Merge branch 'for-linus' of git://git.o-hand.com/linux-rpurdie-backlight
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 struct load_stat {
175 struct load_weight load;
176 u64 load_update_start, load_update_last;
177 unsigned long delta_fair, delta_exec, delta_stat;
178 };
179
180 /* CFS-related fields in a runqueue */
181 struct cfs_rq {
182 struct load_weight load;
183 unsigned long nr_running;
184
185 s64 fair_clock;
186 u64 exec_clock;
187 s64 wait_runtime;
188 u64 sleeper_bonus;
189 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190
191 struct rb_root tasks_timeline;
192 struct rb_node *rb_leftmost;
193 struct rb_node *rb_load_balance_curr;
194 #ifdef CONFIG_FAIR_GROUP_SCHED
195 /* 'curr' points to currently running entity on this cfs_rq.
196 * It is set to NULL otherwise (i.e when none are currently running).
197 */
198 struct sched_entity *curr;
199 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200
201 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
202 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
203 * (like users, containers etc.)
204 *
205 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
206 * list is used during load balance.
207 */
208 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
209 #endif
210 };
211
212 /* Real-Time classes' related field in a runqueue: */
213 struct rt_rq {
214 struct rt_prio_array active;
215 int rt_load_balance_idx;
216 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
217 };
218
219 /*
220 * This is the main, per-CPU runqueue data structure.
221 *
222 * Locking rule: those places that want to lock multiple runqueues
223 * (such as the load balancing or the thread migration code), lock
224 * acquire operations must be ordered by ascending &runqueue.
225 */
226 struct rq {
227 spinlock_t lock; /* runqueue lock */
228
229 /*
230 * nr_running and cpu_load should be in the same cacheline because
231 * remote CPUs use both these fields when doing load calculation.
232 */
233 unsigned long nr_running;
234 #define CPU_LOAD_IDX_MAX 5
235 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
236 unsigned char idle_at_tick;
237 #ifdef CONFIG_NO_HZ
238 unsigned char in_nohz_recently;
239 #endif
240 struct load_stat ls; /* capture load from *all* tasks on this cpu */
241 unsigned long nr_load_updates;
242 u64 nr_switches;
243
244 struct cfs_rq cfs;
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
247 #endif
248 struct rt_rq rt;
249
250 /*
251 * This is part of a global counter where only the total sum
252 * over all CPUs matters. A task can increase this counter on
253 * one CPU and if it got migrated afterwards it may decrease
254 * it on another CPU. Always updated under the runqueue lock:
255 */
256 unsigned long nr_uninterruptible;
257
258 struct task_struct *curr, *idle;
259 unsigned long next_balance;
260 struct mm_struct *prev_mm;
261
262 u64 clock, prev_clock_raw;
263 s64 clock_max_delta;
264
265 unsigned int clock_warps, clock_overflows;
266 u64 idle_clock;
267 unsigned int clock_deep_idle_events;
268 u64 tick_timestamp;
269
270 atomic_t nr_iowait;
271
272 #ifdef CONFIG_SMP
273 struct sched_domain *sd;
274
275 /* For active balancing */
276 int active_balance;
277 int push_cpu;
278 int cpu; /* cpu of this runqueue */
279
280 struct task_struct *migration_thread;
281 struct list_head migration_queue;
282 #endif
283
284 #ifdef CONFIG_SCHEDSTATS
285 /* latency stats */
286 struct sched_info rq_sched_info;
287
288 /* sys_sched_yield() stats */
289 unsigned long yld_exp_empty;
290 unsigned long yld_act_empty;
291 unsigned long yld_both_empty;
292 unsigned long yld_cnt;
293
294 /* schedule() stats */
295 unsigned long sched_switch;
296 unsigned long sched_cnt;
297 unsigned long sched_goidle;
298
299 /* try_to_wake_up() stats */
300 unsigned long ttwu_cnt;
301 unsigned long ttwu_local;
302 #endif
303 struct lock_class_key rq_lock_key;
304 };
305
306 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
307 static DEFINE_MUTEX(sched_hotcpu_mutex);
308
309 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
310 {
311 rq->curr->sched_class->check_preempt_curr(rq, p);
312 }
313
314 static inline int cpu_of(struct rq *rq)
315 {
316 #ifdef CONFIG_SMP
317 return rq->cpu;
318 #else
319 return 0;
320 #endif
321 }
322
323 /*
324 * Update the per-runqueue clock, as finegrained as the platform can give
325 * us, but without assuming monotonicity, etc.:
326 */
327 static void __update_rq_clock(struct rq *rq)
328 {
329 u64 prev_raw = rq->prev_clock_raw;
330 u64 now = sched_clock();
331 s64 delta = now - prev_raw;
332 u64 clock = rq->clock;
333
334 #ifdef CONFIG_SCHED_DEBUG
335 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
336 #endif
337 /*
338 * Protect against sched_clock() occasionally going backwards:
339 */
340 if (unlikely(delta < 0)) {
341 clock++;
342 rq->clock_warps++;
343 } else {
344 /*
345 * Catch too large forward jumps too:
346 */
347 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
348 if (clock < rq->tick_timestamp + TICK_NSEC)
349 clock = rq->tick_timestamp + TICK_NSEC;
350 else
351 clock++;
352 rq->clock_overflows++;
353 } else {
354 if (unlikely(delta > rq->clock_max_delta))
355 rq->clock_max_delta = delta;
356 clock += delta;
357 }
358 }
359
360 rq->prev_clock_raw = now;
361 rq->clock = clock;
362 }
363
364 static void update_rq_clock(struct rq *rq)
365 {
366 if (likely(smp_processor_id() == cpu_of(rq)))
367 __update_rq_clock(rq);
368 }
369
370 /*
371 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
372 * See detach_destroy_domains: synchronize_sched for details.
373 *
374 * The domain tree of any CPU may only be accessed from within
375 * preempt-disabled sections.
376 */
377 #define for_each_domain(cpu, __sd) \
378 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
379
380 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
381 #define this_rq() (&__get_cpu_var(runqueues))
382 #define task_rq(p) cpu_rq(task_cpu(p))
383 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
384
385 /*
386 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
387 * clock constructed from sched_clock():
388 */
389 unsigned long long cpu_clock(int cpu)
390 {
391 unsigned long long now;
392 unsigned long flags;
393 struct rq *rq;
394
395 local_irq_save(flags);
396 rq = cpu_rq(cpu);
397 update_rq_clock(rq);
398 now = rq->clock;
399 local_irq_restore(flags);
400
401 return now;
402 }
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 /* Change a task's ->cfs_rq if it moves across CPUs */
406 static inline void set_task_cfs_rq(struct task_struct *p)
407 {
408 p->se.cfs_rq = &task_rq(p)->cfs;
409 }
410 #else
411 static inline void set_task_cfs_rq(struct task_struct *p)
412 {
413 }
414 #endif
415
416 #ifndef prepare_arch_switch
417 # define prepare_arch_switch(next) do { } while (0)
418 #endif
419 #ifndef finish_arch_switch
420 # define finish_arch_switch(prev) do { } while (0)
421 #endif
422
423 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
424 static inline int task_running(struct rq *rq, struct task_struct *p)
425 {
426 return rq->curr == p;
427 }
428
429 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
430 {
431 }
432
433 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
434 {
435 #ifdef CONFIG_DEBUG_SPINLOCK
436 /* this is a valid case when another task releases the spinlock */
437 rq->lock.owner = current;
438 #endif
439 /*
440 * If we are tracking spinlock dependencies then we have to
441 * fix up the runqueue lock - which gets 'carried over' from
442 * prev into current:
443 */
444 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
445
446 spin_unlock_irq(&rq->lock);
447 }
448
449 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
450 static inline int task_running(struct rq *rq, struct task_struct *p)
451 {
452 #ifdef CONFIG_SMP
453 return p->oncpu;
454 #else
455 return rq->curr == p;
456 #endif
457 }
458
459 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
460 {
461 #ifdef CONFIG_SMP
462 /*
463 * We can optimise this out completely for !SMP, because the
464 * SMP rebalancing from interrupt is the only thing that cares
465 * here.
466 */
467 next->oncpu = 1;
468 #endif
469 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
470 spin_unlock_irq(&rq->lock);
471 #else
472 spin_unlock(&rq->lock);
473 #endif
474 }
475
476 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
477 {
478 #ifdef CONFIG_SMP
479 /*
480 * After ->oncpu is cleared, the task can be moved to a different CPU.
481 * We must ensure this doesn't happen until the switch is completely
482 * finished.
483 */
484 smp_wmb();
485 prev->oncpu = 0;
486 #endif
487 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
488 local_irq_enable();
489 #endif
490 }
491 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
492
493 /*
494 * __task_rq_lock - lock the runqueue a given task resides on.
495 * Must be called interrupts disabled.
496 */
497 static inline struct rq *__task_rq_lock(struct task_struct *p)
498 __acquires(rq->lock)
499 {
500 struct rq *rq;
501
502 repeat_lock_task:
503 rq = task_rq(p);
504 spin_lock(&rq->lock);
505 if (unlikely(rq != task_rq(p))) {
506 spin_unlock(&rq->lock);
507 goto repeat_lock_task;
508 }
509 return rq;
510 }
511
512 /*
513 * task_rq_lock - lock the runqueue a given task resides on and disable
514 * interrupts. Note the ordering: we can safely lookup the task_rq without
515 * explicitly disabling preemption.
516 */
517 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
518 __acquires(rq->lock)
519 {
520 struct rq *rq;
521
522 repeat_lock_task:
523 local_irq_save(*flags);
524 rq = task_rq(p);
525 spin_lock(&rq->lock);
526 if (unlikely(rq != task_rq(p))) {
527 spin_unlock_irqrestore(&rq->lock, *flags);
528 goto repeat_lock_task;
529 }
530 return rq;
531 }
532
533 static inline void __task_rq_unlock(struct rq *rq)
534 __releases(rq->lock)
535 {
536 spin_unlock(&rq->lock);
537 }
538
539 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
540 __releases(rq->lock)
541 {
542 spin_unlock_irqrestore(&rq->lock, *flags);
543 }
544
545 /*
546 * this_rq_lock - lock this runqueue and disable interrupts.
547 */
548 static inline struct rq *this_rq_lock(void)
549 __acquires(rq->lock)
550 {
551 struct rq *rq;
552
553 local_irq_disable();
554 rq = this_rq();
555 spin_lock(&rq->lock);
556
557 return rq;
558 }
559
560 /*
561 * We are going deep-idle (irqs are disabled):
562 */
563 void sched_clock_idle_sleep_event(void)
564 {
565 struct rq *rq = cpu_rq(smp_processor_id());
566
567 spin_lock(&rq->lock);
568 __update_rq_clock(rq);
569 spin_unlock(&rq->lock);
570 rq->clock_deep_idle_events++;
571 }
572 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
573
574 /*
575 * We just idled delta nanoseconds (called with irqs disabled):
576 */
577 void sched_clock_idle_wakeup_event(u64 delta_ns)
578 {
579 struct rq *rq = cpu_rq(smp_processor_id());
580 u64 now = sched_clock();
581
582 rq->idle_clock += delta_ns;
583 /*
584 * Override the previous timestamp and ignore all
585 * sched_clock() deltas that occured while we idled,
586 * and use the PM-provided delta_ns to advance the
587 * rq clock:
588 */
589 spin_lock(&rq->lock);
590 rq->prev_clock_raw = now;
591 rq->clock += delta_ns;
592 spin_unlock(&rq->lock);
593 }
594 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
595
596 /*
597 * resched_task - mark a task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603 #ifdef CONFIG_SMP
604
605 #ifndef tsk_is_polling
606 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
607 #endif
608
609 static void resched_task(struct task_struct *p)
610 {
611 int cpu;
612
613 assert_spin_locked(&task_rq(p)->lock);
614
615 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
616 return;
617
618 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
619
620 cpu = task_cpu(p);
621 if (cpu == smp_processor_id())
622 return;
623
624 /* NEED_RESCHED must be visible before we test polling */
625 smp_mb();
626 if (!tsk_is_polling(p))
627 smp_send_reschedule(cpu);
628 }
629
630 static void resched_cpu(int cpu)
631 {
632 struct rq *rq = cpu_rq(cpu);
633 unsigned long flags;
634
635 if (!spin_trylock_irqsave(&rq->lock, flags))
636 return;
637 resched_task(cpu_curr(cpu));
638 spin_unlock_irqrestore(&rq->lock, flags);
639 }
640 #else
641 static inline void resched_task(struct task_struct *p)
642 {
643 assert_spin_locked(&task_rq(p)->lock);
644 set_tsk_need_resched(p);
645 }
646 #endif
647
648 static u64 div64_likely32(u64 divident, unsigned long divisor)
649 {
650 #if BITS_PER_LONG == 32
651 if (likely(divident <= 0xffffffffULL))
652 return (u32)divident / divisor;
653 do_div(divident, divisor);
654
655 return divident;
656 #else
657 return divident / divisor;
658 #endif
659 }
660
661 #if BITS_PER_LONG == 32
662 # define WMULT_CONST (~0UL)
663 #else
664 # define WMULT_CONST (1UL << 32)
665 #endif
666
667 #define WMULT_SHIFT 32
668
669 /*
670 * Shift right and round:
671 */
672 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
673
674 static unsigned long
675 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
676 struct load_weight *lw)
677 {
678 u64 tmp;
679
680 if (unlikely(!lw->inv_weight))
681 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
682
683 tmp = (u64)delta_exec * weight;
684 /*
685 * Check whether we'd overflow the 64-bit multiplication:
686 */
687 if (unlikely(tmp > WMULT_CONST))
688 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
689 WMULT_SHIFT/2);
690 else
691 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
692
693 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
694 }
695
696 static inline unsigned long
697 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
698 {
699 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
700 }
701
702 static void update_load_add(struct load_weight *lw, unsigned long inc)
703 {
704 lw->weight += inc;
705 lw->inv_weight = 0;
706 }
707
708 static void update_load_sub(struct load_weight *lw, unsigned long dec)
709 {
710 lw->weight -= dec;
711 lw->inv_weight = 0;
712 }
713
714 /*
715 * To aid in avoiding the subversion of "niceness" due to uneven distribution
716 * of tasks with abnormal "nice" values across CPUs the contribution that
717 * each task makes to its run queue's load is weighted according to its
718 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
719 * scaled version of the new time slice allocation that they receive on time
720 * slice expiry etc.
721 */
722
723 #define WEIGHT_IDLEPRIO 2
724 #define WMULT_IDLEPRIO (1 << 31)
725
726 /*
727 * Nice levels are multiplicative, with a gentle 10% change for every
728 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
729 * nice 1, it will get ~10% less CPU time than another CPU-bound task
730 * that remained on nice 0.
731 *
732 * The "10% effect" is relative and cumulative: from _any_ nice level,
733 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
734 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
735 * If a task goes up by ~10% and another task goes down by ~10% then
736 * the relative distance between them is ~25%.)
737 */
738 static const int prio_to_weight[40] = {
739 /* -20 */ 88761, 71755, 56483, 46273, 36291,
740 /* -15 */ 29154, 23254, 18705, 14949, 11916,
741 /* -10 */ 9548, 7620, 6100, 4904, 3906,
742 /* -5 */ 3121, 2501, 1991, 1586, 1277,
743 /* 0 */ 1024, 820, 655, 526, 423,
744 /* 5 */ 335, 272, 215, 172, 137,
745 /* 10 */ 110, 87, 70, 56, 45,
746 /* 15 */ 36, 29, 23, 18, 15,
747 };
748
749 /*
750 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
751 *
752 * In cases where the weight does not change often, we can use the
753 * precalculated inverse to speed up arithmetics by turning divisions
754 * into multiplications:
755 */
756 static const u32 prio_to_wmult[40] = {
757 /* -20 */ 48388, 59856, 76040, 92818, 118348,
758 /* -15 */ 147320, 184698, 229616, 287308, 360437,
759 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
760 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
761 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
762 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
763 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
764 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
765 };
766
767 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
768
769 /*
770 * runqueue iterator, to support SMP load-balancing between different
771 * scheduling classes, without having to expose their internal data
772 * structures to the load-balancing proper:
773 */
774 struct rq_iterator {
775 void *arg;
776 struct task_struct *(*start)(void *);
777 struct task_struct *(*next)(void *);
778 };
779
780 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
781 unsigned long max_nr_move, unsigned long max_load_move,
782 struct sched_domain *sd, enum cpu_idle_type idle,
783 int *all_pinned, unsigned long *load_moved,
784 int *this_best_prio, struct rq_iterator *iterator);
785
786 #include "sched_stats.h"
787 #include "sched_rt.c"
788 #include "sched_fair.c"
789 #include "sched_idletask.c"
790 #ifdef CONFIG_SCHED_DEBUG
791 # include "sched_debug.c"
792 #endif
793
794 #define sched_class_highest (&rt_sched_class)
795
796 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
797 {
798 if (rq->curr != rq->idle && ls->load.weight) {
799 ls->delta_exec += ls->delta_stat;
800 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
801 ls->delta_stat = 0;
802 }
803 }
804
805 /*
806 * Update delta_exec, delta_fair fields for rq.
807 *
808 * delta_fair clock advances at a rate inversely proportional to
809 * total load (rq->ls.load.weight) on the runqueue, while
810 * delta_exec advances at the same rate as wall-clock (provided
811 * cpu is not idle).
812 *
813 * delta_exec / delta_fair is a measure of the (smoothened) load on this
814 * runqueue over any given interval. This (smoothened) load is used
815 * during load balance.
816 *
817 * This function is called /before/ updating rq->ls.load
818 * and when switching tasks.
819 */
820 static void update_curr_load(struct rq *rq)
821 {
822 struct load_stat *ls = &rq->ls;
823 u64 start;
824
825 start = ls->load_update_start;
826 ls->load_update_start = rq->clock;
827 ls->delta_stat += rq->clock - start;
828 /*
829 * Stagger updates to ls->delta_fair. Very frequent updates
830 * can be expensive.
831 */
832 if (ls->delta_stat >= sysctl_sched_stat_granularity)
833 __update_curr_load(rq, ls);
834 }
835
836 static inline void inc_load(struct rq *rq, const struct task_struct *p)
837 {
838 update_curr_load(rq);
839 update_load_add(&rq->ls.load, p->se.load.weight);
840 }
841
842 static inline void dec_load(struct rq *rq, const struct task_struct *p)
843 {
844 update_curr_load(rq);
845 update_load_sub(&rq->ls.load, p->se.load.weight);
846 }
847
848 static void inc_nr_running(struct task_struct *p, struct rq *rq)
849 {
850 rq->nr_running++;
851 inc_load(rq, p);
852 }
853
854 static void dec_nr_running(struct task_struct *p, struct rq *rq)
855 {
856 rq->nr_running--;
857 dec_load(rq, p);
858 }
859
860 static void set_load_weight(struct task_struct *p)
861 {
862 p->se.wait_runtime = 0;
863
864 if (task_has_rt_policy(p)) {
865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
869
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
878
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
881 }
882
883 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
884 {
885 sched_info_queued(p);
886 p->sched_class->enqueue_task(rq, p, wakeup);
887 p->se.on_rq = 1;
888 }
889
890 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
891 {
892 p->sched_class->dequeue_task(rq, p, sleep);
893 p->se.on_rq = 0;
894 }
895
896 /*
897 * __normal_prio - return the priority that is based on the static prio
898 */
899 static inline int __normal_prio(struct task_struct *p)
900 {
901 return p->static_prio;
902 }
903
904 /*
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
911 static inline int normal_prio(struct task_struct *p)
912 {
913 int prio;
914
915 if (task_has_rt_policy(p))
916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920 }
921
922 /*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
929 static int effective_prio(struct task_struct *p)
930 {
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940 }
941
942 /*
943 * activate_task - move a task to the runqueue.
944 */
945 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
946 {
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
949
950 enqueue_task(rq, p, wakeup);
951 inc_nr_running(p, rq);
952 }
953
954 /*
955 * activate_idle_task - move idle task to the _front_ of runqueue.
956 */
957 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
958 {
959 update_rq_clock(rq);
960
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
963
964 enqueue_task(rq, p, 0);
965 inc_nr_running(p, rq);
966 }
967
968 /*
969 * deactivate_task - remove a task from the runqueue.
970 */
971 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
972 {
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
976 dequeue_task(rq, p, sleep);
977 dec_nr_running(p, rq);
978 }
979
980 /**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
984 inline int task_curr(const struct task_struct *p)
985 {
986 return cpu_curr(task_cpu(p)) == p;
987 }
988
989 /* Used instead of source_load when we know the type == 0 */
990 unsigned long weighted_cpuload(const int cpu)
991 {
992 return cpu_rq(cpu)->ls.load.weight;
993 }
994
995 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996 {
997 #ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000 #endif
1001 }
1002
1003 #ifdef CONFIG_SMP
1004
1005 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1006 {
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
1012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
1014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
1016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019 #ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
1022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
1026 #endif
1027
1028 __set_task_cpu(p, new_cpu);
1029 }
1030
1031 struct migration_req {
1032 struct list_head list;
1033
1034 struct task_struct *task;
1035 int dest_cpu;
1036
1037 struct completion done;
1038 };
1039
1040 /*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
1044 static int
1045 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1046 {
1047 struct rq *rq = task_rq(p);
1048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
1053 if (!p->se.on_rq && !task_running(rq, p)) {
1054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
1059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
1062
1063 return 1;
1064 }
1065
1066 /*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
1075 void wait_task_inactive(struct task_struct *p)
1076 {
1077 unsigned long flags;
1078 int running, on_rq;
1079 struct rq *rq;
1080
1081 repeat:
1082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
1102 cpu_relax();
1103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1109 rq = task_rq_lock(p, &flags);
1110 running = task_running(rq, p);
1111 on_rq = p->se.on_rq;
1112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1121 cpu_relax();
1122 goto repeat;
1123 }
1124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
1134 if (unlikely(on_rq)) {
1135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1144 }
1145
1146 /***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159 void kick_process(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168 }
1169
1170 /*
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
1177 static inline unsigned long source_load(int cpu, int type)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long total = weighted_cpuload(cpu);
1181
1182 if (type == 0)
1183 return total;
1184
1185 return min(rq->cpu_load[type-1], total);
1186 }
1187
1188 /*
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1191 */
1192 static inline unsigned long target_load(int cpu, int type)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long total = weighted_cpuload(cpu);
1196
1197 if (type == 0)
1198 return total;
1199
1200 return max(rq->cpu_load[type-1], total);
1201 }
1202
1203 /*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206 static inline unsigned long cpu_avg_load_per_task(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210 unsigned long n = rq->nr_running;
1211
1212 return n ? total / n : SCHED_LOAD_SCALE;
1213 }
1214
1215 /*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219 static struct sched_group *
1220 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221 {
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
1236 local_group = cpu_isset(this_cpu, group->cpumask);
1237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
1252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
1254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
1262 nextgroup:
1263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269 }
1270
1271 /*
1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1273 */
1274 static int
1275 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1276 {
1277 cpumask_t tmp;
1278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
1286 load = weighted_cpuload(i);
1287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295 }
1296
1297 /*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308 static int sched_balance_self(int cpu, int flag)
1309 {
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
1312
1313 for_each_domain(cpu, tmp) {
1314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
1317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
1319 if (tmp->flags & flag)
1320 sd = tmp;
1321 }
1322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
1326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
1332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
1335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
1339
1340 new_cpu = find_idlest_cpu(group, t, cpu);
1341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
1346
1347 /* Now try balancing at a lower domain level of new_cpu */
1348 cpu = new_cpu;
1349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361 }
1362
1363 #endif /* CONFIG_SMP */
1364
1365 /*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374 static int wake_idle(int cpu, struct task_struct *p)
1375 {
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
1380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
1394 cpus_and(tmp, sd->span, p->cpus_allowed);
1395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
1399 } else {
1400 break;
1401 }
1402 }
1403 return cpu;
1404 }
1405 #else
1406 static inline int wake_idle(int cpu, struct task_struct *p)
1407 {
1408 return cpu;
1409 }
1410 #endif
1411
1412 /***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
1426 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1427 {
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
1431 struct rq *rq;
1432 #ifdef CONFIG_SMP
1433 struct sched_domain *sd, *this_sd = NULL;
1434 unsigned long load, this_load;
1435 int new_cpu;
1436 #endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
1443 if (p->se.on_rq)
1444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449 #ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
1453 new_cpu = cpu;
1454
1455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
1458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
1466 }
1467 }
1468
1469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1470 goto out_set_cpu;
1471
1472 /*
1473 * Check for affine wakeup and passive balancing possibilities.
