Merge master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
53 #include <asm/tlb.h>
54
55 #include <asm/unistd.h>
56
57 /*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66 /*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75 /*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81 /*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
93 #define EXIT_WEIGHT 3
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101 /*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135 #ifdef CONFIG_SMP
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139 #else
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142 #endif
143
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147 #define DELTA(p) \
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
150
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161 /*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
173 static unsigned int task_timeslice(task_t *p)
174 {
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179 }
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183 /*
184 * These are the runqueue data structures:
185 */
186
187 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189 typedef struct runqueue runqueue_t;
190
191 struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
195 };
196
197 /*
198 * This is the main, per-CPU runqueue data structure.
199 *
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
203 */
204 struct runqueue {
205 spinlock_t lock;
206
207 /*
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
210 */
211 unsigned long nr_running;
212 #ifdef CONFIG_SMP
213 unsigned long cpu_load[3];
214 #endif
215 unsigned long long nr_switches;
216
217 /*
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
222 */
223 unsigned long nr_uninterruptible;
224
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
232
233 #ifdef CONFIG_SMP
234 struct sched_domain *sd;
235
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
239
240 task_t *migration_thread;
241 struct list_head migration_queue;
242 int cpu;
243 #endif
244
245 #ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
248
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
254
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
259
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263 #endif
264 };
265
266 static DEFINE_PER_CPU(struct runqueue, runqueues);
267
268 /*
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
270 * See detach_destroy_domains: synchronize_sched for details.
271 *
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
274 */
275 #define for_each_domain(cpu, domain) \
276 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
277
278 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279 #define this_rq() (&__get_cpu_var(runqueues))
280 #define task_rq(p) cpu_rq(task_cpu(p))
281 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
282
283 #ifndef prepare_arch_switch
284 # define prepare_arch_switch(next) do { } while (0)
285 #endif
286 #ifndef finish_arch_switch
287 # define finish_arch_switch(prev) do { } while (0)
288 #endif
289
290 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
291 static inline int task_running(runqueue_t *rq, task_t *p)
292 {
293 return rq->curr == p;
294 }
295
296 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297 {
298 }
299
300 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
301 {
302 #ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305 #endif
306 spin_unlock_irq(&rq->lock);
307 }
308
309 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
310 static inline int task_running(runqueue_t *rq, task_t *p)
311 {
312 #ifdef CONFIG_SMP
313 return p->oncpu;
314 #else
315 return rq->curr == p;
316 #endif
317 }
318
319 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320 {
321 #ifdef CONFIG_SMP
322 /*
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
326 */
327 next->oncpu = 1;
328 #endif
329 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331 #else
332 spin_unlock(&rq->lock);
333 #endif
334 }
335
336 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337 {
338 #ifdef CONFIG_SMP
339 /*
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
343 */
344 smp_wmb();
345 prev->oncpu = 0;
346 #endif
347 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
349 #endif
350 }
351 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
352
353 /*
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
357 */
358 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
360 {
361 struct runqueue *rq;
362
363 repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
370 }
371 return rq;
372 }
373
374 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
376 {
377 spin_unlock_irqrestore(&rq->lock, *flags);
378 }
379
380 #ifdef CONFIG_SCHEDSTATS
381 /*
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
384 */
385 #define SCHEDSTAT_VERSION 12
386
387 static int show_schedstat(struct seq_file *seq, void *v)
388 {
389 int cpu;
390
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395 #ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398 #endif
399
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
409
410 seq_printf(seq, "\n");
411
412 #ifdef CONFIG_SMP
413 /* domain-specific stats */
414 preempt_disable();
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
418
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
432 }
433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
438 }
439 preempt_enable();
440 #endif
441 }
442 return 0;
443 }
444
445 static int schedstat_open(struct inode *inode, struct file *file)
446 {
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
451
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
462 }
463
464 struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 };
470
471 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473 #else /* !CONFIG_SCHEDSTATS */
474 # define schedstat_inc(rq, field) do { } while (0)
475 # define schedstat_add(rq, field, amt) do { } while (0)
476 #endif
477
478 /*
479 * rq_lock - lock a given runqueue and disable interrupts.
480 */
481 static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
483 {
484 runqueue_t *rq;
485
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
489
490 return rq;
491 }
492
493 #ifdef CONFIG_SCHEDSTATS
494 /*
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
502 *
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
508 */
509 static inline void sched_info_dequeued(task_t *t)
510 {
511 t->sched_info.last_queued = 0;
512 }
513
514 /*
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
518 */
519 static void sched_info_arrive(task_t *t)
520 {
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
523
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
530
531 if (!rq)
532 return;
533
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
536 }
537
538 /*
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
548 *
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
552 */
553 static inline void sched_info_queued(task_t *t)
554 {
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
557 }
558
559 /*
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
562 */
563 static inline void sched_info_depart(task_t *t)
564 {
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
567
568 t->sched_info.cpu_time += diff;
569
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
572 }
573
574 /*
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
578 */
579 static inline void sched_info_switch(task_t *prev, task_t *next)
580 {
581 struct runqueue *rq = task_rq(prev);
582
583 /*
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
587 */
588 if (prev != rq->idle)
589 sched_info_depart(prev);
590
591 if (next != rq->idle)
592 sched_info_arrive(next);
593 }
594 #else
595 #define sched_info_queued(t) do { } while (0)
596 #define sched_info_switch(t, next) do { } while (0)
597 #endif /* CONFIG_SCHEDSTATS */
598
599 /*
600 * Adding/removing a task to/from a priority array:
601 */
602 static void dequeue_task(struct task_struct *p, prio_array_t *array)
603 {
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
608 }
609
610 static void enqueue_task(struct task_struct *p, prio_array_t *array)
611 {
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
617 }
618
619 /*
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
622 */
623 static void requeue_task(struct task_struct *p, prio_array_t *array)
624 {
625 list_move_tail(&p->run_list, array->queue + p->prio);
626 }
627
628 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
629 {
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634 }
635
636 /*
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
650 static int effective_prio(task_t *p)
651 {
652 int bonus, prio;
653
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
665 }
666
667 /*
668 * __activate_task - move a task to the runqueue.
669 */
670 static void __activate_task(task_t *p, runqueue_t *rq)
671 {
672 prio_array_t *target = rq->active;
673
674 if (batch_task(p))
675 target = rq->expired;
676 enqueue_task(p, target);
677 rq->nr_running++;
678 }
679
680 /*
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
682 */
683 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
684 {
685 enqueue_task_head(p, rq->active);
686 rq->nr_running++;
687 }
688
689 static int recalc_task_prio(task_t *p, unsigned long long now)
690 {
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time = now - p->timestamp;
693 unsigned long sleep_time;
694
695 if (batch_task(p))
696 sleep_time = 0;
697 else {
698 if (__sleep_time > NS_MAX_SLEEP_AVG)
699 sleep_time = NS_MAX_SLEEP_AVG;
700 else
701 sleep_time = (unsigned long)__sleep_time;
702 }
703
704 if (likely(sleep_time > 0)) {
705 /*
706 * User tasks that sleep a long time are categorised as
707 * idle. They will only have their sleep_avg increased to a
708 * level that makes them just interactive priority to stay
709 * active yet prevent them suddenly becoming cpu hogs and
710 * starving other processes.
711 */
712 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
713 unsigned long ceiling;
714
715 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
716 DEF_TIMESLICE);
717 if (p->sleep_avg < ceiling)
718 p->sleep_avg = ceiling;
719 } else {
720 /*
721 * Tasks waking from uninterruptible sleep are
722 * limited in their sleep_avg rise as they
723 * are likely to be waiting on I/O
724 */
725 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
726 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
727 sleep_time = 0;
728 else if (p->sleep_avg + sleep_time >=
729 INTERACTIVE_SLEEP(p)) {
730 p->sleep_avg = INTERACTIVE_SLEEP(p);
731 sleep_time = 0;
732 }
733 }
734
735 /*
736 * This code gives a bonus to interactive tasks.
737 *
738 * The boost works by updating the 'average sleep time'
739 * value here, based on ->timestamp. The more time a
740 * task spends sleeping, the higher the average gets -
741 * and the higher the priority boost gets as well.
742 */
743 p->sleep_avg += sleep_time;
744
745 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
746 p->sleep_avg = NS_MAX_SLEEP_AVG;
747 }
748 }
749
750 return effective_prio(p);
751 }
752
753 /*
754 * activate_task - move a task to the runqueue and do priority recalculation
755 *
756 * Update all the scheduling statistics stuff. (sleep average
757 * calculation, priority modifiers, etc.)
758 */
759 static void activate_task(task_t *p, runqueue_t *rq, int local)
760 {
761 unsigned long long now;
762
763 now = sched_clock();
764 #ifdef CONFIG_SMP
765 if (!local) {
766 /* Compensate for drifting sched_clock */
767 runqueue_t *this_rq = this_rq();
768 now = (now - this_rq->timestamp_last_tick)
769 + rq->timestamp_last_tick;
770 }
771 #endif
772
773 if (!rt_task(p))
774 p->prio = recalc_task_prio(p, now);
775
776 /*
777 * This checks to make sure it's not an uninterruptible task
778 * that is now waking up.
779 */
780 if (p->sleep_type == SLEEP_NORMAL) {
781 /*
782 * Tasks which were woken up by interrupts (ie. hw events)
783 * are most likely of interactive nature. So we give them
784 * the credit of extending their sleep time to the period
785 * of time they spend on the runqueue, waiting for execution
786 * on a CPU, first time around:
787 */
788 if (in_interrupt())
789 p->sleep_type = SLEEP_INTERRUPTED;
790 else {
791 /*
792 * Normal first-time wakeups get a credit too for
793 * on-runqueue time, but it will be weighted down:
794 */
795 p->sleep_type = SLEEP_INTERACTIVE;
796 }
797 }
798 p->timestamp = now;
799
800 __activate_task(p, rq);
801 }
802
803 /*
804 * deactivate_task - remove a task from the runqueue.
805 */
806 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
807 {
808 rq->nr_running--;
809 dequeue_task(p, p->array);
810 p->array = NULL;
811 }
812
813 /*
814 * resched_task - mark a task 'to be rescheduled now'.
815 *
816 * On UP this means the setting of the need_resched flag, on SMP it
817 * might also involve a cross-CPU call to trigger the scheduler on
818 * the target CPU.
819 */
820 #ifdef CONFIG_SMP
821
822 #ifndef tsk_is_polling
823 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
824 #endif
825
826 static void resched_task(task_t *p)
827 {
828 int cpu;
829
830 assert_spin_locked(&task_rq(p)->lock);
831
832 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
833 return;
834
835 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
836
837 cpu = task_cpu(p);
838 if (cpu == smp_processor_id())
839 return;
840
841 /* NEED_RESCHED must be visible before we test polling */
842 smp_mb();
843 if (!tsk_is_polling(p))
844 smp_send_reschedule(cpu);
845 }
846 #else
847 static inline void resched_task(task_t *p)
848 {
849 assert_spin_locked(&task_rq(p)->lock);
850 set_tsk_need_resched(p);
851 }
852 #endif
853
854 /**
855 * task_curr - is this task currently executing on a CPU?
856 * @p: the task in question.
857 */
858 inline int task_curr(const task_t *p)
859 {
860 return cpu_curr(task_cpu(p)) == p;
861 }
862
863 #ifdef CONFIG_SMP
864 typedef struct {
865 struct list_head list;
866
867 task_t *task;
868 int dest_cpu;
869
870 struct completion done;
871 } migration_req_t;
872
873 /*
874 * The task's runqueue lock must be held.
875 * Returns true if you have to wait for migration thread.
876 */
877 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
878 {
879 runqueue_t *rq = task_rq(p);
880
881 /*
882 * If the task is not on a runqueue (and not running), then
883 * it is sufficient to simply update the task's cpu field.
884 */
885 if (!p->array && !task_running(rq, p)) {
886 set_task_cpu(p, dest_cpu);
887 return 0;
888 }
889
890 init_completion(&req->done);
891 req->task = p;
892 req->dest_cpu = dest_cpu;
893 list_add(&req->list, &rq->migration_queue);
894 return 1;
895 }
896
897 /*
898 * wait_task_inactive - wait for a thread to unschedule.
899 *
900 * The caller must ensure that the task *will* unschedule sometime soon,
901 * else this function might spin for a *long* time. This function can't
902 * be called with interrupts off, or it may introduce deadlock with
903 * smp_call_function() if an IPI is sent by the same process we are
904 * waiting to become inactive.
905 */
906 void wait_task_inactive(task_t *p)
907 {
908 unsigned long flags;
909 runqueue_t *rq;
910 int preempted;
911
912 repeat:
913 rq = task_rq_lock(p, &flags);
914 /* Must be off runqueue entirely, not preempted. */
915 if (unlikely(p->array || task_running(rq, p))) {
916 /* If it's preempted, we yield. It could be a while. */
917 preempted = !task_running(rq, p);
918 task_rq_unlock(rq, &flags);
919 cpu_relax();
920 if (preempted)
921 yield();
922 goto repeat;
923 }
924 task_rq_unlock(rq, &flags);
925 }
926
927 /***
928 * kick_process - kick a running thread to enter/exit the kernel
929 * @p: the to-be-kicked thread
930 *
931 * Cause a process which is running on another CPU to enter
932 * kernel-mode, without any delay. (to get signals handled.)
933 *
934 * NOTE: this function doesnt have to take the runqueue lock,
935 * because all it wants to ensure is that the remote task enters
936 * the kernel. If the IPI races and the task has been migrated
937 * to another CPU then no harm is done and the purpose has been
938 * achieved as well.
939 */
940 void kick_process(task_t *p)
941 {
942 int cpu;
943
944 preempt_disable();
945 cpu = task_cpu(p);
946 if ((cpu != smp_processor_id()) && task_curr(p))
947 smp_send_reschedule(cpu);
948 preempt_enable();
949 }
950
951 /*
952 * Return a low guess at the load of a migration-source cpu.
953 *
954 * We want to under-estimate the load of migration sources, to
955 * balance conservatively.
956 */
957 static inline unsigned long source_load(int cpu, int type)
958 {
959 runqueue_t *rq = cpu_rq(cpu);
960 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
961 if (type == 0)
962 return load_now;
963
964 return min(rq->cpu_load[type-1], load_now);
965 }
966
967 /*
968 * Return a high guess at the load of a migration-target cpu
969 */
970 static inline unsigned long target_load(int cpu, int type)
971 {
972 runqueue_t *rq = cpu_rq(cpu);
973 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
974 if (type == 0)
975 return load_now;
976
977 return max(rq->cpu_load[type-1], load_now);
978 }
979
980 /*
981 * find_idlest_group finds and returns the least busy CPU group within the
982 * domain.
983 */
984 static struct sched_group *
985 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
986 {
987 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
988 unsigned long min_load = ULONG_MAX, this_load = 0;
989 int load_idx = sd->forkexec_idx;
990 int imbalance = 100 + (sd->imbalance_pct-100)/2;
991
992 do {
993 unsigned long load, avg_load;
994 int local_group;
995 int i;
996
997 /* Skip over this group if it has no CPUs allowed */
998 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
999 goto nextgroup;
1000
1001 local_group = cpu_isset(this_cpu, group->cpumask);
1002
1003 /* Tally up the load of all CPUs in the group */
1004 avg_load = 0;
1005
1006 for_each_cpu_mask(i, group->cpumask) {
1007 /* Bias balancing toward cpus of our domain */
1008 if (local_group)
1009 load = source_load(i, load_idx);
1010 else
1011 load = target_load(i, load_idx);
1012
1013 avg_load += load;
1014 }
1015
1016 /* Adjust by relative CPU power of the group */
1017 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1018
1019 if (local_group) {
1020 this_load = avg_load;
1021 this = group;
1022 } else if (avg_load < min_load) {
1023 min_load = avg_load;
1024 idlest = group;
1025 }
1026 nextgroup:
1027 group = group->next;
1028 } while (group != sd->groups);
1029
1030 if (!idlest || 100*this_load < imbalance*min_load)
1031 return NULL;
1032 return idlest;
1033 }
1034
1035 /*
1036 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1037 */
1038 static int
1039 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1040 {
1041 cpumask_t tmp;
1042 unsigned long load, min_load = ULONG_MAX;
1043 int idlest = -1;
1044 int i;
1045
1046 /* Traverse only the allowed CPUs */
1047 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1048
1049 for_each_cpu_mask(i, tmp) {
1050 load = source_load(i, 0);
1051
1052 if (load < min_load || (load == min_load && i == this_cpu)) {
1053 min_load = load;
1054 idlest = i;
1055 }
1056 }
1057
1058 return idlest;
1059 }
1060
1061 /*
1062 * sched_balance_self: balance the current task (running on cpu) in domains
1063 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1064 * SD_BALANCE_EXEC.
1065 *
1066 * Balance, ie. select the least loaded group.
1067 *
1068 * Returns the target CPU number, or the same CPU if no balancing is needed.
1069 *
1070 * preempt must be disabled.
1071 */
1072 static int sched_balance_self(int cpu, int flag)
1073 {
1074 struct task_struct *t = current;
1075 struct sched_domain *tmp, *sd = NULL;
1076
1077 for_each_domain(cpu, tmp)
1078 if (tmp->flags & flag)
1079 sd = tmp;
1080
1081 while (sd) {
1082 cpumask_t span;
1083 struct sched_group *group;
1084 int new_cpu;
1085 int weight;
1086
1087 span = sd->span;
1088 group = find_idlest_group(sd, t, cpu);
1089 if (!group)
1090 goto nextlevel;
1091
1092 new_cpu = find_idlest_cpu(group, t, cpu);
1093 if (new_cpu == -1 || new_cpu == cpu)
1094 goto nextlevel;
1095
1096 /* Now try balancing at a lower domain level */
1097 cpu = new_cpu;
1098 nextlevel:
1099 sd = NULL;
1100 weight = cpus_weight(span);
1101 for_each_domain(cpu, tmp) {
1102 if (weight <= cpus_weight(tmp->span))
1103 break;
1104 if (tmp->flags & flag)
1105 sd = tmp;
1106 }
1107 /* while loop will break here if sd == NULL */
1108 }
1109
1110 return cpu;
1111 }
1112
1113 #endif /* CONFIG_SMP */
1114
1115 /*
1116 * wake_idle() will wake a task on an idle cpu if task->cpu is
1117 * not idle and an idle cpu is available. The span of cpus to
1118 * search starts with cpus closest then further out as needed,
1119 * so we always favor a closer, idle cpu.
1120 *
1121 * Returns the CPU we should wake onto.
1122 */
1123 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1124 static int wake_idle(int cpu, task_t *p)
1125 {
1126 cpumask_t tmp;
1127 struct sched_domain *sd;
1128 int i;
1129
1130 if (idle_cpu(cpu))
1131 return cpu;
1132
1133 for_each_domain(cpu, sd) {
1134 if (sd->flags & SD_WAKE_IDLE) {
1135 cpus_and(tmp, sd->span, p->cpus_allowed);
1136 for_each_cpu_mask(i, tmp) {
1137 if (idle_cpu(i))
1138 return i;
1139 }
1140 }
1141 else
1142 break;
1143 }
1144 return cpu;
1145 }
1146 #else
1147 static inline int wake_idle(int cpu, task_t *p)
1148 {
1149 return cpu;
1150 }
1151 #endif
1152
1153 /***
1154 * try_to_wake_up - wake up a thread
1155 * @p: the to-be-woken-up thread
1156 * @state: the mask of task states that can be woken
1157 * @sync: do a synchronous wakeup?
1158 *
1159 * Put it on the run-queue if it's not already there. The "current"
1160 * thread is always on the run-queue (except when the actual
1161 * re-schedule is in progress), and as such you're allowed to do
1162 * the simpler "current->state = TASK_RUNNING" to mark yourself
1163 * runnable without the overhead of this.
1164 *
1165 * returns failure only if the task is already active.
1166 */
1167 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1168 {
1169 int cpu, this_cpu, success = 0;
1170 unsigned long flags;
1171 long old_state;
1172 runqueue_t *rq;
1173 #ifdef CONFIG_SMP
1174 unsigned long load, this_load;
1175 struct sched_domain *sd, *this_sd = NULL;
1176 int new_cpu;
1177 #endif
1178
1179 rq = task_rq_lock(p, &flags);
1180 old_state = p->state;
1181 if (!(old_state & state))
1182 goto out;
1183
1184 if (p->array)
1185 goto out_running;
1186
1187 cpu = task_cpu(p);
1188 this_cpu = smp_processor_id();
1189
1190 #ifdef CONFIG_SMP
1191 if (unlikely(task_running(rq, p)))
1192 goto out_activate;
1193
1194 new_cpu = cpu;
1195
1196 schedstat_inc(rq, ttwu_cnt);
1197 if (cpu == this_cpu) {
1198 schedstat_inc(rq, ttwu_local);
1199 goto out_set_cpu;
1200 }
1201
1202 for_each_domain(this_cpu, sd) {
1203 if (cpu_isset(cpu, sd->span)) {
1204 schedstat_inc(sd, ttwu_wake_remote);
1205 this_sd = sd;
1206 break;
1207 }
1208 }
1209
1210 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1211 goto out_set_cpu;
1212
1213 /*
1214 * Check for affine wakeup and passive balancing possibilities.
1215 */
1216 if (this_sd) {
1217 int idx = this_sd->wake_idx;
1218 unsigned int imbalance;
1219
1220 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1221
1222 load = source_load(cpu, idx);
1223 this_load = target_load(this_cpu, idx);
1224
1225 new_cpu = this_cpu; /* Wake to this CPU if we can */
1226
1227 if (this_sd->flags & SD_WAKE_AFFINE) {
1228 unsigned long tl = this_load;
1229 /*
1230 * If sync wakeup then subtract the (maximum possible)
1231 * effect of the currently running task from the load
1232 * of the current CPU:
1233 */
1234 if (sync)
1235 tl -= SCHED_LOAD_SCALE;
1236
1237 if ((tl <= load &&
1238 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1239 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1240 /*
1241 * This domain has SD_WAKE_AFFINE and
1242 * p is cache cold in this domain, and
1243 * there is no bad imbalance.
