
6305 #endif
6306
6307 #ifdef CONFIG_SCHED_SMT
6308 p = sd;
6309 sd = &per_cpu(cpu_domains, i);
6310 *sd = SD_SIBLING_INIT;
6311 sd->span = per_cpu(cpu_sibling_map, i);
6312 cpus_and(sd->span, sd->span, *cpu_map);
6313 sd->parent = p;
6314 p->child = sd;
6315 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6316 #endif
6317 }
6318
6319 #ifdef CONFIG_SCHED_SMT
6320 /* Set up CPU (sibling) groups */
6321 for_each_cpu_mask(i, *cpu_map) {
6322 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6323 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6324 if (i != first_cpu(this_sibling_map))
6325 continue;
6326
6327 init_sched_build_groups(this_sibling_map, cpu_map,
6328 &cpu_to_cpu_group);
6329 }
6330 #endif
6331
6332 #ifdef CONFIG_SCHED_MC
6333 /* Set up multi-core groups */
6334 for_each_cpu_mask(i, *cpu_map) {
6335 cpumask_t this_core_map = cpu_coregroup_map(i);
6336 cpus_and(this_core_map, this_core_map, *cpu_map);
6337 if (i != first_cpu(this_core_map))
6338 continue;
6339 init_sched_build_groups(this_core_map, cpu_map,
6340 &cpu_to_core_group);
6341 }
6342 #endif
6343
6344 /* Set up physical groups */
6345 for (i = 0; i < MAX_NUMNODES; i++) {
6346 cpumask_t nodemask = node_to_cpumask(i);
6347
6348 cpus_and(nodemask, nodemask, *cpu_map);
6349 if (cpus_empty(nodemask))
6350 continue;
6351
6352 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6353 }
6354
6355 #ifdef CONFIG_NUMA
6356 /* Set up node groups */
6357 if (sd_allnodes)
6358 init_sched_build_groups(*cpu_map, cpu_map,
6359 &cpu_to_allnodes_group);
6360
6361 for (i = 0; i < MAX_NUMNODES; i++) {
6362 /* Set up node groups */
6363 struct sched_group *sg, *prev;
6364 cpumask_t nodemask = node_to_cpumask(i);
6365 cpumask_t domainspan;
6366 cpumask_t covered = CPU_MASK_NONE;
6367 int j;
6368
6369 cpus_and(nodemask, nodemask, *cpu_map);
6370 if (cpus_empty(nodemask)) {
6371 sched_group_nodes[i] = NULL;
6372 continue;
6373 }
6374
6375 domainspan = sched_domain_node_span(i);
6376 cpus_and(domainspan, domainspan, *cpu_map);
6377
6378 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6379 if (!sg) {
6380 printk(KERN_WARNING "Can not alloc domain group for "
6381 "node %d\n", i);
6382 goto error;
6383 }
6384 sched_group_nodes[i] = sg;
6385 for_each_cpu_mask(j, nodemask) {
6386 struct sched_domain *sd;
6387
6388 sd = &per_cpu(node_domains, j);
6389 sd->groups = sg;
6390 }
6391 sg->__cpu_power = 0;
6392 sg->cpumask = nodemask;
6393 sg->next = sg;
6394 cpus_or(covered, covered, nodemask);
6395 prev = sg;
6396
6397 for (j = 0; j < MAX_NUMNODES; j++) {
6398 cpumask_t tmp, notcovered;
6399 int n = (i + j) % MAX_NUMNODES;
6400
6401 cpus_complement(notcovered, covered);
6402 cpus_and(tmp, notcovered, *cpu_map);
6403 cpus_and(tmp, tmp, domainspan);
6404 if (cpus_empty(tmp))
6405 break;
6406
6407 nodemask = node_to_cpumask(n);
6408 cpus_and(tmp, tmp, nodemask);
6409 if (cpus_empty(tmp))
6410 continue;
6411
6412 sg = kmalloc_node(sizeof(struct sched_group),
6413 GFP_KERNEL, i);
6414 if (!sg) {
6415 printk(KERN_WARNING
6416 "Can not alloc domain group for node %d\n", j);
6417 goto error;
6418 }
6419 sg->__cpu_power = 0;
6420 sg->cpumask = tmp;
6421 sg->next = prev->next;
6422 cpus_or(covered, covered, tmp);
6423 prev->next = sg;
6424 prev = sg;
6425 }
6426 }
6427 #endif
6428
6429 /* Calculate CPU power for physical packages and nodes */
6430 #ifdef CONFIG_SCHED_SMT
6431 for_each_cpu_mask(i, *cpu_map) {
6432 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6433
6434 init_sched_groups_power(i, sd);
6435 }
6436 #endif