1474 */
1475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
1477 unsigned int imbalance;
1478
1479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
1481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1483
1484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
1486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
1488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
1491
1492 /*
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1496 */
1497 if (sync)
1498 tl -= current->se.load.weight;
1499
1500 if ((tl <= load &&
1501 tl + target_load(cpu, idx) <= tl_per_task) ||
1502 100*(tl + p->se.load.weight) <= imbalance*load) {
1503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
1522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526 out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
1536 if (p->se.on_rq)
1537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543 out_activate:
1544 #endif /* CONFIG_SMP */
1545 update_rq_clock(rq);
1546 activate_task(rq, p, 1);
1547 /*
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
1555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
1557 success = 1;
1558
1559 out_running:
1560 p->state = TASK_RUNNING;
1561 out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565 }
1566
1567 int fastcall wake_up_process(struct task_struct *p)
1568 {
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571 }
1572 EXPORT_SYMBOL(wake_up_process);
1573
1574 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1575 {
1576 return try_to_wake_up(p, state, 0);
1577 }
1578
1579 /*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
1582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
1584 */
1585 static void __sched_fork(struct task_struct *p)
1586 {
1587 p->se.wait_start_fair = 0;
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
1590 p->se.prev_sum_exec_runtime = 0;
1591 p->se.delta_exec = 0;
1592 p->se.delta_fair_run = 0;
1593 p->se.delta_fair_sleep = 0;
1594 p->se.wait_runtime = 0;
1595 p->se.sleep_start_fair = 0;
1596
1597 #ifdef CONFIG_SCHEDSTATS
1598 p->se.wait_start = 0;
1599 p->se.sum_wait_runtime = 0;
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
1602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
1606 p->se.wait_max = 0;
1607 p->se.wait_runtime_overruns = 0;
1608 p->se.wait_runtime_underruns = 0;
1609 #endif
1610
1611 INIT_LIST_HEAD(&p->run_list);
1612 p->se.on_rq = 0;
1613
1614 #ifdef CONFIG_PREEMPT_NOTIFIERS
1615 INIT_HLIST_HEAD(&p->preempt_notifiers);
1616 #endif
1617
1618 /*
1619 * We mark the process as running here, but have not actually
1620 * inserted it onto the runqueue yet. This guarantees that
1621 * nobody will actually run it, and a signal or other external
1622 * event cannot wake it up and insert it on the runqueue either.
1623 */
1624 p->state = TASK_RUNNING;
1625 }
1626
1627 /*
1628 * fork()/clone()-time setup:
1629 */
1630 void sched_fork(struct task_struct *p, int clone_flags)
1631 {
1632 int cpu = get_cpu();
1633
1634 __sched_fork(p);
1635
1636 #ifdef CONFIG_SMP
1637 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1638 #endif
1639 __set_task_cpu(p, cpu);
1640
1641 /*
1642 * Make sure we do not leak PI boosting priority to the child:
1643 */
1644 p->prio = current->normal_prio;
1645
1646 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1647 if (likely(sched_info_on()))
1648 memset(&p->sched_info, 0, sizeof(p->sched_info));
1649 #endif
1650 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1651 p->oncpu = 0;
1652 #endif
1653 #ifdef CONFIG_PREEMPT
1654 /* Want to start with kernel preemption disabled. */
1655 task_thread_info(p)->preempt_count = 1;
1656 #endif
1657 put_cpu();
1658 }
1659
1660 /*
1661 * After fork, child runs first. (default) If set to 0 then
1662 * parent will (try to) run first.
1663 */
1664 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1665
1666 /*
1667 * wake_up_new_task - wake up a newly created task for the first time.
1668 *
1669 * This function will do some initial scheduler statistics housekeeping
1670 * that must be done for every newly created context, then puts the task
1671 * on the runqueue and wakes it.
1672 */
1673 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1674 {
1675 unsigned long flags;
1676 struct rq *rq;
1677 int this_cpu;
1678
1679 rq = task_rq_lock(p, &flags);
1680 BUG_ON(p->state != TASK_RUNNING);
1681 this_cpu = smp_processor_id(); /* parent's CPU */
1682 update_rq_clock(rq);
1683
1684 p->prio = effective_prio(p);
1685
1686 if (rt_prio(p->prio))
1687 p->sched_class = &rt_sched_class;
1688 else
1689 p->sched_class = &fair_sched_class;
1690
1691 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1692 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1693 !current->se.on_rq) {
1694
1695 activate_task(rq, p, 0);
1696 } else {
1697 /*
1698 * Let the scheduling class do new task startup
1699 * management (if any):
1700 */
1701 p->sched_class->task_new(rq, p);
1702 inc_nr_running(p, rq);
1703 }
1704 check_preempt_curr(rq, p);
1705 task_rq_unlock(rq, &flags);
1706 }
1707
1708 #ifdef CONFIG_PREEMPT_NOTIFIERS
1709
1710 /**
1711 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1712 * @notifier: notifier struct to register
1713 */
1714 void preempt_notifier_register(struct preempt_notifier *notifier)
1715 {
1716 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1717 }
1718 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1719
1720 /**
1721 * preempt_notifier_unregister - no longer interested in preemption notifications
1722 * @notifier: notifier struct to unregister
1723 *
1724 * This is safe to call from within a preemption notifier.
1725 */
1726 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1727 {
1728 hlist_del(&notifier->link);
1729 }
1730 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1731
1732 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1733 {
1734 struct preempt_notifier *notifier;
1735 struct hlist_node *node;
1736
1737 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1738 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1739 }
1740
1741 static void
1742 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1743 struct task_struct *next)
1744 {
1745 struct preempt_notifier *notifier;
1746 struct hlist_node *node;
1747
1748 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1749 notifier->ops->sched_out(notifier, next);
1750 }
1751
1752 #else
1753
1754 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1755 {
1756 }
1757
1758 static void
1759 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1760 struct task_struct *next)
1761 {
1762 }
1763
1764 #endif
1765
1766 /**
1767 * prepare_task_switch - prepare to switch tasks
1768 * @rq: the runqueue preparing to switch
1769 * @prev: the current task that is being switched out
1770 * @next: the task we are going to switch to.
1771 *
1772 * This is called with the rq lock held and interrupts off. It must
1773 * be paired with a subsequent finish_task_switch after the context
1774 * switch.
1775 *
1776 * prepare_task_switch sets up locking and calls architecture specific
1777 * hooks.
1778 */
1779 static inline void
1780 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1781 struct task_struct *next)
1782 {
1783 fire_sched_out_preempt_notifiers(prev, next);
1784 prepare_lock_switch(rq, next);
1785 prepare_arch_switch(next);
1786 }
1787
1788 /**
1789 * finish_task_switch - clean up after a task-switch
1790 * @rq: runqueue associated with task-switch
1791 * @prev: the thread we just switched away from.
1792 *
1793 * finish_task_switch must be called after the context switch, paired
1794 * with a prepare_task_switch call before the context switch.
1795 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1796 * and do any other architecture-specific cleanup actions.
1797 *
1798 * Note that we may have delayed dropping an mm in context_switch(). If
1799 * so, we finish that here outside of the runqueue lock. (Doing it
1800 * with the lock held can cause deadlocks; see schedule() for
1801 * details.)
1802 */
1803 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1804 __releases(rq->lock)
1805 {
1806 struct mm_struct *mm = rq->prev_mm;
1807 long prev_state;
1808
1809 rq->prev_mm = NULL;
1810
1811 /*
1812 * A task struct has one reference for the use as "current".
1813 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1814 * schedule one last time. The schedule call will never return, and
1815 * the scheduled task must drop that reference.
1816 * The test for TASK_DEAD must occur while the runqueue locks are
1817 * still held, otherwise prev could be scheduled on another cpu, die
1818 * there before we look at prev->state, and then the reference would
1819 * be dropped twice.
1820 * Manfred Spraul <manfred@colorfullife.com>
1821 */
1822 prev_state = prev->state;
1823 finish_arch_switch(prev);
1824 finish_lock_switch(rq, prev);
1825 fire_sched_in_preempt_notifiers(current);
1826 if (mm)
1827 mmdrop(mm);
1828 if (unlikely(prev_state == TASK_DEAD)) {
1829 /*
1830 * Remove function-return probe instances associated with this
1831 * task and put them back on the free list.
1832 */
1833 kprobe_flush_task(prev);
1834 put_task_struct(prev);
1835 }
1836 }
1837
1838 /**
1839 * schedule_tail - first thing a freshly forked thread must call.
1840 * @prev: the thread we just switched away from.
1841 */
1842 asmlinkage void schedule_tail(struct task_struct *prev)
1843 __releases(rq->lock)
1844 {
1845 struct rq *rq = this_rq();
1846
1847 finish_task_switch(rq, prev);
1848 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1849 /* In this case, finish_task_switch does not reenable preemption */
1850 preempt_enable();
1851 #endif
1852 if (current->set_child_tid)
1853 put_user(current->pid, current->set_child_tid);
1854 }
1855
1856 /*
1857 * context_switch - switch to the new MM and the new
1858 * thread's register state.
1859 */
1860 static inline void
1861 context_switch(struct rq *rq, struct task_struct *prev,
1862 struct task_struct *next)
1863 {
1864 struct mm_struct *mm, *oldmm;
1865
1866 prepare_task_switch(rq, prev, next);
1867 mm = next->mm;
1868 oldmm = prev->active_mm;
1869 /*
1870 * For paravirt, this is coupled with an exit in switch_to to
1871 * combine the page table reload and the switch backend into
1872 * one hypercall.
1873 */
1874 arch_enter_lazy_cpu_mode();
1875
1876 if (unlikely(!mm)) {
1877 next->active_mm = oldmm;
1878 atomic_inc(&oldmm->mm_count);
1879 enter_lazy_tlb(oldmm, next);
1880 } else
1881 switch_mm(oldmm, mm, next);
1882
1883 if (unlikely(!prev->mm)) {
1884 prev->active_mm = NULL;
1885 rq->prev_mm = oldmm;
1886 }
1887 /*
1888 * Since the runqueue lock will be released by the next
1889 * task (which is an invalid locking op but in the case
1890 * of the scheduler it's an obvious special-case), so we
1891 * do an early lockdep release here:
1892 */
1893 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1895 #endif
1896
1897 /* Here we just switch the register state and the stack. */
1898 switch_to(prev, next, prev);
1899
1900 barrier();
1901 /*
1902 * this_rq must be evaluated again because prev may have moved
1903 * CPUs since it called schedule(), thus the 'rq' on its stack
1904 * frame will be invalid.
1905 */
1906 finish_task_switch(this_rq(), prev);
1907 }
1908
1909 /*
1910 * nr_running, nr_uninterruptible and nr_context_switches:
1911 *
1912 * externally visible scheduler statistics: current number of runnable
1913 * threads, current number of uninterruptible-sleeping threads, total
1914 * number of context switches performed since bootup.
1915 */
1916 unsigned long nr_running(void)
1917 {
1918 unsigned long i, sum = 0;
1919
1920 for_each_online_cpu(i)
1921 sum += cpu_rq(i)->nr_running;
1922
1923 return sum;
1924 }
1925
1926 unsigned long nr_uninterruptible(void)
1927 {
1928 unsigned long i, sum = 0;
1929
1930 for_each_possible_cpu(i)
1931 sum += cpu_rq(i)->nr_uninterruptible;
1932
1933 /*
1934 * Since we read the counters lockless, it might be slightly
1935 * inaccurate. Do not allow it to go below zero though:
1936 */
1937 if (unlikely((long)sum < 0))
1938 sum = 0;
1939
1940 return sum;
1941 }
1942
1943 unsigned long long nr_context_switches(void)
1944 {
1945 int i;
1946 unsigned long long sum = 0;
1947
1948 for_each_possible_cpu(i)
1949 sum += cpu_rq(i)->nr_switches;
1950
1951 return sum;
1952 }
1953
1954 unsigned long nr_iowait(void)
1955 {
1956 unsigned long i, sum = 0;
1957
1958 for_each_possible_cpu(i)
1959 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1960
1961 return sum;
1962 }
1963
1964 unsigned long nr_active(void)
1965 {
1966 unsigned long i, running = 0, uninterruptible = 0;
1967
1968 for_each_online_cpu(i) {
1969 running += cpu_rq(i)->nr_running;
1970 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1971 }
1972
1973 if (unlikely((long)uninterruptible < 0))
1974 uninterruptible = 0;
1975
1976 return running + uninterruptible;
1977 }
1978
1979 /*
1980 * Update rq->cpu_load[] statistics. This function is usually called every
1981 * scheduler tick (TICK_NSEC).
1982 */
1983 static void update_cpu_load(struct rq *this_rq)
1984 {
1985 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1986 unsigned long total_load = this_rq->ls.load.weight;
1987 unsigned long this_load = total_load;
1988 struct load_stat *ls = &this_rq->ls;
1989 int i, scale;
1990
1991 this_rq->nr_load_updates++;
1992 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1993 goto do_avg;
1994
1995 /* Update delta_fair/delta_exec fields first */
1996 update_curr_load(this_rq);
1997
1998 fair_delta64 = ls->delta_fair + 1;
1999 ls->delta_fair = 0;
2000
2001 exec_delta64 = ls->delta_exec + 1;
2002 ls->delta_exec = 0;
2003
2004 sample_interval64 = this_rq->clock - ls->load_update_last;
2005 ls->load_update_last = this_rq->clock;
2006
2007 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2008 sample_interval64 = TICK_NSEC;
2009
2010 if (exec_delta64 > sample_interval64)
2011 exec_delta64 = sample_interval64;
2012
2013 idle_delta64 = sample_interval64 - exec_delta64;
2014
2015 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2016 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2017
2018 this_load = (unsigned long)tmp64;
2019
2020 do_avg:
2021
2022 /* Update our load: */
2023 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2024 unsigned long old_load, new_load;
2025
2026 /* scale is effectively 1 << i now, and >> i divides by scale */
2027
2028 old_load = this_rq->cpu_load[i];
2029 new_load = this_load;
2030
2031 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2032 }
2033 }
2034
2035 #ifdef CONFIG_SMP
2036
2037 /*
2038 * double_rq_lock - safely lock two runqueues
2039 *
2040 * Note this does not disable interrupts like task_rq_lock,
2041 * you need to do so manually before calling.
2042 */
2043 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2044 __acquires(rq1->lock)
2045 __acquires(rq2->lock)
2046 {
2047 BUG_ON(!irqs_disabled());
2048 if (rq1 == rq2) {
2049 spin_lock(&rq1->lock);
2050 __acquire(rq2->lock); /* Fake it out ;) */
2051 } else {
2052 if (rq1 < rq2) {
2053 spin_lock(&rq1->lock);
2054 spin_lock(&rq2->lock);
2055 } else {
2056 spin_lock(&rq2->lock);
2057 spin_lock(&rq1->lock);
2058 }
2059 }
2060 update_rq_clock(rq1);
2061 update_rq_clock(rq2);
2062 }
2063
2064 /*
2065 * double_rq_unlock - safely unlock two runqueues
2066 *
2067 * Note this does not restore interrupts like task_rq_unlock,
2068 * you need to do so manually after calling.
2069 */
2070 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2071 __releases(rq1->lock)
2072 __releases(rq2->lock)
2073 {
2074 spin_unlock(&rq1->lock);
2075 if (rq1 != rq2)
2076 spin_unlock(&rq2->lock);
2077 else
2078 __release(rq2->lock);
2079 }
2080
2081 /*
2082 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2083 */
2084 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2085 __releases(this_rq->lock)
2086 __acquires(busiest->lock)
2087 __acquires(this_rq->lock)
2088 {
2089 if (unlikely(!irqs_disabled())) {
2090 /* printk() doesn't work good under rq->lock */
2091 spin_unlock(&this_rq->lock);
2092 BUG_ON(1);
2093 }
2094 if (unlikely(!spin_trylock(&busiest->lock))) {
2095 if (busiest < this_rq) {
2096 spin_unlock(&this_rq->lock);
2097 spin_lock(&busiest->lock);
2098 spin_lock(&this_rq->lock);
2099 } else
2100 spin_lock(&busiest->lock);
2101 }
2102 }
2103
2104 /*
2105 * If dest_cpu is allowed for this process, migrate the task to it.
2106 * This is accomplished by forcing the cpu_allowed mask to only
2107 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2108 * the cpu_allowed mask is restored.
2109 */
2110 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2111 {
2112 struct migration_req req;
2113 unsigned long flags;
2114 struct rq *rq;
2115
2116 rq = task_rq_lock(p, &flags);
2117 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2118 || unlikely(cpu_is_offline(dest_cpu)))
2119 goto out;
2120
2121 /* force the process onto the specified CPU */
2122 if (migrate_task(p, dest_cpu, &req)) {
2123 /* Need to wait for migration thread (might exit: take ref). */
2124 struct task_struct *mt = rq->migration_thread;
2125
2126 get_task_struct(mt);
2127 task_rq_unlock(rq, &flags);
2128 wake_up_process(mt);
2129 put_task_struct(mt);
2130 wait_for_completion(&req.done);
2131
2132 return;
2133 }
2134 out:
2135 task_rq_unlock(rq, &flags);
2136 }
2137
2138 /*
2139 * sched_exec - execve() is a valuable balancing opportunity, because at
2140 * this point the task has the smallest effective memory and cache footprint.
2141 */
2142 void sched_exec(void)
2143 {
2144 int new_cpu, this_cpu = get_cpu();
2145 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2146 put_cpu();
2147 if (new_cpu != this_cpu)
2148 sched_migrate_task(current, new_cpu);
2149 }
2150
2151 /*
2152 * pull_task - move a task from a remote runqueue to the local runqueue.
2153 * Both runqueues must be locked.
2154 */
2155 static void pull_task(struct rq *src_rq, struct task_struct *p,
2156 struct rq *this_rq, int this_cpu)
2157 {
2158 deactivate_task(src_rq, p, 0);
2159 set_task_cpu(p, this_cpu);
2160 activate_task(this_rq, p, 0);
2161 /*
2162 * Note that idle threads have a prio of MAX_PRIO, for this test
2163 * to be always true for them.
2164 */
2165 check_preempt_curr(this_rq, p);
2166 }
2167
2168 /*
2169 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2170 */
2171 static
2172 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2173 struct sched_domain *sd, enum cpu_idle_type idle,
2174 int *all_pinned)
2175 {
2176 /*
2177 * We do not migrate tasks that are:
2178 * 1) running (obviously), or
2179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2180 * 3) are cache-hot on their current CPU.
2181 */
2182 if (!cpu_isset(this_cpu, p->cpus_allowed))
2183 return 0;
2184 *all_pinned = 0;
2185
2186 if (task_running(rq, p))
2187 return 0;
2188
2189 return 1;
2190 }
2191
2192 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2193 unsigned long max_nr_move, unsigned long max_load_move,
2194 struct sched_domain *sd, enum cpu_idle_type idle,
2195 int *all_pinned, unsigned long *load_moved,
2196 int *this_best_prio, struct rq_iterator *iterator)
2197 {
2198 int pulled = 0, pinned = 0, skip_for_load;
2199 struct task_struct *p;
2200 long rem_load_move = max_load_move;
2201
2202 if (max_nr_move == 0 || max_load_move == 0)
2203 goto out;
2204
2205 pinned = 1;
2206
2207 /*
2208 * Start the load-balancing iterator:
2209 */
2210 p = iterator->start(iterator->arg);
2211 next:
2212 if (!p)
2213 goto out;
2214 /*
2215 * To help distribute high priority tasks accross CPUs we don't
2216 * skip a task if it will be the highest priority task (i.e. smallest
2217 * prio value) on its new queue regardless of its load weight
2218 */
2219 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2220 SCHED_LOAD_SCALE_FUZZ;
2221 if ((skip_for_load && p->prio >= *this_best_prio) ||
2222 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2223 p = iterator->next(iterator->arg);
2224 goto next;
2225 }
2226
2227 pull_task(busiest, p, this_rq, this_cpu);
2228 pulled++;
2229 rem_load_move -= p->se.load.weight;
2230
2231 /*
2232 * We only want to steal up to the prescribed number of tasks
2233 * and the prescribed amount of weighted load.
2234 */
2235 if (pulled < max_nr_move && rem_load_move > 0) {
2236 if (p->prio < *this_best_prio)
2237 *this_best_prio = p->prio;
2238 p = iterator->next(iterator->arg);
2239 goto next;
2240 }
2241 out:
2242 /*
2243 * Right now, this is the only place pull_task() is called,
2244 * so we can safely collect pull_task() stats here rather than
2245 * inside pull_task().
2246 */
2247 schedstat_add(sd, lb_gained[idle], pulled);
2248
2249 if (all_pinned)
2250 *all_pinned = pinned;
2251 *load_moved = max_load_move - rem_load_move;
2252 return pulled;
2253 }
2254
2255 /*
2256 * move_tasks tries to move up to max_load_move weighted load from busiest to
2257 * this_rq, as part of a balancing operation within domain "sd".
2258 * Returns 1 if successful and 0 otherwise.
2259 *
2260 * Called with both runqueues locked.
2261 */
2262 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2263 unsigned long max_load_move,
2264 struct sched_domain *sd, enum cpu_idle_type idle,
2265 int *all_pinned)
2266 {
2267 struct sched_class *class = sched_class_highest;
2268 unsigned long total_load_moved = 0;
2269 int this_best_prio = this_rq->curr->prio;
2270
2271 do {
2272 total_load_moved +=
2273 class->load_balance(this_rq, this_cpu, busiest,
2274 ULONG_MAX, max_load_move - total_load_moved,
2275 sd, idle, all_pinned, &this_best_prio);
2276 class = class->next;
2277 } while (class && max_load_move > total_load_moved);
2278
2279 return total_load_moved > 0;
2280 }
2281
2282 /*
2283 * move_one_task tries to move exactly one task from busiest to this_rq, as
2284 * part of active balancing operations within "domain".
