Merge branch 'x86/crashdump' into x86/urgent
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
106 /*
107 * These are the 'tuning knobs' of the scheduler:
108 *
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
111 */
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 /*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117 #define RUNTIME_INF ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 }
206
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 {
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229 }
230
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 {
234 hrtimer_cancel(&rt_b->rt_period_timer);
235 }
236 #endif
237
238 /*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242 static DEFINE_MUTEX(sched_domains_mutex);
243
244 #ifdef CONFIG_GROUP_SCHED
245
246 #include <linux/cgroup.h>
247
248 struct cfs_rq;
249
250 static LIST_HEAD(task_groups);
251
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
270 struct rt_bandwidth rt_bandwidth;
271 #endif
272
273 struct rcu_head rcu;
274 struct list_head list;
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
279 };
280
281 #ifdef CONFIG_USER_SCHED
282
283 /*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288 struct task_group root_task_group;
289
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
304
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
307 */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
316
317 /*
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
325 #define MIN_SHARES 2
326 #define MAX_SHARES (1UL << 18)
327
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
330
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
333 */
334 struct task_group init_task_group;
335
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
338 {
339 struct task_group *tg;
340
341 #ifdef CONFIG_USER_SCHED
342 tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
346 #else
347 tg = &init_task_group;
348 #endif
349 return tg;
350 }
351
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 {
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
358 #endif
359
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
364 }
365
366 #else
367
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
370 {
371 return NULL;
372 }
373
374 #endif /* CONFIG_GROUP_SCHED */
375
376 /* CFS-related fields in a runqueue */
377 struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
381 u64 exec_clock;
382 u64 min_vruntime;
383 u64 pair_start;
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
395 struct sched_entity *curr, *next;
396
397 unsigned long nr_spread_over;
398
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
412
413 #ifdef CONFIG_SMP
414 /*
415 * the part of load.weight contributed by tasks
416 */
417 unsigned long task_weight;
418
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
426
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
436 #endif
437 #endif
438 };
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio; /* highest queued rt task prio */
446 #endif
447 #ifdef CONFIG_SMP
448 unsigned long rt_nr_migratory;
449 int overloaded;
450 #endif
451 int rt_throttled;
452 u64 rt_time;
453 u64 rt_runtime;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock;
456
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted;
459
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464 #endif
465 };
466
467 #ifdef CONFIG_SMP
468
469 /*
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
476 */
477 struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
481
482 /*
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
487 atomic_t rto_count;
488 #ifdef CONFIG_SMP
489 struct cpupri cpupri;
490 #endif
491 };
492
493 /*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
497 static struct root_domain def_root_domain;
498
499 #endif
500
501 /*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
508 struct rq {
509 /* runqueue lock: */
510 spinlock_t lock;
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519 unsigned char idle_at_tick;
520 #ifdef CONFIG_NO_HZ
521 unsigned long last_tick_seen;
522 unsigned char in_nohz_recently;
523 #endif
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
530 struct rt_rq rt;
531
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
535 #endif
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list;
538 #endif
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
548 struct task_struct *curr, *idle;
549 unsigned long next_balance;
550 struct mm_struct *prev_mm;
551
552 u64 clock;
553
554 atomic_t nr_iowait;
555
556 #ifdef CONFIG_SMP
557 struct root_domain *rd;
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
563 /* cpu of this runqueue: */
564 int cpu;
565 int online;
566
567 unsigned long avg_load_per_task;
568
569 struct task_struct *migration_thread;
570 struct list_head migration_queue;
571 #endif
572
573 #ifdef CONFIG_SCHED_HRTICK
574 #ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577 #endif
578 struct hrtimer hrtick_timer;
579 #endif
580
581 #ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
590
591 /* schedule() stats */
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
595
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
599
600 /* BKL stats */
601 unsigned int bkl_count;
602 #endif
603 struct lock_class_key rq_lock_key;
604 };
605
606 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
607
608 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
609 {
610 rq->curr->sched_class->check_preempt_curr(rq, p);
611 }
612
613 static inline int cpu_of(struct rq *rq)
614 {
615 #ifdef CONFIG_SMP
616 return rq->cpu;
617 #else
618 return 0;
619 #endif
620 }
621
622 /*
623 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
624 * See detach_destroy_domains: synchronize_sched for details.
625 *
626 * The domain tree of any CPU may only be accessed from within
627 * preempt-disabled sections.
628 */
629 #define for_each_domain(cpu, __sd) \
630 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
631
632 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
633 #define this_rq() (&__get_cpu_var(runqueues))
634 #define task_rq(p) cpu_rq(task_cpu(p))
635 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
636
637 static inline void update_rq_clock(struct rq *rq)
638 {
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640 }
641
642 /*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
650
651 /**
652 * runqueue_is_locked
653 *
654 * Returns true if the current cpu runqueue is locked.
655 * This interface allows printk to be called with the runqueue lock
656 * held and know whether or not it is OK to wake up the klogd.
657 */
658 int runqueue_is_locked(void)
659 {
660 int cpu = get_cpu();
661 struct rq *rq = cpu_rq(cpu);
662 int ret;
663
664 ret = spin_is_locked(&rq->lock);
665 put_cpu();
666 return ret;
667 }
668
669 /*
670 * Debugging: various feature bits
671 */
672
673 #define SCHED_FEAT(name, enabled) \
674 __SCHED_FEAT_##name ,
675
676 enum {
677 #include "sched_features.h"
678 };
679
680 #undef SCHED_FEAT
681
682 #define SCHED_FEAT(name, enabled) \
683 (1UL << __SCHED_FEAT_##name) * enabled |
684
685 const_debug unsigned int sysctl_sched_features =
686 #include "sched_features.h"
687 0;
688
689 #undef SCHED_FEAT
690
691 #ifdef CONFIG_SCHED_DEBUG
692 #define SCHED_FEAT(name, enabled) \
693 #name ,
694
695 static __read_mostly char *sched_feat_names[] = {
696 #include "sched_features.h"
697 NULL
698 };
699
700 #undef SCHED_FEAT
701
702 static int sched_feat_open(struct inode *inode, struct file *filp)
703 {
704 filp->private_data = inode->i_private;
705 return 0;
706 }
707
708 static ssize_t
709 sched_feat_read(struct file *filp, char __user *ubuf,
710 size_t cnt, loff_t *ppos)
711 {
712 char *buf;
713 int r = 0;
714 int len = 0;
715 int i;
716
717 for (i = 0; sched_feat_names[i]; i++) {
718 len += strlen(sched_feat_names[i]);
719 len += 4;
720 }
721
722 buf = kmalloc(len + 2, GFP_KERNEL);
723 if (!buf)
724 return -ENOMEM;
725
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (sysctl_sched_features & (1UL << i))
728 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
729 else
730 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
731 }
732
733 r += sprintf(buf + r, "\n");
734 WARN_ON(r >= len + 2);
735
736 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
737
738 kfree(buf);
739
740 return r;
741 }
742
743 static ssize_t
744 sched_feat_write(struct file *filp, const char __user *ubuf,
745 size_t cnt, loff_t *ppos)
746 {
747 char buf[64];
748 char *cmp = buf;
749 int neg = 0;
750 int i;
751
752 if (cnt > 63)
753 cnt = 63;
754
755 if (copy_from_user(&buf, ubuf, cnt))
756 return -EFAULT;
757
758 buf[cnt] = 0;
759
760 if (strncmp(buf, "NO_", 3) == 0) {
761 neg = 1;
762 cmp += 3;
763 }
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 int len = strlen(sched_feat_names[i]);
767
768 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
769 if (neg)
770 sysctl_sched_features &= ~(1UL << i);
771 else
772 sysctl_sched_features |= (1UL << i);
773 break;
774 }
775 }
776
777 if (!sched_feat_names[i])
778 return -EINVAL;
779
780 filp->f_pos += cnt;
781
782 return cnt;
783 }
784
785 static struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .read = sched_feat_read,
788 .write = sched_feat_write,
789 };
790
791 static __init int sched_init_debug(void)
792 {
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797 }
798 late_initcall(sched_init_debug);
799
800 #endif
801
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
803
804 /*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
810 /*
811 * ratelimit for updating the group shares.
812 * default: 0.5ms
813 */
814 const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
815
816 /*
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
819 */
820 unsigned int sysctl_sched_rt_period = 1000000;
821
822 static __read_mostly int scheduler_running;
823
824 /*
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
827 */
828 int sysctl_sched_rt_runtime = 950000;
829
830 static inline u64 global_rt_period(void)
831 {
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833 }
834
835 static inline u64 global_rt_runtime(void)
836 {
837 if (sysctl_sched_rt_period < 0)
838 return RUNTIME_INF;
839
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841 }
842
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
849
850 static inline int task_current(struct rq *rq, struct task_struct *p)
851 {
852 return rq->curr == p;
853 }
854
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
857 {
858 return task_current(rq, p);
859 }
860
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 {
863 }
864
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 {
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
878 spin_unlock_irq(&rq->lock);
879 }
880
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
883 {
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
889 }
890
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 {
893 #ifdef CONFIG_SMP
894 /*
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
898 */
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 spin_unlock_irq(&rq->lock);
903 #else
904 spin_unlock(&rq->lock);
905 #endif
906 }
907
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
915 */
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
922 }
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
924
925 /*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
930 __acquires(rq->lock)
931 {
932 for (;;) {
933 struct rq *rq = task_rq(p);
934 spin_lock(&rq->lock);
935 if (likely(rq == task_rq(p)))
936 return rq;
937 spin_unlock(&rq->lock);
938 }
939 }
940
941 /*
942 * task_rq_lock - lock the runqueue a given task resides on and disable
943 * interrupts. Note the ordering: we can safely lookup the task_rq without
944 * explicitly disabling preemption.
945 */
946 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
947 __acquires(rq->lock)
948 {
949 struct rq *rq;
950
951 for (;;) {
952 local_irq_save(*flags);
953 rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 spin_unlock_irqrestore(&rq->lock, *flags);
958 }
959 }
960
961 static void __task_rq_unlock(struct rq *rq)
962 __releases(rq->lock)
963 {
964 spin_unlock(&rq->lock);
965 }
966
967 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
968 __releases(rq->lock)
969 {
970 spin_unlock_irqrestore(&rq->lock, *flags);
971 }
972
973 /*
974 * this_rq_lock - lock this runqueue and disable interrupts.
975 */
976 static struct rq *this_rq_lock(void)
977 __acquires(rq->lock)
978 {
979 struct rq *rq;
980
981 local_irq_disable();
982 rq = this_rq();
983 spin_lock(&rq->lock);
984
985 return rq;
986 }
987
988 #ifdef CONFIG_SCHED_HRTICK
989 /*
990 * Use HR-timers to deliver accurate preemption points.
991 *
992 * Its all a bit involved since we cannot program an hrt while holding the
993 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
994 * reschedule event.
995 *
996 * When we get rescheduled we reprogram the hrtick_timer outside of the
997 * rq->lock.
998 */
999
1000 /*
1001 * Use hrtick when:
1002 * - enabled by features
1003 * - hrtimer is actually high res
1004 */
1005 static inline int hrtick_enabled(struct rq *rq)
1006 {
1007 if (!sched_feat(HRTICK))
1008 return 0;
1009 if (!cpu_active(cpu_of(rq)))
1010 return 0;
1011 return hrtimer_is_hres_active(&rq->hrtick_timer);
1012 }
1013
1014 static void hrtick_clear(struct rq *rq)
1015 {
1016 if (hrtimer_active(&rq->hrtick_timer))
1017 hrtimer_cancel(&rq->hrtick_timer);
1018 }
1019
1020 /*
1021 * High-resolution timer tick.
1022 * Runs from hardirq context with interrupts disabled.
1023 */
1024 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1025 {
1026 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1027
1028 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1029
1030 spin_lock(&rq->lock);
1031 update_rq_clock(rq);
1032 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1033 spin_unlock(&rq->lock);
1034
1035 return HRTIMER_NORESTART;
1036 }
1037
1038 #ifdef CONFIG_SMP
1039 /*
1040 * called from hardirq (IPI) context
1041 */
1042 static void __hrtick_start(void *arg)
1043 {
1044 struct rq *rq = arg;
1045
1046 spin_lock(&rq->lock);
1047 hrtimer_restart(&rq->hrtick_timer);
1048 rq->hrtick_csd_pending = 0;
1049 spin_unlock(&rq->lock);
1050 }
1051
1052 /*
1053 * Called to set the hrtick timer state.
1054 *
1055 * called with rq->lock held and irqs disabled
1056 */
1057 static void hrtick_start(struct rq *rq, u64 delay)
1058 {
1059 struct hrtimer *timer = &rq->hrtick_timer;
1060 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1061
1062 timer->expires = time;
1063
1064 if (rq == this_rq()) {
1065 hrtimer_restart(timer);
1066 } else if (!rq->hrtick_csd_pending) {
1067 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1068 rq->hrtick_csd_pending = 1;
1069 }
1070 }
1071
1072 static int
1073 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1074 {
1075 int cpu = (int)(long)hcpu;
1076
1077 switch (action) {
1078 case CPU_UP_CANCELED:
1079 case CPU_UP_CANCELED_FROZEN:
1080 case CPU_DOWN_PREPARE:
1081 case CPU_DOWN_PREPARE_FROZEN:
1082 case CPU_DEAD:
1083 case CPU_DEAD_FROZEN:
1084 hrtick_clear(cpu_rq(cpu));
1085 return NOTIFY_OK;
1086 }
1087
1088 return NOTIFY_DONE;
1089 }
1090
1091 static void init_hrtick(void)
1092 {
1093 hotcpu_notifier(hotplug_hrtick, 0);
1094 }
1095 #else
1096 /*
1097 * Called to set the hrtick timer state.
1098 *
1099 * called with rq->lock held and irqs disabled
1100 */
1101 static void hrtick_start(struct rq *rq, u64 delay)
1102 {
1103 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1104 }
1105
1106 static void init_hrtick(void)
1107 {
1108 }
1109 #endif /* CONFIG_SMP */
1110
1111 static void init_rq_hrtick(struct rq *rq)
1112 {
1113 #ifdef CONFIG_SMP
1114 rq->hrtick_csd_pending = 0;
1115
1116 rq->hrtick_csd.flags = 0;
1117 rq->hrtick_csd.func = __hrtick_start;
1118 rq->hrtick_csd.info = rq;
1119 #endif
1120
1121 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1122 rq->hrtick_timer.function = hrtick;
1123 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1124 }
1125 #else
1126 static inline void hrtick_clear(struct rq *rq)
1127 {
1128 }
1129
1130 static inline void init_rq_hrtick(struct rq *rq)
1131 {
1132 }
1133
1134 static inline void init_hrtick(void)
1135 {
1136 }
1137 #endif
1138
1139 /*
1140 * resched_task - mark a task 'to be rescheduled now'.
1141 *
1142 * On UP this means the setting of the need_resched flag, on SMP it
1143 * might also involve a cross-CPU call to trigger the scheduler on
1144 * the target CPU.
1145 */
1146 #ifdef CONFIG_SMP
1147
1148 #ifndef tsk_is_polling
1149 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1150 #endif
1151
1152 static void resched_task(struct task_struct *p)
1153 {
1154 int cpu;
1155
1156 assert_spin_locked(&task_rq(p)->lock);
1157
1158 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1159 return;
1160
1161 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1162
1163 cpu = task_cpu(p);
1164 if (cpu == smp_processor_id())
1165 return;
1166
1167 /* NEED_RESCHED must be visible before we test polling */
1168 smp_mb();
1169 if (!tsk_is_polling(p))
1170 smp_send_reschedule(cpu);
1171 }
1172
1173 static void resched_cpu(int cpu)
1174 {
1175 struct rq *rq = cpu_rq(cpu);
1176 unsigned long flags;
1177
1178 if (!spin_trylock_irqsave(&rq->lock, flags))
1179 return;
1180 resched_task(cpu_curr(cpu));
1181 spin_unlock_irqrestore(&rq->lock, flags);
1182 }
1183
1184 #ifdef CONFIG_NO_HZ
1185 /*
1186 * When add_timer_on() enqueues a timer into the timer wheel of an
1187 * idle CPU then this timer might expire before the next timer event
1188 * which is scheduled to wake up that CPU. In case of a completely
1189 * idle system the next event might even be infinite time into the
1190 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1191 * leaves the inner idle loop so the newly added timer is taken into
1192 * account when the CPU goes back to idle and evaluates the timer
1193 * wheel for the next timer event.
1194 */
1195 void wake_up_idle_cpu(int cpu)
1196 {
1197 struct rq *rq = cpu_rq(cpu);
1198
1199 if (cpu == smp_processor_id())
1200 return;
1201
1202 /*
1203 * This is safe, as this function is called with the timer
1204 * wheel base lock of (cpu) held. When the CPU is on the way
1205 * to idle and has not yet set rq->curr to idle then it will
1206 * be serialized on the timer wheel base lock and take the new
1207 * timer into account automatically.
1208 */
1209 if (rq->curr != rq->idle)
1210 return;
1211
1212 /*
1213 * We can set TIF_RESCHED on the idle task of the other CPU
1214 * lockless. The worst case is that the other CPU runs the
1215 * idle task through an additional NOOP schedule()
1216 */
1217 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1218
1219 /* NEED_RESCHED must be visible before we test polling */
1220 smp_mb();
1221 if (!tsk_is_polling(rq->idle))
1222 smp_send_reschedule(cpu);
1223 }
1224 #endif /* CONFIG_NO_HZ */
1225
1226 #else /* !CONFIG_SMP */
1227 static void resched_task(struct task_struct *p)
1228 {
1229 assert_spin_locked(&task_rq(p)->lock);
1230 set_tsk_need_resched(p);
1231 }
1232 #endif /* CONFIG_SMP */
1233
1234 #if BITS_PER_LONG == 32
1235 # define WMULT_CONST (~0UL)
1236 #else
1237 # define WMULT_CONST (1UL << 32)
1238 #endif
1239
1240 #define WMULT_SHIFT 32
1241
1242 /*
1243 * Shift right and round:
1244 */
1245 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1246
1247 /*
1248 * delta *= weight / lw
1249 */
1250 static unsigned long
1251 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1252 struct load_weight *lw)
1253 {
1254 u64 tmp;
1255
1256 if (!lw->inv_weight) {
1257 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1258 lw->inv_weight = 1;
1259 else
1260 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1261 / (lw->weight+1);
1262 }
1263
1264 tmp = (u64)delta_exec * weight;
1265 /*
1266 * Check whether we'd overflow the 64-bit multiplication:
1267 */
1268 if (unlikely(tmp > WMULT_CONST))
1269 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1270 WMULT_SHIFT/2);
1271 else
1272 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1273
1274 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1275 }
1276
1277 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1278 {
1279 lw->weight += inc;
1280 lw->inv_weight = 0;
1281 }
1282
1283 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1284 {
1285 lw->weight -= dec;
1286 lw->inv_weight = 0;
1287 }
1288
1289 /*
1290 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1291 * of tasks with abnormal "nice" values across CPUs the contribution that
1292 * each task makes to its run queue's load is weighted according to its
1293 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1294 * scaled version of the new time slice allocation that they receive on time
1295 * slice expiry etc.
1296 */
1297
1298 #define WEIGHT_IDLEPRIO 2
1299 #define WMULT_IDLEPRIO (1 << 31)
1300
1301 /*
1302 * Nice levels are multiplicative, with a gentle 10% change for every
1303 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1304 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1305 * that remained on nice 0.
1306 *
1307 * The "10% effect" is relative and cumulative: from _any_ nice level,
1308 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1309 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1310 * If a task goes up by ~10% and another task goes down by ~10% then
1311 * the relative distance between them is ~25%.)
1312 */
1313 static const int prio_to_weight[40] = {
1314 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1315 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1316 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1317 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1318 /* 0 */ 1024, 820, 655, 526, 423,
1319 /* 5 */ 335, 272, 215, 172, 137,
1320 /* 10 */ 110, 87, 70, 56, 45,
1321 /* 15 */ 36, 29, 23, 18, 15,
1322 };
1323
1324 /*
1325 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1326 *
1327 * In cases where the weight does not change often, we can use the
1328 * precalculated inverse to speed up arithmetics by turning divisions
1329 * into multiplications:
1330 */
1331 static const u32 prio_to_wmult[40] = {
1332 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1333 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1334 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1335 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1336 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1337 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1338 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1339 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1340 };
1341
1342 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1343
1344 /*
1345 * runqueue iterator, to support SMP load-balancing between different
1346 * scheduling classes, without having to expose their internal data
1347 * structures to the load-balancing proper:
1348 */
1349 struct rq_iterator {
1350 void *arg;
1351 struct task_struct *(*start)(void *);
1352 struct task_struct *(*next)(void *);
1353 };
1354
1355 #ifdef CONFIG_SMP
1356 static unsigned long
1357 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1358 unsigned long max_load_move, struct sched_domain *sd,
1359 enum cpu_idle_type idle, int *all_pinned,
1360 int *this_best_prio, struct rq_iterator *iterator);
1361
1362 static int
1363 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 struct sched_domain *sd, enum cpu_idle_type idle,
1365 struct rq_iterator *iterator);
1366 #endif
1367
1368 #ifdef CONFIG_CGROUP_CPUACCT
1369 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1370 #else
1371 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1372 #endif
1373
1374 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1375 {
1376 update_load_add(&rq->load, load);
1377 }
1378
1379 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1380 {
1381 update_load_sub(&rq->load, load);
1382 }
1383
1384 #ifdef CONFIG_SMP
1385 static unsigned long source_load(int cpu, int type);
1386 static unsigned long target_load(int cpu, int type);
1387 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1388
1389 static unsigned long cpu_avg_load_per_task(int cpu)
1390 {
1391 struct rq *rq = cpu_rq(cpu);
1392
1393 if (rq->nr_running)
1394 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1395
1396 return rq->avg_load_per_task;
1397 }
1398
1399 #ifdef CONFIG_FAIR_GROUP_SCHED
1400
1401 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1402
1403 /*
1404 * Iterate the full tree, calling @down when first entering a node and @up when
1405 * leaving it for the final time.
1406 */
1407 static void
1408 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1409 {
1410 struct task_group *parent, *child;
1411
1412 rcu_read_lock();
1413 parent = &root_task_group;
1414 down:
1415 (*down)(parent, cpu, sd);
1416 list_for_each_entry_rcu(child, &parent->children, siblings) {
1417 parent = child;
1418 goto down;
1419
1420 up:
1421 continue;
1422 }
1423 (*up)(parent, cpu, sd);
1424
1425 child = parent;
1426 parent = parent->parent;
1427 if (parent)
1428 goto up;
1429 rcu_read_unlock();
1430 }
1431
1432 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1433
1434 /*
1435 * Calculate and set the cpu's group shares.
1436 */
1437 static void
1438 __update_group_shares_cpu(struct task_group *tg, int cpu,
1439 unsigned long sd_shares, unsigned long sd_rq_weight)
1440 {
1441 int boost = 0;
1442 unsigned long shares;
1443 unsigned long rq_weight;
1444
1445 if (!tg->se[cpu])
1446 return;
1447
1448 rq_weight = tg->cfs_rq[cpu]->load.weight;
1449
1450 /*
1451 * If there are currently no tasks on the cpu pretend there is one of
1452 * average load so that when a new task gets to run here it will not
1453 * get delayed by group starvation.
1454 */
1455 if (!rq_weight) {
1456 boost = 1;
1457 rq_weight = NICE_0_LOAD;
1458 }
1459
1460 if (unlikely(rq_weight > sd_rq_weight))
1461 rq_weight = sd_rq_weight;
1462
1463 /*
1464 * \Sum shares * rq_weight
1465 * shares = -----------------------
1466 * \Sum rq_weight
1467 *
1468 */
1469 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1470
1471 /*
1472 * record the actual number of shares, not the boosted amount.
1473 */
1474 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1475 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1476
1477 if (shares < MIN_SHARES)
1478 shares = MIN_SHARES;
1479 else if (shares > MAX_SHARES)
1480 shares = MAX_SHARES;
1481
1482 __set_se_shares(tg->se[cpu], shares);
1483 }
1484
1485 /*
1486 * Re-compute the task group their per cpu shares over the given domain.
1487 * This needs to be done in a bottom-up fashion because the rq weight of a
1488 * parent group depends on the shares of its child groups.
1489 */
1490 static void
1491 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1492 {
1493 unsigned long rq_weight = 0;
1494 unsigned long shares = 0;
1495 int i;
1496
1497 for_each_cpu_mask(i, sd->span) {
1498 rq_weight += tg->cfs_rq[i]->load.weight;
1499 shares += tg->cfs_rq[i]->shares;
1500 }
1501
1502 if ((!shares && rq_weight) || shares > tg->shares)
1503 shares = tg->shares;
1504
1505 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1506 shares = tg->shares;
1507
1508 if (!rq_weight)
1509 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1510
1511 for_each_cpu_mask(i, sd->span) {
1512 struct rq *rq = cpu_rq(i);
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(&rq->lock, flags);
1516 __update_group_shares_cpu(tg, i, shares, rq_weight);
1517 spin_unlock_irqrestore(&rq->lock, flags);
1518 }
1519 }
1520
1521 /*
1522 * Compute the cpu's hierarchical load factor for each task group.
1523 * This needs to be done in a top-down fashion because the load of a child
1524 * group is a fraction of its parents load.
1525 */
1526 static void
1527 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1528 {
1529 unsigned long load;
1530
1531 if (!tg->parent) {
1532 load = cpu_rq(cpu)->load.weight;
1533 } else {
1534 load = tg->parent->cfs_rq[cpu]->h_load;
1535 load *= tg->cfs_rq[cpu]->shares;
1536 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1537 }
1538
1539 tg->cfs_rq[cpu]->h_load = load;
1540 }
1541
1542 static void
1543 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1544 {
1545 }
1546
1547 static void update_shares(struct sched_domain *sd)
1548 {
1549 u64 now = cpu_clock(raw_smp_processor_id());
1550 s64 elapsed = now - sd->last_update;
1551
1552 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1553 sd->last_update = now;
1554 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1555 }
1556 }
1557
1558 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1559 {
1560 spin_unlock(&rq->lock);
1561 update_shares(sd);
1562 spin_lock(&rq->lock);
1563 }
1564
1565 static void update_h_load(int cpu)
1566 {
1567 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1568 }
1569
1570 #else
1571
1572 static inline void update_shares(struct sched_domain *sd)
1573 {
1574 }
1575
1576 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1577 {
1578 }
1579
1580 #endif
1581
1582 #endif
1583
1584 #ifdef CONFIG_FAIR_GROUP_SCHED
1585 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1586 {
1587 #ifdef CONFIG_SMP
1588 cfs_rq->shares = shares;
1589 #endif
1590 }
1591 #endif
1592
1593 #include "sched_stats.h"
1594 #include "sched_idletask.c"
1595 #include "sched_fair.c"
1596 #include "sched_rt.c"
1597 #ifdef CONFIG_SCHED_DEBUG
1598 # include "sched_debug.c"
1599 #endif
1600
1601 #define sched_class_highest (&rt_sched_class)
1602 #define for_each_class(class) \
1603 for (class = sched_class_highest; class; class = class->next)
1604
1605 static void inc_nr_running(struct rq *rq)
1606 {
1607 rq->nr_running++;
1608 }
1609
1610 static void dec_nr_running(struct rq *rq)
1611 {
1612 rq->nr_running--;
1613 }
1614
1615 static void set_load_weight(struct task_struct *p)
1616 {
1617 if (task_has_rt_policy(p)) {
1618 p->se.load.weight = prio_to_weight[0] * 2;
1619 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1620 return;
1621 }
1622
1623 /*
1624 * SCHED_IDLE tasks get minimal weight:
1625 */
1626 if (p->policy == SCHED_IDLE) {
1627 p->se.load.weight = WEIGHT_IDLEPRIO;
1628 p->se.load.inv_weight = WMULT_IDLEPRIO;
1629 return;
1630 }
1631
1632 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1633 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1634 }
1635
1636 static void update_avg(u64 *avg, u64 sample)
1637 {
1638 s64 diff = sample - *avg;
1639 *avg += diff >> 3;
1640 }
1641
1642 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1643 {
1644 sched_info_queued(p);
1645 p->sched_class->enqueue_task(rq, p, wakeup);
1646 p->se.on_rq = 1;
1647 }
1648
1649 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1650 {
1651 if (sleep && p->se.last_wakeup) {
1652 update_avg(&p->se.avg_overlap,
1653 p->se.sum_exec_runtime - p->se.last_wakeup);
1654 p->se.last_wakeup = 0;
1655 }
1656
1657 sched_info_dequeued(p);
1658 p->sched_class->dequeue_task(rq, p, sleep);
1659 p->se.on_rq = 0;
1660 }
1661
1662 /*
1663 * __normal_prio - return the priority that is based on the static prio
1664 */
1665 static inline int __normal_prio(struct task_struct *p)
1666 {
1667 return p->static_prio;
1668 }
1669
1670 /*
1671 * Calculate the expected normal priority: i.e. priority
1672 * without taking RT-inheritance into account. Might be
1673 * boosted by interactivity modifiers. Changes upon fork,
1674 * setprio syscalls, and whenever the interactivity
1675 * estimator recalculates.
1676 */
1677 static inline int normal_prio(struct task_struct *p)
1678 {
1679 int prio;
1680
1681 if (task_has_rt_policy(p))
1682 prio = MAX_RT_PRIO-1 - p->rt_priority;
1683 else
1684 prio = __normal_prio(p);
1685 return prio;
1686 }
1687
1688 /*
1689 * Calculate the current priority, i.e. the priority
1690 * taken into account by the scheduler. This value might
1691 * be boosted by RT tasks, or might be boosted by
1692 * interactivity modifiers. Will be RT if the task got
1693 * RT-boosted. If not then it returns p->normal_prio.
1694 */
1695 static int effective_prio(struct task_struct *p)
1696 {
1697 p->normal_prio = normal_prio(p);
1698 /*
1699 * If we are RT tasks or we were boosted to RT priority,
1700 * keep the priority unchanged. Otherwise, update priority
1701 * to the normal priority:
1702 */
1703 if (!rt_prio(p->prio))
1704 return p->normal_prio;
1705 return p->prio;
1706 }
1707
1708 /*
1709 * activate_task - move a task to the runqueue.
1710 */
1711 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1712 {
1713 if (task_contributes_to_load(p))
1714 rq->nr_uninterruptible--;
1715
1716 enqueue_task(rq, p, wakeup);
1717 inc_nr_running(rq);
1718 }
1719
1720 /*
1721 * deactivate_task - remove a task from the runqueue.
1722 */
1723 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1724 {
1725 if (task_contributes_to_load(p))
1726 rq->nr_uninterruptible++;
1727
1728 dequeue_task(rq, p, sleep);
1729 dec_nr_running(rq);
1730 }
1731
1732 /**
1733 * task_curr - is this task currently executing on a CPU?
1734 * @p: the task in question.
1735 */
1736 inline int task_curr(const struct task_struct *p)
1737 {
1738 return cpu_curr(task_cpu(p)) == p;
1739 }
1740
1741 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1742 {
1743 set_task_rq(p, cpu);
1744 #ifdef CONFIG_SMP
1745 /*
1746 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1747 * successfuly executed on another CPU. We must ensure that updates of
1748 * per-task data have been completed by this moment.