6437 #ifdef CONFIG_SCHED_MC
6438 for_each_cpu_mask(i, *cpu_map) {
6439 struct sched_domain *sd = &per_cpu(core_domains, i);
6440
6441 init_sched_groups_power(i, sd);
6442 }
6443 #endif
6444
6445 for_each_cpu_mask(i, *cpu_map) {
6446 struct sched_domain *sd = &per_cpu(phys_domains, i);
6447
6448 init_sched_groups_power(i, sd);
6449 }
6450
6451 #ifdef CONFIG_NUMA
6452 for (i = 0; i < MAX_NUMNODES; i++)
6453 init_numa_sched_groups_power(sched_group_nodes[i]);
6454
6455 if (sd_allnodes) {
6456 struct sched_group *sg;
6457
6458 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6459 init_numa_sched_groups_power(sg);
6460 }
6461 #endif
6462
6463 /* Attach the domains */
6464 for_each_cpu_mask(i, *cpu_map) {
6465 struct sched_domain *sd;
6466 #ifdef CONFIG_SCHED_SMT
6467 sd = &per_cpu(cpu_domains, i);
6468 #elif defined(CONFIG_SCHED_MC)
6469 sd = &per_cpu(core_domains, i);
6470 #else
6471 sd = &per_cpu(phys_domains, i);
6472 #endif
6473 cpu_attach_domain(sd, i);
6474 }
6475
6476 return 0;
6477
6478 #ifdef CONFIG_NUMA
6479 error:
6480 free_sched_groups(cpu_map);
6481 return -ENOMEM;
6482 #endif
6483 }
6484
6485 static cpumask_t *doms_cur; /* current sched domains */
6486 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6487
6488 /*
6489 * Special case: If a kmalloc of a doms_cur partition (array of
6490 * cpumask_t) fails, then fallback to a single sched domain,
6491 * as determined by the single cpumask_t fallback_doms.
6492 */
6493 static cpumask_t fallback_doms;
6494
6495 /*
6496 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6497 * For now this just excludes isolated cpus, but could be used to
6498 * exclude other special cases in the future.
6499 */
6500 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6501 {
6502 int err;
6503
6504 ndoms_cur = 1;
6505 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6506 if (!doms_cur)
6507 doms_cur = &fallback_doms;
6508 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6509 err = build_sched_domains(doms_cur);
6510 register_sched_domain_sysctl();
6511
6512 return err;
6513 }
6514
6515 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6516 {
6517 free_sched_groups(cpu_map);
6518 }
6519
6520 /*
6521 * Detach sched domains from a group of cpus specified in cpu_map
6522 * These cpus will now be attached to the NULL domain
6523 */
6524 static void detach_destroy_domains(const cpumask_t *cpu_map)
6525 {
6526 int i;
6527
6528 unregister_sched_domain_sysctl();
6529
6530 for_each_cpu_mask(i, *cpu_map)
6531 cpu_attach_domain(NULL, i);
6532 synchronize_sched();
6533 arch_destroy_sched_domains(cpu_map);
6534 }
6535
6536 /*
6537 * Partition sched domains as specified by the 'ndoms_new'
6538 * cpumasks in the array doms_new[] of cpumasks. This compares
6539 * doms_new[] to the current sched domain partitioning, doms_cur[].
6540 * It destroys each deleted domain and builds each new domain.
6541 *
6542 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6543 * The masks don't intersect (don't overlap.) We should setup one
6544 * sched domain for each mask. CPUs not in any of the cpumasks will
6545 * not be load balanced. If the same cpumask appears both in the
6546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547 * it as it is.
6548 *
6549 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6550 * ownership of it and will kfree it when done with it. If the caller
6551 * failed the kmalloc call, then it can pass in doms_new == NULL,
6552 * and partition_sched_domains() will fallback to the single partition
6553 * 'fallback_doms'.