1244 */
1245 schedstat_inc(this_sd, ttwu_move_affine);
1246 goto out_set_cpu;
1247 }
1248 }
1249
1250 /*
1251 * Start passive balancing when half the imbalance_pct
1252 * limit is reached.
1253 */
1254 if (this_sd->flags & SD_WAKE_BALANCE) {
1255 if (imbalance*this_load <= 100*load) {
1256 schedstat_inc(this_sd, ttwu_move_balance);
1257 goto out_set_cpu;
1258 }
1259 }
1260 }
1261
1262 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1263 out_set_cpu:
1264 new_cpu = wake_idle(new_cpu, p);
1265 if (new_cpu != cpu) {
1266 set_task_cpu(p, new_cpu);
1267 task_rq_unlock(rq, &flags);
1268 /* might preempt at this point */
1269 rq = task_rq_lock(p, &flags);
1270 old_state = p->state;
1271 if (!(old_state & state))
1272 goto out;
1273 if (p->array)
1274 goto out_running;
1275
1276 this_cpu = smp_processor_id();
1277 cpu = task_cpu(p);
1278 }
1279
1280 out_activate:
1281 #endif /* CONFIG_SMP */
1282 if (old_state == TASK_UNINTERRUPTIBLE) {
1283 rq->nr_uninterruptible--;
1284 /*
1285 * Tasks on involuntary sleep don't earn
1286 * sleep_avg beyond just interactive state.
1287 */
1288 p->sleep_type = SLEEP_NONINTERACTIVE;
1289 } else
1290
1291 /*
1292 * Tasks that have marked their sleep as noninteractive get
1293 * woken up with their sleep average not weighted in an
1294 * interactive way.
1295 */
1296 if (old_state & TASK_NONINTERACTIVE)
1297 p->sleep_type = SLEEP_NONINTERACTIVE;
1298
1299
1300 activate_task(p, rq, cpu == this_cpu);
1301 /*
1302 * Sync wakeups (i.e. those types of wakeups where the waker
1303 * has indicated that it will leave the CPU in short order)
1304 * don't trigger a preemption, if the woken up task will run on
1305 * this cpu. (in this case the 'I will reschedule' promise of
1306 * the waker guarantees that the freshly woken up task is going
1307 * to be considered on this CPU.)
1308 */
1309 if (!sync || cpu != this_cpu) {
1310 if (TASK_PREEMPTS_CURR(p, rq))
1311 resched_task(rq->curr);
1312 }
1313 success = 1;
1314
1315 out_running:
1316 p->state = TASK_RUNNING;
1317 out:
1318 task_rq_unlock(rq, &flags);
1319
1320 return success;
1321 }
1322
1323 int fastcall wake_up_process(task_t *p)
1324 {
1325 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1326 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1327 }
1328
1329 EXPORT_SYMBOL(wake_up_process);
1330
1331 int fastcall wake_up_state(task_t *p, unsigned int state)
1332 {
1333 return try_to_wake_up(p, state, 0);
1334 }
1335
1336 /*
1337 * Perform scheduler related setup for a newly forked process p.
1338 * p is forked by current.
1339 */
1340 void fastcall sched_fork(task_t *p, int clone_flags)
1341 {
1342 int cpu = get_cpu();
1343
1344 #ifdef CONFIG_SMP
1345 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1346 #endif
1347 set_task_cpu(p, cpu);
1348
1349 /*
1350 * We mark the process as running here, but have not actually
1351 * inserted it onto the runqueue yet. This guarantees that
1352 * nobody will actually run it, and a signal or other external
1353 * event cannot wake it up and insert it on the runqueue either.
1354 */
1355 p->state = TASK_RUNNING;
1356 INIT_LIST_HEAD(&p->run_list);
1357 p->array = NULL;
1358 #ifdef CONFIG_SCHEDSTATS
1359 memset(&p->sched_info, 0, sizeof(p->sched_info));
1360 #endif
1361 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1362 p->oncpu = 0;
1363 #endif
1364 #ifdef CONFIG_PREEMPT
1365 /* Want to start with kernel preemption disabled. */
1366 task_thread_info(p)->preempt_count = 1;
1367 #endif
1368 /*
1369 * Share the timeslice between parent and child, thus the
1370 * total amount of pending timeslices in the system doesn't change,
1371 * resulting in more scheduling fairness.
1372 */
1373 local_irq_disable();
1374 p->time_slice = (current->time_slice + 1) >> 1;
1375 /*
1376 * The remainder of the first timeslice might be recovered by
1377 * the parent if the child exits early enough.
1378 */
1379 p->first_time_slice = 1;
1380 current->time_slice >>= 1;
1381 p->timestamp = sched_clock();
1382 if (unlikely(!current->time_slice)) {
1383 /*
1384 * This case is rare, it happens when the parent has only
1385 * a single jiffy left from its timeslice. Taking the
1386 * runqueue lock is not a problem.
1387 */
1388 current->time_slice = 1;
1389 scheduler_tick();
1390 }
1391 local_irq_enable();
1392 put_cpu();
1393 }
1394
1395 /*
1396 * wake_up_new_task - wake up a newly created task for the first time.
1397 *
1398 * This function will do some initial scheduler statistics housekeeping
1399 * that must be done for every newly created context, then puts the task
1400 * on the runqueue and wakes it.
1401 */
1402 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1403 {
1404 unsigned long flags;
1405 int this_cpu, cpu;
1406 runqueue_t *rq, *this_rq;
1407
1408 rq = task_rq_lock(p, &flags);
1409 BUG_ON(p->state != TASK_RUNNING);
1410 this_cpu = smp_processor_id();
1411 cpu = task_cpu(p);
1412
1413 /*
1414 * We decrease the sleep average of forking parents
1415 * and children as well, to keep max-interactive tasks
1416 * from forking tasks that are max-interactive. The parent
1417 * (current) is done further down, under its lock.
1418 */
1419 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1420 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1421
1422 p->prio = effective_prio(p);
1423
1424 if (likely(cpu == this_cpu)) {
1425 if (!(clone_flags & CLONE_VM)) {
1426 /*
1427 * The VM isn't cloned, so we're in a good position to
1428 * do child-runs-first in anticipation of an exec. This
1429 * usually avoids a lot of COW overhead.
1430 */
1431 if (unlikely(!current->array))
1432 __activate_task(p, rq);
1433 else {
1434 p->prio = current->prio;
1435 list_add_tail(&p->run_list, &current->run_list);
1436 p->array = current->array;
1437 p->array->nr_active++;
1438 rq->nr_running++;
1439 }
1440 set_need_resched();
1441 } else
1442 /* Run child last */
1443 __activate_task(p, rq);
1444 /*
1445 * We skip the following code due to cpu == this_cpu
1446 *
1447 * task_rq_unlock(rq, &flags);
1448 * this_rq = task_rq_lock(current, &flags);
1449 */
1450 this_rq = rq;
1451 } else {
1452 this_rq = cpu_rq(this_cpu);
1453
1454 /*
1455 * Not the local CPU - must adjust timestamp. This should
1456 * get optimised away in the !CONFIG_SMP case.
1457 */
1458 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1459 + rq->timestamp_last_tick;
1460 __activate_task(p, rq);
1461 if (TASK_PREEMPTS_CURR(p, rq))
1462 resched_task(rq->curr);
1463
1464 /*
1465 * Parent and child are on different CPUs, now get the
1466 * parent runqueue to update the parent's ->sleep_avg:
1467 */
1468 task_rq_unlock(rq, &flags);
1469 this_rq = task_rq_lock(current, &flags);
1470 }
1471 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1472 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1473 task_rq_unlock(this_rq, &flags);
1474 }
1475
1476 /*
1477 * Potentially available exiting-child timeslices are
1478 * retrieved here - this way the parent does not get
1479 * penalized for creating too many threads.
1480 *
1481 * (this cannot be used to 'generate' timeslices
1482 * artificially, because any timeslice recovered here
1483 * was given away by the parent in the first place.)
1484 */
1485 void fastcall sched_exit(task_t *p)
1486 {
1487 unsigned long flags;
1488 runqueue_t *rq;
1489
1490 /*
1491 * If the child was a (relative-) CPU hog then decrease
1492 * the sleep_avg of the parent as well.
1493 */
1494 rq = task_rq_lock(p->parent, &flags);
1495 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1496 p->parent->time_slice += p->time_slice;
1497 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1498 p->parent->time_slice = task_timeslice(p);
1499 }
1500 if (p->sleep_avg < p->parent->sleep_avg)
1501 p->parent->sleep_avg = p->parent->sleep_avg /
1502 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1503 (EXIT_WEIGHT + 1);
1504 task_rq_unlock(rq, &flags);
1505 }
1506
1507 /**
1508 * prepare_task_switch - prepare to switch tasks
1509 * @rq: the runqueue preparing to switch
1510 * @next: the task we are going to switch to.
1511 *
1512 * This is called with the rq lock held and interrupts off. It must
1513 * be paired with a subsequent finish_task_switch after the context
1514 * switch.
1515 *
1516 * prepare_task_switch sets up locking and calls architecture specific
1517 * hooks.
1518 */
1519 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1520 {
1521 prepare_lock_switch(rq, next);
1522 prepare_arch_switch(next);
1523 }
1524
1525 /**
1526 * finish_task_switch - clean up after a task-switch
1527 * @rq: runqueue associated with task-switch
1528 * @prev: the thread we just switched away from.
1529 *
1530 * finish_task_switch must be called after the context switch, paired
1531 * with a prepare_task_switch call before the context switch.
1532 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1533 * and do any other architecture-specific cleanup actions.
1534 *
1535 * Note that we may have delayed dropping an mm in context_switch(). If
1536 * so, we finish that here outside of the runqueue lock. (Doing it
1537 * with the lock held can cause deadlocks; see schedule() for
1538 * details.)
1539 */
1540 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1541 __releases(rq->lock)
1542 {
1543 struct mm_struct *mm = rq->prev_mm;
1544 unsigned long prev_task_flags;
1545
1546 rq->prev_mm = NULL;
1547
1548 /*
1549 * A task struct has one reference for the use as "current".
1550 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1551 * calls schedule one last time. The schedule call will never return,
1552 * and the scheduled task must drop that reference.
1553 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1554 * still held, otherwise prev could be scheduled on another cpu, die
1555 * there before we look at prev->state, and then the reference would
1556 * be dropped twice.
1557 * Manfred Spraul <manfred@colorfullife.com>
1558 */
1559 prev_task_flags = prev->flags;
1560 finish_arch_switch(prev);
1561 finish_lock_switch(rq, prev);
1562 if (mm)
1563 mmdrop(mm);
1564 if (unlikely(prev_task_flags & PF_DEAD)) {
1565 /*
1566 * Remove function-return probe instances associated with this
1567 * task and put them back on the free list.
1568 */
1569 kprobe_flush_task(prev);
1570 put_task_struct(prev);
1571 }
1572 }
1573
1574 /**
1575 * schedule_tail - first thing a freshly forked thread must call.
1576 * @prev: the thread we just switched away from.
1577 */
1578 asmlinkage void schedule_tail(task_t *prev)
1579 __releases(rq->lock)
1580 {
1581 runqueue_t *rq = this_rq();
1582 finish_task_switch(rq, prev);
1583 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1584 /* In this case, finish_task_switch does not reenable preemption */
1585 preempt_enable();
1586 #endif
1587 if (current->set_child_tid)
1588 put_user(current->pid, current->set_child_tid);
1589 }
1590
1591 /*
1592 * context_switch - switch to the new MM and the new
1593 * thread's register state.
1594 */
1595 static inline
1596 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1597 {
1598 struct mm_struct *mm = next->mm;
1599 struct mm_struct *oldmm = prev->active_mm;
1600
1601 if (unlikely(!mm)) {
1602 next->active_mm = oldmm;
1603 atomic_inc(&oldmm->mm_count);
1604 enter_lazy_tlb(oldmm, next);
1605 } else
1606 switch_mm(oldmm, mm, next);
1607
1608 if (unlikely(!prev->mm)) {
1609 prev->active_mm = NULL;
1610 WARN_ON(rq->prev_mm);
1611 rq->prev_mm = oldmm;
1612 }
1613
1614 /* Here we just switch the register state and the stack. */
1615 switch_to(prev, next, prev);
1616
1617 return prev;
1618 }
1619
1620 /*
1621 * nr_running, nr_uninterruptible and nr_context_switches:
1622 *
1623 * externally visible scheduler statistics: current number of runnable
1624 * threads, current number of uninterruptible-sleeping threads, total
1625 * number of context switches performed since bootup.
1626 */
1627 unsigned long nr_running(void)
1628 {
1629 unsigned long i, sum = 0;
1630
1631 for_each_online_cpu(i)
1632 sum += cpu_rq(i)->nr_running;
1633
1634 return sum;
1635 }
1636
1637 unsigned long nr_uninterruptible(void)
1638 {
1639 unsigned long i, sum = 0;
1640
1641 for_each_possible_cpu(i)
1642 sum += cpu_rq(i)->nr_uninterruptible;
1643
1644 /*
1645 * Since we read the counters lockless, it might be slightly
1646 * inaccurate. Do not allow it to go below zero though:
1647 */
1648 if (unlikely((long)sum < 0))
1649 sum = 0;
1650
1651 return sum;
1652 }
1653
1654 unsigned long long nr_context_switches(void)
1655 {
1656 unsigned long long i, sum = 0;
1657
1658 for_each_possible_cpu(i)
1659 sum += cpu_rq(i)->nr_switches;
1660
1661 return sum;
1662 }
1663
1664 unsigned long nr_iowait(void)
1665 {
1666 unsigned long i, sum = 0;
1667
1668 for_each_possible_cpu(i)
1669 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1670
1671 return sum;
1672 }
1673
1674 unsigned long nr_active(void)
1675 {
1676 unsigned long i, running = 0, uninterruptible = 0;
1677
1678 for_each_online_cpu(i) {
1679 running += cpu_rq(i)->nr_running;
1680 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1681 }
1682
1683 if (unlikely((long)uninterruptible < 0))
1684 uninterruptible = 0;
1685
1686 return running + uninterruptible;
1687 }
1688
1689 #ifdef CONFIG_SMP
1690
1691 /*
1692 * double_rq_lock - safely lock two runqueues
1693 *
1694 * We must take them in cpu order to match code in
1695 * dependent_sleeper and wake_dependent_sleeper.
1696 *
1697 * Note this does not disable interrupts like task_rq_lock,
1698 * you need to do so manually before calling.
1699 */
1700 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1701 __acquires(rq1->lock)
1702 __acquires(rq2->lock)
1703 {
1704 if (rq1 == rq2) {
1705 spin_lock(&rq1->lock);
1706 __acquire(rq2->lock); /* Fake it out ;) */
1707 } else {
1708 if (rq1->cpu < rq2->cpu) {
1709 spin_lock(&rq1->lock);
1710 spin_lock(&rq2->lock);
1711 } else {
1712 spin_lock(&rq2->lock);
1713 spin_lock(&rq1->lock);
1714 }
1715 }
1716 }
1717
1718 /*
1719 * double_rq_unlock - safely unlock two runqueues
1720 *
1721 * Note this does not restore interrupts like task_rq_unlock,
1722 * you need to do so manually after calling.
1723 */
1724 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1725 __releases(rq1->lock)
1726 __releases(rq2->lock)
1727 {
1728 spin_unlock(&rq1->lock);
1729 if (rq1 != rq2)
1730 spin_unlock(&rq2->lock);
1731 else
1732 __release(rq2->lock);
1733 }
1734
1735 /*
1736 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1737 */
1738 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1739 __releases(this_rq->lock)
1740 __acquires(busiest->lock)
1741 __acquires(this_rq->lock)
1742 {
1743 if (unlikely(!spin_trylock(&busiest->lock))) {
1744 if (busiest->cpu < this_rq->cpu) {
1745 spin_unlock(&this_rq->lock);
1746 spin_lock(&busiest->lock);
1747 spin_lock(&this_rq->lock);
1748 } else
1749 spin_lock(&busiest->lock);
1750 }
1751 }
1752
1753 /*
1754 * If dest_cpu is allowed for this process, migrate the task to it.
1755 * This is accomplished by forcing the cpu_allowed mask to only
1756 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1757 * the cpu_allowed mask is restored.
1758 */
1759 static void sched_migrate_task(task_t *p, int dest_cpu)
1760 {
1761 migration_req_t req;
1762 runqueue_t *rq;
1763 unsigned long flags;
1764
1765 rq = task_rq_lock(p, &flags);
1766 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1767 || unlikely(cpu_is_offline(dest_cpu)))
1768 goto out;
1769
1770 /* force the process onto the specified CPU */
1771 if (migrate_task(p, dest_cpu, &req)) {
1772 /* Need to wait for migration thread (might exit: take ref). */
1773 struct task_struct *mt = rq->migration_thread;
1774 get_task_struct(mt);
1775 task_rq_unlock(rq, &flags);
1776 wake_up_process(mt);
1777 put_task_struct(mt);
1778 wait_for_completion(&req.done);
1779 return;
1780 }
1781 out:
1782 task_rq_unlock(rq, &flags);
1783 }
1784
1785 /*
1786 * sched_exec - execve() is a valuable balancing opportunity, because at
1787 * this point the task has the smallest effective memory and cache footprint.
1788 */
1789 void sched_exec(void)
1790 {
1791 int new_cpu, this_cpu = get_cpu();
1792 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1793 put_cpu();
1794 if (new_cpu != this_cpu)
1795 sched_migrate_task(current, new_cpu);
1796 }
1797
1798 /*
1799 * pull_task - move a task from a remote runqueue to the local runqueue.
1800 * Both runqueues must be locked.
1801 */
1802 static
1803 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1804 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1805 {
1806 dequeue_task(p, src_array);
1807 src_rq->nr_running--;
1808 set_task_cpu(p, this_cpu);
1809 this_rq->nr_running++;
1810 enqueue_task(p, this_array);
1811 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1812 + this_rq->timestamp_last_tick;
1813 /*
1814 * Note that idle threads have a prio of MAX_PRIO, for this test
1815 * to be always true for them.
1816 */
1817 if (TASK_PREEMPTS_CURR(p, this_rq))
1818 resched_task(this_rq->curr);
1819 }
1820
1821 /*
1822 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1823 */
1824 static
1825 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1826 struct sched_domain *sd, enum idle_type idle,
1827 int *all_pinned)
1828 {
1829 /*
1830 * We do not migrate tasks that are:
1831 * 1) running (obviously), or
1832 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1833 * 3) are cache-hot on their current CPU.
1834 */
1835 if (!cpu_isset(this_cpu, p->cpus_allowed))
1836 return 0;
1837 *all_pinned = 0;
1838
1839 if (task_running(rq, p))
1840 return 0;
1841
1842 /*
1843 * Aggressive migration if:
1844 * 1) task is cache cold, or
1845 * 2) too many balance attempts have failed.
1846 */
1847
1848 if (sd->nr_balance_failed > sd->cache_nice_tries)
1849 return 1;
1850
1851 if (task_hot(p, rq->timestamp_last_tick, sd))
1852 return 0;
1853 return 1;
1854 }
1855
1856 /*
1857 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1858 * as part of a balancing operation within "domain". Returns the number of
1859 * tasks moved.
1860 *
1861 * Called with both runqueues locked.
1862 */
1863 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1864 unsigned long max_nr_move, struct sched_domain *sd,
1865 enum idle_type idle, int *all_pinned)
1866 {
1867 prio_array_t *array, *dst_array;
1868 struct list_head *head, *curr;
1869 int idx, pulled = 0, pinned = 0;
1870 task_t *tmp;
1871
1872 if (max_nr_move == 0)
1873 goto out;
1874
1875 pinned = 1;
1876
1877 /*
1878 * We first consider expired tasks. Those will likely not be
1879 * executed in the near future, and they are most likely to
1880 * be cache-cold, thus switching CPUs has the least effect
1881 * on them.
1882 */
1883 if (busiest->expired->nr_active) {
1884 array = busiest->expired;
1885 dst_array = this_rq->expired;
1886 } else {
1887 array = busiest->active;
1888 dst_array = this_rq->active;
1889 }
1890
1891 new_array:
1892 /* Start searching at priority 0: */
1893 idx = 0;
1894 skip_bitmap:
1895 if (!idx)
1896 idx = sched_find_first_bit(array->bitmap);
1897 else
1898 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1899 if (idx >= MAX_PRIO) {
1900 if (array == busiest->expired && busiest->active->nr_active) {
1901 array = busiest->active;
1902 dst_array = this_rq->active;
1903 goto new_array;
1904 }
1905 goto out;
1906 }
1907
1908 head = array->queue + idx;
1909 curr = head->prev;
1910 skip_queue:
1911 tmp = list_entry(curr, task_t, run_list);
1912
1913 curr = curr->prev;
1914
1915 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1916 if (curr != head)
1917 goto skip_queue;
1918 idx++;
1919 goto skip_bitmap;
1920 }
1921
1922 #ifdef CONFIG_SCHEDSTATS
1923 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1924 schedstat_inc(sd, lb_hot_gained[idle]);
1925 #endif
1926
1927 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1928 pulled++;
1929
1930 /* We only want to steal up to the prescribed number of tasks. */
1931 if (pulled < max_nr_move) {
1932 if (curr != head)
1933 goto skip_queue;
1934 idx++;
1935 goto skip_bitmap;
1936 }
1937 out:
1938 /*
1939 * Right now, this is the only place pull_task() is called,
1940 * so we can safely collect pull_task() stats here rather than
1941 * inside pull_task().
1942 */
1943 schedstat_add(sd, lb_gained[idle], pulled);
1944
1945 if (all_pinned)
1946 *all_pinned = pinned;
1947 return pulled;
1948 }
1949
1950 /*
1951 * find_busiest_group finds and returns the busiest CPU group within the
1952 * domain. It calculates and returns the number of tasks which should be
1953 * moved to restore balance via the imbalance parameter.