1749 */
1750 smp_wmb();
1751 task_thread_info(p)->cpu = cpu;
1752 #endif
1753 }
1754
1755 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1756 const struct sched_class *prev_class,
1757 int oldprio, int running)
1758 {
1759 if (prev_class != p->sched_class) {
1760 if (prev_class->switched_from)
1761 prev_class->switched_from(rq, p, running);
1762 p->sched_class->switched_to(rq, p, running);
1763 } else
1764 p->sched_class->prio_changed(rq, p, oldprio, running);
1765 }
1766
1767 #ifdef CONFIG_SMP
1768
1769 /* Used instead of source_load when we know the type == 0 */
1770 static unsigned long weighted_cpuload(const int cpu)
1771 {
1772 return cpu_rq(cpu)->load.weight;
1773 }
1774
1775 /*
1776 * Is this task likely cache-hot:
1777 */
1778 static int
1779 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1780 {
1781 s64 delta;
1782
1783 /*
1784 * Buddy candidates are cache hot:
1785 */
1786 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1787 return 1;
1788
1789 if (p->sched_class != &fair_sched_class)
1790 return 0;
1791
1792 if (sysctl_sched_migration_cost == -1)
1793 return 1;
1794 if (sysctl_sched_migration_cost == 0)
1795 return 0;
1796
1797 delta = now - p->se.exec_start;
1798
1799 return delta < (s64)sysctl_sched_migration_cost;
1800 }
1801
1802
1803 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1804 {
1805 int old_cpu = task_cpu(p);
1806 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1807 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1808 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1809 u64 clock_offset;
1810
1811 clock_offset = old_rq->clock - new_rq->clock;
1812
1813 #ifdef CONFIG_SCHEDSTATS
1814 if (p->se.wait_start)
1815 p->se.wait_start -= clock_offset;
1816 if (p->se.sleep_start)
1817 p->se.sleep_start -= clock_offset;
1818 if (p->se.block_start)
1819 p->se.block_start -= clock_offset;
1820 if (old_cpu != new_cpu) {
1821 schedstat_inc(p, se.nr_migrations);
1822 if (task_hot(p, old_rq->clock, NULL))
1823 schedstat_inc(p, se.nr_forced2_migrations);
1824 }
1825 #endif
1826 p->se.vruntime -= old_cfsrq->min_vruntime -
1827 new_cfsrq->min_vruntime;
1828
1829 __set_task_cpu(p, new_cpu);
1830 }
1831
1832 struct migration_req {
1833 struct list_head list;
1834
1835 struct task_struct *task;
1836 int dest_cpu;
1837
1838 struct completion done;
1839 };
1840
1841 /*
1842 * The task's runqueue lock must be held.
1843 * Returns true if you have to wait for migration thread.
1844 */
1845 static int
1846 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1847 {
1848 struct rq *rq = task_rq(p);
1849
1850 /*
1851 * If the task is not on a runqueue (and not running), then
1852 * it is sufficient to simply update the task's cpu field.
1853 */
1854 if (!p->se.on_rq && !task_running(rq, p)) {
1855 set_task_cpu(p, dest_cpu);
1856 return 0;
1857 }
1858
1859 init_completion(&req->done);
1860 req->task = p;
1861 req->dest_cpu = dest_cpu;
1862 list_add(&req->list, &rq->migration_queue);
1863
1864 return 1;
1865 }
1866
1867 /*
1868 * wait_task_inactive - wait for a thread to unschedule.
1869 *
1870 * If @match_state is nonzero, it's the @p->state value just checked and
1871 * not expected to change. If it changes, i.e. @p might have woken up,
1872 * then return zero. When we succeed in waiting for @p to be off its CPU,
1873 * we return a positive number (its total switch count). If a second call
1874 * a short while later returns the same number, the caller can be sure that
1875 * @p has remained unscheduled the whole time.
1876 *
1877 * The caller must ensure that the task *will* unschedule sometime soon,
1878 * else this function might spin for a *long* time. This function can't
1879 * be called with interrupts off, or it may introduce deadlock with
1880 * smp_call_function() if an IPI is sent by the same process we are
1881 * waiting to become inactive.
1882 */
1883 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1884 {
1885 unsigned long flags;
1886 int running, on_rq;
1887 unsigned long ncsw;
1888 struct rq *rq;
1889
1890 for (;;) {
1891 /*
1892 * We do the initial early heuristics without holding
1893 * any task-queue locks at all. We'll only try to get
1894 * the runqueue lock when things look like they will
1895 * work out!
1896 */
1897 rq = task_rq(p);
1898
1899 /*
1900 * If the task is actively running on another CPU
1901 * still, just relax and busy-wait without holding
1902 * any locks.
1903 *
1904 * NOTE! Since we don't hold any locks, it's not
1905 * even sure that "rq" stays as the right runqueue!
1906 * But we don't care, since "task_running()" will
1907 * return false if the runqueue has changed and p
1908 * is actually now running somewhere else!
1909 */
1910 while (task_running(rq, p)) {
1911 if (match_state && unlikely(p->state != match_state))
1912 return 0;
1913 cpu_relax();
1914 }
1915
1916 /*
1917 * Ok, time to look more closely! We need the rq
1918 * lock now, to be *sure*. If we're wrong, we'll
1919 * just go back and repeat.
1920 */
1921 rq = task_rq_lock(p, &flags);
1922 running = task_running(rq, p);
1923 on_rq = p->se.on_rq;
1924 ncsw = 0;
1925 if (!match_state || p->state == match_state) {
1926 ncsw = p->nivcsw + p->nvcsw;
1927 if (unlikely(!ncsw))
1928 ncsw = 1;
1929 }
1930 task_rq_unlock(rq, &flags);
1931
1932 /*
1933 * If it changed from the expected state, bail out now.
1934 */
1935 if (unlikely(!ncsw))
1936 break;
1937
1938 /*
1939 * Was it really running after all now that we
1940 * checked with the proper locks actually held?
1941 *
1942 * Oops. Go back and try again..
1943 */
1944 if (unlikely(running)) {
1945 cpu_relax();
1946 continue;
1947 }
1948
1949 /*
1950 * It's not enough that it's not actively running,
1951 * it must be off the runqueue _entirely_, and not
1952 * preempted!
1953 *
1954 * So if it wa still runnable (but just not actively
1955 * running right now), it's preempted, and we should
1956 * yield - it could be a while.
1957 */
1958 if (unlikely(on_rq)) {
1959 schedule_timeout_uninterruptible(1);
1960 continue;
1961 }
1962
1963 /*
1964 * Ahh, all good. It wasn't running, and it wasn't
1965 * runnable, which means that it will never become
1966 * running in the future either. We're all done!
1967 */
1968 break;
1969 }
1970
1971 return ncsw;
1972 }
1973
1974 /***
1975 * kick_process - kick a running thread to enter/exit the kernel
1976 * @p: the to-be-kicked thread
1977 *
1978 * Cause a process which is running on another CPU to enter
1979 * kernel-mode, without any delay. (to get signals handled.)
1980 *
1981 * NOTE: this function doesnt have to take the runqueue lock,
1982 * because all it wants to ensure is that the remote task enters
1983 * the kernel. If the IPI races and the task has been migrated
1984 * to another CPU then no harm is done and the purpose has been
1985 * achieved as well.
1986 */
1987 void kick_process(struct task_struct *p)
1988 {
1989 int cpu;
1990
1991 preempt_disable();
1992 cpu = task_cpu(p);
1993 if ((cpu != smp_processor_id()) && task_curr(p))
1994 smp_send_reschedule(cpu);
1995 preempt_enable();
1996 }
1997
1998 /*
1999 * Return a low guess at the load of a migration-source cpu weighted
2000 * according to the scheduling class and "nice" value.
2001 *
2002 * We want to under-estimate the load of migration sources, to
2003 * balance conservatively.
2004 */
2005 static unsigned long source_load(int cpu, int type)
2006 {
2007 struct rq *rq = cpu_rq(cpu);
2008 unsigned long total = weighted_cpuload(cpu);
2009
2010 if (type == 0 || !sched_feat(LB_BIAS))
2011 return total;
2012
2013 return min(rq->cpu_load[type-1], total);
2014 }
2015
2016 /*
2017 * Return a high guess at the load of a migration-target cpu weighted
2018 * according to the scheduling class and "nice" value.
2019 */
2020 static unsigned long target_load(int cpu, int type)
2021 {
2022 struct rq *rq = cpu_rq(cpu);
2023 unsigned long total = weighted_cpuload(cpu);
2024
2025 if (type == 0 || !sched_feat(LB_BIAS))
2026 return total;
2027
2028 return max(rq->cpu_load[type-1], total);
2029 }
2030
2031 /*
2032 * find_idlest_group finds and returns the least busy CPU group within the
2033 * domain.
2034 */
2035 static struct sched_group *
2036 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2037 {
2038 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2039 unsigned long min_load = ULONG_MAX, this_load = 0;
2040 int load_idx = sd->forkexec_idx;
2041 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2042
2043 do {
2044 unsigned long load, avg_load;
2045 int local_group;
2046 int i;
2047
2048 /* Skip over this group if it has no CPUs allowed */
2049 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2050 continue;
2051
2052 local_group = cpu_isset(this_cpu, group->cpumask);
2053
2054 /* Tally up the load of all CPUs in the group */
2055 avg_load = 0;
2056
2057 for_each_cpu_mask_nr(i, group->cpumask) {
2058 /* Bias balancing toward cpus of our domain */
2059 if (local_group)
2060 load = source_load(i, load_idx);
2061 else
2062 load = target_load(i, load_idx);
2063
2064 avg_load += load;
2065 }
2066
2067 /* Adjust by relative CPU power of the group */
2068 avg_load = sg_div_cpu_power(group,
2069 avg_load * SCHED_LOAD_SCALE);
2070
2071 if (local_group) {
2072 this_load = avg_load;
2073 this = group;
2074 } else if (avg_load < min_load) {
2075 min_load = avg_load;
2076 idlest = group;
2077 }
2078 } while (group = group->next, group != sd->groups);
2079
2080 if (!idlest || 100*this_load < imbalance*min_load)
2081 return NULL;
2082 return idlest;
2083 }
2084
2085 /*
2086 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2087 */
2088 static int
2089 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2090 cpumask_t *tmp)
2091 {
2092 unsigned long load, min_load = ULONG_MAX;
2093 int idlest = -1;
2094 int i;
2095
2096 /* Traverse only the allowed CPUs */
2097 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2098
2099 for_each_cpu_mask_nr(i, *tmp) {
2100 load = weighted_cpuload(i);
2101
2102 if (load < min_load || (load == min_load && i == this_cpu)) {
2103 min_load = load;
2104 idlest = i;
2105 }
2106 }
2107
2108 return idlest;
2109 }
2110
2111 /*
2112 * sched_balance_self: balance the current task (running on cpu) in domains
2113 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2114 * SD_BALANCE_EXEC.
2115 *
2116 * Balance, ie. select the least loaded group.
2117 *
2118 * Returns the target CPU number, or the same CPU if no balancing is needed.
2119 *
2120 * preempt must be disabled.
2121 */
2122 static int sched_balance_self(int cpu, int flag)
2123 {
2124 struct task_struct *t = current;
2125 struct sched_domain *tmp, *sd = NULL;
2126
2127 for_each_domain(cpu, tmp) {
2128 /*
2129 * If power savings logic is enabled for a domain, stop there.
2130 */
2131 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2132 break;
2133 if (tmp->flags & flag)
2134 sd = tmp;
2135 }
2136
2137 if (sd)
2138 update_shares(sd);
2139
2140 while (sd) {
2141 cpumask_t span, tmpmask;
2142 struct sched_group *group;
2143 int new_cpu, weight;
2144
2145 if (!(sd->flags & flag)) {
2146 sd = sd->child;
2147 continue;
2148 }
2149
2150 span = sd->span;
2151 group = find_idlest_group(sd, t, cpu);
2152 if (!group) {
2153 sd = sd->child;
2154 continue;
2155 }
2156
2157 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2158 if (new_cpu == -1 || new_cpu == cpu) {
2159 /* Now try balancing at a lower domain level of cpu */
2160 sd = sd->child;
2161 continue;
2162 }
2163
2164 /* Now try balancing at a lower domain level of new_cpu */
2165 cpu = new_cpu;
2166 sd = NULL;
2167 weight = cpus_weight(span);
2168 for_each_domain(cpu, tmp) {
2169 if (weight <= cpus_weight(tmp->span))
2170 break;
2171 if (tmp->flags & flag)
2172 sd = tmp;
2173 }
2174 /* while loop will break here if sd == NULL */
2175 }
2176
2177 return cpu;
2178 }
2179
2180 #endif /* CONFIG_SMP */
2181
2182 /***
2183 * try_to_wake_up - wake up a thread
2184 * @p: the to-be-woken-up thread
2185 * @state: the mask of task states that can be woken
2186 * @sync: do a synchronous wakeup?
2187 *
2188 * Put it on the run-queue if it's not already there. The "current"
2189 * thread is always on the run-queue (except when the actual
2190 * re-schedule is in progress), and as such you're allowed to do
2191 * the simpler "current->state = TASK_RUNNING" to mark yourself
2192 * runnable without the overhead of this.
2193 *
2194 * returns failure only if the task is already active.
2195 */
2196 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2197 {
2198 int cpu, orig_cpu, this_cpu, success = 0;
2199 unsigned long flags;
2200 long old_state;
2201 struct rq *rq;
2202
2203 if (!sched_feat(SYNC_WAKEUPS))
2204 sync = 0;
2205
2206 #ifdef CONFIG_SMP
2207 if (sched_feat(LB_WAKEUP_UPDATE)) {
2208 struct sched_domain *sd;
2209
2210 this_cpu = raw_smp_processor_id();
2211 cpu = task_cpu(p);
2212
2213 for_each_domain(this_cpu, sd) {
2214 if (cpu_isset(cpu, sd->span)) {
2215 update_shares(sd);
2216 break;
2217 }
2218 }
2219 }
2220 #endif
2221
2222 smp_wmb();
2223 rq = task_rq_lock(p, &flags);
2224 old_state = p->state;
2225 if (!(old_state & state))
2226 goto out;
2227
2228 if (p->se.on_rq)
2229 goto out_running;
2230
2231 cpu = task_cpu(p);
2232 orig_cpu = cpu;
2233 this_cpu = smp_processor_id();
2234
2235 #ifdef CONFIG_SMP
2236 if (unlikely(task_running(rq, p)))
2237 goto out_activate;
2238
2239 cpu = p->sched_class->select_task_rq(p, sync);
2240 if (cpu != orig_cpu) {
2241 set_task_cpu(p, cpu);
2242 task_rq_unlock(rq, &flags);
2243 /* might preempt at this point */
2244 rq = task_rq_lock(p, &flags);
2245 old_state = p->state;
2246 if (!(old_state & state))
2247 goto out;
2248 if (p->se.on_rq)
2249 goto out_running;
2250
2251 this_cpu = smp_processor_id();
2252 cpu = task_cpu(p);
2253 }
2254
2255 #ifdef CONFIG_SCHEDSTATS
2256 schedstat_inc(rq, ttwu_count);
2257 if (cpu == this_cpu)
2258 schedstat_inc(rq, ttwu_local);
2259 else {
2260 struct sched_domain *sd;
2261 for_each_domain(this_cpu, sd) {
2262 if (cpu_isset(cpu, sd->span)) {
2263 schedstat_inc(sd, ttwu_wake_remote);
2264 break;
2265 }
2266 }
2267 }
2268 #endif /* CONFIG_SCHEDSTATS */
2269
2270 out_activate:
2271 #endif /* CONFIG_SMP */
2272 schedstat_inc(p, se.nr_wakeups);
2273 if (sync)
2274 schedstat_inc(p, se.nr_wakeups_sync);
2275 if (orig_cpu != cpu)
2276 schedstat_inc(p, se.nr_wakeups_migrate);
2277 if (cpu == this_cpu)
2278 schedstat_inc(p, se.nr_wakeups_local);
2279 else
2280 schedstat_inc(p, se.nr_wakeups_remote);
2281 update_rq_clock(rq);
2282 activate_task(rq, p, 1);
2283 success = 1;
2284
2285 out_running:
2286 trace_mark(kernel_sched_wakeup,
2287 "pid %d state %ld ## rq %p task %p rq->curr %p",
2288 p->pid, p->state, rq, p, rq->curr);
2289 check_preempt_curr(rq, p);
2290
2291 p->state = TASK_RUNNING;
2292 #ifdef CONFIG_SMP
2293 if (p->sched_class->task_wake_up)
2294 p->sched_class->task_wake_up(rq, p);
2295 #endif
2296 out:
2297 current->se.last_wakeup = current->se.sum_exec_runtime;
2298
2299 task_rq_unlock(rq, &flags);
2300
2301 return success;
2302 }
2303
2304 int wake_up_process(struct task_struct *p)
2305 {
2306 return try_to_wake_up(p, TASK_ALL, 0);
2307 }
2308 EXPORT_SYMBOL(wake_up_process);
2309
2310 int wake_up_state(struct task_struct *p, unsigned int state)
2311 {
2312 return try_to_wake_up(p, state, 0);
2313 }
2314
2315 /*
2316 * Perform scheduler related setup for a newly forked process p.
2317 * p is forked by current.
2318 *
2319 * __sched_fork() is basic setup used by init_idle() too:
2320 */
2321 static void __sched_fork(struct task_struct *p)
2322 {
2323 p->se.exec_start = 0;
2324 p->se.sum_exec_runtime = 0;
2325 p->se.prev_sum_exec_runtime = 0;
2326 p->se.last_wakeup = 0;
2327 p->se.avg_overlap = 0;
2328
2329 #ifdef CONFIG_SCHEDSTATS
2330 p->se.wait_start = 0;
2331 p->se.sum_sleep_runtime = 0;
2332 p->se.sleep_start = 0;
2333 p->se.block_start = 0;
2334 p->se.sleep_max = 0;
2335 p->se.block_max = 0;
2336 p->se.exec_max = 0;
2337 p->se.slice_max = 0;
2338 p->se.wait_max = 0;
2339 #endif
2340
2341 INIT_LIST_HEAD(&p->rt.run_list);
2342 p->se.on_rq = 0;
2343 INIT_LIST_HEAD(&p->se.group_node);
2344
2345 #ifdef CONFIG_PREEMPT_NOTIFIERS
2346 INIT_HLIST_HEAD(&p->preempt_notifiers);
2347 #endif
2348
2349 /*
2350 * We mark the process as running here, but have not actually
2351 * inserted it onto the runqueue yet. This guarantees that
2352 * nobody will actually run it, and a signal or other external
2353 * event cannot wake it up and insert it on the runqueue either.
2354 */
2355 p->state = TASK_RUNNING;
2356 }
2357
2358 /*
2359 * fork()/clone()-time setup:
2360 */
2361 void sched_fork(struct task_struct *p, int clone_flags)
2362 {
2363 int cpu = get_cpu();
2364
2365 __sched_fork(p);
2366
2367 #ifdef CONFIG_SMP
2368 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2369 #endif
2370 set_task_cpu(p, cpu);
2371
2372 /*
2373 * Make sure we do not leak PI boosting priority to the child:
2374 */
2375 p->prio = current->normal_prio;
2376 if (!rt_prio(p->prio))
2377 p->sched_class = &fair_sched_class;
2378
2379 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2380 if (likely(sched_info_on()))
2381 memset(&p->sched_info, 0, sizeof(p->sched_info));
2382 #endif
2383 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2384 p->oncpu = 0;
2385 #endif
2386 #ifdef CONFIG_PREEMPT
2387 /* Want to start with kernel preemption disabled. */
2388 task_thread_info(p)->preempt_count = 1;
2389 #endif
2390 put_cpu();
2391 }
2392
2393 /*
2394 * wake_up_new_task - wake up a newly created task for the first time.
2395 *
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2399 */
2400 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2401 {
2402 unsigned long flags;
2403 struct rq *rq;
2404
2405 rq = task_rq_lock(p, &flags);
2406 BUG_ON(p->state != TASK_RUNNING);
2407 update_rq_clock(rq);
2408
2409 p->prio = effective_prio(p);
2410
2411 if (!p->sched_class->task_new || !current->se.on_rq) {
2412 activate_task(rq, p, 0);
2413 } else {
2414 /*
2415 * Let the scheduling class do new task startup
2416 * management (if any):
2417 */
2418 p->sched_class->task_new(rq, p);
2419 inc_nr_running(rq);
2420 }
2421 trace_mark(kernel_sched_wakeup_new,
2422 "pid %d state %ld ## rq %p task %p rq->curr %p",
2423 p->pid, p->state, rq, p, rq->curr);
2424 check_preempt_curr(rq, p);
2425 #ifdef CONFIG_SMP
2426 if (p->sched_class->task_wake_up)
2427 p->sched_class->task_wake_up(rq, p);
2428 #endif
2429 task_rq_unlock(rq, &flags);
2430 }
2431
2432 #ifdef CONFIG_PREEMPT_NOTIFIERS
2433
2434 /**
2435 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2436 * @notifier: notifier struct to register
2437 */
2438 void preempt_notifier_register(struct preempt_notifier *notifier)
2439 {
2440 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2441 }
2442 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2443
2444 /**
2445 * preempt_notifier_unregister - no longer interested in preemption notifications
2446 * @notifier: notifier struct to unregister
2447 *
2448 * This is safe to call from within a preemption notifier.
2449 */
2450 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2451 {
2452 hlist_del(&notifier->link);
2453 }
2454 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2455
2456 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2457 {
2458 struct preempt_notifier *notifier;
2459 struct hlist_node *node;
2460
2461 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2462 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2463 }
2464
2465 static void
2466 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2467 struct task_struct *next)
2468 {
2469 struct preempt_notifier *notifier;
2470 struct hlist_node *node;
2471
2472 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2473 notifier->ops->sched_out(notifier, next);
2474 }
2475
2476 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2477
2478 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2479 {
2480 }
2481
2482 static void
2483 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2484 struct task_struct *next)
2485 {
2486 }
2487
2488 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2489
2490 /**
2491 * prepare_task_switch - prepare to switch tasks
2492 * @rq: the runqueue preparing to switch
2493 * @prev: the current task that is being switched out
2494 * @next: the task we are going to switch to.
2495 *
2496 * This is called with the rq lock held and interrupts off. It must
2497 * be paired with a subsequent finish_task_switch after the context
2498 * switch.
2499 *
2500 * prepare_task_switch sets up locking and calls architecture specific
2501 * hooks.
2502 */
2503 static inline void
2504 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2505 struct task_struct *next)
2506 {
2507 fire_sched_out_preempt_notifiers(prev, next);
2508 prepare_lock_switch(rq, next);
2509 prepare_arch_switch(next);
2510 }
2511
2512 /**
2513 * finish_task_switch - clean up after a task-switch
2514 * @rq: runqueue associated with task-switch
2515 * @prev: the thread we just switched away from.
2516 *
2517 * finish_task_switch must be called after the context switch, paired
2518 * with a prepare_task_switch call before the context switch.
2519 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2520 * and do any other architecture-specific cleanup actions.
2521 *
2522 * Note that we may have delayed dropping an mm in context_switch(). If
2523 * so, we finish that here outside of the runqueue lock. (Doing it
2524 * with the lock held can cause deadlocks; see schedule() for
2525 * details.)
2526 */
2527 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2528 __releases(rq->lock)
2529 {
2530 struct mm_struct *mm = rq->prev_mm;
2531 long prev_state;
2532
2533 rq->prev_mm = NULL;
2534
2535 /*
2536 * A task struct has one reference for the use as "current".
2537 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2538 * schedule one last time. The schedule call will never return, and
2539 * the scheduled task must drop that reference.
2540 * The test for TASK_DEAD must occur while the runqueue locks are
2541 * still held, otherwise prev could be scheduled on another cpu, die
2542 * there before we look at prev->state, and then the reference would
2543 * be dropped twice.
2544 * Manfred Spraul <manfred@colorfullife.com>
2545 */
2546 prev_state = prev->state;
2547 finish_arch_switch(prev);
2548 finish_lock_switch(rq, prev);
2549 #ifdef CONFIG_SMP
2550 if (current->sched_class->post_schedule)
2551 current->sched_class->post_schedule(rq);
2552 #endif
2553
2554 fire_sched_in_preempt_notifiers(current);
2555 if (mm)
2556 mmdrop(mm);
2557 if (unlikely(prev_state == TASK_DEAD)) {
2558 /*
2559 * Remove function-return probe instances associated with this
2560 * task and put them back on the free list.
2561 */
2562 kprobe_flush_task(prev);
2563 put_task_struct(prev);
2564 }
2565 }
2566
2567 /**
2568 * schedule_tail - first thing a freshly forked thread must call.
2569 * @prev: the thread we just switched away from.
2570 */
2571 asmlinkage void schedule_tail(struct task_struct *prev)
2572 __releases(rq->lock)
2573 {
2574 struct rq *rq = this_rq();
2575
2576 finish_task_switch(rq, prev);
2577 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2578 /* In this case, finish_task_switch does not reenable preemption */
2579 preempt_enable();
2580 #endif
2581 if (current->set_child_tid)
2582 put_user(task_pid_vnr(current), current->set_child_tid);
2583 }
2584
2585 /*
2586 * context_switch - switch to the new MM and the new
2587 * thread's register state.
2588 */
2589 static inline void
2590 context_switch(struct rq *rq, struct task_struct *prev,
2591 struct task_struct *next)
2592 {
2593 struct mm_struct *mm, *oldmm;
2594
2595 prepare_task_switch(rq, prev, next);
2596 trace_mark(kernel_sched_schedule,
2597 "prev_pid %d next_pid %d prev_state %ld "
2598 "## rq %p prev %p next %p",
2599 prev->pid, next->pid, prev->state,
2600 rq, prev, next);
2601 mm = next->mm;
2602 oldmm = prev->active_mm;
2603 /*
2604 * For paravirt, this is coupled with an exit in switch_to to
2605 * combine the page table reload and the switch backend into
2606 * one hypercall.
2607 */
2608 arch_enter_lazy_cpu_mode();
2609
2610 if (unlikely(!mm)) {
2611 next->active_mm = oldmm;
2612 atomic_inc(&oldmm->mm_count);
2613 enter_lazy_tlb(oldmm, next);
2614 } else
2615 switch_mm(oldmm, mm, next);
2616
2617 if (unlikely(!prev->mm)) {
2618 prev->active_mm = NULL;
2619 rq->prev_mm = oldmm;
2620 }
2621 /*
2622 * Since the runqueue lock will be released by the next
2623 * task (which is an invalid locking op but in the case
2624 * of the scheduler it's an obvious special-case), so we
2625 * do an early lockdep release here:
2626 */
2627 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2628 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2629 #endif
2630
2631 /* Here we just switch the register state and the stack. */
2632 switch_to(prev, next, prev);
2633
2634 barrier();
2635 /*
2636 * this_rq must be evaluated again because prev may have moved
2637 * CPUs since it called schedule(), thus the 'rq' on its stack
2638 * frame will be invalid.
2639 */
2640 finish_task_switch(this_rq(), prev);
2641 }
2642
2643 /*
2644 * nr_running, nr_uninterruptible and nr_context_switches:
2645 *
2646 * externally visible scheduler statistics: current number of runnable
2647 * threads, current number of uninterruptible-sleeping threads, total
2648 * number of context switches performed since bootup.
2649 */
2650 unsigned long nr_running(void)
2651 {
2652 unsigned long i, sum = 0;
2653
2654 for_each_online_cpu(i)
2655 sum += cpu_rq(i)->nr_running;
2656
2657 return sum;
2658 }
2659
2660 unsigned long nr_uninterruptible(void)
2661 {
2662 unsigned long i, sum = 0;
2663
2664 for_each_possible_cpu(i)
2665 sum += cpu_rq(i)->nr_uninterruptible;
2666
2667 /*
2668 * Since we read the counters lockless, it might be slightly
2669 * inaccurate. Do not allow it to go below zero though:
2670 */
2671 if (unlikely((long)sum < 0))
2672 sum = 0;
2673
2674 return sum;
2675 }
2676
2677 unsigned long long nr_context_switches(void)
2678 {
2679 int i;
2680 unsigned long long sum = 0;
2681
2682 for_each_possible_cpu(i)
2683 sum += cpu_rq(i)->nr_switches;
2684
2685 return sum;
2686 }
2687
2688 unsigned long nr_iowait(void)
2689 {
2690 unsigned long i, sum = 0;
2691
2692 for_each_possible_cpu(i)
2693 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2694
2695 return sum;
2696 }
2697
2698 unsigned long nr_active(void)
2699 {
2700 unsigned long i, running = 0, uninterruptible = 0;
2701
2702 for_each_online_cpu(i) {
2703 running += cpu_rq(i)->nr_running;
2704 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2705 }
2706
2707 if (unlikely((long)uninterruptible < 0))
2708 uninterruptible = 0;
2709
2710 return running + uninterruptible;
2711 }
2712
2713 /*
2714 * Update rq->cpu_load[] statistics. This function is usually called every
2715 * scheduler tick (TICK_NSEC).
2716 */
2717 static void update_cpu_load(struct rq *this_rq)
2718 {
2719 unsigned long this_load = this_rq->load.weight;
2720 int i, scale;
2721
2722 this_rq->nr_load_updates++;
2723
2724 /* Update our load: */
2725 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2726 unsigned long old_load, new_load;
2727
2728 /* scale is effectively 1 << i now, and >> i divides by scale */
2729
2730 old_load = this_rq->cpu_load[i];
2731 new_load = this_load;
2732 /*
2733 * Round up the averaging division if load is increasing. This
2734 * prevents us from getting stuck on 9 if the load is 10, for
2735 * example.
2736 */
2737 if (new_load > old_load)
2738 new_load += scale-1;
2739 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2740 }
2741 }
2742
2743 #ifdef CONFIG_SMP
2744
2745 /*
2746 * double_rq_lock - safely lock two runqueues
2747 *
2748 * Note this does not disable interrupts like task_rq_lock,
2749 * you need to do so manually before calling.
2750 */
2751 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2752 __acquires(rq1->lock)
2753 __acquires(rq2->lock)
2754 {
2755 BUG_ON(!irqs_disabled());
2756 if (rq1 == rq2) {
2757 spin_lock(&rq1->lock);
2758 __acquire(rq2->lock); /* Fake it out ;) */
2759 } else {
2760 if (rq1 < rq2) {
2761 spin_lock(&rq1->lock);
2762 spin_lock(&rq2->lock);
2763 } else {
2764 spin_lock(&rq2->lock);
2765 spin_lock(&rq1->lock);
2766 }
2767 }
2768 update_rq_clock(rq1);
2769 update_rq_clock(rq2);
2770 }
2771
2772 /*
2773 * double_rq_unlock - safely unlock two runqueues
2774 *
2775 * Note this does not restore interrupts like task_rq_unlock,
2776 * you need to do so manually after calling.
2777 */
2778 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2779 __releases(rq1->lock)
2780 __releases(rq2->lock)
2781 {
2782 spin_unlock(&rq1->lock);
2783 if (rq1 != rq2)
2784 spin_unlock(&rq2->lock);
2785 else
2786 __release(rq2->lock);
2787 }
2788
2789 /*
2790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2791 */
2792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2793 __releases(this_rq->lock)
2794 __acquires(busiest->lock)
2795 __acquires(this_rq->lock)
2796 {
2797 int ret = 0;
2798
2799 if (unlikely(!irqs_disabled())) {
2800 /* printk() doesn't work good under rq->lock */
2801 spin_unlock(&this_rq->lock);
2802 BUG_ON(1);
2803 }
2804 if (unlikely(!spin_trylock(&busiest->lock))) {
2805 if (busiest < this_rq) {
2806 spin_unlock(&this_rq->lock);
2807 spin_lock(&busiest->lock);
2808 spin_lock(&this_rq->lock);
2809 ret = 1;
2810 } else
2811 spin_lock(&busiest->lock);
2812 }
2813 return ret;
2814 }
2815
2816 /*
2817 * If dest_cpu is allowed for this process, migrate the task to it.
2818 * This is accomplished by forcing the cpu_allowed mask to only
2819 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2820 * the cpu_allowed mask is restored.