6554 *
6555 * Call with hotplug lock held
6556 */
6557 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6558 {
6559 int i, j;
6560
6561 lock_doms_cur();
6562
6563 /* always unregister in case we don't destroy any domains */
6564 unregister_sched_domain_sysctl();
6565
6566 if (doms_new == NULL) {
6567 ndoms_new = 1;
6568 doms_new = &fallback_doms;
6569 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6570 }
6571
6572 /* Destroy deleted domains */
6573 for (i = 0; i < ndoms_cur; i++) {
6574 for (j = 0; j < ndoms_new; j++) {
6575 if (cpus_equal(doms_cur[i], doms_new[j]))
6576 goto match1;
6577 }
6578 /* no match - a current sched domain not in new doms_new[] */
6579 detach_destroy_domains(doms_cur + i);
6580 match1:
6581 ;
6582 }
6583
6584 /* Build new domains */
6585 for (i = 0; i < ndoms_new; i++) {
6586 for (j = 0; j < ndoms_cur; j++) {
6587 if (cpus_equal(doms_new[i], doms_cur[j]))
6588 goto match2;
6589 }
6590 /* no match - add a new doms_new */
6591 build_sched_domains(doms_new + i);
6592 match2:
6593 ;
6594 }
6595
6596 /* Remember the new sched domains */
6597 if (doms_cur != &fallback_doms)
6598 kfree(doms_cur);
6599 doms_cur = doms_new;
6600 ndoms_cur = ndoms_new;
6601
6602 register_sched_domain_sysctl();
6603
6604 unlock_doms_cur();
6605 }
6606
6607 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6608 static int arch_reinit_sched_domains(void)
6609 {
6610 int err;
6611
6612 mutex_lock(&sched_hotcpu_mutex);
6613 detach_destroy_domains(&cpu_online_map);
6614 err = arch_init_sched_domains(&cpu_online_map);
6615 mutex_unlock(&sched_hotcpu_mutex);
6616
6617 return err;
6618 }
6619
6620 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6621 {
6622 int ret;
6623
6624 if (buf[0] != '0' && buf[0] != '1')
6625 return -EINVAL;
6626
6627 if (smt)
6628 sched_smt_power_savings = (buf[0] == '1');
6629 else
6630 sched_mc_power_savings = (buf[0] == '1');
6631
6632 ret = arch_reinit_sched_domains();
6633
6634 return ret ? ret : count;
6635 }
6636
6637 #ifdef CONFIG_SCHED_MC
6638 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6639 {
6640 return sprintf(page, "%u\n", sched_mc_power_savings);
6641 }
6642 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6643 const char *buf, size_t count)
6644 {
6645 return sched_power_savings_store(buf, count, 0);
6646 }
6647 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6648 sched_mc_power_savings_store);
6649 #endif
6650
6651 #ifdef CONFIG_SCHED_SMT
6652 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6653 {
6654 return sprintf(page, "%u\n", sched_smt_power_savings);
6655 }
6656 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6657 const char *buf, size_t count)
6658 {
6659 return sched_power_savings_store(buf, count, 1);
6660 }
6661 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6662 sched_smt_power_savings_store);
6663 #endif
6664
6665 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6666 {
6667 int err = 0;
6668
6669 #ifdef CONFIG_SCHED_SMT
6670 if (smt_capable())
6671 err = sysfs_create_file(&cls->kset.kobj,
6672 &attr_sched_smt_power_savings.attr);
6673 #endif
6674 #ifdef CONFIG_SCHED_MC
6675 if (!err && mc_capable())
6676 err = sysfs_create_file(&cls->kset.kobj,
6677 &attr_sched_mc_power_savings.attr);
6678 #endif
6679 return err;
6680 }
6681 #endif
6682
6683 /*
6684 * Force a reinitialization of the sched domains hierarchy. The domains
6685 * and groups cannot be updated in place without racing with the balancing
6686 * code, so we temporarily attach all running cpus to the NULL domain
6687 * which will prevent rebalancing while the sched domains are recalculated.
6688 */
6689 static int update_sched_domains(struct notifier_block *nfb,
6690 unsigned long action, void *hcpu)
6691 {
6692 switch (action) {
6693 case CPU_UP_PREPARE:
6694 case CPU_UP_PREPARE_FROZEN:
6695 case CPU_DOWN_PREPARE:
6696 case CPU_DOWN_PREPARE_FROZEN:
6697 detach_destroy_domains(&cpu_online_map);
6698 return NOTIFY_OK;
6699
6700 case CPU_UP_CANCELED:
6701 case CPU_UP_CANCELED_FROZEN:
6702 case CPU_DOWN_FAILED:
6703 case CPU_DOWN_FAILED_FROZEN:
6704 case CPU_ONLINE:
6705 case CPU_ONLINE_FROZEN:
6706 case CPU_DEAD:
6707 case CPU_DEAD_FROZEN:
6708 /*
6709 * Fall through and re-initialise the domains.