1954 */
1955 static struct sched_group *
1956 find_busiest_group(struct sched_domain *sd, int this_cpu,
1957 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1958 {
1959 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1960 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1961 unsigned long max_pull;
1962 int load_idx;
1963
1964 max_load = this_load = total_load = total_pwr = 0;
1965 if (idle == NOT_IDLE)
1966 load_idx = sd->busy_idx;
1967 else if (idle == NEWLY_IDLE)
1968 load_idx = sd->newidle_idx;
1969 else
1970 load_idx = sd->idle_idx;
1971
1972 do {
1973 unsigned long load;
1974 int local_group;
1975 int i;
1976
1977 local_group = cpu_isset(this_cpu, group->cpumask);
1978
1979 /* Tally up the load of all CPUs in the group */
1980 avg_load = 0;
1981
1982 for_each_cpu_mask(i, group->cpumask) {
1983 if (*sd_idle && !idle_cpu(i))
1984 *sd_idle = 0;
1985
1986 /* Bias balancing toward cpus of our domain */
1987 if (local_group)
1988 load = target_load(i, load_idx);
1989 else
1990 load = source_load(i, load_idx);
1991
1992 avg_load += load;
1993 }
1994
1995 total_load += avg_load;
1996 total_pwr += group->cpu_power;
1997
1998 /* Adjust by relative CPU power of the group */
1999 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2000
2001 if (local_group) {
2002 this_load = avg_load;
2003 this = group;
2004 } else if (avg_load > max_load) {
2005 max_load = avg_load;
2006 busiest = group;
2007 }
2008 group = group->next;
2009 } while (group != sd->groups);
2010
2011 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2012 goto out_balanced;
2013
2014 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2015
2016 if (this_load >= avg_load ||
2017 100*max_load <= sd->imbalance_pct*this_load)
2018 goto out_balanced;
2019
2020 /*
2021 * We're trying to get all the cpus to the average_load, so we don't
2022 * want to push ourselves above the average load, nor do we wish to
2023 * reduce the max loaded cpu below the average load, as either of these
2024 * actions would just result in more rebalancing later, and ping-pong
2025 * tasks around. Thus we look for the minimum possible imbalance.
2026 * Negative imbalances (*we* are more loaded than anyone else) will
2027 * be counted as no imbalance for these purposes -- we can't fix that
2028 * by pulling tasks to us. Be careful of negative numbers as they'll
2029 * appear as very large values with unsigned longs.
2030 */
2031
2032 /* Don't want to pull so many tasks that a group would go idle */
2033 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2034
2035 /* How much load to actually move to equalise the imbalance */
2036 *imbalance = min(max_pull * busiest->cpu_power,
2037 (avg_load - this_load) * this->cpu_power)
2038 / SCHED_LOAD_SCALE;
2039
2040 if (*imbalance < SCHED_LOAD_SCALE) {
2041 unsigned long pwr_now = 0, pwr_move = 0;
2042 unsigned long tmp;
2043
2044 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2045 *imbalance = 1;
2046 return busiest;
2047 }
2048
2049 /*
2050 * OK, we don't have enough imbalance to justify moving tasks,
2051 * however we may be able to increase total CPU power used by
2052 * moving them.
2053 */
2054
2055 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2056 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2057 pwr_now /= SCHED_LOAD_SCALE;
2058
2059 /* Amount of load we'd subtract */
2060 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2061 if (max_load > tmp)
2062 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2063 max_load - tmp);
2064
2065 /* Amount of load we'd add */
2066 if (max_load*busiest->cpu_power <
2067 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2068 tmp = max_load*busiest->cpu_power/this->cpu_power;
2069 else
2070 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2071 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2072 pwr_move /= SCHED_LOAD_SCALE;
2073
2074 /* Move if we gain throughput */
2075 if (pwr_move <= pwr_now)
2076 goto out_balanced;
2077
2078 *imbalance = 1;
2079 return busiest;
2080 }
2081
2082 /* Get rid of the scaling factor, rounding down as we divide */
2083 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2084 return busiest;
2085
2086 out_balanced:
2087
2088 *imbalance = 0;
2089 return NULL;
2090 }
2091
2092 /*
2093 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2094 */
2095 static runqueue_t *find_busiest_queue(struct sched_group *group,
2096 enum idle_type idle)
2097 {
2098 unsigned long load, max_load = 0;
2099 runqueue_t *busiest = NULL;
2100 int i;
2101
2102 for_each_cpu_mask(i, group->cpumask) {
2103 load = source_load(i, 0);
2104
2105 if (load > max_load) {
2106 max_load = load;
2107 busiest = cpu_rq(i);
2108 }
2109 }
2110
2111 return busiest;
2112 }
2113
2114 /*
2115 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2116 * so long as it is large enough.
2117 */
2118 #define MAX_PINNED_INTERVAL 512
2119
2120 /*
2121 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2122 * tasks if there is an imbalance.
2123 *
2124 * Called with this_rq unlocked.
2125 */
2126 static int load_balance(int this_cpu, runqueue_t *this_rq,
2127 struct sched_domain *sd, enum idle_type idle)
2128 {
2129 struct sched_group *group;
2130 runqueue_t *busiest;
2131 unsigned long imbalance;
2132 int nr_moved, all_pinned = 0;
2133 int active_balance = 0;
2134 int sd_idle = 0;
2135
2136 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2137 sd_idle = 1;
2138
2139 schedstat_inc(sd, lb_cnt[idle]);
2140
2141 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2142 if (!group) {
2143 schedstat_inc(sd, lb_nobusyg[idle]);
2144 goto out_balanced;
2145 }
2146
2147 busiest = find_busiest_queue(group, idle);
2148 if (!busiest) {
2149 schedstat_inc(sd, lb_nobusyq[idle]);
2150 goto out_balanced;
2151 }
2152
2153 BUG_ON(busiest == this_rq);
2154
2155 schedstat_add(sd, lb_imbalance[idle], imbalance);
2156
2157 nr_moved = 0;
2158 if (busiest->nr_running > 1) {
2159 /*
2160 * Attempt to move tasks. If find_busiest_group has found
2161 * an imbalance but busiest->nr_running <= 1, the group is
2162 * still unbalanced. nr_moved simply stays zero, so it is
2163 * correctly treated as an imbalance.
2164 */
2165 double_rq_lock(this_rq, busiest);
2166 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2167 imbalance, sd, idle, &all_pinned);
2168 double_rq_unlock(this_rq, busiest);
2169
2170 /* All tasks on this runqueue were pinned by CPU affinity */
2171 if (unlikely(all_pinned))
2172 goto out_balanced;
2173 }
2174
2175 if (!nr_moved) {
2176 schedstat_inc(sd, lb_failed[idle]);
2177 sd->nr_balance_failed++;
2178
2179 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2180
2181 spin_lock(&busiest->lock);
2182
2183 /* don't kick the migration_thread, if the curr
2184 * task on busiest cpu can't be moved to this_cpu
2185 */
2186 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2187 spin_unlock(&busiest->lock);
2188 all_pinned = 1;
2189 goto out_one_pinned;
2190 }
2191
2192 if (!busiest->active_balance) {
2193 busiest->active_balance = 1;
2194 busiest->push_cpu = this_cpu;
2195 active_balance = 1;
2196 }
2197 spin_unlock(&busiest->lock);
2198 if (active_balance)
2199 wake_up_process(busiest->migration_thread);
2200
2201 /*
2202 * We've kicked active balancing, reset the failure
2203 * counter.
2204 */
2205 sd->nr_balance_failed = sd->cache_nice_tries+1;
2206 }
2207 } else
2208 sd->nr_balance_failed = 0;
2209
2210 if (likely(!active_balance)) {
2211 /* We were unbalanced, so reset the balancing interval */
2212 sd->balance_interval = sd->min_interval;
2213 } else {
2214 /*
2215 * If we've begun active balancing, start to back off. This
2216 * case may not be covered by the all_pinned logic if there
2217 * is only 1 task on the busy runqueue (because we don't call
2218 * move_tasks).
2219 */
2220 if (sd->balance_interval < sd->max_interval)
2221 sd->balance_interval *= 2;
2222 }
2223
2224 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2225 return -1;
2226 return nr_moved;
2227
2228 out_balanced:
2229 schedstat_inc(sd, lb_balanced[idle]);
2230
2231 sd->nr_balance_failed = 0;
2232
2233 out_one_pinned:
2234 /* tune up the balancing interval */
2235 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2236 (sd->balance_interval < sd->max_interval))
2237 sd->balance_interval *= 2;
2238
2239 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2240 return -1;
2241 return 0;
2242 }
2243
2244 /*
2245 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2246 * tasks if there is an imbalance.
2247 *
2248 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2249 * this_rq is locked.
2250 */
2251 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2252 struct sched_domain *sd)
2253 {
2254 struct sched_group *group;
2255 runqueue_t *busiest = NULL;
2256 unsigned long imbalance;
2257 int nr_moved = 0;
2258 int sd_idle = 0;
2259
2260 if (sd->flags & SD_SHARE_CPUPOWER)
2261 sd_idle = 1;
2262
2263 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2264 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2265 if (!group) {
2266 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2267 goto out_balanced;
2268 }
2269
2270 busiest = find_busiest_queue(group, NEWLY_IDLE);
2271 if (!busiest) {
2272 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2273 goto out_balanced;
2274 }
2275
2276 BUG_ON(busiest == this_rq);
2277
2278 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2279
2280 nr_moved = 0;
2281 if (busiest->nr_running > 1) {
2282 /* Attempt to move tasks */
2283 double_lock_balance(this_rq, busiest);
2284 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2285 imbalance, sd, NEWLY_IDLE, NULL);
2286 spin_unlock(&busiest->lock);
2287 }
2288
2289 if (!nr_moved) {
2290 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2291 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2292 return -1;
2293 } else
2294 sd->nr_balance_failed = 0;
2295
2296 return nr_moved;
2297
2298 out_balanced:
2299 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2301 return -1;
2302 sd->nr_balance_failed = 0;
2303 return 0;
2304 }
2305
2306 /*
2307 * idle_balance is called by schedule() if this_cpu is about to become
2308 * idle. Attempts to pull tasks from other CPUs.
2309 */
2310 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2311 {
2312 struct sched_domain *sd;
2313
2314 for_each_domain(this_cpu, sd) {
2315 if (sd->flags & SD_BALANCE_NEWIDLE) {
2316 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2317 /* We've pulled tasks over so stop searching */
2318 break;
2319 }
2320 }
2321 }
2322 }
2323
2324 /*
2325 * active_load_balance is run by migration threads. It pushes running tasks
2326 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2327 * running on each physical CPU where possible, and avoids physical /
2328 * logical imbalances.
2329 *
2330 * Called with busiest_rq locked.
2331 */
2332 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2333 {
2334 struct sched_domain *sd;
2335 runqueue_t *target_rq;
2336 int target_cpu = busiest_rq->push_cpu;
2337
2338 if (busiest_rq->nr_running <= 1)
2339 /* no task to move */
2340 return;
2341
2342 target_rq = cpu_rq(target_cpu);
2343
2344 /*
2345 * This condition is "impossible", if it occurs
2346 * we need to fix it. Originally reported by
2347 * Bjorn Helgaas on a 128-cpu setup.
2348 */
2349 BUG_ON(busiest_rq == target_rq);
2350
2351 /* move a task from busiest_rq to target_rq */
2352 double_lock_balance(busiest_rq, target_rq);
2353
2354 /* Search for an sd spanning us and the target CPU. */
2355 for_each_domain(target_cpu, sd)
2356 if ((sd->flags & SD_LOAD_BALANCE) &&
2357 cpu_isset(busiest_cpu, sd->span))
2358 break;
2359
2360 if (unlikely(sd == NULL))
2361 goto out;
2362
2363 schedstat_inc(sd, alb_cnt);
2364
2365 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2366 schedstat_inc(sd, alb_pushed);
2367 else
2368 schedstat_inc(sd, alb_failed);
2369 out:
2370 spin_unlock(&target_rq->lock);
2371 }
2372
2373 /*
2374 * rebalance_tick will get called every timer tick, on every CPU.
2375 *
2376 * It checks each scheduling domain to see if it is due to be balanced,
2377 * and initiates a balancing operation if so.
2378 *
2379 * Balancing parameters are set up in arch_init_sched_domains.
2380 */
2381
2382 /* Don't have all balancing operations going off at once */
2383 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2384
2385 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2386 enum idle_type idle)
2387 {
2388 unsigned long old_load, this_load;
2389 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2390 struct sched_domain *sd;
2391 int i;
2392
2393 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2394 /* Update our load */
2395 for (i = 0; i < 3; i++) {
2396 unsigned long new_load = this_load;
2397 int scale = 1 << i;
2398 old_load = this_rq->cpu_load[i];
2399 /*
2400 * Round up the averaging division if load is increasing. This
2401 * prevents us from getting stuck on 9 if the load is 10, for
2402 * example.
2403 */
2404 if (new_load > old_load)
2405 new_load += scale-1;
2406 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2407 }
2408
2409 for_each_domain(this_cpu, sd) {
2410 unsigned long interval;
2411
2412 if (!(sd->flags & SD_LOAD_BALANCE))
2413 continue;
2414
2415 interval = sd->balance_interval;
2416 if (idle != SCHED_IDLE)
2417 interval *= sd->busy_factor;
2418
2419 /* scale ms to jiffies */
2420 interval = msecs_to_jiffies(interval);
2421 if (unlikely(!interval))
2422 interval = 1;
2423
2424 if (j - sd->last_balance >= interval) {
2425 if (load_balance(this_cpu, this_rq, sd, idle)) {
2426 /*
2427 * We've pulled tasks over so either we're no
2428 * longer idle, or one of our SMT siblings is
2429 * not idle.
2430 */
2431 idle = NOT_IDLE;
2432 }
2433 sd->last_balance += interval;
2434 }
2435 }
2436 }
2437 #else
2438 /*
2439 * on UP we do not need to balance between CPUs:
2440 */
2441 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2442 {
2443 }
2444 static inline void idle_balance(int cpu, runqueue_t *rq)
2445 {
2446 }
2447 #endif
2448
2449 static inline int wake_priority_sleeper(runqueue_t *rq)
2450 {
2451 int ret = 0;
2452 #ifdef CONFIG_SCHED_SMT
2453 spin_lock(&rq->lock);
2454 /*
2455 * If an SMT sibling task has been put to sleep for priority
2456 * reasons reschedule the idle task to see if it can now run.
2457 */
2458 if (rq->nr_running) {
2459 resched_task(rq->idle);
2460 ret = 1;
2461 }
2462 spin_unlock(&rq->lock);
2463 #endif
2464 return ret;
2465 }
2466
2467 DEFINE_PER_CPU(struct kernel_stat, kstat);
2468
2469 EXPORT_PER_CPU_SYMBOL(kstat);
2470
2471 /*
2472 * This is called on clock ticks and on context switches.
2473 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2474 */
2475 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2476 unsigned long long now)
2477 {
2478 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2479 p->sched_time += now - last;
2480 }
2481
2482 /*
2483 * Return current->sched_time plus any more ns on the sched_clock
2484 * that have not yet been banked.
2485 */
2486 unsigned long long current_sched_time(const task_t *tsk)
2487 {
2488 unsigned long long ns;
2489 unsigned long flags;
2490 local_irq_save(flags);
2491 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2492 ns = tsk->sched_time + (sched_clock() - ns);
2493 local_irq_restore(flags);
2494 return ns;
2495 }
2496
2497 /*
2498 * We place interactive tasks back into the active array, if possible.
2499 *
2500 * To guarantee that this does not starve expired tasks we ignore the
2501 * interactivity of a task if the first expired task had to wait more
2502 * than a 'reasonable' amount of time. This deadline timeout is
2503 * load-dependent, as the frequency of array switched decreases with
2504 * increasing number of running tasks. We also ignore the interactivity
2505 * if a better static_prio task has expired:
2506 */
2507 #define EXPIRED_STARVING(rq) \
2508 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2509 (jiffies - (rq)->expired_timestamp >= \
2510 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2511 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2512
2513 /*
2514 * Account user cpu time to a process.
2515 * @p: the process that the cpu time gets accounted to
2516 * @hardirq_offset: the offset to subtract from hardirq_count()
2517 * @cputime: the cpu time spent in user space since the last update
2518 */
2519 void account_user_time(struct task_struct *p, cputime_t cputime)
2520 {
2521 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2522 cputime64_t tmp;
2523
2524 p->utime = cputime_add(p->utime, cputime);
2525
2526 /* Add user time to cpustat. */
2527 tmp = cputime_to_cputime64(cputime);
2528 if (TASK_NICE(p) > 0)
2529 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2530 else
2531 cpustat->user = cputime64_add(cpustat->user, tmp);
2532 }
2533
2534 /*
2535 * Account system cpu time to a process.
2536 * @p: the process that the cpu time gets accounted to
2537 * @hardirq_offset: the offset to subtract from hardirq_count()
2538 * @cputime: the cpu time spent in kernel space since the last update
2539 */
2540 void account_system_time(struct task_struct *p, int hardirq_offset,
2541 cputime_t cputime)
2542 {
2543 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2544 runqueue_t *rq = this_rq();
2545 cputime64_t tmp;
2546
2547 p->stime = cputime_add(p->stime, cputime);
2548
2549 /* Add system time to cpustat. */
2550 tmp = cputime_to_cputime64(cputime);
2551 if (hardirq_count() - hardirq_offset)
2552 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2553 else if (softirq_count())
2554 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2555 else if (p != rq->idle)
2556 cpustat->system = cputime64_add(cpustat->system, tmp);
2557 else if (atomic_read(&rq->nr_iowait) > 0)
2558 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2559 else
2560 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2561 /* Account for system time used */
2562 acct_update_integrals(p);
2563 }
2564
2565 /*
2566 * Account for involuntary wait time.
2567 * @p: the process from which the cpu time has been stolen
2568 * @steal: the cpu time spent in involuntary wait
2569 */
2570 void account_steal_time(struct task_struct *p, cputime_t steal)
2571 {
2572 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2573 cputime64_t tmp = cputime_to_cputime64(steal);
2574 runqueue_t *rq = this_rq();
2575
2576 if (p == rq->idle) {
2577 p->stime = cputime_add(p->stime, steal);
2578 if (atomic_read(&rq->nr_iowait) > 0)
2579 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2580 else
2581 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2582 } else
2583 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2584 }
2585
2586 /*
2587 * This function gets called by the timer code, with HZ frequency.
2588 * We call it with interrupts disabled.
2589 *
2590 * It also gets called by the fork code, when changing the parent's
2591 * timeslices.
2592 */
2593 void scheduler_tick(void)
2594 {
2595 int cpu = smp_processor_id();
2596 runqueue_t *rq = this_rq();
2597 task_t *p = current;
2598 unsigned long long now = sched_clock();
2599
2600 update_cpu_clock(p, rq, now);
2601
2602 rq->timestamp_last_tick = now;
2603
2604 if (p == rq->idle) {
2605 if (wake_priority_sleeper(rq))
2606 goto out;
2607 rebalance_tick(cpu, rq, SCHED_IDLE);
2608 return;
2609 }
2610
2611 /* Task might have expired already, but not scheduled off yet */
2612 if (p->array != rq->active) {
2613 set_tsk_need_resched(p);
2614 goto out;
2615 }
2616 spin_lock(&rq->lock);
2617 /*
2618 * The task was running during this tick - update the
2619 * time slice counter. Note: we do not update a thread's
2620 * priority until it either goes to sleep or uses up its
2621 * timeslice. This makes it possible for interactive tasks
2622 * to use up their timeslices at their highest priority levels.
2623 */
2624 if (rt_task(p)) {
2625 /*
2626 * RR tasks need a special form of timeslice management.
2627 * FIFO tasks have no timeslices.
2628 */
2629 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2630 p->time_slice = task_timeslice(p);
2631 p->first_time_slice = 0;
2632 set_tsk_need_resched(p);
2633
2634 /* put it at the end of the queue: */
2635 requeue_task(p, rq->active);
2636 }
2637 goto out_unlock;
2638 }
2639 if (!--p->time_slice) {
2640 dequeue_task(p, rq->active);
2641 set_tsk_need_resched(p);
2642 p->prio = effective_prio(p);
2643 p->time_slice = task_timeslice(p);
2644 p->first_time_slice = 0;
2645
2646 if (!rq->expired_timestamp)
2647 rq->expired_timestamp = jiffies;
2648 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2649 enqueue_task(p, rq->expired);
2650 if (p->static_prio < rq->best_expired_prio)
2651 rq->best_expired_prio = p->static_prio;
2652 } else
2653 enqueue_task(p, rq->active);
2654 } else {
2655 /*
2656 * Prevent a too long timeslice allowing a task to monopolize
2657 * the CPU. We do this by splitting up the timeslice into
2658 * smaller pieces.
2659 *
2660 * Note: this does not mean the task's timeslices expire or
2661 * get lost in any way, they just might be preempted by
2662 * another task of equal priority. (one with higher
2663 * priority would have preempted this task already.) We
2664 * requeue this task to the end of the list on this priority
2665 * level, which is in essence a round-robin of tasks with
2666 * equal priority.
2667 *
2668 * This only applies to tasks in the interactive
2669 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2670 */
2671 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2672 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2673 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2674 (p->array == rq->active)) {
2675
2676 requeue_task(p, rq->active);
2677 set_tsk_need_resched(p);
2678 }
2679 }
2680 out_unlock:
2681 spin_unlock(&rq->lock);
2682 out:
2683 rebalance_tick(cpu, rq, NOT_IDLE);
2684 }
2685
2686 #ifdef CONFIG_SCHED_SMT
2687 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2688 {
2689 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2690 if (rq->curr == rq->idle && rq->nr_running)
2691 resched_task(rq->idle);
2692 }
2693
2694 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2695 {
2696 struct sched_domain *tmp, *sd = NULL;
2697 cpumask_t sibling_map;
2698 int i;
2699
2700 for_each_domain(this_cpu, tmp)
2701 if (tmp->flags & SD_SHARE_CPUPOWER)
2702 sd = tmp;
2703
2704 if (!sd)
2705 return;
2706
2707 /*
2708 * Unlock the current runqueue because we have to lock in
2709 * CPU order to avoid deadlocks. Caller knows that we might
2710 * unlock. We keep IRQs disabled.
