sched: more sanity checks on the bandwidth settings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
106 /*
107 * These are the 'tuning knobs' of the scheduler:
108 *
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
111 */
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 /*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117 #define RUNTIME_INF ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 }
206
207 static inline int rt_bandwidth_enabled(void)
208 {
209 return sysctl_sched_rt_runtime >= 0;
210 }
211
212 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213 {
214 ktime_t now;
215
216 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start(&rt_b->rt_period_timer,
230 rt_b->rt_period_timer.expires,
231 HRTIMER_MODE_ABS);
232 }
233 spin_unlock(&rt_b->rt_runtime_lock);
234 }
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
238 {
239 hrtimer_cancel(&rt_b->rt_period_timer);
240 }
241 #endif
242
243 /*
244 * sched_domains_mutex serializes calls to arch_init_sched_domains,
245 * detach_destroy_domains and partition_sched_domains.
246 */
247 static DEFINE_MUTEX(sched_domains_mutex);
248
249 #ifdef CONFIG_GROUP_SCHED
250
251 #include <linux/cgroup.h>
252
253 struct cfs_rq;
254
255 static LIST_HEAD(task_groups);
256
257 /* task group related information */
258 struct task_group {
259 #ifdef CONFIG_CGROUP_SCHED
260 struct cgroup_subsys_state css;
261 #endif
262
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264 /* schedulable entities of this group on each cpu */
265 struct sched_entity **se;
266 /* runqueue "owned" by this group on each cpu */
267 struct cfs_rq **cfs_rq;
268 unsigned long shares;
269 #endif
270
271 #ifdef CONFIG_RT_GROUP_SCHED
272 struct sched_rt_entity **rt_se;
273 struct rt_rq **rt_rq;
274
275 struct rt_bandwidth rt_bandwidth;
276 #endif
277
278 struct rcu_head rcu;
279 struct list_head list;
280
281 struct task_group *parent;
282 struct list_head siblings;
283 struct list_head children;
284 };
285
286 #ifdef CONFIG_USER_SCHED
287
288 /*
289 * Root task group.
290 * Every UID task group (including init_task_group aka UID-0) will
291 * be a child to this group.
292 */
293 struct task_group root_task_group;
294
295 #ifdef CONFIG_FAIR_GROUP_SCHED
296 /* Default task group's sched entity on each cpu */
297 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
298 /* Default task group's cfs_rq on each cpu */
299 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_FAIR_GROUP_SCHED */
301
302 #ifdef CONFIG_RT_GROUP_SCHED
303 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
304 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
305 #endif /* CONFIG_RT_GROUP_SCHED */
306 #else /* !CONFIG_USER_SCHED */
307 #define root_task_group init_task_group
308 #endif /* CONFIG_USER_SCHED */
309
310 /* task_group_lock serializes add/remove of task groups and also changes to
311 * a task group's cpu shares.
312 */
313 static DEFINE_SPINLOCK(task_group_lock);
314
315 #ifdef CONFIG_FAIR_GROUP_SCHED
316 #ifdef CONFIG_USER_SCHED
317 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
318 #else /* !CONFIG_USER_SCHED */
319 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
320 #endif /* CONFIG_USER_SCHED */
321
322 /*
323 * A weight of 0 or 1 can cause arithmetics problems.
324 * A weight of a cfs_rq is the sum of weights of which entities
325 * are queued on this cfs_rq, so a weight of a entity should not be
326 * too large, so as the shares value of a task group.
327 * (The default weight is 1024 - so there's no practical
328 * limitation from this.)
329 */
330 #define MIN_SHARES 2
331 #define MAX_SHARES (1UL << 18)
332
333 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
334 #endif
335
336 /* Default task group.
337 * Every task in system belong to this group at bootup.
338 */
339 struct task_group init_task_group;
340
341 /* return group to which a task belongs */
342 static inline struct task_group *task_group(struct task_struct *p)
343 {
344 struct task_group *tg;
345
346 #ifdef CONFIG_USER_SCHED
347 tg = p->user->tg;
348 #elif defined(CONFIG_CGROUP_SCHED)
349 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
350 struct task_group, css);
351 #else
352 tg = &init_task_group;
353 #endif
354 return tg;
355 }
356
357 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
358 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
359 {
360 #ifdef CONFIG_FAIR_GROUP_SCHED
361 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
362 p->se.parent = task_group(p)->se[cpu];
363 #endif
364
365 #ifdef CONFIG_RT_GROUP_SCHED
366 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
367 p->rt.parent = task_group(p)->rt_se[cpu];
368 #endif
369 }
370
371 #else
372
373 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
374 static inline struct task_group *task_group(struct task_struct *p)
375 {
376 return NULL;
377 }
378
379 #endif /* CONFIG_GROUP_SCHED */
380
381 /* CFS-related fields in a runqueue */
382 struct cfs_rq {
383 struct load_weight load;
384 unsigned long nr_running;
385
386 u64 exec_clock;
387 u64 min_vruntime;
388 u64 pair_start;
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
400 struct sched_entity *curr, *next;
401
402 unsigned long nr_spread_over;
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
417
418 #ifdef CONFIG_SMP
419 /*
420 * the part of load.weight contributed by tasks
421 */
422 unsigned long task_weight;
423
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
431
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
441 #endif
442 #endif
443 };
444
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
461
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
464
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
470 };
471
472 #ifdef CONFIG_SMP
473
474 /*
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
481 */
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
486
487 /*
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
496 };
497
498 /*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
502 static struct root_domain def_root_domain;
503
504 #endif
505
506 /*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
535 struct rt_rq rt;
536
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
556
557 u64 clock;
558
559 atomic_t nr_iowait;
560
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
571
572 unsigned long avg_load_per_task;
573
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
577
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
585
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
595
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
600
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
604
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
608 };
609
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
611
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
613 {
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
615 }
616
617 static inline int cpu_of(struct rq *rq)
618 {
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
624 }
625
626 /*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
635
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
641 static inline void update_rq_clock(struct rq *rq)
642 {
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644 }
645
646 /*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
654
655 /**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662 int runqueue_is_locked(void)
663 {
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671 }
672
673 /*
674 * Debugging: various feature bits
675 */
676
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
680 enum {
681 #include "sched_features.h"
682 };
683
684 #undef SCHED_FEAT
685
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
691 0;
692
693 #undef SCHED_FEAT
694
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
698
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
702 };
703
704 #undef SCHED_FEAT
705
706 static int sched_feat_open(struct inode *inode, struct file *filp)
707 {
708 filp->private_data = inode->i_private;
709 return 0;
710 }
711
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715 {
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745 }
746
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750 {
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787 }
788
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819
820 /*
821 * period over which we measure -rt task cpu usage in us.
822 * default: 1s
823 */
824 unsigned int sysctl_sched_rt_period = 1000000;
825
826 static __read_mostly int scheduler_running;
827
828 /*
829 * part of the period that we allow rt tasks to run in us.
830 * default: 0.95s
831 */
832 int sysctl_sched_rt_runtime = 950000;
833
834 static inline u64 global_rt_period(void)
835 {
836 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
837 }
838
839 static inline u64 global_rt_runtime(void)
840 {
841 if (sysctl_sched_rt_runtime < 0)
842 return RUNTIME_INF;
843
844 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
845 }
846
847 #ifndef prepare_arch_switch
848 # define prepare_arch_switch(next) do { } while (0)
849 #endif
850 #ifndef finish_arch_switch
851 # define finish_arch_switch(prev) do { } while (0)
852 #endif
853
854 static inline int task_current(struct rq *rq, struct task_struct *p)
855 {
856 return rq->curr == p;
857 }
858
859 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
860 static inline int task_running(struct rq *rq, struct task_struct *p)
861 {
862 return task_current(rq, p);
863 }
864
865 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
866 {
867 }
868
869 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
870 {
871 #ifdef CONFIG_DEBUG_SPINLOCK
872 /* this is a valid case when another task releases the spinlock */
873 rq->lock.owner = current;
874 #endif
875 /*
876 * If we are tracking spinlock dependencies then we have to
877 * fix up the runqueue lock - which gets 'carried over' from
878 * prev into current:
879 */
880 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
881
882 spin_unlock_irq(&rq->lock);
883 }
884
885 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
886 static inline int task_running(struct rq *rq, struct task_struct *p)
887 {
888 #ifdef CONFIG_SMP
889 return p->oncpu;
890 #else
891 return task_current(rq, p);
892 #endif
893 }
894
895 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
896 {
897 #ifdef CONFIG_SMP
898 /*
899 * We can optimise this out completely for !SMP, because the
900 * SMP rebalancing from interrupt is the only thing that cares
901 * here.
902 */
903 next->oncpu = 1;
904 #endif
905 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 spin_unlock_irq(&rq->lock);
907 #else
908 spin_unlock(&rq->lock);
909 #endif
910 }
911
912 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 {
914 #ifdef CONFIG_SMP
915 /*
916 * After ->oncpu is cleared, the task can be moved to a different CPU.
917 * We must ensure this doesn't happen until the switch is completely
918 * finished.
919 */
920 smp_wmb();
921 prev->oncpu = 0;
922 #endif
923 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 local_irq_enable();
925 #endif
926 }
927 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
928
929 /*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
933 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 __acquires(rq->lock)
935 {
936 for (;;) {
937 struct rq *rq = task_rq(p);
938 spin_lock(&rq->lock);
939 if (likely(rq == task_rq(p)))
940 return rq;
941 spin_unlock(&rq->lock);
942 }
943 }
944
945 /*
946 * task_rq_lock - lock the runqueue a given task resides on and disable
947 * interrupts. Note the ordering: we can safely lookup the task_rq without
948 * explicitly disabling preemption.
949 */
950 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
951 __acquires(rq->lock)
952 {
953 struct rq *rq;
954
955 for (;;) {
956 local_irq_save(*flags);
957 rq = task_rq(p);
958 spin_lock(&rq->lock);
959 if (likely(rq == task_rq(p)))
960 return rq;
961 spin_unlock_irqrestore(&rq->lock, *flags);
962 }
963 }
964
965 static void __task_rq_unlock(struct rq *rq)
966 __releases(rq->lock)
967 {
968 spin_unlock(&rq->lock);
969 }
970
971 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
972 __releases(rq->lock)
973 {
974 spin_unlock_irqrestore(&rq->lock, *flags);
975 }
976
977 /*
978 * this_rq_lock - lock this runqueue and disable interrupts.
979 */
980 static struct rq *this_rq_lock(void)
981 __acquires(rq->lock)
982 {
983 struct rq *rq;
984
985 local_irq_disable();
986 rq = this_rq();
987 spin_lock(&rq->lock);
988
989 return rq;
990 }
991
992 #ifdef CONFIG_SCHED_HRTICK
993 /*
994 * Use HR-timers to deliver accurate preemption points.
995 *
996 * Its all a bit involved since we cannot program an hrt while holding the
997 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
998 * reschedule event.
999 *
1000 * When we get rescheduled we reprogram the hrtick_timer outside of the
1001 * rq->lock.
1002 */
1003
1004 /*
1005 * Use hrtick when:
1006 * - enabled by features
1007 * - hrtimer is actually high res
1008 */
1009 static inline int hrtick_enabled(struct rq *rq)
1010 {
1011 if (!sched_feat(HRTICK))
1012 return 0;
1013 if (!cpu_active(cpu_of(rq)))
1014 return 0;
1015 return hrtimer_is_hres_active(&rq->hrtick_timer);
1016 }
1017
1018 static void hrtick_clear(struct rq *rq)
1019 {
1020 if (hrtimer_active(&rq->hrtick_timer))
1021 hrtimer_cancel(&rq->hrtick_timer);
1022 }
1023
1024 /*
1025 * High-resolution timer tick.
1026 * Runs from hardirq context with interrupts disabled.
1027 */
1028 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1029 {
1030 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1031
1032 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1033
1034 spin_lock(&rq->lock);
1035 update_rq_clock(rq);
1036 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1037 spin_unlock(&rq->lock);
1038
1039 return HRTIMER_NORESTART;
1040 }
1041
1042 #ifdef CONFIG_SMP
1043 /*
1044 * called from hardirq (IPI) context
1045 */
1046 static void __hrtick_start(void *arg)
1047 {
1048 struct rq *rq = arg;
1049
1050 spin_lock(&rq->lock);
1051 hrtimer_restart(&rq->hrtick_timer);
1052 rq->hrtick_csd_pending = 0;
1053 spin_unlock(&rq->lock);
1054 }
1055
1056 /*
1057 * Called to set the hrtick timer state.
1058 *
1059 * called with rq->lock held and irqs disabled
1060 */
1061 static void hrtick_start(struct rq *rq, u64 delay)
1062 {
1063 struct hrtimer *timer = &rq->hrtick_timer;
1064 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1065
1066 timer->expires = time;
1067
1068 if (rq == this_rq()) {
1069 hrtimer_restart(timer);
1070 } else if (!rq->hrtick_csd_pending) {
1071 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1072 rq->hrtick_csd_pending = 1;
1073 }
1074 }
1075
1076 static int
1077 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1078 {
1079 int cpu = (int)(long)hcpu;
1080
1081 switch (action) {
1082 case CPU_UP_CANCELED:
1083 case CPU_UP_CANCELED_FROZEN:
1084 case CPU_DOWN_PREPARE:
1085 case CPU_DOWN_PREPARE_FROZEN:
1086 case CPU_DEAD:
1087 case CPU_DEAD_FROZEN:
1088 hrtick_clear(cpu_rq(cpu));
1089 return NOTIFY_OK;
1090 }
1091
1092 return NOTIFY_DONE;
1093 }
1094
1095 static __init void init_hrtick(void)
1096 {
1097 hotcpu_notifier(hotplug_hrtick, 0);
1098 }
1099 #else
1100 /*
1101 * Called to set the hrtick timer state.
1102 *
1103 * called with rq->lock held and irqs disabled
1104 */
1105 static void hrtick_start(struct rq *rq, u64 delay)
1106 {
1107 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1108 }
1109
1110 static inline void init_hrtick(void)
1111 {
1112 }
1113 #endif /* CONFIG_SMP */
1114
1115 static void init_rq_hrtick(struct rq *rq)
1116 {
1117 #ifdef CONFIG_SMP
1118 rq->hrtick_csd_pending = 0;
1119
1120 rq->hrtick_csd.flags = 0;
1121 rq->hrtick_csd.func = __hrtick_start;
1122 rq->hrtick_csd.info = rq;
1123 #endif
1124
1125 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1126 rq->hrtick_timer.function = hrtick;
1127 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1128 }
1129 #else /* CONFIG_SCHED_HRTICK */
1130 static inline void hrtick_clear(struct rq *rq)
1131 {
1132 }
1133
1134 static inline void init_rq_hrtick(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_hrtick(void)
1139 {
1140 }
1141 #endif /* CONFIG_SCHED_HRTICK */
1142
1143 /*
1144 * resched_task - mark a task 'to be rescheduled now'.
1145 *
1146 * On UP this means the setting of the need_resched flag, on SMP it
1147 * might also involve a cross-CPU call to trigger the scheduler on
1148 * the target CPU.
1149 */
1150 #ifdef CONFIG_SMP
1151
1152 #ifndef tsk_is_polling
1153 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1154 #endif
1155
1156 static void resched_task(struct task_struct *p)
1157 {
1158 int cpu;
1159
1160 assert_spin_locked(&task_rq(p)->lock);
1161
1162 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1163 return;
1164
1165 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1166
1167 cpu = task_cpu(p);
1168 if (cpu == smp_processor_id())
1169 return;
1170
1171 /* NEED_RESCHED must be visible before we test polling */
1172 smp_mb();
1173 if (!tsk_is_polling(p))
1174 smp_send_reschedule(cpu);
1175 }
1176
1177 static void resched_cpu(int cpu)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long flags;
1181
1182 if (!spin_trylock_irqsave(&rq->lock, flags))
1183 return;
1184 resched_task(cpu_curr(cpu));
1185 spin_unlock_irqrestore(&rq->lock, flags);
1186 }
1187
1188 #ifdef CONFIG_NO_HZ
1189 /*
1190 * When add_timer_on() enqueues a timer into the timer wheel of an
1191 * idle CPU then this timer might expire before the next timer event
1192 * which is scheduled to wake up that CPU. In case of a completely
1193 * idle system the next event might even be infinite time into the
1194 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1195 * leaves the inner idle loop so the newly added timer is taken into
1196 * account when the CPU goes back to idle and evaluates the timer
1197 * wheel for the next timer event.
1198 */
1199 void wake_up_idle_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202
1203 if (cpu == smp_processor_id())
1204 return;
1205
1206 /*
1207 * This is safe, as this function is called with the timer
1208 * wheel base lock of (cpu) held. When the CPU is on the way
1209 * to idle and has not yet set rq->curr to idle then it will
1210 * be serialized on the timer wheel base lock and take the new
1211 * timer into account automatically.