6710 */
6711 break;
6712 default:
6713 return NOTIFY_DONE;
6714 }
6715
6716 /* The hotplug lock is already held by cpu_up/cpu_down */
6717 arch_init_sched_domains(&cpu_online_map);
6718
6719 return NOTIFY_OK;
6720 }
6721
6722 void __init sched_init_smp(void)
6723 {
6724 cpumask_t non_isolated_cpus;
6725
6726 mutex_lock(&sched_hotcpu_mutex);
6727 arch_init_sched_domains(&cpu_online_map);
6728 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6729 if (cpus_empty(non_isolated_cpus))
6730 cpu_set(smp_processor_id(), non_isolated_cpus);
6731 mutex_unlock(&sched_hotcpu_mutex);
6732 /* XXX: Theoretical race here - CPU may be hotplugged now */
6733 hotcpu_notifier(update_sched_domains, 0);
6734
6735 /* Move init over to a non-isolated CPU */
6736 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6737 BUG();
6738 sched_init_granularity();
6739 }
6740 #else
6741 void __init sched_init_smp(void)
6742 {
6743 sched_init_granularity();
6744 }
6745 #endif /* CONFIG_SMP */
6746
6747 int in_sched_functions(unsigned long addr)
6748 {
6749 return in_lock_functions(addr) ||
6750 (addr >= (unsigned long)__sched_text_start
6751 && addr < (unsigned long)__sched_text_end);
6752 }
6753
6754 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6755 {
6756 cfs_rq->tasks_timeline = RB_ROOT;
6757 #ifdef CONFIG_FAIR_GROUP_SCHED
6758 cfs_rq->rq = rq;
6759 #endif
6760 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6761 }
6762
6763 void __init sched_init(void)
6764 {
6765 int highest_cpu = 0;
6766 int i, j;
6767
6768 for_each_possible_cpu(i) {
6769 struct rt_prio_array *array;
6770 struct rq *rq;
6771
6772 rq = cpu_rq(i);
6773 spin_lock_init(&rq->lock);
6774 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6775 rq->nr_running = 0;
6776 rq->clock = 1;
6777 init_cfs_rq(&rq->cfs, rq);
6778 #ifdef CONFIG_FAIR_GROUP_SCHED
6779 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6780 {
6781 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6782 struct sched_entity *se =
6783 &per_cpu(init_sched_entity, i);
6784
6785 init_cfs_rq_p[i] = cfs_rq;
6786 init_cfs_rq(cfs_rq, rq);
6787 cfs_rq->tg = &init_task_group;
6788 list_add(&cfs_rq->leaf_cfs_rq_list,
6789 &rq->leaf_cfs_rq_list);
6790
6791 init_sched_entity_p[i] = se;
6792 se->cfs_rq = &rq->cfs;
6793 se->my_q = cfs_rq;
6794 se->load.weight = init_task_group_load;
6795 se->load.inv_weight =
6796 div64_64(1ULL<<32, init_task_group_load);
6797 se->parent = NULL;
6798 }
6799 init_task_group.shares = init_task_group_load;
6800 #endif
6801
6802 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6803 rq->cpu_load[j] = 0;
6804 #ifdef CONFIG_SMP
6805 rq->sd = NULL;
6806 rq->active_balance = 0;
6807 rq->next_balance = jiffies;
6808 rq->push_cpu = 0;
6809 rq->cpu = i;
6810 rq->migration_thread = NULL;
6811 INIT_LIST_HEAD(&rq->migration_queue);
6812 #endif
6813 atomic_set(&rq->nr_iowait, 0);
6814
6815 array = &rq->rt.active;
6816 for (j = 0; j < MAX_RT_PRIO; j++) {
6817 INIT_LIST_HEAD(array->queue + j);
6818 __clear_bit(j, array->bitmap);
6819 }
6820 highest_cpu = i;
6821 /* delimiter for bitsearch: */
6822 __set_bit(MAX_RT_PRIO, array->bitmap);
6823 }
6824
6825 set_load_weight(&init_task);
6826
6827 #ifdef CONFIG_PREEMPT_NOTIFIERS
6828 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6829 #endif
6830
6831 #ifdef CONFIG_SMP
6832 nr_cpu_ids = highest_cpu + 1;
6833 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6834 #endif
6835
6836 #ifdef CONFIG_RT_MUTEXES
6837 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6838 #endif
6839
6840 /*
6841 * The boot idle thread does lazy MMU switching as well:
6842 */
6843 atomic_inc(&init_mm.mm_count);
6844 enter_lazy_tlb(&init_mm, current);
6845
6846 /*
6847 * Make us the idle thread. Technically, schedule() should not be
6848 * called from this thread, however somewhere below it might be,
6849 * but because we are the idle thread, we just pick up running again
6850 * when this runqueue becomes "idle".