2711 */
2712 spin_unlock(&this_rq->lock);
2713
2714 sibling_map = sd->span;
2715
2716 for_each_cpu_mask(i, sibling_map)
2717 spin_lock(&cpu_rq(i)->lock);
2718 /*
2719 * We clear this CPU from the mask. This both simplifies the
2720 * inner loop and keps this_rq locked when we exit:
2721 */
2722 cpu_clear(this_cpu, sibling_map);
2723
2724 for_each_cpu_mask(i, sibling_map) {
2725 runqueue_t *smt_rq = cpu_rq(i);
2726
2727 wakeup_busy_runqueue(smt_rq);
2728 }
2729
2730 for_each_cpu_mask(i, sibling_map)
2731 spin_unlock(&cpu_rq(i)->lock);
2732 /*
2733 * We exit with this_cpu's rq still held and IRQs
2734 * still disabled:
2735 */
2736 }
2737
2738 /*
2739 * number of 'lost' timeslices this task wont be able to fully
2740 * utilize, if another task runs on a sibling. This models the
2741 * slowdown effect of other tasks running on siblings:
2742 */
2743 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2744 {
2745 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2746 }
2747
2748 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2749 {
2750 struct sched_domain *tmp, *sd = NULL;
2751 cpumask_t sibling_map;
2752 prio_array_t *array;
2753 int ret = 0, i;
2754 task_t *p;
2755
2756 for_each_domain(this_cpu, tmp)
2757 if (tmp->flags & SD_SHARE_CPUPOWER)
2758 sd = tmp;
2759
2760 if (!sd)
2761 return 0;
2762
2763 /*
2764 * The same locking rules and details apply as for
2765 * wake_sleeping_dependent():
2766 */
2767 spin_unlock(&this_rq->lock);
2768 sibling_map = sd->span;
2769 for_each_cpu_mask(i, sibling_map)
2770 spin_lock(&cpu_rq(i)->lock);
2771 cpu_clear(this_cpu, sibling_map);
2772
2773 /*
2774 * Establish next task to be run - it might have gone away because
2775 * we released the runqueue lock above:
2776 */
2777 if (!this_rq->nr_running)
2778 goto out_unlock;
2779 array = this_rq->active;
2780 if (!array->nr_active)
2781 array = this_rq->expired;
2782 BUG_ON(!array->nr_active);
2783
2784 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2785 task_t, run_list);
2786
2787 for_each_cpu_mask(i, sibling_map) {
2788 runqueue_t *smt_rq = cpu_rq(i);
2789 task_t *smt_curr = smt_rq->curr;
2790
2791 /* Kernel threads do not participate in dependent sleeping */
2792 if (!p->mm || !smt_curr->mm || rt_task(p))
2793 goto check_smt_task;
2794
2795 /*
2796 * If a user task with lower static priority than the
2797 * running task on the SMT sibling is trying to schedule,
2798 * delay it till there is proportionately less timeslice
2799 * left of the sibling task to prevent a lower priority
2800 * task from using an unfair proportion of the
2801 * physical cpu's resources. -ck
2802 */
2803 if (rt_task(smt_curr)) {
2804 /*
2805 * With real time tasks we run non-rt tasks only
2806 * per_cpu_gain% of the time.
2807 */
2808 if ((jiffies % DEF_TIMESLICE) >
2809 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2810 ret = 1;
2811 } else
2812 if (smt_curr->static_prio < p->static_prio &&
2813 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2814 smt_slice(smt_curr, sd) > task_timeslice(p))
2815 ret = 1;
2816
2817 check_smt_task:
2818 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2819 rt_task(smt_curr))
2820 continue;
2821 if (!p->mm) {
2822 wakeup_busy_runqueue(smt_rq);
2823 continue;
2824 }
2825
2826 /*
2827 * Reschedule a lower priority task on the SMT sibling for
2828 * it to be put to sleep, or wake it up if it has been put to
2829 * sleep for priority reasons to see if it should run now.
2830 */
2831 if (rt_task(p)) {
2832 if ((jiffies % DEF_TIMESLICE) >
2833 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2834 resched_task(smt_curr);
2835 } else {
2836 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2837 smt_slice(p, sd) > task_timeslice(smt_curr))
2838 resched_task(smt_curr);
2839 else
2840 wakeup_busy_runqueue(smt_rq);
2841 }
2842 }
2843 out_unlock:
2844 for_each_cpu_mask(i, sibling_map)
2845 spin_unlock(&cpu_rq(i)->lock);
2846 return ret;
2847 }
2848 #else
2849 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2850 {
2851 }
2852
2853 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2854 {
2855 return 0;
2856 }
2857 #endif
2858
2859 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2860
2861 void fastcall add_preempt_count(int val)
2862 {
2863 /*
2864 * Underflow?
2865 */
2866 BUG_ON((preempt_count() < 0));
2867 preempt_count() += val;
2868 /*
2869 * Spinlock count overflowing soon?
2870 */
2871 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2872 }
2873 EXPORT_SYMBOL(add_preempt_count);
2874
2875 void fastcall sub_preempt_count(int val)
2876 {
2877 /*
2878 * Underflow?
2879 */
2880 BUG_ON(val > preempt_count());
2881 /*
2882 * Is the spinlock portion underflowing?
2883 */
2884 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2885 preempt_count() -= val;
2886 }
2887 EXPORT_SYMBOL(sub_preempt_count);
2888
2889 #endif
2890
2891 static inline int interactive_sleep(enum sleep_type sleep_type)
2892 {
2893 return (sleep_type == SLEEP_INTERACTIVE ||
2894 sleep_type == SLEEP_INTERRUPTED);
2895 }
2896
2897 /*
2898 * schedule() is the main scheduler function.
2899 */
2900 asmlinkage void __sched schedule(void)
2901 {
2902 long *switch_count;
2903 task_t *prev, *next;
2904 runqueue_t *rq;
2905 prio_array_t *array;
2906 struct list_head *queue;
2907 unsigned long long now;
2908 unsigned long run_time;
2909 int cpu, idx, new_prio;
2910
2911 /*
2912 * Test if we are atomic. Since do_exit() needs to call into
2913 * schedule() atomically, we ignore that path for now.
2914 * Otherwise, whine if we are scheduling when we should not be.
2915 */
2916 if (unlikely(in_atomic() && !current->exit_state)) {
2917 printk(KERN_ERR "BUG: scheduling while atomic: "
2918 "%s/0x%08x/%d\n",
2919 current->comm, preempt_count(), current->pid);
2920 dump_stack();
2921 }
2922 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2923
2924 need_resched:
2925 preempt_disable();
2926 prev = current;
2927 release_kernel_lock(prev);
2928 need_resched_nonpreemptible:
2929 rq = this_rq();
2930
2931 /*
2932 * The idle thread is not allowed to schedule!
2933 * Remove this check after it has been exercised a bit.
2934 */
2935 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2936 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2937 dump_stack();
2938 }
2939
2940 schedstat_inc(rq, sched_cnt);
2941 now = sched_clock();
2942 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2943 run_time = now - prev->timestamp;
2944 if (unlikely((long long)(now - prev->timestamp) < 0))
2945 run_time = 0;
2946 } else
2947 run_time = NS_MAX_SLEEP_AVG;
2948
2949 /*
2950 * Tasks charged proportionately less run_time at high sleep_avg to
2951 * delay them losing their interactive status
2952 */
2953 run_time /= (CURRENT_BONUS(prev) ? : 1);
2954
2955 spin_lock_irq(&rq->lock);
2956
2957 if (unlikely(prev->flags & PF_DEAD))
2958 prev->state = EXIT_DEAD;
2959
2960 switch_count = &prev->nivcsw;
2961 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2962 switch_count = &prev->nvcsw;
2963 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2964 unlikely(signal_pending(prev))))
2965 prev->state = TASK_RUNNING;
2966 else {
2967 if (prev->state == TASK_UNINTERRUPTIBLE)
2968 rq->nr_uninterruptible++;
2969 deactivate_task(prev, rq);
2970 }
2971 }
2972
2973 cpu = smp_processor_id();
2974 if (unlikely(!rq->nr_running)) {
2975 go_idle:
2976 idle_balance(cpu, rq);
2977 if (!rq->nr_running) {
2978 next = rq->idle;
2979 rq->expired_timestamp = 0;
2980 wake_sleeping_dependent(cpu, rq);
2981 /*
2982 * wake_sleeping_dependent() might have released
2983 * the runqueue, so break out if we got new
2984 * tasks meanwhile:
2985 */
2986 if (!rq->nr_running)
2987 goto switch_tasks;
2988 }
2989 } else {
2990 if (dependent_sleeper(cpu, rq)) {
2991 next = rq->idle;
2992 goto switch_tasks;
2993 }
2994 /*
2995 * dependent_sleeper() releases and reacquires the runqueue
2996 * lock, hence go into the idle loop if the rq went
2997 * empty meanwhile:
2998 */
2999 if (unlikely(!rq->nr_running))
3000 goto go_idle;
3001 }
3002
3003 array = rq->active;
3004 if (unlikely(!array->nr_active)) {
3005 /*
3006 * Switch the active and expired arrays.
3007 */
3008 schedstat_inc(rq, sched_switch);
3009 rq->active = rq->expired;
3010 rq->expired = array;
3011 array = rq->active;
3012 rq->expired_timestamp = 0;
3013 rq->best_expired_prio = MAX_PRIO;
3014 }
3015
3016 idx = sched_find_first_bit(array->bitmap);
3017 queue = array->queue + idx;
3018 next = list_entry(queue->next, task_t, run_list);
3019
3020 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3021 unsigned long long delta = now - next->timestamp;
3022 if (unlikely((long long)(now - next->timestamp) < 0))
3023 delta = 0;
3024
3025 if (next->sleep_type == SLEEP_INTERACTIVE)
3026 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3027
3028 array = next->array;
3029 new_prio = recalc_task_prio(next, next->timestamp + delta);
3030
3031 if (unlikely(next->prio != new_prio)) {
3032 dequeue_task(next, array);
3033 next->prio = new_prio;
3034 enqueue_task(next, array);
3035 }
3036 }
3037 next->sleep_type = SLEEP_NORMAL;
3038 switch_tasks:
3039 if (next == rq->idle)
3040 schedstat_inc(rq, sched_goidle);
3041 prefetch(next);
3042 prefetch_stack(next);
3043 clear_tsk_need_resched(prev);
3044 rcu_qsctr_inc(task_cpu(prev));
3045
3046 update_cpu_clock(prev, rq, now);
3047
3048 prev->sleep_avg -= run_time;
3049 if ((long)prev->sleep_avg <= 0)
3050 prev->sleep_avg = 0;
3051 prev->timestamp = prev->last_ran = now;
3052
3053 sched_info_switch(prev, next);
3054 if (likely(prev != next)) {
3055 next->timestamp = now;
3056 rq->nr_switches++;
3057 rq->curr = next;
3058 ++*switch_count;
3059
3060 prepare_task_switch(rq, next);
3061 prev = context_switch(rq, prev, next);
3062 barrier();
3063 /*
3064 * this_rq must be evaluated again because prev may have moved
3065 * CPUs since it called schedule(), thus the 'rq' on its stack
3066 * frame will be invalid.
3067 */
3068 finish_task_switch(this_rq(), prev);
3069 } else
3070 spin_unlock_irq(&rq->lock);
3071
3072 prev = current;
3073 if (unlikely(reacquire_kernel_lock(prev) < 0))
3074 goto need_resched_nonpreemptible;
3075 preempt_enable_no_resched();
3076 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3077 goto need_resched;
3078 }
3079
3080 EXPORT_SYMBOL(schedule);
3081
3082 #ifdef CONFIG_PREEMPT
3083 /*
3084 * this is is the entry point to schedule() from in-kernel preemption
3085 * off of preempt_enable. Kernel preemptions off return from interrupt
3086 * occur there and call schedule directly.
3087 */
3088 asmlinkage void __sched preempt_schedule(void)
3089 {
3090 struct thread_info *ti = current_thread_info();
3091 #ifdef CONFIG_PREEMPT_BKL
3092 struct task_struct *task = current;
3093 int saved_lock_depth;
3094 #endif
3095 /*
3096 * If there is a non-zero preempt_count or interrupts are disabled,
3097 * we do not want to preempt the current task. Just return..
3098 */
3099 if (unlikely(ti->preempt_count || irqs_disabled()))
3100 return;
3101
3102 need_resched:
3103 add_preempt_count(PREEMPT_ACTIVE);
3104 /*
3105 * We keep the big kernel semaphore locked, but we
3106 * clear ->lock_depth so that schedule() doesnt
3107 * auto-release the semaphore:
3108 */
3109 #ifdef CONFIG_PREEMPT_BKL
3110 saved_lock_depth = task->lock_depth;
3111 task->lock_depth = -1;
3112 #endif
3113 schedule();
3114 #ifdef CONFIG_PREEMPT_BKL
3115 task->lock_depth = saved_lock_depth;
3116 #endif
3117 sub_preempt_count(PREEMPT_ACTIVE);
3118
3119 /* we could miss a preemption opportunity between schedule and now */
3120 barrier();
3121 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3122 goto need_resched;
3123 }
3124
3125 EXPORT_SYMBOL(preempt_schedule);
3126
3127 /*
3128 * this is is the entry point to schedule() from kernel preemption
3129 * off of irq context.
3130 * Note, that this is called and return with irqs disabled. This will
3131 * protect us against recursive calling from irq.
3132 */
3133 asmlinkage void __sched preempt_schedule_irq(void)
3134 {
3135 struct thread_info *ti = current_thread_info();
3136 #ifdef CONFIG_PREEMPT_BKL
3137 struct task_struct *task = current;
3138 int saved_lock_depth;
3139 #endif
3140 /* Catch callers which need to be fixed*/
3141 BUG_ON(ti->preempt_count || !irqs_disabled());
3142
3143 need_resched:
3144 add_preempt_count(PREEMPT_ACTIVE);
3145 /*
3146 * We keep the big kernel semaphore locked, but we
3147 * clear ->lock_depth so that schedule() doesnt
3148 * auto-release the semaphore:
3149 */
3150 #ifdef CONFIG_PREEMPT_BKL
3151 saved_lock_depth = task->lock_depth;
3152 task->lock_depth = -1;
3153 #endif
3154 local_irq_enable();
3155 schedule();
3156 local_irq_disable();
3157 #ifdef CONFIG_PREEMPT_BKL
3158 task->lock_depth = saved_lock_depth;
3159 #endif
3160 sub_preempt_count(PREEMPT_ACTIVE);
3161
3162 /* we could miss a preemption opportunity between schedule and now */
3163 barrier();
3164 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3165 goto need_resched;
3166 }
3167
3168 #endif /* CONFIG_PREEMPT */
3169
3170 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3171 void *key)
3172 {
3173 task_t *p = curr->private;
3174 return try_to_wake_up(p, mode, sync);
3175 }
3176
3177 EXPORT_SYMBOL(default_wake_function);
3178
3179 /*
3180 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3181 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3182 * number) then we wake all the non-exclusive tasks and one exclusive task.
3183 *
3184 * There are circumstances in which we can try to wake a task which has already
3185 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3186 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3187 */
3188 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3189 int nr_exclusive, int sync, void *key)
3190 {
3191 struct list_head *tmp, *next;
3192
3193 list_for_each_safe(tmp, next, &q->task_list) {
3194 wait_queue_t *curr;
3195 unsigned flags;
3196 curr = list_entry(tmp, wait_queue_t, task_list);
3197 flags = curr->flags;
3198 if (curr->func(curr, mode, sync, key) &&
3199 (flags & WQ_FLAG_EXCLUSIVE) &&
3200 !--nr_exclusive)
3201 break;
3202 }
3203 }
3204
3205 /**
3206 * __wake_up - wake up threads blocked on a waitqueue.
3207 * @q: the waitqueue
3208 * @mode: which threads
3209 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3210 * @key: is directly passed to the wakeup function
3211 */
3212 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3213 int nr_exclusive, void *key)
3214 {
3215 unsigned long flags;
3216
3217 spin_lock_irqsave(&q->lock, flags);
3218 __wake_up_common(q, mode, nr_exclusive, 0, key);
3219 spin_unlock_irqrestore(&q->lock, flags);
3220 }
3221
3222 EXPORT_SYMBOL(__wake_up);
3223
3224 /*
3225 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3226 */
3227 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3228 {
3229 __wake_up_common(q, mode, 1, 0, NULL);
3230 }
3231
3232 /**
3233 * __wake_up_sync - wake up threads blocked on a waitqueue.
3234 * @q: the waitqueue
3235 * @mode: which threads
3236 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3237 *
3238 * The sync wakeup differs that the waker knows that it will schedule
3239 * away soon, so while the target thread will be woken up, it will not
3240 * be migrated to another CPU - ie. the two threads are 'synchronized'
3241 * with each other. This can prevent needless bouncing between CPUs.
3242 *
3243 * On UP it can prevent extra preemption.
3244 */
3245 void fastcall
3246 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3247 {
3248 unsigned long flags;
3249 int sync = 1;
3250
3251 if (unlikely(!q))
3252 return;
3253
3254 if (unlikely(!nr_exclusive))
3255 sync = 0;
3256
3257 spin_lock_irqsave(&q->lock, flags);
3258 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3259 spin_unlock_irqrestore(&q->lock, flags);
3260 }
3261 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3262
3263 void fastcall complete(struct completion *x)
3264 {
3265 unsigned long flags;
3266
3267 spin_lock_irqsave(&x->wait.lock, flags);
3268 x->done++;
3269 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3270 1, 0, NULL);
3271 spin_unlock_irqrestore(&x->wait.lock, flags);
3272 }
3273 EXPORT_SYMBOL(complete);
3274
3275 void fastcall complete_all(struct completion *x)
3276 {
3277 unsigned long flags;
3278
3279 spin_lock_irqsave(&x->wait.lock, flags);
3280 x->done += UINT_MAX/2;
3281 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3282 0, 0, NULL);
3283 spin_unlock_irqrestore(&x->wait.lock, flags);
3284 }
3285 EXPORT_SYMBOL(complete_all);
3286
3287 void fastcall __sched wait_for_completion(struct completion *x)
3288 {
3289 might_sleep();
3290 spin_lock_irq(&x->wait.lock);
3291 if (!x->done) {
3292 DECLARE_WAITQUEUE(wait, current);
3293
3294 wait.flags |= WQ_FLAG_EXCLUSIVE;
3295 __add_wait_queue_tail(&x->wait, &wait);
3296 do {
3297 __set_current_state(TASK_UNINTERRUPTIBLE);
3298 spin_unlock_irq(&x->wait.lock);
3299 schedule();
3300 spin_lock_irq(&x->wait.lock);
3301 } while (!x->done);
3302 __remove_wait_queue(&x->wait, &wait);
3303 }
3304 x->done--;
3305 spin_unlock_irq(&x->wait.lock);
3306 }
3307 EXPORT_SYMBOL(wait_for_completion);
3308
3309 unsigned long fastcall __sched
3310 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3311 {
3312 might_sleep();
3313
3314 spin_lock_irq(&x->wait.lock);
3315 if (!x->done) {
3316 DECLARE_WAITQUEUE(wait, current);
3317
3318 wait.flags |= WQ_FLAG_EXCLUSIVE;
3319 __add_wait_queue_tail(&x->wait, &wait);
3320 do {
3321 __set_current_state(TASK_UNINTERRUPTIBLE);
3322 spin_unlock_irq(&x->wait.lock);
3323 timeout = schedule_timeout(timeout);
3324 spin_lock_irq(&x->wait.lock);
3325 if (!timeout) {
3326 __remove_wait_queue(&x->wait, &wait);
3327 goto out;
3328 }
3329 } while (!x->done);
3330 __remove_wait_queue(&x->wait, &wait);
3331 }
3332 x->done--;
3333 out:
3334 spin_unlock_irq(&x->wait.lock);
3335 return timeout;
3336 }
3337 EXPORT_SYMBOL(wait_for_completion_timeout);
3338
3339 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3340 {
3341 int ret = 0;
3342
3343 might_sleep();
3344
3345 spin_lock_irq(&x->wait.lock);
3346 if (!x->done) {
3347 DECLARE_WAITQUEUE(wait, current);
3348
3349 wait.flags |= WQ_FLAG_EXCLUSIVE;
3350 __add_wait_queue_tail(&x->wait, &wait);
3351 do {
3352 if (signal_pending(current)) {
3353 ret = -ERESTARTSYS;
3354 __remove_wait_queue(&x->wait, &wait);
3355 goto out;
3356 }
3357 __set_current_state(TASK_INTERRUPTIBLE);
3358 spin_unlock_irq(&x->wait.lock);
3359 schedule();
3360 spin_lock_irq(&x->wait.lock);
3361 } while (!x->done);
3362 __remove_wait_queue(&x->wait, &wait);
3363 }
3364 x->done--;
3365 out:
3366 spin_unlock_irq(&x->wait.lock);
3367
3368 return ret;
3369 }
3370 EXPORT_SYMBOL(wait_for_completion_interruptible);
3371
3372 unsigned long fastcall __sched
3373 wait_for_completion_interruptible_timeout(struct completion *x,
3374 unsigned long timeout)
3375 {
3376 might_sleep();
3377
3378 spin_lock_irq(&x->wait.lock);
3379 if (!x->done) {
3380 DECLARE_WAITQUEUE(wait, current);
3381
3382 wait.flags |= WQ_FLAG_EXCLUSIVE;
3383 __add_wait_queue_tail(&x->wait, &wait);
3384 do {
3385 if (signal_pending(current)) {
3386 timeout = -ERESTARTSYS;
3387 __remove_wait_queue(&x->wait, &wait);
3388 goto out;
3389 }
3390 __set_current_state(TASK_INTERRUPTIBLE);
3391 spin_unlock_irq(&x->wait.lock);
3392 timeout = schedule_timeout(timeout);
3393 spin_lock_irq(&x->wait.lock);
3394 if (!timeout) {
3395 __remove_wait_queue(&x->wait, &wait);
3396 goto out;
3397 }
3398 } while (!x->done);
3399 __remove_wait_queue(&x->wait, &wait);
3400 }
3401 x->done--;
3402 out:
3403 spin_unlock_irq(&x->wait.lock);
3404 return timeout;
3405 }
3406 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3407
3408
3409 #define SLEEP_ON_VAR \
3410 unsigned long flags; \
3411 wait_queue_t wait; \
3412 init_waitqueue_entry(&wait, current);
3413
3414 #define SLEEP_ON_HEAD \
3415 spin_lock_irqsave(&q->lock,flags); \
3416 __add_wait_queue(q, &wait); \
3417 spin_unlock(&q->lock);
3418
3419 #define SLEEP_ON_TAIL \
3420 spin_lock_irq(&q->lock); \
3421 __remove_wait_queue(q, &wait); \
3422 spin_unlock_irqrestore(&q->lock, flags);
3423
3424 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3425 {
3426 SLEEP_ON_VAR
3427
3428 current->state = TASK_INTERRUPTIBLE;
3429
3430 SLEEP_ON_HEAD
3431 schedule();
3432 SLEEP_ON_TAIL
3433 }
3434
3435 EXPORT_SYMBOL(interruptible_sleep_on);
3436
3437 long fastcall __sched
3438 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3439 {
3440 SLEEP_ON_VAR
3441
3442 current->state = TASK_INTERRUPTIBLE;
3443
3444 SLEEP_ON_HEAD
3445 timeout = schedule_timeout(timeout);
3446 SLEEP_ON_TAIL
3447
3448 return timeout;
3449 }
3450
3451 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3452
3453 void fastcall __sched sleep_on(wait_queue_head_t *q)
3454 {
3455 SLEEP_ON_VAR
3456
3457 current->state = TASK_UNINTERRUPTIBLE;
3458
3459 SLEEP_ON_HEAD
3460 schedule();
3461 SLEEP_ON_TAIL
3462 }
3463
3464 EXPORT_SYMBOL(sleep_on);
3465
3466 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3467 {
3468 SLEEP_ON_VAR
3469
3470 current->state = TASK_UNINTERRUPTIBLE;
3471
3472 SLEEP_ON_HEAD
3473 timeout = schedule_timeout(timeout);
3474 SLEEP_ON_TAIL
3475
3476 return timeout;
3477 }
3478
3479 EXPORT_SYMBOL(sleep_on_timeout);
3480
3481 void set_user_nice(task_t *p, long nice)
3482 {
3483 unsigned long flags;
3484 prio_array_t *array;
3485 runqueue_t *rq;
3486 int old_prio, new_prio, delta;
3487
3488 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3489 return;
3490 /*
3491 * We have to be careful, if called from sys_setpriority(),
3492 * the task might be in the middle of scheduling on another CPU.