1212 */
1213 if (rq->curr != rq->idle)
1214 return;
1215
1216 /*
1217 * We can set TIF_RESCHED on the idle task of the other CPU
1218 * lockless. The worst case is that the other CPU runs the
1219 * idle task through an additional NOOP schedule()
1220 */
1221 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1222
1223 /* NEED_RESCHED must be visible before we test polling */
1224 smp_mb();
1225 if (!tsk_is_polling(rq->idle))
1226 smp_send_reschedule(cpu);
1227 }
1228 #endif /* CONFIG_NO_HZ */
1229
1230 #else /* !CONFIG_SMP */
1231 static void resched_task(struct task_struct *p)
1232 {
1233 assert_spin_locked(&task_rq(p)->lock);
1234 set_tsk_need_resched(p);
1235 }
1236 #endif /* CONFIG_SMP */
1237
1238 #if BITS_PER_LONG == 32
1239 # define WMULT_CONST (~0UL)
1240 #else
1241 # define WMULT_CONST (1UL << 32)
1242 #endif
1243
1244 #define WMULT_SHIFT 32
1245
1246 /*
1247 * Shift right and round:
1248 */
1249 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1250
1251 /*
1252 * delta *= weight / lw
1253 */
1254 static unsigned long
1255 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1256 struct load_weight *lw)
1257 {
1258 u64 tmp;
1259
1260 if (!lw->inv_weight) {
1261 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1262 lw->inv_weight = 1;
1263 else
1264 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1265 / (lw->weight+1);
1266 }
1267
1268 tmp = (u64)delta_exec * weight;
1269 /*
1270 * Check whether we'd overflow the 64-bit multiplication:
1271 */
1272 if (unlikely(tmp > WMULT_CONST))
1273 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1274 WMULT_SHIFT/2);
1275 else
1276 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1277
1278 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1279 }
1280
1281 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1282 {
1283 lw->weight += inc;
1284 lw->inv_weight = 0;
1285 }
1286
1287 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1288 {
1289 lw->weight -= dec;
1290 lw->inv_weight = 0;
1291 }
1292
1293 /*
1294 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1295 * of tasks with abnormal "nice" values across CPUs the contribution that
1296 * each task makes to its run queue's load is weighted according to its
1297 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1298 * scaled version of the new time slice allocation that they receive on time
1299 * slice expiry etc.
1300 */
1301
1302 #define WEIGHT_IDLEPRIO 2
1303 #define WMULT_IDLEPRIO (1 << 31)
1304
1305 /*
1306 * Nice levels are multiplicative, with a gentle 10% change for every
1307 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1308 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1309 * that remained on nice 0.
1310 *
1311 * The "10% effect" is relative and cumulative: from _any_ nice level,
1312 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1313 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1314 * If a task goes up by ~10% and another task goes down by ~10% then
1315 * the relative distance between them is ~25%.)
1316 */
1317 static const int prio_to_weight[40] = {
1318 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1319 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1320 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1321 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1322 /* 0 */ 1024, 820, 655, 526, 423,
1323 /* 5 */ 335, 272, 215, 172, 137,
1324 /* 10 */ 110, 87, 70, 56, 45,
1325 /* 15 */ 36, 29, 23, 18, 15,
1326 };
1327
1328 /*
1329 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1330 *
1331 * In cases where the weight does not change often, we can use the
1332 * precalculated inverse to speed up arithmetics by turning divisions
1333 * into multiplications:
1334 */
1335 static const u32 prio_to_wmult[40] = {
1336 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1337 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1338 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1339 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1340 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1341 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1342 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1343 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1344 };
1345
1346 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1347
1348 /*
1349 * runqueue iterator, to support SMP load-balancing between different
1350 * scheduling classes, without having to expose their internal data
1351 * structures to the load-balancing proper:
1352 */
1353 struct rq_iterator {
1354 void *arg;
1355 struct task_struct *(*start)(void *);
1356 struct task_struct *(*next)(void *);
1357 };
1358
1359 #ifdef CONFIG_SMP
1360 static unsigned long
1361 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1362 unsigned long max_load_move, struct sched_domain *sd,
1363 enum cpu_idle_type idle, int *all_pinned,
1364 int *this_best_prio, struct rq_iterator *iterator);
1365
1366 static int
1367 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1368 struct sched_domain *sd, enum cpu_idle_type idle,
1369 struct rq_iterator *iterator);
1370 #endif
1371
1372 #ifdef CONFIG_CGROUP_CPUACCT
1373 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1374 #else
1375 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1376 #endif
1377
1378 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1379 {
1380 update_load_add(&rq->load, load);
1381 }
1382
1383 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1384 {
1385 update_load_sub(&rq->load, load);
1386 }
1387
1388 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1389 typedef int (*tg_visitor)(struct task_group *, void *);
1390
1391 /*
1392 * Iterate the full tree, calling @down when first entering a node and @up when
1393 * leaving it for the final time.
1394 */
1395 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1396 {
1397 struct task_group *parent, *child;
1398 int ret;
1399
1400 rcu_read_lock();
1401 parent = &root_task_group;
1402 down:
1403 ret = (*down)(parent, data);
1404 if (ret)
1405 goto out_unlock;
1406 list_for_each_entry_rcu(child, &parent->children, siblings) {
1407 parent = child;
1408 goto down;
1409
1410 up:
1411 continue;
1412 }
1413 ret = (*up)(parent, data);
1414 if (ret)
1415 goto out_unlock;
1416
1417 child = parent;
1418 parent = parent->parent;
1419 if (parent)
1420 goto up;
1421 out_unlock:
1422 rcu_read_unlock();
1423
1424 return ret;
1425 }
1426
1427 static int tg_nop(struct task_group *tg, void *data)
1428 {
1429 return 0;
1430 }
1431 #endif
1432
1433 #ifdef CONFIG_SMP
1434 static unsigned long source_load(int cpu, int type);
1435 static unsigned long target_load(int cpu, int type);
1436 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1437
1438 static unsigned long cpu_avg_load_per_task(int cpu)
1439 {
1440 struct rq *rq = cpu_rq(cpu);
1441
1442 if (rq->nr_running)
1443 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1444
1445 return rq->avg_load_per_task;
1446 }
1447
1448 #ifdef CONFIG_FAIR_GROUP_SCHED
1449
1450 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1451
1452 /*
1453 * Calculate and set the cpu's group shares.
1454 */
1455 static void
1456 __update_group_shares_cpu(struct task_group *tg, int cpu,
1457 unsigned long sd_shares, unsigned long sd_rq_weight)
1458 {
1459 int boost = 0;
1460 unsigned long shares;
1461 unsigned long rq_weight;
1462
1463 if (!tg->se[cpu])
1464 return;
1465
1466 rq_weight = tg->cfs_rq[cpu]->load.weight;
1467
1468 /*
1469 * If there are currently no tasks on the cpu pretend there is one of
1470 * average load so that when a new task gets to run here it will not
1471 * get delayed by group starvation.
1472 */
1473 if (!rq_weight) {
1474 boost = 1;
1475 rq_weight = NICE_0_LOAD;
1476 }
1477
1478 if (unlikely(rq_weight > sd_rq_weight))
1479 rq_weight = sd_rq_weight;
1480
1481 /*
1482 * \Sum shares * rq_weight
1483 * shares = -----------------------
1484 * \Sum rq_weight
1485 *
1486 */
1487 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1488
1489 /*
1490 * record the actual number of shares, not the boosted amount.
1491 */
1492 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1493 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1494
1495 if (shares < MIN_SHARES)
1496 shares = MIN_SHARES;
1497 else if (shares > MAX_SHARES)
1498 shares = MAX_SHARES;
1499
1500 __set_se_shares(tg->se[cpu], shares);
1501 }
1502
1503 /*
1504 * Re-compute the task group their per cpu shares over the given domain.
1505 * This needs to be done in a bottom-up fashion because the rq weight of a
1506 * parent group depends on the shares of its child groups.
1507 */
1508 static int tg_shares_up(struct task_group *tg, void *data)
1509 {
1510 unsigned long rq_weight = 0;
1511 unsigned long shares = 0;
1512 struct sched_domain *sd = data;
1513 int i;
1514
1515 for_each_cpu_mask(i, sd->span) {
1516 rq_weight += tg->cfs_rq[i]->load.weight;
1517 shares += tg->cfs_rq[i]->shares;
1518 }
1519
1520 if ((!shares && rq_weight) || shares > tg->shares)
1521 shares = tg->shares;
1522
1523 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1524 shares = tg->shares;
1525
1526 if (!rq_weight)
1527 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1528
1529 for_each_cpu_mask(i, sd->span) {
1530 struct rq *rq = cpu_rq(i);
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&rq->lock, flags);
1534 __update_group_shares_cpu(tg, i, shares, rq_weight);
1535 spin_unlock_irqrestore(&rq->lock, flags);
1536 }
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * Compute the cpu's hierarchical load factor for each task group.
1543 * This needs to be done in a top-down fashion because the load of a child
1544 * group is a fraction of its parents load.
1545 */
1546 static int tg_load_down(struct task_group *tg, void *data)
1547 {
1548 unsigned long load;
1549 long cpu = (long)data;
1550
1551 if (!tg->parent) {
1552 load = cpu_rq(cpu)->load.weight;
1553 } else {
1554 load = tg->parent->cfs_rq[cpu]->h_load;
1555 load *= tg->cfs_rq[cpu]->shares;
1556 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1557 }
1558
1559 tg->cfs_rq[cpu]->h_load = load;
1560
1561 return 0;
1562 }
1563
1564 static void update_shares(struct sched_domain *sd)
1565 {
1566 u64 now = cpu_clock(raw_smp_processor_id());
1567 s64 elapsed = now - sd->last_update;
1568
1569 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1570 sd->last_update = now;
1571 walk_tg_tree(tg_nop, tg_shares_up, sd);
1572 }
1573 }
1574
1575 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576 {
1577 spin_unlock(&rq->lock);
1578 update_shares(sd);
1579 spin_lock(&rq->lock);
1580 }
1581
1582 static void update_h_load(long cpu)
1583 {
1584 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1585 }
1586
1587 #else
1588
1589 static inline void update_shares(struct sched_domain *sd)
1590 {
1591 }
1592
1593 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1594 {
1595 }
1596
1597 #endif
1598
1599 #endif
1600
1601 #ifdef CONFIG_FAIR_GROUP_SCHED
1602 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1603 {
1604 #ifdef CONFIG_SMP
1605 cfs_rq->shares = shares;
1606 #endif
1607 }
1608 #endif
1609
1610 #include "sched_stats.h"
1611 #include "sched_idletask.c"
1612 #include "sched_fair.c"
1613 #include "sched_rt.c"
1614 #ifdef CONFIG_SCHED_DEBUG
1615 # include "sched_debug.c"
1616 #endif
1617
1618 #define sched_class_highest (&rt_sched_class)
1619 #define for_each_class(class) \
1620 for (class = sched_class_highest; class; class = class->next)
1621
1622 static void inc_nr_running(struct rq *rq)
1623 {
1624 rq->nr_running++;
1625 }
1626
1627 static void dec_nr_running(struct rq *rq)
1628 {
1629 rq->nr_running--;
1630 }
1631
1632 static void set_load_weight(struct task_struct *p)
1633 {
1634 if (task_has_rt_policy(p)) {
1635 p->se.load.weight = prio_to_weight[0] * 2;
1636 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1637 return;
1638 }
1639
1640 /*
1641 * SCHED_IDLE tasks get minimal weight:
1642 */
1643 if (p->policy == SCHED_IDLE) {
1644 p->se.load.weight = WEIGHT_IDLEPRIO;
1645 p->se.load.inv_weight = WMULT_IDLEPRIO;
1646 return;
1647 }
1648
1649 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1650 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1651 }
1652
1653 static void update_avg(u64 *avg, u64 sample)
1654 {
1655 s64 diff = sample - *avg;
1656 *avg += diff >> 3;
1657 }
1658
1659 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1660 {
1661 sched_info_queued(p);
1662 p->sched_class->enqueue_task(rq, p, wakeup);
1663 p->se.on_rq = 1;
1664 }
1665
1666 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1667 {
1668 if (sleep && p->se.last_wakeup) {
1669 update_avg(&p->se.avg_overlap,
1670 p->se.sum_exec_runtime - p->se.last_wakeup);
1671 p->se.last_wakeup = 0;
1672 }
1673
1674 sched_info_dequeued(p);
1675 p->sched_class->dequeue_task(rq, p, sleep);
1676 p->se.on_rq = 0;
1677 }
1678
1679 /*
1680 * __normal_prio - return the priority that is based on the static prio
1681 */
1682 static inline int __normal_prio(struct task_struct *p)
1683 {
1684 return p->static_prio;
1685 }
1686
1687 /*
1688 * Calculate the expected normal priority: i.e. priority
1689 * without taking RT-inheritance into account. Might be
1690 * boosted by interactivity modifiers. Changes upon fork,
1691 * setprio syscalls, and whenever the interactivity
1692 * estimator recalculates.
1693 */
1694 static inline int normal_prio(struct task_struct *p)
1695 {
1696 int prio;
1697
1698 if (task_has_rt_policy(p))
1699 prio = MAX_RT_PRIO-1 - p->rt_priority;
1700 else
1701 prio = __normal_prio(p);
1702 return prio;
1703 }
1704
1705 /*
1706 * Calculate the current priority, i.e. the priority
1707 * taken into account by the scheduler. This value might
1708 * be boosted by RT tasks, or might be boosted by
1709 * interactivity modifiers. Will be RT if the task got
1710 * RT-boosted. If not then it returns p->normal_prio.
1711 */
1712 static int effective_prio(struct task_struct *p)
1713 {
1714 p->normal_prio = normal_prio(p);
1715 /*
1716 * If we are RT tasks or we were boosted to RT priority,
1717 * keep the priority unchanged. Otherwise, update priority
1718 * to the normal priority:
1719 */
1720 if (!rt_prio(p->prio))
1721 return p->normal_prio;
1722 return p->prio;
1723 }
1724
1725 /*
1726 * activate_task - move a task to the runqueue.
1727 */
1728 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1729 {
1730 if (task_contributes_to_load(p))
1731 rq->nr_uninterruptible--;
1732
1733 enqueue_task(rq, p, wakeup);
1734 inc_nr_running(rq);
1735 }
1736
1737 /*
1738 * deactivate_task - remove a task from the runqueue.
1739 */
1740 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1741 {
1742 if (task_contributes_to_load(p))
1743 rq->nr_uninterruptible++;
1744
1745 dequeue_task(rq, p, sleep);
1746 dec_nr_running(rq);
1747 }
1748
1749 /**
1750 * task_curr - is this task currently executing on a CPU?
1751 * @p: the task in question.
1752 */
1753 inline int task_curr(const struct task_struct *p)
1754 {
1755 return cpu_curr(task_cpu(p)) == p;
1756 }
1757
1758 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1759 {
1760 set_task_rq(p, cpu);
1761 #ifdef CONFIG_SMP
1762 /*
1763 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1764 * successfuly executed on another CPU. We must ensure that updates of
1765 * per-task data have been completed by this moment.
1766 */
1767 smp_wmb();
1768 task_thread_info(p)->cpu = cpu;
1769 #endif
1770 }
1771
1772 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1773 const struct sched_class *prev_class,
1774 int oldprio, int running)
1775 {
1776 if (prev_class != p->sched_class) {
1777 if (prev_class->switched_from)
1778 prev_class->switched_from(rq, p, running);
1779 p->sched_class->switched_to(rq, p, running);
1780 } else
1781 p->sched_class->prio_changed(rq, p, oldprio, running);
1782 }
1783
1784 #ifdef CONFIG_SMP
1785
1786 /* Used instead of source_load when we know the type == 0 */
1787 static unsigned long weighted_cpuload(const int cpu)
1788 {
1789 return cpu_rq(cpu)->load.weight;
1790 }
1791
1792 /*
1793 * Is this task likely cache-hot:
1794 */
1795 static int
1796 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1797 {
1798 s64 delta;
1799
1800 /*
1801 * Buddy candidates are cache hot:
1802 */
1803 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1804 return 1;
1805
1806 if (p->sched_class != &fair_sched_class)
1807 return 0;
1808
1809 if (sysctl_sched_migration_cost == -1)
1810 return 1;
1811 if (sysctl_sched_migration_cost == 0)
1812 return 0;
1813
1814 delta = now - p->se.exec_start;
1815
1816 return delta < (s64)sysctl_sched_migration_cost;
1817 }
1818
1819
1820 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1821 {
1822 int old_cpu = task_cpu(p);
1823 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1824 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1825 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1826 u64 clock_offset;
1827
1828 clock_offset = old_rq->clock - new_rq->clock;
1829
1830 #ifdef CONFIG_SCHEDSTATS
1831 if (p->se.wait_start)
1832 p->se.wait_start -= clock_offset;
1833 if (p->se.sleep_start)
1834 p->se.sleep_start -= clock_offset;
1835 if (p->se.block_start)
1836 p->se.block_start -= clock_offset;
1837 if (old_cpu != new_cpu) {
1838 schedstat_inc(p, se.nr_migrations);
1839 if (task_hot(p, old_rq->clock, NULL))
1840 schedstat_inc(p, se.nr_forced2_migrations);
1841 }
1842 #endif
1843 p->se.vruntime -= old_cfsrq->min_vruntime -
1844 new_cfsrq->min_vruntime;
1845
1846 __set_task_cpu(p, new_cpu);
1847 }
1848
1849 struct migration_req {
1850 struct list_head list;
1851
1852 struct task_struct *task;
1853 int dest_cpu;
1854
1855 struct completion done;
1856 };
1857
1858 /*
1859 * The task's runqueue lock must be held.
1860 * Returns true if you have to wait for migration thread.
1861 */
1862 static int
1863 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1864 {
1865 struct rq *rq = task_rq(p);
1866
1867 /*
1868 * If the task is not on a runqueue (and not running), then
1869 * it is sufficient to simply update the task's cpu field.
1870 */
1871 if (!p->se.on_rq && !task_running(rq, p)) {
1872 set_task_cpu(p, dest_cpu);
1873 return 0;
1874 }
1875
1876 init_completion(&req->done);
1877 req->task = p;
1878 req->dest_cpu = dest_cpu;
1879 list_add(&req->list, &rq->migration_queue);
1880
1881 return 1;
1882 }
1883
1884 /*
1885 * wait_task_inactive - wait for a thread to unschedule.
1886 *
1887 * If @match_state is nonzero, it's the @p->state value just checked and
1888 * not expected to change. If it changes, i.e. @p might have woken up,
1889 * then return zero. When we succeed in waiting for @p to be off its CPU,
1890 * we return a positive number (its total switch count). If a second call
1891 * a short while later returns the same number, the caller can be sure that
1892 * @p has remained unscheduled the whole time.