6851 */
6852 init_idle(current, smp_processor_id());
6853 /*
6854 * During early bootup we pretend to be a normal task:
6855 */
6856 current->sched_class = &fair_sched_class;
6857 }
6858
6859 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6860 void __might_sleep(char *file, int line)
6861 {
6862 #ifdef in_atomic
6863 static unsigned long prev_jiffy; /* ratelimiting */
6864
6865 if ((in_atomic() || irqs_disabled()) &&
6866 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6867 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6868 return;
6869 prev_jiffy = jiffies;
6870 printk(KERN_ERR "BUG: sleeping function called from invalid"
6871 " context at %s:%d\n", file, line);
6872 printk("in_atomic():%d, irqs_disabled():%d\n",
6873 in_atomic(), irqs_disabled());
6874 debug_show_held_locks(current);
6875 if (irqs_disabled())
6876 print_irqtrace_events(current);
6877 dump_stack();
6878 }
6879 #endif
6880 }
6881 EXPORT_SYMBOL(__might_sleep);
6882 #endif
6883
6884 #ifdef CONFIG_MAGIC_SYSRQ
6885 static void normalize_task(struct rq *rq, struct task_struct *p)
6886 {
6887 int on_rq;
6888 update_rq_clock(rq);
6889 on_rq = p->se.on_rq;
6890 if (on_rq)
6891 deactivate_task(rq, p, 0);
6892 __setscheduler(rq, p, SCHED_NORMAL, 0);
6893 if (on_rq) {
6894 activate_task(rq, p, 0);
6895 resched_task(rq->curr);
6896 }
6897 }
6898
6899 void normalize_rt_tasks(void)
6900 {
6901 struct task_struct *g, *p;
6902 unsigned long flags;
6903 struct rq *rq;
6904
6905 read_lock_irq(&tasklist_lock);
6906 do_each_thread(g, p) {
6907 /*
6908 * Only normalize user tasks:
6909 */
6910 if (!p->mm)
6911 continue;
6912
6913 p->se.exec_start = 0;
6914 #ifdef CONFIG_SCHEDSTATS
6915 p->se.wait_start = 0;
6916 p->se.sleep_start = 0;
6917 p->se.block_start = 0;
6918 #endif
6919 task_rq(p)->clock = 0;
6920
6921 if (!rt_task(p)) {
6922 /*
6923 * Renice negative nice level userspace
6924 * tasks back to 0:
6925 */
6926 if (TASK_NICE(p) < 0 && p->mm)
6927 set_user_nice(p, 0);
6928 continue;
6929 }
6930
6931 spin_lock_irqsave(&p->pi_lock, flags);
6932 rq = __task_rq_lock(p);
6933
6934 normalize_task(rq, p);
6935
6936 __task_rq_unlock(rq);
6937 spin_unlock_irqrestore(&p->pi_lock, flags);
6938 } while_each_thread(g, p);
6939
6940 read_unlock_irq(&tasklist_lock);
6941 }
6942
6943 #endif /* CONFIG_MAGIC_SYSRQ */
6944
6945 #ifdef CONFIG_IA64
6946 /*
6947 * These functions are only useful for the IA64 MCA handling.
6948 *
6949 * They can only be called when the whole system has been
6950 * stopped - every CPU needs to be quiescent, and no scheduling
6951 * activity can take place. Using them for anything else would
6952 * be a serious bug, and as a result, they aren't even visible
6953 * under any other configuration.
6954 */
6955
6956 /**
6957 * curr_task - return the current task for a given cpu.