3493 */
3494 rq = task_rq_lock(p, &flags);
3495 /*
3496 * The RT priorities are set via sched_setscheduler(), but we still
3497 * allow the 'normal' nice value to be set - but as expected
3498 * it wont have any effect on scheduling until the task is
3499 * not SCHED_NORMAL/SCHED_BATCH:
3500 */
3501 if (rt_task(p)) {
3502 p->static_prio = NICE_TO_PRIO(nice);
3503 goto out_unlock;
3504 }
3505 array = p->array;
3506 if (array)
3507 dequeue_task(p, array);
3508
3509 old_prio = p->prio;
3510 new_prio = NICE_TO_PRIO(nice);
3511 delta = new_prio - old_prio;
3512 p->static_prio = NICE_TO_PRIO(nice);
3513 p->prio += delta;
3514
3515 if (array) {
3516 enqueue_task(p, array);
3517 /*
3518 * If the task increased its priority or is running and
3519 * lowered its priority, then reschedule its CPU:
3520 */
3521 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3522 resched_task(rq->curr);
3523 }
3524 out_unlock:
3525 task_rq_unlock(rq, &flags);
3526 }
3527
3528 EXPORT_SYMBOL(set_user_nice);
3529
3530 /*
3531 * can_nice - check if a task can reduce its nice value
3532 * @p: task
3533 * @nice: nice value
3534 */
3535 int can_nice(const task_t *p, const int nice)
3536 {
3537 /* convert nice value [19,-20] to rlimit style value [1,40] */
3538 int nice_rlim = 20 - nice;
3539 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3540 capable(CAP_SYS_NICE));
3541 }
3542
3543 #ifdef __ARCH_WANT_SYS_NICE
3544
3545 /*
3546 * sys_nice - change the priority of the current process.
3547 * @increment: priority increment
3548 *
3549 * sys_setpriority is a more generic, but much slower function that
3550 * does similar things.
3551 */
3552 asmlinkage long sys_nice(int increment)
3553 {
3554 int retval;
3555 long nice;
3556
3557 /*
3558 * Setpriority might change our priority at the same moment.
3559 * We don't have to worry. Conceptually one call occurs first
3560 * and we have a single winner.
3561 */
3562 if (increment < -40)
3563 increment = -40;
3564 if (increment > 40)
3565 increment = 40;
3566
3567 nice = PRIO_TO_NICE(current->static_prio) + increment;
3568 if (nice < -20)
3569 nice = -20;
3570 if (nice > 19)
3571 nice = 19;
3572
3573 if (increment < 0 && !can_nice(current, nice))
3574 return -EPERM;
3575
3576 retval = security_task_setnice(current, nice);
3577 if (retval)
3578 return retval;
3579
3580 set_user_nice(current, nice);
3581 return 0;
3582 }
3583
3584 #endif
3585
3586 /**
3587 * task_prio - return the priority value of a given task.
3588 * @p: the task in question.
3589 *
3590 * This is the priority value as seen by users in /proc.
3591 * RT tasks are offset by -200. Normal tasks are centered
3592 * around 0, value goes from -16 to +15.
3593 */
3594 int task_prio(const task_t *p)
3595 {
3596 return p->prio - MAX_RT_PRIO;
3597 }
3598
3599 /**
3600 * task_nice - return the nice value of a given task.
3601 * @p: the task in question.
3602 */
3603 int task_nice(const task_t *p)
3604 {
3605 return TASK_NICE(p);
3606 }
3607 EXPORT_SYMBOL_GPL(task_nice);
3608
3609 /**
3610 * idle_cpu - is a given cpu idle currently?
3611 * @cpu: the processor in question.
3612 */
3613 int idle_cpu(int cpu)
3614 {
3615 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3616 }
3617
3618 /**
3619 * idle_task - return the idle task for a given cpu.
3620 * @cpu: the processor in question.
3621 */
3622 task_t *idle_task(int cpu)
3623 {
3624 return cpu_rq(cpu)->idle;
3625 }
3626
3627 /**
3628 * find_process_by_pid - find a process with a matching PID value.
3629 * @pid: the pid in question.
3630 */
3631 static inline task_t *find_process_by_pid(pid_t pid)
3632 {
3633 return pid ? find_task_by_pid(pid) : current;
3634 }
3635
3636 /* Actually do priority change: must hold rq lock. */
3637 static void __setscheduler(struct task_struct *p, int policy, int prio)
3638 {
3639 BUG_ON(p->array);
3640 p->policy = policy;
3641 p->rt_priority = prio;
3642 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3643 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3644 } else {
3645 p->prio = p->static_prio;
3646 /*
3647 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3648 */
3649 if (policy == SCHED_BATCH)
3650 p->sleep_avg = 0;
3651 }
3652 }
3653
3654 /**
3655 * sched_setscheduler - change the scheduling policy and/or RT priority of
3656 * a thread.
3657 * @p: the task in question.
3658 * @policy: new policy.
3659 * @param: structure containing the new RT priority.
3660 */
3661 int sched_setscheduler(struct task_struct *p, int policy,
3662 struct sched_param *param)
3663 {
3664 int retval;
3665 int oldprio, oldpolicy = -1;
3666 prio_array_t *array;
3667 unsigned long flags;
3668 runqueue_t *rq;
3669
3670 recheck:
3671 /* double check policy once rq lock held */
3672 if (policy < 0)
3673 policy = oldpolicy = p->policy;
3674 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3675 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3676 return -EINVAL;
3677 /*
3678 * Valid priorities for SCHED_FIFO and SCHED_RR are
3679 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3680 * SCHED_BATCH is 0.
3681 */
3682 if (param->sched_priority < 0 ||
3683 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3684 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3685 return -EINVAL;
3686 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3687 != (param->sched_priority == 0))
3688 return -EINVAL;
3689
3690 /*
3691 * Allow unprivileged RT tasks to decrease priority:
3692 */
3693 if (!capable(CAP_SYS_NICE)) {
3694 /*
3695 * can't change policy, except between SCHED_NORMAL
3696 * and SCHED_BATCH:
3697 */
3698 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3699 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3700 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3701 return -EPERM;
3702 /* can't increase priority */
3703 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3704 param->sched_priority > p->rt_priority &&
3705 param->sched_priority >
3706 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3707 return -EPERM;
3708 /* can't change other user's priorities */
3709 if ((current->euid != p->euid) &&
3710 (current->euid != p->uid))
3711 return -EPERM;
3712 }
3713
3714 retval = security_task_setscheduler(p, policy, param);
3715 if (retval)
3716 return retval;
3717 /*
3718 * To be able to change p->policy safely, the apropriate
3719 * runqueue lock must be held.
3720 */
3721 rq = task_rq_lock(p, &flags);
3722 /* recheck policy now with rq lock held */
3723 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3724 policy = oldpolicy = -1;
3725 task_rq_unlock(rq, &flags);
3726 goto recheck;
3727 }
3728 array = p->array;
3729 if (array)
3730 deactivate_task(p, rq);
3731 oldprio = p->prio;
3732 __setscheduler(p, policy, param->sched_priority);
3733 if (array) {
3734 __activate_task(p, rq);
3735 /*
3736 * Reschedule if we are currently running on this runqueue and
3737 * our priority decreased, or if we are not currently running on
3738 * this runqueue and our priority is higher than the current's
3739 */
3740 if (task_running(rq, p)) {
3741 if (p->prio > oldprio)
3742 resched_task(rq->curr);
3743 } else if (TASK_PREEMPTS_CURR(p, rq))
3744 resched_task(rq->curr);
3745 }
3746 task_rq_unlock(rq, &flags);
3747 return 0;
3748 }
3749 EXPORT_SYMBOL_GPL(sched_setscheduler);
3750
3751 static int
3752 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3753 {
3754 int retval;
3755 struct sched_param lparam;
3756 struct task_struct *p;
3757
3758 if (!param || pid < 0)
3759 return -EINVAL;
3760 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3761 return -EFAULT;
3762 read_lock_irq(&tasklist_lock);
3763 p = find_process_by_pid(pid);
3764 if (!p) {
3765 read_unlock_irq(&tasklist_lock);
3766 return -ESRCH;
3767 }
3768 retval = sched_setscheduler(p, policy, &lparam);
3769 read_unlock_irq(&tasklist_lock);
3770 return retval;
3771 }
3772
3773 /**
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
3778 */
3779 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3780 struct sched_param __user *param)
3781 {
3782 /* negative values for policy are not valid */
3783 if (policy < 0)
3784 return -EINVAL;
3785
3786 return do_sched_setscheduler(pid, policy, param);
3787 }
3788
3789 /**
3790 * sys_sched_setparam - set/change the RT priority of a thread
3791 * @pid: the pid in question.
3792 * @param: structure containing the new RT priority.
3793 */
3794 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3795 {
3796 return do_sched_setscheduler(pid, -1, param);
3797 }
3798
3799 /**
3800 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3801 * @pid: the pid in question.
3802 */
3803 asmlinkage long sys_sched_getscheduler(pid_t pid)
3804 {
3805 int retval = -EINVAL;
3806 task_t *p;
3807
3808 if (pid < 0)
3809 goto out_nounlock;
3810
3811 retval = -ESRCH;
3812 read_lock(&tasklist_lock);
3813 p = find_process_by_pid(pid);
3814 if (p) {
3815 retval = security_task_getscheduler(p);
3816 if (!retval)
3817 retval = p->policy;
3818 }
3819 read_unlock(&tasklist_lock);
3820
3821 out_nounlock:
3822 return retval;
3823 }
3824
3825 /**
3826 * sys_sched_getscheduler - get the RT priority of a thread
3827 * @pid: the pid in question.
3828 * @param: structure containing the RT priority.
3829 */
3830 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3831 {
3832 struct sched_param lp;
3833 int retval = -EINVAL;
3834 task_t *p;
3835
3836 if (!param || pid < 0)
3837 goto out_nounlock;
3838
3839 read_lock(&tasklist_lock);
3840 p = find_process_by_pid(pid);
3841 retval = -ESRCH;
3842 if (!p)
3843 goto out_unlock;
3844
3845 retval = security_task_getscheduler(p);
3846 if (retval)
3847 goto out_unlock;
3848
3849 lp.sched_priority = p->rt_priority;
3850 read_unlock(&tasklist_lock);
3851
3852 /*
3853 * This one might sleep, we cannot do it with a spinlock held ...
3854 */
3855 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3856
3857 out_nounlock:
3858 return retval;
3859
3860 out_unlock:
3861 read_unlock(&tasklist_lock);
3862 return retval;
3863 }
3864
3865 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3866 {
3867 task_t *p;
3868 int retval;
3869 cpumask_t cpus_allowed;
3870
3871 lock_cpu_hotplug();
3872 read_lock(&tasklist_lock);
3873
3874 p = find_process_by_pid(pid);
3875 if (!p) {
3876 read_unlock(&tasklist_lock);
3877 unlock_cpu_hotplug();
3878 return -ESRCH;
3879 }
3880
3881 /*
3882 * It is not safe to call set_cpus_allowed with the
3883 * tasklist_lock held. We will bump the task_struct's
3884 * usage count and then drop tasklist_lock.
3885 */
3886 get_task_struct(p);
3887 read_unlock(&tasklist_lock);
3888
3889 retval = -EPERM;
3890 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3891 !capable(CAP_SYS_NICE))
3892 goto out_unlock;
3893
3894 retval = security_task_setscheduler(p, 0, NULL);
3895 if (retval)
3896 goto out_unlock;
3897
3898 cpus_allowed = cpuset_cpus_allowed(p);
3899 cpus_and(new_mask, new_mask, cpus_allowed);
3900 retval = set_cpus_allowed(p, new_mask);
3901
3902 out_unlock:
3903 put_task_struct(p);
3904 unlock_cpu_hotplug();
3905 return retval;
3906 }
3907
3908 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3909 cpumask_t *new_mask)
3910 {
3911 if (len < sizeof(cpumask_t)) {
3912 memset(new_mask, 0, sizeof(cpumask_t));
3913 } else if (len > sizeof(cpumask_t)) {
3914 len = sizeof(cpumask_t);
3915 }
3916 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3917 }
3918
3919 /**
3920 * sys_sched_setaffinity - set the cpu affinity of a process
3921 * @pid: pid of the process
3922 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3923 * @user_mask_ptr: user-space pointer to the new cpu mask
3924 */
3925 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3926 unsigned long __user *user_mask_ptr)
3927 {
3928 cpumask_t new_mask;
3929 int retval;
3930
3931 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3932 if (retval)
3933 return retval;
3934
3935 return sched_setaffinity(pid, new_mask);
3936 }
3937
3938 /*
3939 * Represents all cpu's present in the system
3940 * In systems capable of hotplug, this map could dynamically grow
3941 * as new cpu's are detected in the system via any platform specific
3942 * method, such as ACPI for e.g.
3943 */
3944
3945 cpumask_t cpu_present_map __read_mostly;
3946 EXPORT_SYMBOL(cpu_present_map);
3947
3948 #ifndef CONFIG_SMP
3949 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3950 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3951 #endif
3952
3953 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3954 {
3955 int retval;
3956 task_t *p;
3957
3958 lock_cpu_hotplug();
3959 read_lock(&tasklist_lock);
3960
3961 retval = -ESRCH;
3962 p = find_process_by_pid(pid);
3963 if (!p)
3964 goto out_unlock;
3965
3966 retval = security_task_getscheduler(p);
3967 if (retval)
3968 goto out_unlock;
3969
3970 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3971
3972 out_unlock:
3973 read_unlock(&tasklist_lock);
3974 unlock_cpu_hotplug();
3975 if (retval)
3976 return retval;
3977
3978 return 0;
3979 }
3980
3981 /**
3982 * sys_sched_getaffinity - get the cpu affinity of a process
3983 * @pid: pid of the process
3984 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3985 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3986 */
3987 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3988 unsigned long __user *user_mask_ptr)
3989 {
3990 int ret;
3991 cpumask_t mask;
3992
3993 if (len < sizeof(cpumask_t))
3994 return -EINVAL;
3995
3996 ret = sched_getaffinity(pid, &mask);
3997 if (ret < 0)
3998 return ret;
3999
4000 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4001 return -EFAULT;
4002
4003 return sizeof(cpumask_t);
4004 }
4005
4006 /**
4007 * sys_sched_yield - yield the current processor to other threads.
4008 *
4009 * this function yields the current CPU by moving the calling thread
4010 * to the expired array. If there are no other threads running on this
4011 * CPU then this function will return.
4012 */
4013 asmlinkage long sys_sched_yield(void)
4014 {
4015 runqueue_t *rq = this_rq_lock();
4016 prio_array_t *array = current->array;
4017 prio_array_t *target = rq->expired;
4018
4019 schedstat_inc(rq, yld_cnt);
4020 /*
4021 * We implement yielding by moving the task into the expired
4022 * queue.
4023 *
4024 * (special rule: RT tasks will just roundrobin in the active
4025 * array.)
4026 */
4027 if (rt_task(current))
4028 target = rq->active;
4029
4030 if (array->nr_active == 1) {
4031 schedstat_inc(rq, yld_act_empty);
4032 if (!rq->expired->nr_active)
4033 schedstat_inc(rq, yld_both_empty);
4034 } else if (!rq->expired->nr_active)
4035 schedstat_inc(rq, yld_exp_empty);
4036
4037 if (array != target) {
4038 dequeue_task(current, array);
4039 enqueue_task(current, target);
4040 } else
4041 /*
4042 * requeue_task is cheaper so perform that if possible.
4043 */
4044 requeue_task(current, array);
4045
4046 /*
4047 * Since we are going to call schedule() anyway, there's
4048 * no need to preempt or enable interrupts:
4049 */
4050 __release(rq->lock);
4051 _raw_spin_unlock(&rq->lock);
4052 preempt_enable_no_resched();
4053
4054 schedule();
4055
4056 return 0;
4057 }
4058
4059 static inline void __cond_resched(void)
4060 {
4061 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4062 __might_sleep(__FILE__, __LINE__);
4063 #endif
4064 /*
4065 * The BKS might be reacquired before we have dropped
4066 * PREEMPT_ACTIVE, which could trigger a second
4067 * cond_resched() call.
4068 */
4069 if (unlikely(preempt_count()))
4070 return;
4071 if (unlikely(system_state != SYSTEM_RUNNING))
4072 return;
4073 do {
4074 add_preempt_count(PREEMPT_ACTIVE);
4075 schedule();
4076 sub_preempt_count(PREEMPT_ACTIVE);
4077 } while (need_resched());
4078 }
4079
4080 int __sched cond_resched(void)
4081 {
4082 if (need_resched()) {
4083 __cond_resched();
4084 return 1;
4085 }
4086 return 0;
4087 }
4088
4089 EXPORT_SYMBOL(cond_resched);
4090
4091 /*
4092 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4093 * call schedule, and on return reacquire the lock.
4094 *
4095 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4096 * operations here to prevent schedule() from being called twice (once via
4097 * spin_unlock(), once by hand).
4098 */
4099 int cond_resched_lock(spinlock_t *lock)
4100 {
4101 int ret = 0;
4102
4103 if (need_lockbreak(lock)) {
4104 spin_unlock(lock);
4105 cpu_relax();
4106 ret = 1;
4107 spin_lock(lock);
4108 }
4109 if (need_resched()) {
4110 _raw_spin_unlock(lock);
4111 preempt_enable_no_resched();
4112 __cond_resched();
4113 ret = 1;
4114 spin_lock(lock);
4115 }
4116 return ret;
4117 }
4118
4119 EXPORT_SYMBOL(cond_resched_lock);
4120
4121 int __sched cond_resched_softirq(void)
4122 {
4123 BUG_ON(!in_softirq());
4124
4125 if (need_resched()) {
4126 __local_bh_enable();
4127 __cond_resched();
4128 local_bh_disable();
4129 return 1;
4130 }
4131 return 0;
4132 }
4133
4134 EXPORT_SYMBOL(cond_resched_softirq);
4135
4136
4137 /**
4138 * yield - yield the current processor to other threads.
4139 *
4140 * this is a shortcut for kernel-space yielding - it marks the
4141 * thread runnable and calls sys_sched_yield().
4142 */
4143 void __sched yield(void)
4144 {
4145 set_current_state(TASK_RUNNING);
4146 sys_sched_yield();
4147 }
4148
4149 EXPORT_SYMBOL(yield);
4150
4151 /*
4152 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4153 * that process accounting knows that this is a task in IO wait state.
4154 *
4155 * But don't do that if it is a deliberate, throttling IO wait (this task
4156 * has set its backing_dev_info: the queue against which it should throttle)
4157 */
4158 void __sched io_schedule(void)
4159 {
4160 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4161
4162 atomic_inc(&rq->nr_iowait);
4163 schedule();
4164 atomic_dec(&rq->nr_iowait);
4165 }
4166
4167 EXPORT_SYMBOL(io_schedule);
4168
4169 long __sched io_schedule_timeout(long timeout)
4170 {
4171 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4172 long ret;
4173
4174 atomic_inc(&rq->nr_iowait);
4175 ret = schedule_timeout(timeout);
4176 atomic_dec(&rq->nr_iowait);
4177 return ret;
4178 }
4179
4180 /**
4181 * sys_sched_get_priority_max - return maximum RT priority.
4182 * @policy: scheduling class.
4183 *
4184 * this syscall returns the maximum rt_priority that can be used
4185 * by a given scheduling class.