1893 *
1894 * The caller must ensure that the task *will* unschedule sometime soon,
1895 * else this function might spin for a *long* time. This function can't
1896 * be called with interrupts off, or it may introduce deadlock with
1897 * smp_call_function() if an IPI is sent by the same process we are
1898 * waiting to become inactive.
1899 */
1900 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1901 {
1902 unsigned long flags;
1903 int running, on_rq;
1904 unsigned long ncsw;
1905 struct rq *rq;
1906
1907 for (;;) {
1908 /*
1909 * We do the initial early heuristics without holding
1910 * any task-queue locks at all. We'll only try to get
1911 * the runqueue lock when things look like they will
1912 * work out!
1913 */
1914 rq = task_rq(p);
1915
1916 /*
1917 * If the task is actively running on another CPU
1918 * still, just relax and busy-wait without holding
1919 * any locks.
1920 *
1921 * NOTE! Since we don't hold any locks, it's not
1922 * even sure that "rq" stays as the right runqueue!
1923 * But we don't care, since "task_running()" will
1924 * return false if the runqueue has changed and p
1925 * is actually now running somewhere else!
1926 */
1927 while (task_running(rq, p)) {
1928 if (match_state && unlikely(p->state != match_state))
1929 return 0;
1930 cpu_relax();
1931 }
1932
1933 /*
1934 * Ok, time to look more closely! We need the rq
1935 * lock now, to be *sure*. If we're wrong, we'll
1936 * just go back and repeat.
1937 */
1938 rq = task_rq_lock(p, &flags);
1939 running = task_running(rq, p);
1940 on_rq = p->se.on_rq;
1941 ncsw = 0;
1942 if (!match_state || p->state == match_state)
1943 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1944 task_rq_unlock(rq, &flags);
1945
1946 /*
1947 * If it changed from the expected state, bail out now.
1948 */
1949 if (unlikely(!ncsw))
1950 break;
1951
1952 /*
1953 * Was it really running after all now that we
1954 * checked with the proper locks actually held?
1955 *
1956 * Oops. Go back and try again..
1957 */
1958 if (unlikely(running)) {
1959 cpu_relax();
1960 continue;
1961 }
1962
1963 /*
1964 * It's not enough that it's not actively running,
1965 * it must be off the runqueue _entirely_, and not
1966 * preempted!
1967 *
1968 * So if it wa still runnable (but just not actively
1969 * running right now), it's preempted, and we should
1970 * yield - it could be a while.
1971 */
1972 if (unlikely(on_rq)) {
1973 schedule_timeout_uninterruptible(1);
1974 continue;
1975 }
1976
1977 /*
1978 * Ahh, all good. It wasn't running, and it wasn't
1979 * runnable, which means that it will never become
1980 * running in the future either. We're all done!
1981 */
1982 break;
1983 }
1984
1985 return ncsw;
1986 }
1987
1988 /***
1989 * kick_process - kick a running thread to enter/exit the kernel
1990 * @p: the to-be-kicked thread
1991 *
1992 * Cause a process which is running on another CPU to enter
1993 * kernel-mode, without any delay. (to get signals handled.)
1994 *
1995 * NOTE: this function doesnt have to take the runqueue lock,
1996 * because all it wants to ensure is that the remote task enters
1997 * the kernel. If the IPI races and the task has been migrated
1998 * to another CPU then no harm is done and the purpose has been
1999 * achieved as well.
2000 */
2001 void kick_process(struct task_struct *p)
2002 {
2003 int cpu;
2004
2005 preempt_disable();
2006 cpu = task_cpu(p);
2007 if ((cpu != smp_processor_id()) && task_curr(p))
2008 smp_send_reschedule(cpu);
2009 preempt_enable();
2010 }
2011
2012 /*
2013 * Return a low guess at the load of a migration-source cpu weighted
2014 * according to the scheduling class and "nice" value.
2015 *
2016 * We want to under-estimate the load of migration sources, to
2017 * balance conservatively.
2018 */
2019 static unsigned long source_load(int cpu, int type)
2020 {
2021 struct rq *rq = cpu_rq(cpu);
2022 unsigned long total = weighted_cpuload(cpu);
2023
2024 if (type == 0 || !sched_feat(LB_BIAS))
2025 return total;
2026
2027 return min(rq->cpu_load[type-1], total);
2028 }
2029
2030 /*
2031 * Return a high guess at the load of a migration-target cpu weighted
2032 * according to the scheduling class and "nice" value.
2033 */
2034 static unsigned long target_load(int cpu, int type)
2035 {
2036 struct rq *rq = cpu_rq(cpu);
2037 unsigned long total = weighted_cpuload(cpu);
2038
2039 if (type == 0 || !sched_feat(LB_BIAS))
2040 return total;
2041
2042 return max(rq->cpu_load[type-1], total);
2043 }
2044
2045 /*
2046 * find_idlest_group finds and returns the least busy CPU group within the
2047 * domain.
2048 */
2049 static struct sched_group *
2050 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2051 {
2052 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2053 unsigned long min_load = ULONG_MAX, this_load = 0;
2054 int load_idx = sd->forkexec_idx;
2055 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2056
2057 do {
2058 unsigned long load, avg_load;
2059 int local_group;
2060 int i;
2061
2062 /* Skip over this group if it has no CPUs allowed */
2063 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2064 continue;
2065
2066 local_group = cpu_isset(this_cpu, group->cpumask);
2067
2068 /* Tally up the load of all CPUs in the group */
2069 avg_load = 0;
2070
2071 for_each_cpu_mask_nr(i, group->cpumask) {
2072 /* Bias balancing toward cpus of our domain */
2073 if (local_group)
2074 load = source_load(i, load_idx);
2075 else
2076 load = target_load(i, load_idx);
2077
2078 avg_load += load;
2079 }
2080
2081 /* Adjust by relative CPU power of the group */
2082 avg_load = sg_div_cpu_power(group,
2083 avg_load * SCHED_LOAD_SCALE);
2084
2085 if (local_group) {
2086 this_load = avg_load;
2087 this = group;
2088 } else if (avg_load < min_load) {
2089 min_load = avg_load;
2090 idlest = group;
2091 }
2092 } while (group = group->next, group != sd->groups);
2093
2094 if (!idlest || 100*this_load < imbalance*min_load)
2095 return NULL;
2096 return idlest;
2097 }
2098
2099 /*
2100 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2101 */
2102 static int
2103 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2104 cpumask_t *tmp)
2105 {
2106 unsigned long load, min_load = ULONG_MAX;
2107 int idlest = -1;
2108 int i;
2109
2110 /* Traverse only the allowed CPUs */
2111 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2112
2113 for_each_cpu_mask_nr(i, *tmp) {
2114 load = weighted_cpuload(i);
2115
2116 if (load < min_load || (load == min_load && i == this_cpu)) {
2117 min_load = load;
2118 idlest = i;
2119 }
2120 }
2121
2122 return idlest;
2123 }
2124
2125 /*
2126 * sched_balance_self: balance the current task (running on cpu) in domains
2127 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2128 * SD_BALANCE_EXEC.
2129 *
2130 * Balance, ie. select the least loaded group.
2131 *
2132 * Returns the target CPU number, or the same CPU if no balancing is needed.
2133 *
2134 * preempt must be disabled.
2135 */
2136 static int sched_balance_self(int cpu, int flag)
2137 {
2138 struct task_struct *t = current;
2139 struct sched_domain *tmp, *sd = NULL;
2140
2141 for_each_domain(cpu, tmp) {
2142 /*
2143 * If power savings logic is enabled for a domain, stop there.
2144 */
2145 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2146 break;
2147 if (tmp->flags & flag)
2148 sd = tmp;
2149 }
2150
2151 if (sd)
2152 update_shares(sd);
2153
2154 while (sd) {
2155 cpumask_t span, tmpmask;
2156 struct sched_group *group;
2157 int new_cpu, weight;
2158
2159 if (!(sd->flags & flag)) {
2160 sd = sd->child;
2161 continue;
2162 }
2163
2164 span = sd->span;
2165 group = find_idlest_group(sd, t, cpu);
2166 if (!group) {
2167 sd = sd->child;
2168 continue;
2169 }
2170
2171 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2172 if (new_cpu == -1 || new_cpu == cpu) {
2173 /* Now try balancing at a lower domain level of cpu */
2174 sd = sd->child;
2175 continue;
2176 }
2177
2178 /* Now try balancing at a lower domain level of new_cpu */
2179 cpu = new_cpu;
2180 sd = NULL;
2181 weight = cpus_weight(span);
2182 for_each_domain(cpu, tmp) {
2183 if (weight <= cpus_weight(tmp->span))
2184 break;
2185 if (tmp->flags & flag)
2186 sd = tmp;
2187 }
2188 /* while loop will break here if sd == NULL */
2189 }
2190
2191 return cpu;
2192 }
2193
2194 #endif /* CONFIG_SMP */
2195
2196 /***
2197 * try_to_wake_up - wake up a thread
2198 * @p: the to-be-woken-up thread
2199 * @state: the mask of task states that can be woken
2200 * @sync: do a synchronous wakeup?
2201 *
2202 * Put it on the run-queue if it's not already there. The "current"
2203 * thread is always on the run-queue (except when the actual
2204 * re-schedule is in progress), and as such you're allowed to do
2205 * the simpler "current->state = TASK_RUNNING" to mark yourself
2206 * runnable without the overhead of this.
2207 *
2208 * returns failure only if the task is already active.
2209 */
2210 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2211 {
2212 int cpu, orig_cpu, this_cpu, success = 0;
2213 unsigned long flags;
2214 long old_state;
2215 struct rq *rq;
2216
2217 if (!sched_feat(SYNC_WAKEUPS))
2218 sync = 0;
2219
2220 #ifdef CONFIG_SMP
2221 if (sched_feat(LB_WAKEUP_UPDATE)) {
2222 struct sched_domain *sd;
2223
2224 this_cpu = raw_smp_processor_id();
2225 cpu = task_cpu(p);
2226
2227 for_each_domain(this_cpu, sd) {
2228 if (cpu_isset(cpu, sd->span)) {
2229 update_shares(sd);
2230 break;
2231 }
2232 }
2233 }
2234 #endif
2235
2236 smp_wmb();
2237 rq = task_rq_lock(p, &flags);
2238 old_state = p->state;
2239 if (!(old_state & state))
2240 goto out;
2241
2242 if (p->se.on_rq)
2243 goto out_running;
2244
2245 cpu = task_cpu(p);
2246 orig_cpu = cpu;
2247 this_cpu = smp_processor_id();
2248
2249 #ifdef CONFIG_SMP
2250 if (unlikely(task_running(rq, p)))
2251 goto out_activate;
2252
2253 cpu = p->sched_class->select_task_rq(p, sync);
2254 if (cpu != orig_cpu) {
2255 set_task_cpu(p, cpu);
2256 task_rq_unlock(rq, &flags);
2257 /* might preempt at this point */
2258 rq = task_rq_lock(p, &flags);
2259 old_state = p->state;
2260 if (!(old_state & state))
2261 goto out;
2262 if (p->se.on_rq)
2263 goto out_running;
2264
2265 this_cpu = smp_processor_id();
2266 cpu = task_cpu(p);
2267 }
2268
2269 #ifdef CONFIG_SCHEDSTATS
2270 schedstat_inc(rq, ttwu_count);
2271 if (cpu == this_cpu)
2272 schedstat_inc(rq, ttwu_local);
2273 else {
2274 struct sched_domain *sd;
2275 for_each_domain(this_cpu, sd) {
2276 if (cpu_isset(cpu, sd->span)) {
2277 schedstat_inc(sd, ttwu_wake_remote);
2278 break;
2279 }
2280 }
2281 }
2282 #endif /* CONFIG_SCHEDSTATS */
2283
2284 out_activate:
2285 #endif /* CONFIG_SMP */
2286 schedstat_inc(p, se.nr_wakeups);
2287 if (sync)
2288 schedstat_inc(p, se.nr_wakeups_sync);
2289 if (orig_cpu != cpu)
2290 schedstat_inc(p, se.nr_wakeups_migrate);
2291 if (cpu == this_cpu)
2292 schedstat_inc(p, se.nr_wakeups_local);
2293 else
2294 schedstat_inc(p, se.nr_wakeups_remote);
2295 update_rq_clock(rq);
2296 activate_task(rq, p, 1);
2297 success = 1;
2298
2299 out_running:
2300 trace_mark(kernel_sched_wakeup,
2301 "pid %d state %ld ## rq %p task %p rq->curr %p",
2302 p->pid, p->state, rq, p, rq->curr);
2303 check_preempt_curr(rq, p, sync);
2304
2305 p->state = TASK_RUNNING;
2306 #ifdef CONFIG_SMP
2307 if (p->sched_class->task_wake_up)
2308 p->sched_class->task_wake_up(rq, p);
2309 #endif
2310 out:
2311 current->se.last_wakeup = current->se.sum_exec_runtime;
2312
2313 task_rq_unlock(rq, &flags);
2314
2315 return success;
2316 }
2317
2318 int wake_up_process(struct task_struct *p)
2319 {
2320 return try_to_wake_up(p, TASK_ALL, 0);
2321 }
2322 EXPORT_SYMBOL(wake_up_process);
2323
2324 int wake_up_state(struct task_struct *p, unsigned int state)
2325 {
2326 return try_to_wake_up(p, state, 0);
2327 }
2328
2329 /*
2330 * Perform scheduler related setup for a newly forked process p.
2331 * p is forked by current.
2332 *
2333 * __sched_fork() is basic setup used by init_idle() too:
2334 */
2335 static void __sched_fork(struct task_struct *p)
2336 {
2337 p->se.exec_start = 0;
2338 p->se.sum_exec_runtime = 0;
2339 p->se.prev_sum_exec_runtime = 0;
2340 p->se.last_wakeup = 0;
2341 p->se.avg_overlap = 0;
2342
2343 #ifdef CONFIG_SCHEDSTATS
2344 p->se.wait_start = 0;
2345 p->se.sum_sleep_runtime = 0;
2346 p->se.sleep_start = 0;
2347 p->se.block_start = 0;
2348 p->se.sleep_max = 0;
2349 p->se.block_max = 0;
2350 p->se.exec_max = 0;
2351 p->se.slice_max = 0;
2352 p->se.wait_max = 0;
2353 #endif
2354
2355 INIT_LIST_HEAD(&p->rt.run_list);
2356 p->se.on_rq = 0;
2357 INIT_LIST_HEAD(&p->se.group_node);
2358
2359 #ifdef CONFIG_PREEMPT_NOTIFIERS
2360 INIT_HLIST_HEAD(&p->preempt_notifiers);
2361 #endif
2362
2363 /*
2364 * We mark the process as running here, but have not actually
2365 * inserted it onto the runqueue yet. This guarantees that
2366 * nobody will actually run it, and a signal or other external
2367 * event cannot wake it up and insert it on the runqueue either.
2368 */
2369 p->state = TASK_RUNNING;
2370 }
2371
2372 /*
2373 * fork()/clone()-time setup:
2374 */
2375 void sched_fork(struct task_struct *p, int clone_flags)
2376 {
2377 int cpu = get_cpu();
2378
2379 __sched_fork(p);
2380
2381 #ifdef CONFIG_SMP
2382 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2383 #endif
2384 set_task_cpu(p, cpu);
2385
2386 /*
2387 * Make sure we do not leak PI boosting priority to the child:
2388 */
2389 p->prio = current->normal_prio;
2390 if (!rt_prio(p->prio))
2391 p->sched_class = &fair_sched_class;
2392
2393 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2394 if (likely(sched_info_on()))
2395 memset(&p->sched_info, 0, sizeof(p->sched_info));
2396 #endif
2397 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2398 p->oncpu = 0;
2399 #endif
2400 #ifdef CONFIG_PREEMPT
2401 /* Want to start with kernel preemption disabled. */
2402 task_thread_info(p)->preempt_count = 1;
2403 #endif
2404 put_cpu();
2405 }
2406
2407 /*
2408 * wake_up_new_task - wake up a newly created task for the first time.
2409 *
2410 * This function will do some initial scheduler statistics housekeeping
2411 * that must be done for every newly created context, then puts the task
2412 * on the runqueue and wakes it.
2413 */
2414 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2415 {
2416 unsigned long flags;
2417 struct rq *rq;
2418
2419 rq = task_rq_lock(p, &flags);
2420 BUG_ON(p->state != TASK_RUNNING);
2421 update_rq_clock(rq);
2422
2423 p->prio = effective_prio(p);
2424
2425 if (!p->sched_class->task_new || !current->se.on_rq) {
2426 activate_task(rq, p, 0);
2427 } else {
2428 /*
2429 * Let the scheduling class do new task startup
2430 * management (if any):
2431 */
2432 p->sched_class->task_new(rq, p);
2433 inc_nr_running(rq);
2434 }
2435 trace_mark(kernel_sched_wakeup_new,
2436 "pid %d state %ld ## rq %p task %p rq->curr %p",
2437 p->pid, p->state, rq, p, rq->curr);
2438 check_preempt_curr(rq, p, 0);
2439 #ifdef CONFIG_SMP
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
2442 #endif
2443 task_rq_unlock(rq, &flags);
2444 }
2445
2446 #ifdef CONFIG_PREEMPT_NOTIFIERS
2447
2448 /**
2449 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2450 * @notifier: notifier struct to register
2451 */
2452 void preempt_notifier_register(struct preempt_notifier *notifier)
2453 {
2454 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2455 }
2456 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2457
2458 /**
2459 * preempt_notifier_unregister - no longer interested in preemption notifications
2460 * @notifier: notifier struct to unregister
2461 *
2462 * This is safe to call from within a preemption notifier.