6958 * @cpu: the processor in question.
6959 *
6960 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6961 */
6962 struct task_struct *curr_task(int cpu)
6963 {
6964 return cpu_curr(cpu);
6965 }
6966
6967 /**
6968 * set_curr_task - set the current task for a given cpu.
6969 * @cpu: the processor in question.
6970 * @p: the task pointer to set.
6971 *
6972 * Description: This function must only be used when non-maskable interrupts
6973 * are serviced on a separate stack. It allows the architecture to switch the
6974 * notion of the current task on a cpu in a non-blocking manner. This function
6975 * must be called with all CPU's synchronized, and interrupts disabled, the
6976 * and caller must save the original value of the current task (see
6977 * curr_task() above) and restore that value before reenabling interrupts and
6978 * re-starting the system.
6979 *
6980 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6981 */
6982 void set_curr_task(int cpu, struct task_struct *p)
6983 {
6984 cpu_curr(cpu) = p;
6985 }
6986
6987 #endif
6988
6989 #ifdef CONFIG_FAIR_GROUP_SCHED
6990
6991 /* allocate runqueue etc for a new task group */
6992 struct task_group *sched_create_group(void)
6993 {
6994 struct task_group *tg;
6995 struct cfs_rq *cfs_rq;
6996 struct sched_entity *se;
6997 struct rq *rq;
6998 int i;
6999
7000 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7001 if (!tg)
7002 return ERR_PTR(-ENOMEM);
7003
7004 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7005 if (!tg->cfs_rq)
7006 goto err;
7007 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7008 if (!tg->se)
7009 goto err;
7010
7011 for_each_possible_cpu(i) {
7012 rq = cpu_rq(i);
7013
7014 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7015 cpu_to_node(i));
7016 if (!cfs_rq)
7017 goto err;
7018
7019 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7020 cpu_to_node(i));
7021 if (!se)
7022 goto err;
7023
7024 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7025 memset(se, 0, sizeof(struct sched_entity));
7026
7027 tg->cfs_rq[i] = cfs_rq;
7028 init_cfs_rq(cfs_rq, rq);
7029 cfs_rq->tg = tg;
7030
7031 tg->se[i] = se;
7032 se->cfs_rq = &rq->cfs;
7033 se->my_q = cfs_rq;
7034 se->load.weight = NICE_0_LOAD;
7035 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7036 se->parent = NULL;
7037 }
7038
7039 tg->shares = NICE_0_LOAD;
7040
7041 lock_task_group_list();
7042 for_each_possible_cpu(i) {
7043 rq = cpu_rq(i);
7044 cfs_rq = tg->cfs_rq[i];
7045 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7046 }
7047 unlock_task_group_list();
7048
7049 return tg;
7050
7051 err:
7052 for_each_possible_cpu(i) {
7053 if (tg->cfs_rq)
7054 kfree(tg->cfs_rq[i]);
7055 if (tg->se)
7056 kfree(tg->se[i]);
7057 }
7058 kfree(tg->cfs_rq);
7059 kfree(tg->se);
7060 kfree(tg);
7061
7062 return ERR_PTR(-ENOMEM);
7063 }
7064
7065 /* rcu callback to free various structures associated with a task group */
7066 static void free_sched_group(struct rcu_head *rhp)
7067 {
7068 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7069 struct cfs_rq *cfs_rq;
7070 struct sched_entity *se;
7071 int i;
7072
7073 /* now it should be safe to free those cfs_rqs */
7074 for_each_possible_cpu(i) {
7075 cfs_rq = tg->cfs_rq[i];
7076 kfree(cfs_rq);
7077
7078 se = tg->se[i];
7079 kfree(se);
7080 }
7081
7082 kfree(tg->cfs_rq);
7083 kfree(tg->se);
7084 kfree(tg);
7085 }
7086
7087 /* Destroy runqueue etc associated with a task group */
7088 void sched_destroy_group(struct task_group *tg)
7089 {
7090 struct cfs_rq *cfs_rq = NULL;
7091 int i;
7092
7093 lock_task_group_list();
7094 for_each_possible_cpu(i) {
7095 cfs_rq = tg->cfs_rq[i];
7096 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7097 }
7098 unlock_task_group_list();
7099
7100 BUG_ON(!cfs_rq);
7101
7102 /* wait for possible concurrent references to cfs_rqs complete */
7103 call_rcu(&tg->rcu, free_sched_group);
7104 }
7105
7106 /* change task's runqueue when it moves between groups.