2285 * Returns 1 if successful and 0 otherwise.
2286 *
2287 * Called with both runqueues locked.
2288 */
2289 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2290 struct sched_domain *sd, enum cpu_idle_type idle)
2291 {
2292 struct sched_class *class;
2293 int this_best_prio = MAX_PRIO;
2294
2295 for (class = sched_class_highest; class; class = class->next)
2296 if (class->load_balance(this_rq, this_cpu, busiest,
2297 1, ULONG_MAX, sd, idle, NULL,
2298 &this_best_prio))
2299 return 1;
2300
2301 return 0;
2302 }
2303
2304 /*
2305 * find_busiest_group finds and returns the busiest CPU group within the
2306 * domain. It calculates and returns the amount of weighted load which
2307 * should be moved to restore balance via the imbalance parameter.
2308 */
2309 static struct sched_group *
2310 find_busiest_group(struct sched_domain *sd, int this_cpu,
2311 unsigned long *imbalance, enum cpu_idle_type idle,
2312 int *sd_idle, cpumask_t *cpus, int *balance)
2313 {
2314 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2315 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2316 unsigned long max_pull;
2317 unsigned long busiest_load_per_task, busiest_nr_running;
2318 unsigned long this_load_per_task, this_nr_running;
2319 int load_idx;
2320 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2321 int power_savings_balance = 1;
2322 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2323 unsigned long min_nr_running = ULONG_MAX;
2324 struct sched_group *group_min = NULL, *group_leader = NULL;
2325 #endif
2326
2327 max_load = this_load = total_load = total_pwr = 0;
2328 busiest_load_per_task = busiest_nr_running = 0;
2329 this_load_per_task = this_nr_running = 0;
2330 if (idle == CPU_NOT_IDLE)
2331 load_idx = sd->busy_idx;
2332 else if (idle == CPU_NEWLY_IDLE)
2333 load_idx = sd->newidle_idx;
2334 else
2335 load_idx = sd->idle_idx;
2336
2337 do {
2338 unsigned long load, group_capacity;
2339 int local_group;
2340 int i;
2341 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2342 unsigned long sum_nr_running, sum_weighted_load;
2343
2344 local_group = cpu_isset(this_cpu, group->cpumask);
2345
2346 if (local_group)
2347 balance_cpu = first_cpu(group->cpumask);
2348
2349 /* Tally up the load of all CPUs in the group */
2350 sum_weighted_load = sum_nr_running = avg_load = 0;
2351
2352 for_each_cpu_mask(i, group->cpumask) {
2353 struct rq *rq;
2354
2355 if (!cpu_isset(i, *cpus))
2356 continue;
2357
2358 rq = cpu_rq(i);
2359
2360 if (*sd_idle && rq->nr_running)
2361 *sd_idle = 0;
2362
2363 /* Bias balancing toward cpus of our domain */
2364 if (local_group) {
2365 if (idle_cpu(i) && !first_idle_cpu) {
2366 first_idle_cpu = 1;
2367 balance_cpu = i;
2368 }
2369
2370 load = target_load(i, load_idx);
2371 } else
2372 load = source_load(i, load_idx);
2373
2374 avg_load += load;
2375 sum_nr_running += rq->nr_running;
2376 sum_weighted_load += weighted_cpuload(i);
2377 }
2378
2379 /*
2380 * First idle cpu or the first cpu(busiest) in this sched group
2381 * is eligible for doing load balancing at this and above
2382 * domains. In the newly idle case, we will allow all the cpu's
2383 * to do the newly idle load balance.
2384 */
2385 if (idle != CPU_NEWLY_IDLE && local_group &&
2386 balance_cpu != this_cpu && balance) {
2387 *balance = 0;
2388 goto ret;
2389 }
2390
2391 total_load += avg_load;
2392 total_pwr += group->__cpu_power;
2393
2394 /* Adjust by relative CPU power of the group */
2395 avg_load = sg_div_cpu_power(group,
2396 avg_load * SCHED_LOAD_SCALE);
2397
2398 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2399
2400 if (local_group) {
2401 this_load = avg_load;
2402 this = group;
2403 this_nr_running = sum_nr_running;
2404 this_load_per_task = sum_weighted_load;
2405 } else if (avg_load > max_load &&
2406 sum_nr_running > group_capacity) {
2407 max_load = avg_load;
2408 busiest = group;
2409 busiest_nr_running = sum_nr_running;
2410 busiest_load_per_task = sum_weighted_load;
2411 }
2412
2413 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2414 /*
2415 * Busy processors will not participate in power savings
2416 * balance.
2417 */
2418 if (idle == CPU_NOT_IDLE ||
2419 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2420 goto group_next;
2421
2422 /*
2423 * If the local group is idle or completely loaded
2424 * no need to do power savings balance at this domain
2425 */
2426 if (local_group && (this_nr_running >= group_capacity ||
2427 !this_nr_running))
2428 power_savings_balance = 0;
2429
2430 /*
2431 * If a group is already running at full capacity or idle,
2432 * don't include that group in power savings calculations
2433 */
2434 if (!power_savings_balance || sum_nr_running >= group_capacity
2435 || !sum_nr_running)
2436 goto group_next;
2437
2438 /*
2439 * Calculate the group which has the least non-idle load.
2440 * This is the group from where we need to pick up the load
2441 * for saving power
2442 */
2443 if ((sum_nr_running < min_nr_running) ||
2444 (sum_nr_running == min_nr_running &&
2445 first_cpu(group->cpumask) <
2446 first_cpu(group_min->cpumask))) {
2447 group_min = group;
2448 min_nr_running = sum_nr_running;
2449 min_load_per_task = sum_weighted_load /
2450 sum_nr_running;
2451 }
2452
2453 /*
2454 * Calculate the group which is almost near its
2455 * capacity but still has some space to pick up some load
2456 * from other group and save more power
2457 */
2458 if (sum_nr_running <= group_capacity - 1) {
2459 if (sum_nr_running > leader_nr_running ||
2460 (sum_nr_running == leader_nr_running &&
2461 first_cpu(group->cpumask) >
2462 first_cpu(group_leader->cpumask))) {
2463 group_leader = group;
2464 leader_nr_running = sum_nr_running;
2465 }
2466 }
2467 group_next:
2468 #endif
2469 group = group->next;
2470 } while (group != sd->groups);
2471
2472 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2473 goto out_balanced;
2474
2475 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2476
2477 if (this_load >= avg_load ||
2478 100*max_load <= sd->imbalance_pct*this_load)
2479 goto out_balanced;
2480
2481 busiest_load_per_task /= busiest_nr_running;
2482 /*
2483 * We're trying to get all the cpus to the average_load, so we don't
2484 * want to push ourselves above the average load, nor do we wish to
2485 * reduce the max loaded cpu below the average load, as either of these
2486 * actions would just result in more rebalancing later, and ping-pong
2487 * tasks around. Thus we look for the minimum possible imbalance.
2488 * Negative imbalances (*we* are more loaded than anyone else) will
2489 * be counted as no imbalance for these purposes -- we can't fix that
2490 * by pulling tasks to us. Be careful of negative numbers as they'll
2491 * appear as very large values with unsigned longs.
2492 */
2493 if (max_load <= busiest_load_per_task)
2494 goto out_balanced;
2495
2496 /*
2497 * In the presence of smp nice balancing, certain scenarios can have
2498 * max load less than avg load(as we skip the groups at or below
2499 * its cpu_power, while calculating max_load..)
2500 */
2501 if (max_load < avg_load) {
2502 *imbalance = 0;
2503 goto small_imbalance;
2504 }
2505
2506 /* Don't want to pull so many tasks that a group would go idle */
2507 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2508
2509 /* How much load to actually move to equalise the imbalance */
2510 *imbalance = min(max_pull * busiest->__cpu_power,
2511 (avg_load - this_load) * this->__cpu_power)
2512 / SCHED_LOAD_SCALE;
2513
2514 /*
2515 * if *imbalance is less than the average load per runnable task
2516 * there is no gaurantee that any tasks will be moved so we'll have
2517 * a think about bumping its value to force at least one task to be
2518 * moved
2519 */
2520 if (*imbalance < busiest_load_per_task) {
2521 unsigned long tmp, pwr_now, pwr_move;
2522 unsigned int imbn;
2523
2524 small_imbalance:
2525 pwr_move = pwr_now = 0;
2526 imbn = 2;
2527 if (this_nr_running) {
2528 this_load_per_task /= this_nr_running;
2529 if (busiest_load_per_task > this_load_per_task)
2530 imbn = 1;
2531 } else
2532 this_load_per_task = SCHED_LOAD_SCALE;
2533
2534 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2535 busiest_load_per_task * imbn) {
2536 *imbalance = busiest_load_per_task;
2537 return busiest;
2538 }
2539
2540 /*
2541 * OK, we don't have enough imbalance to justify moving tasks,
2542 * however we may be able to increase total CPU power used by
2543 * moving them.
2544 */
2545
2546 pwr_now += busiest->__cpu_power *
2547 min(busiest_load_per_task, max_load);
2548 pwr_now += this->__cpu_power *
2549 min(this_load_per_task, this_load);
2550 pwr_now /= SCHED_LOAD_SCALE;
2551
2552 /* Amount of load we'd subtract */
2553 tmp = sg_div_cpu_power(busiest,
2554 busiest_load_per_task * SCHED_LOAD_SCALE);
2555 if (max_load > tmp)
2556 pwr_move += busiest->__cpu_power *
2557 min(busiest_load_per_task, max_load - tmp);
2558
2559 /* Amount of load we'd add */
2560 if (max_load * busiest->__cpu_power <
2561 busiest_load_per_task * SCHED_LOAD_SCALE)
2562 tmp = sg_div_cpu_power(this,
2563 max_load * busiest->__cpu_power);
2564 else
2565 tmp = sg_div_cpu_power(this,
2566 busiest_load_per_task * SCHED_LOAD_SCALE);
2567 pwr_move += this->__cpu_power *
2568 min(this_load_per_task, this_load + tmp);
2569 pwr_move /= SCHED_LOAD_SCALE;
2570
2571 /* Move if we gain throughput */
2572 if (pwr_move > pwr_now)
2573 *imbalance = busiest_load_per_task;
2574 }
2575
2576 return busiest;
2577
2578 out_balanced:
2579 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2580 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2581 goto ret;
2582
2583 if (this == group_leader && group_leader != group_min) {
2584 *imbalance = min_load_per_task;
2585 return group_min;
2586 }
2587 #endif
2588 ret:
2589 *imbalance = 0;
2590 return NULL;
2591 }
2592
2593 /*
2594 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2595 */
2596 static struct rq *
2597 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2598 unsigned long imbalance, cpumask_t *cpus)
2599 {
2600 struct rq *busiest = NULL, *rq;
2601 unsigned long max_load = 0;
2602 int i;
2603
2604 for_each_cpu_mask(i, group->cpumask) {
2605 unsigned long wl;
2606
2607 if (!cpu_isset(i, *cpus))
2608 continue;
2609
2610 rq = cpu_rq(i);
2611 wl = weighted_cpuload(i);
2612
2613 if (rq->nr_running == 1 && wl > imbalance)
2614 continue;
2615
2616 if (wl > max_load) {
2617 max_load = wl;
2618 busiest = rq;
2619 }
2620 }
2621
2622 return busiest;
2623 }
2624
2625 /*
2626 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2627 * so long as it is large enough.
2628 */
2629 #define MAX_PINNED_INTERVAL 512
2630
2631 /*
2632 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2633 * tasks if there is an imbalance.
2634 */
2635 static int load_balance(int this_cpu, struct rq *this_rq,
2636 struct sched_domain *sd, enum cpu_idle_type idle,
2637 int *balance)
2638 {
2639 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2640 struct sched_group *group;
2641 unsigned long imbalance;
2642 struct rq *busiest;
2643 cpumask_t cpus = CPU_MASK_ALL;
2644 unsigned long flags;
2645
2646 /*
2647 * When power savings policy is enabled for the parent domain, idle
2648 * sibling can pick up load irrespective of busy siblings. In this case,
2649 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2650 * portraying it as CPU_NOT_IDLE.
2651 */
2652 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2653 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2654 sd_idle = 1;
2655
2656 schedstat_inc(sd, lb_cnt[idle]);
2657
2658 redo:
2659 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2660 &cpus, balance);
2661
2662 if (*balance == 0)
2663 goto out_balanced;
2664
2665 if (!group) {
2666 schedstat_inc(sd, lb_nobusyg[idle]);
2667 goto out_balanced;
2668 }
2669
2670 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2671 if (!busiest) {
2672 schedstat_inc(sd, lb_nobusyq[idle]);
2673 goto out_balanced;
2674 }
2675
2676 BUG_ON(busiest == this_rq);
2677
2678 schedstat_add(sd, lb_imbalance[idle], imbalance);
2679
2680 ld_moved = 0;
2681 if (busiest->nr_running > 1) {
2682 /*
2683 * Attempt to move tasks. If find_busiest_group has found
2684 * an imbalance but busiest->nr_running <= 1, the group is
2685 * still unbalanced. ld_moved simply stays zero, so it is
2686 * correctly treated as an imbalance.
2687 */
2688 local_irq_save(flags);
2689 double_rq_lock(this_rq, busiest);
2690 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2691 imbalance, sd, idle, &all_pinned);
2692 double_rq_unlock(this_rq, busiest);
2693 local_irq_restore(flags);
2694
2695 /*
2696 * some other cpu did the load balance for us.
2697 */
2698 if (ld_moved && this_cpu != smp_processor_id())
2699 resched_cpu(this_cpu);
2700
2701 /* All tasks on this runqueue were pinned by CPU affinity */
2702 if (unlikely(all_pinned)) {
2703 cpu_clear(cpu_of(busiest), cpus);
2704 if (!cpus_empty(cpus))
2705 goto redo;
2706 goto out_balanced;
2707 }
2708 }
2709
2710 if (!ld_moved) {
2711 schedstat_inc(sd, lb_failed[idle]);
2712 sd->nr_balance_failed++;
2713
2714 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2715
2716 spin_lock_irqsave(&busiest->lock, flags);
2717
2718 /* don't kick the migration_thread, if the curr
2719 * task on busiest cpu can't be moved to this_cpu
2720 */
2721 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2722 spin_unlock_irqrestore(&busiest->lock, flags);
2723 all_pinned = 1;
2724 goto out_one_pinned;
2725 }
2726
2727 if (!busiest->active_balance) {
2728 busiest->active_balance = 1;
2729 busiest->push_cpu = this_cpu;
2730 active_balance = 1;
2731 }
2732 spin_unlock_irqrestore(&busiest->lock, flags);
2733 if (active_balance)
2734 wake_up_process(busiest->migration_thread);
2735
2736 /*
2737 * We've kicked active balancing, reset the failure
2738 * counter.
2739 */
2740 sd->nr_balance_failed = sd->cache_nice_tries+1;
2741 }
2742 } else
2743 sd->nr_balance_failed = 0;
2744
2745 if (likely(!active_balance)) {
2746 /* We were unbalanced, so reset the balancing interval */
2747 sd->balance_interval = sd->min_interval;
2748 } else {
2749 /*
2750 * If we've begun active balancing, start to back off. This
2751 * case may not be covered by the all_pinned logic if there
2752 * is only 1 task on the busy runqueue (because we don't call
2753 * move_tasks).
2754 */
2755 if (sd->balance_interval < sd->max_interval)
2756 sd->balance_interval *= 2;
2757 }
2758
2759 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2760 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2761 return -1;
2762 return ld_moved;
2763
2764 out_balanced:
2765 schedstat_inc(sd, lb_balanced[idle]);
2766
2767 sd->nr_balance_failed = 0;
2768
2769 out_one_pinned:
2770 /* tune up the balancing interval */
2771 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2772 (sd->balance_interval < sd->max_interval))
2773 sd->balance_interval *= 2;
2774
2775 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2776 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2777 return -1;
2778 return 0;
2779 }
2780
2781 /*
2782 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2783 * tasks if there is an imbalance.
2784 *
2785 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2786 * this_rq is locked.
2787 */
2788 static int
2789 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2790 {
2791 struct sched_group *group;
2792 struct rq *busiest = NULL;
2793 unsigned long imbalance;
2794 int ld_moved = 0;
2795 int sd_idle = 0;
2796 int all_pinned = 0;
2797 cpumask_t cpus = CPU_MASK_ALL;
2798
2799 /*
2800 * When power savings policy is enabled for the parent domain, idle
2801 * sibling can pick up load irrespective of busy siblings. In this case,
2802 * let the state of idle sibling percolate up as IDLE, instead of
2803 * portraying it as CPU_NOT_IDLE.
2804 */
2805 if (sd->flags & SD_SHARE_CPUPOWER &&
2806 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2807 sd_idle = 1;
2808
2809 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2810 redo:
2811 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2812 &sd_idle, &cpus, NULL);
2813 if (!group) {
2814 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2815 goto out_balanced;
2816 }
2817
2818 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2819 &cpus);
2820 if (!busiest) {
2821 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2822 goto out_balanced;
2823 }
2824
2825 BUG_ON(busiest == this_rq);
2826
2827 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2828
2829 ld_moved = 0;
2830 if (busiest->nr_running > 1) {
2831 /* Attempt to move tasks */
2832 double_lock_balance(this_rq, busiest);
2833 /* this_rq->clock is already updated */
2834 update_rq_clock(busiest);
2835 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2836 imbalance, sd, CPU_NEWLY_IDLE,
2837 &all_pinned);
2838 spin_unlock(&busiest->lock);
2839
2840 if (unlikely(all_pinned)) {
2841 cpu_clear(cpu_of(busiest), cpus);
2842 if (!cpus_empty(cpus))
2843 goto redo;
2844 }
2845 }
2846
2847 if (!ld_moved) {
2848 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2849 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2850 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2851 return -1;
2852 } else
2853 sd->nr_balance_failed = 0;
2854
2855 return ld_moved;
2856
2857 out_balanced:
2858 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2859 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2860 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2861 return -1;
2862 sd->nr_balance_failed = 0;
2863
2864 return 0;
2865 }
2866
2867 /*
2868 * idle_balance is called by schedule() if this_cpu is about to become
2869 * idle. Attempts to pull tasks from other CPUs.
2870 */
2871 static void idle_balance(int this_cpu, struct rq *this_rq)
2872 {
2873 struct sched_domain *sd;
2874 int pulled_task = -1;
2875 unsigned long next_balance = jiffies + HZ;
2876
2877 for_each_domain(this_cpu, sd) {
2878 unsigned long interval;
2879
2880 if (!(sd->flags & SD_LOAD_BALANCE))
2881 continue;
2882
2883 if (sd->flags & SD_BALANCE_NEWIDLE)
2884 /* If we've pulled tasks over stop searching: */
2885 pulled_task = load_balance_newidle(this_cpu,
2886 this_rq, sd);
2887
2888 interval = msecs_to_jiffies(sd->balance_interval);
2889 if (time_after(next_balance, sd->last_balance + interval))
2890 next_balance = sd->last_balance + interval;
2891 if (pulled_task)
2892 break;
2893 }
2894 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2895 /*
2896 * We are going idle. next_balance may be set based on
2897 * a busy processor. So reset next_balance.
2898 */
2899 this_rq->next_balance = next_balance;
2900 }
2901 }
2902
2903 /*
2904 * active_load_balance is run by migration threads. It pushes running tasks
2905 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2906 * running on each physical CPU where possible, and avoids physical /
2907 * logical imbalances.
2908 *
2909 * Called with busiest_rq locked.
2910 */
2911 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2912 {
2913 int target_cpu = busiest_rq->push_cpu;
2914 struct sched_domain *sd;
2915 struct rq *target_rq;
2916
2917 /* Is there any task to move? */
2918 if (busiest_rq->nr_running <= 1)
2919 return;
2920
2921 target_rq = cpu_rq(target_cpu);
2922
2923 /*
2924 * This condition is "impossible", if it occurs
2925 * we need to fix it. Originally reported by
2926 * Bjorn Helgaas on a 128-cpu setup.
2927 */
2928 BUG_ON(busiest_rq == target_rq);
2929
2930 /* move a task from busiest_rq to target_rq */
2931 double_lock_balance(busiest_rq, target_rq);
2932 update_rq_clock(busiest_rq);
2933 update_rq_clock(target_rq);
2934
2935 /* Search for an sd spanning us and the target CPU. */
2936 for_each_domain(target_cpu, sd) {
2937 if ((sd->flags & SD_LOAD_BALANCE) &&
2938 cpu_isset(busiest_cpu, sd->span))
2939 break;
2940 }
2941
2942 if (likely(sd)) {
2943 schedstat_inc(sd, alb_cnt);
2944
2945 if (move_one_task(target_rq, target_cpu, busiest_rq,
2946 sd, CPU_IDLE))
2947 schedstat_inc(sd, alb_pushed);
2948 else
2949 schedstat_inc(sd, alb_failed);
2950 }
2951 spin_unlock(&target_rq->lock);
2952 }
2953
2954 #ifdef CONFIG_NO_HZ
2955 static struct {
2956 atomic_t load_balancer;
2957 cpumask_t cpu_mask;
2958 } nohz ____cacheline_aligned = {
2959 .load_balancer = ATOMIC_INIT(-1),
2960 .cpu_mask = CPU_MASK_NONE,
2961 };
2962
2963 /*
2964 * This routine will try to nominate the ilb (idle load balancing)
2965 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2966 * load balancing on behalf of all those cpus. If all the cpus in the system
2967 * go into this tickless mode, then there will be no ilb owner (as there is
2968 * no need for one) and all the cpus will sleep till the next wakeup event
2969 * arrives...
2970 *
2971 * For the ilb owner, tick is not stopped. And this tick will be used
2972 * for idle load balancing. ilb owner will still be part of
2973 * nohz.cpu_mask..
2974 *
2975 * While stopping the tick, this cpu will become the ilb owner if there
2976 * is no other owner. And will be the owner till that cpu becomes busy
2977 * or if all cpus in the system stop their ticks at which point
2978 * there is no need for ilb owner.
2979 *
2980 * When the ilb owner becomes busy, it nominates another owner, during the
2981 * next busy scheduler_tick()
2982 */
2983 int select_nohz_load_balancer(int stop_tick)
2984 {
2985 int cpu = smp_processor_id();
2986
2987 if (stop_tick) {
2988 cpu_set(cpu, nohz.cpu_mask);
2989 cpu_rq(cpu)->in_nohz_recently = 1;
2990
2991 /*
2992 * If we are going offline and still the leader, give up!