2463 */
2464 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2465 {
2466 hlist_del(&notifier->link);
2467 }
2468 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2469
2470 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2471 {
2472 struct preempt_notifier *notifier;
2473 struct hlist_node *node;
2474
2475 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2476 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2477 }
2478
2479 static void
2480 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2481 struct task_struct *next)
2482 {
2483 struct preempt_notifier *notifier;
2484 struct hlist_node *node;
2485
2486 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2487 notifier->ops->sched_out(notifier, next);
2488 }
2489
2490 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2491
2492 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2493 {
2494 }
2495
2496 static void
2497 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
2499 {
2500 }
2501
2502 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2503
2504 /**
2505 * prepare_task_switch - prepare to switch tasks
2506 * @rq: the runqueue preparing to switch
2507 * @prev: the current task that is being switched out
2508 * @next: the task we are going to switch to.
2509 *
2510 * This is called with the rq lock held and interrupts off. It must
2511 * be paired with a subsequent finish_task_switch after the context
2512 * switch.
2513 *
2514 * prepare_task_switch sets up locking and calls architecture specific
2515 * hooks.
2516 */
2517 static inline void
2518 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2519 struct task_struct *next)
2520 {
2521 fire_sched_out_preempt_notifiers(prev, next);
2522 prepare_lock_switch(rq, next);
2523 prepare_arch_switch(next);
2524 }
2525
2526 /**
2527 * finish_task_switch - clean up after a task-switch
2528 * @rq: runqueue associated with task-switch
2529 * @prev: the thread we just switched away from.
2530 *
2531 * finish_task_switch must be called after the context switch, paired
2532 * with a prepare_task_switch call before the context switch.
2533 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2534 * and do any other architecture-specific cleanup actions.
2535 *
2536 * Note that we may have delayed dropping an mm in context_switch(). If
2537 * so, we finish that here outside of the runqueue lock. (Doing it
2538 * with the lock held can cause deadlocks; see schedule() for
2539 * details.)
2540 */
2541 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2542 __releases(rq->lock)
2543 {
2544 struct mm_struct *mm = rq->prev_mm;
2545 long prev_state;
2546
2547 rq->prev_mm = NULL;
2548
2549 /*
2550 * A task struct has one reference for the use as "current".
2551 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2552 * schedule one last time. The schedule call will never return, and
2553 * the scheduled task must drop that reference.
2554 * The test for TASK_DEAD must occur while the runqueue locks are
2555 * still held, otherwise prev could be scheduled on another cpu, die
2556 * there before we look at prev->state, and then the reference would
2557 * be dropped twice.
2558 * Manfred Spraul <manfred@colorfullife.com>
2559 */
2560 prev_state = prev->state;
2561 finish_arch_switch(prev);
2562 finish_lock_switch(rq, prev);
2563 #ifdef CONFIG_SMP
2564 if (current->sched_class->post_schedule)
2565 current->sched_class->post_schedule(rq);
2566 #endif
2567
2568 fire_sched_in_preempt_notifiers(current);
2569 if (mm)
2570 mmdrop(mm);
2571 if (unlikely(prev_state == TASK_DEAD)) {
2572 /*
2573 * Remove function-return probe instances associated with this
2574 * task and put them back on the free list.
2575 */
2576 kprobe_flush_task(prev);
2577 put_task_struct(prev);
2578 }
2579 }
2580
2581 /**
2582 * schedule_tail - first thing a freshly forked thread must call.
2583 * @prev: the thread we just switched away from.
2584 */
2585 asmlinkage void schedule_tail(struct task_struct *prev)
2586 __releases(rq->lock)
2587 {
2588 struct rq *rq = this_rq();
2589
2590 finish_task_switch(rq, prev);
2591 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2592 /* In this case, finish_task_switch does not reenable preemption */
2593 preempt_enable();
2594 #endif
2595 if (current->set_child_tid)
2596 put_user(task_pid_vnr(current), current->set_child_tid);
2597 }
2598
2599 /*
2600 * context_switch - switch to the new MM and the new
2601 * thread's register state.
2602 */
2603 static inline void
2604 context_switch(struct rq *rq, struct task_struct *prev,
2605 struct task_struct *next)
2606 {
2607 struct mm_struct *mm, *oldmm;
2608
2609 prepare_task_switch(rq, prev, next);
2610 trace_mark(kernel_sched_schedule,
2611 "prev_pid %d next_pid %d prev_state %ld "
2612 "## rq %p prev %p next %p",
2613 prev->pid, next->pid, prev->state,
2614 rq, prev, next);
2615 mm = next->mm;
2616 oldmm = prev->active_mm;
2617 /*
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2620 * one hypercall.
2621 */
2622 arch_enter_lazy_cpu_mode();
2623
2624 if (unlikely(!mm)) {
2625 next->active_mm = oldmm;
2626 atomic_inc(&oldmm->mm_count);
2627 enter_lazy_tlb(oldmm, next);
2628 } else
2629 switch_mm(oldmm, mm, next);
2630
2631 if (unlikely(!prev->mm)) {
2632 prev->active_mm = NULL;
2633 rq->prev_mm = oldmm;
2634 }
2635 /*
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2640 */
2641 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643 #endif
2644
2645 /* Here we just switch the register state and the stack. */
2646 switch_to(prev, next, prev);
2647
2648 barrier();
2649 /*
2650 * this_rq must be evaluated again because prev may have moved
2651 * CPUs since it called schedule(), thus the 'rq' on its stack
2652 * frame will be invalid.
2653 */
2654 finish_task_switch(this_rq(), prev);
2655 }
2656
2657 /*
2658 * nr_running, nr_uninterruptible and nr_context_switches:
2659 *
2660 * externally visible scheduler statistics: current number of runnable
2661 * threads, current number of uninterruptible-sleeping threads, total
2662 * number of context switches performed since bootup.
2663 */
2664 unsigned long nr_running(void)
2665 {
2666 unsigned long i, sum = 0;
2667
2668 for_each_online_cpu(i)
2669 sum += cpu_rq(i)->nr_running;
2670
2671 return sum;
2672 }
2673
2674 unsigned long nr_uninterruptible(void)
2675 {
2676 unsigned long i, sum = 0;
2677
2678 for_each_possible_cpu(i)
2679 sum += cpu_rq(i)->nr_uninterruptible;
2680
2681 /*
2682 * Since we read the counters lockless, it might be slightly
2683 * inaccurate. Do not allow it to go below zero though:
2684 */
2685 if (unlikely((long)sum < 0))
2686 sum = 0;
2687
2688 return sum;
2689 }
2690
2691 unsigned long long nr_context_switches(void)
2692 {
2693 int i;
2694 unsigned long long sum = 0;
2695
2696 for_each_possible_cpu(i)
2697 sum += cpu_rq(i)->nr_switches;
2698
2699 return sum;
2700 }
2701
2702 unsigned long nr_iowait(void)
2703 {
2704 unsigned long i, sum = 0;
2705
2706 for_each_possible_cpu(i)
2707 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2708
2709 return sum;
2710 }
2711
2712 unsigned long nr_active(void)
2713 {
2714 unsigned long i, running = 0, uninterruptible = 0;
2715
2716 for_each_online_cpu(i) {
2717 running += cpu_rq(i)->nr_running;
2718 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2719 }
2720
2721 if (unlikely((long)uninterruptible < 0))
2722 uninterruptible = 0;
2723
2724 return running + uninterruptible;
2725 }
2726
2727 /*
2728 * Update rq->cpu_load[] statistics. This function is usually called every
2729 * scheduler tick (TICK_NSEC).
2730 */
2731 static void update_cpu_load(struct rq *this_rq)
2732 {
2733 unsigned long this_load = this_rq->load.weight;
2734 int i, scale;
2735
2736 this_rq->nr_load_updates++;
2737
2738 /* Update our load: */
2739 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2740 unsigned long old_load, new_load;
2741
2742 /* scale is effectively 1 << i now, and >> i divides by scale */
2743
2744 old_load = this_rq->cpu_load[i];
2745 new_load = this_load;
2746 /*
2747 * Round up the averaging division if load is increasing. This
2748 * prevents us from getting stuck on 9 if the load is 10, for
2749 * example.
2750 */
2751 if (new_load > old_load)
2752 new_load += scale-1;
2753 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2754 }
2755 }
2756
2757 #ifdef CONFIG_SMP
2758
2759 /*
2760 * double_rq_lock - safely lock two runqueues
2761 *
2762 * Note this does not disable interrupts like task_rq_lock,
2763 * you need to do so manually before calling.
2764 */
2765 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2766 __acquires(rq1->lock)
2767 __acquires(rq2->lock)
2768 {
2769 BUG_ON(!irqs_disabled());
2770 if (rq1 == rq2) {
2771 spin_lock(&rq1->lock);
2772 __acquire(rq2->lock); /* Fake it out ;) */
2773 } else {
2774 if (rq1 < rq2) {
2775 spin_lock(&rq1->lock);
2776 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2777 } else {
2778 spin_lock(&rq2->lock);
2779 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2780 }
2781 }
2782 update_rq_clock(rq1);
2783 update_rq_clock(rq2);
2784 }
2785
2786 /*
2787 * double_rq_unlock - safely unlock two runqueues
2788 *
2789 * Note this does not restore interrupts like task_rq_unlock,
2790 * you need to do so manually after calling.
2791 */
2792 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2793 __releases(rq1->lock)
2794 __releases(rq2->lock)
2795 {
2796 spin_unlock(&rq1->lock);
2797 if (rq1 != rq2)
2798 spin_unlock(&rq2->lock);
2799 else
2800 __release(rq2->lock);
2801 }
2802
2803 /*
2804 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2805 */
2806 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2807 __releases(this_rq->lock)
2808 __acquires(busiest->lock)
2809 __acquires(this_rq->lock)
2810 {
2811 int ret = 0;
2812
2813 if (unlikely(!irqs_disabled())) {
2814 /* printk() doesn't work good under rq->lock */
2815 spin_unlock(&this_rq->lock);
2816 BUG_ON(1);
2817 }
2818 if (unlikely(!spin_trylock(&busiest->lock))) {
2819 if (busiest < this_rq) {
2820 spin_unlock(&this_rq->lock);
2821 spin_lock(&busiest->lock);
2822 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2823 ret = 1;
2824 } else
2825 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2826 }
2827 return ret;
2828 }
2829
2830 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2831 __releases(busiest->lock)
2832 {
2833 spin_unlock(&busiest->lock);
2834 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2835 }
2836
2837 /*
2838 * If dest_cpu is allowed for this process, migrate the task to it.
2839 * This is accomplished by forcing the cpu_allowed mask to only
2840 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2841 * the cpu_allowed mask is restored.
2842 */
2843 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2844 {
2845 struct migration_req req;
2846 unsigned long flags;
2847 struct rq *rq;
2848
2849 rq = task_rq_lock(p, &flags);
2850 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2851 || unlikely(!cpu_active(dest_cpu)))
2852 goto out;
2853
2854 /* force the process onto the specified CPU */
2855 if (migrate_task(p, dest_cpu, &req)) {
2856 /* Need to wait for migration thread (might exit: take ref). */
2857 struct task_struct *mt = rq->migration_thread;
2858
2859 get_task_struct(mt);
2860 task_rq_unlock(rq, &flags);
2861 wake_up_process(mt);
2862 put_task_struct(mt);
2863 wait_for_completion(&req.done);
2864
2865 return;
2866 }
2867 out:
2868 task_rq_unlock(rq, &flags);
2869 }
2870
2871 /*
2872 * sched_exec - execve() is a valuable balancing opportunity, because at
2873 * this point the task has the smallest effective memory and cache footprint.
2874 */
2875 void sched_exec(void)
2876 {
2877 int new_cpu, this_cpu = get_cpu();
2878 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2879 put_cpu();
2880 if (new_cpu != this_cpu)
2881 sched_migrate_task(current, new_cpu);
2882 }
2883
2884 /*
2885 * pull_task - move a task from a remote runqueue to the local runqueue.
2886 * Both runqueues must be locked.
2887 */
2888 static void pull_task(struct rq *src_rq, struct task_struct *p,
2889 struct rq *this_rq, int this_cpu)
2890 {
2891 deactivate_task(src_rq, p, 0);
2892 set_task_cpu(p, this_cpu);
2893 activate_task(this_rq, p, 0);
2894 /*
2895 * Note that idle threads have a prio of MAX_PRIO, for this test
2896 * to be always true for them.
2897 */
2898 check_preempt_curr(this_rq, p, 0);
2899 }
2900
2901 /*
2902 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2903 */
2904 static
2905 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2906 struct sched_domain *sd, enum cpu_idle_type idle,
2907 int *all_pinned)
2908 {
2909 /*
2910 * We do not migrate tasks that are:
2911 * 1) running (obviously), or
2912 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2913 * 3) are cache-hot on their current CPU.
2914 */
2915 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2916 schedstat_inc(p, se.nr_failed_migrations_affine);
2917 return 0;
2918 }
2919 *all_pinned = 0;
2920
2921 if (task_running(rq, p)) {
2922 schedstat_inc(p, se.nr_failed_migrations_running);
2923 return 0;
2924 }
2925
2926 /*
2927 * Aggressive migration if:
2928 * 1) task is cache cold, or
2929 * 2) too many balance attempts have failed.
2930 */
2931
2932 if (!task_hot(p, rq->clock, sd) ||
2933 sd->nr_balance_failed > sd->cache_nice_tries) {
2934 #ifdef CONFIG_SCHEDSTATS
2935 if (task_hot(p, rq->clock, sd)) {
2936 schedstat_inc(sd, lb_hot_gained[idle]);
2937 schedstat_inc(p, se.nr_forced_migrations);
2938 }
2939 #endif
2940 return 1;
2941 }
2942
2943 if (task_hot(p, rq->clock, sd)) {
2944 schedstat_inc(p, se.nr_failed_migrations_hot);
2945 return 0;
2946 }
2947 return 1;
2948 }
2949
2950 static unsigned long
2951 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2952 unsigned long max_load_move, struct sched_domain *sd,
2953 enum cpu_idle_type idle, int *all_pinned,
2954 int *this_best_prio, struct rq_iterator *iterator)
2955 {
2956 int loops = 0, pulled = 0, pinned = 0;
2957 struct task_struct *p;
2958 long rem_load_move = max_load_move;
2959
2960 if (max_load_move == 0)
2961 goto out;
2962
2963 pinned = 1;
2964
2965 /*
2966 * Start the load-balancing iterator:
2967 */
2968 p = iterator->start(iterator->arg);
2969 next:
2970 if (!p || loops++ > sysctl_sched_nr_migrate)
2971 goto out;
2972
2973 if ((p->se.load.weight >> 1) > rem_load_move ||
2974 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2975 p = iterator->next(iterator->arg);
2976 goto next;
2977 }
2978
2979 pull_task(busiest, p, this_rq, this_cpu);
2980 pulled++;
2981 rem_load_move -= p->se.load.weight;
2982
2983 /*
2984 * We only want to steal up to the prescribed amount of weighted load.
2985 */
2986 if (rem_load_move > 0) {
2987 if (p->prio < *this_best_prio)
2988 *this_best_prio = p->prio;
2989 p = iterator->next(iterator->arg);
2990 goto next;
2991 }
2992 out:
2993 /*
2994 * Right now, this is one of only two places pull_task() is called,
2995 * so we can safely collect pull_task() stats here rather than
2996 * inside pull_task().
2997 */
2998 schedstat_add(sd, lb_gained[idle], pulled);
2999
3000 if (all_pinned)
3001 *all_pinned = pinned;
3002
3003 return max_load_move - rem_load_move;
3004 }
3005
3006 /*
3007 * move_tasks tries to move up to max_load_move weighted load from busiest to
3008 * this_rq, as part of a balancing operation within domain "sd".
3009 * Returns 1 if successful and 0 otherwise.
3010 *
3011 * Called with both runqueues locked.
3012 */
3013 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3014 unsigned long max_load_move,
3015 struct sched_domain *sd, enum cpu_idle_type idle,
3016 int *all_pinned)
3017 {
3018 const struct sched_class *class = sched_class_highest;
3019 unsigned long total_load_moved = 0;
3020 int this_best_prio = this_rq->curr->prio;
3021
3022 do {
3023 total_load_moved +=
3024 class->load_balance(this_rq, this_cpu, busiest,
3025 max_load_move - total_load_moved,
3026 sd, idle, all_pinned, &this_best_prio);
3027 class = class->next;
3028
3029 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3030 break;
3031
3032 } while (class && max_load_move > total_load_moved);
3033
3034 return total_load_moved > 0;
3035 }
3036
3037 static int
3038 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3039 struct sched_domain *sd, enum cpu_idle_type idle,
3040 struct rq_iterator *iterator)
3041 {
3042 struct task_struct *p = iterator->start(iterator->arg);
3043 int pinned = 0;
3044
3045 while (p) {
3046 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3047 pull_task(busiest, p, this_rq, this_cpu);
3048 /*
3049 * Right now, this is only the second place pull_task()
3050 * is called, so we can safely collect pull_task()
3051 * stats here rather than inside pull_task().
3052 */
3053 schedstat_inc(sd, lb_gained[idle]);
3054
3055 return 1;
3056 }
3057 p = iterator->next(iterator->arg);
3058 }
3059
3060 return 0;
3061 }
3062
3063 /*
3064 * move_one_task tries to move exactly one task from busiest to this_rq, as
3065 * part of active balancing operations within "domain".
3066 * Returns 1 if successful and 0 otherwise.
3067 *
3068 * Called with both runqueues locked.
3069 */
3070 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3071 struct sched_domain *sd, enum cpu_idle_type idle)
3072 {
3073 const struct sched_class *class;
3074
3075 for (class = sched_class_highest; class; class = class->next)
3076 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3077 return 1;
3078
3079 return 0;
3080 }
3081
3082 /*
3083 * find_busiest_group finds and returns the busiest CPU group within the
3084 * domain. It calculates and returns the amount of weighted load which
3085 * should be moved to restore balance via the imbalance parameter.