2821 */
2822 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2823 {
2824 struct migration_req req;
2825 unsigned long flags;
2826 struct rq *rq;
2827
2828 rq = task_rq_lock(p, &flags);
2829 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2830 || unlikely(!cpu_active(dest_cpu)))
2831 goto out;
2832
2833 /* force the process onto the specified CPU */
2834 if (migrate_task(p, dest_cpu, &req)) {
2835 /* Need to wait for migration thread (might exit: take ref). */
2836 struct task_struct *mt = rq->migration_thread;
2837
2838 get_task_struct(mt);
2839 task_rq_unlock(rq, &flags);
2840 wake_up_process(mt);
2841 put_task_struct(mt);
2842 wait_for_completion(&req.done);
2843
2844 return;
2845 }
2846 out:
2847 task_rq_unlock(rq, &flags);
2848 }
2849
2850 /*
2851 * sched_exec - execve() is a valuable balancing opportunity, because at
2852 * this point the task has the smallest effective memory and cache footprint.
2853 */
2854 void sched_exec(void)
2855 {
2856 int new_cpu, this_cpu = get_cpu();
2857 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2858 put_cpu();
2859 if (new_cpu != this_cpu)
2860 sched_migrate_task(current, new_cpu);
2861 }
2862
2863 /*
2864 * pull_task - move a task from a remote runqueue to the local runqueue.
2865 * Both runqueues must be locked.
2866 */
2867 static void pull_task(struct rq *src_rq, struct task_struct *p,
2868 struct rq *this_rq, int this_cpu)
2869 {
2870 deactivate_task(src_rq, p, 0);
2871 set_task_cpu(p, this_cpu);
2872 activate_task(this_rq, p, 0);
2873 /*
2874 * Note that idle threads have a prio of MAX_PRIO, for this test
2875 * to be always true for them.
2876 */
2877 check_preempt_curr(this_rq, p);
2878 }
2879
2880 /*
2881 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2882 */
2883 static
2884 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2885 struct sched_domain *sd, enum cpu_idle_type idle,
2886 int *all_pinned)
2887 {
2888 /*
2889 * We do not migrate tasks that are:
2890 * 1) running (obviously), or
2891 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2892 * 3) are cache-hot on their current CPU.
2893 */
2894 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2895 schedstat_inc(p, se.nr_failed_migrations_affine);
2896 return 0;
2897 }
2898 *all_pinned = 0;
2899
2900 if (task_running(rq, p)) {
2901 schedstat_inc(p, se.nr_failed_migrations_running);
2902 return 0;
2903 }
2904
2905 /*
2906 * Aggressive migration if:
2907 * 1) task is cache cold, or
2908 * 2) too many balance attempts have failed.
2909 */
2910
2911 if (!task_hot(p, rq->clock, sd) ||
2912 sd->nr_balance_failed > sd->cache_nice_tries) {
2913 #ifdef CONFIG_SCHEDSTATS
2914 if (task_hot(p, rq->clock, sd)) {
2915 schedstat_inc(sd, lb_hot_gained[idle]);
2916 schedstat_inc(p, se.nr_forced_migrations);
2917 }
2918 #endif
2919 return 1;
2920 }
2921
2922 if (task_hot(p, rq->clock, sd)) {
2923 schedstat_inc(p, se.nr_failed_migrations_hot);
2924 return 0;
2925 }
2926 return 1;
2927 }
2928
2929 static unsigned long
2930 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2931 unsigned long max_load_move, struct sched_domain *sd,
2932 enum cpu_idle_type idle, int *all_pinned,
2933 int *this_best_prio, struct rq_iterator *iterator)
2934 {
2935 int loops = 0, pulled = 0, pinned = 0;
2936 struct task_struct *p;
2937 long rem_load_move = max_load_move;
2938
2939 if (max_load_move == 0)
2940 goto out;
2941
2942 pinned = 1;
2943
2944 /*
2945 * Start the load-balancing iterator:
2946 */
2947 p = iterator->start(iterator->arg);
2948 next:
2949 if (!p || loops++ > sysctl_sched_nr_migrate)
2950 goto out;
2951
2952 if ((p->se.load.weight >> 1) > rem_load_move ||
2953 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2954 p = iterator->next(iterator->arg);
2955 goto next;
2956 }
2957
2958 pull_task(busiest, p, this_rq, this_cpu);
2959 pulled++;
2960 rem_load_move -= p->se.load.weight;
2961
2962 /*
2963 * We only want to steal up to the prescribed amount of weighted load.
2964 */
2965 if (rem_load_move > 0) {
2966 if (p->prio < *this_best_prio)
2967 *this_best_prio = p->prio;
2968 p = iterator->next(iterator->arg);
2969 goto next;
2970 }
2971 out:
2972 /*
2973 * Right now, this is one of only two places pull_task() is called,
2974 * so we can safely collect pull_task() stats here rather than
2975 * inside pull_task().
2976 */
2977 schedstat_add(sd, lb_gained[idle], pulled);
2978
2979 if (all_pinned)
2980 *all_pinned = pinned;
2981
2982 return max_load_move - rem_load_move;
2983 }
2984
2985 /*
2986 * move_tasks tries to move up to max_load_move weighted load from busiest to
2987 * this_rq, as part of a balancing operation within domain "sd".
2988 * Returns 1 if successful and 0 otherwise.
2989 *
2990 * Called with both runqueues locked.
2991 */
2992 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2993 unsigned long max_load_move,
2994 struct sched_domain *sd, enum cpu_idle_type idle,
2995 int *all_pinned)
2996 {
2997 const struct sched_class *class = sched_class_highest;
2998 unsigned long total_load_moved = 0;
2999 int this_best_prio = this_rq->curr->prio;
3000
3001 do {
3002 total_load_moved +=
3003 class->load_balance(this_rq, this_cpu, busiest,
3004 max_load_move - total_load_moved,
3005 sd, idle, all_pinned, &this_best_prio);
3006 class = class->next;
3007
3008 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3009 break;
3010
3011 } while (class && max_load_move > total_load_moved);
3012
3013 return total_load_moved > 0;
3014 }
3015
3016 static int
3017 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3018 struct sched_domain *sd, enum cpu_idle_type idle,
3019 struct rq_iterator *iterator)
3020 {
3021 struct task_struct *p = iterator->start(iterator->arg);
3022 int pinned = 0;
3023
3024 while (p) {
3025 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3026 pull_task(busiest, p, this_rq, this_cpu);
3027 /*
3028 * Right now, this is only the second place pull_task()
3029 * is called, so we can safely collect pull_task()
3030 * stats here rather than inside pull_task().
3031 */
3032 schedstat_inc(sd, lb_gained[idle]);
3033
3034 return 1;
3035 }
3036 p = iterator->next(iterator->arg);
3037 }
3038
3039 return 0;
3040 }
3041
3042 /*
3043 * move_one_task tries to move exactly one task from busiest to this_rq, as
3044 * part of active balancing operations within "domain".
3045 * Returns 1 if successful and 0 otherwise.
3046 *
3047 * Called with both runqueues locked.
3048 */
3049 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3050 struct sched_domain *sd, enum cpu_idle_type idle)
3051 {
3052 const struct sched_class *class;
3053
3054 for (class = sched_class_highest; class; class = class->next)
3055 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3056 return 1;
3057
3058 return 0;
3059 }
3060
3061 /*
3062 * find_busiest_group finds and returns the busiest CPU group within the
3063 * domain. It calculates and returns the amount of weighted load which
3064 * should be moved to restore balance via the imbalance parameter.
3065 */
3066 static struct sched_group *
3067 find_busiest_group(struct sched_domain *sd, int this_cpu,
3068 unsigned long *imbalance, enum cpu_idle_type idle,
3069 int *sd_idle, const cpumask_t *cpus, int *balance)
3070 {
3071 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3072 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3073 unsigned long max_pull;
3074 unsigned long busiest_load_per_task, busiest_nr_running;
3075 unsigned long this_load_per_task, this_nr_running;
3076 int load_idx, group_imb = 0;
3077 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3078 int power_savings_balance = 1;
3079 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3080 unsigned long min_nr_running = ULONG_MAX;
3081 struct sched_group *group_min = NULL, *group_leader = NULL;
3082 #endif
3083
3084 max_load = this_load = total_load = total_pwr = 0;
3085 busiest_load_per_task = busiest_nr_running = 0;
3086 this_load_per_task = this_nr_running = 0;
3087
3088 if (idle == CPU_NOT_IDLE)
3089 load_idx = sd->busy_idx;
3090 else if (idle == CPU_NEWLY_IDLE)
3091 load_idx = sd->newidle_idx;
3092 else
3093 load_idx = sd->idle_idx;
3094
3095 do {
3096 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3097 int local_group;
3098 int i;
3099 int __group_imb = 0;
3100 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3101 unsigned long sum_nr_running, sum_weighted_load;
3102 unsigned long sum_avg_load_per_task;
3103 unsigned long avg_load_per_task;
3104
3105 local_group = cpu_isset(this_cpu, group->cpumask);
3106
3107 if (local_group)
3108 balance_cpu = first_cpu(group->cpumask);
3109
3110 /* Tally up the load of all CPUs in the group */
3111 sum_weighted_load = sum_nr_running = avg_load = 0;
3112 sum_avg_load_per_task = avg_load_per_task = 0;
3113
3114 max_cpu_load = 0;
3115 min_cpu_load = ~0UL;
3116
3117 for_each_cpu_mask_nr(i, group->cpumask) {
3118 struct rq *rq;
3119
3120 if (!cpu_isset(i, *cpus))
3121 continue;
3122
3123 rq = cpu_rq(i);
3124
3125 if (*sd_idle && rq->nr_running)
3126 *sd_idle = 0;
3127
3128 /* Bias balancing toward cpus of our domain */
3129 if (local_group) {
3130 if (idle_cpu(i) && !first_idle_cpu) {
3131 first_idle_cpu = 1;
3132 balance_cpu = i;
3133 }
3134
3135 load = target_load(i, load_idx);
3136 } else {
3137 load = source_load(i, load_idx);
3138 if (load > max_cpu_load)
3139 max_cpu_load = load;
3140 if (min_cpu_load > load)
3141 min_cpu_load = load;
3142 }
3143
3144 avg_load += load;
3145 sum_nr_running += rq->nr_running;
3146 sum_weighted_load += weighted_cpuload(i);
3147
3148 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3149 }
3150
3151 /*
3152 * First idle cpu or the first cpu(busiest) in this sched group
3153 * is eligible for doing load balancing at this and above
3154 * domains. In the newly idle case, we will allow all the cpu's
3155 * to do the newly idle load balance.
3156 */
3157 if (idle != CPU_NEWLY_IDLE && local_group &&
3158 balance_cpu != this_cpu && balance) {
3159 *balance = 0;
3160 goto ret;
3161 }
3162
3163 total_load += avg_load;
3164 total_pwr += group->__cpu_power;
3165
3166 /* Adjust by relative CPU power of the group */
3167 avg_load = sg_div_cpu_power(group,
3168 avg_load * SCHED_LOAD_SCALE);
3169
3170
3171 /*
3172 * Consider the group unbalanced when the imbalance is larger
3173 * than the average weight of two tasks.
3174 *
3175 * APZ: with cgroup the avg task weight can vary wildly and
3176 * might not be a suitable number - should we keep a
3177 * normalized nr_running number somewhere that negates
3178 * the hierarchy?
3179 */
3180 avg_load_per_task = sg_div_cpu_power(group,
3181 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3182
3183 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3184 __group_imb = 1;
3185
3186 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3187
3188 if (local_group) {
3189 this_load = avg_load;
3190 this = group;
3191 this_nr_running = sum_nr_running;
3192 this_load_per_task = sum_weighted_load;
3193 } else if (avg_load > max_load &&
3194 (sum_nr_running > group_capacity || __group_imb)) {
3195 max_load = avg_load;
3196 busiest = group;
3197 busiest_nr_running = sum_nr_running;
3198 busiest_load_per_task = sum_weighted_load;
3199 group_imb = __group_imb;
3200 }
3201
3202 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3203 /*
3204 * Busy processors will not participate in power savings
3205 * balance.
3206 */
3207 if (idle == CPU_NOT_IDLE ||
3208 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209 goto group_next;
3210
3211 /*
3212 * If the local group is idle or completely loaded
3213 * no need to do power savings balance at this domain
3214 */
3215 if (local_group && (this_nr_running >= group_capacity ||
3216 !this_nr_running))
3217 power_savings_balance = 0;
3218
3219 /*
3220 * If a group is already running at full capacity or idle,
3221 * don't include that group in power savings calculations
3222 */
3223 if (!power_savings_balance || sum_nr_running >= group_capacity
3224 || !sum_nr_running)
3225 goto group_next;
3226
3227 /*
3228 * Calculate the group which has the least non-idle load.
3229 * This is the group from where we need to pick up the load
3230 * for saving power
3231 */
3232 if ((sum_nr_running < min_nr_running) ||
3233 (sum_nr_running == min_nr_running &&
3234 first_cpu(group->cpumask) <
3235 first_cpu(group_min->cpumask))) {
3236 group_min = group;
3237 min_nr_running = sum_nr_running;
3238 min_load_per_task = sum_weighted_load /
3239 sum_nr_running;
3240 }
3241
3242 /*
3243 * Calculate the group which is almost near its
3244 * capacity but still has some space to pick up some load
3245 * from other group and save more power
3246 */
3247 if (sum_nr_running <= group_capacity - 1) {
3248 if (sum_nr_running > leader_nr_running ||
3249 (sum_nr_running == leader_nr_running &&
3250 first_cpu(group->cpumask) >
3251 first_cpu(group_leader->cpumask))) {
3252 group_leader = group;
3253 leader_nr_running = sum_nr_running;
3254 }
3255 }
3256 group_next:
3257 #endif
3258 group = group->next;
3259 } while (group != sd->groups);
3260
3261 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3262 goto out_balanced;
3263
3264 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3265
3266 if (this_load >= avg_load ||
3267 100*max_load <= sd->imbalance_pct*this_load)
3268 goto out_balanced;
3269
3270 busiest_load_per_task /= busiest_nr_running;
3271 if (group_imb)
3272 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3273
3274 /*
3275 * We're trying to get all the cpus to the average_load, so we don't
3276 * want to push ourselves above the average load, nor do we wish to
3277 * reduce the max loaded cpu below the average load, as either of these
3278 * actions would just result in more rebalancing later, and ping-pong
3279 * tasks around. Thus we look for the minimum possible imbalance.
3280 * Negative imbalances (*we* are more loaded than anyone else) will
3281 * be counted as no imbalance for these purposes -- we can't fix that
3282 * by pulling tasks to us. Be careful of negative numbers as they'll
3283 * appear as very large values with unsigned longs.
3284 */
3285 if (max_load <= busiest_load_per_task)
3286 goto out_balanced;
3287
3288 /*
3289 * In the presence of smp nice balancing, certain scenarios can have
3290 * max load less than avg load(as we skip the groups at or below
3291 * its cpu_power, while calculating max_load..)
3292 */
3293 if (max_load < avg_load) {
3294 *imbalance = 0;
3295 goto small_imbalance;
3296 }
3297
3298 /* Don't want to pull so many tasks that a group would go idle */
3299 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3300
3301 /* How much load to actually move to equalise the imbalance */
3302 *imbalance = min(max_pull * busiest->__cpu_power,
3303 (avg_load - this_load) * this->__cpu_power)
3304 / SCHED_LOAD_SCALE;
3305
3306 /*
3307 * if *imbalance is less than the average load per runnable task
3308 * there is no gaurantee that any tasks will be moved so we'll have
3309 * a think about bumping its value to force at least one task to be
3310 * moved
3311 */
3312 if (*imbalance < busiest_load_per_task) {
3313 unsigned long tmp, pwr_now, pwr_move;
3314 unsigned int imbn;
3315
3316 small_imbalance:
3317 pwr_move = pwr_now = 0;
3318 imbn = 2;
3319 if (this_nr_running) {
3320 this_load_per_task /= this_nr_running;
3321 if (busiest_load_per_task > this_load_per_task)
3322 imbn = 1;
3323 } else
3324 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3325
3326 if (max_load - this_load + 2*busiest_load_per_task >=
3327 busiest_load_per_task * imbn) {
3328 *imbalance = busiest_load_per_task;
3329 return busiest;
3330 }
3331
3332 /*
3333 * OK, we don't have enough imbalance to justify moving tasks,
3334 * however we may be able to increase total CPU power used by
3335 * moving them.
3336 */
3337
3338 pwr_now += busiest->__cpu_power *
3339 min(busiest_load_per_task, max_load);
3340 pwr_now += this->__cpu_power *
3341 min(this_load_per_task, this_load);
3342 pwr_now /= SCHED_LOAD_SCALE;
3343
3344 /* Amount of load we'd subtract */
3345 tmp = sg_div_cpu_power(busiest,
3346 busiest_load_per_task * SCHED_LOAD_SCALE);
3347 if (max_load > tmp)
3348 pwr_move += busiest->__cpu_power *
3349 min(busiest_load_per_task, max_load - tmp);
3350
3351 /* Amount of load we'd add */
3352 if (max_load * busiest->__cpu_power <
3353 busiest_load_per_task * SCHED_LOAD_SCALE)
3354 tmp = sg_div_cpu_power(this,
3355 max_load * busiest->__cpu_power);
3356 else
3357 tmp = sg_div_cpu_power(this,
3358 busiest_load_per_task * SCHED_LOAD_SCALE);
3359 pwr_move += this->__cpu_power *
3360 min(this_load_per_task, this_load + tmp);
3361 pwr_move /= SCHED_LOAD_SCALE;
3362
3363 /* Move if we gain throughput */
3364 if (pwr_move > pwr_now)
3365 *imbalance = busiest_load_per_task;
3366 }
3367
3368 return busiest;
3369
3370 out_balanced:
3371 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3372 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3373 goto ret;
3374
3375 if (this == group_leader && group_leader != group_min) {
3376 *imbalance = min_load_per_task;
3377 return group_min;
3378 }
3379 #endif
3380 ret:
3381 *imbalance = 0;
3382 return NULL;
3383 }
3384
3385 /*
3386 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3387 */
3388 static struct rq *
3389 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3390 unsigned long imbalance, const cpumask_t *cpus)
3391 {
3392 struct rq *busiest = NULL, *rq;
3393 unsigned long max_load = 0;
3394 int i;
3395
3396 for_each_cpu_mask_nr(i, group->cpumask) {
3397 unsigned long wl;
3398
3399 if (!cpu_isset(i, *cpus))
3400 continue;
3401
3402 rq = cpu_rq(i);
3403 wl = weighted_cpuload(i);
3404
3405 if (rq->nr_running == 1 && wl > imbalance)
3406 continue;
3407
3408 if (wl > max_load) {
3409 max_load = wl;
3410 busiest = rq;
3411 }
3412 }
3413
3414 return busiest;
3415 }
3416
3417 /*
3418 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3419 * so long as it is large enough.
3420 */
3421 #define MAX_PINNED_INTERVAL 512
3422
3423 /*
3424 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3425 * tasks if there is an imbalance.
3426 */
3427 static int load_balance(int this_cpu, struct rq *this_rq,
3428 struct sched_domain *sd, enum cpu_idle_type idle,
3429 int *balance, cpumask_t *cpus)
3430 {
3431 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3432 struct sched_group *group;
3433 unsigned long imbalance;
3434 struct rq *busiest;
3435 unsigned long flags;
3436
3437 cpus_setall(*cpus);
3438
3439 /*
3440 * When power savings policy is enabled for the parent domain, idle
3441 * sibling can pick up load irrespective of busy siblings. In this case,
3442 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3443 * portraying it as CPU_NOT_IDLE.
3444 */
3445 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3447 sd_idle = 1;
3448
3449 schedstat_inc(sd, lb_count[idle]);
3450
3451 redo:
3452 update_shares(sd);
3453 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3454 cpus, balance);
3455
3456 if (*balance == 0)
3457 goto out_balanced;
3458
3459 if (!group) {
3460 schedstat_inc(sd, lb_nobusyg[idle]);
3461 goto out_balanced;
3462 }
3463
3464 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3465 if (!busiest) {
3466 schedstat_inc(sd, lb_nobusyq[idle]);
3467 goto out_balanced;
3468 }
3469
3470 BUG_ON(busiest == this_rq);
3471
3472 schedstat_add(sd, lb_imbalance[idle], imbalance);
3473
3474 ld_moved = 0;
3475 if (busiest->nr_running > 1) {
3476 /*
3477 * Attempt to move tasks. If find_busiest_group has found
3478 * an imbalance but busiest->nr_running <= 1, the group is
3479 * still unbalanced. ld_moved simply stays zero, so it is
3480 * correctly treated as an imbalance.
3481 */
3482 local_irq_save(flags);
3483 double_rq_lock(this_rq, busiest);
3484 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3485 imbalance, sd, idle, &all_pinned);
3486 double_rq_unlock(this_rq, busiest);
3487 local_irq_restore(flags);
3488
3489 /*
3490 * some other cpu did the load balance for us.
3491 */
3492 if (ld_moved && this_cpu != smp_processor_id())
3493 resched_cpu(this_cpu);
3494
3495 /* All tasks on this runqueue were pinned by CPU affinity */
3496 if (unlikely(all_pinned)) {
3497 cpu_clear(cpu_of(busiest), *cpus);
3498 if (!cpus_empty(*cpus))
3499 goto redo;
3500 goto out_balanced;
3501 }
3502 }
3503
3504 if (!ld_moved) {
3505 schedstat_inc(sd, lb_failed[idle]);
3506 sd->nr_balance_failed++;
3507
3508 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3509
3510 spin_lock_irqsave(&busiest->lock, flags);
3511
3512 /* don't kick the migration_thread, if the curr
3513 * task on busiest cpu can't be moved to this_cpu
3514 */
3515 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3516 spin_unlock_irqrestore(&busiest->lock, flags);
3517 all_pinned = 1;
3518 goto out_one_pinned;
3519 }
3520
3521 if (!busiest->active_balance) {
3522 busiest->active_balance = 1;
3523 busiest->push_cpu = this_cpu;
3524 active_balance = 1;
3525 }
3526 spin_unlock_irqrestore(&busiest->lock, flags);
3527 if (active_balance)
3528 wake_up_process(busiest->migration_thread);
3529
3530 /*
3531 * We've kicked active balancing, reset the failure
3532 * counter.
3533 */
3534 sd->nr_balance_failed = sd->cache_nice_tries+1;
3535 }
3536 } else
3537 sd->nr_balance_failed = 0;
3538
3539 if (likely(!active_balance)) {
3540 /* We were unbalanced, so reset the balancing interval */
3541 sd->balance_interval = sd->min_interval;
3542 } else {
3543 /*
3544 * If we've begun active balancing, start to back off. This
3545 * case may not be covered by the all_pinned logic if there
3546 * is only 1 task on the busy runqueue (because we don't call
3547 * move_tasks).
3548 */
3549 if (sd->balance_interval < sd->max_interval)
3550 sd->balance_interval *= 2;
3551 }
3552
3553 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3554 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3555 ld_moved = -1;
3556
3557 goto out;
3558
3559 out_balanced:
3560 schedstat_inc(sd, lb_balanced[idle]);
3561
3562 sd->nr_balance_failed = 0;
3563
3564 out_one_pinned:
3565 /* tune up the balancing interval */
3566 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3567 (sd->balance_interval < sd->max_interval))
3568 sd->balance_interval *= 2;
3569
3570 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3571 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3572 ld_moved = -1;
3573 else
3574 ld_moved = 0;
3575 out:
3576 if (ld_moved)
3577 update_shares(sd);
3578 return ld_moved;
3579 }
3580
3581 /*
3582 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3583 * tasks if there is an imbalance.
3584 *
3585 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3586 * this_rq is locked.
3587 */
3588 static int
3589 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3590 cpumask_t *cpus)
3591 {
3592 struct sched_group *group;
3593 struct rq *busiest = NULL;
3594 unsigned long imbalance;
3595 int ld_moved = 0;
3596 int sd_idle = 0;
3597 int all_pinned = 0;
3598
3599 cpus_setall(*cpus);
3600
3601 /*
3602 * When power savings policy is enabled for the parent domain, idle
3603 * sibling can pick up load irrespective of busy siblings. In this case,
3604 * let the state of idle sibling percolate up as IDLE, instead of
3605 * portraying it as CPU_NOT_IDLE.
3606 */
3607 if (sd->flags & SD_SHARE_CPUPOWER &&
3608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3609 sd_idle = 1;
3610
3611 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3612 redo:
3613 update_shares_locked(this_rq, sd);
3614 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3615 &sd_idle, cpus, NULL);
3616 if (!group) {
3617 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3618 goto out_balanced;
3619 }
3620
3621 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3622 if (!busiest) {
3623 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3624 goto out_balanced;
3625 }
3626
3627 BUG_ON(busiest == this_rq);
3628
3629 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3630
3631 ld_moved = 0;
3632 if (busiest->nr_running > 1) {
3633 /* Attempt to move tasks */
3634 double_lock_balance(this_rq, busiest);
3635 /* this_rq->clock is already updated */
3636 update_rq_clock(busiest);
3637 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3638 imbalance, sd, CPU_NEWLY_IDLE,
3639 &all_pinned);
3640 spin_unlock(&busiest->lock);
3641
3642 if (unlikely(all_pinned)) {
3643 cpu_clear(cpu_of(busiest), *cpus);
3644 if (!cpus_empty(*cpus))
3645 goto redo;
3646 }
3647 }
3648
3649 if (!ld_moved) {
3650 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3651 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3652 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3653 return -1;
3654 } else
3655 sd->nr_balance_failed = 0;
3656
3657 update_shares_locked(this_rq, sd);
3658 return ld_moved;
3659
3660 out_balanced:
3661 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3662 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3663 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3664 return -1;
3665 sd->nr_balance_failed = 0;
3666
3667 return 0;
3668 }
3669
3670 /*
3671 * idle_balance is called by schedule() if this_cpu is about to become
3672 * idle. Attempts to pull tasks from other CPUs.
3673 */
3674 static void idle_balance(int this_cpu, struct rq *this_rq)
3675 {
3676 struct sched_domain *sd;
3677 int pulled_task = -1;
3678 unsigned long next_balance = jiffies + HZ;
3679 cpumask_t tmpmask;
3680
3681 for_each_domain(this_cpu, sd) {
3682 unsigned long interval;
3683
3684 if (!(sd->flags & SD_LOAD_BALANCE))
3685 continue;
3686
3687 if (sd->flags & SD_BALANCE_NEWIDLE)
3688 /* If we've pulled tasks over stop searching: */
3689 pulled_task = load_balance_newidle(this_cpu, this_rq,
3690 sd, &tmpmask);
3691
3692 interval = msecs_to_jiffies(sd->balance_interval);
3693 if (time_after(next_balance, sd->last_balance + interval))
3694 next_balance = sd->last_balance + interval;
3695 if (pulled_task)
3696 break;
3697 }
3698 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3699 /*
3700 * We are going idle. next_balance may be set based on
3701 * a busy processor. So reset next_balance.
3702 */
3703 this_rq->next_balance = next_balance;
3704 }
3705 }
3706
3707 /*
3708 * active_load_balance is run by migration threads. It pushes running tasks
3709 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3710 * running on each physical CPU where possible, and avoids physical /
3711 * logical imbalances.
3712 *
3713 * Called with busiest_rq locked.
3714 */
3715 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3716 {
3717 int target_cpu = busiest_rq->push_cpu;
3718 struct sched_domain *sd;
3719 struct rq *target_rq;
3720
3721 /* Is there any task to move? */
3722 if (busiest_rq->nr_running <= 1)
3723 return;
3724
3725 target_rq = cpu_rq(target_cpu);
3726
3727 /*
3728 * This condition is "impossible", if it occurs
3729 * we need to fix it. Originally reported by
3730 * Bjorn Helgaas on a 128-cpu setup.
3731 */
3732 BUG_ON(busiest_rq == target_rq);
3733
3734 /* move a task from busiest_rq to target_rq */
3735 double_lock_balance(busiest_rq, target_rq);
3736 update_rq_clock(busiest_rq);
3737 update_rq_clock(target_rq);
3738
3739 /* Search for an sd spanning us and the target CPU. */
3740 for_each_domain(target_cpu, sd) {
3741 if ((sd->flags & SD_LOAD_BALANCE) &&
3742 cpu_isset(busiest_cpu, sd->span))
3743 break;
3744 }
3745
3746 if (likely(sd)) {
3747 schedstat_inc(sd, alb_count);
3748
3749 if (move_one_task(target_rq, target_cpu, busiest_rq,
3750 sd, CPU_IDLE))
3751 schedstat_inc(sd, alb_pushed);
3752 else
3753 schedstat_inc(sd, alb_failed);
3754 }
3755 spin_unlock(&target_rq->lock);
3756 }
3757
3758 #ifdef CONFIG_NO_HZ
3759 static struct {
3760 atomic_t load_balancer;
3761 cpumask_t cpu_mask;
3762 } nohz ____cacheline_aligned = {
3763 .load_balancer = ATOMIC_INIT(-1),
3764 .cpu_mask = CPU_MASK_NONE,
3765 };
3766
3767 /*
3768 * This routine will try to nominate the ilb (idle load balancing)
3769 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3770 * load balancing on behalf of all those cpus. If all the cpus in the system
3771 * go into this tickless mode, then there will be no ilb owner (as there is
3772 * no need for one) and all the cpus will sleep till the next wakeup event
3773 * arrives...
3774 *
3775 * For the ilb owner, tick is not stopped. And this tick will be used
3776 * for idle load balancing. ilb owner will still be part of
3777 * nohz.cpu_mask..
3778 *
3779 * While stopping the tick, this cpu will become the ilb owner if there
3780 * is no other owner. And will be the owner till that cpu becomes busy
3781 * or if all cpus in the system stop their ticks at which point
3782 * there is no need for ilb owner.
3783 *
3784 * When the ilb owner becomes busy, it nominates another owner, during the
3785 * next busy scheduler_tick()
3786 */
3787 int select_nohz_load_balancer(int stop_tick)
3788 {
3789 int cpu = smp_processor_id();
3790
3791 if (stop_tick) {
3792 cpu_set(cpu, nohz.cpu_mask);
3793 cpu_rq(cpu)->in_nohz_recently = 1;
3794
3795 /*
3796 * If we are going offline and still the leader, give up!
3797 */
3798 if (!cpu_active(cpu) &&
3799 atomic_read(&nohz.load_balancer) == cpu) {
3800 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3801 BUG();
3802 return 0;
3803 }
3804
3805 /* time for ilb owner also to sleep */
3806 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3807 if (atomic_read(&nohz.load_balancer) == cpu)
3808 atomic_set(&nohz.load_balancer, -1);
3809 return 0;
3810 }
3811
3812 if (atomic_read(&nohz.load_balancer) == -1) {
3813 /* make me the ilb owner */
3814 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3815 return 1;
3816 } else if (atomic_read(&nohz.load_balancer) == cpu)
3817 return 1;
3818 } else {
3819 if (!cpu_isset(cpu, nohz.cpu_mask))
3820 return 0;
3821
3822 cpu_clear(cpu, nohz.cpu_mask);
3823
3824 if (atomic_read(&nohz.load_balancer) == cpu)
3825 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3826 BUG();
3827 }
3828 return 0;
3829 }
3830 #endif
3831
3832 static DEFINE_SPINLOCK(balancing);
3833
3834 /*
3835 * It checks each scheduling domain to see if it is due to be balanced,
3836 * and initiates a balancing operation if so.
3837 *
3838 * Balancing parameters are set up in arch_init_sched_domains.