2993 */
2994 if (cpu_is_offline(cpu) &&
2995 atomic_read(&nohz.load_balancer) == cpu) {
2996 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2997 BUG();
2998 return 0;
2999 }
3000
3001 /* time for ilb owner also to sleep */
3002 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3003 if (atomic_read(&nohz.load_balancer) == cpu)
3004 atomic_set(&nohz.load_balancer, -1);
3005 return 0;
3006 }
3007
3008 if (atomic_read(&nohz.load_balancer) == -1) {
3009 /* make me the ilb owner */
3010 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3011 return 1;
3012 } else if (atomic_read(&nohz.load_balancer) == cpu)
3013 return 1;
3014 } else {
3015 if (!cpu_isset(cpu, nohz.cpu_mask))
3016 return 0;
3017
3018 cpu_clear(cpu, nohz.cpu_mask);
3019
3020 if (atomic_read(&nohz.load_balancer) == cpu)
3021 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3022 BUG();
3023 }
3024 return 0;
3025 }
3026 #endif
3027
3028 static DEFINE_SPINLOCK(balancing);
3029
3030 /*
3031 * It checks each scheduling domain to see if it is due to be balanced,
3032 * and initiates a balancing operation if so.
3033 *
3034 * Balancing parameters are set up in arch_init_sched_domains.
3035 */
3036 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3037 {
3038 int balance = 1;
3039 struct rq *rq = cpu_rq(cpu);
3040 unsigned long interval;
3041 struct sched_domain *sd;
3042 /* Earliest time when we have to do rebalance again */
3043 unsigned long next_balance = jiffies + 60*HZ;
3044 int update_next_balance = 0;
3045
3046 for_each_domain(cpu, sd) {
3047 if (!(sd->flags & SD_LOAD_BALANCE))
3048 continue;
3049
3050 interval = sd->balance_interval;
3051 if (idle != CPU_IDLE)
3052 interval *= sd->busy_factor;
3053
3054 /* scale ms to jiffies */
3055 interval = msecs_to_jiffies(interval);
3056 if (unlikely(!interval))
3057 interval = 1;
3058 if (interval > HZ*NR_CPUS/10)
3059 interval = HZ*NR_CPUS/10;
3060
3061
3062 if (sd->flags & SD_SERIALIZE) {
3063 if (!spin_trylock(&balancing))
3064 goto out;
3065 }
3066
3067 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3068 if (load_balance(cpu, rq, sd, idle, &balance)) {
3069 /*
3070 * We've pulled tasks over so either we're no
3071 * longer idle, or one of our SMT siblings is
3072 * not idle.
3073 */
3074 idle = CPU_NOT_IDLE;
3075 }
3076 sd->last_balance = jiffies;
3077 }
3078 if (sd->flags & SD_SERIALIZE)
3079 spin_unlock(&balancing);
3080 out:
3081 if (time_after(next_balance, sd->last_balance + interval)) {
3082 next_balance = sd->last_balance + interval;
3083 update_next_balance = 1;
3084 }
3085
3086 /*
3087 * Stop the load balance at this level. There is another
3088 * CPU in our sched group which is doing load balancing more
3089 * actively.
3090 */
3091 if (!balance)
3092 break;
3093 }
3094
3095 /*
3096 * next_balance will be updated only when there is a need.
3097 * When the cpu is attached to null domain for ex, it will not be
3098 * updated.
3099 */
3100 if (likely(update_next_balance))
3101 rq->next_balance = next_balance;
3102 }
3103
3104 /*
3105 * run_rebalance_domains is triggered when needed from the scheduler tick.
3106 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3107 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3108 */
3109 static void run_rebalance_domains(struct softirq_action *h)
3110 {
3111 int this_cpu = smp_processor_id();
3112 struct rq *this_rq = cpu_rq(this_cpu);
3113 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3114 CPU_IDLE : CPU_NOT_IDLE;
3115
3116 rebalance_domains(this_cpu, idle);
3117
3118 #ifdef CONFIG_NO_HZ
3119 /*
3120 * If this cpu is the owner for idle load balancing, then do the
3121 * balancing on behalf of the other idle cpus whose ticks are
3122 * stopped.
3123 */
3124 if (this_rq->idle_at_tick &&
3125 atomic_read(&nohz.load_balancer) == this_cpu) {
3126 cpumask_t cpus = nohz.cpu_mask;
3127 struct rq *rq;
3128 int balance_cpu;
3129
3130 cpu_clear(this_cpu, cpus);
3131 for_each_cpu_mask(balance_cpu, cpus) {
3132 /*
3133 * If this cpu gets work to do, stop the load balancing
3134 * work being done for other cpus. Next load
3135 * balancing owner will pick it up.
3136 */
3137 if (need_resched())
3138 break;
3139
3140 rebalance_domains(balance_cpu, CPU_IDLE);
3141
3142 rq = cpu_rq(balance_cpu);
3143 if (time_after(this_rq->next_balance, rq->next_balance))
3144 this_rq->next_balance = rq->next_balance;
3145 }
3146 }
3147 #endif
3148 }
3149
3150 /*
3151 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3152 *
3153 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3154 * idle load balancing owner or decide to stop the periodic load balancing,
3155 * if the whole system is idle.
3156 */
3157 static inline void trigger_load_balance(struct rq *rq, int cpu)
3158 {
3159 #ifdef CONFIG_NO_HZ
3160 /*
3161 * If we were in the nohz mode recently and busy at the current
3162 * scheduler tick, then check if we need to nominate new idle
3163 * load balancer.
3164 */
3165 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3166 rq->in_nohz_recently = 0;
3167
3168 if (atomic_read(&nohz.load_balancer) == cpu) {
3169 cpu_clear(cpu, nohz.cpu_mask);
3170 atomic_set(&nohz.load_balancer, -1);
3171 }
3172
3173 if (atomic_read(&nohz.load_balancer) == -1) {
3174 /*
3175 * simple selection for now: Nominate the
3176 * first cpu in the nohz list to be the next
3177 * ilb owner.
3178 *
3179 * TBD: Traverse the sched domains and nominate
3180 * the nearest cpu in the nohz.cpu_mask.
3181 */
3182 int ilb = first_cpu(nohz.cpu_mask);
3183
3184 if (ilb != NR_CPUS)
3185 resched_cpu(ilb);
3186 }
3187 }
3188
3189 /*
3190 * If this cpu is idle and doing idle load balancing for all the
3191 * cpus with ticks stopped, is it time for that to stop?
3192 */
3193 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3194 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3195 resched_cpu(cpu);
3196 return;
3197 }
3198
3199 /*
3200 * If this cpu is idle and the idle load balancing is done by
3201 * someone else, then no need raise the SCHED_SOFTIRQ
3202 */
3203 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3204 cpu_isset(cpu, nohz.cpu_mask))
3205 return;
3206 #endif
3207 if (time_after_eq(jiffies, rq->next_balance))
3208 raise_softirq(SCHED_SOFTIRQ);
3209 }
3210
3211 #else /* CONFIG_SMP */
3212
3213 /*
3214 * on UP we do not need to balance between CPUs:
3215 */
3216 static inline void idle_balance(int cpu, struct rq *rq)
3217 {
3218 }
3219
3220 /* Avoid "used but not defined" warning on UP */
3221 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3222 unsigned long max_nr_move, unsigned long max_load_move,
3223 struct sched_domain *sd, enum cpu_idle_type idle,
3224 int *all_pinned, unsigned long *load_moved,
3225 int *this_best_prio, struct rq_iterator *iterator)
3226 {
3227 *load_moved = 0;
3228
3229 return 0;
3230 }
3231
3232 #endif
3233
3234 DEFINE_PER_CPU(struct kernel_stat, kstat);
3235
3236 EXPORT_PER_CPU_SYMBOL(kstat);
3237
3238 /*
3239 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3240 * that have not yet been banked in case the task is currently running.
3241 */
3242 unsigned long long task_sched_runtime(struct task_struct *p)
3243 {
3244 unsigned long flags;
3245 u64 ns, delta_exec;
3246 struct rq *rq;
3247
3248 rq = task_rq_lock(p, &flags);
3249 ns = p->se.sum_exec_runtime;
3250 if (rq->curr == p) {
3251 update_rq_clock(rq);
3252 delta_exec = rq->clock - p->se.exec_start;
3253 if ((s64)delta_exec > 0)
3254 ns += delta_exec;
3255 }
3256 task_rq_unlock(rq, &flags);
3257
3258 return ns;
3259 }
3260
3261 /*
3262 * Account user cpu time to a process.
3263 * @p: the process that the cpu time gets accounted to
3264 * @hardirq_offset: the offset to subtract from hardirq_count()
3265 * @cputime: the cpu time spent in user space since the last update
3266 */
3267 void account_user_time(struct task_struct *p, cputime_t cputime)
3268 {
3269 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3270 cputime64_t tmp;
3271
3272 p->utime = cputime_add(p->utime, cputime);
3273
3274 /* Add user time to cpustat. */
3275 tmp = cputime_to_cputime64(cputime);
3276 if (TASK_NICE(p) > 0)
3277 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3278 else
3279 cpustat->user = cputime64_add(cpustat->user, tmp);
3280 }
3281
3282 /*
3283 * Account system cpu time to a process.
3284 * @p: the process that the cpu time gets accounted to
3285 * @hardirq_offset: the offset to subtract from hardirq_count()
3286 * @cputime: the cpu time spent in kernel space since the last update
3287 */
3288 void account_system_time(struct task_struct *p, int hardirq_offset,
3289 cputime_t cputime)
3290 {
3291 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3292 struct rq *rq = this_rq();
3293 cputime64_t tmp;
3294
3295 p->stime = cputime_add(p->stime, cputime);
3296
3297 /* Add system time to cpustat. */
3298 tmp = cputime_to_cputime64(cputime);
3299 if (hardirq_count() - hardirq_offset)
3300 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3301 else if (softirq_count())
3302 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3303 else if (p != rq->idle)
3304 cpustat->system = cputime64_add(cpustat->system, tmp);
3305 else if (atomic_read(&rq->nr_iowait) > 0)
3306 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3307 else
3308 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3309 /* Account for system time used */
3310 acct_update_integrals(p);
3311 }
3312
3313 /*
3314 * Account for involuntary wait time.
3315 * @p: the process from which the cpu time has been stolen
3316 * @steal: the cpu time spent in involuntary wait
3317 */
3318 void account_steal_time(struct task_struct *p, cputime_t steal)
3319 {
3320 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3321 cputime64_t tmp = cputime_to_cputime64(steal);
3322 struct rq *rq = this_rq();
3323
3324 if (p == rq->idle) {
3325 p->stime = cputime_add(p->stime, steal);
3326 if (atomic_read(&rq->nr_iowait) > 0)
3327 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3328 else
3329 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3330 } else
3331 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3332 }
3333
3334 /*
3335 * This function gets called by the timer code, with HZ frequency.
3336 * We call it with interrupts disabled.
3337 *
3338 * It also gets called by the fork code, when changing the parent's
3339 * timeslices.
3340 */
3341 void scheduler_tick(void)
3342 {
3343 int cpu = smp_processor_id();
3344 struct rq *rq = cpu_rq(cpu);
3345 struct task_struct *curr = rq->curr;
3346 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3347
3348 spin_lock(&rq->lock);
3349 __update_rq_clock(rq);
3350 /*
3351 * Let rq->clock advance by at least TICK_NSEC:
3352 */
3353 if (unlikely(rq->clock < next_tick))
3354 rq->clock = next_tick;
3355 rq->tick_timestamp = rq->clock;
3356 update_cpu_load(rq);
3357 if (curr != rq->idle) /* FIXME: needed? */
3358 curr->sched_class->task_tick(rq, curr);
3359 spin_unlock(&rq->lock);
3360
3361 #ifdef CONFIG_SMP
3362 rq->idle_at_tick = idle_cpu(cpu);
3363 trigger_load_balance(rq, cpu);
3364 #endif
3365 }
3366
3367 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3368
3369 void fastcall add_preempt_count(int val)
3370 {
3371 /*
3372 * Underflow?
3373 */
3374 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3375 return;
3376 preempt_count() += val;
3377 /*
3378 * Spinlock count overflowing soon?
3379 */
3380 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3381 PREEMPT_MASK - 10);
3382 }
3383 EXPORT_SYMBOL(add_preempt_count);
3384
3385 void fastcall sub_preempt_count(int val)
3386 {
3387 /*
3388 * Underflow?
3389 */
3390 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3391 return;
3392 /*
3393 * Is the spinlock portion underflowing?
3394 */
3395 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3396 !(preempt_count() & PREEMPT_MASK)))
3397 return;
3398
3399 preempt_count() -= val;
3400 }
3401 EXPORT_SYMBOL(sub_preempt_count);
3402
3403 #endif
3404
3405 /*
3406 * Print scheduling while atomic bug:
3407 */
3408 static noinline void __schedule_bug(struct task_struct *prev)
3409 {
3410 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3411 prev->comm, preempt_count(), prev->pid);
3412 debug_show_held_locks(prev);
3413 if (irqs_disabled())
3414 print_irqtrace_events(prev);
3415 dump_stack();
3416 }
3417
3418 /*
3419 * Various schedule()-time debugging checks and statistics:
3420 */
3421 static inline void schedule_debug(struct task_struct *prev)
3422 {
3423 /*
3424 * Test if we are atomic. Since do_exit() needs to call into
3425 * schedule() atomically, we ignore that path for now.
3426 * Otherwise, whine if we are scheduling when we should not be.
3427 */
3428 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3429 __schedule_bug(prev);
3430
3431 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3432
3433 schedstat_inc(this_rq(), sched_cnt);
3434 }
3435
3436 /*
3437 * Pick up the highest-prio task:
3438 */
3439 static inline struct task_struct *
3440 pick_next_task(struct rq *rq, struct task_struct *prev)
3441 {
3442 struct sched_class *class;
3443 struct task_struct *p;
3444
3445 /*
3446 * Optimization: we know that if all tasks are in
3447 * the fair class we can call that function directly:
3448 */
3449 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3450 p = fair_sched_class.pick_next_task(rq);
3451 if (likely(p))
3452 return p;
3453 }
3454
3455 class = sched_class_highest;
3456 for ( ; ; ) {
3457 p = class->pick_next_task(rq);
3458 if (p)
3459 return p;
3460 /*
3461 * Will never be NULL as the idle class always
3462 * returns a non-NULL p:
3463 */
3464 class = class->next;
3465 }
3466 }
3467
3468 /*
3469 * schedule() is the main scheduler function.
3470 */
3471 asmlinkage void __sched schedule(void)
3472 {
3473 struct task_struct *prev, *next;
3474 long *switch_count;
3475 struct rq *rq;
3476 int cpu;
3477
3478 need_resched:
3479 preempt_disable();
3480 cpu = smp_processor_id();
3481 rq = cpu_rq(cpu);
3482 rcu_qsctr_inc(cpu);
3483 prev = rq->curr;
3484 switch_count = &prev->nivcsw;
3485
3486 release_kernel_lock(prev);
3487 need_resched_nonpreemptible:
3488
3489 schedule_debug(prev);
3490
3491 spin_lock_irq(&rq->lock);
3492 clear_tsk_need_resched(prev);
3493 __update_rq_clock(rq);
3494
3495 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3496 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3497 unlikely(signal_pending(prev)))) {
3498 prev->state = TASK_RUNNING;
3499 } else {
3500 deactivate_task(rq, prev, 1);
3501 }
3502 switch_count = &prev->nvcsw;
3503 }
3504
3505 if (unlikely(!rq->nr_running))
3506 idle_balance(cpu, rq);
3507
3508 prev->sched_class->put_prev_task(rq, prev);
3509 next = pick_next_task(rq, prev);
3510
3511 sched_info_switch(prev, next);
3512
3513 if (likely(prev != next)) {
3514 rq->nr_switches++;
3515 rq->curr = next;
3516 ++*switch_count;
3517
3518 context_switch(rq, prev, next); /* unlocks the rq */
3519 } else
3520 spin_unlock_irq(&rq->lock);
3521
3522 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3523 cpu = smp_processor_id();
3524 rq = cpu_rq(cpu);
3525 goto need_resched_nonpreemptible;
3526 }
3527 preempt_enable_no_resched();
3528 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3529 goto need_resched;
3530 }
3531 EXPORT_SYMBOL(schedule);
3532
3533 #ifdef CONFIG_PREEMPT
3534 /*
3535 * this is the entry point to schedule() from in-kernel preemption
3536 * off of preempt_enable. Kernel preemptions off return from interrupt
3537 * occur there and call schedule directly.
3538 */
3539 asmlinkage void __sched preempt_schedule(void)
3540 {
3541 struct thread_info *ti = current_thread_info();
3542 #ifdef CONFIG_PREEMPT_BKL
3543 struct task_struct *task = current;
3544 int saved_lock_depth;
3545 #endif
3546 /*
3547 * If there is a non-zero preempt_count or interrupts are disabled,
3548 * we do not want to preempt the current task. Just return..
3549 */
3550 if (likely(ti->preempt_count || irqs_disabled()))
3551 return;
3552
3553 need_resched:
3554 add_preempt_count(PREEMPT_ACTIVE);
3555 /*
3556 * We keep the big kernel semaphore locked, but we
3557 * clear ->lock_depth so that schedule() doesnt
3558 * auto-release the semaphore:
3559 */
3560 #ifdef CONFIG_PREEMPT_BKL
3561 saved_lock_depth = task->lock_depth;
3562 task->lock_depth = -1;
3563 #endif
3564 schedule();
3565 #ifdef CONFIG_PREEMPT_BKL
3566 task->lock_depth = saved_lock_depth;
3567 #endif
3568 sub_preempt_count(PREEMPT_ACTIVE);
3569
3570 /* we could miss a preemption opportunity between schedule and now */
3571 barrier();
3572 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3573 goto need_resched;
3574 }
3575 EXPORT_SYMBOL(preempt_schedule);
3576
3577 /*
3578 * this is the entry point to schedule() from kernel preemption
3579 * off of irq context.
3580 * Note, that this is called and return with irqs disabled. This will
3581 * protect us against recursive calling from irq.
3582 */
3583 asmlinkage void __sched preempt_schedule_irq(void)
3584 {
3585 struct thread_info *ti = current_thread_info();
3586 #ifdef CONFIG_PREEMPT_BKL
3587 struct task_struct *task = current;
3588 int saved_lock_depth;
3589 #endif
3590 /* Catch callers which need to be fixed */
3591 BUG_ON(ti->preempt_count || !irqs_disabled());
3592
3593 need_resched:
3594 add_preempt_count(PREEMPT_ACTIVE);
3595 /*
3596 * We keep the big kernel semaphore locked, but we
3597 * clear ->lock_depth so that schedule() doesnt
3598 * auto-release the semaphore:
3599 */
3600 #ifdef CONFIG_PREEMPT_BKL
3601 saved_lock_depth = task->lock_depth;
3602 task->lock_depth = -1;
3603 #endif
3604 local_irq_enable();
3605 schedule();
3606 local_irq_disable();
3607 #ifdef CONFIG_PREEMPT_BKL
3608 task->lock_depth = saved_lock_depth;
3609 #endif
3610 sub_preempt_count(PREEMPT_ACTIVE);
3611
3612 /* we could miss a preemption opportunity between schedule and now */
3613 barrier();
3614 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3615 goto need_resched;
3616 }
3617
3618 #endif /* CONFIG_PREEMPT */
3619
3620 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3621 void *key)
3622 {
3623 return try_to_wake_up(curr->private, mode, sync);
3624 }
3625 EXPORT_SYMBOL(default_wake_function);
3626
3627 /*
3628 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3629 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3630 * number) then we wake all the non-exclusive tasks and one exclusive task.
3631 *
3632 * There are circumstances in which we can try to wake a task which has already
3633 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3634 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3635 */
3636 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3637 int nr_exclusive, int sync, void *key)
3638 {
3639 struct list_head *tmp, *next;
3640
3641 list_for_each_safe(tmp, next, &q->task_list) {
3642 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3643 unsigned flags = curr->flags;
3644
3645 if (curr->func(curr, mode, sync, key) &&
3646 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3647 break;
3648 }
3649 }
3650
3651 /**
3652 * __wake_up - wake up threads blocked on a waitqueue.
3653 * @q: the waitqueue
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3656 * @key: is directly passed to the wakeup function
3657 */
3658 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3659 int nr_exclusive, void *key)
3660 {
3661 unsigned long flags;
3662
3663 spin_lock_irqsave(&q->lock, flags);
3664 __wake_up_common(q, mode, nr_exclusive, 0, key);
3665 spin_unlock_irqrestore(&q->lock, flags);
3666 }
3667 EXPORT_SYMBOL(__wake_up);
3668
3669 /*
3670 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3671 */
3672 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3673 {
3674 __wake_up_common(q, mode, 1, 0, NULL);
3675 }
3676
3677 /**
3678 * __wake_up_sync - wake up threads blocked on a waitqueue.
3679 * @q: the waitqueue
3680 * @mode: which threads
3681 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3682 *
3683 * The sync wakeup differs that the waker knows that it will schedule
3684 * away soon, so while the target thread will be woken up, it will not
3685 * be migrated to another CPU - ie. the two threads are 'synchronized'
3686 * with each other. This can prevent needless bouncing between CPUs.
3687 *
3688 * On UP it can prevent extra preemption.