3086 */
3087 static struct sched_group *
3088 find_busiest_group(struct sched_domain *sd, int this_cpu,
3089 unsigned long *imbalance, enum cpu_idle_type idle,
3090 int *sd_idle, const cpumask_t *cpus, int *balance)
3091 {
3092 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3093 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3094 unsigned long max_pull;
3095 unsigned long busiest_load_per_task, busiest_nr_running;
3096 unsigned long this_load_per_task, this_nr_running;
3097 int load_idx, group_imb = 0;
3098 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3099 int power_savings_balance = 1;
3100 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3101 unsigned long min_nr_running = ULONG_MAX;
3102 struct sched_group *group_min = NULL, *group_leader = NULL;
3103 #endif
3104
3105 max_load = this_load = total_load = total_pwr = 0;
3106 busiest_load_per_task = busiest_nr_running = 0;
3107 this_load_per_task = this_nr_running = 0;
3108
3109 if (idle == CPU_NOT_IDLE)
3110 load_idx = sd->busy_idx;
3111 else if (idle == CPU_NEWLY_IDLE)
3112 load_idx = sd->newidle_idx;
3113 else
3114 load_idx = sd->idle_idx;
3115
3116 do {
3117 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3118 int local_group;
3119 int i;
3120 int __group_imb = 0;
3121 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3122 unsigned long sum_nr_running, sum_weighted_load;
3123 unsigned long sum_avg_load_per_task;
3124 unsigned long avg_load_per_task;
3125
3126 local_group = cpu_isset(this_cpu, group->cpumask);
3127
3128 if (local_group)
3129 balance_cpu = first_cpu(group->cpumask);
3130
3131 /* Tally up the load of all CPUs in the group */
3132 sum_weighted_load = sum_nr_running = avg_load = 0;
3133 sum_avg_load_per_task = avg_load_per_task = 0;
3134
3135 max_cpu_load = 0;
3136 min_cpu_load = ~0UL;
3137
3138 for_each_cpu_mask_nr(i, group->cpumask) {
3139 struct rq *rq;
3140
3141 if (!cpu_isset(i, *cpus))
3142 continue;
3143
3144 rq = cpu_rq(i);
3145
3146 if (*sd_idle && rq->nr_running)
3147 *sd_idle = 0;
3148
3149 /* Bias balancing toward cpus of our domain */
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
3156 load = target_load(i, load_idx);
3157 } else {
3158 load = source_load(i, load_idx);
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
3164
3165 avg_load += load;
3166 sum_nr_running += rq->nr_running;
3167 sum_weighted_load += weighted_cpuload(i);
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3170 }
3171
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3177 */
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
3180 *balance = 0;
3181 goto ret;
3182 }
3183
3184 total_load += avg_load;
3185 total_pwr += group->__cpu_power;
3186
3187 /* Adjust by relative CPU power of the group */
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
3190
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 __group_imb = 1;
3206
3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
3215 (sum_nr_running > group_capacity || __group_imb)) {
3216 max_load = avg_load;
3217 busiest = group;
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
3220 group_imb = __group_imb;
3221 }
3222
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
3240 /*
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
3245 || !sum_nr_running)
3246 goto group_next;
3247
3248 /*
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
3255 first_cpu(group->cpumask) <
3256 first_cpu(group_min->cpumask))) {
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
3261 }
3262
3263 /*
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
3271 first_cpu(group->cpumask) >
3272 first_cpu(group_leader->cpumask))) {
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
3276 }
3277 group_next:
3278 #endif
3279 group = group->next;
3280 } while (group != sd->groups);
3281
3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
3291 busiest_load_per_task /= busiest_nr_running;
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3305 */
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
3325 / SCHED_LOAD_SCALE;
3326
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
3333 if (*imbalance < busiest_load_per_task) {
3334 unsigned long tmp, pwr_now, pwr_move;
3335 unsigned int imbn;
3336
3337 small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3346
3347 if (max_load - this_load + 2*busiest_load_per_task >=
3348 busiest_load_per_task * imbn) {
3349 *imbalance = busiest_load_per_task;
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
3368 if (max_load > tmp)
3369 pwr_move += busiest->__cpu_power *
3370 min(busiest_load_per_task, max_load - tmp);
3371
3372 /* Amount of load we'd add */
3373 if (max_load * busiest->__cpu_power <
3374 busiest_load_per_task * SCHED_LOAD_SCALE)
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
3377 else
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
3387 }
3388
3389 return busiest;
3390
3391 out_balanced:
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394 goto ret;
3395
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
3398 return group_min;
3399 }
3400 #endif
3401 ret:
3402 *imbalance = 0;
3403 return NULL;
3404 }
3405
3406 /*
3407 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3408 */
3409 static struct rq *
3410 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3411 unsigned long imbalance, const cpumask_t *cpus)
3412 {
3413 struct rq *busiest = NULL, *rq;
3414 unsigned long max_load = 0;
3415 int i;
3416
3417 for_each_cpu_mask_nr(i, group->cpumask) {
3418 unsigned long wl;
3419
3420 if (!cpu_isset(i, *cpus))
3421 continue;
3422
3423 rq = cpu_rq(i);
3424 wl = weighted_cpuload(i);
3425
3426 if (rq->nr_running == 1 && wl > imbalance)
3427 continue;
3428
3429 if (wl > max_load) {
3430 max_load = wl;
3431 busiest = rq;
3432 }
3433 }
3434
3435 return busiest;
3436 }
3437
3438 /*
3439 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3440 * so long as it is large enough.
3441 */
3442 #define MAX_PINNED_INTERVAL 512
3443
3444 /*
3445 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3446 * tasks if there is an imbalance.
3447 */
3448 static int load_balance(int this_cpu, struct rq *this_rq,
3449 struct sched_domain *sd, enum cpu_idle_type idle,
3450 int *balance, cpumask_t *cpus)
3451 {
3452 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3453 struct sched_group *group;
3454 unsigned long imbalance;
3455 struct rq *busiest;
3456 unsigned long flags;
3457
3458 cpus_setall(*cpus);
3459
3460 /*
3461 * When power savings policy is enabled for the parent domain, idle
3462 * sibling can pick up load irrespective of busy siblings. In this case,
3463 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3464 * portraying it as CPU_NOT_IDLE.
3465 */
3466 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3467 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3468 sd_idle = 1;
3469
3470 schedstat_inc(sd, lb_count[idle]);
3471
3472 redo:
3473 update_shares(sd);
3474 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3475 cpus, balance);
3476
3477 if (*balance == 0)
3478 goto out_balanced;
3479
3480 if (!group) {
3481 schedstat_inc(sd, lb_nobusyg[idle]);
3482 goto out_balanced;
3483 }
3484
3485 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3486 if (!busiest) {
3487 schedstat_inc(sd, lb_nobusyq[idle]);
3488 goto out_balanced;
3489 }
3490
3491 BUG_ON(busiest == this_rq);
3492
3493 schedstat_add(sd, lb_imbalance[idle], imbalance);
3494
3495 ld_moved = 0;
3496 if (busiest->nr_running > 1) {
3497 /*
3498 * Attempt to move tasks. If find_busiest_group has found
3499 * an imbalance but busiest->nr_running <= 1, the group is
3500 * still unbalanced. ld_moved simply stays zero, so it is
3501 * correctly treated as an imbalance.
3502 */
3503 local_irq_save(flags);
3504 double_rq_lock(this_rq, busiest);
3505 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3506 imbalance, sd, idle, &all_pinned);
3507 double_rq_unlock(this_rq, busiest);
3508 local_irq_restore(flags);
3509
3510 /*
3511 * some other cpu did the load balance for us.
3512 */
3513 if (ld_moved && this_cpu != smp_processor_id())
3514 resched_cpu(this_cpu);
3515
3516 /* All tasks on this runqueue were pinned by CPU affinity */
3517 if (unlikely(all_pinned)) {
3518 cpu_clear(cpu_of(busiest), *cpus);
3519 if (!cpus_empty(*cpus))
3520 goto redo;
3521 goto out_balanced;
3522 }
3523 }
3524
3525 if (!ld_moved) {
3526 schedstat_inc(sd, lb_failed[idle]);
3527 sd->nr_balance_failed++;
3528
3529 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3530
3531 spin_lock_irqsave(&busiest->lock, flags);
3532
3533 /* don't kick the migration_thread, if the curr
3534 * task on busiest cpu can't be moved to this_cpu
3535 */
3536 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3537 spin_unlock_irqrestore(&busiest->lock, flags);
3538 all_pinned = 1;
3539 goto out_one_pinned;
3540 }
3541
3542 if (!busiest->active_balance) {
3543 busiest->active_balance = 1;
3544 busiest->push_cpu = this_cpu;
3545 active_balance = 1;
3546 }
3547 spin_unlock_irqrestore(&busiest->lock, flags);
3548 if (active_balance)
3549 wake_up_process(busiest->migration_thread);
3550
3551 /*
3552 * We've kicked active balancing, reset the failure
3553 * counter.
3554 */
3555 sd->nr_balance_failed = sd->cache_nice_tries+1;
3556 }
3557 } else
3558 sd->nr_balance_failed = 0;
3559
3560 if (likely(!active_balance)) {
3561 /* We were unbalanced, so reset the balancing interval */
3562 sd->balance_interval = sd->min_interval;
3563 } else {
3564 /*
3565 * If we've begun active balancing, start to back off. This
3566 * case may not be covered by the all_pinned logic if there
3567 * is only 1 task on the busy runqueue (because we don't call
3568 * move_tasks).
3569 */
3570 if (sd->balance_interval < sd->max_interval)
3571 sd->balance_interval *= 2;
3572 }
3573
3574 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3575 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3576 ld_moved = -1;
3577
3578 goto out;
3579
3580 out_balanced:
3581 schedstat_inc(sd, lb_balanced[idle]);
3582
3583 sd->nr_balance_failed = 0;
3584
3585 out_one_pinned:
3586 /* tune up the balancing interval */
3587 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3588 (sd->balance_interval < sd->max_interval))
3589 sd->balance_interval *= 2;
3590
3591 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3592 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3593 ld_moved = -1;
3594 else
3595 ld_moved = 0;
3596 out:
3597 if (ld_moved)
3598 update_shares(sd);
3599 return ld_moved;
3600 }
3601
3602 /*
3603 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3604 * tasks if there is an imbalance.
3605 *
3606 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3607 * this_rq is locked.
3608 */
3609 static int
3610 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3611 cpumask_t *cpus)
3612 {
3613 struct sched_group *group;
3614 struct rq *busiest = NULL;
3615 unsigned long imbalance;
3616 int ld_moved = 0;
3617 int sd_idle = 0;
3618 int all_pinned = 0;
3619
3620 cpus_setall(*cpus);
3621
3622 /*
3623 * When power savings policy is enabled for the parent domain, idle
3624 * sibling can pick up load irrespective of busy siblings. In this case,
3625 * let the state of idle sibling percolate up as IDLE, instead of
3626 * portraying it as CPU_NOT_IDLE.
3627 */
3628 if (sd->flags & SD_SHARE_CPUPOWER &&
3629 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3630 sd_idle = 1;
3631
3632 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3633 redo:
3634 update_shares_locked(this_rq, sd);
3635 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3636 &sd_idle, cpus, NULL);
3637 if (!group) {
3638 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3639 goto out_balanced;
3640 }
3641
3642 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3643 if (!busiest) {
3644 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3645 goto out_balanced;
3646 }
3647
3648 BUG_ON(busiest == this_rq);
3649
3650 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3651
3652 ld_moved = 0;
3653 if (busiest->nr_running > 1) {
3654 /* Attempt to move tasks */
3655 double_lock_balance(this_rq, busiest);
3656 /* this_rq->clock is already updated */
3657 update_rq_clock(busiest);
3658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3659 imbalance, sd, CPU_NEWLY_IDLE,
3660 &all_pinned);
3661 double_unlock_balance(this_rq, busiest);
3662
3663 if (unlikely(all_pinned)) {
3664 cpu_clear(cpu_of(busiest), *cpus);
3665 if (!cpus_empty(*cpus))
3666 goto redo;
3667 }
3668 }
3669
3670 if (!ld_moved) {
3671 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3672 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3673 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3674 return -1;
3675 } else
3676 sd->nr_balance_failed = 0;
3677
3678 update_shares_locked(this_rq, sd);
3679 return ld_moved;
3680
3681 out_balanced:
3682 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3683 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3684 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3685 return -1;
3686 sd->nr_balance_failed = 0;
3687
3688 return 0;
3689 }
3690
3691 /*
3692 * idle_balance is called by schedule() if this_cpu is about to become
3693 * idle. Attempts to pull tasks from other CPUs.
3694 */
3695 static void idle_balance(int this_cpu, struct rq *this_rq)
3696 {
3697 struct sched_domain *sd;
3698 int pulled_task = -1;
3699 unsigned long next_balance = jiffies + HZ;
3700 cpumask_t tmpmask;
3701
3702 for_each_domain(this_cpu, sd) {
3703 unsigned long interval;
3704
3705 if (!(sd->flags & SD_LOAD_BALANCE))
3706 continue;
3707
3708 if (sd->flags & SD_BALANCE_NEWIDLE)
3709 /* If we've pulled tasks over stop searching: */
3710 pulled_task = load_balance_newidle(this_cpu, this_rq,
3711 sd, &tmpmask);
3712
3713 interval = msecs_to_jiffies(sd->balance_interval);
3714 if (time_after(next_balance, sd->last_balance + interval))
3715 next_balance = sd->last_balance + interval;
3716 if (pulled_task)
3717 break;
3718 }
3719 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3720 /*
3721 * We are going idle. next_balance may be set based on
3722 * a busy processor. So reset next_balance.
3723 */
3724 this_rq->next_balance = next_balance;
3725 }
3726 }
3727
3728 /*
3729 * active_load_balance is run by migration threads. It pushes running tasks
3730 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3731 * running on each physical CPU where possible, and avoids physical /
3732 * logical imbalances.
3733 *
3734 * Called with busiest_rq locked.
3735 */
3736 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3737 {
3738 int target_cpu = busiest_rq->push_cpu;
3739 struct sched_domain *sd;
3740 struct rq *target_rq;
3741
3742 /* Is there any task to move? */
3743 if (busiest_rq->nr_running <= 1)
3744 return;
3745
3746 target_rq = cpu_rq(target_cpu);
3747
3748 /*
3749 * This condition is "impossible", if it occurs
3750 * we need to fix it. Originally reported by
3751 * Bjorn Helgaas on a 128-cpu setup.
3752 */
3753 BUG_ON(busiest_rq == target_rq);
3754
3755 /* move a task from busiest_rq to target_rq */
3756 double_lock_balance(busiest_rq, target_rq);
3757 update_rq_clock(busiest_rq);
3758 update_rq_clock(target_rq);
3759
3760 /* Search for an sd spanning us and the target CPU. */
3761 for_each_domain(target_cpu, sd) {
3762 if ((sd->flags & SD_LOAD_BALANCE) &&
3763 cpu_isset(busiest_cpu, sd->span))
3764 break;
3765 }
3766
3767 if (likely(sd)) {
3768 schedstat_inc(sd, alb_count);
3769
3770 if (move_one_task(target_rq, target_cpu, busiest_rq,
3771 sd, CPU_IDLE))
3772 schedstat_inc(sd, alb_pushed);
3773 else
3774 schedstat_inc(sd, alb_failed);
3775 }
3776 double_unlock_balance(busiest_rq, target_rq);
3777 }
3778
3779 #ifdef CONFIG_NO_HZ
3780 static struct {
3781 atomic_t load_balancer;
3782 cpumask_t cpu_mask;
3783 } nohz ____cacheline_aligned = {
3784 .load_balancer = ATOMIC_INIT(-1),
3785 .cpu_mask = CPU_MASK_NONE,
3786 };
3787
3788 /*
3789 * This routine will try to nominate the ilb (idle load balancing)
3790 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3791 * load balancing on behalf of all those cpus. If all the cpus in the system
3792 * go into this tickless mode, then there will be no ilb owner (as there is
3793 * no need for one) and all the cpus will sleep till the next wakeup event
3794 * arrives...
3795 *
3796 * For the ilb owner, tick is not stopped. And this tick will be used
3797 * for idle load balancing. ilb owner will still be part of
3798 * nohz.cpu_mask..
3799 *
3800 * While stopping the tick, this cpu will become the ilb owner if there
3801 * is no other owner. And will be the owner till that cpu becomes busy
3802 * or if all cpus in the system stop their ticks at which point
3803 * there is no need for ilb owner.
3804 *
3805 * When the ilb owner becomes busy, it nominates another owner, during the
3806 * next busy scheduler_tick()
3807 */
3808 int select_nohz_load_balancer(int stop_tick)
3809 {
3810 int cpu = smp_processor_id();
3811
3812 if (stop_tick) {
3813 cpu_set(cpu, nohz.cpu_mask);
3814 cpu_rq(cpu)->in_nohz_recently = 1;
3815
3816 /*
3817 * If we are going offline and still the leader, give up!
3818 */
3819 if (!cpu_active(cpu) &&
3820 atomic_read(&nohz.load_balancer) == cpu) {
3821 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3822 BUG();
3823 return 0;
3824 }
3825
3826 /* time for ilb owner also to sleep */
3827 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3828 if (atomic_read(&nohz.load_balancer) == cpu)
3829 atomic_set(&nohz.load_balancer, -1);
3830 return 0;
3831 }
3832
3833 if (atomic_read(&nohz.load_balancer) == -1) {
3834 /* make me the ilb owner */
3835 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3836 return 1;
3837 } else if (atomic_read(&nohz.load_balancer) == cpu)
3838 return 1;
3839 } else {
3840 if (!cpu_isset(cpu, nohz.cpu_mask))
3841 return 0;
3842
3843 cpu_clear(cpu, nohz.cpu_mask);
3844
3845 if (atomic_read(&nohz.load_balancer) == cpu)
3846 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3847 BUG();
3848 }
3849 return 0;
3850 }
3851 #endif
3852
3853 static DEFINE_SPINLOCK(balancing);
3854
3855 /*
3856 * It checks each scheduling domain to see if it is due to be balanced,
3857 * and initiates a balancing operation if so.