3839 */
3840 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3841 {
3842 int balance = 1;
3843 struct rq *rq = cpu_rq(cpu);
3844 unsigned long interval;
3845 struct sched_domain *sd;
3846 /* Earliest time when we have to do rebalance again */
3847 unsigned long next_balance = jiffies + 60*HZ;
3848 int update_next_balance = 0;
3849 int need_serialize;
3850 cpumask_t tmp;
3851
3852 for_each_domain(cpu, sd) {
3853 if (!(sd->flags & SD_LOAD_BALANCE))
3854 continue;
3855
3856 interval = sd->balance_interval;
3857 if (idle != CPU_IDLE)
3858 interval *= sd->busy_factor;
3859
3860 /* scale ms to jiffies */
3861 interval = msecs_to_jiffies(interval);
3862 if (unlikely(!interval))
3863 interval = 1;
3864 if (interval > HZ*NR_CPUS/10)
3865 interval = HZ*NR_CPUS/10;
3866
3867 need_serialize = sd->flags & SD_SERIALIZE;
3868
3869 if (need_serialize) {
3870 if (!spin_trylock(&balancing))
3871 goto out;
3872 }
3873
3874 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3875 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3876 /*
3877 * We've pulled tasks over so either we're no
3878 * longer idle, or one of our SMT siblings is
3879 * not idle.
3880 */
3881 idle = CPU_NOT_IDLE;
3882 }
3883 sd->last_balance = jiffies;
3884 }
3885 if (need_serialize)
3886 spin_unlock(&balancing);
3887 out:
3888 if (time_after(next_balance, sd->last_balance + interval)) {
3889 next_balance = sd->last_balance + interval;
3890 update_next_balance = 1;
3891 }
3892
3893 /*
3894 * Stop the load balance at this level. There is another
3895 * CPU in our sched group which is doing load balancing more
3896 * actively.
3897 */
3898 if (!balance)
3899 break;
3900 }
3901
3902 /*
3903 * next_balance will be updated only when there is a need.
3904 * When the cpu is attached to null domain for ex, it will not be
3905 * updated.
3906 */
3907 if (likely(update_next_balance))
3908 rq->next_balance = next_balance;
3909 }
3910
3911 /*
3912 * run_rebalance_domains is triggered when needed from the scheduler tick.
3913 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3914 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3915 */
3916 static void run_rebalance_domains(struct softirq_action *h)
3917 {
3918 int this_cpu = smp_processor_id();
3919 struct rq *this_rq = cpu_rq(this_cpu);
3920 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3921 CPU_IDLE : CPU_NOT_IDLE;
3922
3923 rebalance_domains(this_cpu, idle);
3924
3925 #ifdef CONFIG_NO_HZ
3926 /*
3927 * If this cpu is the owner for idle load balancing, then do the
3928 * balancing on behalf of the other idle cpus whose ticks are
3929 * stopped.
3930 */
3931 if (this_rq->idle_at_tick &&
3932 atomic_read(&nohz.load_balancer) == this_cpu) {
3933 cpumask_t cpus = nohz.cpu_mask;
3934 struct rq *rq;
3935 int balance_cpu;
3936
3937 cpu_clear(this_cpu, cpus);
3938 for_each_cpu_mask_nr(balance_cpu, cpus) {
3939 /*
3940 * If this cpu gets work to do, stop the load balancing
3941 * work being done for other cpus. Next load
3942 * balancing owner will pick it up.
3943 */
3944 if (need_resched())
3945 break;
3946
3947 rebalance_domains(balance_cpu, CPU_IDLE);
3948
3949 rq = cpu_rq(balance_cpu);
3950 if (time_after(this_rq->next_balance, rq->next_balance))
3951 this_rq->next_balance = rq->next_balance;
3952 }
3953 }
3954 #endif
3955 }
3956
3957 /*
3958 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3959 *
3960 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3961 * idle load balancing owner or decide to stop the periodic load balancing,
3962 * if the whole system is idle.
3963 */
3964 static inline void trigger_load_balance(struct rq *rq, int cpu)
3965 {
3966 #ifdef CONFIG_NO_HZ
3967 /*
3968 * If we were in the nohz mode recently and busy at the current
3969 * scheduler tick, then check if we need to nominate new idle
3970 * load balancer.
3971 */
3972 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3973 rq->in_nohz_recently = 0;
3974
3975 if (atomic_read(&nohz.load_balancer) == cpu) {
3976 cpu_clear(cpu, nohz.cpu_mask);
3977 atomic_set(&nohz.load_balancer, -1);
3978 }
3979
3980 if (atomic_read(&nohz.load_balancer) == -1) {
3981 /*
3982 * simple selection for now: Nominate the
3983 * first cpu in the nohz list to be the next
3984 * ilb owner.
3985 *
3986 * TBD: Traverse the sched domains and nominate
3987 * the nearest cpu in the nohz.cpu_mask.
3988 */
3989 int ilb = first_cpu(nohz.cpu_mask);
3990
3991 if (ilb < nr_cpu_ids)
3992 resched_cpu(ilb);
3993 }
3994 }
3995
3996 /*
3997 * If this cpu is idle and doing idle load balancing for all the
3998 * cpus with ticks stopped, is it time for that to stop?
3999 */
4000 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4001 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4002 resched_cpu(cpu);
4003 return;
4004 }
4005
4006 /*
4007 * If this cpu is idle and the idle load balancing is done by
4008 * someone else, then no need raise the SCHED_SOFTIRQ
4009 */
4010 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4011 cpu_isset(cpu, nohz.cpu_mask))
4012 return;
4013 #endif
4014 if (time_after_eq(jiffies, rq->next_balance))
4015 raise_softirq(SCHED_SOFTIRQ);
4016 }
4017
4018 #else /* CONFIG_SMP */
4019
4020 /*
4021 * on UP we do not need to balance between CPUs:
4022 */
4023 static inline void idle_balance(int cpu, struct rq *rq)
4024 {
4025 }
4026
4027 #endif
4028
4029 DEFINE_PER_CPU(struct kernel_stat, kstat);
4030
4031 EXPORT_PER_CPU_SYMBOL(kstat);
4032
4033 /*
4034 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4035 * that have not yet been banked in case the task is currently running.
4036 */
4037 unsigned long long task_sched_runtime(struct task_struct *p)
4038 {
4039 unsigned long flags;
4040 u64 ns, delta_exec;
4041 struct rq *rq;
4042
4043 rq = task_rq_lock(p, &flags);
4044 ns = p->se.sum_exec_runtime;
4045 if (task_current(rq, p)) {
4046 update_rq_clock(rq);
4047 delta_exec = rq->clock - p->se.exec_start;
4048 if ((s64)delta_exec > 0)
4049 ns += delta_exec;
4050 }
4051 task_rq_unlock(rq, &flags);
4052
4053 return ns;
4054 }
4055
4056 /*
4057 * Account user cpu time to a process.
4058 * @p: the process that the cpu time gets accounted to
4059 * @cputime: the cpu time spent in user space since the last update
4060 */
4061 void account_user_time(struct task_struct *p, cputime_t cputime)
4062 {
4063 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4064 cputime64_t tmp;
4065
4066 p->utime = cputime_add(p->utime, cputime);
4067
4068 /* Add user time to cpustat. */
4069 tmp = cputime_to_cputime64(cputime);
4070 if (TASK_NICE(p) > 0)
4071 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4072 else
4073 cpustat->user = cputime64_add(cpustat->user, tmp);
4074 /* Account for user time used */
4075 acct_update_integrals(p);
4076 }
4077
4078 /*
4079 * Account guest cpu time to a process.
4080 * @p: the process that the cpu time gets accounted to
4081 * @cputime: the cpu time spent in virtual machine since the last update
4082 */
4083 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4084 {
4085 cputime64_t tmp;
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087
4088 tmp = cputime_to_cputime64(cputime);
4089
4090 p->utime = cputime_add(p->utime, cputime);
4091 p->gtime = cputime_add(p->gtime, cputime);
4092
4093 cpustat->user = cputime64_add(cpustat->user, tmp);
4094 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4095 }
4096
4097 /*
4098 * Account scaled user cpu time to a process.
4099 * @p: the process that the cpu time gets accounted to
4100 * @cputime: the cpu time spent in user space since the last update
4101 */
4102 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4103 {
4104 p->utimescaled = cputime_add(p->utimescaled, cputime);
4105 }
4106
4107 /*
4108 * Account system cpu time to a process.
4109 * @p: the process that the cpu time gets accounted to
4110 * @hardirq_offset: the offset to subtract from hardirq_count()
4111 * @cputime: the cpu time spent in kernel space since the last update
4112 */
4113 void account_system_time(struct task_struct *p, int hardirq_offset,
4114 cputime_t cputime)
4115 {
4116 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4117 struct rq *rq = this_rq();
4118 cputime64_t tmp;
4119
4120 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4121 account_guest_time(p, cputime);
4122 return;
4123 }
4124
4125 p->stime = cputime_add(p->stime, cputime);
4126
4127 /* Add system time to cpustat. */
4128 tmp = cputime_to_cputime64(cputime);
4129 if (hardirq_count() - hardirq_offset)
4130 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4131 else if (softirq_count())
4132 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4133 else if (p != rq->idle)
4134 cpustat->system = cputime64_add(cpustat->system, tmp);
4135 else if (atomic_read(&rq->nr_iowait) > 0)
4136 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4137 else
4138 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4139 /* Account for system time used */
4140 acct_update_integrals(p);
4141 }
4142
4143 /*
4144 * Account scaled system cpu time to a process.
4145 * @p: the process that the cpu time gets accounted to
4146 * @hardirq_offset: the offset to subtract from hardirq_count()
4147 * @cputime: the cpu time spent in kernel space since the last update
4148 */
4149 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4150 {
4151 p->stimescaled = cputime_add(p->stimescaled, cputime);
4152 }
4153
4154 /*
4155 * Account for involuntary wait time.
4156 * @p: the process from which the cpu time has been stolen
4157 * @steal: the cpu time spent in involuntary wait
4158 */
4159 void account_steal_time(struct task_struct *p, cputime_t steal)
4160 {
4161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4162 cputime64_t tmp = cputime_to_cputime64(steal);
4163 struct rq *rq = this_rq();
4164
4165 if (p == rq->idle) {
4166 p->stime = cputime_add(p->stime, steal);
4167 if (atomic_read(&rq->nr_iowait) > 0)
4168 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4169 else
4170 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4171 } else
4172 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4173 }
4174
4175 /*
4176 * This function gets called by the timer code, with HZ frequency.
4177 * We call it with interrupts disabled.
4178 *
4179 * It also gets called by the fork code, when changing the parent's
4180 * timeslices.
4181 */
4182 void scheduler_tick(void)
4183 {
4184 int cpu = smp_processor_id();
4185 struct rq *rq = cpu_rq(cpu);
4186 struct task_struct *curr = rq->curr;
4187
4188 sched_clock_tick();
4189
4190 spin_lock(&rq->lock);
4191 update_rq_clock(rq);
4192 update_cpu_load(rq);
4193 curr->sched_class->task_tick(rq, curr, 0);
4194 spin_unlock(&rq->lock);
4195
4196 #ifdef CONFIG_SMP
4197 rq->idle_at_tick = idle_cpu(cpu);
4198 trigger_load_balance(rq, cpu);
4199 #endif
4200 }
4201
4202 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4203 defined(CONFIG_PREEMPT_TRACER))
4204
4205 static inline unsigned long get_parent_ip(unsigned long addr)
4206 {
4207 if (in_lock_functions(addr)) {
4208 addr = CALLER_ADDR2;
4209 if (in_lock_functions(addr))
4210 addr = CALLER_ADDR3;
4211 }
4212 return addr;
4213 }
4214
4215 void __kprobes add_preempt_count(int val)
4216 {
4217 #ifdef CONFIG_DEBUG_PREEMPT
4218 /*
4219 * Underflow?
4220 */
4221 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4222 return;
4223 #endif
4224 preempt_count() += val;
4225 #ifdef CONFIG_DEBUG_PREEMPT
4226 /*
4227 * Spinlock count overflowing soon?
4228 */
4229 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4230 PREEMPT_MASK - 10);
4231 #endif
4232 if (preempt_count() == val)
4233 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4234 }
4235 EXPORT_SYMBOL(add_preempt_count);
4236
4237 void __kprobes sub_preempt_count(int val)
4238 {
4239 #ifdef CONFIG_DEBUG_PREEMPT
4240 /*
4241 * Underflow?
4242 */
4243 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4244 return;
4245 /*
4246 * Is the spinlock portion underflowing?
4247 */
4248 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4249 !(preempt_count() & PREEMPT_MASK)))
4250 return;
4251 #endif
4252
4253 if (preempt_count() == val)
4254 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4255 preempt_count() -= val;
4256 }
4257 EXPORT_SYMBOL(sub_preempt_count);
4258
4259 #endif
4260
4261 /*
4262 * Print scheduling while atomic bug:
4263 */
4264 static noinline void __schedule_bug(struct task_struct *prev)
4265 {
4266 struct pt_regs *regs = get_irq_regs();
4267
4268 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4269 prev->comm, prev->pid, preempt_count());
4270
4271 debug_show_held_locks(prev);
4272 print_modules();
4273 if (irqs_disabled())
4274 print_irqtrace_events(prev);
4275
4276 if (regs)
4277 show_regs(regs);
4278 else
4279 dump_stack();
4280 }
4281
4282 /*
4283 * Various schedule()-time debugging checks and statistics:
4284 */
4285 static inline void schedule_debug(struct task_struct *prev)
4286 {
4287 /*
4288 * Test if we are atomic. Since do_exit() needs to call into
4289 * schedule() atomically, we ignore that path for now.
4290 * Otherwise, whine if we are scheduling when we should not be.
4291 */
4292 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4293 __schedule_bug(prev);
4294
4295 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4296
4297 schedstat_inc(this_rq(), sched_count);
4298 #ifdef CONFIG_SCHEDSTATS
4299 if (unlikely(prev->lock_depth >= 0)) {
4300 schedstat_inc(this_rq(), bkl_count);
4301 schedstat_inc(prev, sched_info.bkl_count);
4302 }
4303 #endif
4304 }
4305
4306 /*
4307 * Pick up the highest-prio task:
4308 */
4309 static inline struct task_struct *
4310 pick_next_task(struct rq *rq, struct task_struct *prev)
4311 {
4312 const struct sched_class *class;
4313 struct task_struct *p;
4314
4315 /*
4316 * Optimization: we know that if all tasks are in
4317 * the fair class we can call that function directly:
4318 */
4319 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4320 p = fair_sched_class.pick_next_task(rq);
4321 if (likely(p))
4322 return p;
4323 }
4324
4325 class = sched_class_highest;
4326 for ( ; ; ) {
4327 p = class->pick_next_task(rq);
4328 if (p)
4329 return p;
4330 /*
4331 * Will never be NULL as the idle class always
4332 * returns a non-NULL p:
4333 */
4334 class = class->next;
4335 }
4336 }
4337
4338 /*
4339 * schedule() is the main scheduler function.
4340 */
4341 asmlinkage void __sched schedule(void)
4342 {
4343 struct task_struct *prev, *next;
4344 unsigned long *switch_count;
4345 struct rq *rq;
4346 int cpu;
4347
4348 need_resched:
4349 preempt_disable();
4350 cpu = smp_processor_id();
4351 rq = cpu_rq(cpu);
4352 rcu_qsctr_inc(cpu);
4353 prev = rq->curr;
4354 switch_count = &prev->nivcsw;
4355
4356 release_kernel_lock(prev);
4357 need_resched_nonpreemptible:
4358
4359 schedule_debug(prev);
4360
4361 if (sched_feat(HRTICK))
4362 hrtick_clear(rq);
4363
4364 /*
4365 * Do the rq-clock update outside the rq lock:
4366 */
4367 local_irq_disable();
4368 update_rq_clock(rq);
4369 spin_lock(&rq->lock);
4370 clear_tsk_need_resched(prev);
4371
4372 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4373 if (unlikely(signal_pending_state(prev->state, prev)))
4374 prev->state = TASK_RUNNING;
4375 else
4376 deactivate_task(rq, prev, 1);
4377 switch_count = &prev->nvcsw;
4378 }
4379
4380 #ifdef CONFIG_SMP
4381 if (prev->sched_class->pre_schedule)
4382 prev->sched_class->pre_schedule(rq, prev);
4383 #endif
4384
4385 if (unlikely(!rq->nr_running))
4386 idle_balance(cpu, rq);
4387
4388 prev->sched_class->put_prev_task(rq, prev);
4389 next = pick_next_task(rq, prev);
4390
4391 if (likely(prev != next)) {
4392 sched_info_switch(prev, next);
4393
4394 rq->nr_switches++;
4395 rq->curr = next;
4396 ++*switch_count;
4397
4398 context_switch(rq, prev, next); /* unlocks the rq */
4399 /*
4400 * the context switch might have flipped the stack from under
4401 * us, hence refresh the local variables.
4402 */
4403 cpu = smp_processor_id();
4404 rq = cpu_rq(cpu);
4405 } else
4406 spin_unlock_irq(&rq->lock);
4407
4408 if (unlikely(reacquire_kernel_lock(current) < 0))
4409 goto need_resched_nonpreemptible;
4410
4411 preempt_enable_no_resched();
4412 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4413 goto need_resched;
4414 }
4415 EXPORT_SYMBOL(schedule);
4416
4417 #ifdef CONFIG_PREEMPT
4418 /*
4419 * this is the entry point to schedule() from in-kernel preemption
4420 * off of preempt_enable. Kernel preemptions off return from interrupt
4421 * occur there and call schedule directly.
4422 */
4423 asmlinkage void __sched preempt_schedule(void)
4424 {
4425 struct thread_info *ti = current_thread_info();
4426
4427 /*
4428 * If there is a non-zero preempt_count or interrupts are disabled,
4429 * we do not want to preempt the current task. Just return..
4430 */
4431 if (likely(ti->preempt_count || irqs_disabled()))
4432 return;
4433
4434 do {
4435 add_preempt_count(PREEMPT_ACTIVE);
4436 schedule();
4437 sub_preempt_count(PREEMPT_ACTIVE);
4438
4439 /*
4440 * Check again in case we missed a preemption opportunity
4441 * between schedule and now.
4442 */
4443 barrier();
4444 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4445 }
4446 EXPORT_SYMBOL(preempt_schedule);
4447
4448 /*
4449 * this is the entry point to schedule() from kernel preemption
4450 * off of irq context.
4451 * Note, that this is called and return with irqs disabled. This will
4452 * protect us against recursive calling from irq.
4453 */
4454 asmlinkage void __sched preempt_schedule_irq(void)
4455 {
4456 struct thread_info *ti = current_thread_info();
4457
4458 /* Catch callers which need to be fixed */
4459 BUG_ON(ti->preempt_count || !irqs_disabled());
4460
4461 do {
4462 add_preempt_count(PREEMPT_ACTIVE);
4463 local_irq_enable();
4464 schedule();
4465 local_irq_disable();
4466 sub_preempt_count(PREEMPT_ACTIVE);
4467
4468 /*
4469 * Check again in case we missed a preemption opportunity
4470 * between schedule and now.
4471 */
4472 barrier();
4473 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4474 }
4475
4476 #endif /* CONFIG_PREEMPT */
4477
4478 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4479 void *key)
4480 {
4481 return try_to_wake_up(curr->private, mode, sync);
4482 }
4483 EXPORT_SYMBOL(default_wake_function);
4484
4485 /*
4486 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4487 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4488 * number) then we wake all the non-exclusive tasks and one exclusive task.
4489 *
4490 * There are circumstances in which we can try to wake a task which has already
4491 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4492 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4493 */
4494 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4495 int nr_exclusive, int sync, void *key)
4496 {
4497 wait_queue_t *curr, *next;
4498
4499 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4500 unsigned flags = curr->flags;
4501
4502 if (curr->func(curr, mode, sync, key) &&
4503 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4504 break;
4505 }
4506 }
4507
4508 /**
4509 * __wake_up - wake up threads blocked on a waitqueue.
4510 * @q: the waitqueue
4511 * @mode: which threads
4512 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4513 * @key: is directly passed to the wakeup function
4514 */
4515 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4516 int nr_exclusive, void *key)
4517 {
4518 unsigned long flags;
4519
4520 spin_lock_irqsave(&q->lock, flags);
4521 __wake_up_common(q, mode, nr_exclusive, 0, key);
4522 spin_unlock_irqrestore(&q->lock, flags);
4523 }
4524 EXPORT_SYMBOL(__wake_up);
4525
4526 /*
4527 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4528 */
4529 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4530 {
4531 __wake_up_common(q, mode, 1, 0, NULL);
4532 }
4533
4534 /**
4535 * __wake_up_sync - wake up threads blocked on a waitqueue.
4536 * @q: the waitqueue
4537 * @mode: which threads
4538 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4539 *
4540 * The sync wakeup differs that the waker knows that it will schedule
4541 * away soon, so while the target thread will be woken up, it will not
4542 * be migrated to another CPU - ie. the two threads are 'synchronized'
4543 * with each other. This can prevent needless bouncing between CPUs.
4544 *
4545 * On UP it can prevent extra preemption.
4546 */
4547 void
4548 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4549 {
4550 unsigned long flags;
4551 int sync = 1;
4552
4553 if (unlikely(!q))
4554 return;
4555
4556 if (unlikely(!nr_exclusive))
4557 sync = 0;
4558
4559 spin_lock_irqsave(&q->lock, flags);
4560 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4561 spin_unlock_irqrestore(&q->lock, flags);
4562 }
4563 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4564
4565 void complete(struct completion *x)
4566 {
4567 unsigned long flags;
4568
4569 spin_lock_irqsave(&x->wait.lock, flags);
4570 x->done++;
4571 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4572 spin_unlock_irqrestore(&x->wait.lock, flags);
4573 }
4574 EXPORT_SYMBOL(complete);
4575
4576 void complete_all(struct completion *x)
4577 {
4578 unsigned long flags;
4579
4580 spin_lock_irqsave(&x->wait.lock, flags);
4581 x->done += UINT_MAX/2;
4582 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4583 spin_unlock_irqrestore(&x->wait.lock, flags);
4584 }
4585 EXPORT_SYMBOL(complete_all);
4586
4587 static inline long __sched
4588 do_wait_for_common(struct completion *x, long timeout, int state)
4589 {
4590 if (!x->done) {
4591 DECLARE_WAITQUEUE(wait, current);
4592
4593 wait.flags |= WQ_FLAG_EXCLUSIVE;
4594 __add_wait_queue_tail(&x->wait, &wait);
4595 do {
4596 if ((state == TASK_INTERRUPTIBLE &&
4597 signal_pending(current)) ||
4598 (state == TASK_KILLABLE &&
4599 fatal_signal_pending(current))) {
4600 timeout = -ERESTARTSYS;
4601 break;
4602 }
4603 __set_current_state(state);
4604 spin_unlock_irq(&x->wait.lock);
4605 timeout = schedule_timeout(timeout);
4606 spin_lock_irq(&x->wait.lock);
4607 } while (!x->done && timeout);
4608 __remove_wait_queue(&x->wait, &wait);
4609 if (!x->done)
4610 return timeout;
4611 }
4612 x->done--;
4613 return timeout ?: 1;
4614 }
4615
4616 static long __sched
4617 wait_for_common(struct completion *x, long timeout, int state)
4618 {
4619 might_sleep();
4620
4621 spin_lock_irq(&x->wait.lock);
4622 timeout = do_wait_for_common(x, timeout, state);
4623 spin_unlock_irq(&x->wait.lock);
4624 return timeout;
4625 }
4626
4627 void __sched wait_for_completion(struct completion *x)
4628 {
4629 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4630 }
4631 EXPORT_SYMBOL(wait_for_completion);
4632
4633 unsigned long __sched
4634 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4635 {
4636 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4637 }
4638 EXPORT_SYMBOL(wait_for_completion_timeout);
4639
4640 int __sched wait_for_completion_interruptible(struct completion *x)
4641 {
4642 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4643 if (t == -ERESTARTSYS)
4644 return t;
4645 return 0;
4646 }
4647 EXPORT_SYMBOL(wait_for_completion_interruptible);
4648
4649 unsigned long __sched
4650 wait_for_completion_interruptible_timeout(struct completion *x,
4651 unsigned long timeout)
4652 {
4653 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4654 }
4655 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4656
4657 int __sched wait_for_completion_killable(struct completion *x)
4658 {
4659 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4660 if (t == -ERESTARTSYS)
4661 return t;
4662 return 0;
4663 }
4664 EXPORT_SYMBOL(wait_for_completion_killable);
4665
4666 static long __sched
4667 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4668 {
4669 unsigned long flags;
4670 wait_queue_t wait;
4671
4672 init_waitqueue_entry(&wait, current);
4673
4674 __set_current_state(state);
4675
4676 spin_lock_irqsave(&q->lock, flags);
4677 __add_wait_queue(q, &wait);
4678 spin_unlock(&q->lock);
4679 timeout = schedule_timeout(timeout);
4680 spin_lock_irq(&q->lock);
4681 __remove_wait_queue(q, &wait);
4682 spin_unlock_irqrestore(&q->lock, flags);
4683
4684 return timeout;
4685 }
4686
4687 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4688 {
4689 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4690 }
4691 EXPORT_SYMBOL(interruptible_sleep_on);
4692
4693 long __sched
4694 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4695 {
4696 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4697 }
4698 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4699
4700 void __sched sleep_on(wait_queue_head_t *q)
4701 {
4702 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4703 }
4704 EXPORT_SYMBOL(sleep_on);
4705
4706 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4707 {
4708 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4709 }
4710 EXPORT_SYMBOL(sleep_on_timeout);
4711
4712 #ifdef CONFIG_RT_MUTEXES
4713
4714 /*
4715 * rt_mutex_setprio - set the current priority of a task
4716 * @p: task
4717 * @prio: prio value (kernel-internal form)
4718 *
4719 * This function changes the 'effective' priority of a task. It does
4720 * not touch ->normal_prio like __setscheduler().
4721 *
4722 * Used by the rt_mutex code to implement priority inheritance logic.
4723 */
4724 void rt_mutex_setprio(struct task_struct *p, int prio)
4725 {
4726 unsigned long flags;
4727 int oldprio, on_rq, running;
4728 struct rq *rq;
4729 const struct sched_class *prev_class = p->sched_class;
4730
4731 BUG_ON(prio < 0 || prio > MAX_PRIO);
4732
4733 rq = task_rq_lock(p, &flags);
4734 update_rq_clock(rq);
4735
4736 oldprio = p->prio;
4737 on_rq = p->se.on_rq;
4738 running = task_current(rq, p);
4739 if (on_rq)
4740 dequeue_task(rq, p, 0);
4741 if (running)
4742 p->sched_class->put_prev_task(rq, p);
4743
4744 if (rt_prio(prio))
4745 p->sched_class = &rt_sched_class;
4746 else
4747 p->sched_class = &fair_sched_class;
4748
4749 p->prio = prio;
4750
4751 if (running)
4752 p->sched_class->set_curr_task(rq);
4753 if (on_rq) {
4754 enqueue_task(rq, p, 0);
4755
4756 check_class_changed(rq, p, prev_class, oldprio, running);
4757 }
4758 task_rq_unlock(rq, &flags);
4759 }
4760
4761 #endif
4762
4763 void set_user_nice(struct task_struct *p, long nice)
4764 {
4765 int old_prio, delta, on_rq;
4766 unsigned long flags;
4767 struct rq *rq;
4768
4769 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4770 return;
4771 /*
4772 * We have to be careful, if called from sys_setpriority(),
4773 * the task might be in the middle of scheduling on another CPU.
4774 */
4775 rq = task_rq_lock(p, &flags);
4776 update_rq_clock(rq);
4777 /*
4778 * The RT priorities are set via sched_setscheduler(), but we still
4779 * allow the 'normal' nice value to be set - but as expected
4780 * it wont have any effect on scheduling until the task is
4781 * SCHED_FIFO/SCHED_RR:
4782 */
4783 if (task_has_rt_policy(p)) {
4784 p->static_prio = NICE_TO_PRIO(nice);
4785 goto out_unlock;
4786 }
4787 on_rq = p->se.on_rq;
4788 if (on_rq)
4789 dequeue_task(rq, p, 0);
4790
4791 p->static_prio = NICE_TO_PRIO(nice);
4792 set_load_weight(p);
4793 old_prio = p->prio;
4794 p->prio = effective_prio(p);
4795 delta = p->prio - old_prio;
4796
4797 if (on_rq) {
4798 enqueue_task(rq, p, 0);
4799 /*
4800 * If the task increased its priority or is running and
4801 * lowered its priority, then reschedule its CPU:
4802 */
4803 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4804 resched_task(rq->curr);
4805 }
4806 out_unlock:
4807 task_rq_unlock(rq, &flags);
4808 }
4809 EXPORT_SYMBOL(set_user_nice);
4810
4811 /*
4812 * can_nice - check if a task can reduce its nice value
4813 * @p: task
4814 * @nice: nice value
4815 */
4816 int can_nice(const struct task_struct *p, const int nice)
4817 {
4818 /* convert nice value [19,-20] to rlimit style value [1,40] */
4819 int nice_rlim = 20 - nice;
4820
4821 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4822 capable(CAP_SYS_NICE));
4823 }
4824
4825 #ifdef __ARCH_WANT_SYS_NICE
4826
4827 /*
4828 * sys_nice - change the priority of the current process.
4829 * @increment: priority increment
4830 *
4831 * sys_setpriority is a more generic, but much slower function that
4832 * does similar things.
4833 */
4834 asmlinkage long sys_nice(int increment)
4835 {
4836 long nice, retval;
4837
4838 /*
4839 * Setpriority might change our priority at the same moment.
4840 * We don't have to worry. Conceptually one call occurs first
4841 * and we have a single winner.
4842 */
4843 if (increment < -40)
4844 increment = -40;
4845 if (increment > 40)
4846 increment = 40;
4847
4848 nice = PRIO_TO_NICE(current->static_prio) + increment;
4849 if (nice < -20)
4850 nice = -20;
4851 if (nice > 19)
4852 nice = 19;
4853
4854 if (increment < 0 && !can_nice(current, nice))
4855 return -EPERM;
4856
4857 retval = security_task_setnice(current, nice);
4858 if (retval)
4859 return retval;
4860
4861 set_user_nice(current, nice);
4862 return 0;
4863 }
4864
4865 #endif
4866
4867 /**
4868 * task_prio - return the priority value of a given task.
4869 * @p: the task in question.
4870 *
4871 * This is the priority value as seen by users in /proc.
4872 * RT tasks are offset by -200. Normal tasks are centered
4873 * around 0, value goes from -16 to +15.
4874 */
4875 int task_prio(const struct task_struct *p)
4876 {
4877 return p->prio - MAX_RT_PRIO;
4878 }
4879
4880 /**
4881 * task_nice - return the nice value of a given task.
4882 * @p: the task in question.
4883 */
4884 int task_nice(const struct task_struct *p)
4885 {
4886 return TASK_NICE(p);
4887 }
4888 EXPORT_SYMBOL(task_nice);
4889
4890 /**
4891 * idle_cpu - is a given cpu idle currently?
4892 * @cpu: the processor in question.
4893 */
4894 int idle_cpu(int cpu)
4895 {
4896 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4897 }
4898
4899 /**
4900 * idle_task - return the idle task for a given cpu.
4901 * @cpu: the processor in question.
4902 */
4903 struct task_struct *idle_task(int cpu)
4904 {
4905 return cpu_rq(cpu)->idle;
4906 }
4907
4908 /**
4909 * find_process_by_pid - find a process with a matching PID value.
4910 * @pid: the pid in question.