3689 */
3690 void fastcall
3691 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3692 {
3693 unsigned long flags;
3694 int sync = 1;
3695
3696 if (unlikely(!q))
3697 return;
3698
3699 if (unlikely(!nr_exclusive))
3700 sync = 0;
3701
3702 spin_lock_irqsave(&q->lock, flags);
3703 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3704 spin_unlock_irqrestore(&q->lock, flags);
3705 }
3706 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3707
3708 void fastcall complete(struct completion *x)
3709 {
3710 unsigned long flags;
3711
3712 spin_lock_irqsave(&x->wait.lock, flags);
3713 x->done++;
3714 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3715 1, 0, NULL);
3716 spin_unlock_irqrestore(&x->wait.lock, flags);
3717 }
3718 EXPORT_SYMBOL(complete);
3719
3720 void fastcall complete_all(struct completion *x)
3721 {
3722 unsigned long flags;
3723
3724 spin_lock_irqsave(&x->wait.lock, flags);
3725 x->done += UINT_MAX/2;
3726 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3727 0, 0, NULL);
3728 spin_unlock_irqrestore(&x->wait.lock, flags);
3729 }
3730 EXPORT_SYMBOL(complete_all);
3731
3732 void fastcall __sched wait_for_completion(struct completion *x)
3733 {
3734 might_sleep();
3735
3736 spin_lock_irq(&x->wait.lock);
3737 if (!x->done) {
3738 DECLARE_WAITQUEUE(wait, current);
3739
3740 wait.flags |= WQ_FLAG_EXCLUSIVE;
3741 __add_wait_queue_tail(&x->wait, &wait);
3742 do {
3743 __set_current_state(TASK_UNINTERRUPTIBLE);
3744 spin_unlock_irq(&x->wait.lock);
3745 schedule();
3746 spin_lock_irq(&x->wait.lock);
3747 } while (!x->done);
3748 __remove_wait_queue(&x->wait, &wait);
3749 }
3750 x->done--;
3751 spin_unlock_irq(&x->wait.lock);
3752 }
3753 EXPORT_SYMBOL(wait_for_completion);
3754
3755 unsigned long fastcall __sched
3756 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3757 {
3758 might_sleep();
3759
3760 spin_lock_irq(&x->wait.lock);
3761 if (!x->done) {
3762 DECLARE_WAITQUEUE(wait, current);
3763
3764 wait.flags |= WQ_FLAG_EXCLUSIVE;
3765 __add_wait_queue_tail(&x->wait, &wait);
3766 do {
3767 __set_current_state(TASK_UNINTERRUPTIBLE);
3768 spin_unlock_irq(&x->wait.lock);
3769 timeout = schedule_timeout(timeout);
3770 spin_lock_irq(&x->wait.lock);
3771 if (!timeout) {
3772 __remove_wait_queue(&x->wait, &wait);
3773 goto out;
3774 }
3775 } while (!x->done);
3776 __remove_wait_queue(&x->wait, &wait);
3777 }
3778 x->done--;
3779 out:
3780 spin_unlock_irq(&x->wait.lock);
3781 return timeout;
3782 }
3783 EXPORT_SYMBOL(wait_for_completion_timeout);
3784
3785 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3786 {
3787 int ret = 0;
3788
3789 might_sleep();
3790
3791 spin_lock_irq(&x->wait.lock);
3792 if (!x->done) {
3793 DECLARE_WAITQUEUE(wait, current);
3794
3795 wait.flags |= WQ_FLAG_EXCLUSIVE;
3796 __add_wait_queue_tail(&x->wait, &wait);
3797 do {
3798 if (signal_pending(current)) {
3799 ret = -ERESTARTSYS;
3800 __remove_wait_queue(&x->wait, &wait);
3801 goto out;
3802 }
3803 __set_current_state(TASK_INTERRUPTIBLE);
3804 spin_unlock_irq(&x->wait.lock);
3805 schedule();
3806 spin_lock_irq(&x->wait.lock);
3807 } while (!x->done);
3808 __remove_wait_queue(&x->wait, &wait);
3809 }
3810 x->done--;
3811 out:
3812 spin_unlock_irq(&x->wait.lock);
3813
3814 return ret;
3815 }
3816 EXPORT_SYMBOL(wait_for_completion_interruptible);
3817
3818 unsigned long fastcall __sched
3819 wait_for_completion_interruptible_timeout(struct completion *x,
3820 unsigned long timeout)
3821 {
3822 might_sleep();
3823
3824 spin_lock_irq(&x->wait.lock);
3825 if (!x->done) {
3826 DECLARE_WAITQUEUE(wait, current);
3827
3828 wait.flags |= WQ_FLAG_EXCLUSIVE;
3829 __add_wait_queue_tail(&x->wait, &wait);
3830 do {
3831 if (signal_pending(current)) {
3832 timeout = -ERESTARTSYS;
3833 __remove_wait_queue(&x->wait, &wait);
3834 goto out;
3835 }
3836 __set_current_state(TASK_INTERRUPTIBLE);
3837 spin_unlock_irq(&x->wait.lock);
3838 timeout = schedule_timeout(timeout);
3839 spin_lock_irq(&x->wait.lock);
3840 if (!timeout) {
3841 __remove_wait_queue(&x->wait, &wait);
3842 goto out;
3843 }
3844 } while (!x->done);
3845 __remove_wait_queue(&x->wait, &wait);
3846 }
3847 x->done--;
3848 out:
3849 spin_unlock_irq(&x->wait.lock);
3850 return timeout;
3851 }
3852 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3853
3854 static inline void
3855 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3856 {
3857 spin_lock_irqsave(&q->lock, *flags);
3858 __add_wait_queue(q, wait);
3859 spin_unlock(&q->lock);
3860 }
3861
3862 static inline void
3863 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3864 {
3865 spin_lock_irq(&q->lock);
3866 __remove_wait_queue(q, wait);
3867 spin_unlock_irqrestore(&q->lock, *flags);
3868 }
3869
3870 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3871 {
3872 unsigned long flags;
3873 wait_queue_t wait;
3874
3875 init_waitqueue_entry(&wait, current);
3876
3877 current->state = TASK_INTERRUPTIBLE;
3878
3879 sleep_on_head(q, &wait, &flags);
3880 schedule();
3881 sleep_on_tail(q, &wait, &flags);
3882 }
3883 EXPORT_SYMBOL(interruptible_sleep_on);
3884
3885 long __sched
3886 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3887 {
3888 unsigned long flags;
3889 wait_queue_t wait;
3890
3891 init_waitqueue_entry(&wait, current);
3892
3893 current->state = TASK_INTERRUPTIBLE;
3894
3895 sleep_on_head(q, &wait, &flags);
3896 timeout = schedule_timeout(timeout);
3897 sleep_on_tail(q, &wait, &flags);
3898
3899 return timeout;
3900 }
3901 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3902
3903 void __sched sleep_on(wait_queue_head_t *q)
3904 {
3905 unsigned long flags;
3906 wait_queue_t wait;
3907
3908 init_waitqueue_entry(&wait, current);
3909
3910 current->state = TASK_UNINTERRUPTIBLE;
3911
3912 sleep_on_head(q, &wait, &flags);
3913 schedule();
3914 sleep_on_tail(q, &wait, &flags);
3915 }
3916 EXPORT_SYMBOL(sleep_on);
3917
3918 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3919 {
3920 unsigned long flags;
3921 wait_queue_t wait;
3922
3923 init_waitqueue_entry(&wait, current);
3924
3925 current->state = TASK_UNINTERRUPTIBLE;
3926
3927 sleep_on_head(q, &wait, &flags);
3928 timeout = schedule_timeout(timeout);
3929 sleep_on_tail(q, &wait, &flags);
3930
3931 return timeout;
3932 }
3933 EXPORT_SYMBOL(sleep_on_timeout);
3934
3935 #ifdef CONFIG_RT_MUTEXES
3936
3937 /*
3938 * rt_mutex_setprio - set the current priority of a task
3939 * @p: task
3940 * @prio: prio value (kernel-internal form)
3941 *
3942 * This function changes the 'effective' priority of a task. It does
3943 * not touch ->normal_prio like __setscheduler().
3944 *
3945 * Used by the rt_mutex code to implement priority inheritance logic.
3946 */
3947 void rt_mutex_setprio(struct task_struct *p, int prio)
3948 {
3949 unsigned long flags;
3950 int oldprio, on_rq;
3951 struct rq *rq;
3952
3953 BUG_ON(prio < 0 || prio > MAX_PRIO);
3954
3955 rq = task_rq_lock(p, &flags);
3956 update_rq_clock(rq);
3957
3958 oldprio = p->prio;
3959 on_rq = p->se.on_rq;
3960 if (on_rq)
3961 dequeue_task(rq, p, 0);
3962
3963 if (rt_prio(prio))
3964 p->sched_class = &rt_sched_class;
3965 else
3966 p->sched_class = &fair_sched_class;
3967
3968 p->prio = prio;
3969
3970 if (on_rq) {
3971 enqueue_task(rq, p, 0);
3972 /*
3973 * Reschedule if we are currently running on this runqueue and
3974 * our priority decreased, or if we are not currently running on
3975 * this runqueue and our priority is higher than the current's
3976 */
3977 if (task_running(rq, p)) {
3978 if (p->prio > oldprio)
3979 resched_task(rq->curr);
3980 } else {
3981 check_preempt_curr(rq, p);
3982 }
3983 }
3984 task_rq_unlock(rq, &flags);
3985 }
3986
3987 #endif
3988
3989 void set_user_nice(struct task_struct *p, long nice)
3990 {
3991 int old_prio, delta, on_rq;
3992 unsigned long flags;
3993 struct rq *rq;
3994
3995 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3996 return;
3997 /*
3998 * We have to be careful, if called from sys_setpriority(),
3999 * the task might be in the middle of scheduling on another CPU.
4000 */
4001 rq = task_rq_lock(p, &flags);
4002 update_rq_clock(rq);
4003 /*
4004 * The RT priorities are set via sched_setscheduler(), but we still
4005 * allow the 'normal' nice value to be set - but as expected
4006 * it wont have any effect on scheduling until the task is
4007 * SCHED_FIFO/SCHED_RR:
4008 */
4009 if (task_has_rt_policy(p)) {
4010 p->static_prio = NICE_TO_PRIO(nice);
4011 goto out_unlock;
4012 }
4013 on_rq = p->se.on_rq;
4014 if (on_rq) {
4015 dequeue_task(rq, p, 0);
4016 dec_load(rq, p);
4017 }
4018
4019 p->static_prio = NICE_TO_PRIO(nice);
4020 set_load_weight(p);
4021 old_prio = p->prio;
4022 p->prio = effective_prio(p);
4023 delta = p->prio - old_prio;
4024
4025 if (on_rq) {
4026 enqueue_task(rq, p, 0);
4027 inc_load(rq, p);
4028 /*
4029 * If the task increased its priority or is running and
4030 * lowered its priority, then reschedule its CPU:
4031 */
4032 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4033 resched_task(rq->curr);
4034 }
4035 out_unlock:
4036 task_rq_unlock(rq, &flags);
4037 }
4038 EXPORT_SYMBOL(set_user_nice);
4039
4040 /*
4041 * can_nice - check if a task can reduce its nice value
4042 * @p: task
4043 * @nice: nice value
4044 */
4045 int can_nice(const struct task_struct *p, const int nice)
4046 {
4047 /* convert nice value [19,-20] to rlimit style value [1,40] */
4048 int nice_rlim = 20 - nice;
4049
4050 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4051 capable(CAP_SYS_NICE));
4052 }
4053
4054 #ifdef __ARCH_WANT_SYS_NICE
4055
4056 /*
4057 * sys_nice - change the priority of the current process.
4058 * @increment: priority increment
4059 *
4060 * sys_setpriority is a more generic, but much slower function that
4061 * does similar things.
4062 */
4063 asmlinkage long sys_nice(int increment)
4064 {
4065 long nice, retval;
4066
4067 /*
4068 * Setpriority might change our priority at the same moment.
4069 * We don't have to worry. Conceptually one call occurs first
4070 * and we have a single winner.
4071 */
4072 if (increment < -40)
4073 increment = -40;
4074 if (increment > 40)
4075 increment = 40;
4076
4077 nice = PRIO_TO_NICE(current->static_prio) + increment;
4078 if (nice < -20)
4079 nice = -20;
4080 if (nice > 19)
4081 nice = 19;
4082
4083 if (increment < 0 && !can_nice(current, nice))
4084 return -EPERM;
4085
4086 retval = security_task_setnice(current, nice);
4087 if (retval)
4088 return retval;
4089
4090 set_user_nice(current, nice);
4091 return 0;
4092 }
4093
4094 #endif
4095
4096 /**
4097 * task_prio - return the priority value of a given task.
4098 * @p: the task in question.
4099 *
4100 * This is the priority value as seen by users in /proc.
4101 * RT tasks are offset by -200. Normal tasks are centered
4102 * around 0, value goes from -16 to +15.
4103 */
4104 int task_prio(const struct task_struct *p)
4105 {
4106 return p->prio - MAX_RT_PRIO;
4107 }
4108
4109 /**
4110 * task_nice - return the nice value of a given task.
4111 * @p: the task in question.
4112 */
4113 int task_nice(const struct task_struct *p)
4114 {
4115 return TASK_NICE(p);
4116 }
4117 EXPORT_SYMBOL_GPL(task_nice);
4118
4119 /**
4120 * idle_cpu - is a given cpu idle currently?
4121 * @cpu: the processor in question.
4122 */
4123 int idle_cpu(int cpu)
4124 {
4125 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4126 }
4127
4128 /**
4129 * idle_task - return the idle task for a given cpu.
4130 * @cpu: the processor in question.
4131 */
4132 struct task_struct *idle_task(int cpu)
4133 {
4134 return cpu_rq(cpu)->idle;
4135 }
4136
4137 /**
4138 * find_process_by_pid - find a process with a matching PID value.
4139 * @pid: the pid in question.
4140 */
4141 static inline struct task_struct *find_process_by_pid(pid_t pid)
4142 {
4143 return pid ? find_task_by_pid(pid) : current;
4144 }
4145
4146 /* Actually do priority change: must hold rq lock. */
4147 static void
4148 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4149 {
4150 BUG_ON(p->se.on_rq);
4151
4152 p->policy = policy;
4153 switch (p->policy) {
4154 case SCHED_NORMAL:
4155 case SCHED_BATCH:
4156 case SCHED_IDLE:
4157 p->sched_class = &fair_sched_class;
4158 break;
4159 case SCHED_FIFO:
4160 case SCHED_RR:
4161 p->sched_class = &rt_sched_class;
4162 break;
4163 }
4164
4165 p->rt_priority = prio;
4166 p->normal_prio = normal_prio(p);
4167 /* we are holding p->pi_lock already */
4168 p->prio = rt_mutex_getprio(p);
4169 set_load_weight(p);
4170 }
4171
4172 /**
4173 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4174 * @p: the task in question.
4175 * @policy: new policy.
4176 * @param: structure containing the new RT priority.
4177 *
4178 * NOTE that the task may be already dead.
4179 */
4180 int sched_setscheduler(struct task_struct *p, int policy,
4181 struct sched_param *param)
4182 {
4183 int retval, oldprio, oldpolicy = -1, on_rq;
4184 unsigned long flags;
4185 struct rq *rq;
4186
4187 /* may grab non-irq protected spin_locks */
4188 BUG_ON(in_interrupt());
4189 recheck:
4190 /* double check policy once rq lock held */
4191 if (policy < 0)
4192 policy = oldpolicy = p->policy;
4193 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4194 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4195 policy != SCHED_IDLE)
4196 return -EINVAL;
4197 /*
4198 * Valid priorities for SCHED_FIFO and SCHED_RR are
4199 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4200 * SCHED_BATCH and SCHED_IDLE is 0.
4201 */
4202 if (param->sched_priority < 0 ||
4203 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4204 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4205 return -EINVAL;
4206 if (rt_policy(policy) != (param->sched_priority != 0))
4207 return -EINVAL;
4208
4209 /*
4210 * Allow unprivileged RT tasks to decrease priority:
4211 */
4212 if (!capable(CAP_SYS_NICE)) {
4213 if (rt_policy(policy)) {
4214 unsigned long rlim_rtprio;
4215
4216 if (!lock_task_sighand(p, &flags))
4217 return -ESRCH;
4218 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4219 unlock_task_sighand(p, &flags);
4220
4221 /* can't set/change the rt policy */
4222 if (policy != p->policy && !rlim_rtprio)
4223 return -EPERM;
4224
4225 /* can't increase priority */
4226 if (param->sched_priority > p->rt_priority &&
4227 param->sched_priority > rlim_rtprio)
4228 return -EPERM;
4229 }
4230 /*
4231 * Like positive nice levels, dont allow tasks to
4232 * move out of SCHED_IDLE either:
4233 */
4234 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4235 return -EPERM;
4236
4237 /* can't change other user's priorities */
4238 if ((current->euid != p->euid) &&
4239 (current->euid != p->uid))
4240 return -EPERM;
4241 }
4242
4243 retval = security_task_setscheduler(p, policy, param);
4244 if (retval)
4245 return retval;
4246 /*
4247 * make sure no PI-waiters arrive (or leave) while we are
4248 * changing the priority of the task:
4249 */
4250 spin_lock_irqsave(&p->pi_lock, flags);
4251 /*
4252 * To be able to change p->policy safely, the apropriate
4253 * runqueue lock must be held.
4254 */
4255 rq = __task_rq_lock(p);
4256 /* recheck policy now with rq lock held */
4257 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4258 policy = oldpolicy = -1;
4259 __task_rq_unlock(rq);
4260 spin_unlock_irqrestore(&p->pi_lock, flags);
4261 goto recheck;
4262 }
4263 update_rq_clock(rq);
4264 on_rq = p->se.on_rq;
4265 if (on_rq)
4266 deactivate_task(rq, p, 0);
4267 oldprio = p->prio;
4268 __setscheduler(rq, p, policy, param->sched_priority);
4269 if (on_rq) {
4270 activate_task(rq, p, 0);
4271 /*
4272 * Reschedule if we are currently running on this runqueue and
4273 * our priority decreased, or if we are not currently running on
4274 * this runqueue and our priority is higher than the current's
4275 */
4276 if (task_running(rq, p)) {
4277 if (p->prio > oldprio)
4278 resched_task(rq->curr);
4279 } else {
4280 check_preempt_curr(rq, p);
4281 }
4282 }
4283 __task_rq_unlock(rq);
4284 spin_unlock_irqrestore(&p->pi_lock, flags);
4285
4286 rt_mutex_adjust_pi(p);
4287
4288 return 0;
4289 }
4290 EXPORT_SYMBOL_GPL(sched_setscheduler);
4291
4292 static int
4293 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4294 {
4295 struct sched_param lparam;
4296 struct task_struct *p;
4297 int retval;
4298
4299 if (!param || pid < 0)
4300 return -EINVAL;
4301 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4302 return -EFAULT;
4303
4304 rcu_read_lock();
4305 retval = -ESRCH;
4306 p = find_process_by_pid(pid);
4307 if (p != NULL)
4308 retval = sched_setscheduler(p, policy, &lparam);
4309 rcu_read_unlock();
4310
4311 return retval;
4312 }
4313
4314 /**
4315 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4316 * @pid: the pid in question.
4317 * @policy: new policy.
4318 * @param: structure containing the new RT priority.
4319 */
4320 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4321 struct sched_param __user *param)
4322 {
4323 /* negative values for policy are not valid */
4324 if (policy < 0)
4325 return -EINVAL;
4326
4327 return do_sched_setscheduler(pid, policy, param);
4328 }
4329
4330 /**
4331 * sys_sched_setparam - set/change the RT priority of a thread
4332 * @pid: the pid in question.
4333 * @param: structure containing the new RT priority.
4334 */
4335 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4336 {
4337 return do_sched_setscheduler(pid, -1, param);
4338 }
4339
4340 /**
4341 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4342 * @pid: the pid in question.
4343 */
4344 asmlinkage long sys_sched_getscheduler(pid_t pid)
4345 {
4346 struct task_struct *p;
4347 int retval = -EINVAL;
4348
4349 if (pid < 0)
4350 goto out_nounlock;
4351
4352 retval = -ESRCH;
4353 read_lock(&tasklist_lock);
4354 p = find_process_by_pid(pid);
4355 if (p) {
4356 retval = security_task_getscheduler(p);
4357 if (!retval)
4358 retval = p->policy;
4359 }
4360 read_unlock(&tasklist_lock);
4361
4362 out_nounlock:
4363 return retval;
4364 }
4365
4366 /**
4367 * sys_sched_getscheduler - get the RT priority of a thread
4368 * @pid: the pid in question.
4369 * @param: structure containing the RT priority.
4370 */
4371 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4372 {
4373 struct sched_param lp;
4374 struct task_struct *p;
4375 int retval = -EINVAL;
4376
4377 if (!param || pid < 0)
4378 goto out_nounlock;
4379
4380 read_lock(&tasklist_lock);
4381 p = find_process_by_pid(pid);
4382 retval = -ESRCH;
4383 if (!p)
4384 goto out_unlock;
4385
4386 retval = security_task_getscheduler(p);
4387 if (retval)
4388 goto out_unlock;
4389
4390 lp.sched_priority = p->rt_priority;
4391 read_unlock(&tasklist_lock);
4392
4393 /*
4394 * This one might sleep, we cannot do it with a spinlock held ...
4395 */
4396 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4397
4398 out_nounlock:
4399 return retval;
4400
4401 out_unlock:
4402 read_unlock(&tasklist_lock);
4403 return retval;
4404 }
4405
4406 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4407 {
4408 cpumask_t cpus_allowed;
4409 struct task_struct *p;
4410 int retval;
4411
4412 mutex_lock(&sched_hotcpu_mutex);
4413 read_lock(&tasklist_lock);
4414
4415 p = find_process_by_pid(pid);
4416 if (!p) {
4417 read_unlock(&tasklist_lock);
4418 mutex_unlock(&sched_hotcpu_mutex);
4419 return -ESRCH;
4420 }
4421
4422 /*
4423 * It is not safe to call set_cpus_allowed with the
4424 * tasklist_lock held. We will bump the task_struct's
4425 * usage count and then drop tasklist_lock.
4426 */
4427 get_task_struct(p);
4428 read_unlock(&tasklist_lock);
4429
4430 retval = -EPERM;
4431 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4432 !capable(CAP_SYS_NICE))
4433 goto out_unlock;
4434
4435 retval = security_task_setscheduler(p, 0, NULL);
4436 if (retval)
4437 goto out_unlock;
4438
4439 cpus_allowed = cpuset_cpus_allowed(p);
4440 cpus_and(new_mask, new_mask, cpus_allowed);
4441 retval = set_cpus_allowed(p, new_mask);
4442
4443 out_unlock:
4444 put_task_struct(p);
4445 mutex_unlock(&sched_hotcpu_mutex);
4446 return retval;
4447 }
4448
4449 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4450 cpumask_t *new_mask)
4451 {
4452 if (len < sizeof(cpumask_t)) {
4453 memset(new_mask, 0, sizeof(cpumask_t));
4454 } else if (len > sizeof(cpumask_t)) {
4455 len = sizeof(cpumask_t);
4456 }
4457 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4458 }
4459
4460 /**
4461 * sys_sched_setaffinity - set the cpu affinity of a process
4462 * @pid: pid of the process
4463 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4464 * @user_mask_ptr: user-space pointer to the new cpu mask
4465 */
4466 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4467 unsigned long __user *user_mask_ptr)
4468 {
4469 cpumask_t new_mask;
4470 int retval;
4471
4472 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4473 if (retval)
4474 return retval;
4475
4476 return sched_setaffinity(pid, new_mask);
4477 }
4478
4479 /*
4480 * Represents all cpu's present in the system
4481 * In systems capable of hotplug, this map could dynamically grow
4482 * as new cpu's are detected in the system via any platform specific
4483 * method, such as ACPI for e.g.
4484 */
4485
4486 cpumask_t cpu_present_map __read_mostly;
4487 EXPORT_SYMBOL(cpu_present_map);
4488
4489 #ifndef CONFIG_SMP
4490 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4491 EXPORT_SYMBOL(cpu_online_map);
4492
4493 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4494 EXPORT_SYMBOL(cpu_possible_map);
4495 #endif
4496
4497 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4498 {
4499 struct task_struct *p;
4500 int retval;
4501
4502 mutex_lock(&sched_hotcpu_mutex);
4503 read_lock(&tasklist_lock);
4504
4505 retval = -ESRCH;
4506 p = find_process_by_pid(pid);
4507 if (!p)
4508 goto out_unlock;
4509
4510 retval = security_task_getscheduler(p);
4511 if (retval)
4512 goto out_unlock;
4513
4514 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4515
4516 out_unlock:
4517 read_unlock(&tasklist_lock);
4518 mutex_unlock(&sched_hotcpu_mutex);
4519
4520 return retval;
4521 }
4522
4523 /**
4524 * sys_sched_getaffinity - get the cpu affinity of a process
4525 * @pid: pid of the process
4526 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4527 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4528 */
4529 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4530 unsigned long __user *user_mask_ptr)
4531 {
4532 int ret;
4533 cpumask_t mask;
4534
4535 if (len < sizeof(cpumask_t))
4536 return -EINVAL;
4537
4538 ret = sched_getaffinity(pid, &mask);
4539 if (ret < 0)
4540 return ret;
4541
4542 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4543 return -EFAULT;
4544
4545 return sizeof(cpumask_t);
4546 }
4547
4548 /**
4549 * sys_sched_yield - yield the current processor to other threads.