4186 */
4187 asmlinkage long sys_sched_get_priority_max(int policy)
4188 {
4189 int ret = -EINVAL;
4190
4191 switch (policy) {
4192 case SCHED_FIFO:
4193 case SCHED_RR:
4194 ret = MAX_USER_RT_PRIO-1;
4195 break;
4196 case SCHED_NORMAL:
4197 case SCHED_BATCH:
4198 ret = 0;
4199 break;
4200 }
4201 return ret;
4202 }
4203
4204 /**
4205 * sys_sched_get_priority_min - return minimum RT priority.
4206 * @policy: scheduling class.
4207 *
4208 * this syscall returns the minimum rt_priority that can be used
4209 * by a given scheduling class.
4210 */
4211 asmlinkage long sys_sched_get_priority_min(int policy)
4212 {
4213 int ret = -EINVAL;
4214
4215 switch (policy) {
4216 case SCHED_FIFO:
4217 case SCHED_RR:
4218 ret = 1;
4219 break;
4220 case SCHED_NORMAL:
4221 case SCHED_BATCH:
4222 ret = 0;
4223 }
4224 return ret;
4225 }
4226
4227 /**
4228 * sys_sched_rr_get_interval - return the default timeslice of a process.
4229 * @pid: pid of the process.
4230 * @interval: userspace pointer to the timeslice value.
4231 *
4232 * this syscall writes the default timeslice value of a given process
4233 * into the user-space timespec buffer. A value of '0' means infinity.
4234 */
4235 asmlinkage
4236 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4237 {
4238 int retval = -EINVAL;
4239 struct timespec t;
4240 task_t *p;
4241
4242 if (pid < 0)
4243 goto out_nounlock;
4244
4245 retval = -ESRCH;
4246 read_lock(&tasklist_lock);
4247 p = find_process_by_pid(pid);
4248 if (!p)
4249 goto out_unlock;
4250
4251 retval = security_task_getscheduler(p);
4252 if (retval)
4253 goto out_unlock;
4254
4255 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4256 0 : task_timeslice(p), &t);
4257 read_unlock(&tasklist_lock);
4258 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4259 out_nounlock:
4260 return retval;
4261 out_unlock:
4262 read_unlock(&tasklist_lock);
4263 return retval;
4264 }
4265
4266 static inline struct task_struct *eldest_child(struct task_struct *p)
4267 {
4268 if (list_empty(&p->children)) return NULL;
4269 return list_entry(p->children.next,struct task_struct,sibling);
4270 }
4271
4272 static inline struct task_struct *older_sibling(struct task_struct *p)
4273 {
4274 if (p->sibling.prev==&p->parent->children) return NULL;
4275 return list_entry(p->sibling.prev,struct task_struct,sibling);
4276 }
4277
4278 static inline struct task_struct *younger_sibling(struct task_struct *p)
4279 {
4280 if (p->sibling.next==&p->parent->children) return NULL;
4281 return list_entry(p->sibling.next,struct task_struct,sibling);
4282 }
4283
4284 static void show_task(task_t *p)
4285 {
4286 task_t *relative;
4287 unsigned state;
4288 unsigned long free = 0;
4289 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4290
4291 printk("%-13.13s ", p->comm);
4292 state = p->state ? __ffs(p->state) + 1 : 0;
4293 if (state < ARRAY_SIZE(stat_nam))
4294 printk(stat_nam[state]);
4295 else
4296 printk("?");
4297 #if (BITS_PER_LONG == 32)
4298 if (state == TASK_RUNNING)
4299 printk(" running ");
4300 else
4301 printk(" %08lX ", thread_saved_pc(p));
4302 #else
4303 if (state == TASK_RUNNING)
4304 printk(" running task ");
4305 else
4306 printk(" %016lx ", thread_saved_pc(p));
4307 #endif
4308 #ifdef CONFIG_DEBUG_STACK_USAGE
4309 {
4310 unsigned long *n = end_of_stack(p);
4311 while (!*n)
4312 n++;
4313 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4314 }
4315 #endif
4316 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4317 if ((relative = eldest_child(p)))
4318 printk("%5d ", relative->pid);
4319 else
4320 printk(" ");
4321 if ((relative = younger_sibling(p)))
4322 printk("%7d", relative->pid);
4323 else
4324 printk(" ");
4325 if ((relative = older_sibling(p)))
4326 printk(" %5d", relative->pid);
4327 else
4328 printk(" ");
4329 if (!p->mm)
4330 printk(" (L-TLB)\n");
4331 else
4332 printk(" (NOTLB)\n");
4333
4334 if (state != TASK_RUNNING)
4335 show_stack(p, NULL);
4336 }
4337
4338 void show_state(void)
4339 {
4340 task_t *g, *p;
4341
4342 #if (BITS_PER_LONG == 32)
4343 printk("\n"
4344 " sibling\n");
4345 printk(" task PC pid father child younger older\n");
4346 #else
4347 printk("\n"
4348 " sibling\n");
4349 printk(" task PC pid father child younger older\n");
4350 #endif
4351 read_lock(&tasklist_lock);
4352 do_each_thread(g, p) {
4353 /*
4354 * reset the NMI-timeout, listing all files on a slow
4355 * console might take alot of time:
4356 */
4357 touch_nmi_watchdog();
4358 show_task(p);
4359 } while_each_thread(g, p);
4360
4361 read_unlock(&tasklist_lock);
4362 mutex_debug_show_all_locks();
4363 }
4364
4365 /**
4366 * init_idle - set up an idle thread for a given CPU
4367 * @idle: task in question
4368 * @cpu: cpu the idle task belongs to
4369 *
4370 * NOTE: this function does not set the idle thread's NEED_RESCHED
4371 * flag, to make booting more robust.
4372 */
4373 void __devinit init_idle(task_t *idle, int cpu)
4374 {
4375 runqueue_t *rq = cpu_rq(cpu);
4376 unsigned long flags;
4377
4378 idle->timestamp = sched_clock();
4379 idle->sleep_avg = 0;
4380 idle->array = NULL;
4381 idle->prio = MAX_PRIO;
4382 idle->state = TASK_RUNNING;
4383 idle->cpus_allowed = cpumask_of_cpu(cpu);
4384 set_task_cpu(idle, cpu);
4385
4386 spin_lock_irqsave(&rq->lock, flags);
4387 rq->curr = rq->idle = idle;
4388 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4389 idle->oncpu = 1;
4390 #endif
4391 spin_unlock_irqrestore(&rq->lock, flags);
4392
4393 /* Set the preempt count _outside_ the spinlocks! */
4394 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4395 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4396 #else
4397 task_thread_info(idle)->preempt_count = 0;
4398 #endif
4399 }
4400
4401 /*
4402 * In a system that switches off the HZ timer nohz_cpu_mask
4403 * indicates which cpus entered this state. This is used
4404 * in the rcu update to wait only for active cpus. For system
4405 * which do not switch off the HZ timer nohz_cpu_mask should
4406 * always be CPU_MASK_NONE.
4407 */
4408 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4409
4410 #ifdef CONFIG_SMP
4411 /*
4412 * This is how migration works:
4413 *
4414 * 1) we queue a migration_req_t structure in the source CPU's
4415 * runqueue and wake up that CPU's migration thread.
4416 * 2) we down() the locked semaphore => thread blocks.
4417 * 3) migration thread wakes up (implicitly it forces the migrated
4418 * thread off the CPU)
4419 * 4) it gets the migration request and checks whether the migrated
4420 * task is still in the wrong runqueue.
4421 * 5) if it's in the wrong runqueue then the migration thread removes
4422 * it and puts it into the right queue.
4423 * 6) migration thread up()s the semaphore.
4424 * 7) we wake up and the migration is done.
4425 */
4426
4427 /*
4428 * Change a given task's CPU affinity. Migrate the thread to a
4429 * proper CPU and schedule it away if the CPU it's executing on
4430 * is removed from the allowed bitmask.
4431 *
4432 * NOTE: the caller must have a valid reference to the task, the
4433 * task must not exit() & deallocate itself prematurely. The
4434 * call is not atomic; no spinlocks may be held.
4435 */
4436 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4437 {
4438 unsigned long flags;
4439 int ret = 0;
4440 migration_req_t req;
4441 runqueue_t *rq;
4442
4443 rq = task_rq_lock(p, &flags);
4444 if (!cpus_intersects(new_mask, cpu_online_map)) {
4445 ret = -EINVAL;
4446 goto out;
4447 }
4448
4449 p->cpus_allowed = new_mask;
4450 /* Can the task run on the task's current CPU? If so, we're done */
4451 if (cpu_isset(task_cpu(p), new_mask))
4452 goto out;
4453
4454 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4455 /* Need help from migration thread: drop lock and wait. */
4456 task_rq_unlock(rq, &flags);
4457 wake_up_process(rq->migration_thread);
4458 wait_for_completion(&req.done);
4459 tlb_migrate_finish(p->mm);
4460 return 0;
4461 }
4462 out:
4463 task_rq_unlock(rq, &flags);
4464 return ret;
4465 }
4466
4467 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4468
4469 /*
4470 * Move (not current) task off this cpu, onto dest cpu. We're doing
4471 * this because either it can't run here any more (set_cpus_allowed()
4472 * away from this CPU, or CPU going down), or because we're
4473 * attempting to rebalance this task on exec (sched_exec).
4474 *
4475 * So we race with normal scheduler movements, but that's OK, as long
4476 * as the task is no longer on this CPU.
4477 */
4478 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4479 {
4480 runqueue_t *rq_dest, *rq_src;
4481
4482 if (unlikely(cpu_is_offline(dest_cpu)))
4483 return;
4484
4485 rq_src = cpu_rq(src_cpu);
4486 rq_dest = cpu_rq(dest_cpu);
4487
4488 double_rq_lock(rq_src, rq_dest);
4489 /* Already moved. */
4490 if (task_cpu(p) != src_cpu)
4491 goto out;
4492 /* Affinity changed (again). */
4493 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4494 goto out;
4495
4496 set_task_cpu(p, dest_cpu);
4497 if (p->array) {
4498 /*
4499 * Sync timestamp with rq_dest's before activating.
4500 * The same thing could be achieved by doing this step
4501 * afterwards, and pretending it was a local activate.
4502 * This way is cleaner and logically correct.
4503 */
4504 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4505 + rq_dest->timestamp_last_tick;
4506 deactivate_task(p, rq_src);
4507 activate_task(p, rq_dest, 0);
4508 if (TASK_PREEMPTS_CURR(p, rq_dest))
4509 resched_task(rq_dest->curr);
4510 }
4511
4512 out:
4513 double_rq_unlock(rq_src, rq_dest);
4514 }
4515
4516 /*
4517 * migration_thread - this is a highprio system thread that performs
4518 * thread migration by bumping thread off CPU then 'pushing' onto
4519 * another runqueue.
4520 */
4521 static int migration_thread(void *data)
4522 {
4523 runqueue_t *rq;
4524 int cpu = (long)data;
4525
4526 rq = cpu_rq(cpu);
4527 BUG_ON(rq->migration_thread != current);
4528
4529 set_current_state(TASK_INTERRUPTIBLE);
4530 while (!kthread_should_stop()) {
4531 struct list_head *head;
4532 migration_req_t *req;
4533
4534 try_to_freeze();
4535
4536 spin_lock_irq(&rq->lock);
4537
4538 if (cpu_is_offline(cpu)) {
4539 spin_unlock_irq(&rq->lock);
4540 goto wait_to_die;
4541 }
4542
4543 if (rq->active_balance) {
4544 active_load_balance(rq, cpu);
4545 rq->active_balance = 0;
4546 }
4547
4548 head = &rq->migration_queue;
4549
4550 if (list_empty(head)) {
4551 spin_unlock_irq(&rq->lock);
4552 schedule();
4553 set_current_state(TASK_INTERRUPTIBLE);
4554 continue;
4555 }
4556 req = list_entry(head->next, migration_req_t, list);
4557 list_del_init(head->next);
4558
4559 spin_unlock(&rq->lock);
4560 __migrate_task(req->task, cpu, req->dest_cpu);
4561 local_irq_enable();
4562
4563 complete(&req->done);
4564 }
4565 __set_current_state(TASK_RUNNING);
4566 return 0;
4567
4568 wait_to_die:
4569 /* Wait for kthread_stop */
4570 set_current_state(TASK_INTERRUPTIBLE);
4571 while (!kthread_should_stop()) {
4572 schedule();
4573 set_current_state(TASK_INTERRUPTIBLE);
4574 }
4575 __set_current_state(TASK_RUNNING);
4576 return 0;
4577 }
4578
4579 #ifdef CONFIG_HOTPLUG_CPU
4580 /* Figure out where task on dead CPU should go, use force if neccessary. */
4581 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4582 {
4583 int dest_cpu;
4584 cpumask_t mask;
4585
4586 /* On same node? */
4587 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4588 cpus_and(mask, mask, tsk->cpus_allowed);
4589 dest_cpu = any_online_cpu(mask);
4590
4591 /* On any allowed CPU? */
4592 if (dest_cpu == NR_CPUS)
4593 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4594
4595 /* No more Mr. Nice Guy. */
4596 if (dest_cpu == NR_CPUS) {
4597 cpus_setall(tsk->cpus_allowed);
4598 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4599
4600 /*
4601 * Don't tell them about moving exiting tasks or
4602 * kernel threads (both mm NULL), since they never
4603 * leave kernel.
4604 */
4605 if (tsk->mm && printk_ratelimit())
4606 printk(KERN_INFO "process %d (%s) no "
4607 "longer affine to cpu%d\n",
4608 tsk->pid, tsk->comm, dead_cpu);
4609 }
4610 __migrate_task(tsk, dead_cpu, dest_cpu);
4611 }
4612
4613 /*
4614 * While a dead CPU has no uninterruptible tasks queued at this point,
4615 * it might still have a nonzero ->nr_uninterruptible counter, because
4616 * for performance reasons the counter is not stricly tracking tasks to
4617 * their home CPUs. So we just add the counter to another CPU's counter,
4618 * to keep the global sum constant after CPU-down:
4619 */
4620 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4621 {
4622 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4623 unsigned long flags;
4624
4625 local_irq_save(flags);
4626 double_rq_lock(rq_src, rq_dest);
4627 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4628 rq_src->nr_uninterruptible = 0;
4629 double_rq_unlock(rq_src, rq_dest);
4630 local_irq_restore(flags);
4631 }
4632
4633 /* Run through task list and migrate tasks from the dead cpu. */
4634 static void migrate_live_tasks(int src_cpu)
4635 {
4636 struct task_struct *tsk, *t;
4637
4638 write_lock_irq(&tasklist_lock);
4639
4640 do_each_thread(t, tsk) {
4641 if (tsk == current)
4642 continue;
4643
4644 if (task_cpu(tsk) == src_cpu)
4645 move_task_off_dead_cpu(src_cpu, tsk);
4646 } while_each_thread(t, tsk);
4647
4648 write_unlock_irq(&tasklist_lock);
4649 }
4650
4651 /* Schedules idle task to be the next runnable task on current CPU.
4652 * It does so by boosting its priority to highest possible and adding it to
4653 * the _front_ of runqueue. Used by CPU offline code.
4654 */
4655 void sched_idle_next(void)
4656 {
4657 int cpu = smp_processor_id();
4658 runqueue_t *rq = this_rq();
4659 struct task_struct *p = rq->idle;
4660 unsigned long flags;
4661
4662 /* cpu has to be offline */
4663 BUG_ON(cpu_online(cpu));
4664
4665 /* Strictly not necessary since rest of the CPUs are stopped by now
4666 * and interrupts disabled on current cpu.
4667 */
4668 spin_lock_irqsave(&rq->lock, flags);
4669
4670 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4671 /* Add idle task to _front_ of it's priority queue */
4672 __activate_idle_task(p, rq);
4673
4674 spin_unlock_irqrestore(&rq->lock, flags);
4675 }
4676
4677 /* Ensures that the idle task is using init_mm right before its cpu goes
4678 * offline.
4679 */
4680 void idle_task_exit(void)
4681 {
4682 struct mm_struct *mm = current->active_mm;
4683
4684 BUG_ON(cpu_online(smp_processor_id()));
4685
4686 if (mm != &init_mm)
4687 switch_mm(mm, &init_mm, current);
4688 mmdrop(mm);
4689 }
4690
4691 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4692 {
4693 struct runqueue *rq = cpu_rq(dead_cpu);
4694
4695 /* Must be exiting, otherwise would be on tasklist. */
4696 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4697
4698 /* Cannot have done final schedule yet: would have vanished. */
4699 BUG_ON(tsk->flags & PF_DEAD);
4700
4701 get_task_struct(tsk);
4702
4703 /*
4704 * Drop lock around migration; if someone else moves it,
4705 * that's OK. No task can be added to this CPU, so iteration is
4706 * fine.
4707 */
4708 spin_unlock_irq(&rq->lock);
4709 move_task_off_dead_cpu(dead_cpu, tsk);
4710 spin_lock_irq(&rq->lock);
4711
4712 put_task_struct(tsk);
4713 }
4714
4715 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4716 static void migrate_dead_tasks(unsigned int dead_cpu)
4717 {
4718 unsigned arr, i;
4719 struct runqueue *rq = cpu_rq(dead_cpu);
4720
4721 for (arr = 0; arr < 2; arr++) {
4722 for (i = 0; i < MAX_PRIO; i++) {
4723 struct list_head *list = &rq->arrays[arr].queue[i];
4724 while (!list_empty(list))
4725 migrate_dead(dead_cpu,
4726 list_entry(list->next, task_t,
4727 run_list));
4728 }
4729 }
4730 }
4731 #endif /* CONFIG_HOTPLUG_CPU */
4732
4733 /*
4734 * migration_call - callback that gets triggered when a CPU is added.
4735 * Here we can start up the necessary migration thread for the new CPU.
4736 */
4737 static int migration_call(struct notifier_block *nfb, unsigned long action,
4738 void *hcpu)
4739 {
4740 int cpu = (long)hcpu;
4741 struct task_struct *p;
4742 struct runqueue *rq;
4743 unsigned long flags;
4744
4745 switch (action) {
4746 case CPU_UP_PREPARE:
4747 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4748 if (IS_ERR(p))
4749 return NOTIFY_BAD;
4750 p->flags |= PF_NOFREEZE;
4751 kthread_bind(p, cpu);
4752 /* Must be high prio: stop_machine expects to yield to it. */
4753 rq = task_rq_lock(p, &flags);
4754 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4755 task_rq_unlock(rq, &flags);
4756 cpu_rq(cpu)->migration_thread = p;
4757 break;
4758 case CPU_ONLINE:
4759 /* Strictly unneccessary, as first user will wake it. */
4760 wake_up_process(cpu_rq(cpu)->migration_thread);
4761 break;
4762 #ifdef CONFIG_HOTPLUG_CPU
4763 case CPU_UP_CANCELED:
4764 if (!cpu_rq(cpu)->migration_thread)
4765 break;
4766 /* Unbind it from offline cpu so it can run. Fall thru. */
4767 kthread_bind(cpu_rq(cpu)->migration_thread,
4768 any_online_cpu(cpu_online_map));
4769 kthread_stop(cpu_rq(cpu)->migration_thread);
4770 cpu_rq(cpu)->migration_thread = NULL;
4771 break;
4772 case CPU_DEAD:
4773 migrate_live_tasks(cpu);
4774 rq = cpu_rq(cpu);
4775 kthread_stop(rq->migration_thread);
4776 rq->migration_thread = NULL;
4777 /* Idle task back to normal (off runqueue, low prio) */
4778 rq = task_rq_lock(rq->idle, &flags);
4779 deactivate_task(rq->idle, rq);
4780 rq->idle->static_prio = MAX_PRIO;
4781 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4782 migrate_dead_tasks(cpu);
4783 task_rq_unlock(rq, &flags);
4784 migrate_nr_uninterruptible(rq);
4785 BUG_ON(rq->nr_running != 0);
4786
4787 /* No need to migrate the tasks: it was best-effort if
4788 * they didn't do lock_cpu_hotplug(). Just wake up
4789 * the requestors. */
4790 spin_lock_irq(&rq->lock);
4791 while (!list_empty(&rq->migration_queue)) {
4792 migration_req_t *req;
4793 req = list_entry(rq->migration_queue.next,
4794 migration_req_t, list);
4795 list_del_init(&req->list);
4796 complete(&req->done);
4797 }
4798 spin_unlock_irq(&rq->lock);
4799 break;
4800 #endif
4801 }
4802 return NOTIFY_OK;
4803 }
4804
4805 /* Register at highest priority so that task migration (migrate_all_tasks)
4806 * happens before everything else.