3858 *
3859 * Balancing parameters are set up in arch_init_sched_domains.
3860 */
3861 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3862 {
3863 int balance = 1;
3864 struct rq *rq = cpu_rq(cpu);
3865 unsigned long interval;
3866 struct sched_domain *sd;
3867 /* Earliest time when we have to do rebalance again */
3868 unsigned long next_balance = jiffies + 60*HZ;
3869 int update_next_balance = 0;
3870 int need_serialize;
3871 cpumask_t tmp;
3872
3873 for_each_domain(cpu, sd) {
3874 if (!(sd->flags & SD_LOAD_BALANCE))
3875 continue;
3876
3877 interval = sd->balance_interval;
3878 if (idle != CPU_IDLE)
3879 interval *= sd->busy_factor;
3880
3881 /* scale ms to jiffies */
3882 interval = msecs_to_jiffies(interval);
3883 if (unlikely(!interval))
3884 interval = 1;
3885 if (interval > HZ*NR_CPUS/10)
3886 interval = HZ*NR_CPUS/10;
3887
3888 need_serialize = sd->flags & SD_SERIALIZE;
3889
3890 if (need_serialize) {
3891 if (!spin_trylock(&balancing))
3892 goto out;
3893 }
3894
3895 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3896 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3897 /*
3898 * We've pulled tasks over so either we're no
3899 * longer idle, or one of our SMT siblings is
3900 * not idle.
3901 */
3902 idle = CPU_NOT_IDLE;
3903 }
3904 sd->last_balance = jiffies;
3905 }
3906 if (need_serialize)
3907 spin_unlock(&balancing);
3908 out:
3909 if (time_after(next_balance, sd->last_balance + interval)) {
3910 next_balance = sd->last_balance + interval;
3911 update_next_balance = 1;
3912 }
3913
3914 /*
3915 * Stop the load balance at this level. There is another
3916 * CPU in our sched group which is doing load balancing more
3917 * actively.
3918 */
3919 if (!balance)
3920 break;
3921 }
3922
3923 /*
3924 * next_balance will be updated only when there is a need.
3925 * When the cpu is attached to null domain for ex, it will not be
3926 * updated.
3927 */
3928 if (likely(update_next_balance))
3929 rq->next_balance = next_balance;
3930 }
3931
3932 /*
3933 * run_rebalance_domains is triggered when needed from the scheduler tick.
3934 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3935 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3936 */
3937 static void run_rebalance_domains(struct softirq_action *h)
3938 {
3939 int this_cpu = smp_processor_id();
3940 struct rq *this_rq = cpu_rq(this_cpu);
3941 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3942 CPU_IDLE : CPU_NOT_IDLE;
3943
3944 rebalance_domains(this_cpu, idle);
3945
3946 #ifdef CONFIG_NO_HZ
3947 /*
3948 * If this cpu is the owner for idle load balancing, then do the
3949 * balancing on behalf of the other idle cpus whose ticks are
3950 * stopped.
3951 */
3952 if (this_rq->idle_at_tick &&
3953 atomic_read(&nohz.load_balancer) == this_cpu) {
3954 cpumask_t cpus = nohz.cpu_mask;
3955 struct rq *rq;
3956 int balance_cpu;
3957
3958 cpu_clear(this_cpu, cpus);
3959 for_each_cpu_mask_nr(balance_cpu, cpus) {
3960 /*
3961 * If this cpu gets work to do, stop the load balancing
3962 * work being done for other cpus. Next load
3963 * balancing owner will pick it up.
3964 */
3965 if (need_resched())
3966 break;
3967
3968 rebalance_domains(balance_cpu, CPU_IDLE);
3969
3970 rq = cpu_rq(balance_cpu);
3971 if (time_after(this_rq->next_balance, rq->next_balance))
3972 this_rq->next_balance = rq->next_balance;
3973 }
3974 }
3975 #endif
3976 }
3977
3978 /*
3979 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3980 *
3981 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3982 * idle load balancing owner or decide to stop the periodic load balancing,
3983 * if the whole system is idle.
3984 */
3985 static inline void trigger_load_balance(struct rq *rq, int cpu)
3986 {
3987 #ifdef CONFIG_NO_HZ
3988 /*
3989 * If we were in the nohz mode recently and busy at the current
3990 * scheduler tick, then check if we need to nominate new idle
3991 * load balancer.
3992 */
3993 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3994 rq->in_nohz_recently = 0;
3995
3996 if (atomic_read(&nohz.load_balancer) == cpu) {
3997 cpu_clear(cpu, nohz.cpu_mask);
3998 atomic_set(&nohz.load_balancer, -1);
3999 }
4000
4001 if (atomic_read(&nohz.load_balancer) == -1) {
4002 /*
4003 * simple selection for now: Nominate the
4004 * first cpu in the nohz list to be the next
4005 * ilb owner.
4006 *
4007 * TBD: Traverse the sched domains and nominate
4008 * the nearest cpu in the nohz.cpu_mask.
4009 */
4010 int ilb = first_cpu(nohz.cpu_mask);
4011
4012 if (ilb < nr_cpu_ids)
4013 resched_cpu(ilb);
4014 }
4015 }
4016
4017 /*
4018 * If this cpu is idle and doing idle load balancing for all the
4019 * cpus with ticks stopped, is it time for that to stop?
4020 */
4021 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4022 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4023 resched_cpu(cpu);
4024 return;
4025 }
4026
4027 /*
4028 * If this cpu is idle and the idle load balancing is done by
4029 * someone else, then no need raise the SCHED_SOFTIRQ
4030 */
4031 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4032 cpu_isset(cpu, nohz.cpu_mask))
4033 return;
4034 #endif
4035 if (time_after_eq(jiffies, rq->next_balance))
4036 raise_softirq(SCHED_SOFTIRQ);
4037 }
4038
4039 #else /* CONFIG_SMP */
4040
4041 /*
4042 * on UP we do not need to balance between CPUs:
4043 */
4044 static inline void idle_balance(int cpu, struct rq *rq)
4045 {
4046 }
4047
4048 #endif
4049
4050 DEFINE_PER_CPU(struct kernel_stat, kstat);
4051
4052 EXPORT_PER_CPU_SYMBOL(kstat);
4053
4054 /*
4055 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4056 * that have not yet been banked in case the task is currently running.
4057 */
4058 unsigned long long task_sched_runtime(struct task_struct *p)
4059 {
4060 unsigned long flags;
4061 u64 ns, delta_exec;
4062 struct rq *rq;
4063
4064 rq = task_rq_lock(p, &flags);
4065 ns = p->se.sum_exec_runtime;
4066 if (task_current(rq, p)) {
4067 update_rq_clock(rq);
4068 delta_exec = rq->clock - p->se.exec_start;
4069 if ((s64)delta_exec > 0)
4070 ns += delta_exec;
4071 }
4072 task_rq_unlock(rq, &flags);
4073
4074 return ns;
4075 }
4076
4077 /*
4078 * Account user cpu time to a process.
4079 * @p: the process that the cpu time gets accounted to
4080 * @cputime: the cpu time spent in user space since the last update
4081 */
4082 void account_user_time(struct task_struct *p, cputime_t cputime)
4083 {
4084 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4085 cputime64_t tmp;
4086
4087 p->utime = cputime_add(p->utime, cputime);
4088
4089 /* Add user time to cpustat. */
4090 tmp = cputime_to_cputime64(cputime);
4091 if (TASK_NICE(p) > 0)
4092 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4093 else
4094 cpustat->user = cputime64_add(cpustat->user, tmp);
4095 /* Account for user time used */
4096 acct_update_integrals(p);
4097 }
4098
4099 /*
4100 * Account guest cpu time to a process.
4101 * @p: the process that the cpu time gets accounted to
4102 * @cputime: the cpu time spent in virtual machine since the last update
4103 */
4104 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4105 {
4106 cputime64_t tmp;
4107 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4108
4109 tmp = cputime_to_cputime64(cputime);
4110
4111 p->utime = cputime_add(p->utime, cputime);
4112 p->gtime = cputime_add(p->gtime, cputime);
4113
4114 cpustat->user = cputime64_add(cpustat->user, tmp);
4115 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4116 }
4117
4118 /*
4119 * Account scaled user cpu time to a process.
4120 * @p: the process that the cpu time gets accounted to
4121 * @cputime: the cpu time spent in user space since the last update
4122 */
4123 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4124 {
4125 p->utimescaled = cputime_add(p->utimescaled, cputime);
4126 }
4127
4128 /*
4129 * Account system cpu time to a process.
4130 * @p: the process that the cpu time gets accounted to
4131 * @hardirq_offset: the offset to subtract from hardirq_count()
4132 * @cputime: the cpu time spent in kernel space since the last update
4133 */
4134 void account_system_time(struct task_struct *p, int hardirq_offset,
4135 cputime_t cputime)
4136 {
4137 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4138 struct rq *rq = this_rq();
4139 cputime64_t tmp;
4140
4141 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4142 account_guest_time(p, cputime);
4143 return;
4144 }
4145
4146 p->stime = cputime_add(p->stime, cputime);
4147
4148 /* Add system time to cpustat. */
4149 tmp = cputime_to_cputime64(cputime);
4150 if (hardirq_count() - hardirq_offset)
4151 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4152 else if (softirq_count())
4153 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4154 else if (p != rq->idle)
4155 cpustat->system = cputime64_add(cpustat->system, tmp);
4156 else if (atomic_read(&rq->nr_iowait) > 0)
4157 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4158 else
4159 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4160 /* Account for system time used */
4161 acct_update_integrals(p);
4162 }
4163
4164 /*
4165 * Account scaled system cpu time to a process.
4166 * @p: the process that the cpu time gets accounted to
4167 * @hardirq_offset: the offset to subtract from hardirq_count()
4168 * @cputime: the cpu time spent in kernel space since the last update
4169 */
4170 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4171 {
4172 p->stimescaled = cputime_add(p->stimescaled, cputime);
4173 }
4174
4175 /*
4176 * Account for involuntary wait time.
4177 * @p: the process from which the cpu time has been stolen
4178 * @steal: the cpu time spent in involuntary wait
4179 */
4180 void account_steal_time(struct task_struct *p, cputime_t steal)
4181 {
4182 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4183 cputime64_t tmp = cputime_to_cputime64(steal);
4184 struct rq *rq = this_rq();
4185
4186 if (p == rq->idle) {
4187 p->stime = cputime_add(p->stime, steal);
4188 if (atomic_read(&rq->nr_iowait) > 0)
4189 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4190 else
4191 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4192 } else
4193 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4194 }
4195
4196 /*
4197 * Use precise platform statistics if available:
4198 */
4199 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4200 cputime_t task_utime(struct task_struct *p)
4201 {
4202 return p->utime;
4203 }
4204
4205 cputime_t task_stime(struct task_struct *p)
4206 {
4207 return p->stime;
4208 }
4209 #else
4210 cputime_t task_utime(struct task_struct *p)
4211 {
4212 clock_t utime = cputime_to_clock_t(p->utime),
4213 total = utime + cputime_to_clock_t(p->stime);
4214 u64 temp;
4215
4216 /*
4217 * Use CFS's precise accounting:
4218 */
4219 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4220
4221 if (total) {
4222 temp *= utime;
4223 do_div(temp, total);
4224 }
4225 utime = (clock_t)temp;
4226
4227 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4228 return p->prev_utime;
4229 }
4230
4231 cputime_t task_stime(struct task_struct *p)
4232 {
4233 clock_t stime;
4234
4235 /*
4236 * Use CFS's precise accounting. (we subtract utime from
4237 * the total, to make sure the total observed by userspace
4238 * grows monotonically - apps rely on that):
4239 */
4240 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4241 cputime_to_clock_t(task_utime(p));
4242
4243 if (stime >= 0)
4244 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4245
4246 return p->prev_stime;
4247 }
4248 #endif
4249
4250 inline cputime_t task_gtime(struct task_struct *p)
4251 {
4252 return p->gtime;
4253 }
4254
4255 /*
4256 * This function gets called by the timer code, with HZ frequency.
4257 * We call it with interrupts disabled.
4258 *
4259 * It also gets called by the fork code, when changing the parent's
4260 * timeslices.
4261 */
4262 void scheduler_tick(void)
4263 {
4264 int cpu = smp_processor_id();
4265 struct rq *rq = cpu_rq(cpu);
4266 struct task_struct *curr = rq->curr;
4267
4268 sched_clock_tick();
4269
4270 spin_lock(&rq->lock);
4271 update_rq_clock(rq);
4272 update_cpu_load(rq);
4273 curr->sched_class->task_tick(rq, curr, 0);
4274 spin_unlock(&rq->lock);
4275
4276 #ifdef CONFIG_SMP
4277 rq->idle_at_tick = idle_cpu(cpu);
4278 trigger_load_balance(rq, cpu);
4279 #endif
4280 }
4281
4282 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4283 defined(CONFIG_PREEMPT_TRACER))
4284
4285 static inline unsigned long get_parent_ip(unsigned long addr)
4286 {
4287 if (in_lock_functions(addr)) {
4288 addr = CALLER_ADDR2;
4289 if (in_lock_functions(addr))
4290 addr = CALLER_ADDR3;
4291 }
4292 return addr;
4293 }
4294
4295 void __kprobes add_preempt_count(int val)
4296 {
4297 #ifdef CONFIG_DEBUG_PREEMPT
4298 /*
4299 * Underflow?
4300 */
4301 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4302 return;
4303 #endif
4304 preempt_count() += val;
4305 #ifdef CONFIG_DEBUG_PREEMPT
4306 /*
4307 * Spinlock count overflowing soon?
4308 */
4309 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4310 PREEMPT_MASK - 10);
4311 #endif
4312 if (preempt_count() == val)
4313 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4314 }
4315 EXPORT_SYMBOL(add_preempt_count);
4316
4317 void __kprobes sub_preempt_count(int val)
4318 {
4319 #ifdef CONFIG_DEBUG_PREEMPT
4320 /*
4321 * Underflow?
4322 */
4323 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4324 return;
4325 /*
4326 * Is the spinlock portion underflowing?
4327 */
4328 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4329 !(preempt_count() & PREEMPT_MASK)))
4330 return;
4331 #endif
4332
4333 if (preempt_count() == val)
4334 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4335 preempt_count() -= val;
4336 }
4337 EXPORT_SYMBOL(sub_preempt_count);
4338
4339 #endif
4340
4341 /*
4342 * Print scheduling while atomic bug:
4343 */
4344 static noinline void __schedule_bug(struct task_struct *prev)
4345 {
4346 struct pt_regs *regs = get_irq_regs();
4347
4348 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4349 prev->comm, prev->pid, preempt_count());
4350
4351 debug_show_held_locks(prev);
4352 print_modules();
4353 if (irqs_disabled())
4354 print_irqtrace_events(prev);
4355
4356 if (regs)
4357 show_regs(regs);
4358 else
4359 dump_stack();
4360 }
4361
4362 /*
4363 * Various schedule()-time debugging checks and statistics:
4364 */
4365 static inline void schedule_debug(struct task_struct *prev)
4366 {
4367 /*
4368 * Test if we are atomic. Since do_exit() needs to call into
4369 * schedule() atomically, we ignore that path for now.
4370 * Otherwise, whine if we are scheduling when we should not be.
4371 */
4372 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4373 __schedule_bug(prev);
4374
4375 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4376
4377 schedstat_inc(this_rq(), sched_count);
4378 #ifdef CONFIG_SCHEDSTATS
4379 if (unlikely(prev->lock_depth >= 0)) {
4380 schedstat_inc(this_rq(), bkl_count);
4381 schedstat_inc(prev, sched_info.bkl_count);
4382 }
4383 #endif
4384 }
4385
4386 /*
4387 * Pick up the highest-prio task:
4388 */
4389 static inline struct task_struct *
4390 pick_next_task(struct rq *rq, struct task_struct *prev)
4391 {
4392 const struct sched_class *class;
4393 struct task_struct *p;
4394
4395 /*
4396 * Optimization: we know that if all tasks are in
4397 * the fair class we can call that function directly:
4398 */
4399 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4400 p = fair_sched_class.pick_next_task(rq);
4401 if (likely(p))
4402 return p;
4403 }
4404
4405 class = sched_class_highest;
4406 for ( ; ; ) {
4407 p = class->pick_next_task(rq);
4408 if (p)
4409 return p;
4410 /*
4411 * Will never be NULL as the idle class always
4412 * returns a non-NULL p:
4413 */
4414 class = class->next;
4415 }
4416 }
4417
4418 /*
4419 * schedule() is the main scheduler function.
4420 */
4421 asmlinkage void __sched schedule(void)
4422 {
4423 struct task_struct *prev, *next;
4424 unsigned long *switch_count;
4425 struct rq *rq;
4426 int cpu;
4427
4428 need_resched:
4429 preempt_disable();
4430 cpu = smp_processor_id();
4431 rq = cpu_rq(cpu);
4432 rcu_qsctr_inc(cpu);
4433 prev = rq->curr;
4434 switch_count = &prev->nivcsw;
4435
4436 release_kernel_lock(prev);
4437 need_resched_nonpreemptible:
4438
4439 schedule_debug(prev);
4440
4441 if (sched_feat(HRTICK))
4442 hrtick_clear(rq);
4443
4444 /*
4445 * Do the rq-clock update outside the rq lock:
4446 */
4447 local_irq_disable();
4448 update_rq_clock(rq);
4449 spin_lock(&rq->lock);
4450 clear_tsk_need_resched(prev);
4451
4452 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4453 if (unlikely(signal_pending_state(prev->state, prev)))
4454 prev->state = TASK_RUNNING;
4455 else
4456 deactivate_task(rq, prev, 1);
4457 switch_count = &prev->nvcsw;
4458 }
4459
4460 #ifdef CONFIG_SMP
4461 if (prev->sched_class->pre_schedule)
4462 prev->sched_class->pre_schedule(rq, prev);
4463 #endif
4464
4465 if (unlikely(!rq->nr_running))
4466 idle_balance(cpu, rq);
4467
4468 prev->sched_class->put_prev_task(rq, prev);
4469 next = pick_next_task(rq, prev);
4470
4471 if (likely(prev != next)) {
4472 sched_info_switch(prev, next);
4473
4474 rq->nr_switches++;
4475 rq->curr = next;
4476 ++*switch_count;
4477
4478 context_switch(rq, prev, next); /* unlocks the rq */
4479 /*
4480 * the context switch might have flipped the stack from under
4481 * us, hence refresh the local variables.