4550 *
4551 * This function yields the current CPU to other tasks. If there are no
4552 * other threads running on this CPU then this function will return.
4553 */
4554 asmlinkage long sys_sched_yield(void)
4555 {
4556 struct rq *rq = this_rq_lock();
4557
4558 schedstat_inc(rq, yld_cnt);
4559 current->sched_class->yield_task(rq, current);
4560
4561 /*
4562 * Since we are going to call schedule() anyway, there's
4563 * no need to preempt or enable interrupts:
4564 */
4565 __release(rq->lock);
4566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4567 _raw_spin_unlock(&rq->lock);
4568 preempt_enable_no_resched();
4569
4570 schedule();
4571
4572 return 0;
4573 }
4574
4575 static void __cond_resched(void)
4576 {
4577 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4578 __might_sleep(__FILE__, __LINE__);
4579 #endif
4580 /*
4581 * The BKS might be reacquired before we have dropped
4582 * PREEMPT_ACTIVE, which could trigger a second
4583 * cond_resched() call.
4584 */
4585 do {
4586 add_preempt_count(PREEMPT_ACTIVE);
4587 schedule();
4588 sub_preempt_count(PREEMPT_ACTIVE);
4589 } while (need_resched());
4590 }
4591
4592 int __sched cond_resched(void)
4593 {
4594 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4595 system_state == SYSTEM_RUNNING) {
4596 __cond_resched();
4597 return 1;
4598 }
4599 return 0;
4600 }
4601 EXPORT_SYMBOL(cond_resched);
4602
4603 /*
4604 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4605 * call schedule, and on return reacquire the lock.
4606 *
4607 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4608 * operations here to prevent schedule() from being called twice (once via
4609 * spin_unlock(), once by hand).
4610 */
4611 int cond_resched_lock(spinlock_t *lock)
4612 {
4613 int ret = 0;
4614
4615 if (need_lockbreak(lock)) {
4616 spin_unlock(lock);
4617 cpu_relax();
4618 ret = 1;
4619 spin_lock(lock);
4620 }
4621 if (need_resched() && system_state == SYSTEM_RUNNING) {
4622 spin_release(&lock->dep_map, 1, _THIS_IP_);
4623 _raw_spin_unlock(lock);
4624 preempt_enable_no_resched();
4625 __cond_resched();
4626 ret = 1;
4627 spin_lock(lock);
4628 }
4629 return ret;
4630 }
4631 EXPORT_SYMBOL(cond_resched_lock);
4632
4633 int __sched cond_resched_softirq(void)
4634 {
4635 BUG_ON(!in_softirq());
4636
4637 if (need_resched() && system_state == SYSTEM_RUNNING) {
4638 local_bh_enable();
4639 __cond_resched();
4640 local_bh_disable();
4641 return 1;
4642 }
4643 return 0;
4644 }
4645 EXPORT_SYMBOL(cond_resched_softirq);
4646
4647 /**
4648 * yield - yield the current processor to other threads.
4649 *
4650 * This is a shortcut for kernel-space yielding - it marks the
4651 * thread runnable and calls sys_sched_yield().
4652 */
4653 void __sched yield(void)
4654 {
4655 set_current_state(TASK_RUNNING);
4656 sys_sched_yield();
4657 }
4658 EXPORT_SYMBOL(yield);
4659
4660 /*
4661 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4662 * that process accounting knows that this is a task in IO wait state.
4663 *
4664 * But don't do that if it is a deliberate, throttling IO wait (this task
4665 * has set its backing_dev_info: the queue against which it should throttle)
4666 */
4667 void __sched io_schedule(void)
4668 {
4669 struct rq *rq = &__raw_get_cpu_var(runqueues);
4670
4671 delayacct_blkio_start();
4672 atomic_inc(&rq->nr_iowait);
4673 schedule();
4674 atomic_dec(&rq->nr_iowait);
4675 delayacct_blkio_end();
4676 }
4677 EXPORT_SYMBOL(io_schedule);
4678
4679 long __sched io_schedule_timeout(long timeout)
4680 {
4681 struct rq *rq = &__raw_get_cpu_var(runqueues);
4682 long ret;
4683
4684 delayacct_blkio_start();
4685 atomic_inc(&rq->nr_iowait);
4686 ret = schedule_timeout(timeout);
4687 atomic_dec(&rq->nr_iowait);
4688 delayacct_blkio_end();
4689 return ret;
4690 }
4691
4692 /**
4693 * sys_sched_get_priority_max - return maximum RT priority.
4694 * @policy: scheduling class.
4695 *
4696 * this syscall returns the maximum rt_priority that can be used
4697 * by a given scheduling class.
4698 */
4699 asmlinkage long sys_sched_get_priority_max(int policy)
4700 {
4701 int ret = -EINVAL;
4702
4703 switch (policy) {
4704 case SCHED_FIFO:
4705 case SCHED_RR:
4706 ret = MAX_USER_RT_PRIO-1;
4707 break;
4708 case SCHED_NORMAL:
4709 case SCHED_BATCH:
4710 case SCHED_IDLE:
4711 ret = 0;
4712 break;
4713 }
4714 return ret;
4715 }
4716
4717 /**
4718 * sys_sched_get_priority_min - return minimum RT priority.
4719 * @policy: scheduling class.
4720 *
4721 * this syscall returns the minimum rt_priority that can be used
4722 * by a given scheduling class.
4723 */
4724 asmlinkage long sys_sched_get_priority_min(int policy)
4725 {
4726 int ret = -EINVAL;
4727
4728 switch (policy) {
4729 case SCHED_FIFO:
4730 case SCHED_RR:
4731 ret = 1;
4732 break;
4733 case SCHED_NORMAL:
4734 case SCHED_BATCH:
4735 case SCHED_IDLE:
4736 ret = 0;
4737 }
4738 return ret;
4739 }
4740
4741 /**
4742 * sys_sched_rr_get_interval - return the default timeslice of a process.
4743 * @pid: pid of the process.
4744 * @interval: userspace pointer to the timeslice value.
4745 *
4746 * this syscall writes the default timeslice value of a given process
4747 * into the user-space timespec buffer. A value of '0' means infinity.
4748 */
4749 asmlinkage
4750 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4751 {
4752 struct task_struct *p;
4753 int retval = -EINVAL;
4754 struct timespec t;
4755
4756 if (pid < 0)
4757 goto out_nounlock;
4758
4759 retval = -ESRCH;
4760 read_lock(&tasklist_lock);
4761 p = find_process_by_pid(pid);
4762 if (!p)
4763 goto out_unlock;
4764
4765 retval = security_task_getscheduler(p);
4766 if (retval)
4767 goto out_unlock;
4768
4769 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4770 0 : static_prio_timeslice(p->static_prio), &t);
4771 read_unlock(&tasklist_lock);
4772 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4773 out_nounlock:
4774 return retval;
4775 out_unlock:
4776 read_unlock(&tasklist_lock);
4777 return retval;
4778 }
4779
4780 static const char stat_nam[] = "RSDTtZX";
4781
4782 static void show_task(struct task_struct *p)
4783 {
4784 unsigned long free = 0;
4785 unsigned state;
4786
4787 state = p->state ? __ffs(p->state) + 1 : 0;
4788 printk("%-13.13s %c", p->comm,
4789 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4790 #if BITS_PER_LONG == 32
4791 if (state == TASK_RUNNING)
4792 printk(" running ");
4793 else
4794 printk(" %08lx ", thread_saved_pc(p));
4795 #else
4796 if (state == TASK_RUNNING)
4797 printk(" running task ");
4798 else
4799 printk(" %016lx ", thread_saved_pc(p));
4800 #endif
4801 #ifdef CONFIG_DEBUG_STACK_USAGE
4802 {
4803 unsigned long *n = end_of_stack(p);
4804 while (!*n)
4805 n++;
4806 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4807 }
4808 #endif
4809 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4810
4811 if (state != TASK_RUNNING)
4812 show_stack(p, NULL);
4813 }
4814
4815 void show_state_filter(unsigned long state_filter)
4816 {
4817 struct task_struct *g, *p;
4818
4819 #if BITS_PER_LONG == 32
4820 printk(KERN_INFO
4821 " task PC stack pid father\n");
4822 #else
4823 printk(KERN_INFO
4824 " task PC stack pid father\n");
4825 #endif
4826 read_lock(&tasklist_lock);
4827 do_each_thread(g, p) {
4828 /*
4829 * reset the NMI-timeout, listing all files on a slow
4830 * console might take alot of time:
4831 */
4832 touch_nmi_watchdog();
4833 if (!state_filter || (p->state & state_filter))
4834 show_task(p);
4835 } while_each_thread(g, p);
4836
4837 touch_all_softlockup_watchdogs();
4838
4839 #ifdef CONFIG_SCHED_DEBUG
4840 sysrq_sched_debug_show();
4841 #endif
4842 read_unlock(&tasklist_lock);
4843 /*
4844 * Only show locks if all tasks are dumped:
4845 */
4846 if (state_filter == -1)
4847 debug_show_all_locks();
4848 }
4849
4850 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4851 {
4852 idle->sched_class = &idle_sched_class;
4853 }
4854
4855 /**
4856 * init_idle - set up an idle thread for a given CPU
4857 * @idle: task in question
4858 * @cpu: cpu the idle task belongs to
4859 *
4860 * NOTE: this function does not set the idle thread's NEED_RESCHED
4861 * flag, to make booting more robust.
4862 */
4863 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4864 {
4865 struct rq *rq = cpu_rq(cpu);
4866 unsigned long flags;
4867
4868 __sched_fork(idle);
4869 idle->se.exec_start = sched_clock();
4870
4871 idle->prio = idle->normal_prio = MAX_PRIO;
4872 idle->cpus_allowed = cpumask_of_cpu(cpu);
4873 __set_task_cpu(idle, cpu);
4874
4875 spin_lock_irqsave(&rq->lock, flags);
4876 rq->curr = rq->idle = idle;
4877 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4878 idle->oncpu = 1;
4879 #endif
4880 spin_unlock_irqrestore(&rq->lock, flags);
4881
4882 /* Set the preempt count _outside_ the spinlocks! */
4883 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4884 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4885 #else
4886 task_thread_info(idle)->preempt_count = 0;
4887 #endif
4888 /*
4889 * The idle tasks have their own, simple scheduling class:
4890 */
4891 idle->sched_class = &idle_sched_class;
4892 }
4893
4894 /*
4895 * In a system that switches off the HZ timer nohz_cpu_mask
4896 * indicates which cpus entered this state. This is used
4897 * in the rcu update to wait only for active cpus. For system
4898 * which do not switch off the HZ timer nohz_cpu_mask should
4899 * always be CPU_MASK_NONE.
4900 */
4901 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4902
4903 /*
4904 * Increase the granularity value when there are more CPUs,
4905 * because with more CPUs the 'effective latency' as visible
4906 * to users decreases. But the relationship is not linear,
4907 * so pick a second-best guess by going with the log2 of the
4908 * number of CPUs.
4909 *
4910 * This idea comes from the SD scheduler of Con Kolivas:
4911 */
4912 static inline void sched_init_granularity(void)
4913 {
4914 unsigned int factor = 1 + ilog2(num_online_cpus());
4915 const unsigned long limit = 100000000;
4916
4917 sysctl_sched_min_granularity *= factor;
4918 if (sysctl_sched_min_granularity > limit)
4919 sysctl_sched_min_granularity = limit;
4920
4921 sysctl_sched_latency *= factor;
4922 if (sysctl_sched_latency > limit)
4923 sysctl_sched_latency = limit;
4924
4925 sysctl_sched_runtime_limit = sysctl_sched_latency;
4926 sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
4927 }
4928
4929 #ifdef CONFIG_SMP
4930 /*
4931 * This is how migration works:
4932 *
4933 * 1) we queue a struct migration_req structure in the source CPU's
4934 * runqueue and wake up that CPU's migration thread.
4935 * 2) we down() the locked semaphore => thread blocks.
4936 * 3) migration thread wakes up (implicitly it forces the migrated
4937 * thread off the CPU)
4938 * 4) it gets the migration request and checks whether the migrated
4939 * task is still in the wrong runqueue.
4940 * 5) if it's in the wrong runqueue then the migration thread removes
4941 * it and puts it into the right queue.
4942 * 6) migration thread up()s the semaphore.
4943 * 7) we wake up and the migration is done.
4944 */
4945
4946 /*
4947 * Change a given task's CPU affinity. Migrate the thread to a
4948 * proper CPU and schedule it away if the CPU it's executing on
4949 * is removed from the allowed bitmask.
4950 *
4951 * NOTE: the caller must have a valid reference to the task, the
4952 * task must not exit() & deallocate itself prematurely. The
4953 * call is not atomic; no spinlocks may be held.
4954 */
4955 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4956 {
4957 struct migration_req req;
4958 unsigned long flags;
4959 struct rq *rq;
4960 int ret = 0;
4961
4962 rq = task_rq_lock(p, &flags);
4963 if (!cpus_intersects(new_mask, cpu_online_map)) {
4964 ret = -EINVAL;
4965 goto out;
4966 }
4967
4968 p->cpus_allowed = new_mask;
4969 /* Can the task run on the task's current CPU? If so, we're done */
4970 if (cpu_isset(task_cpu(p), new_mask))
4971 goto out;
4972
4973 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4974 /* Need help from migration thread: drop lock and wait. */
4975 task_rq_unlock(rq, &flags);
4976 wake_up_process(rq->migration_thread);
4977 wait_for_completion(&req.done);
4978 tlb_migrate_finish(p->mm);
4979 return 0;
4980 }
4981 out:
4982 task_rq_unlock(rq, &flags);
4983
4984 return ret;
4985 }
4986 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4987
4988 /*
4989 * Move (not current) task off this cpu, onto dest cpu. We're doing
4990 * this because either it can't run here any more (set_cpus_allowed()
4991 * away from this CPU, or CPU going down), or because we're
4992 * attempting to rebalance this task on exec (sched_exec).
4993 *
4994 * So we race with normal scheduler movements, but that's OK, as long
4995 * as the task is no longer on this CPU.
4996 *
4997 * Returns non-zero if task was successfully migrated.
4998 */
4999 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5000 {
5001 struct rq *rq_dest, *rq_src;
5002 int ret = 0, on_rq;
5003
5004 if (unlikely(cpu_is_offline(dest_cpu)))
5005 return ret;
5006
5007 rq_src = cpu_rq(src_cpu);
5008 rq_dest = cpu_rq(dest_cpu);
5009
5010 double_rq_lock(rq_src, rq_dest);
5011 /* Already moved. */
5012 if (task_cpu(p) != src_cpu)
5013 goto out;
5014 /* Affinity changed (again). */
5015 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5016 goto out;
5017
5018 on_rq = p->se.on_rq;
5019 if (on_rq)
5020 deactivate_task(rq_src, p, 0);
5021
5022 set_task_cpu(p, dest_cpu);
5023 if (on_rq) {
5024 activate_task(rq_dest, p, 0);
5025 check_preempt_curr(rq_dest, p);
5026 }
5027 ret = 1;
5028 out:
5029 double_rq_unlock(rq_src, rq_dest);
5030 return ret;
5031 }
5032
5033 /*
5034 * migration_thread - this is a highprio system thread that performs
5035 * thread migration by bumping thread off CPU then 'pushing' onto
5036 * another runqueue.
5037 */
5038 static int migration_thread(void *data)
5039 {
5040 int cpu = (long)data;
5041 struct rq *rq;
5042
5043 rq = cpu_rq(cpu);
5044 BUG_ON(rq->migration_thread != current);
5045
5046 set_current_state(TASK_INTERRUPTIBLE);
5047 while (!kthread_should_stop()) {
5048 struct migration_req *req;
5049 struct list_head *head;
5050
5051 spin_lock_irq(&rq->lock);
5052
5053 if (cpu_is_offline(cpu)) {
5054 spin_unlock_irq(&rq->lock);
5055 goto wait_to_die;
5056 }
5057
5058 if (rq->active_balance) {
5059 active_load_balance(rq, cpu);
5060 rq->active_balance = 0;
5061 }
5062
5063 head = &rq->migration_queue;
5064
5065 if (list_empty(head)) {
5066 spin_unlock_irq(&rq->lock);
5067 schedule();
5068 set_current_state(TASK_INTERRUPTIBLE);
5069 continue;
5070 }
5071 req = list_entry(head->next, struct migration_req, list);
5072 list_del_init(head->next);
5073
5074 spin_unlock(&rq->lock);
5075 __migrate_task(req->task, cpu, req->dest_cpu);
5076 local_irq_enable();
5077
5078 complete(&req->done);
5079 }
5080 __set_current_state(TASK_RUNNING);
5081 return 0;
5082
5083 wait_to_die:
5084 /* Wait for kthread_stop */
5085 set_current_state(TASK_INTERRUPTIBLE);
5086 while (!kthread_should_stop()) {
5087 schedule();
5088 set_current_state(TASK_INTERRUPTIBLE);
5089 }
5090 __set_current_state(TASK_RUNNING);
5091 return 0;
5092 }
5093
5094 #ifdef CONFIG_HOTPLUG_CPU
5095 /*
5096 * Figure out where task on dead CPU should go, use force if neccessary.
5097 * NOTE: interrupts should be disabled by the caller
5098 */
5099 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5100 {
5101 unsigned long flags;
5102 cpumask_t mask;
5103 struct rq *rq;
5104 int dest_cpu;
5105
5106 restart:
5107 /* On same node? */
5108 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5109 cpus_and(mask, mask, p->cpus_allowed);
5110 dest_cpu = any_online_cpu(mask);
5111
5112 /* On any allowed CPU? */
5113 if (dest_cpu == NR_CPUS)
5114 dest_cpu = any_online_cpu(p->cpus_allowed);
5115
5116 /* No more Mr. Nice Guy. */
5117 if (dest_cpu == NR_CPUS) {
5118 rq = task_rq_lock(p, &flags);
5119 cpus_setall(p->cpus_allowed);
5120 dest_cpu = any_online_cpu(p->cpus_allowed);
5121 task_rq_unlock(rq, &flags);
5122
5123 /*
5124 * Don't tell them about moving exiting tasks or
5125 * kernel threads (both mm NULL), since they never
5126 * leave kernel.
5127 */
5128 if (p->mm && printk_ratelimit())
5129 printk(KERN_INFO "process %d (%s) no "
5130 "longer affine to cpu%d\n",
5131 p->pid, p->comm, dead_cpu);
5132 }
5133 if (!__migrate_task(p, dead_cpu, dest_cpu))
5134 goto restart;
5135 }
5136
5137 /*
5138 * While a dead CPU has no uninterruptible tasks queued at this point,
5139 * it might still have a nonzero ->nr_uninterruptible counter, because
5140 * for performance reasons the counter is not stricly tracking tasks to
5141 * their home CPUs. So we just add the counter to another CPU's counter,
5142 * to keep the global sum constant after CPU-down:
5143 */
5144 static void migrate_nr_uninterruptible(struct rq *rq_src)
5145 {
5146 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5147 unsigned long flags;
5148
5149 local_irq_save(flags);
5150 double_rq_lock(rq_src, rq_dest);
5151 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5152 rq_src->nr_uninterruptible = 0;
5153 double_rq_unlock(rq_src, rq_dest);
5154 local_irq_restore(flags);
5155 }
5156
5157 /* Run through task list and migrate tasks from the dead cpu. */
5158 static void migrate_live_tasks(int src_cpu)
5159 {
5160 struct task_struct *p, *t;
5161
5162 write_lock_irq(&tasklist_lock);
5163
5164 do_each_thread(t, p) {
5165 if (p == current)
5166 continue;
5167
5168 if (task_cpu(p) == src_cpu)
5169 move_task_off_dead_cpu(src_cpu, p);
5170 } while_each_thread(t, p);
5171
5172 write_unlock_irq(&tasklist_lock);
5173 }
5174
5175 /*
5176 * Schedules idle task to be the next runnable task on current CPU.
5177 * It does so by boosting its priority to highest possible and adding it to
5178 * the _front_ of the runqueue. Used by CPU offline code.
5179 */
5180 void sched_idle_next(void)
5181 {
5182 int this_cpu = smp_processor_id();
5183 struct rq *rq = cpu_rq(this_cpu);
5184 struct task_struct *p = rq->idle;
5185 unsigned long flags;
5186
5187 /* cpu has to be offline */
5188 BUG_ON(cpu_online(this_cpu));
5189
5190 /*
5191 * Strictly not necessary since rest of the CPUs are stopped by now
5192 * and interrupts disabled on the current cpu.
5193 */
5194 spin_lock_irqsave(&rq->lock, flags);
5195
5196 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5197
5198 /* Add idle task to the _front_ of its priority queue: */
5199 activate_idle_task(p, rq);
5200
5201 spin_unlock_irqrestore(&rq->lock, flags);
5202 }
5203
5204 /*
5205 * Ensures that the idle task is using init_mm right before its cpu goes
5206 * offline.
5207 */
5208 void idle_task_exit(void)
5209 {
5210 struct mm_struct *mm = current->active_mm;
5211
5212 BUG_ON(cpu_online(smp_processor_id()));
5213
5214 if (mm != &init_mm)
5215 switch_mm(mm, &init_mm, current);
5216 mmdrop(mm);
5217 }
5218
5219 /* called under rq->lock with disabled interrupts */
5220 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5221 {
5222 struct rq *rq = cpu_rq(dead_cpu);
5223
5224 /* Must be exiting, otherwise would be on tasklist. */
5225 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5226
5227 /* Cannot have done final schedule yet: would have vanished. */
5228 BUG_ON(p->state == TASK_DEAD);
5229
5230 get_task_struct(p);
5231
5232 /*
5233 * Drop lock around migration; if someone else moves it,
5234 * that's OK. No task can be added to this CPU, so iteration is
5235 * fine.