7107 * The caller of this function should have put the task in its new group
7108 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7109 * reflect its new group.
7110 */
7111 void sched_move_task(struct task_struct *tsk)
7112 {
7113 int on_rq, running;
7114 unsigned long flags;
7115 struct rq *rq;
7116
7117 rq = task_rq_lock(tsk, &flags);
7118
7119 if (tsk->sched_class != &fair_sched_class) {
7120 set_task_cfs_rq(tsk, task_cpu(tsk));
7121 goto done;
7122 }
7123
7124 update_rq_clock(rq);
7125
7126 running = task_current(rq, tsk);
7127 on_rq = tsk->se.on_rq;
7128
7129 if (on_rq) {
7130 dequeue_task(rq, tsk, 0);
7131 if (unlikely(running))
7132 tsk->sched_class->put_prev_task(rq, tsk);
7133 }
7134
7135 set_task_cfs_rq(tsk, task_cpu(tsk));
7136
7137 if (on_rq) {
7138 if (unlikely(running))
7139 tsk->sched_class->set_curr_task(rq);
7140 enqueue_task(rq, tsk, 0);
7141 }
7142
7143 done:
7144 task_rq_unlock(rq, &flags);
7145 }
7146
7147 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7148 {
7149 struct cfs_rq *cfs_rq = se->cfs_rq;
7150 struct rq *rq = cfs_rq->rq;
7151 int on_rq;
7152
7153 spin_lock_irq(&rq->lock);
7154
7155 on_rq = se->on_rq;
7156 if (on_rq)
7157 dequeue_entity(cfs_rq, se, 0);
7158
7159 se->load.weight = shares;
7160 se->load.inv_weight = div64_64((1ULL<<32), shares);
7161
7162 if (on_rq)
7163 enqueue_entity(cfs_rq, se, 0);
7164
7165 spin_unlock_irq(&rq->lock);
7166 }
7167
7168 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7169 {
7170 int i;
7171
7172 /*
7173 * A weight of 0 or 1 can cause arithmetics problems.
7174 * (The default weight is 1024 - so there's no practical
7175 * limitation from this.)
7176 */
7177 if (shares < 2)
7178 shares = 2;
7179
7180 lock_task_group_list();
7181 if (tg->shares == shares)
7182 goto done;
7183
7184 tg->shares = shares;
7185 for_each_possible_cpu(i)
7186 set_se_shares(tg->se[i], shares);
7187
7188 done:
7189 unlock_task_group_list();
7190 return 0;
7191 }
7192
7193 unsigned long sched_group_shares(struct task_group *tg)
7194 {
7195 return tg->shares;
7196 }
7197
7198 #endif /* CONFIG_FAIR_GROUP_SCHED */
7199
7200 #ifdef CONFIG_FAIR_CGROUP_SCHED
7201
7202 /* return corresponding task_group object of a cgroup */
7203 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7204 {
7205 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7206 struct task_group, css);
7207 }
7208
7209 static struct cgroup_subsys_state *
7210 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7211 {
7212 struct task_group *tg;
7213
7214 if (!cgrp->parent) {
7215 /* This is early initialization for the top cgroup */
7216 init_task_group.css.cgroup = cgrp;
7217 return &init_task_group.css;
7218 }
7219
7220 /* we support only 1-level deep hierarchical scheduler atm */
7221 if (cgrp->parent->parent)
7222 return ERR_PTR(-EINVAL);
7223
7224 tg = sched_create_group();
7225 if (IS_ERR(tg))
7226 return ERR_PTR(-ENOMEM);
7227
7228 /* Bind the cgroup to task_group object we just created */
7229 tg->css.cgroup = cgrp;
7230
7231 return &tg->css;
7232 }
7233
7234 static void
7235 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7236 {
7237 struct task_group *tg = cgroup_tg(cgrp);
7238
7239 sched_destroy_group(tg);
7240 }
7241
7242 static int
7243 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7244 struct task_struct *tsk)
7245 {
7246 /* We don't support RT-tasks being in separate groups */
7247 if (tsk->sched_class != &fair_sched_class)
7248 return -EINVAL;
7249
7250 return 0;
7251 }
7252
7253 static void
7254 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7255 struct cgroup *old_cont, struct task_struct *tsk)
7256 {
7257 sched_move_task(tsk);
7258 }
7259
7260 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7261 u64 shareval)
7262 {
7263 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7264 }
7265
7266 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7267 {
7268 struct task_group *tg = cgroup_tg(cgrp);
7269
7270 return (u64) tg->shares;
7271 }
7272
7273 static struct cftype cpu_files[] = {
7274 {
7275 .name = "shares",
7276 .read_uint = cpu_shares_read_uint,
7277 .write_uint = cpu_shares_write_uint,
7278 },
7279 };
7280
7281 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7282 {
7283 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7284 }
7285
7286 struct cgroup_subsys cpu_cgroup_subsys = {
7287 .name = "cpu",
7288 .create = cpu_cgroup_create,
7289 .destroy = cpu_cgroup_destroy,
7290 .can_attach = cpu_cgroup_can_attach,
7291 .attach = cpu_cgroup_attach,
7292 .populate = cpu_cgroup_populate,
7293 .subsys_id = cpu_cgroup_subsys_id,
7294 .early_init = 1,
7295 };
7296
7297 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7298
7299 #ifdef CONFIG_CGROUP_CPUACCT
7300
7301 /*
7302 * CPU accounting code for task groups.