4911 */
4912 static struct task_struct *find_process_by_pid(pid_t pid)
4913 {
4914 return pid ? find_task_by_vpid(pid) : current;
4915 }
4916
4917 /* Actually do priority change: must hold rq lock. */
4918 static void
4919 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4920 {
4921 BUG_ON(p->se.on_rq);
4922
4923 p->policy = policy;
4924 switch (p->policy) {
4925 case SCHED_NORMAL:
4926 case SCHED_BATCH:
4927 case SCHED_IDLE:
4928 p->sched_class = &fair_sched_class;
4929 break;
4930 case SCHED_FIFO:
4931 case SCHED_RR:
4932 p->sched_class = &rt_sched_class;
4933 break;
4934 }
4935
4936 p->rt_priority = prio;
4937 p->normal_prio = normal_prio(p);
4938 /* we are holding p->pi_lock already */
4939 p->prio = rt_mutex_getprio(p);
4940 set_load_weight(p);
4941 }
4942
4943 static int __sched_setscheduler(struct task_struct *p, int policy,
4944 struct sched_param *param, bool user)
4945 {
4946 int retval, oldprio, oldpolicy = -1, on_rq, running;
4947 unsigned long flags;
4948 const struct sched_class *prev_class = p->sched_class;
4949 struct rq *rq;
4950
4951 /* may grab non-irq protected spin_locks */
4952 BUG_ON(in_interrupt());
4953 recheck:
4954 /* double check policy once rq lock held */
4955 if (policy < 0)
4956 policy = oldpolicy = p->policy;
4957 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4958 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4959 policy != SCHED_IDLE)
4960 return -EINVAL;
4961 /*
4962 * Valid priorities for SCHED_FIFO and SCHED_RR are
4963 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4964 * SCHED_BATCH and SCHED_IDLE is 0.
4965 */
4966 if (param->sched_priority < 0 ||
4967 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4968 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4969 return -EINVAL;
4970 if (rt_policy(policy) != (param->sched_priority != 0))
4971 return -EINVAL;
4972
4973 /*
4974 * Allow unprivileged RT tasks to decrease priority:
4975 */
4976 if (user && !capable(CAP_SYS_NICE)) {
4977 if (rt_policy(policy)) {
4978 unsigned long rlim_rtprio;
4979
4980 if (!lock_task_sighand(p, &flags))
4981 return -ESRCH;
4982 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4983 unlock_task_sighand(p, &flags);
4984
4985 /* can't set/change the rt policy */
4986 if (policy != p->policy && !rlim_rtprio)
4987 return -EPERM;
4988
4989 /* can't increase priority */
4990 if (param->sched_priority > p->rt_priority &&
4991 param->sched_priority > rlim_rtprio)
4992 return -EPERM;
4993 }
4994 /*
4995 * Like positive nice levels, dont allow tasks to
4996 * move out of SCHED_IDLE either:
4997 */
4998 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4999 return -EPERM;
5000
5001 /* can't change other user's priorities */
5002 if ((current->euid != p->euid) &&
5003 (current->euid != p->uid))
5004 return -EPERM;
5005 }
5006
5007 #ifdef CONFIG_RT_GROUP_SCHED
5008 /*
5009 * Do not allow realtime tasks into groups that have no runtime
5010 * assigned.
5011 */
5012 if (user
5013 && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5014 return -EPERM;
5015 #endif
5016
5017 retval = security_task_setscheduler(p, policy, param);
5018 if (retval)
5019 return retval;
5020 /*
5021 * make sure no PI-waiters arrive (or leave) while we are
5022 * changing the priority of the task:
5023 */
5024 spin_lock_irqsave(&p->pi_lock, flags);
5025 /*
5026 * To be able to change p->policy safely, the apropriate
5027 * runqueue lock must be held.
5028 */
5029 rq = __task_rq_lock(p);
5030 /* recheck policy now with rq lock held */
5031 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5032 policy = oldpolicy = -1;
5033 __task_rq_unlock(rq);
5034 spin_unlock_irqrestore(&p->pi_lock, flags);
5035 goto recheck;
5036 }
5037 update_rq_clock(rq);
5038 on_rq = p->se.on_rq;
5039 running = task_current(rq, p);
5040 if (on_rq)
5041 deactivate_task(rq, p, 0);
5042 if (running)
5043 p->sched_class->put_prev_task(rq, p);
5044
5045 oldprio = p->prio;
5046 __setscheduler(rq, p, policy, param->sched_priority);
5047
5048 if (running)
5049 p->sched_class->set_curr_task(rq);
5050 if (on_rq) {
5051 activate_task(rq, p, 0);
5052
5053 check_class_changed(rq, p, prev_class, oldprio, running);
5054 }
5055 __task_rq_unlock(rq);
5056 spin_unlock_irqrestore(&p->pi_lock, flags);
5057
5058 rt_mutex_adjust_pi(p);
5059
5060 return 0;
5061 }
5062
5063 /**
5064 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5065 * @p: the task in question.
5066 * @policy: new policy.
5067 * @param: structure containing the new RT priority.
5068 *
5069 * NOTE that the task may be already dead.
5070 */
5071 int sched_setscheduler(struct task_struct *p, int policy,
5072 struct sched_param *param)
5073 {
5074 return __sched_setscheduler(p, policy, param, true);
5075 }
5076 EXPORT_SYMBOL_GPL(sched_setscheduler);
5077
5078 /**
5079 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5080 * @p: the task in question.
5081 * @policy: new policy.
5082 * @param: structure containing the new RT priority.
5083 *
5084 * Just like sched_setscheduler, only don't bother checking if the
5085 * current context has permission. For example, this is needed in
5086 * stop_machine(): we create temporary high priority worker threads,
5087 * but our caller might not have that capability.
5088 */
5089 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5090 struct sched_param *param)
5091 {
5092 return __sched_setscheduler(p, policy, param, false);
5093 }
5094
5095 static int
5096 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5097 {
5098 struct sched_param lparam;
5099 struct task_struct *p;
5100 int retval;
5101
5102 if (!param || pid < 0)
5103 return -EINVAL;
5104 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5105 return -EFAULT;
5106
5107 rcu_read_lock();
5108 retval = -ESRCH;
5109 p = find_process_by_pid(pid);
5110 if (p != NULL)
5111 retval = sched_setscheduler(p, policy, &lparam);
5112 rcu_read_unlock();
5113
5114 return retval;
5115 }
5116
5117 /**
5118 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5119 * @pid: the pid in question.
5120 * @policy: new policy.
5121 * @param: structure containing the new RT priority.
5122 */
5123 asmlinkage long
5124 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5125 {
5126 /* negative values for policy are not valid */
5127 if (policy < 0)
5128 return -EINVAL;
5129
5130 return do_sched_setscheduler(pid, policy, param);
5131 }
5132
5133 /**
5134 * sys_sched_setparam - set/change the RT priority of a thread
5135 * @pid: the pid in question.
5136 * @param: structure containing the new RT priority.
5137 */
5138 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5139 {
5140 return do_sched_setscheduler(pid, -1, param);
5141 }
5142
5143 /**
5144 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5145 * @pid: the pid in question.
5146 */
5147 asmlinkage long sys_sched_getscheduler(pid_t pid)
5148 {
5149 struct task_struct *p;
5150 int retval;
5151
5152 if (pid < 0)
5153 return -EINVAL;
5154
5155 retval = -ESRCH;
5156 read_lock(&tasklist_lock);
5157 p = find_process_by_pid(pid);
5158 if (p) {
5159 retval = security_task_getscheduler(p);
5160 if (!retval)
5161 retval = p->policy;
5162 }
5163 read_unlock(&tasklist_lock);
5164 return retval;
5165 }
5166
5167 /**
5168 * sys_sched_getscheduler - get the RT priority of a thread
5169 * @pid: the pid in question.
5170 * @param: structure containing the RT priority.
5171 */
5172 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5173 {
5174 struct sched_param lp;
5175 struct task_struct *p;
5176 int retval;
5177
5178 if (!param || pid < 0)
5179 return -EINVAL;
5180
5181 read_lock(&tasklist_lock);
5182 p = find_process_by_pid(pid);
5183 retval = -ESRCH;
5184 if (!p)
5185 goto out_unlock;
5186
5187 retval = security_task_getscheduler(p);
5188 if (retval)
5189 goto out_unlock;
5190
5191 lp.sched_priority = p->rt_priority;
5192 read_unlock(&tasklist_lock);
5193
5194 /*
5195 * This one might sleep, we cannot do it with a spinlock held ...
5196 */
5197 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5198
5199 return retval;
5200
5201 out_unlock:
5202 read_unlock(&tasklist_lock);
5203 return retval;
5204 }
5205
5206 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5207 {
5208 cpumask_t cpus_allowed;
5209 cpumask_t new_mask = *in_mask;
5210 struct task_struct *p;
5211 int retval;
5212
5213 get_online_cpus();
5214 read_lock(&tasklist_lock);
5215
5216 p = find_process_by_pid(pid);
5217 if (!p) {
5218 read_unlock(&tasklist_lock);
5219 put_online_cpus();
5220 return -ESRCH;
5221 }
5222
5223 /*
5224 * It is not safe to call set_cpus_allowed with the
5225 * tasklist_lock held. We will bump the task_struct's
5226 * usage count and then drop tasklist_lock.
5227 */
5228 get_task_struct(p);
5229 read_unlock(&tasklist_lock);
5230
5231 retval = -EPERM;
5232 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5233 !capable(CAP_SYS_NICE))
5234 goto out_unlock;
5235
5236 retval = security_task_setscheduler(p, 0, NULL);
5237 if (retval)
5238 goto out_unlock;
5239
5240 cpuset_cpus_allowed(p, &cpus_allowed);
5241 cpus_and(new_mask, new_mask, cpus_allowed);
5242 again:
5243 retval = set_cpus_allowed_ptr(p, &new_mask);
5244
5245 if (!retval) {
5246 cpuset_cpus_allowed(p, &cpus_allowed);
5247 if (!cpus_subset(new_mask, cpus_allowed)) {
5248 /*
5249 * We must have raced with a concurrent cpuset
5250 * update. Just reset the cpus_allowed to the
5251 * cpuset's cpus_allowed
5252 */
5253 new_mask = cpus_allowed;
5254 goto again;
5255 }
5256 }
5257 out_unlock:
5258 put_task_struct(p);
5259 put_online_cpus();
5260 return retval;
5261 }
5262
5263 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5264 cpumask_t *new_mask)
5265 {
5266 if (len < sizeof(cpumask_t)) {
5267 memset(new_mask, 0, sizeof(cpumask_t));
5268 } else if (len > sizeof(cpumask_t)) {
5269 len = sizeof(cpumask_t);
5270 }
5271 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5272 }
5273
5274 /**
5275 * sys_sched_setaffinity - set the cpu affinity of a process
5276 * @pid: pid of the process
5277 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5278 * @user_mask_ptr: user-space pointer to the new cpu mask
5279 */
5280 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5281 unsigned long __user *user_mask_ptr)
5282 {
5283 cpumask_t new_mask;
5284 int retval;
5285
5286 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5287 if (retval)
5288 return retval;
5289
5290 return sched_setaffinity(pid, &new_mask);
5291 }
5292
5293 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5294 {
5295 struct task_struct *p;
5296 int retval;
5297
5298 get_online_cpus();
5299 read_lock(&tasklist_lock);
5300
5301 retval = -ESRCH;
5302 p = find_process_by_pid(pid);
5303 if (!p)
5304 goto out_unlock;
5305
5306 retval = security_task_getscheduler(p);
5307 if (retval)
5308 goto out_unlock;
5309
5310 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5311
5312 out_unlock:
5313 read_unlock(&tasklist_lock);
5314 put_online_cpus();
5315
5316 return retval;
5317 }
5318
5319 /**
5320 * sys_sched_getaffinity - get the cpu affinity of a process
5321 * @pid: pid of the process
5322 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5323 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5324 */
5325 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5326 unsigned long __user *user_mask_ptr)
5327 {
5328 int ret;
5329 cpumask_t mask;
5330
5331 if (len < sizeof(cpumask_t))
5332 return -EINVAL;
5333
5334 ret = sched_getaffinity(pid, &mask);
5335 if (ret < 0)
5336 return ret;
5337
5338 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5339 return -EFAULT;
5340
5341 return sizeof(cpumask_t);
5342 }
5343
5344 /**
5345 * sys_sched_yield - yield the current processor to other threads.
5346 *
5347 * This function yields the current CPU to other tasks. If there are no
5348 * other threads running on this CPU then this function will return.
5349 */
5350 asmlinkage long sys_sched_yield(void)
5351 {
5352 struct rq *rq = this_rq_lock();
5353
5354 schedstat_inc(rq, yld_count);
5355 current->sched_class->yield_task(rq);
5356
5357 /*
5358 * Since we are going to call schedule() anyway, there's
5359 * no need to preempt or enable interrupts:
5360 */
5361 __release(rq->lock);
5362 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5363 _raw_spin_unlock(&rq->lock);
5364 preempt_enable_no_resched();
5365
5366 schedule();
5367
5368 return 0;
5369 }
5370
5371 static void __cond_resched(void)
5372 {
5373 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5374 __might_sleep(__FILE__, __LINE__);
5375 #endif
5376 /*
5377 * The BKS might be reacquired before we have dropped
5378 * PREEMPT_ACTIVE, which could trigger a second
5379 * cond_resched() call.
5380 */
5381 do {
5382 add_preempt_count(PREEMPT_ACTIVE);
5383 schedule();
5384 sub_preempt_count(PREEMPT_ACTIVE);
5385 } while (need_resched());
5386 }
5387
5388 int __sched _cond_resched(void)
5389 {
5390 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5391 system_state == SYSTEM_RUNNING) {
5392 __cond_resched();
5393 return 1;
5394 }
5395 return 0;
5396 }
5397 EXPORT_SYMBOL(_cond_resched);
5398
5399 /*
5400 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5401 * call schedule, and on return reacquire the lock.
5402 *
5403 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5404 * operations here to prevent schedule() from being called twice (once via
5405 * spin_unlock(), once by hand).
5406 */
5407 int cond_resched_lock(spinlock_t *lock)
5408 {
5409 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5410 int ret = 0;
5411
5412 if (spin_needbreak(lock) || resched) {
5413 spin_unlock(lock);
5414 if (resched && need_resched())
5415 __cond_resched();
5416 else
5417 cpu_relax();
5418 ret = 1;
5419 spin_lock(lock);
5420 }
5421 return ret;
5422 }
5423 EXPORT_SYMBOL(cond_resched_lock);
5424
5425 int __sched cond_resched_softirq(void)
5426 {
5427 BUG_ON(!in_softirq());
5428
5429 if (need_resched() && system_state == SYSTEM_RUNNING) {
5430 local_bh_enable();
5431 __cond_resched();
5432 local_bh_disable();
5433 return 1;
5434 }
5435 return 0;
5436 }
5437 EXPORT_SYMBOL(cond_resched_softirq);
5438
5439 /**
5440 * yield - yield the current processor to other threads.
5441 *
5442 * This is a shortcut for kernel-space yielding - it marks the
5443 * thread runnable and calls sys_sched_yield().
5444 */
5445 void __sched yield(void)
5446 {
5447 set_current_state(TASK_RUNNING);
5448 sys_sched_yield();
5449 }
5450 EXPORT_SYMBOL(yield);
5451
5452 /*
5453 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5454 * that process accounting knows that this is a task in IO wait state.
5455 *
5456 * But don't do that if it is a deliberate, throttling IO wait (this task
5457 * has set its backing_dev_info: the queue against which it should throttle)
5458 */
5459 void __sched io_schedule(void)
5460 {
5461 struct rq *rq = &__raw_get_cpu_var(runqueues);
5462
5463 delayacct_blkio_start();
5464 atomic_inc(&rq->nr_iowait);
5465 schedule();
5466 atomic_dec(&rq->nr_iowait);
5467 delayacct_blkio_end();
5468 }
5469 EXPORT_SYMBOL(io_schedule);
5470
5471 long __sched io_schedule_timeout(long timeout)
5472 {
5473 struct rq *rq = &__raw_get_cpu_var(runqueues);
5474 long ret;
5475
5476 delayacct_blkio_start();
5477 atomic_inc(&rq->nr_iowait);
5478 ret = schedule_timeout(timeout);
5479 atomic_dec(&rq->nr_iowait);
5480 delayacct_blkio_end();
5481 return ret;
5482 }
5483
5484 /**
5485 * sys_sched_get_priority_max - return maximum RT priority.
5486 * @policy: scheduling class.
5487 *
5488 * this syscall returns the maximum rt_priority that can be used
5489 * by a given scheduling class.
5490 */
5491 asmlinkage long sys_sched_get_priority_max(int policy)
5492 {
5493 int ret = -EINVAL;
5494
5495 switch (policy) {
5496 case SCHED_FIFO:
5497 case SCHED_RR:
5498 ret = MAX_USER_RT_PRIO-1;
5499 break;
5500 case SCHED_NORMAL:
5501 case SCHED_BATCH:
5502 case SCHED_IDLE:
5503 ret = 0;
5504 break;
5505 }
5506 return ret;
5507 }
5508
5509 /**
5510 * sys_sched_get_priority_min - return minimum RT priority.
5511 * @policy: scheduling class.
5512 *
5513 * this syscall returns the minimum rt_priority that can be used
5514 * by a given scheduling class.
5515 */
5516 asmlinkage long sys_sched_get_priority_min(int policy)
5517 {
5518 int ret = -EINVAL;
5519
5520 switch (policy) {
5521 case SCHED_FIFO:
5522 case SCHED_RR:
5523 ret = 1;
5524 break;
5525 case SCHED_NORMAL:
5526 case SCHED_BATCH:
5527 case SCHED_IDLE:
5528 ret = 0;
5529 }
5530 return ret;
5531 }
5532
5533 /**
5534 * sys_sched_rr_get_interval - return the default timeslice of a process.
5535 * @pid: pid of the process.
5536 * @interval: userspace pointer to the timeslice value.
5537 *
5538 * this syscall writes the default timeslice value of a given process
5539 * into the user-space timespec buffer. A value of '0' means infinity.
5540 */
5541 asmlinkage
5542 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5543 {
5544 struct task_struct *p;
5545 unsigned int time_slice;
5546 int retval;
5547 struct timespec t;
5548
5549 if (pid < 0)
5550 return -EINVAL;
5551
5552 retval = -ESRCH;
5553 read_lock(&tasklist_lock);
5554 p = find_process_by_pid(pid);
5555 if (!p)
5556 goto out_unlock;
5557
5558 retval = security_task_getscheduler(p);
5559 if (retval)
5560 goto out_unlock;
5561
5562 /*
5563 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5564 * tasks that are on an otherwise idle runqueue:
5565 */
5566 time_slice = 0;
5567 if (p->policy == SCHED_RR) {
5568 time_slice = DEF_TIMESLICE;
5569 } else if (p->policy != SCHED_FIFO) {
5570 struct sched_entity *se = &p->se;
5571 unsigned long flags;
5572 struct rq *rq;
5573
5574 rq = task_rq_lock(p, &flags);
5575 if (rq->cfs.load.weight)
5576 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5577 task_rq_unlock(rq, &flags);
5578 }
5579 read_unlock(&tasklist_lock);
5580 jiffies_to_timespec(time_slice, &t);
5581 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5582 return retval;
5583
5584 out_unlock:
5585 read_unlock(&tasklist_lock);
5586 return retval;
5587 }
5588
5589 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5590
5591 void sched_show_task(struct task_struct *p)
5592 {
5593 unsigned long free = 0;
5594 unsigned state;
5595
5596 state = p->state ? __ffs(p->state) + 1 : 0;
5597 printk(KERN_INFO "%-13.13s %c", p->comm,
5598 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5599 #if BITS_PER_LONG == 32
5600 if (state == TASK_RUNNING)
5601 printk(KERN_CONT " running ");
5602 else
5603 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5604 #else
5605 if (state == TASK_RUNNING)
5606 printk(KERN_CONT " running task ");
5607 else
5608 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5609 #endif
5610 #ifdef CONFIG_DEBUG_STACK_USAGE
5611 {
5612 unsigned long *n = end_of_stack(p);
5613 while (!*n)
5614 n++;
5615 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5616 }
5617 #endif
5618 printk(KERN_CONT "%5lu %5d %6d\n", free,
5619 task_pid_nr(p), task_pid_nr(p->real_parent));
5620
5621 show_stack(p, NULL);
5622 }
5623
5624 void show_state_filter(unsigned long state_filter)
5625 {
5626 struct task_struct *g, *p;
5627
5628 #if BITS_PER_LONG == 32
5629 printk(KERN_INFO
5630 " task PC stack pid father\n");
5631 #else
5632 printk(KERN_INFO
5633 " task PC stack pid father\n");
5634 #endif
5635 read_lock(&tasklist_lock);
5636 do_each_thread(g, p) {
5637 /*
5638 * reset the NMI-timeout, listing all files on a slow
5639 * console might take alot of time:
5640 */
5641 touch_nmi_watchdog();
5642 if (!state_filter || (p->state & state_filter))
5643 sched_show_task(p);
5644 } while_each_thread(g, p);
5645
5646 touch_all_softlockup_watchdogs();
5647
5648 #ifdef CONFIG_SCHED_DEBUG
5649 sysrq_sched_debug_show();
5650 #endif
5651 read_unlock(&tasklist_lock);
5652 /*
5653 * Only show locks if all tasks are dumped:
5654 */
5655 if (state_filter == -1)
5656 debug_show_all_locks();
5657 }
5658
5659 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5660 {
5661 idle->sched_class = &idle_sched_class;
5662 }
5663
5664 /**
5665 * init_idle - set up an idle thread for a given CPU
5666 * @idle: task in question
5667 * @cpu: cpu the idle task belongs to
5668 *
5669 * NOTE: this function does not set the idle thread's NEED_RESCHED
5670 * flag, to make booting more robust.
5671 */
5672 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5673 {
5674 struct rq *rq = cpu_rq(cpu);
5675 unsigned long flags;
5676
5677 __sched_fork(idle);
5678 idle->se.exec_start = sched_clock();
5679
5680 idle->prio = idle->normal_prio = MAX_PRIO;
5681 idle->cpus_allowed = cpumask_of_cpu(cpu);
5682 __set_task_cpu(idle, cpu);
5683
5684 spin_lock_irqsave(&rq->lock, flags);
5685 rq->curr = rq->idle = idle;
5686 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5687 idle->oncpu = 1;
5688 #endif
5689 spin_unlock_irqrestore(&rq->lock, flags);
5690
5691 /* Set the preempt count _outside_ the spinlocks! */
5692 #if defined(CONFIG_PREEMPT)
5693 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5694 #else
5695 task_thread_info(idle)->preempt_count = 0;
5696 #endif
5697 /*
5698 * The idle tasks have their own, simple scheduling class:
5699 */
5700 idle->sched_class = &idle_sched_class;
5701 }
5702
5703 /*
5704 * In a system that switches off the HZ timer nohz_cpu_mask
5705 * indicates which cpus entered this state. This is used
5706 * in the rcu update to wait only for active cpus. For system
5707 * which do not switch off the HZ timer nohz_cpu_mask should
5708 * always be CPU_MASK_NONE.
5709 */
5710 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5711
5712 /*
5713 * Increase the granularity value when there are more CPUs,
5714 * because with more CPUs the 'effective latency' as visible
5715 * to users decreases. But the relationship is not linear,
5716 * so pick a second-best guess by going with the log2 of the
5717 * number of CPUs.
5718 *
5719 * This idea comes from the SD scheduler of Con Kolivas:
5720 */
5721 static inline void sched_init_granularity(void)
5722 {
5723 unsigned int factor = 1 + ilog2(num_online_cpus());
5724 const unsigned long limit = 200000000;
5725
5726 sysctl_sched_min_granularity *= factor;
5727 if (sysctl_sched_min_granularity > limit)
5728 sysctl_sched_min_granularity = limit;
5729
5730 sysctl_sched_latency *= factor;
5731 if (sysctl_sched_latency > limit)
5732 sysctl_sched_latency = limit;
5733
5734 sysctl_sched_wakeup_granularity *= factor;
5735 }
5736
5737 #ifdef CONFIG_SMP
5738 /*
5739 * This is how migration works:
5740 *
5741 * 1) we queue a struct migration_req structure in the source CPU's
5742 * runqueue and wake up that CPU's migration thread.
5743 * 2) we down() the locked semaphore => thread blocks.
5744 * 3) migration thread wakes up (implicitly it forces the migrated
5745 * thread off the CPU)
5746 * 4) it gets the migration request and checks whether the migrated
5747 * task is still in the wrong runqueue.
5748 * 5) if it's in the wrong runqueue then the migration thread removes
5749 * it and puts it into the right queue.
5750 * 6) migration thread up()s the semaphore.
5751 * 7) we wake up and the migration is done.
5752 */
5753
5754 /*
5755 * Change a given task's CPU affinity. Migrate the thread to a
5756 * proper CPU and schedule it away if the CPU it's executing on
5757 * is removed from the allowed bitmask.
5758 *
5759 * NOTE: the caller must have a valid reference to the task, the
5760 * task must not exit() & deallocate itself prematurely. The
5761 * call is not atomic; no spinlocks may be held.
5762 */
5763 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5764 {
5765 struct migration_req req;
5766 unsigned long flags;
5767 struct rq *rq;
5768 int ret = 0;
5769
5770 rq = task_rq_lock(p, &flags);
5771 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5772 ret = -EINVAL;
5773 goto out;
5774 }
5775
5776 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5777 !cpus_equal(p->cpus_allowed, *new_mask))) {
5778 ret = -EINVAL;
5779 goto out;
5780 }
5781
5782 if (p->sched_class->set_cpus_allowed)
5783 p->sched_class->set_cpus_allowed(p, new_mask);
5784 else {
5785 p->cpus_allowed = *new_mask;
5786 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5787 }
5788
5789 /* Can the task run on the task's current CPU? If so, we're done */
5790 if (cpu_isset(task_cpu(p), *new_mask))
5791 goto out;
5792
5793 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5794 /* Need help from migration thread: drop lock and wait. */
5795 task_rq_unlock(rq, &flags);
5796 wake_up_process(rq->migration_thread);
5797 wait_for_completion(&req.done);
5798 tlb_migrate_finish(p->mm);
5799 return 0;
5800 }
5801 out:
5802 task_rq_unlock(rq, &flags);
5803
5804 return ret;
5805 }
5806 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5807
5808 /*
5809 * Move (not current) task off this cpu, onto dest cpu. We're doing
5810 * this because either it can't run here any more (set_cpus_allowed()
5811 * away from this CPU, or CPU going down), or because we're
5812 * attempting to rebalance this task on exec (sched_exec).
5813 *
5814 * So we race with normal scheduler movements, but that's OK, as long
5815 * as the task is no longer on this CPU.
5816 *
5817 * Returns non-zero if task was successfully migrated.
5818 */
5819 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5820 {
5821 struct rq *rq_dest, *rq_src;
5822 int ret = 0, on_rq;
5823
5824 if (unlikely(!cpu_active(dest_cpu)))
5825 return ret;
5826
5827 rq_src = cpu_rq(src_cpu);
5828 rq_dest = cpu_rq(dest_cpu);
5829
5830 double_rq_lock(rq_src, rq_dest);
5831 /* Already moved. */
5832 if (task_cpu(p) != src_cpu)
5833 goto done;
5834 /* Affinity changed (again). */
5835 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5836 goto fail;
5837
5838 on_rq = p->se.on_rq;
5839 if (on_rq)
5840 deactivate_task(rq_src, p, 0);
5841
5842 set_task_cpu(p, dest_cpu);
5843 if (on_rq) {
5844 activate_task(rq_dest, p, 0);
5845 check_preempt_curr(rq_dest, p);
5846 }
5847 done:
5848 ret = 1;
5849 fail:
5850 double_rq_unlock(rq_src, rq_dest);
5851 return ret;
5852 }
5853
5854 /*
5855 * migration_thread - this is a highprio system thread that performs
5856 * thread migration by bumping thread off CPU then 'pushing' onto
5857 * another runqueue.
5858 */
5859 static int migration_thread(void *data)
5860 {
5861 int cpu = (long)data;
5862 struct rq *rq;
5863
5864 rq = cpu_rq(cpu);
5865 BUG_ON(rq->migration_thread != current);
5866
5867 set_current_state(TASK_INTERRUPTIBLE);
5868 while (!kthread_should_stop()) {
5869 struct migration_req *req;
5870 struct list_head *head;
5871
5872 spin_lock_irq(&rq->lock);
5873
5874 if (cpu_is_offline(cpu)) {
5875 spin_unlock_irq(&rq->lock);
5876 goto wait_to_die;
5877 }
5878
5879 if (rq->active_balance) {
5880 active_load_balance(rq, cpu);
5881 rq->active_balance = 0;
5882 }
5883
5884 head = &rq->migration_queue;
5885
5886 if (list_empty(head)) {
5887 spin_unlock_irq(&rq->lock);
5888 schedule();
5889 set_current_state(TASK_INTERRUPTIBLE);
5890 continue;
5891 }
5892 req = list_entry(head->next, struct migration_req, list);
5893 list_del_init(head->next);
5894
5895 spin_unlock(&rq->lock);
5896 __migrate_task(req->task, cpu, req->dest_cpu);
5897 local_irq_enable();
5898
5899 complete(&req->done);
5900 }
5901 __set_current_state(TASK_RUNNING);
5902 return 0;
5903
5904 wait_to_die:
5905 /* Wait for kthread_stop */
5906 set_current_state(TASK_INTERRUPTIBLE);
5907 while (!kthread_should_stop()) {
5908 schedule();
5909 set_current_state(TASK_INTERRUPTIBLE);
5910 }
5911 __set_current_state(TASK_RUNNING);
5912 return 0;
5913 }
5914
5915 #ifdef CONFIG_HOTPLUG_CPU
5916
5917 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5918 {
5919 int ret;
5920
5921 local_irq_disable();
5922 ret = __migrate_task(p, src_cpu, dest_cpu);
5923 local_irq_enable();
5924 return ret;
5925 }
5926
5927 /*
5928 * Figure out where task on dead CPU should go, use force if necessary.
5929 * NOTE: interrupts should be disabled by the caller
5930 */
5931 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5932 {
5933 unsigned long flags;
5934 cpumask_t mask;
5935 struct rq *rq;
5936 int dest_cpu;
5937
5938 do {
5939 /* On same node? */
5940 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5941 cpus_and(mask, mask, p->cpus_allowed);
5942 dest_cpu = any_online_cpu(mask);
5943
5944 /* On any allowed CPU? */
5945 if (dest_cpu >= nr_cpu_ids)
5946 dest_cpu = any_online_cpu(p->cpus_allowed);
5947
5948 /* No more Mr. Nice Guy. */
5949 if (dest_cpu >= nr_cpu_ids) {
5950 cpumask_t cpus_allowed;
5951
5952 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5953 /*
5954 * Try to stay on the same cpuset, where the
5955 * current cpuset may be a subset of all cpus.
5956 * The cpuset_cpus_allowed_locked() variant of
5957 * cpuset_cpus_allowed() will not block. It must be
5958 * called within calls to cpuset_lock/cpuset_unlock.
5959 */
5960 rq = task_rq_lock(p, &flags);
5961 p->cpus_allowed = cpus_allowed;
5962 dest_cpu = any_online_cpu(p->cpus_allowed);
5963 task_rq_unlock(rq, &flags);
5964
5965 /*
5966 * Don't tell them about moving exiting tasks or
5967 * kernel threads (both mm NULL), since they never
5968 * leave kernel.