5236 * NOTE: interrupts should be left disabled --dev@
5237 */
5238 spin_unlock(&rq->lock);
5239 move_task_off_dead_cpu(dead_cpu, p);
5240 spin_lock(&rq->lock);
5241
5242 put_task_struct(p);
5243 }
5244
5245 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5246 static void migrate_dead_tasks(unsigned int dead_cpu)
5247 {
5248 struct rq *rq = cpu_rq(dead_cpu);
5249 struct task_struct *next;
5250
5251 for ( ; ; ) {
5252 if (!rq->nr_running)
5253 break;
5254 update_rq_clock(rq);
5255 next = pick_next_task(rq, rq->curr);
5256 if (!next)
5257 break;
5258 migrate_dead(dead_cpu, next);
5259
5260 }
5261 }
5262 #endif /* CONFIG_HOTPLUG_CPU */
5263
5264 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5265
5266 static struct ctl_table sd_ctl_dir[] = {
5267 {
5268 .procname = "sched_domain",
5269 .mode = 0555,
5270 },
5271 {0,},
5272 };
5273
5274 static struct ctl_table sd_ctl_root[] = {
5275 {
5276 .ctl_name = CTL_KERN,
5277 .procname = "kernel",
5278 .mode = 0555,
5279 .child = sd_ctl_dir,
5280 },
5281 {0,},
5282 };
5283
5284 static struct ctl_table *sd_alloc_ctl_entry(int n)
5285 {
5286 struct ctl_table *entry =
5287 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5288
5289 BUG_ON(!entry);
5290 memset(entry, 0, n * sizeof(struct ctl_table));
5291
5292 return entry;
5293 }
5294
5295 static void
5296 set_table_entry(struct ctl_table *entry,
5297 const char *procname, void *data, int maxlen,
5298 mode_t mode, proc_handler *proc_handler)
5299 {
5300 entry->procname = procname;
5301 entry->data = data;
5302 entry->maxlen = maxlen;
5303 entry->mode = mode;
5304 entry->proc_handler = proc_handler;
5305 }
5306
5307 static struct ctl_table *
5308 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5309 {
5310 struct ctl_table *table = sd_alloc_ctl_entry(14);
5311
5312 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5313 sizeof(long), 0644, proc_doulongvec_minmax);
5314 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5315 sizeof(long), 0644, proc_doulongvec_minmax);
5316 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5317 sizeof(int), 0644, proc_dointvec_minmax);
5318 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5319 sizeof(int), 0644, proc_dointvec_minmax);
5320 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5321 sizeof(int), 0644, proc_dointvec_minmax);
5322 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5323 sizeof(int), 0644, proc_dointvec_minmax);
5324 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5325 sizeof(int), 0644, proc_dointvec_minmax);
5326 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5327 sizeof(int), 0644, proc_dointvec_minmax);
5328 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5329 sizeof(int), 0644, proc_dointvec_minmax);
5330 set_table_entry(&table[10], "cache_nice_tries",
5331 &sd->cache_nice_tries,
5332 sizeof(int), 0644, proc_dointvec_minmax);
5333 set_table_entry(&table[12], "flags", &sd->flags,
5334 sizeof(int), 0644, proc_dointvec_minmax);
5335
5336 return table;
5337 }
5338
5339 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5340 {
5341 struct ctl_table *entry, *table;
5342 struct sched_domain *sd;
5343 int domain_num = 0, i;
5344 char buf[32];
5345
5346 for_each_domain(cpu, sd)
5347 domain_num++;
5348 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5349
5350 i = 0;
5351 for_each_domain(cpu, sd) {
5352 snprintf(buf, 32, "domain%d", i);
5353 entry->procname = kstrdup(buf, GFP_KERNEL);
5354 entry->mode = 0555;
5355 entry->child = sd_alloc_ctl_domain_table(sd);
5356 entry++;
5357 i++;
5358 }
5359 return table;
5360 }
5361
5362 static struct ctl_table_header *sd_sysctl_header;
5363 static void init_sched_domain_sysctl(void)
5364 {
5365 int i, cpu_num = num_online_cpus();
5366 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5367 char buf[32];
5368
5369 sd_ctl_dir[0].child = entry;
5370
5371 for (i = 0; i < cpu_num; i++, entry++) {
5372 snprintf(buf, 32, "cpu%d", i);
5373 entry->procname = kstrdup(buf, GFP_KERNEL);
5374 entry->mode = 0555;
5375 entry->child = sd_alloc_ctl_cpu_table(i);
5376 }
5377 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5378 }
5379 #else
5380 static void init_sched_domain_sysctl(void)
5381 {
5382 }
5383 #endif
5384
5385 /*
5386 * migration_call - callback that gets triggered when a CPU is added.
5387 * Here we can start up the necessary migration thread for the new CPU.
5388 */
5389 static int __cpuinit
5390 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5391 {
5392 struct task_struct *p;
5393 int cpu = (long)hcpu;
5394 unsigned long flags;
5395 struct rq *rq;
5396
5397 switch (action) {
5398 case CPU_LOCK_ACQUIRE:
5399 mutex_lock(&sched_hotcpu_mutex);
5400 break;
5401
5402 case CPU_UP_PREPARE:
5403 case CPU_UP_PREPARE_FROZEN:
5404 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5405 if (IS_ERR(p))
5406 return NOTIFY_BAD;
5407 kthread_bind(p, cpu);
5408 /* Must be high prio: stop_machine expects to yield to it. */
5409 rq = task_rq_lock(p, &flags);
5410 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5411 task_rq_unlock(rq, &flags);
5412 cpu_rq(cpu)->migration_thread = p;
5413 break;
5414
5415 case CPU_ONLINE:
5416 case CPU_ONLINE_FROZEN:
5417 /* Strictly unneccessary, as first user will wake it. */
5418 wake_up_process(cpu_rq(cpu)->migration_thread);
5419 break;
5420
5421 #ifdef CONFIG_HOTPLUG_CPU
5422 case CPU_UP_CANCELED:
5423 case CPU_UP_CANCELED_FROZEN:
5424 if (!cpu_rq(cpu)->migration_thread)
5425 break;
5426 /* Unbind it from offline cpu so it can run. Fall thru. */
5427 kthread_bind(cpu_rq(cpu)->migration_thread,
5428 any_online_cpu(cpu_online_map));
5429 kthread_stop(cpu_rq(cpu)->migration_thread);
5430 cpu_rq(cpu)->migration_thread = NULL;
5431 break;
5432
5433 case CPU_DEAD:
5434 case CPU_DEAD_FROZEN:
5435 migrate_live_tasks(cpu);
5436 rq = cpu_rq(cpu);
5437 kthread_stop(rq->migration_thread);
5438 rq->migration_thread = NULL;
5439 /* Idle task back to normal (off runqueue, low prio) */
5440 rq = task_rq_lock(rq->idle, &flags);
5441 update_rq_clock(rq);
5442 deactivate_task(rq, rq->idle, 0);
5443 rq->idle->static_prio = MAX_PRIO;
5444 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5445 rq->idle->sched_class = &idle_sched_class;
5446 migrate_dead_tasks(cpu);
5447 task_rq_unlock(rq, &flags);
5448 migrate_nr_uninterruptible(rq);
5449 BUG_ON(rq->nr_running != 0);
5450
5451 /* No need to migrate the tasks: it was best-effort if
5452 * they didn't take sched_hotcpu_mutex. Just wake up
5453 * the requestors. */
5454 spin_lock_irq(&rq->lock);
5455 while (!list_empty(&rq->migration_queue)) {
5456 struct migration_req *req;
5457
5458 req = list_entry(rq->migration_queue.next,
5459 struct migration_req, list);
5460 list_del_init(&req->list);
5461 complete(&req->done);
5462 }
5463 spin_unlock_irq(&rq->lock);
5464 break;
5465 #endif
5466 case CPU_LOCK_RELEASE:
5467 mutex_unlock(&sched_hotcpu_mutex);
5468 break;
5469 }
5470 return NOTIFY_OK;
5471 }
5472
5473 /* Register at highest priority so that task migration (migrate_all_tasks)
5474 * happens before everything else.
5475 */
5476 static struct notifier_block __cpuinitdata migration_notifier = {
5477 .notifier_call = migration_call,
5478 .priority = 10
5479 };
5480
5481 int __init migration_init(void)
5482 {
5483 void *cpu = (void *)(long)smp_processor_id();
5484 int err;
5485
5486 /* Start one for the boot CPU: */
5487 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5488 BUG_ON(err == NOTIFY_BAD);
5489 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5490 register_cpu_notifier(&migration_notifier);
5491
5492 return 0;
5493 }
5494 #endif
5495
5496 #ifdef CONFIG_SMP
5497
5498 /* Number of possible processor ids */
5499 int nr_cpu_ids __read_mostly = NR_CPUS;
5500 EXPORT_SYMBOL(nr_cpu_ids);
5501
5502 #undef SCHED_DOMAIN_DEBUG
5503 #ifdef SCHED_DOMAIN_DEBUG
5504 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5505 {
5506 int level = 0;
5507
5508 if (!sd) {
5509 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5510 return;
5511 }
5512
5513 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5514
5515 do {
5516 int i;
5517 char str[NR_CPUS];
5518 struct sched_group *group = sd->groups;
5519 cpumask_t groupmask;
5520
5521 cpumask_scnprintf(str, NR_CPUS, sd->span);
5522 cpus_clear(groupmask);
5523
5524 printk(KERN_DEBUG);
5525 for (i = 0; i < level + 1; i++)
5526 printk(" ");
5527 printk("domain %d: ", level);
5528
5529 if (!(sd->flags & SD_LOAD_BALANCE)) {
5530 printk("does not load-balance\n");
5531 if (sd->parent)
5532 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533 " has parent");
5534 break;
5535 }
5536
5537 printk("span %s\n", str);
5538
5539 if (!cpu_isset(cpu, sd->span))
5540 printk(KERN_ERR "ERROR: domain->span does not contain "
5541 "CPU%d\n", cpu);
5542 if (!cpu_isset(cpu, group->cpumask))
5543 printk(KERN_ERR "ERROR: domain->groups does not contain"
5544 " CPU%d\n", cpu);
5545
5546 printk(KERN_DEBUG);
5547 for (i = 0; i < level + 2; i++)
5548 printk(" ");
5549 printk("groups:");
5550 do {
5551 if (!group) {
5552 printk("\n");
5553 printk(KERN_ERR "ERROR: group is NULL\n");
5554 break;
5555 }
5556
5557 if (!group->__cpu_power) {
5558 printk("\n");
5559 printk(KERN_ERR "ERROR: domain->cpu_power not "
5560 "set\n");
5561 }
5562
5563 if (!cpus_weight(group->cpumask)) {
5564 printk("\n");
5565 printk(KERN_ERR "ERROR: empty group\n");
5566 }
5567
5568 if (cpus_intersects(groupmask, group->cpumask)) {
5569 printk("\n");
5570 printk(KERN_ERR "ERROR: repeated CPUs\n");
5571 }
5572
5573 cpus_or(groupmask, groupmask, group->cpumask);
5574
5575 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5576 printk(" %s", str);
5577
5578 group = group->next;
5579 } while (group != sd->groups);
5580 printk("\n");
5581
5582 if (!cpus_equal(sd->span, groupmask))
5583 printk(KERN_ERR "ERROR: groups don't span "
5584 "domain->span\n");
5585
5586 level++;
5587 sd = sd->parent;
5588 if (!sd)
5589 continue;
5590
5591 if (!cpus_subset(groupmask, sd->span))
5592 printk(KERN_ERR "ERROR: parent span is not a superset "
5593 "of domain->span\n");
5594
5595 } while (sd);
5596 }
5597 #else
5598 # define sched_domain_debug(sd, cpu) do { } while (0)
5599 #endif
5600
5601 static int sd_degenerate(struct sched_domain *sd)
5602 {
5603 if (cpus_weight(sd->span) == 1)
5604 return 1;
5605
5606 /* Following flags need at least 2 groups */
5607 if (sd->flags & (SD_LOAD_BALANCE |
5608 SD_BALANCE_NEWIDLE |
5609 SD_BALANCE_FORK |
5610 SD_BALANCE_EXEC |
5611 SD_SHARE_CPUPOWER |
5612 SD_SHARE_PKG_RESOURCES)) {
5613 if (sd->groups != sd->groups->next)
5614 return 0;
5615 }
5616
5617 /* Following flags don't use groups */
5618 if (sd->flags & (SD_WAKE_IDLE |
5619 SD_WAKE_AFFINE |
5620 SD_WAKE_BALANCE))
5621 return 0;
5622
5623 return 1;
5624 }
5625
5626 static int
5627 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5628 {
5629 unsigned long cflags = sd->flags, pflags = parent->flags;
5630
5631 if (sd_degenerate(parent))
5632 return 1;
5633
5634 if (!cpus_equal(sd->span, parent->span))
5635 return 0;
5636
5637 /* Does parent contain flags not in child? */
5638 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5639 if (cflags & SD_WAKE_AFFINE)
5640 pflags &= ~SD_WAKE_BALANCE;
5641 /* Flags needing groups don't count if only 1 group in parent */
5642 if (parent->groups == parent->groups->next) {
5643 pflags &= ~(SD_LOAD_BALANCE |
5644 SD_BALANCE_NEWIDLE |
5645 SD_BALANCE_FORK |
5646 SD_BALANCE_EXEC |
5647 SD_SHARE_CPUPOWER |
5648 SD_SHARE_PKG_RESOURCES);
5649 }
5650 if (~cflags & pflags)
5651 return 0;
5652
5653 return 1;
5654 }
5655
5656 /*
5657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5658 * hold the hotplug lock.
5659 */
5660 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5661 {
5662 struct rq *rq = cpu_rq(cpu);
5663 struct sched_domain *tmp;
5664
5665 /* Remove the sched domains which do not contribute to scheduling. */
5666 for (tmp = sd; tmp; tmp = tmp->parent) {
5667 struct sched_domain *parent = tmp->parent;
5668 if (!parent)
5669 break;
5670 if (sd_parent_degenerate(tmp, parent)) {
5671 tmp->parent = parent->parent;
5672 if (parent->parent)
5673 parent->parent->child = tmp;
5674 }
5675 }
5676
5677 if (sd && sd_degenerate(sd)) {
5678 sd = sd->parent;
5679 if (sd)
5680 sd->child = NULL;
5681 }
5682
5683 sched_domain_debug(sd, cpu);
5684
5685 rcu_assign_pointer(rq->sd, sd);
5686 }
5687
5688 /* cpus with isolated domains */
5689 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5690
5691 /* Setup the mask of cpus configured for isolated domains */
5692 static int __init isolated_cpu_setup(char *str)
5693 {
5694 int ints[NR_CPUS], i;
5695
5696 str = get_options(str, ARRAY_SIZE(ints), ints);
5697 cpus_clear(cpu_isolated_map);
5698 for (i = 1; i <= ints[0]; i++)
5699 if (ints[i] < NR_CPUS)
5700 cpu_set(ints[i], cpu_isolated_map);
5701 return 1;
5702 }
5703
5704 __setup ("isolcpus=", isolated_cpu_setup);
5705
5706 /*
5707 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5708 * to a function which identifies what group(along with sched group) a CPU
5709 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5710 * (due to the fact that we keep track of groups covered with a cpumask_t).
5711 *
5712 * init_sched_build_groups will build a circular linked list of the groups
5713 * covered by the given span, and will set each group's ->cpumask correctly,
5714 * and ->cpu_power to 0.
5715 */
5716 static void
5717 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5718 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5719 struct sched_group **sg))
5720 {
5721 struct sched_group *first = NULL, *last = NULL;
5722 cpumask_t covered = CPU_MASK_NONE;
5723 int i;
5724
5725 for_each_cpu_mask(i, span) {
5726 struct sched_group *sg;
5727 int group = group_fn(i, cpu_map, &sg);
5728 int j;
5729
5730 if (cpu_isset(i, covered))
5731 continue;
5732
5733 sg->cpumask = CPU_MASK_NONE;
5734 sg->__cpu_power = 0;
5735
5736 for_each_cpu_mask(j, span) {
5737 if (group_fn(j, cpu_map, NULL) != group)
5738 continue;
5739
5740 cpu_set(j, covered);
5741 cpu_set(j, sg->cpumask);
5742 }
5743 if (!first)
5744 first = sg;
5745 if (last)
5746 last->next = sg;
5747 last = sg;
5748 }
5749 last->next = first;
5750 }
5751
5752 #define SD_NODES_PER_DOMAIN 16
5753
5754 #ifdef CONFIG_NUMA
5755
5756 /**
5757 * find_next_best_node - find the next node to include in a sched_domain
5758 * @node: node whose sched_domain we're building
5759 * @used_nodes: nodes already in the sched_domain
5760 *
5761 * Find the next node to include in a given scheduling domain. Simply
5762 * finds the closest node not already in the @used_nodes map.
5763 *
5764 * Should use nodemask_t.
5765 */
5766 static int find_next_best_node(int node, unsigned long *used_nodes)
5767 {
5768 int i, n, val, min_val, best_node = 0;
5769
5770 min_val = INT_MAX;
5771
5772 for (i = 0; i < MAX_NUMNODES; i++) {
5773 /* Start at @node */
5774 n = (node + i) % MAX_NUMNODES;
5775
5776 if (!nr_cpus_node(n))
5777 continue;
5778
5779 /* Skip already used nodes */
5780 if (test_bit(n, used_nodes))
5781 continue;
5782
5783 /* Simple min distance search */
5784 val = node_distance(node, n);
5785
5786 if (val < min_val) {
5787 min_val = val;
5788 best_node = n;
5789 }
5790 }
5791
5792 set_bit(best_node, used_nodes);
5793 return best_node;
5794 }
5795
5796 /**
5797 * sched_domain_node_span - get a cpumask for a node's sched_domain
5798 * @node: node whose cpumask we're constructing
5799 * @size: number of nodes to include in this span
5800 *
5801 * Given a node, construct a good cpumask for its sched_domain to span. It
5802 * should be one that prevents unnecessary balancing, but also spreads tasks
5803 * out optimally.
5804 */
5805 static cpumask_t sched_domain_node_span(int node)
5806 {
5807 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5808 cpumask_t span, nodemask;
5809 int i;
5810
5811 cpus_clear(span);
5812 bitmap_zero(used_nodes, MAX_NUMNODES);
5813
5814 nodemask = node_to_cpumask(node);
5815 cpus_or(span, span, nodemask);
5816 set_bit(node, used_nodes);
5817
5818 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5819 int next_node = find_next_best_node(node, used_nodes);
5820
5821 nodemask = node_to_cpumask(next_node);
5822 cpus_or(span, span, nodemask);
5823 }
5824
5825 return span;
5826 }
5827 #endif
5828
5829 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5830
5831 /*
5832 * SMT sched-domains:
5833 */
5834 #ifdef CONFIG_SCHED_SMT
5835 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5836 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5837
5838 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5839 struct sched_group **sg)
5840 {
5841 if (sg)
5842 *sg = &per_cpu(sched_group_cpus, cpu);
5843 return cpu;
5844 }
5845 #endif
5846
5847 /*
5848 * multi-core sched-domains:
5849 */
5850 #ifdef CONFIG_SCHED_MC
5851 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5852 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5853 #endif
5854
5855 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5856 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5857 struct sched_group **sg)
5858 {
5859 int group;
5860 cpumask_t mask = cpu_sibling_map[cpu];
5861 cpus_and(mask, mask, *cpu_map);
5862 group = first_cpu(mask);
5863 if (sg)
5864 *sg = &per_cpu(sched_group_core, group);
5865 return group;
5866 }
5867 #elif defined(CONFIG_SCHED_MC)
5868 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5869 struct sched_group **sg)
5870 {
5871 if (sg)
5872 *sg = &per_cpu(sched_group_core, cpu);
5873 return cpu;
5874 }
5875 #endif
5876
5877 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5878 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5879
5880 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5881 struct sched_group **sg)
5882 {
5883 int group;
5884 #ifdef CONFIG_SCHED_MC
5885 cpumask_t mask = cpu_coregroup_map(cpu);
5886 cpus_and(mask, mask, *cpu_map);
5887 group = first_cpu(mask);
5888 #elif defined(CONFIG_SCHED_SMT)
5889 cpumask_t mask = cpu_sibling_map[cpu];
5890 cpus_and(mask, mask, *cpu_map);
5891 group = first_cpu(mask);
5892 #else
5893 group = cpu;
5894 #endif
5895 if (sg)
5896 *sg = &per_cpu(sched_group_phys, group);
5897 return group;
5898 }
5899
5900 #ifdef CONFIG_NUMA
5901 /*
5902 * The init_sched_build_groups can't handle what we want to do with node
5903 * groups, so roll our own. Now each node has its own list of groups which
5904 * gets dynamically allocated.
5905 */
5906 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5907 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5908
5909 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5910 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5911
5912 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5913 struct sched_group **sg)
5914 {
5915 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5916 int group;
5917
5918 cpus_and(nodemask, nodemask, *cpu_map);
5919 group = first_cpu(nodemask);
5920
5921 if (sg)
5922 *sg = &per_cpu(sched_group_allnodes, group);
5923 return group;
5924 }
5925
5926 static void init_numa_sched_groups_power(struct sched_group *group_head)
5927 {
5928 struct sched_group *sg = group_head;
5929 int j;
5930
5931 if (!sg)
5932 return;
5933 next_sg:
5934 for_each_cpu_mask(j, sg->cpumask) {
5935 struct sched_domain *sd;
5936
5937 sd = &per_cpu(phys_domains, j);
5938 if (j != first_cpu(sd->groups->cpumask)) {
5939 /*
5940 * Only add "power" once for each
5941 * physical package.
5942 */
5943 continue;
5944 }
5945
5946 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5947 }
5948 sg = sg->next;
5949 if (sg != group_head)
5950 goto next_sg;
5951 }
5952 #endif
5953
5954 #ifdef CONFIG_NUMA
5955 /* Free memory allocated for various sched_group structures */
5956 static void free_sched_groups(const cpumask_t *cpu_map)
5957 {
5958 int cpu, i;
5959
5960 for_each_cpu_mask(cpu, *cpu_map) {
5961 struct sched_group **sched_group_nodes
5962 = sched_group_nodes_bycpu[cpu];
5963
5964 if (!sched_group_nodes)
5965 continue;
5966
5967 for (i = 0; i < MAX_NUMNODES; i++) {
5968 cpumask_t nodemask = node_to_cpumask(i);
5969 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5970
5971 cpus_and(nodemask, nodemask, *cpu_map);
5972 if (cpus_empty(nodemask))
5973 continue;
5974
5975 if (sg == NULL)
5976 continue;
5977 sg = sg->next;
5978 next_sg:
5979 oldsg = sg;
5980 sg = sg->next;
5981 kfree(oldsg);
5982 if (oldsg != sched_group_nodes[i])
5983 goto next_sg;
5984 }
5985 kfree(sched_group_nodes);
5986 sched_group_nodes_bycpu[cpu] = NULL;
5987 }
5988 }
5989 #else
5990 static void free_sched_groups(const cpumask_t *cpu_map)
5991 {
5992 }
5993 #endif
5994
5995 /*
5996 * Initialize sched groups cpu_power.
5997 *
5998 * cpu_power indicates the capacity of sched group, which is used while
5999 * distributing the load between different sched groups in a sched domain.
6000 * Typically cpu_power for all the groups in a sched domain will be same unless
6001 * there are asymmetries in the topology. If there are asymmetries, group
6002 * having more cpu_power will pickup more load compared to the group having
6003 * less cpu_power.
6004 *
6005 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6006 * the maximum number of tasks a group can handle in the presence of other idle
6007 * or lightly loaded groups in the same sched domain.
6008 */
6009 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6010 {
6011 struct sched_domain *child;
6012 struct sched_group *group;
6013
6014 WARN_ON(!sd || !sd->groups);
6015
6016 if (cpu != first_cpu(sd->groups->cpumask))
6017 return;
6018
6019 child = sd->child;
6020
6021 sd->groups->__cpu_power = 0;
6022
6023 /*
6024 * For perf policy, if the groups in child domain share resources
6025 * (for example cores sharing some portions of the cache hierarchy
6026 * or SMT), then set this domain groups cpu_power such that each group
6027 * can handle only one task, when there are other idle groups in the
6028 * same sched domain.