4807 */
4808 static struct notifier_block migration_notifier = {
4809 .notifier_call = migration_call,
4810 .priority = 10
4811 };
4812
4813 int __init migration_init(void)
4814 {
4815 void *cpu = (void *)(long)smp_processor_id();
4816 /* Start one for boot CPU. */
4817 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4818 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4819 register_cpu_notifier(&migration_notifier);
4820 return 0;
4821 }
4822 #endif
4823
4824 #ifdef CONFIG_SMP
4825 #undef SCHED_DOMAIN_DEBUG
4826 #ifdef SCHED_DOMAIN_DEBUG
4827 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4828 {
4829 int level = 0;
4830
4831 if (!sd) {
4832 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4833 return;
4834 }
4835
4836 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4837
4838 do {
4839 int i;
4840 char str[NR_CPUS];
4841 struct sched_group *group = sd->groups;
4842 cpumask_t groupmask;
4843
4844 cpumask_scnprintf(str, NR_CPUS, sd->span);
4845 cpus_clear(groupmask);
4846
4847 printk(KERN_DEBUG);
4848 for (i = 0; i < level + 1; i++)
4849 printk(" ");
4850 printk("domain %d: ", level);
4851
4852 if (!(sd->flags & SD_LOAD_BALANCE)) {
4853 printk("does not load-balance\n");
4854 if (sd->parent)
4855 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4856 break;
4857 }
4858
4859 printk("span %s\n", str);
4860
4861 if (!cpu_isset(cpu, sd->span))
4862 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4863 if (!cpu_isset(cpu, group->cpumask))
4864 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4865
4866 printk(KERN_DEBUG);
4867 for (i = 0; i < level + 2; i++)
4868 printk(" ");
4869 printk("groups:");
4870 do {
4871 if (!group) {
4872 printk("\n");
4873 printk(KERN_ERR "ERROR: group is NULL\n");
4874 break;
4875 }
4876
4877 if (!group->cpu_power) {
4878 printk("\n");
4879 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4880 }
4881
4882 if (!cpus_weight(group->cpumask)) {
4883 printk("\n");
4884 printk(KERN_ERR "ERROR: empty group\n");
4885 }
4886
4887 if (cpus_intersects(groupmask, group->cpumask)) {
4888 printk("\n");
4889 printk(KERN_ERR "ERROR: repeated CPUs\n");
4890 }
4891
4892 cpus_or(groupmask, groupmask, group->cpumask);
4893
4894 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4895 printk(" %s", str);
4896
4897 group = group->next;
4898 } while (group != sd->groups);
4899 printk("\n");
4900
4901 if (!cpus_equal(sd->span, groupmask))
4902 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4903
4904 level++;
4905 sd = sd->parent;
4906
4907 if (sd) {
4908 if (!cpus_subset(groupmask, sd->span))
4909 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4910 }
4911
4912 } while (sd);
4913 }
4914 #else
4915 #define sched_domain_debug(sd, cpu) {}
4916 #endif
4917
4918 static int sd_degenerate(struct sched_domain *sd)
4919 {
4920 if (cpus_weight(sd->span) == 1)
4921 return 1;
4922
4923 /* Following flags need at least 2 groups */
4924 if (sd->flags & (SD_LOAD_BALANCE |
4925 SD_BALANCE_NEWIDLE |
4926 SD_BALANCE_FORK |
4927 SD_BALANCE_EXEC)) {
4928 if (sd->groups != sd->groups->next)
4929 return 0;
4930 }
4931
4932 /* Following flags don't use groups */
4933 if (sd->flags & (SD_WAKE_IDLE |
4934 SD_WAKE_AFFINE |
4935 SD_WAKE_BALANCE))
4936 return 0;
4937
4938 return 1;
4939 }
4940
4941 static int sd_parent_degenerate(struct sched_domain *sd,
4942 struct sched_domain *parent)
4943 {
4944 unsigned long cflags = sd->flags, pflags = parent->flags;
4945
4946 if (sd_degenerate(parent))
4947 return 1;
4948
4949 if (!cpus_equal(sd->span, parent->span))
4950 return 0;
4951
4952 /* Does parent contain flags not in child? */
4953 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4954 if (cflags & SD_WAKE_AFFINE)
4955 pflags &= ~SD_WAKE_BALANCE;
4956 /* Flags needing groups don't count if only 1 group in parent */
4957 if (parent->groups == parent->groups->next) {
4958 pflags &= ~(SD_LOAD_BALANCE |
4959 SD_BALANCE_NEWIDLE |
4960 SD_BALANCE_FORK |
4961 SD_BALANCE_EXEC);
4962 }
4963 if (~cflags & pflags)
4964 return 0;
4965
4966 return 1;
4967 }
4968
4969 /*
4970 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4971 * hold the hotplug lock.
4972 */
4973 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4974 {
4975 runqueue_t *rq = cpu_rq(cpu);
4976 struct sched_domain *tmp;
4977
4978 /* Remove the sched domains which do not contribute to scheduling. */
4979 for (tmp = sd; tmp; tmp = tmp->parent) {
4980 struct sched_domain *parent = tmp->parent;
4981 if (!parent)
4982 break;
4983 if (sd_parent_degenerate(tmp, parent))
4984 tmp->parent = parent->parent;
4985 }
4986
4987 if (sd && sd_degenerate(sd))
4988 sd = sd->parent;
4989
4990 sched_domain_debug(sd, cpu);
4991
4992 rcu_assign_pointer(rq->sd, sd);
4993 }
4994
4995 /* cpus with isolated domains */
4996 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4997
4998 /* Setup the mask of cpus configured for isolated domains */
4999 static int __init isolated_cpu_setup(char *str)
5000 {
5001 int ints[NR_CPUS], i;
5002
5003 str = get_options(str, ARRAY_SIZE(ints), ints);
5004 cpus_clear(cpu_isolated_map);
5005 for (i = 1; i <= ints[0]; i++)
5006 if (ints[i] < NR_CPUS)
5007 cpu_set(ints[i], cpu_isolated_map);
5008 return 1;
5009 }
5010
5011 __setup ("isolcpus=", isolated_cpu_setup);
5012
5013 /*
5014 * init_sched_build_groups takes an array of groups, the cpumask we wish
5015 * to span, and a pointer to a function which identifies what group a CPU
5016 * belongs to. The return value of group_fn must be a valid index into the
5017 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5018 * keep track of groups covered with a cpumask_t).
5019 *
5020 * init_sched_build_groups will build a circular linked list of the groups
5021 * covered by the given span, and will set each group's ->cpumask correctly,
5022 * and ->cpu_power to 0.
5023 */
5024 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5025 int (*group_fn)(int cpu))
5026 {
5027 struct sched_group *first = NULL, *last = NULL;
5028 cpumask_t covered = CPU_MASK_NONE;
5029 int i;
5030
5031 for_each_cpu_mask(i, span) {
5032 int group = group_fn(i);
5033 struct sched_group *sg = &groups[group];
5034 int j;
5035
5036 if (cpu_isset(i, covered))
5037 continue;
5038
5039 sg->cpumask = CPU_MASK_NONE;
5040 sg->cpu_power = 0;
5041
5042 for_each_cpu_mask(j, span) {
5043 if (group_fn(j) != group)
5044 continue;
5045
5046 cpu_set(j, covered);
5047 cpu_set(j, sg->cpumask);
5048 }
5049 if (!first)
5050 first = sg;
5051 if (last)
5052 last->next = sg;
5053 last = sg;
5054 }
5055 last->next = first;
5056 }
5057
5058 #define SD_NODES_PER_DOMAIN 16
5059
5060 /*
5061 * Self-tuning task migration cost measurement between source and target CPUs.
5062 *
5063 * This is done by measuring the cost of manipulating buffers of varying
5064 * sizes. For a given buffer-size here are the steps that are taken:
5065 *
5066 * 1) the source CPU reads+dirties a shared buffer
5067 * 2) the target CPU reads+dirties the same shared buffer
5068 *
5069 * We measure how long they take, in the following 4 scenarios:
5070 *
5071 * - source: CPU1, target: CPU2 | cost1
5072 * - source: CPU2, target: CPU1 | cost2
5073 * - source: CPU1, target: CPU1 | cost3
5074 * - source: CPU2, target: CPU2 | cost4
5075 *
5076 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5077 * the cost of migration.
5078 *
5079 * We then start off from a small buffer-size and iterate up to larger
5080 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5081 * doing a maximum search for the cost. (The maximum cost for a migration
5082 * normally occurs when the working set size is around the effective cache
5083 * size.)
5084 */
5085 #define SEARCH_SCOPE 2
5086 #define MIN_CACHE_SIZE (64*1024U)
5087 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5088 #define ITERATIONS 1
5089 #define SIZE_THRESH 130
5090 #define COST_THRESH 130
5091
5092 /*
5093 * The migration cost is a function of 'domain distance'. Domain
5094 * distance is the number of steps a CPU has to iterate down its
5095 * domain tree to share a domain with the other CPU. The farther
5096 * two CPUs are from each other, the larger the distance gets.
5097 *
5098 * Note that we use the distance only to cache measurement results,
5099 * the distance value is not used numerically otherwise. When two
5100 * CPUs have the same distance it is assumed that the migration
5101 * cost is the same. (this is a simplification but quite practical)
5102 */
5103 #define MAX_DOMAIN_DISTANCE 32
5104
5105 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5106 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5107 /*
5108 * Architectures may override the migration cost and thus avoid
5109 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5110 * virtualized hardware:
5111 */
5112 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5113 CONFIG_DEFAULT_MIGRATION_COST
5114 #else
5115 -1LL
5116 #endif
5117 };
5118
5119 /*
5120 * Allow override of migration cost - in units of microseconds.
5121 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5122 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5123 */
5124 static int __init migration_cost_setup(char *str)
5125 {
5126 int ints[MAX_DOMAIN_DISTANCE+1], i;
5127
5128 str = get_options(str, ARRAY_SIZE(ints), ints);
5129
5130 printk("#ints: %d\n", ints[0]);
5131 for (i = 1; i <= ints[0]; i++) {
5132 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5133 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5134 }
5135 return 1;
5136 }
5137
5138 __setup ("migration_cost=", migration_cost_setup);
5139
5140 /*
5141 * Global multiplier (divisor) for migration-cutoff values,
5142 * in percentiles. E.g. use a value of 150 to get 1.5 times
5143 * longer cache-hot cutoff times.
5144 *
5145 * (We scale it from 100 to 128 to long long handling easier.)
5146 */
5147
5148 #define MIGRATION_FACTOR_SCALE 128
5149
5150 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5151
5152 static int __init setup_migration_factor(char *str)
5153 {
5154 get_option(&str, &migration_factor);
5155 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5156 return 1;
5157 }
5158
5159 __setup("migration_factor=", setup_migration_factor);
5160
5161 /*
5162 * Estimated distance of two CPUs, measured via the number of domains
5163 * we have to pass for the two CPUs to be in the same span:
5164 */
5165 static unsigned long domain_distance(int cpu1, int cpu2)
5166 {
5167 unsigned long distance = 0;
5168 struct sched_domain *sd;
5169
5170 for_each_domain(cpu1, sd) {
5171 WARN_ON(!cpu_isset(cpu1, sd->span));
5172 if (cpu_isset(cpu2, sd->span))
5173 return distance;
5174 distance++;
5175 }
5176 if (distance >= MAX_DOMAIN_DISTANCE) {
5177 WARN_ON(1);
5178 distance = MAX_DOMAIN_DISTANCE-1;
5179 }
5180
5181 return distance;
5182 }
5183
5184 static unsigned int migration_debug;
5185
5186 static int __init setup_migration_debug(char *str)
5187 {
5188 get_option(&str, &migration_debug);
5189 return 1;
5190 }
5191
5192 __setup("migration_debug=", setup_migration_debug);
5193
5194 /*
5195 * Maximum cache-size that the scheduler should try to measure.
5196 * Architectures with larger caches should tune this up during
5197 * bootup. Gets used in the domain-setup code (i.e. during SMP
5198 * bootup).
5199 */
5200 unsigned int max_cache_size;
5201
5202 static int __init setup_max_cache_size(char *str)
5203 {
5204 get_option(&str, &max_cache_size);
5205 return 1;
5206 }
5207
5208 __setup("max_cache_size=", setup_max_cache_size);
5209
5210 /*
5211 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5212 * is the operation that is timed, so we try to generate unpredictable
5213 * cachemisses that still end up filling the L2 cache:
5214 */
5215 static void touch_cache(void *__cache, unsigned long __size)
5216 {
5217 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5218 chunk2 = 2*size/3;
5219 unsigned long *cache = __cache;
5220 int i;
5221
5222 for (i = 0; i < size/6; i += 8) {
5223 switch (i % 6) {
5224 case 0: cache[i]++;
5225 case 1: cache[size-1-i]++;
5226 case 2: cache[chunk1-i]++;
5227 case 3: cache[chunk1+i]++;
5228 case 4: cache[chunk2-i]++;
5229 case 5: cache[chunk2+i]++;
5230 }
5231 }
5232 }
5233
5234 /*
5235 * Measure the cache-cost of one task migration. Returns in units of nsec.
5236 */
5237 static unsigned long long measure_one(void *cache, unsigned long size,
5238 int source, int target)
5239 {
5240 cpumask_t mask, saved_mask;
5241 unsigned long long t0, t1, t2, t3, cost;
5242
5243 saved_mask = current->cpus_allowed;
5244
5245 /*
5246 * Flush source caches to RAM and invalidate them:
5247 */
5248 sched_cacheflush();
5249
5250 /*
5251 * Migrate to the source CPU:
5252 */
5253 mask = cpumask_of_cpu(source);
5254 set_cpus_allowed(current, mask);
5255 WARN_ON(smp_processor_id() != source);
5256
5257 /*
5258 * Dirty the working set:
5259 */
5260 t0 = sched_clock();
5261 touch_cache(cache, size);
5262 t1 = sched_clock();
5263
5264 /*
5265 * Migrate to the target CPU, dirty the L2 cache and access
5266 * the shared buffer. (which represents the working set
5267 * of a migrated task.)
5268 */
5269 mask = cpumask_of_cpu(target);
5270 set_cpus_allowed(current, mask);
5271 WARN_ON(smp_processor_id() != target);
5272
5273 t2 = sched_clock();
5274 touch_cache(cache, size);
5275 t3 = sched_clock();
5276
5277 cost = t1-t0 + t3-t2;
5278
5279 if (migration_debug >= 2)
5280 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5281 source, target, t1-t0, t1-t0, t3-t2, cost);
5282 /*
5283 * Flush target caches to RAM and invalidate them:
5284 */
5285 sched_cacheflush();
5286
5287 set_cpus_allowed(current, saved_mask);
5288
5289 return cost;
5290 }
5291
5292 /*
5293 * Measure a series of task migrations and return the average
5294 * result. Since this code runs early during bootup the system
5295 * is 'undisturbed' and the average latency makes sense.
5296 *
5297 * The algorithm in essence auto-detects the relevant cache-size,
5298 * so it will properly detect different cachesizes for different
5299 * cache-hierarchies, depending on how the CPUs are connected.
5300 *
5301 * Architectures can prime the upper limit of the search range via
5302 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5303 */
5304 static unsigned long long
5305 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5306 {
5307 unsigned long long cost1, cost2;
5308 int i;
5309
5310 /*
5311 * Measure the migration cost of 'size' bytes, over an
5312 * average of 10 runs:
5313 *
5314 * (We perturb the cache size by a small (0..4k)
5315 * value to compensate size/alignment related artifacts.
5316 * We also subtract the cost of the operation done on
5317 * the same CPU.)
5318 */
5319 cost1 = 0;
5320
5321 /*
5322 * dry run, to make sure we start off cache-cold on cpu1,
5323 * and to get any vmalloc pagefaults in advance:
5324 */
5325 measure_one(cache, size, cpu1, cpu2);
5326 for (i = 0; i < ITERATIONS; i++)
5327 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5328
5329 measure_one(cache, size, cpu2, cpu1);
5330 for (i = 0; i < ITERATIONS; i++)
5331 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5332
5333 /*
5334 * (We measure the non-migrating [cached] cost on both
5335 * cpu1 and cpu2, to handle CPUs with different speeds)
5336 */
5337 cost2 = 0;
5338
5339 measure_one(cache, size, cpu1, cpu1);
5340 for (i = 0; i < ITERATIONS; i++)
5341 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5342
5343 measure_one(cache, size, cpu2, cpu2);
5344 for (i = 0; i < ITERATIONS; i++)
5345 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5346
5347 /*
5348 * Get the per-iteration migration cost:
5349 */
5350 do_div(cost1, 2*ITERATIONS);
5351 do_div(cost2, 2*ITERATIONS);
5352
5353 return cost1 - cost2;
5354 }
5355
5356 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5357 {
5358 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5359 unsigned int max_size, size, size_found = 0;
5360 long long cost = 0, prev_cost;
5361 void *cache;
5362
5363 /*
5364 * Search from max_cache_size*5 down to 64K - the real relevant
5365 * cachesize has to lie somewhere inbetween.
5366 */
5367 if (max_cache_size) {
5368 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5369 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5370 } else {
5371 /*
5372 * Since we have no estimation about the relevant
5373 * search range
5374 */
5375 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5376 size = MIN_CACHE_SIZE;
5377 }
5378
5379 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5380 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5381 return 0;
5382 }
5383
5384 /*
5385 * Allocate the working set:
5386 */
5387 cache = vmalloc(max_size);
5388 if (!cache) {
5389 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5390 return 1000000; // return 1 msec on very small boxen
5391 }
5392
5393 while (size <= max_size) {
5394 prev_cost = cost;
5395 cost = measure_cost(cpu1, cpu2, cache, size);
5396
5397 /*
5398 * Update the max:
5399 */
5400 if (cost > 0) {
5401 if (max_cost < cost) {
5402 max_cost = cost;
5403 size_found = size;
5404 }
5405 }
5406 /*
5407 * Calculate average fluctuation, we use this to prevent
5408 * noise from triggering an early break out of the loop:
5409 */
5410 fluct = abs(cost - prev_cost);
5411 avg_fluct = (avg_fluct + fluct)/2;
5412
5413 if (migration_debug)
5414 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5415 cpu1, cpu2, size,
5416 (long)cost / 1000000,
5417 ((long)cost / 100000) % 10,
5418 (long)max_cost / 1000000,
5419 ((long)max_cost / 100000) % 10,
5420 domain_distance(cpu1, cpu2),
5421 cost, avg_fluct);
5422
5423 /*
5424 * If we iterated at least 20% past the previous maximum,
5425 * and the cost has dropped by more than 20% already,
5426 * (taking fluctuations into account) then we assume to
5427 * have found the maximum and break out of the loop early:
5428 */
5429 if (size_found && (size*100 > size_found*SIZE_THRESH))
5430 if (cost+avg_fluct <= 0 ||
5431 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5432
5433 if (migration_debug)
5434 printk("-> found max.\n");
5435 break;
5436 }
5437 /*
5438 * Increase the cachesize in 10% steps:
5439 */
5440 size = size * 10 / 9;
5441 }
5442
5443 if (migration_debug)
5444 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5445 cpu1, cpu2, size_found, max_cost);
5446
5447 vfree(cache);
5448
5449 /*
5450 * A task is considered 'cache cold' if at least 2 times
5451 * the worst-case cost of migration has passed.
5452 *
5453 * (this limit is only listened to if the load-balancing
5454 * situation is 'nice' - if there is a large imbalance we
5455 * ignore it for the sake of CPU utilization and
5456 * processing fairness.)
5457 */
5458 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5459 }
5460
5461 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5462 {
5463 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5464 unsigned long j0, j1, distance, max_distance = 0;
5465 struct sched_domain *sd;
5466
5467 j0 = jiffies;
5468
5469 /*
5470 * First pass - calculate the cacheflush times:
5471 */
5472 for_each_cpu_mask(cpu1, *cpu_map) {
5473 for_each_cpu_mask(cpu2, *cpu_map) {
5474 if (cpu1 == cpu2)
5475 continue;
5476 distance = domain_distance(cpu1, cpu2);
5477 max_distance = max(max_distance, distance);
5478 /*
5479 * No result cached yet?
5480 */
5481 if (migration_cost[distance] == -1LL)
5482 migration_cost[distance] =
5483 measure_migration_cost(cpu1, cpu2);
5484 }
5485 }
5486 /*
5487 * Second pass - update the sched domain hierarchy with
5488 * the new cache-hot-time estimations:
5489 */
5490 for_each_cpu_mask(cpu, *cpu_map) {
5491 distance = 0;
5492 for_each_domain(cpu, sd) {
5493 sd->cache_hot_time = migration_cost[distance];
5494 distance++;
5495 }
5496 }
5497 /*
5498 * Print the matrix:
5499 */
5500 if (migration_debug)
5501 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5502 max_cache_size,
5503 #ifdef CONFIG_X86
5504 cpu_khz/1000
5505 #else
5506 -1
5507 #endif
5508 );
5509 if (system_state == SYSTEM_BOOTING) {
5510 printk("migration_cost=");
5511 for (distance = 0; distance <= max_distance; distance++) {
5512 if (distance)
5513 printk(",");
5514 printk("%ld", (long)migration_cost[distance] / 1000);
5515 }
5516 printk("\n");
5517 }
5518 j1 = jiffies;
5519 if (migration_debug)
5520 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5521
5522 /*
5523 * Move back to the original CPU. NUMA-Q gets confused
5524 * if we migrate to another quad during bootup.
5525 */
5526 if (raw_smp_processor_id() != orig_cpu) {
5527 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5528 saved_mask = current->cpus_allowed;
5529
5530 set_cpus_allowed(current, mask);
5531 set_cpus_allowed(current, saved_mask);
5532 }
5533 }
5534
5535 #ifdef CONFIG_NUMA
5536
5537 /**
5538 * find_next_best_node - find the next node to include in a sched_domain
5539 * @node: node whose sched_domain we're building
5540 * @used_nodes: nodes already in the sched_domain
5541 *
5542 * Find the next node to include in a given scheduling domain. Simply
5543 * finds the closest node not already in the @used_nodes map.
5544 *
5545 * Should use nodemask_t.
5546 */
5547 static int find_next_best_node(int node, unsigned long *used_nodes)
5548 {
5549 int i, n, val, min_val, best_node = 0;
5550
5551 min_val = INT_MAX;
5552
5553 for (i = 0; i < MAX_NUMNODES; i++) {
5554 /* Start at @node */
5555 n = (node + i) % MAX_NUMNODES;
5556
5557 if (!nr_cpus_node(n))
5558 continue;
5559
5560 /* Skip already used nodes */
5561 if (test_bit(n, used_nodes))
5562 continue;
5563
5564 /* Simple min distance search */
5565 val = node_distance(node, n);
5566
5567 if (val < min_val) {
5568 min_val = val;
5569 best_node = n;
5570 }
5571 }
5572
5573 set_bit(best_node, used_nodes);
5574 return best_node;
5575 }
5576
5577 /**
5578 * sched_domain_node_span - get a cpumask for a node's sched_domain
5579 * @node: node whose cpumask we're constructing
5580 * @size: number of nodes to include in this span
5581 *
5582 * Given a node, construct a good cpumask for its sched_domain to span. It
5583 * should be one that prevents unnecessary balancing, but also spreads tasks
5584 * out optimally.
5585 */
5586 static cpumask_t sched_domain_node_span(int node)
5587 {
5588 int i;
5589 cpumask_t span, nodemask;
5590 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5591
5592 cpus_clear(span);
5593 bitmap_zero(used_nodes, MAX_NUMNODES);
5594
5595 nodemask = node_to_cpumask(node);
5596 cpus_or(span, span, nodemask);
5597 set_bit(node, used_nodes);
5598
5599 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5600 int next_node = find_next_best_node(node, used_nodes);
5601 nodemask = node_to_cpumask(next_node);
5602 cpus_or(span, span, nodemask);
5603 }
5604
5605 return span;
5606 }
5607 #endif
5608
5609 /*
5610 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5611 * can switch it on easily if needed.