4482 */
4483 cpu = smp_processor_id();
4484 rq = cpu_rq(cpu);
4485 } else
4486 spin_unlock_irq(&rq->lock);
4487
4488 if (unlikely(reacquire_kernel_lock(current) < 0))
4489 goto need_resched_nonpreemptible;
4490
4491 preempt_enable_no_resched();
4492 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4493 goto need_resched;
4494 }
4495 EXPORT_SYMBOL(schedule);
4496
4497 #ifdef CONFIG_PREEMPT
4498 /*
4499 * this is the entry point to schedule() from in-kernel preemption
4500 * off of preempt_enable. Kernel preemptions off return from interrupt
4501 * occur there and call schedule directly.
4502 */
4503 asmlinkage void __sched preempt_schedule(void)
4504 {
4505 struct thread_info *ti = current_thread_info();
4506
4507 /*
4508 * If there is a non-zero preempt_count or interrupts are disabled,
4509 * we do not want to preempt the current task. Just return..
4510 */
4511 if (likely(ti->preempt_count || irqs_disabled()))
4512 return;
4513
4514 do {
4515 add_preempt_count(PREEMPT_ACTIVE);
4516 schedule();
4517 sub_preempt_count(PREEMPT_ACTIVE);
4518
4519 /*
4520 * Check again in case we missed a preemption opportunity
4521 * between schedule and now.
4522 */
4523 barrier();
4524 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4525 }
4526 EXPORT_SYMBOL(preempt_schedule);
4527
4528 /*
4529 * this is the entry point to schedule() from kernel preemption
4530 * off of irq context.
4531 * Note, that this is called and return with irqs disabled. This will
4532 * protect us against recursive calling from irq.
4533 */
4534 asmlinkage void __sched preempt_schedule_irq(void)
4535 {
4536 struct thread_info *ti = current_thread_info();
4537
4538 /* Catch callers which need to be fixed */
4539 BUG_ON(ti->preempt_count || !irqs_disabled());
4540
4541 do {
4542 add_preempt_count(PREEMPT_ACTIVE);
4543 local_irq_enable();
4544 schedule();
4545 local_irq_disable();
4546 sub_preempt_count(PREEMPT_ACTIVE);
4547
4548 /*
4549 * Check again in case we missed a preemption opportunity
4550 * between schedule and now.
4551 */
4552 barrier();
4553 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4554 }
4555
4556 #endif /* CONFIG_PREEMPT */
4557
4558 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4559 void *key)
4560 {
4561 return try_to_wake_up(curr->private, mode, sync);
4562 }
4563 EXPORT_SYMBOL(default_wake_function);
4564
4565 /*
4566 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4567 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4568 * number) then we wake all the non-exclusive tasks and one exclusive task.
4569 *
4570 * There are circumstances in which we can try to wake a task which has already
4571 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4572 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4573 */
4574 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4575 int nr_exclusive, int sync, void *key)
4576 {
4577 wait_queue_t *curr, *next;
4578
4579 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4580 unsigned flags = curr->flags;
4581
4582 if (curr->func(curr, mode, sync, key) &&
4583 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4584 break;
4585 }
4586 }
4587
4588 /**
4589 * __wake_up - wake up threads blocked on a waitqueue.
4590 * @q: the waitqueue
4591 * @mode: which threads
4592 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4593 * @key: is directly passed to the wakeup function
4594 */
4595 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4596 int nr_exclusive, void *key)
4597 {
4598 unsigned long flags;
4599
4600 spin_lock_irqsave(&q->lock, flags);
4601 __wake_up_common(q, mode, nr_exclusive, 0, key);
4602 spin_unlock_irqrestore(&q->lock, flags);
4603 }
4604 EXPORT_SYMBOL(__wake_up);
4605
4606 /*
4607 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4608 */
4609 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4610 {
4611 __wake_up_common(q, mode, 1, 0, NULL);
4612 }
4613
4614 /**
4615 * __wake_up_sync - wake up threads blocked on a waitqueue.
4616 * @q: the waitqueue
4617 * @mode: which threads
4618 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4619 *
4620 * The sync wakeup differs that the waker knows that it will schedule
4621 * away soon, so while the target thread will be woken up, it will not
4622 * be migrated to another CPU - ie. the two threads are 'synchronized'
4623 * with each other. This can prevent needless bouncing between CPUs.
4624 *
4625 * On UP it can prevent extra preemption.
4626 */
4627 void
4628 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4629 {
4630 unsigned long flags;
4631 int sync = 1;
4632
4633 if (unlikely(!q))
4634 return;
4635
4636 if (unlikely(!nr_exclusive))
4637 sync = 0;
4638
4639 spin_lock_irqsave(&q->lock, flags);
4640 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4641 spin_unlock_irqrestore(&q->lock, flags);
4642 }
4643 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4644
4645 /**
4646 * complete: - signals a single thread waiting on this completion
4647 * @x: holds the state of this particular completion
4648 *
4649 * This will wake up a single thread waiting on this completion. Threads will be
4650 * awakened in the same order in which they were queued.
4651 *
4652 * See also complete_all(), wait_for_completion() and related routines.
4653 */
4654 void complete(struct completion *x)
4655 {
4656 unsigned long flags;
4657
4658 spin_lock_irqsave(&x->wait.lock, flags);
4659 x->done++;
4660 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4661 spin_unlock_irqrestore(&x->wait.lock, flags);
4662 }
4663 EXPORT_SYMBOL(complete);
4664
4665 /**
4666 * complete_all: - signals all threads waiting on this completion
4667 * @x: holds the state of this particular completion
4668 *
4669 * This will wake up all threads waiting on this particular completion event.
4670 */
4671 void complete_all(struct completion *x)
4672 {
4673 unsigned long flags;
4674
4675 spin_lock_irqsave(&x->wait.lock, flags);
4676 x->done += UINT_MAX/2;
4677 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4678 spin_unlock_irqrestore(&x->wait.lock, flags);
4679 }
4680 EXPORT_SYMBOL(complete_all);
4681
4682 static inline long __sched
4683 do_wait_for_common(struct completion *x, long timeout, int state)
4684 {
4685 if (!x->done) {
4686 DECLARE_WAITQUEUE(wait, current);
4687
4688 wait.flags |= WQ_FLAG_EXCLUSIVE;
4689 __add_wait_queue_tail(&x->wait, &wait);
4690 do {
4691 if (signal_pending_state(state, current)) {
4692 timeout = -ERESTARTSYS;
4693 break;
4694 }
4695 __set_current_state(state);
4696 spin_unlock_irq(&x->wait.lock);
4697 timeout = schedule_timeout(timeout);
4698 spin_lock_irq(&x->wait.lock);
4699 } while (!x->done && timeout);
4700 __remove_wait_queue(&x->wait, &wait);
4701 if (!x->done)
4702 return timeout;
4703 }
4704 x->done--;
4705 return timeout ?: 1;
4706 }
4707
4708 static long __sched
4709 wait_for_common(struct completion *x, long timeout, int state)
4710 {
4711 might_sleep();
4712
4713 spin_lock_irq(&x->wait.lock);
4714 timeout = do_wait_for_common(x, timeout, state);
4715 spin_unlock_irq(&x->wait.lock);
4716 return timeout;
4717 }
4718
4719 /**
4720 * wait_for_completion: - waits for completion of a task
4721 * @x: holds the state of this particular completion
4722 *
4723 * This waits to be signaled for completion of a specific task. It is NOT
4724 * interruptible and there is no timeout.
4725 *
4726 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4727 * and interrupt capability. Also see complete().
4728 */
4729 void __sched wait_for_completion(struct completion *x)
4730 {
4731 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4732 }
4733 EXPORT_SYMBOL(wait_for_completion);
4734
4735 /**
4736 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4737 * @x: holds the state of this particular completion
4738 * @timeout: timeout value in jiffies
4739 *
4740 * This waits for either a completion of a specific task to be signaled or for a
4741 * specified timeout to expire. The timeout is in jiffies. It is not
4742 * interruptible.
4743 */
4744 unsigned long __sched
4745 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4746 {
4747 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4748 }
4749 EXPORT_SYMBOL(wait_for_completion_timeout);
4750
4751 /**
4752 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4753 * @x: holds the state of this particular completion
4754 *
4755 * This waits for completion of a specific task to be signaled. It is
4756 * interruptible.
4757 */
4758 int __sched wait_for_completion_interruptible(struct completion *x)
4759 {
4760 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4761 if (t == -ERESTARTSYS)
4762 return t;
4763 return 0;
4764 }
4765 EXPORT_SYMBOL(wait_for_completion_interruptible);
4766
4767 /**
4768 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4769 * @x: holds the state of this particular completion
4770 * @timeout: timeout value in jiffies
4771 *
4772 * This waits for either a completion of a specific task to be signaled or for a
4773 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4774 */
4775 unsigned long __sched
4776 wait_for_completion_interruptible_timeout(struct completion *x,
4777 unsigned long timeout)
4778 {
4779 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4780 }
4781 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4782
4783 /**
4784 * wait_for_completion_killable: - waits for completion of a task (killable)
4785 * @x: holds the state of this particular completion
4786 *
4787 * This waits to be signaled for completion of a specific task. It can be
4788 * interrupted by a kill signal.
4789 */
4790 int __sched wait_for_completion_killable(struct completion *x)
4791 {
4792 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4793 if (t == -ERESTARTSYS)
4794 return t;
4795 return 0;
4796 }
4797 EXPORT_SYMBOL(wait_for_completion_killable);
4798
4799 /**
4800 * try_wait_for_completion - try to decrement a completion without blocking
4801 * @x: completion structure
4802 *
4803 * Returns: 0 if a decrement cannot be done without blocking
4804 * 1 if a decrement succeeded.
4805 *
4806 * If a completion is being used as a counting completion,
4807 * attempt to decrement the counter without blocking. This
4808 * enables us to avoid waiting if the resource the completion
4809 * is protecting is not available.
4810 */
4811 bool try_wait_for_completion(struct completion *x)
4812 {
4813 int ret = 1;
4814
4815 spin_lock_irq(&x->wait.lock);
4816 if (!x->done)
4817 ret = 0;
4818 else
4819 x->done--;
4820 spin_unlock_irq(&x->wait.lock);
4821 return ret;
4822 }
4823 EXPORT_SYMBOL(try_wait_for_completion);
4824
4825 /**
4826 * completion_done - Test to see if a completion has any waiters
4827 * @x: completion structure
4828 *
4829 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4830 * 1 if there are no waiters.
4831 *
4832 */
4833 bool completion_done(struct completion *x)
4834 {
4835 int ret = 1;
4836
4837 spin_lock_irq(&x->wait.lock);
4838 if (!x->done)
4839 ret = 0;
4840 spin_unlock_irq(&x->wait.lock);
4841 return ret;
4842 }
4843 EXPORT_SYMBOL(completion_done);
4844
4845 static long __sched
4846 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4847 {
4848 unsigned long flags;
4849 wait_queue_t wait;
4850
4851 init_waitqueue_entry(&wait, current);
4852
4853 __set_current_state(state);
4854
4855 spin_lock_irqsave(&q->lock, flags);
4856 __add_wait_queue(q, &wait);
4857 spin_unlock(&q->lock);
4858 timeout = schedule_timeout(timeout);
4859 spin_lock_irq(&q->lock);
4860 __remove_wait_queue(q, &wait);
4861 spin_unlock_irqrestore(&q->lock, flags);
4862
4863 return timeout;
4864 }
4865
4866 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4867 {
4868 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4869 }
4870 EXPORT_SYMBOL(interruptible_sleep_on);
4871
4872 long __sched
4873 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4874 {
4875 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4876 }
4877 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4878
4879 void __sched sleep_on(wait_queue_head_t *q)
4880 {
4881 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4882 }
4883 EXPORT_SYMBOL(sleep_on);
4884
4885 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4886 {
4887 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4888 }
4889 EXPORT_SYMBOL(sleep_on_timeout);
4890
4891 #ifdef CONFIG_RT_MUTEXES
4892
4893 /*
4894 * rt_mutex_setprio - set the current priority of a task
4895 * @p: task
4896 * @prio: prio value (kernel-internal form)
4897 *
4898 * This function changes the 'effective' priority of a task. It does
4899 * not touch ->normal_prio like __setscheduler().
4900 *
4901 * Used by the rt_mutex code to implement priority inheritance logic.
4902 */
4903 void rt_mutex_setprio(struct task_struct *p, int prio)
4904 {
4905 unsigned long flags;
4906 int oldprio, on_rq, running;
4907 struct rq *rq;
4908 const struct sched_class *prev_class = p->sched_class;
4909
4910 BUG_ON(prio < 0 || prio > MAX_PRIO);
4911
4912 rq = task_rq_lock(p, &flags);
4913 update_rq_clock(rq);
4914
4915 oldprio = p->prio;
4916 on_rq = p->se.on_rq;
4917 running = task_current(rq, p);
4918 if (on_rq)
4919 dequeue_task(rq, p, 0);
4920 if (running)
4921 p->sched_class->put_prev_task(rq, p);
4922
4923 if (rt_prio(prio))
4924 p->sched_class = &rt_sched_class;
4925 else
4926 p->sched_class = &fair_sched_class;
4927
4928 p->prio = prio;
4929
4930 if (running)
4931 p->sched_class->set_curr_task(rq);
4932 if (on_rq) {
4933 enqueue_task(rq, p, 0);
4934
4935 check_class_changed(rq, p, prev_class, oldprio, running);
4936 }
4937 task_rq_unlock(rq, &flags);
4938 }
4939
4940 #endif
4941
4942 void set_user_nice(struct task_struct *p, long nice)
4943 {
4944 int old_prio, delta, on_rq;
4945 unsigned long flags;
4946 struct rq *rq;
4947
4948 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4949 return;
4950 /*
4951 * We have to be careful, if called from sys_setpriority(),
4952 * the task might be in the middle of scheduling on another CPU.
4953 */
4954 rq = task_rq_lock(p, &flags);
4955 update_rq_clock(rq);
4956 /*
4957 * The RT priorities are set via sched_setscheduler(), but we still
4958 * allow the 'normal' nice value to be set - but as expected
4959 * it wont have any effect on scheduling until the task is
4960 * SCHED_FIFO/SCHED_RR:
4961 */
4962 if (task_has_rt_policy(p)) {
4963 p->static_prio = NICE_TO_PRIO(nice);
4964 goto out_unlock;
4965 }
4966 on_rq = p->se.on_rq;
4967 if (on_rq)
4968 dequeue_task(rq, p, 0);
4969
4970 p->static_prio = NICE_TO_PRIO(nice);
4971 set_load_weight(p);
4972 old_prio = p->prio;
4973 p->prio = effective_prio(p);
4974 delta = p->prio - old_prio;
4975
4976 if (on_rq) {
4977 enqueue_task(rq, p, 0);
4978 /*
4979 * If the task increased its priority or is running and
4980 * lowered its priority, then reschedule its CPU:
4981 */
4982 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4983 resched_task(rq->curr);
4984 }
4985 out_unlock:
4986 task_rq_unlock(rq, &flags);
4987 }
4988 EXPORT_SYMBOL(set_user_nice);
4989
4990 /*
4991 * can_nice - check if a task can reduce its nice value
4992 * @p: task
4993 * @nice: nice value
4994 */
4995 int can_nice(const struct task_struct *p, const int nice)
4996 {
4997 /* convert nice value [19,-20] to rlimit style value [1,40] */
4998 int nice_rlim = 20 - nice;
4999
5000 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5001 capable(CAP_SYS_NICE));
5002 }
5003
5004 #ifdef __ARCH_WANT_SYS_NICE
5005
5006 /*
5007 * sys_nice - change the priority of the current process.
5008 * @increment: priority increment
5009 *
5010 * sys_setpriority is a more generic, but much slower function that
5011 * does similar things.
5012 */
5013 asmlinkage long sys_nice(int increment)
5014 {
5015 long nice, retval;
5016
5017 /*
5018 * Setpriority might change our priority at the same moment.
5019 * We don't have to worry. Conceptually one call occurs first
5020 * and we have a single winner.
5021 */
5022 if (increment < -40)
5023 increment = -40;
5024 if (increment > 40)
5025 increment = 40;
5026
5027 nice = PRIO_TO_NICE(current->static_prio) + increment;
5028 if (nice < -20)
5029 nice = -20;
5030 if (nice > 19)
5031 nice = 19;
5032
5033 if (increment < 0 && !can_nice(current, nice))
5034 return -EPERM;
5035
5036 retval = security_task_setnice(current, nice);
5037 if (retval)
5038 return retval;
5039
5040 set_user_nice(current, nice);
5041 return 0;
5042 }
5043
5044 #endif
5045
5046 /**
5047 * task_prio - return the priority value of a given task.
5048 * @p: the task in question.
5049 *
5050 * This is the priority value as seen by users in /proc.
5051 * RT tasks are offset by -200. Normal tasks are centered
5052 * around 0, value goes from -16 to +15.
5053 */
5054 int task_prio(const struct task_struct *p)
5055 {
5056 return p->prio - MAX_RT_PRIO;
5057 }
5058
5059 /**
5060 * task_nice - return the nice value of a given task.
5061 * @p: the task in question.