6029 */
6030 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6031 (child->flags &
6032 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6033 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6034 return;
6035 }
6036
6037 /*
6038 * add cpu_power of each child group to this groups cpu_power
6039 */
6040 group = child->groups;
6041 do {
6042 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6043 group = group->next;
6044 } while (group != child->groups);
6045 }
6046
6047 /*
6048 * Build sched domains for a given set of cpus and attach the sched domains
6049 * to the individual cpus
6050 */
6051 static int build_sched_domains(const cpumask_t *cpu_map)
6052 {
6053 int i;
6054 #ifdef CONFIG_NUMA
6055 struct sched_group **sched_group_nodes = NULL;
6056 int sd_allnodes = 0;
6057
6058 /*
6059 * Allocate the per-node list of sched groups
6060 */
6061 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6062 GFP_KERNEL);
6063 if (!sched_group_nodes) {
6064 printk(KERN_WARNING "Can not alloc sched group node list\n");
6065 return -ENOMEM;
6066 }
6067 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6068 #endif
6069
6070 /*
6071 * Set up domains for cpus specified by the cpu_map.
6072 */
6073 for_each_cpu_mask(i, *cpu_map) {
6074 struct sched_domain *sd = NULL, *p;
6075 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6076
6077 cpus_and(nodemask, nodemask, *cpu_map);
6078
6079 #ifdef CONFIG_NUMA
6080 if (cpus_weight(*cpu_map) >
6081 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6082 sd = &per_cpu(allnodes_domains, i);
6083 *sd = SD_ALLNODES_INIT;
6084 sd->span = *cpu_map;
6085 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6086 p = sd;
6087 sd_allnodes = 1;
6088 } else
6089 p = NULL;
6090
6091 sd = &per_cpu(node_domains, i);
6092 *sd = SD_NODE_INIT;
6093 sd->span = sched_domain_node_span(cpu_to_node(i));
6094 sd->parent = p;
6095 if (p)
6096 p->child = sd;
6097 cpus_and(sd->span, sd->span, *cpu_map);
6098 #endif
6099
6100 p = sd;
6101 sd = &per_cpu(phys_domains, i);
6102 *sd = SD_CPU_INIT;
6103 sd->span = nodemask;
6104 sd->parent = p;
6105 if (p)
6106 p->child = sd;
6107 cpu_to_phys_group(i, cpu_map, &sd->groups);
6108
6109 #ifdef CONFIG_SCHED_MC
6110 p = sd;
6111 sd = &per_cpu(core_domains, i);
6112 *sd = SD_MC_INIT;
6113 sd->span = cpu_coregroup_map(i);
6114 cpus_and(sd->span, sd->span, *cpu_map);
6115 sd->parent = p;
6116 p->child = sd;
6117 cpu_to_core_group(i, cpu_map, &sd->groups);
6118 #endif
6119
6120 #ifdef CONFIG_SCHED_SMT
6121 p = sd;
6122 sd = &per_cpu(cpu_domains, i);
6123 *sd = SD_SIBLING_INIT;
6124 sd->span = cpu_sibling_map[i];
6125 cpus_and(sd->span, sd->span, *cpu_map);
6126 sd->parent = p;
6127 p->child = sd;
6128 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6129 #endif
6130 }
6131
6132 #ifdef CONFIG_SCHED_SMT
6133 /* Set up CPU (sibling) groups */
6134 for_each_cpu_mask(i, *cpu_map) {
6135 cpumask_t this_sibling_map = cpu_sibling_map[i];
6136 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6137 if (i != first_cpu(this_sibling_map))
6138 continue;
6139
6140 init_sched_build_groups(this_sibling_map, cpu_map,
6141 &cpu_to_cpu_group);
6142 }
6143 #endif
6144
6145 #ifdef CONFIG_SCHED_MC
6146 /* Set up multi-core groups */
6147 for_each_cpu_mask(i, *cpu_map) {
6148 cpumask_t this_core_map = cpu_coregroup_map(i);
6149 cpus_and(this_core_map, this_core_map, *cpu_map);
6150 if (i != first_cpu(this_core_map))
6151 continue;
6152 init_sched_build_groups(this_core_map, cpu_map,
6153 &cpu_to_core_group);
6154 }
6155 #endif
6156
6157 /* Set up physical groups */
6158 for (i = 0; i < MAX_NUMNODES; i++) {
6159 cpumask_t nodemask = node_to_cpumask(i);
6160
6161 cpus_and(nodemask, nodemask, *cpu_map);
6162 if (cpus_empty(nodemask))
6163 continue;
6164
6165 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6166 }
6167
6168 #ifdef CONFIG_NUMA
6169 /* Set up node groups */
6170 if (sd_allnodes)
6171 init_sched_build_groups(*cpu_map, cpu_map,
6172 &cpu_to_allnodes_group);
6173
6174 for (i = 0; i < MAX_NUMNODES; i++) {
6175 /* Set up node groups */
6176 struct sched_group *sg, *prev;
6177 cpumask_t nodemask = node_to_cpumask(i);
6178 cpumask_t domainspan;
6179 cpumask_t covered = CPU_MASK_NONE;
6180 int j;
6181
6182 cpus_and(nodemask, nodemask, *cpu_map);
6183 if (cpus_empty(nodemask)) {
6184 sched_group_nodes[i] = NULL;
6185 continue;
6186 }
6187
6188 domainspan = sched_domain_node_span(i);
6189 cpus_and(domainspan, domainspan, *cpu_map);
6190
6191 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6192 if (!sg) {
6193 printk(KERN_WARNING "Can not alloc domain group for "
6194 "node %d\n", i);
6195 goto error;
6196 }
6197 sched_group_nodes[i] = sg;
6198 for_each_cpu_mask(j, nodemask) {
6199 struct sched_domain *sd;
6200
6201 sd = &per_cpu(node_domains, j);
6202 sd->groups = sg;
6203 }
6204 sg->__cpu_power = 0;
6205 sg->cpumask = nodemask;
6206 sg->next = sg;
6207 cpus_or(covered, covered, nodemask);
6208 prev = sg;
6209
6210 for (j = 0; j < MAX_NUMNODES; j++) {
6211 cpumask_t tmp, notcovered;
6212 int n = (i + j) % MAX_NUMNODES;
6213
6214 cpus_complement(notcovered, covered);
6215 cpus_and(tmp, notcovered, *cpu_map);
6216 cpus_and(tmp, tmp, domainspan);
6217 if (cpus_empty(tmp))
6218 break;
6219
6220 nodemask = node_to_cpumask(n);
6221 cpus_and(tmp, tmp, nodemask);
6222 if (cpus_empty(tmp))
6223 continue;
6224
6225 sg = kmalloc_node(sizeof(struct sched_group),
6226 GFP_KERNEL, i);
6227 if (!sg) {
6228 printk(KERN_WARNING
6229 "Can not alloc domain group for node %d\n", j);
6230 goto error;
6231 }
6232 sg->__cpu_power = 0;
6233 sg->cpumask = tmp;
6234 sg->next = prev->next;
6235 cpus_or(covered, covered, tmp);
6236 prev->next = sg;
6237 prev = sg;
6238 }
6239 }
6240 #endif
6241
6242 /* Calculate CPU power for physical packages and nodes */
6243 #ifdef CONFIG_SCHED_SMT
6244 for_each_cpu_mask(i, *cpu_map) {
6245 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6246
6247 init_sched_groups_power(i, sd);
6248 }
6249 #endif
6250 #ifdef CONFIG_SCHED_MC
6251 for_each_cpu_mask(i, *cpu_map) {
6252 struct sched_domain *sd = &per_cpu(core_domains, i);
6253
6254 init_sched_groups_power(i, sd);
6255 }
6256 #endif
6257
6258 for_each_cpu_mask(i, *cpu_map) {
6259 struct sched_domain *sd = &per_cpu(phys_domains, i);
6260
6261 init_sched_groups_power(i, sd);
6262 }
6263
6264 #ifdef CONFIG_NUMA
6265 for (i = 0; i < MAX_NUMNODES; i++)
6266 init_numa_sched_groups_power(sched_group_nodes[i]);
6267
6268 if (sd_allnodes) {
6269 struct sched_group *sg;
6270
6271 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6272 init_numa_sched_groups_power(sg);
6273 }
6274 #endif
6275
6276 /* Attach the domains */
6277 for_each_cpu_mask(i, *cpu_map) {
6278 struct sched_domain *sd;
6279 #ifdef CONFIG_SCHED_SMT
6280 sd = &per_cpu(cpu_domains, i);
6281 #elif defined(CONFIG_SCHED_MC)
6282 sd = &per_cpu(core_domains, i);
6283 #else
6284 sd = &per_cpu(phys_domains, i);
6285 #endif
6286 cpu_attach_domain(sd, i);
6287 }
6288
6289 return 0;
6290
6291 #ifdef CONFIG_NUMA
6292 error:
6293 free_sched_groups(cpu_map);
6294 return -ENOMEM;
6295 #endif
6296 }
6297 /*
6298 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6299 */
6300 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6301 {
6302 cpumask_t cpu_default_map;
6303 int err;
6304
6305 /*
6306 * Setup mask for cpus without special case scheduling requirements.
6307 * For now this just excludes isolated cpus, but could be used to
6308 * exclude other special cases in the future.
6309 */
6310 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6311
6312 err = build_sched_domains(&cpu_default_map);
6313
6314 return err;
6315 }
6316
6317 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6318 {
6319 free_sched_groups(cpu_map);
6320 }
6321
6322 /*
6323 * Detach sched domains from a group of cpus specified in cpu_map
6324 * These cpus will now be attached to the NULL domain
6325 */
6326 static void detach_destroy_domains(const cpumask_t *cpu_map)
6327 {
6328 int i;
6329
6330 for_each_cpu_mask(i, *cpu_map)
6331 cpu_attach_domain(NULL, i);
6332 synchronize_sched();
6333 arch_destroy_sched_domains(cpu_map);
6334 }
6335
6336 /*
6337 * Partition sched domains as specified by the cpumasks below.
6338 * This attaches all cpus from the cpumasks to the NULL domain,
6339 * waits for a RCU quiescent period, recalculates sched
6340 * domain information and then attaches them back to the
6341 * correct sched domains
6342 * Call with hotplug lock held
6343 */
6344 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6345 {
6346 cpumask_t change_map;
6347 int err = 0;
6348
6349 cpus_and(*partition1, *partition1, cpu_online_map);
6350 cpus_and(*partition2, *partition2, cpu_online_map);
6351 cpus_or(change_map, *partition1, *partition2);
6352
6353 /* Detach sched domains from all of the affected cpus */
6354 detach_destroy_domains(&change_map);
6355 if (!cpus_empty(*partition1))
6356 err = build_sched_domains(partition1);
6357 if (!err && !cpus_empty(*partition2))
6358 err = build_sched_domains(partition2);
6359
6360 return err;
6361 }
6362
6363 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6364 static int arch_reinit_sched_domains(void)
6365 {
6366 int err;
6367
6368 mutex_lock(&sched_hotcpu_mutex);
6369 detach_destroy_domains(&cpu_online_map);
6370 err = arch_init_sched_domains(&cpu_online_map);
6371 mutex_unlock(&sched_hotcpu_mutex);
6372
6373 return err;
6374 }
6375
6376 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6377 {
6378 int ret;
6379
6380 if (buf[0] != '0' && buf[0] != '1')
6381 return -EINVAL;
6382
6383 if (smt)
6384 sched_smt_power_savings = (buf[0] == '1');
6385 else
6386 sched_mc_power_savings = (buf[0] == '1');
6387
6388 ret = arch_reinit_sched_domains();
6389
6390 return ret ? ret : count;
6391 }
6392
6393 #ifdef CONFIG_SCHED_MC
6394 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6395 {
6396 return sprintf(page, "%u\n", sched_mc_power_savings);
6397 }
6398 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6399 const char *buf, size_t count)
6400 {
6401 return sched_power_savings_store(buf, count, 0);
6402 }
6403 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6404 sched_mc_power_savings_store);
6405 #endif
6406
6407 #ifdef CONFIG_SCHED_SMT
6408 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6409 {
6410 return sprintf(page, "%u\n", sched_smt_power_savings);
6411 }
6412 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6413 const char *buf, size_t count)
6414 {
6415 return sched_power_savings_store(buf, count, 1);
6416 }
6417 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6418 sched_smt_power_savings_store);
6419 #endif
6420
6421 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6422 {
6423 int err = 0;
6424
6425 #ifdef CONFIG_SCHED_SMT
6426 if (smt_capable())
6427 err = sysfs_create_file(&cls->kset.kobj,
6428 &attr_sched_smt_power_savings.attr);
6429 #endif
6430 #ifdef CONFIG_SCHED_MC
6431 if (!err && mc_capable())
6432 err = sysfs_create_file(&cls->kset.kobj,
6433 &attr_sched_mc_power_savings.attr);
6434 #endif
6435 return err;
6436 }
6437 #endif
6438
6439 /*
6440 * Force a reinitialization of the sched domains hierarchy. The domains
6441 * and groups cannot be updated in place without racing with the balancing
6442 * code, so we temporarily attach all running cpus to the NULL domain
6443 * which will prevent rebalancing while the sched domains are recalculated.
6444 */
6445 static int update_sched_domains(struct notifier_block *nfb,
6446 unsigned long action, void *hcpu)
6447 {
6448 switch (action) {
6449 case CPU_UP_PREPARE:
6450 case CPU_UP_PREPARE_FROZEN:
6451 case CPU_DOWN_PREPARE:
6452 case CPU_DOWN_PREPARE_FROZEN:
6453 detach_destroy_domains(&cpu_online_map);
6454 return NOTIFY_OK;
6455
6456 case CPU_UP_CANCELED:
6457 case CPU_UP_CANCELED_FROZEN:
6458 case CPU_DOWN_FAILED:
6459 case CPU_DOWN_FAILED_FROZEN:
6460 case CPU_ONLINE:
6461 case CPU_ONLINE_FROZEN:
6462 case CPU_DEAD:
6463 case CPU_DEAD_FROZEN:
6464 /*
6465 * Fall through and re-initialise the domains.
6466 */
6467 break;
6468 default:
6469 return NOTIFY_DONE;
6470 }
6471
6472 /* The hotplug lock is already held by cpu_up/cpu_down */
6473 arch_init_sched_domains(&cpu_online_map);
6474
6475 return NOTIFY_OK;
6476 }
6477
6478 void __init sched_init_smp(void)
6479 {
6480 cpumask_t non_isolated_cpus;
6481
6482 mutex_lock(&sched_hotcpu_mutex);
6483 arch_init_sched_domains(&cpu_online_map);
6484 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6485 if (cpus_empty(non_isolated_cpus))
6486 cpu_set(smp_processor_id(), non_isolated_cpus);
6487 mutex_unlock(&sched_hotcpu_mutex);
6488 /* XXX: Theoretical race here - CPU may be hotplugged now */
6489 hotcpu_notifier(update_sched_domains, 0);
6490
6491 init_sched_domain_sysctl();
6492
6493 /* Move init over to a non-isolated CPU */
6494 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6495 BUG();
6496 sched_init_granularity();
6497 }
6498 #else
6499 void __init sched_init_smp(void)
6500 {
6501 sched_init_granularity();
6502 }
6503 #endif /* CONFIG_SMP */
6504
6505 int in_sched_functions(unsigned long addr)
6506 {
6507 /* Linker adds these: start and end of __sched functions */
6508 extern char __sched_text_start[], __sched_text_end[];
6509
6510 return in_lock_functions(addr) ||
6511 (addr >= (unsigned long)__sched_text_start
6512 && addr < (unsigned long)__sched_text_end);
6513 }
6514
6515 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6516 {
6517 cfs_rq->tasks_timeline = RB_ROOT;
6518 cfs_rq->fair_clock = 1;
6519 #ifdef CONFIG_FAIR_GROUP_SCHED
6520 cfs_rq->rq = rq;
6521 #endif
6522 }
6523
6524 void __init sched_init(void)
6525 {
6526 u64 now = sched_clock();
6527 int highest_cpu = 0;
6528 int i, j;
6529
6530 /*
6531 * Link up the scheduling class hierarchy:
6532 */
6533 rt_sched_class.next = &fair_sched_class;
6534 fair_sched_class.next = &idle_sched_class;
6535 idle_sched_class.next = NULL;
6536
6537 for_each_possible_cpu(i) {
6538 struct rt_prio_array *array;
6539 struct rq *rq;
6540
6541 rq = cpu_rq(i);
6542 spin_lock_init(&rq->lock);
6543 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6544 rq->nr_running = 0;
6545 rq->clock = 1;
6546 init_cfs_rq(&rq->cfs, rq);
6547 #ifdef CONFIG_FAIR_GROUP_SCHED
6548 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6549 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6550 #endif
6551 rq->ls.load_update_last = now;
6552 rq->ls.load_update_start = now;
6553
6554 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6555 rq->cpu_load[j] = 0;
6556 #ifdef CONFIG_SMP
6557 rq->sd = NULL;
6558 rq->active_balance = 0;
6559 rq->next_balance = jiffies;
6560 rq->push_cpu = 0;
6561 rq->cpu = i;
6562 rq->migration_thread = NULL;
6563 INIT_LIST_HEAD(&rq->migration_queue);
6564 #endif
6565 atomic_set(&rq->nr_iowait, 0);
6566
6567 array = &rq->rt.active;
6568 for (j = 0; j < MAX_RT_PRIO; j++) {
6569 INIT_LIST_HEAD(array->queue + j);
6570 __clear_bit(j, array->bitmap);
6571 }
6572 highest_cpu = i;
6573 /* delimiter for bitsearch: */
6574 __set_bit(MAX_RT_PRIO, array->bitmap);
6575 }
6576
6577 set_load_weight(&init_task);
6578
6579 #ifdef CONFIG_PREEMPT_NOTIFIERS
6580 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6581 #endif
6582
6583 #ifdef CONFIG_SMP
6584 nr_cpu_ids = highest_cpu + 1;
6585 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6586 #endif
6587
6588 #ifdef CONFIG_RT_MUTEXES
6589 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6590 #endif
6591
6592 /*
6593 * The boot idle thread does lazy MMU switching as well:
6594 */
6595 atomic_inc(&init_mm.mm_count);
6596 enter_lazy_tlb(&init_mm, current);
6597
6598 /*
6599 * Make us the idle thread. Technically, schedule() should not be
6600 * called from this thread, however somewhere below it might be,
6601 * but because we are the idle thread, we just pick up running again
6602 * when this runqueue becomes "idle".
6603 */
6604 init_idle(current, smp_processor_id());
6605 /*
6606 * During early bootup we pretend to be a normal task:
6607 */
6608 current->sched_class = &fair_sched_class;
6609 }
6610
6611 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6612 void __might_sleep(char *file, int line)
6613 {
6614 #ifdef in_atomic
6615 static unsigned long prev_jiffy; /* ratelimiting */
6616
6617 if ((in_atomic() || irqs_disabled()) &&
6618 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6619 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6620 return;
6621 prev_jiffy = jiffies;
6622 printk(KERN_ERR "BUG: sleeping function called from invalid"
6623 " context at %s:%d\n", file, line);
6624 printk("in_atomic():%d, irqs_disabled():%d\n",
6625 in_atomic(), irqs_disabled());
6626 debug_show_held_locks(current);
6627 if (irqs_disabled())
6628 print_irqtrace_events(current);
6629 dump_stack();
6630 }
6631 #endif
6632 }
6633 EXPORT_SYMBOL(__might_sleep);
6634 #endif
6635
6636 #ifdef CONFIG_MAGIC_SYSRQ
6637 void normalize_rt_tasks(void)
6638 {
6639 struct task_struct *g, *p;
6640 unsigned long flags;
6641 struct rq *rq;
6642 int on_rq;
6643
6644 read_lock_irq(&tasklist_lock);
6645 do_each_thread(g, p) {
6646 p->se.fair_key = 0;
6647 p->se.wait_runtime = 0;
6648 p->se.exec_start = 0;
6649 p->se.wait_start_fair = 0;
6650 p->se.sleep_start_fair = 0;
6651 #ifdef CONFIG_SCHEDSTATS
6652 p->se.wait_start = 0;
6653 p->se.sleep_start = 0;
6654 p->se.block_start = 0;
6655 #endif
6656 task_rq(p)->cfs.fair_clock = 0;
6657 task_rq(p)->clock = 0;
6658
6659 if (!rt_task(p)) {
6660 /*
6661 * Renice negative nice level userspace
6662 * tasks back to 0:
6663 */
6664 if (TASK_NICE(p) < 0 && p->mm)
6665 set_user_nice(p, 0);
6666 continue;
6667 }
6668
6669 spin_lock_irqsave(&p->pi_lock, flags);
6670 rq = __task_rq_lock(p);
6671 #ifdef CONFIG_SMP
6672 /*
6673 * Do not touch the migration thread:
6674 */
6675 if (p == rq->migration_thread)
6676 goto out_unlock;
6677 #endif
6678
6679 update_rq_clock(rq);
6680 on_rq = p->se.on_rq;
6681 if (on_rq)
6682 deactivate_task(rq, p, 0);
6683 __setscheduler(rq, p, SCHED_NORMAL, 0);
6684 if (on_rq) {
6685 activate_task(rq, p, 0);
6686 resched_task(rq->curr);
6687 }
6688 #ifdef CONFIG_SMP
6689 out_unlock:
6690 #endif
6691 __task_rq_unlock(rq);
6692 spin_unlock_irqrestore(&p->pi_lock, flags);
6693 } while_each_thread(g, p);
6694
6695 read_unlock_irq(&tasklist_lock);
6696 }
6697
6698 #endif /* CONFIG_MAGIC_SYSRQ */
6699
6700 #ifdef CONFIG_IA64
6701 /*
6702 * These functions are only useful for the IA64 MCA handling.
6703 *
6704 * They can only be called when the whole system has been
6705 * stopped - every CPU needs to be quiescent, and no scheduling
6706 * activity can take place. Using them for anything else would
6707 * be a serious bug, and as a result, they aren't even visible
6708 * under any other configuration.
6709 */
6710
6711 /**
6712 * curr_task - return the current task for a given cpu.
6713 * @cpu: the processor in question.
6714 *
6715 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6716 */
6717 struct task_struct *curr_task(int cpu)
6718 {
6719 return cpu_curr(cpu);
6720 }
6721
6722 /**
6723 * set_curr_task - set the current task for a given cpu.
6724 * @cpu: the processor in question.
6725 * @p: the task pointer to set.
6726 *
6727 * Description: This function must only be used when non-maskable interrupts
6728 * are serviced on a separate stack. It allows the architecture to switch the
6729 * notion of the current task on a cpu in a non-blocking manner. This function
6730 * must be called with all CPU's synchronized, and interrupts disabled, the
6731 * and caller must save the original value of the current task (see
6732 * curr_task() above) and restore that value before reenabling interrupts and
6733 * re-starting the system.
6734 *
6735 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6736 */
6737 void set_curr_task(int cpu, struct task_struct *p)
6738 {
6739 cpu_curr(cpu) = p;
6740 }
6741
6742 #endif