5969 */
5970 if (p->mm && printk_ratelimit()) {
5971 printk(KERN_INFO "process %d (%s) no "
5972 "longer affine to cpu%d\n",
5973 task_pid_nr(p), p->comm, dead_cpu);
5974 }
5975 }
5976 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5977 }
5978
5979 /*
5980 * While a dead CPU has no uninterruptible tasks queued at this point,
5981 * it might still have a nonzero ->nr_uninterruptible counter, because
5982 * for performance reasons the counter is not stricly tracking tasks to
5983 * their home CPUs. So we just add the counter to another CPU's counter,
5984 * to keep the global sum constant after CPU-down:
5985 */
5986 static void migrate_nr_uninterruptible(struct rq *rq_src)
5987 {
5988 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5989 unsigned long flags;
5990
5991 local_irq_save(flags);
5992 double_rq_lock(rq_src, rq_dest);
5993 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5994 rq_src->nr_uninterruptible = 0;
5995 double_rq_unlock(rq_src, rq_dest);
5996 local_irq_restore(flags);
5997 }
5998
5999 /* Run through task list and migrate tasks from the dead cpu. */
6000 static void migrate_live_tasks(int src_cpu)
6001 {
6002 struct task_struct *p, *t;
6003
6004 read_lock(&tasklist_lock);
6005
6006 do_each_thread(t, p) {
6007 if (p == current)
6008 continue;
6009
6010 if (task_cpu(p) == src_cpu)
6011 move_task_off_dead_cpu(src_cpu, p);
6012 } while_each_thread(t, p);
6013
6014 read_unlock(&tasklist_lock);
6015 }
6016
6017 /*
6018 * Schedules idle task to be the next runnable task on current CPU.
6019 * It does so by boosting its priority to highest possible.
6020 * Used by CPU offline code.
6021 */
6022 void sched_idle_next(void)
6023 {
6024 int this_cpu = smp_processor_id();
6025 struct rq *rq = cpu_rq(this_cpu);
6026 struct task_struct *p = rq->idle;
6027 unsigned long flags;
6028
6029 /* cpu has to be offline */
6030 BUG_ON(cpu_online(this_cpu));
6031
6032 /*
6033 * Strictly not necessary since rest of the CPUs are stopped by now
6034 * and interrupts disabled on the current cpu.
6035 */
6036 spin_lock_irqsave(&rq->lock, flags);
6037
6038 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6039
6040 update_rq_clock(rq);
6041 activate_task(rq, p, 0);
6042
6043 spin_unlock_irqrestore(&rq->lock, flags);
6044 }
6045
6046 /*
6047 * Ensures that the idle task is using init_mm right before its cpu goes
6048 * offline.
6049 */
6050 void idle_task_exit(void)
6051 {
6052 struct mm_struct *mm = current->active_mm;
6053
6054 BUG_ON(cpu_online(smp_processor_id()));
6055
6056 if (mm != &init_mm)
6057 switch_mm(mm, &init_mm, current);
6058 mmdrop(mm);
6059 }
6060
6061 /* called under rq->lock with disabled interrupts */
6062 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6063 {
6064 struct rq *rq = cpu_rq(dead_cpu);
6065
6066 /* Must be exiting, otherwise would be on tasklist. */
6067 BUG_ON(!p->exit_state);
6068
6069 /* Cannot have done final schedule yet: would have vanished. */
6070 BUG_ON(p->state == TASK_DEAD);
6071
6072 get_task_struct(p);
6073
6074 /*
6075 * Drop lock around migration; if someone else moves it,
6076 * that's OK. No task can be added to this CPU, so iteration is
6077 * fine.
6078 */
6079 spin_unlock_irq(&rq->lock);
6080 move_task_off_dead_cpu(dead_cpu, p);
6081 spin_lock_irq(&rq->lock);
6082
6083 put_task_struct(p);
6084 }
6085
6086 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6087 static void migrate_dead_tasks(unsigned int dead_cpu)
6088 {
6089 struct rq *rq = cpu_rq(dead_cpu);
6090 struct task_struct *next;
6091
6092 for ( ; ; ) {
6093 if (!rq->nr_running)
6094 break;
6095 update_rq_clock(rq);
6096 next = pick_next_task(rq, rq->curr);
6097 if (!next)
6098 break;
6099 next->sched_class->put_prev_task(rq, next);
6100 migrate_dead(dead_cpu, next);
6101
6102 }
6103 }
6104 #endif /* CONFIG_HOTPLUG_CPU */
6105
6106 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6107
6108 static struct ctl_table sd_ctl_dir[] = {
6109 {
6110 .procname = "sched_domain",
6111 .mode = 0555,
6112 },
6113 {0, },
6114 };
6115
6116 static struct ctl_table sd_ctl_root[] = {
6117 {
6118 .ctl_name = CTL_KERN,
6119 .procname = "kernel",
6120 .mode = 0555,
6121 .child = sd_ctl_dir,
6122 },
6123 {0, },
6124 };
6125
6126 static struct ctl_table *sd_alloc_ctl_entry(int n)
6127 {
6128 struct ctl_table *entry =
6129 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6130
6131 return entry;
6132 }
6133
6134 static void sd_free_ctl_entry(struct ctl_table **tablep)
6135 {
6136 struct ctl_table *entry;
6137
6138 /*
6139 * In the intermediate directories, both the child directory and
6140 * procname are dynamically allocated and could fail but the mode
6141 * will always be set. In the lowest directory the names are
6142 * static strings and all have proc handlers.
6143 */
6144 for (entry = *tablep; entry->mode; entry++) {
6145 if (entry->child)
6146 sd_free_ctl_entry(&entry->child);
6147 if (entry->proc_handler == NULL)
6148 kfree(entry->procname);
6149 }
6150
6151 kfree(*tablep);
6152 *tablep = NULL;
6153 }
6154
6155 static void
6156 set_table_entry(struct ctl_table *entry,
6157 const char *procname, void *data, int maxlen,
6158 mode_t mode, proc_handler *proc_handler)
6159 {
6160 entry->procname = procname;
6161 entry->data = data;
6162 entry->maxlen = maxlen;
6163 entry->mode = mode;
6164 entry->proc_handler = proc_handler;
6165 }
6166
6167 static struct ctl_table *
6168 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6169 {
6170 struct ctl_table *table = sd_alloc_ctl_entry(12);
6171
6172 if (table == NULL)
6173 return NULL;
6174
6175 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6176 sizeof(long), 0644, proc_doulongvec_minmax);
6177 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6178 sizeof(long), 0644, proc_doulongvec_minmax);
6179 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6180 sizeof(int), 0644, proc_dointvec_minmax);
6181 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6182 sizeof(int), 0644, proc_dointvec_minmax);
6183 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6184 sizeof(int), 0644, proc_dointvec_minmax);
6185 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6186 sizeof(int), 0644, proc_dointvec_minmax);
6187 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6188 sizeof(int), 0644, proc_dointvec_minmax);
6189 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6190 sizeof(int), 0644, proc_dointvec_minmax);
6191 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6192 sizeof(int), 0644, proc_dointvec_minmax);
6193 set_table_entry(&table[9], "cache_nice_tries",
6194 &sd->cache_nice_tries,
6195 sizeof(int), 0644, proc_dointvec_minmax);
6196 set_table_entry(&table[10], "flags", &sd->flags,
6197 sizeof(int), 0644, proc_dointvec_minmax);
6198 /* &table[11] is terminator */
6199
6200 return table;
6201 }
6202
6203 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6204 {
6205 struct ctl_table *entry, *table;
6206 struct sched_domain *sd;
6207 int domain_num = 0, i;
6208 char buf[32];
6209
6210 for_each_domain(cpu, sd)
6211 domain_num++;
6212 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6213 if (table == NULL)
6214 return NULL;
6215
6216 i = 0;
6217 for_each_domain(cpu, sd) {
6218 snprintf(buf, 32, "domain%d", i);
6219 entry->procname = kstrdup(buf, GFP_KERNEL);
6220 entry->mode = 0555;
6221 entry->child = sd_alloc_ctl_domain_table(sd);
6222 entry++;
6223 i++;
6224 }
6225 return table;
6226 }
6227
6228 static struct ctl_table_header *sd_sysctl_header;
6229 static void register_sched_domain_sysctl(void)
6230 {
6231 int i, cpu_num = num_online_cpus();
6232 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6233 char buf[32];
6234
6235 WARN_ON(sd_ctl_dir[0].child);
6236 sd_ctl_dir[0].child = entry;
6237
6238 if (entry == NULL)
6239 return;
6240
6241 for_each_online_cpu(i) {
6242 snprintf(buf, 32, "cpu%d", i);
6243 entry->procname = kstrdup(buf, GFP_KERNEL);
6244 entry->mode = 0555;
6245 entry->child = sd_alloc_ctl_cpu_table(i);
6246 entry++;
6247 }
6248
6249 WARN_ON(sd_sysctl_header);
6250 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6251 }
6252
6253 /* may be called multiple times per register */
6254 static void unregister_sched_domain_sysctl(void)
6255 {
6256 if (sd_sysctl_header)
6257 unregister_sysctl_table(sd_sysctl_header);
6258 sd_sysctl_header = NULL;
6259 if (sd_ctl_dir[0].child)
6260 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6261 }
6262 #else
6263 static void register_sched_domain_sysctl(void)
6264 {
6265 }
6266 static void unregister_sched_domain_sysctl(void)
6267 {
6268 }
6269 #endif
6270
6271 static void set_rq_online(struct rq *rq)
6272 {
6273 if (!rq->online) {
6274 const struct sched_class *class;
6275
6276 cpu_set(rq->cpu, rq->rd->online);
6277 rq->online = 1;
6278
6279 for_each_class(class) {
6280 if (class->rq_online)
6281 class->rq_online(rq);
6282 }
6283 }
6284 }
6285
6286 static void set_rq_offline(struct rq *rq)
6287 {
6288 if (rq->online) {
6289 const struct sched_class *class;
6290
6291 for_each_class(class) {
6292 if (class->rq_offline)
6293 class->rq_offline(rq);
6294 }
6295
6296 cpu_clear(rq->cpu, rq->rd->online);
6297 rq->online = 0;
6298 }
6299 }
6300
6301 /*
6302 * migration_call - callback that gets triggered when a CPU is added.
6303 * Here we can start up the necessary migration thread for the new CPU.
6304 */
6305 static int __cpuinit
6306 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6307 {
6308 struct task_struct *p;
6309 int cpu = (long)hcpu;
6310 unsigned long flags;
6311 struct rq *rq;
6312
6313 switch (action) {
6314
6315 case CPU_UP_PREPARE:
6316 case CPU_UP_PREPARE_FROZEN:
6317 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6318 if (IS_ERR(p))
6319 return NOTIFY_BAD;
6320 kthread_bind(p, cpu);
6321 /* Must be high prio: stop_machine expects to yield to it. */
6322 rq = task_rq_lock(p, &flags);
6323 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6324 task_rq_unlock(rq, &flags);
6325 cpu_rq(cpu)->migration_thread = p;
6326 break;
6327
6328 case CPU_ONLINE:
6329 case CPU_ONLINE_FROZEN:
6330 /* Strictly unnecessary, as first user will wake it. */
6331 wake_up_process(cpu_rq(cpu)->migration_thread);
6332
6333 /* Update our root-domain */
6334 rq = cpu_rq(cpu);
6335 spin_lock_irqsave(&rq->lock, flags);
6336 if (rq->rd) {
6337 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6338
6339 set_rq_online(rq);
6340 }
6341 spin_unlock_irqrestore(&rq->lock, flags);
6342 break;
6343
6344 #ifdef CONFIG_HOTPLUG_CPU
6345 case CPU_UP_CANCELED:
6346 case CPU_UP_CANCELED_FROZEN:
6347 if (!cpu_rq(cpu)->migration_thread)
6348 break;
6349 /* Unbind it from offline cpu so it can run. Fall thru. */
6350 kthread_bind(cpu_rq(cpu)->migration_thread,
6351 any_online_cpu(cpu_online_map));
6352 kthread_stop(cpu_rq(cpu)->migration_thread);
6353 cpu_rq(cpu)->migration_thread = NULL;
6354 break;
6355
6356 case CPU_DEAD:
6357 case CPU_DEAD_FROZEN:
6358 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6359 migrate_live_tasks(cpu);
6360 rq = cpu_rq(cpu);
6361 kthread_stop(rq->migration_thread);
6362 rq->migration_thread = NULL;
6363 /* Idle task back to normal (off runqueue, low prio) */
6364 spin_lock_irq(&rq->lock);
6365 update_rq_clock(rq);
6366 deactivate_task(rq, rq->idle, 0);
6367 rq->idle->static_prio = MAX_PRIO;
6368 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6369 rq->idle->sched_class = &idle_sched_class;
6370 migrate_dead_tasks(cpu);
6371 spin_unlock_irq(&rq->lock);
6372 cpuset_unlock();
6373 migrate_nr_uninterruptible(rq);
6374 BUG_ON(rq->nr_running != 0);
6375
6376 /*
6377 * No need to migrate the tasks: it was best-effort if
6378 * they didn't take sched_hotcpu_mutex. Just wake up
6379 * the requestors.
6380 */
6381 spin_lock_irq(&rq->lock);
6382 while (!list_empty(&rq->migration_queue)) {
6383 struct migration_req *req;
6384
6385 req = list_entry(rq->migration_queue.next,
6386 struct migration_req, list);
6387 list_del_init(&req->list);
6388 complete(&req->done);
6389 }
6390 spin_unlock_irq(&rq->lock);
6391 break;
6392
6393 case CPU_DYING:
6394 case CPU_DYING_FROZEN:
6395 /* Update our root-domain */
6396 rq = cpu_rq(cpu);
6397 spin_lock_irqsave(&rq->lock, flags);
6398 if (rq->rd) {
6399 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6400 set_rq_offline(rq);
6401 }
6402 spin_unlock_irqrestore(&rq->lock, flags);
6403 break;
6404 #endif
6405 }
6406 return NOTIFY_OK;
6407 }
6408
6409 /* Register at highest priority so that task migration (migrate_all_tasks)
6410 * happens before everything else.
6411 */
6412 static struct notifier_block __cpuinitdata migration_notifier = {
6413 .notifier_call = migration_call,
6414 .priority = 10
6415 };
6416
6417 static int __init migration_init(void)
6418 {
6419 void *cpu = (void *)(long)smp_processor_id();
6420 int err;
6421
6422 /* Start one for the boot CPU: */
6423 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6424 BUG_ON(err == NOTIFY_BAD);
6425 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6426 register_cpu_notifier(&migration_notifier);
6427
6428 return err;
6429 }
6430 early_initcall(migration_init);
6431 #endif
6432
6433 #ifdef CONFIG_SMP
6434
6435 #ifdef CONFIG_SCHED_DEBUG
6436
6437 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6438 {
6439 switch (lvl) {
6440 case SD_LV_NONE:
6441 return "NONE";
6442 case SD_LV_SIBLING:
6443 return "SIBLING";
6444 case SD_LV_MC:
6445 return "MC";
6446 case SD_LV_CPU:
6447 return "CPU";
6448 case SD_LV_NODE:
6449 return "NODE";
6450 case SD_LV_ALLNODES:
6451 return "ALLNODES";
6452 case SD_LV_MAX:
6453 return "MAX";
6454
6455 }
6456 return "MAX";
6457 }
6458
6459 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6460 cpumask_t *groupmask)
6461 {
6462 struct sched_group *group = sd->groups;
6463 char str[256];
6464
6465 cpulist_scnprintf(str, sizeof(str), sd->span);
6466 cpus_clear(*groupmask);
6467
6468 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6469
6470 if (!(sd->flags & SD_LOAD_BALANCE)) {
6471 printk("does not load-balance\n");
6472 if (sd->parent)
6473 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6474 " has parent");
6475 return -1;
6476 }
6477
6478 printk(KERN_CONT "span %s level %s\n",
6479 str, sd_level_to_string(sd->level));
6480
6481 if (!cpu_isset(cpu, sd->span)) {
6482 printk(KERN_ERR "ERROR: domain->span does not contain "
6483 "CPU%d\n", cpu);
6484 }
6485 if (!cpu_isset(cpu, group->cpumask)) {
6486 printk(KERN_ERR "ERROR: domain->groups does not contain"
6487 " CPU%d\n", cpu);
6488 }
6489
6490 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6491 do {
6492 if (!group) {
6493 printk("\n");
6494 printk(KERN_ERR "ERROR: group is NULL\n");
6495 break;
6496 }
6497
6498 if (!group->__cpu_power) {
6499 printk(KERN_CONT "\n");
6500 printk(KERN_ERR "ERROR: domain->cpu_power not "
6501 "set\n");
6502 break;
6503 }
6504
6505 if (!cpus_weight(group->cpumask)) {
6506 printk(KERN_CONT "\n");
6507 printk(KERN_ERR "ERROR: empty group\n");
6508 break;
6509 }
6510
6511 if (cpus_intersects(*groupmask, group->cpumask)) {
6512 printk(KERN_CONT "\n");
6513 printk(KERN_ERR "ERROR: repeated CPUs\n");
6514 break;
6515 }
6516
6517 cpus_or(*groupmask, *groupmask, group->cpumask);
6518
6519 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6520 printk(KERN_CONT " %s", str);
6521
6522 group = group->next;
6523 } while (group != sd->groups);
6524 printk(KERN_CONT "\n");
6525
6526 if (!cpus_equal(sd->span, *groupmask))
6527 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6528
6529 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6530 printk(KERN_ERR "ERROR: parent span is not a superset "
6531 "of domain->span\n");
6532 return 0;
6533 }
6534
6535 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6536 {
6537 cpumask_t *groupmask;
6538 int level = 0;
6539
6540 if (!sd) {
6541 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6542 return;
6543 }
6544
6545 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6546
6547 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6548 if (!groupmask) {
6549 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6550 return;
6551 }
6552
6553 for (;;) {
6554 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6555 break;
6556 level++;
6557 sd = sd->parent;
6558 if (!sd)
6559 break;
6560 }
6561 kfree(groupmask);
6562 }
6563 #else /* !CONFIG_SCHED_DEBUG */
6564 # define sched_domain_debug(sd, cpu) do { } while (0)
6565 #endif /* CONFIG_SCHED_DEBUG */
6566
6567 static int sd_degenerate(struct sched_domain *sd)
6568 {
6569 if (cpus_weight(sd->span) == 1)
6570 return 1;
6571
6572 /* Following flags need at least 2 groups */
6573 if (sd->flags & (SD_LOAD_BALANCE |
6574 SD_BALANCE_NEWIDLE |
6575 SD_BALANCE_FORK |
6576 SD_BALANCE_EXEC |
6577 SD_SHARE_CPUPOWER |
6578 SD_SHARE_PKG_RESOURCES)) {
6579 if (sd->groups != sd->groups->next)
6580 return 0;
6581 }
6582
6583 /* Following flags don't use groups */
6584 if (sd->flags & (SD_WAKE_IDLE |
6585 SD_WAKE_AFFINE |
6586 SD_WAKE_BALANCE))
6587 return 0;
6588
6589 return 1;
6590 }
6591
6592 static int
6593 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6594 {
6595 unsigned long cflags = sd->flags, pflags = parent->flags;
6596
6597 if (sd_degenerate(parent))
6598 return 1;
6599
6600 if (!cpus_equal(sd->span, parent->span))
6601 return 0;
6602
6603 /* Does parent contain flags not in child? */
6604 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6605 if (cflags & SD_WAKE_AFFINE)
6606 pflags &= ~SD_WAKE_BALANCE;
6607 /* Flags needing groups don't count if only 1 group in parent */
6608 if (parent->groups == parent->groups->next) {
6609 pflags &= ~(SD_LOAD_BALANCE |
6610 SD_BALANCE_NEWIDLE |
6611 SD_BALANCE_FORK |
6612 SD_BALANCE_EXEC |
6613 SD_SHARE_CPUPOWER |
6614 SD_SHARE_PKG_RESOURCES);
6615 }
6616 if (~cflags & pflags)
6617 return 0;
6618
6619 return 1;
6620 }
6621
6622 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6623 {
6624 unsigned long flags;
6625
6626 spin_lock_irqsave(&rq->lock, flags);
6627
6628 if (rq->rd) {
6629 struct root_domain *old_rd = rq->rd;
6630
6631 if (cpu_isset(rq->cpu, old_rd->online))
6632 set_rq_offline(rq);
6633
6634 cpu_clear(rq->cpu, old_rd->span);
6635
6636 if (atomic_dec_and_test(&old_rd->refcount))
6637 kfree(old_rd);
6638 }
6639
6640 atomic_inc(&rd->refcount);
6641 rq->rd = rd;
6642
6643 cpu_set(rq->cpu, rd->span);
6644 if (cpu_isset(rq->cpu, cpu_online_map))
6645 set_rq_online(rq);
6646
6647 spin_unlock_irqrestore(&rq->lock, flags);
6648 }
6649
6650 static void init_rootdomain(struct root_domain *rd)
6651 {
6652 memset(rd, 0, sizeof(*rd));
6653
6654 cpus_clear(rd->span);
6655 cpus_clear(rd->online);
6656
6657 cpupri_init(&rd->cpupri);
6658 }
6659
6660 static void init_defrootdomain(void)
6661 {
6662 init_rootdomain(&def_root_domain);
6663 atomic_set(&def_root_domain.refcount, 1);
6664 }
6665
6666 static struct root_domain *alloc_rootdomain(void)
6667 {
6668 struct root_domain *rd;
6669
6670 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6671 if (!rd)
6672 return NULL;
6673
6674 init_rootdomain(rd);
6675
6676 return rd;
6677 }
6678
6679 /*
6680 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6681 * hold the hotplug lock.
6682 */
6683 static void
6684 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6685 {
6686 struct rq *rq = cpu_rq(cpu);
6687 struct sched_domain *tmp;
6688
6689 /* Remove the sched domains which do not contribute to scheduling. */
6690 for (tmp = sd; tmp; tmp = tmp->parent) {
6691 struct sched_domain *parent = tmp->parent;
6692 if (!parent)
6693 break;
6694 if (sd_parent_degenerate(tmp, parent)) {
6695 tmp->parent = parent->parent;
6696 if (parent->parent)
6697 parent->parent->child = tmp;
6698 }
6699 }
6700
6701 if (sd && sd_degenerate(sd)) {
6702 sd = sd->parent;
6703 if (sd)
6704 sd->child = NULL;
6705 }
6706
6707 sched_domain_debug(sd, cpu);
6708
6709 rq_attach_root(rq, rd);
6710 rcu_assign_pointer(rq->sd, sd);
6711 }
6712
6713 /* cpus with isolated domains */
6714 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6715
6716 /* Setup the mask of cpus configured for isolated domains */
6717 static int __init isolated_cpu_setup(char *str)
6718 {
6719 static int __initdata ints[NR_CPUS];
6720 int i;
6721
6722 str = get_options(str, ARRAY_SIZE(ints), ints);
6723 cpus_clear(cpu_isolated_map);
6724 for (i = 1; i <= ints[0]; i++)
6725 if (ints[i] < NR_CPUS)
6726 cpu_set(ints[i], cpu_isolated_map);
6727 return 1;
6728 }
6729
6730 __setup("isolcpus=", isolated_cpu_setup);
6731
6732 /*
6733 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6734 * to a function which identifies what group(along with sched group) a CPU
6735 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6736 * (due to the fact that we keep track of groups covered with a cpumask_t).
6737 *
6738 * init_sched_build_groups will build a circular linked list of the groups
6739 * covered by the given span, and will set each group's ->cpumask correctly,
6740 * and ->cpu_power to 0.
6741 */
6742 static void
6743 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6744 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6745 struct sched_group **sg,
6746 cpumask_t *tmpmask),
6747 cpumask_t *covered, cpumask_t *tmpmask)
6748 {
6749 struct sched_group *first = NULL, *last = NULL;
6750 int i;
6751
6752 cpus_clear(*covered);
6753
6754 for_each_cpu_mask_nr(i, *span) {
6755 struct sched_group *sg;
6756 int group = group_fn(i, cpu_map, &sg, tmpmask);
6757 int j;
6758
6759 if (cpu_isset(i, *covered))
6760 continue;
6761
6762 cpus_clear(sg->cpumask);
6763 sg->__cpu_power = 0;
6764
6765 for_each_cpu_mask_nr(j, *span) {
6766 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6767 continue;
6768
6769 cpu_set(j, *covered);
6770 cpu_set(j, sg->cpumask);
6771 }
6772 if (!first)
6773 first = sg;
6774 if (last)
6775 last->next = sg;
6776 last = sg;
6777 }
6778 last->next = first;
6779 }
6780
6781 #define SD_NODES_PER_DOMAIN 16
6782
6783 #ifdef CONFIG_NUMA
6784
6785 /**
6786 * find_next_best_node - find the next node to include in a sched_domain
6787 * @node: node whose sched_domain we're building
6788 * @used_nodes: nodes already in the sched_domain
6789 *
6790 * Find the next node to include in a given scheduling domain. Simply
6791 * finds the closest node not already in the @used_nodes map.
6792 *
6793 * Should use nodemask_t.
6794 */
6795 static int find_next_best_node(int node, nodemask_t *used_nodes)
6796 {
6797 int i, n, val, min_val, best_node = 0;
6798
6799 min_val = INT_MAX;
6800
6801 for (i = 0; i < nr_node_ids; i++) {
6802 /* Start at @node */
6803 n = (node + i) % nr_node_ids;
6804
6805 if (!nr_cpus_node(n))
6806 continue;
6807
6808 /* Skip already used nodes */
6809 if (node_isset(n, *used_nodes))
6810 continue;
6811
6812 /* Simple min distance search */
6813 val = node_distance(node, n);
6814
6815 if (val < min_val) {
6816 min_val = val;
6817 best_node = n;
6818 }
6819 }
6820
6821 node_set(best_node, *used_nodes);
6822 return best_node;
6823 }
6824
6825 /**
6826 * sched_domain_node_span - get a cpumask for a node's sched_domain
6827 * @node: node whose cpumask we're constructing
6828 * @span: resulting cpumask
6829 *
6830 * Given a node, construct a good cpumask for its sched_domain to span. It
6831 * should be one that prevents unnecessary balancing, but also spreads tasks
6832 * out optimally.
6833 */
6834 static void sched_domain_node_span(int node, cpumask_t *span)
6835 {
6836 nodemask_t used_nodes;
6837 node_to_cpumask_ptr(nodemask, node);
6838 int i;
6839
6840 cpus_clear(*span);
6841 nodes_clear(used_nodes);
6842
6843 cpus_or(*span, *span, *nodemask);
6844 node_set(node, used_nodes);
6845
6846 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6847 int next_node = find_next_best_node(node, &used_nodes);
6848
6849 node_to_cpumask_ptr_next(nodemask, next_node);
6850 cpus_or(*span, *span, *nodemask);
6851 }
6852 }
6853 #endif /* CONFIG_NUMA */
6854
6855 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6856
6857 /*
6858 * SMT sched-domains:
6859 */
6860 #ifdef CONFIG_SCHED_SMT
6861 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6862 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6863
6864 static int
6865 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6866 cpumask_t *unused)
6867 {
6868 if (sg)
6869 *sg = &per_cpu(sched_group_cpus, cpu);
6870 return cpu;
6871 }
6872 #endif /* CONFIG_SCHED_SMT */
6873
6874 /*
6875 * multi-core sched-domains:
6876 */
6877 #ifdef CONFIG_SCHED_MC
6878 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6879 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6880 #endif /* CONFIG_SCHED_MC */
6881
6882 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6883 static int
6884 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6885 cpumask_t *mask)
6886 {
6887 int group;
6888
6889 *mask = per_cpu(cpu_sibling_map, cpu);
6890 cpus_and(*mask, *mask, *cpu_map);
6891 group = first_cpu(*mask);
6892 if (sg)
6893 *sg = &per_cpu(sched_group_core, group);
6894 return group;
6895 }
6896 #elif defined(CONFIG_SCHED_MC)
6897 static int
6898 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6899 cpumask_t *unused)
6900 {
6901 if (sg)
6902 *sg = &per_cpu(sched_group_core, cpu);
6903 return cpu;
6904 }
6905 #endif
6906
6907 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6908 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6909
6910 static int
6911 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6912 cpumask_t *mask)
6913 {
6914 int group;
6915 #ifdef CONFIG_SCHED_MC
6916 *mask = cpu_coregroup_map(cpu);
6917 cpus_and(*mask, *mask, *cpu_map);
6918 group = first_cpu(*mask);
6919 #elif defined(CONFIG_SCHED_SMT)
6920 *mask = per_cpu(cpu_sibling_map, cpu);
6921 cpus_and(*mask, *mask, *cpu_map);
6922 group = first_cpu(*mask);
6923 #else
6924 group = cpu;
6925 #endif
6926 if (sg)
6927 *sg = &per_cpu(sched_group_phys, group);
6928 return group;
6929 }
6930
6931 #ifdef CONFIG_NUMA
6932 /*
6933 * The init_sched_build_groups can't handle what we want to do with node
6934 * groups, so roll our own. Now each node has its own list of groups which
6935 * gets dynamically allocated.
6936 */
6937 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6938 static struct sched_group ***sched_group_nodes_bycpu;
6939
6940 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6941 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6942
6943 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6944 struct sched_group **sg, cpumask_t *nodemask)
6945 {
6946 int group;
6947
6948 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6949 cpus_and(*nodemask, *nodemask, *cpu_map);
6950 group = first_cpu(*nodemask);
6951
6952 if (sg)
6953 *sg = &per_cpu(sched_group_allnodes, group);
6954 return group;
6955 }
6956
6957 static void init_numa_sched_groups_power(struct sched_group *group_head)
6958 {
6959 struct sched_group *sg = group_head;
6960 int j;
6961
6962 if (!sg)
6963 return;
6964 do {
6965 for_each_cpu_mask_nr(j, sg->cpumask) {
6966 struct sched_domain *sd;
6967
6968 sd = &per_cpu(phys_domains, j);
6969 if (j != first_cpu(sd->groups->cpumask)) {
6970 /*
6971 * Only add "power" once for each
6972 * physical package.
6973 */
6974 continue;
6975 }
6976
6977 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6978 }
6979 sg = sg->next;
6980 } while (sg != group_head);
6981 }
6982 #endif /* CONFIG_NUMA */
6983
6984 #ifdef CONFIG_NUMA
6985 /* Free memory allocated for various sched_group structures */
6986 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6987 {
6988 int cpu, i;
6989
6990 for_each_cpu_mask_nr(cpu, *cpu_map) {
6991 struct sched_group **sched_group_nodes
6992 = sched_group_nodes_bycpu[cpu];
6993
6994 if (!sched_group_nodes)
6995 continue;
6996
6997 for (i = 0; i < nr_node_ids; i++) {
6998 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6999
7000 *nodemask = node_to_cpumask(i);
7001 cpus_and(*nodemask, *nodemask, *cpu_map);
7002 if (cpus_empty(*nodemask))
7003 continue;
7004
7005 if (sg == NULL)
7006 continue;
7007 sg = sg->next;
7008 next_sg:
7009 oldsg = sg;
7010 sg = sg->next;
7011 kfree(oldsg);
7012 if (oldsg != sched_group_nodes[i])
7013 goto next_sg;
7014 }
7015 kfree(sched_group_nodes);
7016 sched_group_nodes_bycpu[cpu] = NULL;
7017 }
7018 }
7019 #else /* !CONFIG_NUMA */
7020 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7021 {
7022 }
7023 #endif /* CONFIG_NUMA */
7024
7025 /*
7026 * Initialize sched groups cpu_power.
7027 *
7028 * cpu_power indicates the capacity of sched group, which is used while
7029 * distributing the load between different sched groups in a sched domain.
7030 * Typically cpu_power for all the groups in a sched domain will be same unless
7031 * there are asymmetries in the topology. If there are asymmetries, group
7032 * having more cpu_power will pickup more load compared to the group having
7033 * less cpu_power.
7034 *
7035 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7036 * the maximum number of tasks a group can handle in the presence of other idle
7037 * or lightly loaded groups in the same sched domain.
7038 */
7039 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7040 {
7041 struct sched_domain *child;
7042 struct sched_group *group;
7043
7044 WARN_ON(!sd || !sd->groups);
7045
7046 if (cpu != first_cpu(sd->groups->cpumask))
7047 return;
7048
7049 child = sd->child;
7050
7051 sd->groups->__cpu_power = 0;
7052
7053 /*
7054 * For perf policy, if the groups in child domain share resources
7055 * (for example cores sharing some portions of the cache hierarchy
7056 * or SMT), then set this domain groups cpu_power such that each group
7057 * can handle only one task, when there are other idle groups in the
7058 * same sched domain.