7303 *
7304 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7305 * (balbir@in.ibm.com).
7306 */
7307
7308 /* track cpu usage of a group of tasks */
7309 struct cpuacct {
7310 struct cgroup_subsys_state css;
7311 /* cpuusage holds pointer to a u64-type object on every cpu */
7312 u64 *cpuusage;
7313 };
7314
7315 struct cgroup_subsys cpuacct_subsys;
7316
7317 /* return cpu accounting group corresponding to this container */
7318 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7319 {
7320 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7321 struct cpuacct, css);
7322 }
7323
7324 /* return cpu accounting group to which this task belongs */
7325 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7326 {
7327 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7328 struct cpuacct, css);
7329 }
7330
7331 /* create a new cpu accounting group */
7332 static struct cgroup_subsys_state *cpuacct_create(
7333 struct cgroup_subsys *ss, struct cgroup *cont)
7334 {
7335 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7336
7337 if (!ca)
7338 return ERR_PTR(-ENOMEM);
7339
7340 ca->cpuusage = alloc_percpu(u64);
7341 if (!ca->cpuusage) {
7342 kfree(ca);
7343 return ERR_PTR(-ENOMEM);
7344 }
7345
7346 return &ca->css;
7347 }
7348
7349 /* destroy an existing cpu accounting group */
7350 static void
7351 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7352 {
7353 struct cpuacct *ca = cgroup_ca(cont);
7354
7355 free_percpu(ca->cpuusage);
7356 kfree(ca);
7357 }
7358
7359 /* return total cpu usage (in nanoseconds) of a group */
7360 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7361 {
7362 struct cpuacct *ca = cgroup_ca(cont);
7363 u64 totalcpuusage = 0;
7364 int i;
7365
7366 for_each_possible_cpu(i) {
7367 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7368
7369 /*
7370 * Take rq->lock to make 64-bit addition safe on 32-bit
7371 * platforms.
7372 */
7373 spin_lock_irq(&cpu_rq(i)->lock);
7374 totalcpuusage += *cpuusage;
7375 spin_unlock_irq(&cpu_rq(i)->lock);
7376 }
7377
7378 return totalcpuusage;
7379 }
7380
7381 static struct cftype files[] = {
7382 {
7383 .name = "usage",
7384 .read_uint = cpuusage_read,
7385 },
7386 };
7387
7388 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7389 {
7390 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7391 }
7392
7393 /*
7394 * charge this task's execution time to its accounting group.
7395 *
7396 * called with rq->lock held.
7397 */
7398 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7399 {
7400 struct cpuacct *ca;
7401
7402 if (!cpuacct_subsys.active)
7403 return;
7404
7405 ca = task_ca(tsk);
7406 if (ca) {
7407 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7408
7409 *cpuusage += cputime;
7410 }
7411 }
7412
7413 struct cgroup_subsys cpuacct_subsys = {
7414 .name = "cpuacct",
7415 .create = cpuacct_create,
7416 .destroy = cpuacct_destroy,
7417 .populate = cpuacct_populate,
7418 .subsys_id = cpuacct_subsys_id,
7419 };
7420 #endif /* CONFIG_CGROUP_CPUACCT */