5612 */
5613 #ifdef CONFIG_SCHED_SMT
5614 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5615 static struct sched_group sched_group_cpus[NR_CPUS];
5616 static int cpu_to_cpu_group(int cpu)
5617 {
5618 return cpu;
5619 }
5620 #endif
5621
5622 #ifdef CONFIG_SCHED_MC
5623 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5624 static struct sched_group sched_group_core[NR_CPUS];
5625 #endif
5626
5627 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5628 static int cpu_to_core_group(int cpu)
5629 {
5630 return first_cpu(cpu_sibling_map[cpu]);
5631 }
5632 #elif defined(CONFIG_SCHED_MC)
5633 static int cpu_to_core_group(int cpu)
5634 {
5635 return cpu;
5636 }
5637 #endif
5638
5639 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5640 static struct sched_group sched_group_phys[NR_CPUS];
5641 static int cpu_to_phys_group(int cpu)
5642 {
5643 #if defined(CONFIG_SCHED_MC)
5644 cpumask_t mask = cpu_coregroup_map(cpu);
5645 return first_cpu(mask);
5646 #elif defined(CONFIG_SCHED_SMT)
5647 return first_cpu(cpu_sibling_map[cpu]);
5648 #else
5649 return cpu;
5650 #endif
5651 }
5652
5653 #ifdef CONFIG_NUMA
5654 /*
5655 * The init_sched_build_groups can't handle what we want to do with node
5656 * groups, so roll our own. Now each node has its own list of groups which
5657 * gets dynamically allocated.
5658 */
5659 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5660 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5661
5662 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5663 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5664
5665 static int cpu_to_allnodes_group(int cpu)
5666 {
5667 return cpu_to_node(cpu);
5668 }
5669 static void init_numa_sched_groups_power(struct sched_group *group_head)
5670 {
5671 struct sched_group *sg = group_head;
5672 int j;
5673
5674 if (!sg)
5675 return;
5676 next_sg:
5677 for_each_cpu_mask(j, sg->cpumask) {
5678 struct sched_domain *sd;
5679
5680 sd = &per_cpu(phys_domains, j);
5681 if (j != first_cpu(sd->groups->cpumask)) {
5682 /*
5683 * Only add "power" once for each
5684 * physical package.
5685 */
5686 continue;
5687 }
5688
5689 sg->cpu_power += sd->groups->cpu_power;
5690 }
5691 sg = sg->next;
5692 if (sg != group_head)
5693 goto next_sg;
5694 }
5695 #endif
5696
5697 /*
5698 * Build sched domains for a given set of cpus and attach the sched domains
5699 * to the individual cpus
5700 */
5701 void build_sched_domains(const cpumask_t *cpu_map)
5702 {
5703 int i;
5704 #ifdef CONFIG_NUMA
5705 struct sched_group **sched_group_nodes = NULL;
5706 struct sched_group *sched_group_allnodes = NULL;
5707
5708 /*
5709 * Allocate the per-node list of sched groups
5710 */
5711 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5712 GFP_ATOMIC);
5713 if (!sched_group_nodes) {
5714 printk(KERN_WARNING "Can not alloc sched group node list\n");
5715 return;
5716 }
5717 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5718 #endif
5719
5720 /*
5721 * Set up domains for cpus specified by the cpu_map.
5722 */
5723 for_each_cpu_mask(i, *cpu_map) {
5724 int group;
5725 struct sched_domain *sd = NULL, *p;
5726 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5727
5728 cpus_and(nodemask, nodemask, *cpu_map);
5729
5730 #ifdef CONFIG_NUMA
5731 if (cpus_weight(*cpu_map)
5732 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5733 if (!sched_group_allnodes) {
5734 sched_group_allnodes
5735 = kmalloc(sizeof(struct sched_group)
5736 * MAX_NUMNODES,
5737 GFP_KERNEL);
5738 if (!sched_group_allnodes) {
5739 printk(KERN_WARNING
5740 "Can not alloc allnodes sched group\n");
5741 break;
5742 }
5743 sched_group_allnodes_bycpu[i]
5744 = sched_group_allnodes;
5745 }
5746 sd = &per_cpu(allnodes_domains, i);
5747 *sd = SD_ALLNODES_INIT;
5748 sd->span = *cpu_map;
5749 group = cpu_to_allnodes_group(i);
5750 sd->groups = &sched_group_allnodes[group];
5751 p = sd;
5752 } else
5753 p = NULL;
5754
5755 sd = &per_cpu(node_domains, i);
5756 *sd = SD_NODE_INIT;
5757 sd->span = sched_domain_node_span(cpu_to_node(i));
5758 sd->parent = p;
5759 cpus_and(sd->span, sd->span, *cpu_map);
5760 #endif
5761
5762 p = sd;
5763 sd = &per_cpu(phys_domains, i);
5764 group = cpu_to_phys_group(i);
5765 *sd = SD_CPU_INIT;
5766 sd->span = nodemask;
5767 sd->parent = p;
5768 sd->groups = &sched_group_phys[group];
5769
5770 #ifdef CONFIG_SCHED_MC
5771 p = sd;
5772 sd = &per_cpu(core_domains, i);
5773 group = cpu_to_core_group(i);
5774 *sd = SD_MC_INIT;
5775 sd->span = cpu_coregroup_map(i);
5776 cpus_and(sd->span, sd->span, *cpu_map);
5777 sd->parent = p;
5778 sd->groups = &sched_group_core[group];
5779 #endif
5780
5781 #ifdef CONFIG_SCHED_SMT
5782 p = sd;
5783 sd = &per_cpu(cpu_domains, i);
5784 group = cpu_to_cpu_group(i);
5785 *sd = SD_SIBLING_INIT;
5786 sd->span = cpu_sibling_map[i];
5787 cpus_and(sd->span, sd->span, *cpu_map);
5788 sd->parent = p;
5789 sd->groups = &sched_group_cpus[group];
5790 #endif
5791 }
5792
5793 #ifdef CONFIG_SCHED_SMT
5794 /* Set up CPU (sibling) groups */
5795 for_each_cpu_mask(i, *cpu_map) {
5796 cpumask_t this_sibling_map = cpu_sibling_map[i];
5797 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5798 if (i != first_cpu(this_sibling_map))
5799 continue;
5800
5801 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5802 &cpu_to_cpu_group);
5803 }
5804 #endif
5805
5806 #ifdef CONFIG_SCHED_MC
5807 /* Set up multi-core groups */
5808 for_each_cpu_mask(i, *cpu_map) {
5809 cpumask_t this_core_map = cpu_coregroup_map(i);
5810 cpus_and(this_core_map, this_core_map, *cpu_map);
5811 if (i != first_cpu(this_core_map))
5812 continue;
5813 init_sched_build_groups(sched_group_core, this_core_map,
5814 &cpu_to_core_group);
5815 }
5816 #endif
5817
5818
5819 /* Set up physical groups */
5820 for (i = 0; i < MAX_NUMNODES; i++) {
5821 cpumask_t nodemask = node_to_cpumask(i);
5822
5823 cpus_and(nodemask, nodemask, *cpu_map);
5824 if (cpus_empty(nodemask))
5825 continue;
5826
5827 init_sched_build_groups(sched_group_phys, nodemask,
5828 &cpu_to_phys_group);
5829 }
5830
5831 #ifdef CONFIG_NUMA
5832 /* Set up node groups */
5833 if (sched_group_allnodes)
5834 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5835 &cpu_to_allnodes_group);
5836
5837 for (i = 0; i < MAX_NUMNODES; i++) {
5838 /* Set up node groups */
5839 struct sched_group *sg, *prev;
5840 cpumask_t nodemask = node_to_cpumask(i);
5841 cpumask_t domainspan;
5842 cpumask_t covered = CPU_MASK_NONE;
5843 int j;
5844
5845 cpus_and(nodemask, nodemask, *cpu_map);
5846 if (cpus_empty(nodemask)) {
5847 sched_group_nodes[i] = NULL;
5848 continue;
5849 }
5850
5851 domainspan = sched_domain_node_span(i);
5852 cpus_and(domainspan, domainspan, *cpu_map);
5853
5854 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5855 sched_group_nodes[i] = sg;
5856 for_each_cpu_mask(j, nodemask) {
5857 struct sched_domain *sd;
5858 sd = &per_cpu(node_domains, j);
5859 sd->groups = sg;
5860 if (sd->groups == NULL) {
5861 /* Turn off balancing if we have no groups */
5862 sd->flags = 0;
5863 }
5864 }
5865 if (!sg) {
5866 printk(KERN_WARNING
5867 "Can not alloc domain group for node %d\n", i);
5868 continue;
5869 }
5870 sg->cpu_power = 0;
5871 sg->cpumask = nodemask;
5872 cpus_or(covered, covered, nodemask);
5873 prev = sg;
5874
5875 for (j = 0; j < MAX_NUMNODES; j++) {
5876 cpumask_t tmp, notcovered;
5877 int n = (i + j) % MAX_NUMNODES;
5878
5879 cpus_complement(notcovered, covered);
5880 cpus_and(tmp, notcovered, *cpu_map);
5881 cpus_and(tmp, tmp, domainspan);
5882 if (cpus_empty(tmp))
5883 break;
5884
5885 nodemask = node_to_cpumask(n);
5886 cpus_and(tmp, tmp, nodemask);
5887 if (cpus_empty(tmp))
5888 continue;
5889
5890 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5891 if (!sg) {
5892 printk(KERN_WARNING
5893 "Can not alloc domain group for node %d\n", j);
5894 break;
5895 }
5896 sg->cpu_power = 0;
5897 sg->cpumask = tmp;
5898 cpus_or(covered, covered, tmp);
5899 prev->next = sg;
5900 prev = sg;
5901 }
5902 prev->next = sched_group_nodes[i];
5903 }
5904 #endif
5905
5906 /* Calculate CPU power for physical packages and nodes */
5907 for_each_cpu_mask(i, *cpu_map) {
5908 int power;
5909 struct sched_domain *sd;
5910 #ifdef CONFIG_SCHED_SMT
5911 sd = &per_cpu(cpu_domains, i);
5912 power = SCHED_LOAD_SCALE;
5913 sd->groups->cpu_power = power;
5914 #endif
5915 #ifdef CONFIG_SCHED_MC
5916 sd = &per_cpu(core_domains, i);
5917 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5918 * SCHED_LOAD_SCALE / 10;
5919 sd->groups->cpu_power = power;
5920
5921 sd = &per_cpu(phys_domains, i);
5922
5923 /*
5924 * This has to be < 2 * SCHED_LOAD_SCALE
5925 * Lets keep it SCHED_LOAD_SCALE, so that
5926 * while calculating NUMA group's cpu_power
5927 * we can simply do
5928 * numa_group->cpu_power += phys_group->cpu_power;
5929 *
5930 * See "only add power once for each physical pkg"
5931 * comment below
5932 */
5933 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5934 #else
5935 sd = &per_cpu(phys_domains, i);
5936 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5937 (cpus_weight(sd->groups->cpumask)-1) / 10;
5938 sd->groups->cpu_power = power;
5939 #endif
5940 }
5941
5942 #ifdef CONFIG_NUMA
5943 for (i = 0; i < MAX_NUMNODES; i++)
5944 init_numa_sched_groups_power(sched_group_nodes[i]);
5945
5946 init_numa_sched_groups_power(sched_group_allnodes);
5947 #endif
5948
5949 /* Attach the domains */
5950 for_each_cpu_mask(i, *cpu_map) {
5951 struct sched_domain *sd;
5952 #ifdef CONFIG_SCHED_SMT
5953 sd = &per_cpu(cpu_domains, i);
5954 #elif defined(CONFIG_SCHED_MC)
5955 sd = &per_cpu(core_domains, i);
5956 #else
5957 sd = &per_cpu(phys_domains, i);
5958 #endif
5959 cpu_attach_domain(sd, i);
5960 }
5961 /*
5962 * Tune cache-hot values:
5963 */
5964 calibrate_migration_costs(cpu_map);
5965 }
5966 /*
5967 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5968 */
5969 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5970 {
5971 cpumask_t cpu_default_map;
5972
5973 /*
5974 * Setup mask for cpus without special case scheduling requirements.
5975 * For now this just excludes isolated cpus, but could be used to
5976 * exclude other special cases in the future.
5977 */
5978 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5979
5980 build_sched_domains(&cpu_default_map);
5981 }
5982
5983 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5984 {
5985 #ifdef CONFIG_NUMA
5986 int i;
5987 int cpu;
5988
5989 for_each_cpu_mask(cpu, *cpu_map) {
5990 struct sched_group *sched_group_allnodes
5991 = sched_group_allnodes_bycpu[cpu];
5992 struct sched_group **sched_group_nodes
5993 = sched_group_nodes_bycpu[cpu];
5994
5995 if (sched_group_allnodes) {
5996 kfree(sched_group_allnodes);
5997 sched_group_allnodes_bycpu[cpu] = NULL;
5998 }
5999
6000 if (!sched_group_nodes)
6001 continue;
6002
6003 for (i = 0; i < MAX_NUMNODES; i++) {
6004 cpumask_t nodemask = node_to_cpumask(i);
6005 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6006
6007 cpus_and(nodemask, nodemask, *cpu_map);
6008 if (cpus_empty(nodemask))
6009 continue;
6010
6011 if (sg == NULL)
6012 continue;
6013 sg = sg->next;
6014 next_sg:
6015 oldsg = sg;
6016 sg = sg->next;
6017 kfree(oldsg);
6018 if (oldsg != sched_group_nodes[i])
6019 goto next_sg;
6020 }
6021 kfree(sched_group_nodes);
6022 sched_group_nodes_bycpu[cpu] = NULL;
6023 }
6024 #endif
6025 }
6026
6027 /*
6028 * Detach sched domains from a group of cpus specified in cpu_map
6029 * These cpus will now be attached to the NULL domain
6030 */
6031 static void detach_destroy_domains(const cpumask_t *cpu_map)
6032 {
6033 int i;
6034
6035 for_each_cpu_mask(i, *cpu_map)
6036 cpu_attach_domain(NULL, i);
6037 synchronize_sched();
6038 arch_destroy_sched_domains(cpu_map);
6039 }
6040
6041 /*
6042 * Partition sched domains as specified by the cpumasks below.
6043 * This attaches all cpus from the cpumasks to the NULL domain,
6044 * waits for a RCU quiescent period, recalculates sched
6045 * domain information and then attaches them back to the
6046 * correct sched domains
6047 * Call with hotplug lock held
6048 */
6049 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6050 {
6051 cpumask_t change_map;
6052
6053 cpus_and(*partition1, *partition1, cpu_online_map);
6054 cpus_and(*partition2, *partition2, cpu_online_map);
6055 cpus_or(change_map, *partition1, *partition2);
6056
6057 /* Detach sched domains from all of the affected cpus */
6058 detach_destroy_domains(&change_map);
6059 if (!cpus_empty(*partition1))
6060 build_sched_domains(partition1);
6061 if (!cpus_empty(*partition2))
6062 build_sched_domains(partition2);
6063 }
6064
6065 #ifdef CONFIG_HOTPLUG_CPU
6066 /*
6067 * Force a reinitialization of the sched domains hierarchy. The domains
6068 * and groups cannot be updated in place without racing with the balancing
6069 * code, so we temporarily attach all running cpus to the NULL domain
6070 * which will prevent rebalancing while the sched domains are recalculated.
6071 */
6072 static int update_sched_domains(struct notifier_block *nfb,
6073 unsigned long action, void *hcpu)
6074 {
6075 switch (action) {
6076 case CPU_UP_PREPARE:
6077 case CPU_DOWN_PREPARE:
6078 detach_destroy_domains(&cpu_online_map);
6079 return NOTIFY_OK;
6080
6081 case CPU_UP_CANCELED:
6082 case CPU_DOWN_FAILED:
6083 case CPU_ONLINE:
6084 case CPU_DEAD:
6085 /*
6086 * Fall through and re-initialise the domains.
6087 */
6088 break;
6089 default:
6090 return NOTIFY_DONE;
6091 }
6092
6093 /* The hotplug lock is already held by cpu_up/cpu_down */
6094 arch_init_sched_domains(&cpu_online_map);
6095
6096 return NOTIFY_OK;
6097 }
6098 #endif
6099
6100 void __init sched_init_smp(void)
6101 {
6102 lock_cpu_hotplug();
6103 arch_init_sched_domains(&cpu_online_map);
6104 unlock_cpu_hotplug();
6105 /* XXX: Theoretical race here - CPU may be hotplugged now */
6106 hotcpu_notifier(update_sched_domains, 0);
6107 }
6108 #else
6109 void __init sched_init_smp(void)
6110 {
6111 }
6112 #endif /* CONFIG_SMP */
6113
6114 int in_sched_functions(unsigned long addr)
6115 {
6116 /* Linker adds these: start and end of __sched functions */
6117 extern char __sched_text_start[], __sched_text_end[];
6118 return in_lock_functions(addr) ||
6119 (addr >= (unsigned long)__sched_text_start
6120 && addr < (unsigned long)__sched_text_end);
6121 }
6122
6123 void __init sched_init(void)
6124 {
6125 runqueue_t *rq;
6126 int i, j, k;
6127
6128 for_each_possible_cpu(i) {
6129 prio_array_t *array;
6130
6131 rq = cpu_rq(i);
6132 spin_lock_init(&rq->lock);
6133 rq->nr_running = 0;
6134 rq->active = rq->arrays;
6135 rq->expired = rq->arrays + 1;
6136 rq->best_expired_prio = MAX_PRIO;
6137
6138 #ifdef CONFIG_SMP
6139 rq->sd = NULL;
6140 for (j = 1; j < 3; j++)
6141 rq->cpu_load[j] = 0;
6142 rq->active_balance = 0;
6143 rq->push_cpu = 0;
6144 rq->migration_thread = NULL;
6145 INIT_LIST_HEAD(&rq->migration_queue);
6146 rq->cpu = i;
6147 #endif
6148 atomic_set(&rq->nr_iowait, 0);
6149
6150 for (j = 0; j < 2; j++) {
6151 array = rq->arrays + j;
6152 for (k = 0; k < MAX_PRIO; k++) {
6153 INIT_LIST_HEAD(array->queue + k);
6154 __clear_bit(k, array->bitmap);
6155 }
6156 // delimiter for bitsearch
6157 __set_bit(MAX_PRIO, array->bitmap);
6158 }
6159 }
6160
6161 /*
6162 * The boot idle thread does lazy MMU switching as well:
6163 */
6164 atomic_inc(&init_mm.mm_count);
6165 enter_lazy_tlb(&init_mm, current);
6166
6167 /*
6168 * Make us the idle thread. Technically, schedule() should not be
6169 * called from this thread, however somewhere below it might be,
6170 * but because we are the idle thread, we just pick up running again
6171 * when this runqueue becomes "idle".
6172 */
6173 init_idle(current, smp_processor_id());
6174 }
6175
6176 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6177 void __might_sleep(char *file, int line)
6178 {
6179 #if defined(in_atomic)
6180 static unsigned long prev_jiffy; /* ratelimiting */
6181
6182 if ((in_atomic() || irqs_disabled()) &&
6183 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6185 return;
6186 prev_jiffy = jiffies;
6187 printk(KERN_ERR "BUG: sleeping function called from invalid"
6188 " context at %s:%d\n", file, line);
6189 printk("in_atomic():%d, irqs_disabled():%d\n",
6190 in_atomic(), irqs_disabled());
6191 dump_stack();
6192 }
6193 #endif
6194 }
6195 EXPORT_SYMBOL(__might_sleep);
6196 #endif
6197
6198 #ifdef CONFIG_MAGIC_SYSRQ
6199 void normalize_rt_tasks(void)
6200 {
6201 struct task_struct *p;
6202 prio_array_t *array;
6203 unsigned long flags;
6204 runqueue_t *rq;
6205
6206 read_lock_irq(&tasklist_lock);
6207 for_each_process (p) {
6208 if (!rt_task(p))
6209 continue;
6210
6211 rq = task_rq_lock(p, &flags);
6212
6213 array = p->array;
6214 if (array)
6215 deactivate_task(p, task_rq(p));
6216 __setscheduler(p, SCHED_NORMAL, 0);
6217 if (array) {
6218 __activate_task(p, task_rq(p));
6219 resched_task(rq->curr);
6220 }
6221
6222 task_rq_unlock(rq, &flags);
6223 }
6224 read_unlock_irq(&tasklist_lock);
6225 }
6226
6227 #endif /* CONFIG_MAGIC_SYSRQ */
6228
6229 #ifdef CONFIG_IA64
6230 /*
6231 * These functions are only useful for the IA64 MCA handling.
6232 *
6233 * They can only be called when the whole system has been
6234 * stopped - every CPU needs to be quiescent, and no scheduling
6235 * activity can take place. Using them for anything else would
6236 * be a serious bug, and as a result, they aren't even visible
6237 * under any other configuration.
6238 */
6239
6240 /**
6241 * curr_task - return the current task for a given cpu.
6242 * @cpu: the processor in question.
6243 *
6244 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6245 */
6246 task_t *curr_task(int cpu)
6247 {
6248 return cpu_curr(cpu);
6249 }
6250
6251 /**
6252 * set_curr_task - set the current task for a given cpu.
6253 * @cpu: the processor in question.
6254 * @p: the task pointer to set.
6255 *
6256 * Description: This function must only be used when non-maskable interrupts
6257 * are serviced on a separate stack. It allows the architecture to switch the
6258 * notion of the current task on a cpu in a non-blocking manner. This function
6259 * must be called with all CPU's synchronized, and interrupts disabled, the
6260 * and caller must save the original value of the current task (see
6261 * curr_task() above) and restore that value before reenabling interrupts and
6262 * re-starting the system.
6263 *
6264 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6265 */
6266 void set_curr_task(int cpu, task_t *p)
6267 {
6268 cpu_curr(cpu) = p;
6269 }
6270
6271 #endif