7059 */
7060 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7061 (child->flags &
7062 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7063 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7064 return;
7065 }
7066
7067 /*
7068 * add cpu_power of each child group to this groups cpu_power
7069 */
7070 group = child->groups;
7071 do {
7072 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7073 group = group->next;
7074 } while (group != child->groups);
7075 }
7076
7077 /*
7078 * Initializers for schedule domains
7079 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7080 */
7081
7082 #define SD_INIT(sd, type) sd_init_##type(sd)
7083 #define SD_INIT_FUNC(type) \
7084 static noinline void sd_init_##type(struct sched_domain *sd) \
7085 { \
7086 memset(sd, 0, sizeof(*sd)); \
7087 *sd = SD_##type##_INIT; \
7088 sd->level = SD_LV_##type; \
7089 }
7090
7091 SD_INIT_FUNC(CPU)
7092 #ifdef CONFIG_NUMA
7093 SD_INIT_FUNC(ALLNODES)
7094 SD_INIT_FUNC(NODE)
7095 #endif
7096 #ifdef CONFIG_SCHED_SMT
7097 SD_INIT_FUNC(SIBLING)
7098 #endif
7099 #ifdef CONFIG_SCHED_MC
7100 SD_INIT_FUNC(MC)
7101 #endif
7102
7103 /*
7104 * To minimize stack usage kmalloc room for cpumasks and share the
7105 * space as the usage in build_sched_domains() dictates. Used only
7106 * if the amount of space is significant.
7107 */
7108 struct allmasks {
7109 cpumask_t tmpmask; /* make this one first */
7110 union {
7111 cpumask_t nodemask;
7112 cpumask_t this_sibling_map;
7113 cpumask_t this_core_map;
7114 };
7115 cpumask_t send_covered;
7116
7117 #ifdef CONFIG_NUMA
7118 cpumask_t domainspan;
7119 cpumask_t covered;
7120 cpumask_t notcovered;
7121 #endif
7122 };
7123
7124 #if NR_CPUS > 128
7125 #define SCHED_CPUMASK_ALLOC 1
7126 #define SCHED_CPUMASK_FREE(v) kfree(v)
7127 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7128 #else
7129 #define SCHED_CPUMASK_ALLOC 0
7130 #define SCHED_CPUMASK_FREE(v)
7131 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7132 #endif
7133
7134 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7135 ((unsigned long)(a) + offsetof(struct allmasks, v))
7136
7137 static int default_relax_domain_level = -1;
7138
7139 static int __init setup_relax_domain_level(char *str)
7140 {
7141 unsigned long val;
7142
7143 val = simple_strtoul(str, NULL, 0);
7144 if (val < SD_LV_MAX)
7145 default_relax_domain_level = val;
7146
7147 return 1;
7148 }
7149 __setup("relax_domain_level=", setup_relax_domain_level);
7150
7151 static void set_domain_attribute(struct sched_domain *sd,
7152 struct sched_domain_attr *attr)
7153 {
7154 int request;
7155
7156 if (!attr || attr->relax_domain_level < 0) {
7157 if (default_relax_domain_level < 0)
7158 return;
7159 else
7160 request = default_relax_domain_level;
7161 } else
7162 request = attr->relax_domain_level;
7163 if (request < sd->level) {
7164 /* turn off idle balance on this domain */
7165 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7166 } else {
7167 /* turn on idle balance on this domain */
7168 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7169 }
7170 }
7171
7172 /*
7173 * Build sched domains for a given set of cpus and attach the sched domains
7174 * to the individual cpus
7175 */
7176 static int __build_sched_domains(const cpumask_t *cpu_map,
7177 struct sched_domain_attr *attr)
7178 {
7179 int i;
7180 struct root_domain *rd;
7181 SCHED_CPUMASK_DECLARE(allmasks);
7182 cpumask_t *tmpmask;
7183 #ifdef CONFIG_NUMA
7184 struct sched_group **sched_group_nodes = NULL;
7185 int sd_allnodes = 0;
7186
7187 /*
7188 * Allocate the per-node list of sched groups
7189 */
7190 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7191 GFP_KERNEL);
7192 if (!sched_group_nodes) {
7193 printk(KERN_WARNING "Can not alloc sched group node list\n");
7194 return -ENOMEM;
7195 }
7196 #endif
7197
7198 rd = alloc_rootdomain();
7199 if (!rd) {
7200 printk(KERN_WARNING "Cannot alloc root domain\n");
7201 #ifdef CONFIG_NUMA
7202 kfree(sched_group_nodes);
7203 #endif
7204 return -ENOMEM;
7205 }
7206
7207 #if SCHED_CPUMASK_ALLOC
7208 /* get space for all scratch cpumask variables */
7209 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7210 if (!allmasks) {
7211 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7212 kfree(rd);
7213 #ifdef CONFIG_NUMA
7214 kfree(sched_group_nodes);
7215 #endif
7216 return -ENOMEM;
7217 }
7218 #endif
7219 tmpmask = (cpumask_t *)allmasks;
7220
7221
7222 #ifdef CONFIG_NUMA
7223 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7224 #endif
7225
7226 /*
7227 * Set up domains for cpus specified by the cpu_map.
7228 */
7229 for_each_cpu_mask_nr(i, *cpu_map) {
7230 struct sched_domain *sd = NULL, *p;
7231 SCHED_CPUMASK_VAR(nodemask, allmasks);
7232
7233 *nodemask = node_to_cpumask(cpu_to_node(i));
7234 cpus_and(*nodemask, *nodemask, *cpu_map);
7235
7236 #ifdef CONFIG_NUMA
7237 if (cpus_weight(*cpu_map) >
7238 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7239 sd = &per_cpu(allnodes_domains, i);
7240 SD_INIT(sd, ALLNODES);
7241 set_domain_attribute(sd, attr);
7242 sd->span = *cpu_map;
7243 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7244 p = sd;
7245 sd_allnodes = 1;
7246 } else
7247 p = NULL;
7248
7249 sd = &per_cpu(node_domains, i);
7250 SD_INIT(sd, NODE);
7251 set_domain_attribute(sd, attr);
7252 sched_domain_node_span(cpu_to_node(i), &sd->span);
7253 sd->parent = p;
7254 if (p)
7255 p->child = sd;
7256 cpus_and(sd->span, sd->span, *cpu_map);
7257 #endif
7258
7259 p = sd;
7260 sd = &per_cpu(phys_domains, i);
7261 SD_INIT(sd, CPU);
7262 set_domain_attribute(sd, attr);
7263 sd->span = *nodemask;
7264 sd->parent = p;
7265 if (p)
7266 p->child = sd;
7267 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7268
7269 #ifdef CONFIG_SCHED_MC
7270 p = sd;
7271 sd = &per_cpu(core_domains, i);
7272 SD_INIT(sd, MC);
7273 set_domain_attribute(sd, attr);
7274 sd->span = cpu_coregroup_map(i);
7275 cpus_and(sd->span, sd->span, *cpu_map);
7276 sd->parent = p;
7277 p->child = sd;
7278 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7279 #endif
7280
7281 #ifdef CONFIG_SCHED_SMT
7282 p = sd;
7283 sd = &per_cpu(cpu_domains, i);
7284 SD_INIT(sd, SIBLING);
7285 set_domain_attribute(sd, attr);
7286 sd->span = per_cpu(cpu_sibling_map, i);
7287 cpus_and(sd->span, sd->span, *cpu_map);
7288 sd->parent = p;
7289 p->child = sd;
7290 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7291 #endif
7292 }
7293
7294 #ifdef CONFIG_SCHED_SMT
7295 /* Set up CPU (sibling) groups */
7296 for_each_cpu_mask_nr(i, *cpu_map) {
7297 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7298 SCHED_CPUMASK_VAR(send_covered, allmasks);
7299
7300 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7301 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7302 if (i != first_cpu(*this_sibling_map))
7303 continue;
7304
7305 init_sched_build_groups(this_sibling_map, cpu_map,
7306 &cpu_to_cpu_group,
7307 send_covered, tmpmask);
7308 }
7309 #endif
7310
7311 #ifdef CONFIG_SCHED_MC
7312 /* Set up multi-core groups */
7313 for_each_cpu_mask_nr(i, *cpu_map) {
7314 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7315 SCHED_CPUMASK_VAR(send_covered, allmasks);
7316
7317 *this_core_map = cpu_coregroup_map(i);
7318 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7319 if (i != first_cpu(*this_core_map))
7320 continue;
7321
7322 init_sched_build_groups(this_core_map, cpu_map,
7323 &cpu_to_core_group,
7324 send_covered, tmpmask);
7325 }
7326 #endif
7327
7328 /* Set up physical groups */
7329 for (i = 0; i < nr_node_ids; i++) {
7330 SCHED_CPUMASK_VAR(nodemask, allmasks);
7331 SCHED_CPUMASK_VAR(send_covered, allmasks);
7332
7333 *nodemask = node_to_cpumask(i);
7334 cpus_and(*nodemask, *nodemask, *cpu_map);
7335 if (cpus_empty(*nodemask))
7336 continue;
7337
7338 init_sched_build_groups(nodemask, cpu_map,
7339 &cpu_to_phys_group,
7340 send_covered, tmpmask);
7341 }
7342
7343 #ifdef CONFIG_NUMA
7344 /* Set up node groups */
7345 if (sd_allnodes) {
7346 SCHED_CPUMASK_VAR(send_covered, allmasks);
7347
7348 init_sched_build_groups(cpu_map, cpu_map,
7349 &cpu_to_allnodes_group,
7350 send_covered, tmpmask);
7351 }
7352
7353 for (i = 0; i < nr_node_ids; i++) {
7354 /* Set up node groups */
7355 struct sched_group *sg, *prev;
7356 SCHED_CPUMASK_VAR(nodemask, allmasks);
7357 SCHED_CPUMASK_VAR(domainspan, allmasks);
7358 SCHED_CPUMASK_VAR(covered, allmasks);
7359 int j;
7360
7361 *nodemask = node_to_cpumask(i);
7362 cpus_clear(*covered);
7363
7364 cpus_and(*nodemask, *nodemask, *cpu_map);
7365 if (cpus_empty(*nodemask)) {
7366 sched_group_nodes[i] = NULL;
7367 continue;
7368 }
7369
7370 sched_domain_node_span(i, domainspan);
7371 cpus_and(*domainspan, *domainspan, *cpu_map);
7372
7373 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7374 if (!sg) {
7375 printk(KERN_WARNING "Can not alloc domain group for "
7376 "node %d\n", i);
7377 goto error;
7378 }
7379 sched_group_nodes[i] = sg;
7380 for_each_cpu_mask_nr(j, *nodemask) {
7381 struct sched_domain *sd;
7382
7383 sd = &per_cpu(node_domains, j);
7384 sd->groups = sg;
7385 }
7386 sg->__cpu_power = 0;
7387 sg->cpumask = *nodemask;
7388 sg->next = sg;
7389 cpus_or(*covered, *covered, *nodemask);
7390 prev = sg;
7391
7392 for (j = 0; j < nr_node_ids; j++) {
7393 SCHED_CPUMASK_VAR(notcovered, allmasks);
7394 int n = (i + j) % nr_node_ids;
7395 node_to_cpumask_ptr(pnodemask, n);
7396
7397 cpus_complement(*notcovered, *covered);
7398 cpus_and(*tmpmask, *notcovered, *cpu_map);
7399 cpus_and(*tmpmask, *tmpmask, *domainspan);
7400 if (cpus_empty(*tmpmask))
7401 break;
7402
7403 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7404 if (cpus_empty(*tmpmask))
7405 continue;
7406
7407 sg = kmalloc_node(sizeof(struct sched_group),
7408 GFP_KERNEL, i);
7409 if (!sg) {
7410 printk(KERN_WARNING
7411 "Can not alloc domain group for node %d\n", j);
7412 goto error;
7413 }
7414 sg->__cpu_power = 0;
7415 sg->cpumask = *tmpmask;
7416 sg->next = prev->next;
7417 cpus_or(*covered, *covered, *tmpmask);
7418 prev->next = sg;
7419 prev = sg;
7420 }
7421 }
7422 #endif
7423
7424 /* Calculate CPU power for physical packages and nodes */
7425 #ifdef CONFIG_SCHED_SMT
7426 for_each_cpu_mask_nr(i, *cpu_map) {
7427 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7428
7429 init_sched_groups_power(i, sd);
7430 }
7431 #endif
7432 #ifdef CONFIG_SCHED_MC
7433 for_each_cpu_mask_nr(i, *cpu_map) {
7434 struct sched_domain *sd = &per_cpu(core_domains, i);
7435
7436 init_sched_groups_power(i, sd);
7437 }
7438 #endif
7439
7440 for_each_cpu_mask_nr(i, *cpu_map) {
7441 struct sched_domain *sd = &per_cpu(phys_domains, i);
7442
7443 init_sched_groups_power(i, sd);
7444 }
7445
7446 #ifdef CONFIG_NUMA
7447 for (i = 0; i < nr_node_ids; i++)
7448 init_numa_sched_groups_power(sched_group_nodes[i]);
7449
7450 if (sd_allnodes) {
7451 struct sched_group *sg;
7452
7453 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7454 tmpmask);
7455 init_numa_sched_groups_power(sg);
7456 }
7457 #endif
7458
7459 /* Attach the domains */
7460 for_each_cpu_mask_nr(i, *cpu_map) {
7461 struct sched_domain *sd;
7462 #ifdef CONFIG_SCHED_SMT
7463 sd = &per_cpu(cpu_domains, i);
7464 #elif defined(CONFIG_SCHED_MC)
7465 sd = &per_cpu(core_domains, i);
7466 #else
7467 sd = &per_cpu(phys_domains, i);
7468 #endif
7469 cpu_attach_domain(sd, rd, i);
7470 }
7471
7472 SCHED_CPUMASK_FREE((void *)allmasks);
7473 return 0;
7474
7475 #ifdef CONFIG_NUMA
7476 error:
7477 free_sched_groups(cpu_map, tmpmask);
7478 SCHED_CPUMASK_FREE((void *)allmasks);
7479 return -ENOMEM;
7480 #endif
7481 }
7482
7483 static int build_sched_domains(const cpumask_t *cpu_map)
7484 {
7485 return __build_sched_domains(cpu_map, NULL);
7486 }
7487
7488 static cpumask_t *doms_cur; /* current sched domains */
7489 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7490 static struct sched_domain_attr *dattr_cur;
7491 /* attribues of custom domains in 'doms_cur' */
7492
7493 /*
7494 * Special case: If a kmalloc of a doms_cur partition (array of
7495 * cpumask_t) fails, then fallback to a single sched domain,
7496 * as determined by the single cpumask_t fallback_doms.
7497 */
7498 static cpumask_t fallback_doms;
7499
7500 void __attribute__((weak)) arch_update_cpu_topology(void)
7501 {
7502 }
7503
7504 /*
7505 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7506 * For now this just excludes isolated cpus, but could be used to
7507 * exclude other special cases in the future.
7508 */
7509 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7510 {
7511 int err;
7512
7513 arch_update_cpu_topology();
7514 ndoms_cur = 1;
7515 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7516 if (!doms_cur)
7517 doms_cur = &fallback_doms;
7518 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7519 dattr_cur = NULL;
7520 err = build_sched_domains(doms_cur);
7521 register_sched_domain_sysctl();
7522
7523 return err;
7524 }
7525
7526 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7527 cpumask_t *tmpmask)
7528 {
7529 free_sched_groups(cpu_map, tmpmask);
7530 }
7531
7532 /*
7533 * Detach sched domains from a group of cpus specified in cpu_map
7534 * These cpus will now be attached to the NULL domain
7535 */
7536 static void detach_destroy_domains(const cpumask_t *cpu_map)
7537 {
7538 cpumask_t tmpmask;
7539 int i;
7540
7541 unregister_sched_domain_sysctl();
7542
7543 for_each_cpu_mask_nr(i, *cpu_map)
7544 cpu_attach_domain(NULL, &def_root_domain, i);
7545 synchronize_sched();
7546 arch_destroy_sched_domains(cpu_map, &tmpmask);
7547 }
7548
7549 /* handle null as "default" */
7550 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7551 struct sched_domain_attr *new, int idx_new)
7552 {
7553 struct sched_domain_attr tmp;
7554
7555 /* fast path */
7556 if (!new && !cur)
7557 return 1;
7558
7559 tmp = SD_ATTR_INIT;
7560 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7561 new ? (new + idx_new) : &tmp,
7562 sizeof(struct sched_domain_attr));
7563 }
7564
7565 /*
7566 * Partition sched domains as specified by the 'ndoms_new'
7567 * cpumasks in the array doms_new[] of cpumasks. This compares
7568 * doms_new[] to the current sched domain partitioning, doms_cur[].
7569 * It destroys each deleted domain and builds each new domain.
7570 *
7571 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7572 * The masks don't intersect (don't overlap.) We should setup one
7573 * sched domain for each mask. CPUs not in any of the cpumasks will
7574 * not be load balanced. If the same cpumask appears both in the
7575 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7576 * it as it is.
7577 *
7578 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7579 * ownership of it and will kfree it when done with it. If the caller
7580 * failed the kmalloc call, then it can pass in doms_new == NULL,
7581 * and partition_sched_domains() will fallback to the single partition
7582 * 'fallback_doms', it also forces the domains to be rebuilt.
7583 *
7584 * Call with hotplug lock held
7585 */
7586 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7587 struct sched_domain_attr *dattr_new)
7588 {
7589 int i, j;
7590
7591 mutex_lock(&sched_domains_mutex);
7592
7593 /* always unregister in case we don't destroy any domains */
7594 unregister_sched_domain_sysctl();
7595
7596 if (doms_new == NULL)
7597 ndoms_new = 0;
7598
7599 /* Destroy deleted domains */
7600 for (i = 0; i < ndoms_cur; i++) {
7601 for (j = 0; j < ndoms_new; j++) {
7602 if (cpus_equal(doms_cur[i], doms_new[j])
7603 && dattrs_equal(dattr_cur, i, dattr_new, j))
7604 goto match1;
7605 }
7606 /* no match - a current sched domain not in new doms_new[] */
7607 detach_destroy_domains(doms_cur + i);
7608 match1:
7609 ;
7610 }
7611
7612 if (doms_new == NULL) {
7613 ndoms_cur = 0;
7614 ndoms_new = 1;
7615 doms_new = &fallback_doms;
7616 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7617 dattr_new = NULL;
7618 }
7619
7620 /* Build new domains */
7621 for (i = 0; i < ndoms_new; i++) {
7622 for (j = 0; j < ndoms_cur; j++) {
7623 if (cpus_equal(doms_new[i], doms_cur[j])
7624 && dattrs_equal(dattr_new, i, dattr_cur, j))
7625 goto match2;
7626 }
7627 /* no match - add a new doms_new */
7628 __build_sched_domains(doms_new + i,
7629 dattr_new ? dattr_new + i : NULL);
7630 match2:
7631 ;
7632 }
7633
7634 /* Remember the new sched domains */
7635 if (doms_cur != &fallback_doms)
7636 kfree(doms_cur);
7637 kfree(dattr_cur); /* kfree(NULL) is safe */
7638 doms_cur = doms_new;
7639 dattr_cur = dattr_new;
7640 ndoms_cur = ndoms_new;
7641
7642 register_sched_domain_sysctl();
7643
7644 mutex_unlock(&sched_domains_mutex);
7645 }
7646
7647 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7648 int arch_reinit_sched_domains(void)
7649 {
7650 get_online_cpus();
7651 rebuild_sched_domains();
7652 put_online_cpus();
7653 return 0;
7654 }
7655
7656 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7657 {
7658 int ret;
7659
7660 if (buf[0] != '0' && buf[0] != '1')
7661 return -EINVAL;
7662
7663 if (smt)
7664 sched_smt_power_savings = (buf[0] == '1');
7665 else
7666 sched_mc_power_savings = (buf[0] == '1');
7667
7668 ret = arch_reinit_sched_domains();
7669
7670 return ret ? ret : count;
7671 }
7672
7673 #ifdef CONFIG_SCHED_MC
7674 static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
7675 struct sysdev_attribute *attr, char *page)
7676 {
7677 return sprintf(page, "%u\n", sched_mc_power_savings);
7678 }
7679 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7680 struct sysdev_attribute *attr,
7681 const char *buf, size_t count)
7682 {
7683 return sched_power_savings_store(buf, count, 0);
7684 }
7685 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7686 sched_mc_power_savings_store);
7687 #endif
7688
7689 #ifdef CONFIG_SCHED_SMT
7690 static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
7691 struct sysdev_attribute *attr, char *page)
7692 {
7693 return sprintf(page, "%u\n", sched_smt_power_savings);
7694 }
7695 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7696 struct sysdev_attribute *attr,
7697 const char *buf, size_t count)
7698 {
7699 return sched_power_savings_store(buf, count, 1);
7700 }
7701 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7702 sched_smt_power_savings_store);
7703 #endif
7704
7705 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7706 {
7707 int err = 0;
7708
7709 #ifdef CONFIG_SCHED_SMT
7710 if (smt_capable())
7711 err = sysfs_create_file(&cls->kset.kobj,
7712 &attr_sched_smt_power_savings.attr);
7713 #endif
7714 #ifdef CONFIG_SCHED_MC
7715 if (!err && mc_capable())
7716 err = sysfs_create_file(&cls->kset.kobj,
7717 &attr_sched_mc_power_savings.attr);
7718 #endif
7719 return err;
7720 }
7721 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7722
7723 #ifndef CONFIG_CPUSETS
7724 /*
7725 * Add online and remove offline CPUs from the scheduler domains.
7726 * When cpusets are enabled they take over this function.
7727 */
7728 static int update_sched_domains(struct notifier_block *nfb,
7729 unsigned long action, void *hcpu)
7730 {
7731 switch (action) {
7732 case CPU_ONLINE:
7733 case CPU_ONLINE_FROZEN:
7734 case CPU_DEAD:
7735 case CPU_DEAD_FROZEN:
7736 partition_sched_domains(0, NULL, NULL);
7737 return NOTIFY_OK;
7738
7739 default:
7740 return NOTIFY_DONE;
7741 }
7742 }
7743 #endif
7744
7745 static int update_runtime(struct notifier_block *nfb,
7746 unsigned long action, void *hcpu)
7747 {
7748 int cpu = (int)(long)hcpu;
7749
7750 switch (action) {
7751 case CPU_DOWN_PREPARE:
7752 case CPU_DOWN_PREPARE_FROZEN:
7753 disable_runtime(cpu_rq(cpu));
7754 return NOTIFY_OK;
7755
7756 case CPU_DOWN_FAILED:
7757 case CPU_DOWN_FAILED_FROZEN:
7758 case CPU_ONLINE:
7759 case CPU_ONLINE_FROZEN:
7760 enable_runtime(cpu_rq(cpu));
7761 return NOTIFY_OK;
7762
7763 default:
7764 return NOTIFY_DONE;
7765 }
7766 }
7767
7768 void __init sched_init_smp(void)
7769 {
7770 cpumask_t non_isolated_cpus;
7771
7772 #if defined(CONFIG_NUMA)
7773 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7774 GFP_KERNEL);
7775 BUG_ON(sched_group_nodes_bycpu == NULL);
7776 #endif
7777 get_online_cpus();
7778 mutex_lock(&sched_domains_mutex);
7779 arch_init_sched_domains(&cpu_online_map);
7780 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7781 if (cpus_empty(non_isolated_cpus))
7782 cpu_set(smp_processor_id(), non_isolated_cpus);
7783 mutex_unlock(&sched_domains_mutex);
7784 put_online_cpus();
7785
7786 #ifndef CONFIG_CPUSETS
7787 /* XXX: Theoretical race here - CPU may be hotplugged now */
7788 hotcpu_notifier(update_sched_domains, 0);
7789 #endif
7790
7791 /* RT runtime code needs to handle some hotplug events */
7792 hotcpu_notifier(update_runtime, 0);
7793
7794 init_hrtick();
7795
7796 /* Move init over to a non-isolated CPU */
7797 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7798 BUG();
7799 sched_init_granularity();
7800 }
7801 #else
7802 void __init sched_init_smp(void)
7803 {
7804 sched_init_granularity();
7805 }
7806 #endif /* CONFIG_SMP */
7807
7808 int in_sched_functions(unsigned long addr)
7809 {
7810 return in_lock_functions(addr) ||
7811 (addr >= (unsigned long)__sched_text_start
7812 && addr < (unsigned long)__sched_text_end);
7813 }
7814
7815 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7816 {
7817 cfs_rq->tasks_timeline = RB_ROOT;
7818 INIT_LIST_HEAD(&cfs_rq->tasks);
7819 #ifdef CONFIG_FAIR_GROUP_SCHED
7820 cfs_rq->rq = rq;
7821 #endif
7822 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7823 }
7824
7825 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7826 {
7827 struct rt_prio_array *array;
7828 int i;
7829
7830 array = &rt_rq->active;
7831 for (i = 0; i < MAX_RT_PRIO; i++) {
7832 INIT_LIST_HEAD(array->queue + i);
7833 __clear_bit(i, array->bitmap);
7834 }
7835 /* delimiter for bitsearch: */
7836 __set_bit(MAX_RT_PRIO, array->bitmap);
7837
7838 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7839 rt_rq->highest_prio = MAX_RT_PRIO;
7840 #endif
7841 #ifdef CONFIG_SMP
7842 rt_rq->rt_nr_migratory = 0;
7843 rt_rq->overloaded = 0;
7844 #endif
7845
7846 rt_rq->rt_time = 0;
7847 rt_rq->rt_throttled = 0;
7848 rt_rq->rt_runtime = 0;
7849 spin_lock_init(&rt_rq->rt_runtime_lock);
7850
7851 #ifdef CONFIG_RT_GROUP_SCHED
7852 rt_rq->rt_nr_boosted = 0;
7853 rt_rq->rq = rq;
7854 #endif
7855 }
7856
7857 #ifdef CONFIG_FAIR_GROUP_SCHED
7858 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7859 struct sched_entity *se, int cpu, int add,
7860 struct sched_entity *parent)
7861 {
7862 struct rq *rq = cpu_rq(cpu);
7863 tg->cfs_rq[cpu] = cfs_rq;
7864 init_cfs_rq(cfs_rq, rq);
7865 cfs_rq->tg = tg;
7866 if (add)
7867 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7868
7869 tg->se[cpu] = se;
7870 /* se could be NULL for init_task_group */
7871 if (!se)
7872 return;
7873
7874 if (!parent)
7875 se->cfs_rq = &rq->cfs;
7876 else
7877 se->cfs_rq = parent->my_q;
7878
7879 se->my_q = cfs_rq;
7880 se->load.weight = tg->shares;
7881 se->load.inv_weight = 0;
7882 se->parent = parent;
7883 }
7884 #endif
7885
7886 #ifdef CONFIG_RT_GROUP_SCHED
7887 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7888 struct sched_rt_entity *rt_se, int cpu, int add,
7889 struct sched_rt_entity *parent)
7890 {
7891 struct rq *rq = cpu_rq(cpu);
7892
7893 tg->rt_rq[cpu] = rt_rq;
7894 init_rt_rq(rt_rq, rq);
7895 rt_rq->tg = tg;
7896 rt_rq->rt_se = rt_se;
7897 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7898 if (add)
7899 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7900
7901 tg->rt_se[cpu] = rt_se;
7902 if (!rt_se)
7903 return;
7904
7905 if (!parent)
7906 rt_se->rt_rq = &rq->rt;
7907 else
7908 rt_se->rt_rq = parent->my_q;
7909
7910 rt_se->my_q = rt_rq;
7911 rt_se->parent = parent;
7912 INIT_LIST_HEAD(&rt_se->run_list);
7913 }
7914 #endif
7915
7916 void __init sched_init(void)
7917 {
7918 int i, j;
7919 unsigned long alloc_size = 0, ptr;
7920
7921 #ifdef CONFIG_FAIR_GROUP_SCHED
7922 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7923 #endif
7924 #ifdef CONFIG_RT_GROUP_SCHED
7925 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7926 #endif
7927 #ifdef CONFIG_USER_SCHED
7928 alloc_size *= 2;
7929 #endif
7930 /*
7931 * As sched_init() is called before page_alloc is setup,
7932 * we use alloc_bootmem().
7933 */
7934 if (alloc_size) {
7935 ptr = (unsigned long)alloc_bootmem(alloc_size);
7936
7937 #ifdef CONFIG_FAIR_GROUP_SCHED
7938 init_task_group.se = (struct sched_entity **)ptr;
7939 ptr += nr_cpu_ids * sizeof(void **);
7940
7941 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7942 ptr += nr_cpu_ids * sizeof(void **);
7943
7944 #ifdef CONFIG_USER_SCHED
7945 root_task_group.se = (struct sched_entity **)ptr;
7946 ptr += nr_cpu_ids * sizeof(void **);
7947
7948 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7949 ptr += nr_cpu_ids * sizeof(void **);
7950 #endif /* CONFIG_USER_SCHED */
7951 #endif /* CONFIG_FAIR_GROUP_SCHED */
7952 #ifdef CONFIG_RT_GROUP_SCHED
7953 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7954 ptr += nr_cpu_ids * sizeof(void **);
7955
7956 init_task_group.rt_rq = (struct rt_rq **)ptr;
7957 ptr += nr_cpu_ids * sizeof(void **);
7958
7959 #ifdef CONFIG_USER_SCHED
7960 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7961 ptr += nr_cpu_ids * sizeof(void **);
7962
7963 root_task_group.rt_rq = (struct rt_rq **)ptr;
7964 ptr += nr_cpu_ids * sizeof(void **);
7965 #endif /* CONFIG_USER_SCHED */
7966 #endif /* CONFIG_RT_GROUP_SCHED */
7967 }
7968
7969 #ifdef CONFIG_SMP
7970 init_defrootdomain();
7971 #endif
7972
7973 init_rt_bandwidth(&def_rt_bandwidth,
7974 global_rt_period(), global_rt_runtime());
7975
7976 #ifdef CONFIG_RT_GROUP_SCHED
7977 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7978 global_rt_period(), global_rt_runtime());
7979 #ifdef CONFIG_USER_SCHED
7980 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7981 global_rt_period(), RUNTIME_INF);
7982 #endif /* CONFIG_USER_SCHED */
7983 #endif /* CONFIG_RT_GROUP_SCHED */
7984
7985 #ifdef CONFIG_GROUP_SCHED
7986 list_add(&init_task_group.list, &task_groups);
7987 INIT_LIST_HEAD(&init_task_group.children);
7988
7989 #ifdef CONFIG_USER_SCHED
7990 INIT_LIST_HEAD(&root_task_group.children);
7991 init_task_group.parent = &root_task_group;
7992 list_add(&init_task_group.siblings, &root_task_group.children);
7993 #endif /* CONFIG_USER_SCHED */
7994 #endif /* CONFIG_GROUP_SCHED */
7995
7996 for_each_possible_cpu(i) {
7997 struct rq *rq;
7998
7999 rq = cpu_rq(i);
8000 spin_lock_init(&rq->lock);
8001 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
8002 rq->nr_running = 0;
8003 init_cfs_rq(&rq->cfs, rq);
8004 init_rt_rq(&rq->rt, rq);
8005 #ifdef CONFIG_FAIR_GROUP_SCHED
8006 init_task_group.shares = init_task_group_load;
8007 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8008 #ifdef CONFIG_CGROUP_SCHED
8009 /*
8010 * How much cpu bandwidth does init_task_group get?
8011 *
8012 * In case of task-groups formed thr' the cgroup filesystem, it
8013 * gets 100% of the cpu resources in the system. This overall
8014 * system cpu resource is divided among the tasks of
8015 * init_task_group and its child task-groups in a fair manner,
8016 * based on each entity's (task or task-group's) weight
8017 * (se->load.weight).
8018 *
8019 * In other words, if init_task_group has 10 tasks of weight
8020 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8021 * then A0's share of the cpu resource is:
8022 *
8023 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8024 *
8025 * We achieve this by letting init_task_group's tasks sit
8026 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8027 */
8028 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8029 #elif defined CONFIG_USER_SCHED
8030 root_task_group.shares = NICE_0_LOAD;
8031 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8032 /*
8033 * In case of task-groups formed thr' the user id of tasks,
8034 * init_task_group represents tasks belonging to root user.
8035 * Hence it forms a sibling of all subsequent groups formed.
8036 * In this case, init_task_group gets only a fraction of overall
8037 * system cpu resource, based on the weight assigned to root
8038 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8039 * by letting tasks of init_task_group sit in a separate cfs_rq
8040 * (init_cfs_rq) and having one entity represent this group of
8041 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8042 */
8043 init_tg_cfs_entry(&init_task_group,
8044 &per_cpu(init_cfs_rq, i),
8045 &per_cpu(init_sched_entity, i), i, 1,
8046 root_task_group.se[i]);
8047
8048 #endif
8049 #endif /* CONFIG_FAIR_GROUP_SCHED */
8050
8051 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8052 #ifdef CONFIG_RT_GROUP_SCHED
8053 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8054 #ifdef CONFIG_CGROUP_SCHED
8055 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8056 #elif defined CONFIG_USER_SCHED
8057 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8058 init_tg_rt_entry(&init_task_group,
8059 &per_cpu(init_rt_rq, i),
8060 &per_cpu(init_sched_rt_entity, i), i, 1,
8061 root_task_group.rt_se[i]);
8062 #endif
8063 #endif
8064
8065 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8066 rq->cpu_load[j] = 0;
8067 #ifdef CONFIG_SMP
8068 rq->sd = NULL;
8069 rq->rd = NULL;
8070 rq->active_balance = 0;
8071 rq->next_balance = jiffies;
8072 rq->push_cpu = 0;
8073 rq->cpu = i;
8074 rq->online = 0;
8075 rq->migration_thread = NULL;
8076 INIT_LIST_HEAD(&rq->migration_queue);
8077 rq_attach_root(rq, &def_root_domain);
8078 #endif
8079 init_rq_hrtick(rq);
8080 atomic_set(&rq->nr_iowait, 0);
8081 }
8082
8083 set_load_weight(&init_task);
8084
8085 #ifdef CONFIG_PREEMPT_NOTIFIERS
8086 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8087 #endif
8088
8089 #ifdef CONFIG_SMP
8090 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8091 #endif
8092
8093 #ifdef CONFIG_RT_MUTEXES
8094 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8095 #endif
8096
8097 /*
8098 * The boot idle thread does lazy MMU switching as well:
8099 */
8100 atomic_inc(&init_mm.mm_count);
8101 enter_lazy_tlb(&init_mm, current);
8102
8103 /*
8104 * Make us the idle thread. Technically, schedule() should not be
8105 * called from this thread, however somewhere below it might be,
8106 * but because we are the idle thread, we just pick up running again
8107 * when this runqueue becomes "idle".
8108 */
8109 init_idle(current, smp_processor_id());
8110 /*
8111 * During early bootup we pretend to be a normal task:
8112 */
8113 current->sched_class = &fair_sched_class;
8114
8115 scheduler_running = 1;
8116 }
8117
8118 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8119 void __might_sleep(char *file, int line)
8120 {
8121 #ifdef in_atomic
8122 static unsigned long prev_jiffy; /* ratelimiting */
8123
8124 if ((in_atomic() || irqs_disabled()) &&
8125 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8126 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8127 return;
8128 prev_jiffy = jiffies;
8129 printk(KERN_ERR "BUG: sleeping function called from invalid"
8130 " context at %s:%d\n", file, line);
8131 printk("in_atomic():%d, irqs_disabled():%d\n",
8132 in_atomic(), irqs_disabled());
8133 debug_show_held_locks(current);
8134 if (irqs_disabled())
8135 print_irqtrace_events(current);
8136 dump_stack();
8137 }
8138 #endif
8139 }
8140 EXPORT_SYMBOL(__might_sleep);
8141 #endif
8142
8143 #ifdef CONFIG_MAGIC_SYSRQ
8144 static void normalize_task(struct rq *rq, struct task_struct *p)
8145 {
8146 int on_rq;
8147
8148 update_rq_clock(rq);
8149 on_rq = p->se.on_rq;
8150 if (on_rq)
8151 deactivate_task(rq, p, 0);
8152 __setscheduler(rq, p, SCHED_NORMAL, 0);
8153 if (on_rq) {
8154 activate_task(rq, p, 0);
8155 resched_task(rq->curr);
8156 }
8157 }
8158
8159 void normalize_rt_tasks(void)
8160 {
8161 struct task_struct *g, *p;
8162 unsigned long flags;
8163 struct rq *rq;
8164
8165 read_lock_irqsave(&tasklist_lock, flags);
8166 do_each_thread(g, p) {
8167 /*
8168 * Only normalize user tasks:
8169 */
8170 if (!p->mm)
8171 continue;
8172
8173 p->se.exec_start = 0;
8174 #ifdef CONFIG_SCHEDSTATS
8175 p->se.wait_start = 0;
8176 p->se.sleep_start = 0;
8177 p->se.block_start = 0;
8178 #endif
8179
8180 if (!rt_task(p)) {
8181 /*
8182 * Renice negative nice level userspace
8183 * tasks back to 0:
8184 */
8185 if (TASK_NICE(p) < 0 && p->mm)
8186 set_user_nice(p, 0);
8187 continue;
8188 }
8189
8190 spin_lock(&p->pi_lock);
8191 rq = __task_rq_lock(p);
8192
8193 normalize_task(rq, p);
8194
8195 __task_rq_unlock(rq);
8196 spin_unlock(&p->pi_lock);
8197 } while_each_thread(g, p);
8198
8199 read_unlock_irqrestore(&tasklist_lock, flags);
8200 }
8201
8202 #endif /* CONFIG_MAGIC_SYSRQ */
8203
8204 #ifdef CONFIG_IA64
8205 /*
8206 * These functions are only useful for the IA64 MCA handling.
8207 *
8208 * They can only be called when the whole system has been
8209 * stopped - every CPU needs to be quiescent, and no scheduling
8210 * activity can take place. Using them for anything else would
8211 * be a serious bug, and as a result, they aren't even visible
8212 * under any other configuration.
8213 */
8214
8215 /**
8216 * curr_task - return the current task for a given cpu.
8217 * @cpu: the processor in question.
8218 *
8219 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8220 */
8221 struct task_struct *curr_task(int cpu)
8222 {
8223 return cpu_curr(cpu);
8224 }
8225
8226 /**
8227 * set_curr_task - set the current task for a given cpu.
8228 * @cpu: the processor in question.
8229 * @p: the task pointer to set.
8230 *
8231 * Description: This function must only be used when non-maskable interrupts
8232 * are serviced on a separate stack. It allows the architecture to switch the
8233 * notion of the current task on a cpu in a non-blocking manner. This function
8234 * must be called with all CPU's synchronized, and interrupts disabled, the
8235 * and caller must save the original value of the current task (see
8236 * curr_task() above) and restore that value before reenabling interrupts and
8237 * re-starting the system.
8238 *
8239 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8240 */
8241 void set_curr_task(int cpu, struct task_struct *p)
8242 {
8243 cpu_curr(cpu) = p;
8244 }
8245
8246 #endif
8247
8248 #ifdef CONFIG_FAIR_GROUP_SCHED
8249 static void free_fair_sched_group(struct task_group *tg)
8250 {
8251 int i;
8252
8253 for_each_possible_cpu(i) {
8254 if (tg->cfs_rq)
8255 kfree(tg->cfs_rq[i]);
8256 if (tg->se)
8257 kfree(tg->se[i]);
8258 }
8259
8260 kfree(tg->cfs_rq);
8261 kfree(tg->se);
8262 }
8263
8264 static
8265 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8266 {
8267 struct cfs_rq *cfs_rq;
8268 struct sched_entity *se, *parent_se;
8269 struct rq *rq;
8270 int i;
8271
8272 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8273 if (!tg->cfs_rq)
8274 goto err;
8275 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8276 if (!tg->se)
8277 goto err;
8278
8279 tg->shares = NICE_0_LOAD;
8280
8281 for_each_possible_cpu(i) {
8282 rq = cpu_rq(i);
8283
8284 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8285 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8286 if (!cfs_rq)
8287 goto err;
8288
8289 se = kmalloc_node(sizeof(struct sched_entity),
8290 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8291 if (!se)
8292 goto err;
8293
8294 parent_se = parent ? parent->se[i] : NULL;
8295 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8296 }
8297
8298 return 1;
8299
8300 err:
8301 return 0;
8302 }
8303
8304 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8305 {
8306 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8307 &cpu_rq(cpu)->leaf_cfs_rq_list);
8308 }
8309
8310 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8311 {
8312 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8313 }
8314 #else /* !CONFG_FAIR_GROUP_SCHED */
8315 static inline void free_fair_sched_group(struct task_group *tg)
8316 {
8317 }
8318
8319 static inline
8320 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8321 {
8322 return 1;
8323 }
8324
8325 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8326 {
8327 }
8328
8329 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8330 {
8331 }
8332 #endif /* CONFIG_FAIR_GROUP_SCHED */
8333
8334 #ifdef CONFIG_RT_GROUP_SCHED
8335 static void free_rt_sched_group(struct task_group *tg)
8336 {
8337 int i;
8338
8339 destroy_rt_bandwidth(&tg->rt_bandwidth);
8340
8341 for_each_possible_cpu(i) {
8342 if (tg->rt_rq)
8343 kfree(tg->rt_rq[i]);
8344 if (tg->rt_se)
8345 kfree(tg->rt_se[i]);
8346 }
8347
8348 kfree(tg->rt_rq);
8349 kfree(tg->rt_se);
8350 }
8351
8352 static
8353 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8354 {
8355 struct rt_rq *rt_rq;
8356 struct sched_rt_entity *rt_se, *parent_se;
8357 struct rq *rq;
8358 int i;
8359
8360 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8361 if (!tg->rt_rq)
8362 goto err;
8363 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8364 if (!tg->rt_se)
8365 goto err;
8366
8367 init_rt_bandwidth(&tg->rt_bandwidth,
8368 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8369
8370 for_each_possible_cpu(i) {
8371 rq = cpu_rq(i);
8372
8373 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8374 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8375 if (!rt_rq)
8376 goto err;
8377
8378 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8379 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8380 if (!rt_se)
8381 goto err;
8382
8383 parent_se = parent ? parent->rt_se[i] : NULL;
8384 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8385 }
8386
8387 return 1;
8388
8389 err:
8390 return 0;
8391 }
8392
8393 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8394 {
8395 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8396 &cpu_rq(cpu)->leaf_rt_rq_list);
8397 }
8398
8399 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8400 {
8401 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8402 }
8403 #else /* !CONFIG_RT_GROUP_SCHED */
8404 static inline void free_rt_sched_group(struct task_group *tg)
8405 {
8406 }
8407
8408 static inline
8409 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8410 {
8411 return 1;
8412 }
8413
8414 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8415 {
8416 }
8417
8418 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8419 {
8420 }
8421 #endif /* CONFIG_RT_GROUP_SCHED */
8422
8423 #ifdef CONFIG_GROUP_SCHED
8424 static void free_sched_group(struct task_group *tg)
8425 {
8426 free_fair_sched_group(tg);
8427 free_rt_sched_group(tg);
8428 kfree(tg);
8429 }
8430
8431 /* allocate runqueue etc for a new task group */
8432 struct task_group *sched_create_group(struct task_group *parent)
8433 {
8434 struct task_group *tg;
8435 unsigned long flags;
8436 int i;
8437
8438 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8439 if (!tg)
8440 return ERR_PTR(-ENOMEM);
8441
8442 if (!alloc_fair_sched_group(tg, parent))
8443 goto err;
8444
8445 if (!alloc_rt_sched_group(tg, parent))
8446 goto err;
8447
8448 spin_lock_irqsave(&task_group_lock, flags);
8449 for_each_possible_cpu(i) {
8450 register_fair_sched_group(tg, i);
8451 register_rt_sched_group(tg, i);
8452 }
8453 list_add_rcu(&tg->list, &task_groups);
8454
8455 WARN_ON(!parent); /* root should already exist */
8456
8457 tg->parent = parent;
8458 list_add_rcu(&tg->siblings, &parent->children);
8459 INIT_LIST_HEAD(&tg->children);
8460 spin_unlock_irqrestore(&task_group_lock, flags);
8461
8462 return tg;
8463
8464 err:
8465 free_sched_group(tg);
8466 return ERR_PTR(-ENOMEM);
8467 }
8468
8469 /* rcu callback to free various structures associated with a task group */
8470 static void free_sched_group_rcu(struct rcu_head *rhp)
8471 {
8472 /* now it should be safe to free those cfs_rqs */
8473 free_sched_group(container_of(rhp, struct task_group, rcu));
8474 }
8475
8476 /* Destroy runqueue etc associated with a task group */
8477 void sched_destroy_group(struct task_group *tg)
8478 {
8479 unsigned long flags;
8480 int i;
8481
8482 spin_lock_irqsave(&task_group_lock, flags);
8483 for_each_possible_cpu(i) {
8484 unregister_fair_sched_group(tg, i);
8485 unregister_rt_sched_group(tg, i);
8486 }
8487 list_del_rcu(&tg->list);
8488 list_del_rcu(&tg->siblings);
8489 spin_unlock_irqrestore(&task_group_lock, flags);
8490
8491 /* wait for possible concurrent references to cfs_rqs complete */
8492 call_rcu(&tg->rcu, free_sched_group_rcu);
8493 }
8494
8495 /* change task's runqueue when it moves between groups.
8496 * The caller of this function should have put the task in its new group
8497 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8498 * reflect its new group.
8499 */
8500 void sched_move_task(struct task_struct *tsk)
8501 {
8502 int on_rq, running;
8503 unsigned long flags;
8504 struct rq *rq;
8505
8506 rq = task_rq_lock(tsk, &flags);
8507
8508 update_rq_clock(rq);
8509
8510 running = task_current(rq, tsk);
8511 on_rq = tsk->se.on_rq;
8512
8513 if (on_rq)
8514 dequeue_task(rq, tsk, 0);
8515 if (unlikely(running))
8516 tsk->sched_class->put_prev_task(rq, tsk);
8517
8518 set_task_rq(tsk, task_cpu(tsk));
8519
8520 #ifdef CONFIG_FAIR_GROUP_SCHED
8521 if (tsk->sched_class->moved_group)
8522 tsk->sched_class->moved_group(tsk);
8523 #endif
8524
8525 if (unlikely(running))
8526 tsk->sched_class->set_curr_task(rq);
8527 if (on_rq)
8528 enqueue_task(rq, tsk, 0);
8529
8530 task_rq_unlock(rq, &flags);
8531 }
8532 #endif /* CONFIG_GROUP_SCHED */
8533
8534 #ifdef CONFIG_FAIR_GROUP_SCHED
8535 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8536 {
8537 struct cfs_rq *cfs_rq = se->cfs_rq;
8538 int on_rq;
8539
8540 on_rq = se->on_rq;
8541 if (on_rq)
8542 dequeue_entity(cfs_rq, se, 0);
8543
8544 se->load.weight = shares;
8545 se->load.inv_weight = 0;
8546
8547 if (on_rq)
8548 enqueue_entity(cfs_rq, se, 0);
8549 }
8550
8551 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8552 {
8553 struct cfs_rq *cfs_rq = se->cfs_rq;
8554 struct rq *rq = cfs_rq->rq;
8555 unsigned long flags;
8556
8557 spin_lock_irqsave(&rq->lock, flags);
8558 __set_se_shares(se, shares);
8559 spin_unlock_irqrestore(&rq->lock, flags);
8560 }
8561
8562 static DEFINE_MUTEX(shares_mutex);
8563
8564 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8565 {
8566 int i;
8567 unsigned long flags;
8568
8569 /*
8570 * We can't change the weight of the root cgroup.
8571 */
8572 if (!tg->se[0])
8573 return -EINVAL;
8574
8575 if (shares < MIN_SHARES)
8576 shares = MIN_SHARES;
8577 else if (shares > MAX_SHARES)
8578 shares = MAX_SHARES;
8579
8580 mutex_lock(&shares_mutex);
8581 if (tg->shares == shares)
8582 goto done;
8583
8584 spin_lock_irqsave(&task_group_lock, flags);
8585 for_each_possible_cpu(i)
8586 unregister_fair_sched_group(tg, i);
8587 list_del_rcu(&tg->siblings);
8588 spin_unlock_irqrestore(&task_group_lock, flags);
8589
8590 /* wait for any ongoing reference to this group to finish */
8591 synchronize_sched();
8592
8593 /*
8594 * Now we are free to modify the group's share on each cpu
8595 * w/o tripping rebalance_share or load_balance_fair.
8596 */
8597 tg->shares = shares;
8598 for_each_possible_cpu(i) {
8599 /*
8600 * force a rebalance
8601 */
8602 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8603 set_se_shares(tg->se[i], shares);
8604 }
8605
8606 /*
8607 * Enable load balance activity on this group, by inserting it back on
8608 * each cpu's rq->leaf_cfs_rq_list.
8609 */
8610 spin_lock_irqsave(&task_group_lock, flags);
8611 for_each_possible_cpu(i)
8612 register_fair_sched_group(tg, i);
8613 list_add_rcu(&tg->siblings, &tg->parent->children);
8614 spin_unlock_irqrestore(&task_group_lock, flags);
8615 done:
8616 mutex_unlock(&shares_mutex);
8617 return 0;
8618 }
8619
8620 unsigned long sched_group_shares(struct task_group *tg)
8621 {
8622 return tg->shares;
8623 }
8624 #endif
8625
8626 #ifdef CONFIG_RT_GROUP_SCHED
8627 /*
8628 * Ensure that the real time constraints are schedulable.
8629 */
8630 static DEFINE_MUTEX(rt_constraints_mutex);
8631
8632 static unsigned long to_ratio(u64 period, u64 runtime)
8633 {
8634 if (runtime == RUNTIME_INF)
8635 return 1ULL << 16;
8636
8637 return div64_u64(runtime << 16, period);
8638 }
8639
8640 #ifdef CONFIG_CGROUP_SCHED
8641 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8642 {
8643 struct task_group *tgi, *parent = tg->parent;
8644 unsigned long total = 0;
8645
8646 if (!parent) {
8647 if (global_rt_period() < period)
8648 return 0;
8649
8650 return to_ratio(period, runtime) <
8651 to_ratio(global_rt_period(), global_rt_runtime());
8652 }
8653
8654 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8655 return 0;
8656
8657 rcu_read_lock();
8658 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8659 if (tgi == tg)
8660 continue;
8661
8662 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8663 tgi->rt_bandwidth.rt_runtime);
8664 }
8665 rcu_read_unlock();
8666
8667 return total + to_ratio(period, runtime) <=
8668 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8669 parent->rt_bandwidth.rt_runtime);
8670 }
8671 #elif defined CONFIG_USER_SCHED
8672 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8673 {
8674 struct task_group *tgi;
8675 unsigned long total = 0;
8676 unsigned long global_ratio =
8677 to_ratio(global_rt_period(), global_rt_runtime());
8678
8679 rcu_read_lock();
8680 list_for_each_entry_rcu(tgi, &task_groups, list) {
8681 if (tgi == tg)
8682 continue;
8683
8684 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8685 tgi->rt_bandwidth.rt_runtime);
8686 }
8687 rcu_read_unlock();
8688
8689 return total + to_ratio(period, runtime) < global_ratio;
8690 }
8691 #endif
8692
8693 /* Must be called with tasklist_lock held */
8694 static inline int tg_has_rt_tasks(struct task_group *tg)
8695 {
8696 struct task_struct *g, *p;
8697 do_each_thread(g, p) {
8698 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8699 return 1;
8700 } while_each_thread(g, p);
8701 return 0;
8702 }
8703
8704 static int tg_set_bandwidth(struct task_group *tg,
8705 u64 rt_period, u64 rt_runtime)
8706 {
8707 int i, err = 0;
8708
8709 mutex_lock(&rt_constraints_mutex);
8710 read_lock(&tasklist_lock);
8711 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8712 err = -EBUSY;
8713 goto unlock;
8714 }
8715 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8716 err = -EINVAL;
8717 goto unlock;
8718 }
8719
8720 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8721 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8722 tg->rt_bandwidth.rt_runtime = rt_runtime;
8723
8724 for_each_possible_cpu(i) {
8725 struct rt_rq *rt_rq = tg->rt_rq[i];
8726
8727 spin_lock(&rt_rq->rt_runtime_lock);
8728 rt_rq->rt_runtime = rt_runtime;
8729 spin_unlock(&rt_rq->rt_runtime_lock);
8730 }
8731 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8732 unlock:
8733 read_unlock(&tasklist_lock);
8734 mutex_unlock(&rt_constraints_mutex);
8735
8736 return err;
8737 }
8738
8739 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8740 {
8741 u64 rt_runtime, rt_period;
8742
8743 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8744 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8745 if (rt_runtime_us < 0)
8746 rt_runtime = RUNTIME_INF;
8747
8748 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8749 }
8750
8751 long sched_group_rt_runtime(struct task_group *tg)
8752 {
8753 u64 rt_runtime_us;
8754
8755 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8756 return -1;
8757
8758 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8759 do_div(rt_runtime_us, NSEC_PER_USEC);
8760 return rt_runtime_us;
8761 }
8762
8763 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8764 {
8765 u64 rt_runtime, rt_period;
8766
8767 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8768 rt_runtime = tg->rt_bandwidth.rt_runtime;
8769
8770 if (rt_period == 0)
8771 return -EINVAL;
8772
8773 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8774 }
8775
8776 long sched_group_rt_period(struct task_group *tg)
8777 {
8778 u64 rt_period_us;
8779
8780 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8781 do_div(rt_period_us, NSEC_PER_USEC);
8782 return rt_period_us;
8783 }
8784
8785 static int sched_rt_global_constraints(void)
8786 {
8787 struct task_group *tg = &root_task_group;
8788 u64 rt_runtime, rt_period;
8789 int ret = 0;
8790
8791 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8792 rt_runtime = tg->rt_bandwidth.rt_runtime;
8793
8794 mutex_lock(&rt_constraints_mutex);
8795 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8796 ret = -EINVAL;
8797 mutex_unlock(&rt_constraints_mutex);
8798
8799 return ret;
8800 }
8801 #else /* !CONFIG_RT_GROUP_SCHED */
8802 static int sched_rt_global_constraints(void)
8803 {
8804 unsigned long flags;
8805 int i;
8806
8807 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8808 for_each_possible_cpu(i) {
8809 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8810
8811 spin_lock(&rt_rq->rt_runtime_lock);
8812 rt_rq->rt_runtime = global_rt_runtime();
8813 spin_unlock(&rt_rq->rt_runtime_lock);
8814 }
8815 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8816
8817 return 0;
8818 }
8819 #endif /* CONFIG_RT_GROUP_SCHED */
8820
8821 int sched_rt_handler(struct ctl_table *table, int write,
8822 struct file *filp, void __user *buffer, size_t *lenp,
8823 loff_t *ppos)
8824 {
8825 int ret;
8826 int old_period, old_runtime;
8827 static DEFINE_MUTEX(mutex);
8828
8829 mutex_lock(&mutex);
8830 old_period = sysctl_sched_rt_period;
8831 old_runtime = sysctl_sched_rt_runtime;
8832
8833 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8834
8835 if (!ret && write) {
8836 ret = sched_rt_global_constraints();
8837 if (ret) {
8838 sysctl_sched_rt_period = old_period;
8839 sysctl_sched_rt_runtime = old_runtime;
8840 } else {
8841 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8842 def_rt_bandwidth.rt_period =
8843 ns_to_ktime(global_rt_period());
8844 }
8845 }
8846 mutex_unlock(&mutex);
8847
8848 return ret;
8849 }
8850
8851 #ifdef CONFIG_CGROUP_SCHED
8852
8853 /* return corresponding task_group object of a cgroup */
8854 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8855 {
8856 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8857 struct task_group, css);
8858 }
8859
8860 static struct cgroup_subsys_state *
8861 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8862 {
8863 struct task_group *tg, *parent;
8864
8865 if (!cgrp->parent) {
8866 /* This is early initialization for the top cgroup */
8867 init_task_group.css.cgroup = cgrp;
8868 return &init_task_group.css;
8869 }
8870
8871 parent = cgroup_tg(cgrp->parent);
8872 tg = sched_create_group(parent);
8873 if (IS_ERR(tg))
8874 return ERR_PTR(-ENOMEM);
8875
8876 /* Bind the cgroup to task_group object we just created */
8877 tg->css.cgroup = cgrp;
8878
8879 return &tg->css;
8880 }
8881
8882 static void
8883 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8884 {
8885 struct task_group *tg = cgroup_tg(cgrp);
8886
8887 sched_destroy_group(tg);
8888 }
8889
8890 static int
8891 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8892 struct task_struct *tsk)
8893 {
8894 #ifdef CONFIG_RT_GROUP_SCHED
8895 /* Don't accept realtime tasks when there is no way for them to run */
8896 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8897 return -EINVAL;
8898 #else
8899 /* We don't support RT-tasks being in separate groups */
8900 if (tsk->sched_class != &fair_sched_class)
8901 return -EINVAL;
8902 #endif
8903
8904 return 0;
8905 }
8906
8907 static void
8908 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8909 struct cgroup *old_cont, struct task_struct *tsk)
8910 {
8911 sched_move_task(tsk);
8912 }
8913
8914 #ifdef CONFIG_FAIR_GROUP_SCHED
8915 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8916 u64 shareval)
8917 {
8918 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8919 }
8920
8921 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8922 {
8923 struct task_group *tg = cgroup_tg(cgrp);
8924
8925 return (u64) tg->shares;
8926 }
8927 #endif /* CONFIG_FAIR_GROUP_SCHED */
8928
8929 #ifdef CONFIG_RT_GROUP_SCHED
8930 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8931 s64 val)
8932 {
8933 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8934 }
8935
8936 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8937 {
8938 return sched_group_rt_runtime(cgroup_tg(cgrp));
8939 }
8940
8941 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8942 u64 rt_period_us)
8943 {
8944 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8945 }
8946
8947 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8948 {
8949 return sched_group_rt_period(cgroup_tg(cgrp));
8950 }
8951 #endif /* CONFIG_RT_GROUP_SCHED */
8952
8953 static struct cftype cpu_files[] = {
8954 #ifdef CONFIG_FAIR_GROUP_SCHED
8955 {
8956 .name = "shares",
8957 .read_u64 = cpu_shares_read_u64,
8958 .write_u64 = cpu_shares_write_u64,
8959 },
8960 #endif
8961 #ifdef CONFIG_RT_GROUP_SCHED
8962 {
8963 .name = "rt_runtime_us",
8964 .read_s64 = cpu_rt_runtime_read,
8965 .write_s64 = cpu_rt_runtime_write,
8966 },
8967 {
8968 .name = "rt_period_us",
8969 .read_u64 = cpu_rt_period_read_uint,
8970 .write_u64 = cpu_rt_period_write_uint,
8971 },
8972 #endif
8973 };
8974
8975 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8976 {
8977 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8978 }
8979
8980 struct cgroup_subsys cpu_cgroup_subsys = {
8981 .name = "cpu",
8982 .create = cpu_cgroup_create,
8983 .destroy = cpu_cgroup_destroy,
8984 .can_attach = cpu_cgroup_can_attach,
8985 .attach = cpu_cgroup_attach,
8986 .populate = cpu_cgroup_populate,
8987 .subsys_id = cpu_cgroup_subsys_id,
8988 .early_init = 1,
8989 };
8990
8991 #endif /* CONFIG_CGROUP_SCHED */
8992
8993 #ifdef CONFIG_CGROUP_CPUACCT
8994
8995 /*
8996 * CPU accounting code for task groups.
8997 *
8998 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8999 * (balbir@in.ibm.com).
9000 */
9001
9002 /* track cpu usage of a group of tasks */
9003 struct cpuacct {
9004 struct cgroup_subsys_state css;
9005 /* cpuusage holds pointer to a u64-type object on every cpu */
9006 u64 *cpuusage;
9007 };
9008
9009 struct cgroup_subsys cpuacct_subsys;
9010
9011 /* return cpu accounting group corresponding to this container */
9012 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9013 {
9014 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9015 struct cpuacct, css);
9016 }
9017
9018 /* return cpu accounting group to which this task belongs */
9019 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9020 {
9021 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9022 struct cpuacct, css);
9023 }
9024
9025 /* create a new cpu accounting group */
9026 static struct cgroup_subsys_state *cpuacct_create(
9027 struct cgroup_subsys *ss, struct cgroup *cgrp)
9028 {
9029 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9030
9031 if (!ca)
9032 return ERR_PTR(-ENOMEM);
9033
9034 ca->cpuusage = alloc_percpu(u64);
9035 if (!ca->cpuusage) {
9036 kfree(ca);
9037 return ERR_PTR(-ENOMEM);
9038 }
9039
9040 return &ca->css;
9041 }
9042
9043 /* destroy an existing cpu accounting group */
9044 static void
9045 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9046 {
9047 struct cpuacct *ca = cgroup_ca(cgrp);
9048
9049 free_percpu(ca->cpuusage);
9050 kfree(ca);
9051 }
9052
9053 /* return total cpu usage (in nanoseconds) of a group */
9054 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9055 {
9056 struct cpuacct *ca = cgroup_ca(cgrp);
9057 u64 totalcpuusage = 0;
9058 int i;
9059
9060 for_each_possible_cpu(i) {
9061 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9062
9063 /*
9064 * Take rq->lock to make 64-bit addition safe on 32-bit
9065 * platforms.
9066 */
9067 spin_lock_irq(&cpu_rq(i)->lock);
9068 totalcpuusage += *cpuusage;
9069 spin_unlock_irq(&cpu_rq(i)->lock);
9070 }
9071
9072 return totalcpuusage;
9073 }
9074
9075 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9076 u64 reset)
9077 {
9078 struct cpuacct *ca = cgroup_ca(cgrp);
9079 int err = 0;
9080 int i;
9081
9082 if (reset) {
9083 err = -EINVAL;
9084 goto out;
9085 }
9086
9087 for_each_possible_cpu(i) {
9088 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9089
9090 spin_lock_irq(&cpu_rq(i)->lock);
9091 *cpuusage = 0;
9092 spin_unlock_irq(&cpu_rq(i)->lock);
9093 }
9094 out:
9095 return err;
9096 }
9097
9098 static struct cftype files[] = {
9099 {
9100 .name = "usage",
9101 .read_u64 = cpuusage_read,
9102 .write_u64 = cpuusage_write,
9103 },
9104 };
9105
9106 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9107 {
9108 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9109 }
9110
9111 /*
9112 * charge this task's execution time to its accounting group.
9113 *
9114 * called with rq->lock held.
9115 */
9116 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9117 {
9118 struct cpuacct *ca;
9119
9120 if (!cpuacct_subsys.active)
9121 return;
9122
9123 ca = task_ca(tsk);
9124 if (ca) {
9125 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9126
9127 *cpuusage += cputime;
9128 }
9129 }
9130
9131 struct cgroup_subsys cpuacct_subsys = {
9132 .name = "cpuacct",
9133 .create = cpuacct_create,
9134 .destroy = cpuacct_destroy,
9135 .populate = cpuacct_populate,
9136 .subsys_id = cpuacct_subsys_id,
9137 };
9138 #endif /* CONFIG_CGROUP_CPUACCT */