5062 */
5063 int task_nice(const struct task_struct *p)
5064 {
5065 return TASK_NICE(p);
5066 }
5067 EXPORT_SYMBOL(task_nice);
5068
5069 /**
5070 * idle_cpu - is a given cpu idle currently?
5071 * @cpu: the processor in question.
5072 */
5073 int idle_cpu(int cpu)
5074 {
5075 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5076 }
5077
5078 /**
5079 * idle_task - return the idle task for a given cpu.
5080 * @cpu: the processor in question.
5081 */
5082 struct task_struct *idle_task(int cpu)
5083 {
5084 return cpu_rq(cpu)->idle;
5085 }
5086
5087 /**
5088 * find_process_by_pid - find a process with a matching PID value.
5089 * @pid: the pid in question.
5090 */
5091 static struct task_struct *find_process_by_pid(pid_t pid)
5092 {
5093 return pid ? find_task_by_vpid(pid) : current;
5094 }
5095
5096 /* Actually do priority change: must hold rq lock. */
5097 static void
5098 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5099 {
5100 BUG_ON(p->se.on_rq);
5101
5102 p->policy = policy;
5103 switch (p->policy) {
5104 case SCHED_NORMAL:
5105 case SCHED_BATCH:
5106 case SCHED_IDLE:
5107 p->sched_class = &fair_sched_class;
5108 break;
5109 case SCHED_FIFO:
5110 case SCHED_RR:
5111 p->sched_class = &rt_sched_class;
5112 break;
5113 }
5114
5115 p->rt_priority = prio;
5116 p->normal_prio = normal_prio(p);
5117 /* we are holding p->pi_lock already */
5118 p->prio = rt_mutex_getprio(p);
5119 set_load_weight(p);
5120 }
5121
5122 static int __sched_setscheduler(struct task_struct *p, int policy,
5123 struct sched_param *param, bool user)
5124 {
5125 int retval, oldprio, oldpolicy = -1, on_rq, running;
5126 unsigned long flags;
5127 const struct sched_class *prev_class = p->sched_class;
5128 struct rq *rq;
5129
5130 /* may grab non-irq protected spin_locks */
5131 BUG_ON(in_interrupt());
5132 recheck:
5133 /* double check policy once rq lock held */
5134 if (policy < 0)
5135 policy = oldpolicy = p->policy;
5136 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5137 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5138 policy != SCHED_IDLE)
5139 return -EINVAL;
5140 /*
5141 * Valid priorities for SCHED_FIFO and SCHED_RR are
5142 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5143 * SCHED_BATCH and SCHED_IDLE is 0.
5144 */
5145 if (param->sched_priority < 0 ||
5146 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5147 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5148 return -EINVAL;
5149 if (rt_policy(policy) != (param->sched_priority != 0))
5150 return -EINVAL;
5151
5152 /*
5153 * Allow unprivileged RT tasks to decrease priority:
5154 */
5155 if (user && !capable(CAP_SYS_NICE)) {
5156 if (rt_policy(policy)) {
5157 unsigned long rlim_rtprio;
5158
5159 if (!lock_task_sighand(p, &flags))
5160 return -ESRCH;
5161 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5162 unlock_task_sighand(p, &flags);
5163
5164 /* can't set/change the rt policy */
5165 if (policy != p->policy && !rlim_rtprio)
5166 return -EPERM;
5167
5168 /* can't increase priority */
5169 if (param->sched_priority > p->rt_priority &&
5170 param->sched_priority > rlim_rtprio)
5171 return -EPERM;
5172 }
5173 /*
5174 * Like positive nice levels, dont allow tasks to
5175 * move out of SCHED_IDLE either:
5176 */
5177 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5178 return -EPERM;
5179
5180 /* can't change other user's priorities */
5181 if ((current->euid != p->euid) &&
5182 (current->euid != p->uid))
5183 return -EPERM;
5184 }
5185
5186 if (user) {
5187 #ifdef CONFIG_RT_GROUP_SCHED
5188 /*
5189 * Do not allow realtime tasks into groups that have no runtime
5190 * assigned.
5191 */
5192 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5193 task_group(p)->rt_bandwidth.rt_runtime == 0)
5194 return -EPERM;
5195 #endif
5196
5197 retval = security_task_setscheduler(p, policy, param);
5198 if (retval)
5199 return retval;
5200 }
5201
5202 /*
5203 * make sure no PI-waiters arrive (or leave) while we are
5204 * changing the priority of the task:
5205 */
5206 spin_lock_irqsave(&p->pi_lock, flags);
5207 /*
5208 * To be able to change p->policy safely, the apropriate
5209 * runqueue lock must be held.
5210 */
5211 rq = __task_rq_lock(p);
5212 /* recheck policy now with rq lock held */
5213 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5214 policy = oldpolicy = -1;
5215 __task_rq_unlock(rq);
5216 spin_unlock_irqrestore(&p->pi_lock, flags);
5217 goto recheck;
5218 }
5219 update_rq_clock(rq);
5220 on_rq = p->se.on_rq;
5221 running = task_current(rq, p);
5222 if (on_rq)
5223 deactivate_task(rq, p, 0);
5224 if (running)
5225 p->sched_class->put_prev_task(rq, p);
5226
5227 oldprio = p->prio;
5228 __setscheduler(rq, p, policy, param->sched_priority);
5229
5230 if (running)
5231 p->sched_class->set_curr_task(rq);
5232 if (on_rq) {
5233 activate_task(rq, p, 0);
5234
5235 check_class_changed(rq, p, prev_class, oldprio, running);
5236 }
5237 __task_rq_unlock(rq);
5238 spin_unlock_irqrestore(&p->pi_lock, flags);
5239
5240 rt_mutex_adjust_pi(p);
5241
5242 return 0;
5243 }
5244
5245 /**
5246 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5247 * @p: the task in question.
5248 * @policy: new policy.
5249 * @param: structure containing the new RT priority.
5250 *
5251 * NOTE that the task may be already dead.
5252 */
5253 int sched_setscheduler(struct task_struct *p, int policy,
5254 struct sched_param *param)
5255 {
5256 return __sched_setscheduler(p, policy, param, true);
5257 }
5258 EXPORT_SYMBOL_GPL(sched_setscheduler);
5259
5260 /**
5261 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5262 * @p: the task in question.
5263 * @policy: new policy.
5264 * @param: structure containing the new RT priority.
5265 *
5266 * Just like sched_setscheduler, only don't bother checking if the
5267 * current context has permission. For example, this is needed in
5268 * stop_machine(): we create temporary high priority worker threads,
5269 * but our caller might not have that capability.
5270 */
5271 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5272 struct sched_param *param)
5273 {
5274 return __sched_setscheduler(p, policy, param, false);
5275 }
5276
5277 static int
5278 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5279 {
5280 struct sched_param lparam;
5281 struct task_struct *p;
5282 int retval;
5283
5284 if (!param || pid < 0)
5285 return -EINVAL;
5286 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5287 return -EFAULT;
5288
5289 rcu_read_lock();
5290 retval = -ESRCH;
5291 p = find_process_by_pid(pid);
5292 if (p != NULL)
5293 retval = sched_setscheduler(p, policy, &lparam);
5294 rcu_read_unlock();
5295
5296 return retval;
5297 }
5298
5299 /**
5300 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5301 * @pid: the pid in question.
5302 * @policy: new policy.
5303 * @param: structure containing the new RT priority.
5304 */
5305 asmlinkage long
5306 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5307 {
5308 /* negative values for policy are not valid */
5309 if (policy < 0)
5310 return -EINVAL;
5311
5312 return do_sched_setscheduler(pid, policy, param);
5313 }
5314
5315 /**
5316 * sys_sched_setparam - set/change the RT priority of a thread
5317 * @pid: the pid in question.
5318 * @param: structure containing the new RT priority.
5319 */
5320 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5321 {
5322 return do_sched_setscheduler(pid, -1, param);
5323 }
5324
5325 /**
5326 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5327 * @pid: the pid in question.
5328 */
5329 asmlinkage long sys_sched_getscheduler(pid_t pid)
5330 {
5331 struct task_struct *p;
5332 int retval;
5333
5334 if (pid < 0)
5335 return -EINVAL;
5336
5337 retval = -ESRCH;
5338 read_lock(&tasklist_lock);
5339 p = find_process_by_pid(pid);
5340 if (p) {
5341 retval = security_task_getscheduler(p);
5342 if (!retval)
5343 retval = p->policy;
5344 }
5345 read_unlock(&tasklist_lock);
5346 return retval;
5347 }
5348
5349 /**
5350 * sys_sched_getscheduler - get the RT priority of a thread
5351 * @pid: the pid in question.
5352 * @param: structure containing the RT priority.
5353 */
5354 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5355 {
5356 struct sched_param lp;
5357 struct task_struct *p;
5358 int retval;
5359
5360 if (!param || pid < 0)
5361 return -EINVAL;
5362
5363 read_lock(&tasklist_lock);
5364 p = find_process_by_pid(pid);
5365 retval = -ESRCH;
5366 if (!p)
5367 goto out_unlock;
5368
5369 retval = security_task_getscheduler(p);
5370 if (retval)
5371 goto out_unlock;
5372
5373 lp.sched_priority = p->rt_priority;
5374 read_unlock(&tasklist_lock);
5375
5376 /*
5377 * This one might sleep, we cannot do it with a spinlock held ...
5378 */
5379 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5380
5381 return retval;
5382
5383 out_unlock:
5384 read_unlock(&tasklist_lock);
5385 return retval;
5386 }
5387
5388 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5389 {
5390 cpumask_t cpus_allowed;
5391 cpumask_t new_mask = *in_mask;
5392 struct task_struct *p;
5393 int retval;
5394
5395 get_online_cpus();
5396 read_lock(&tasklist_lock);
5397
5398 p = find_process_by_pid(pid);
5399 if (!p) {
5400 read_unlock(&tasklist_lock);
5401 put_online_cpus();
5402 return -ESRCH;
5403 }
5404
5405 /*
5406 * It is not safe to call set_cpus_allowed with the
5407 * tasklist_lock held. We will bump the task_struct's
5408 * usage count and then drop tasklist_lock.
5409 */
5410 get_task_struct(p);
5411 read_unlock(&tasklist_lock);
5412
5413 retval = -EPERM;
5414 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5415 !capable(CAP_SYS_NICE))
5416 goto out_unlock;
5417
5418 retval = security_task_setscheduler(p, 0, NULL);
5419 if (retval)
5420 goto out_unlock;
5421
5422 cpuset_cpus_allowed(p, &cpus_allowed);
5423 cpus_and(new_mask, new_mask, cpus_allowed);
5424 again:
5425 retval = set_cpus_allowed_ptr(p, &new_mask);
5426
5427 if (!retval) {
5428 cpuset_cpus_allowed(p, &cpus_allowed);
5429 if (!cpus_subset(new_mask, cpus_allowed)) {
5430 /*
5431 * We must have raced with a concurrent cpuset
5432 * update. Just reset the cpus_allowed to the
5433 * cpuset's cpus_allowed
5434 */
5435 new_mask = cpus_allowed;
5436 goto again;
5437 }
5438 }
5439 out_unlock:
5440 put_task_struct(p);
5441 put_online_cpus();
5442 return retval;
5443 }
5444
5445 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5446 cpumask_t *new_mask)
5447 {
5448 if (len < sizeof(cpumask_t)) {
5449 memset(new_mask, 0, sizeof(cpumask_t));
5450 } else if (len > sizeof(cpumask_t)) {
5451 len = sizeof(cpumask_t);
5452 }
5453 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5454 }
5455
5456 /**
5457 * sys_sched_setaffinity - set the cpu affinity of a process
5458 * @pid: pid of the process
5459 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5460 * @user_mask_ptr: user-space pointer to the new cpu mask
5461 */
5462 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5463 unsigned long __user *user_mask_ptr)
5464 {
5465 cpumask_t new_mask;
5466 int retval;
5467
5468 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5469 if (retval)
5470 return retval;
5471
5472 return sched_setaffinity(pid, &new_mask);
5473 }
5474
5475 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5476 {
5477 struct task_struct *p;
5478 int retval;
5479
5480 get_online_cpus();
5481 read_lock(&tasklist_lock);
5482
5483 retval = -ESRCH;
5484 p = find_process_by_pid(pid);
5485 if (!p)
5486 goto out_unlock;
5487
5488 retval = security_task_getscheduler(p);
5489 if (retval)
5490 goto out_unlock;
5491
5492 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5493
5494 out_unlock:
5495 read_unlock(&tasklist_lock);
5496 put_online_cpus();
5497
5498 return retval;
5499 }
5500
5501 /**
5502 * sys_sched_getaffinity - get the cpu affinity of a process
5503 * @pid: pid of the process
5504 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5505 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5506 */
5507 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5508 unsigned long __user *user_mask_ptr)
5509 {
5510 int ret;
5511 cpumask_t mask;
5512
5513 if (len < sizeof(cpumask_t))
5514 return -EINVAL;
5515
5516 ret = sched_getaffinity(pid, &mask);
5517 if (ret < 0)
5518 return ret;
5519
5520 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5521 return -EFAULT;
5522
5523 return sizeof(cpumask_t);
5524 }
5525
5526 /**
5527 * sys_sched_yield - yield the current processor to other threads.
5528 *
5529 * This function yields the current CPU to other tasks. If there are no
5530 * other threads running on this CPU then this function will return.
5531 */
5532 asmlinkage long sys_sched_yield(void)
5533 {
5534 struct rq *rq = this_rq_lock();
5535
5536 schedstat_inc(rq, yld_count);
5537 current->sched_class->yield_task(rq);
5538
5539 /*
5540 * Since we are going to call schedule() anyway, there's
5541 * no need to preempt or enable interrupts:
5542 */
5543 __release(rq->lock);
5544 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5545 _raw_spin_unlock(&rq->lock);
5546 preempt_enable_no_resched();
5547
5548 schedule();
5549
5550 return 0;
5551 }
5552
5553 static void __cond_resched(void)
5554 {
5555 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5556 __might_sleep(__FILE__, __LINE__);
5557 #endif
5558 /*
5559 * The BKS might be reacquired before we have dropped
5560 * PREEMPT_ACTIVE, which could trigger a second
5561 * cond_resched() call.
5562 */
5563 do {
5564 add_preempt_count(PREEMPT_ACTIVE);
5565 schedule();
5566 sub_preempt_count(PREEMPT_ACTIVE);
5567 } while (need_resched());
5568 }
5569
5570 int __sched _cond_resched(void)
5571 {
5572 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5573 system_state == SYSTEM_RUNNING) {
5574 __cond_resched();
5575 return 1;
5576 }
5577 return 0;
5578 }
5579 EXPORT_SYMBOL(_cond_resched);
5580
5581 /*
5582 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5583 * call schedule, and on return reacquire the lock.
5584 *
5585 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5586 * operations here to prevent schedule() from being called twice (once via
5587 * spin_unlock(), once by hand).
5588 */
5589 int cond_resched_lock(spinlock_t *lock)
5590 {
5591 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5592 int ret = 0;
5593
5594 if (spin_needbreak(lock) || resched) {
5595 spin_unlock(lock);
5596 if (resched && need_resched())
5597 __cond_resched();
5598 else
5599 cpu_relax();
5600 ret = 1;
5601 spin_lock(lock);
5602 }
5603 return ret;
5604 }
5605 EXPORT_SYMBOL(cond_resched_lock);
5606
5607 int __sched cond_resched_softirq(void)
5608 {
5609 BUG_ON(!in_softirq());
5610
5611 if (need_resched() && system_state == SYSTEM_RUNNING) {
5612 local_bh_enable();
5613 __cond_resched();
5614 local_bh_disable();
5615 return 1;
5616 }
5617 return 0;
5618 }
5619 EXPORT_SYMBOL(cond_resched_softirq);
5620
5621 /**
5622 * yield - yield the current processor to other threads.
5623 *
5624 * This is a shortcut for kernel-space yielding - it marks the
5625 * thread runnable and calls sys_sched_yield().
5626 */
5627 void __sched yield(void)
5628 {
5629 set_current_state(TASK_RUNNING);
5630 sys_sched_yield();
5631 }
5632 EXPORT_SYMBOL(yield);
5633
5634 /*
5635 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5636 * that process accounting knows that this is a task in IO wait state.
5637 *
5638 * But don't do that if it is a deliberate, throttling IO wait (this task
5639 * has set its backing_dev_info: the queue against which it should throttle)
5640 */
5641 void __sched io_schedule(void)
5642 {
5643 struct rq *rq = &__raw_get_cpu_var(runqueues);
5644
5645 delayacct_blkio_start();
5646 atomic_inc(&rq->nr_iowait);
5647 schedule();
5648 atomic_dec(&rq->nr_iowait);
5649 delayacct_blkio_end();
5650 }
5651 EXPORT_SYMBOL(io_schedule);
5652
5653 long __sched io_schedule_timeout(long timeout)
5654 {
5655 struct rq *rq = &__raw_get_cpu_var(runqueues);
5656 long ret;
5657
5658 delayacct_blkio_start();
5659 atomic_inc(&rq->nr_iowait);
5660 ret = schedule_timeout(timeout);
5661 atomic_dec(&rq->nr_iowait);
5662 delayacct_blkio_end();
5663 return ret;
5664 }
5665
5666 /**
5667 * sys_sched_get_priority_max - return maximum RT priority.
5668 * @policy: scheduling class.
5669 *
5670 * this syscall returns the maximum rt_priority that can be used
5671 * by a given scheduling class.
5672 */
5673 asmlinkage long sys_sched_get_priority_max(int policy)
5674 {
5675 int ret = -EINVAL;
5676
5677 switch (policy) {
5678 case SCHED_FIFO:
5679 case SCHED_RR:
5680 ret = MAX_USER_RT_PRIO-1;
5681 break;
5682 case SCHED_NORMAL:
5683 case SCHED_BATCH:
5684 case SCHED_IDLE:
5685 ret = 0;
5686 break;
5687 }
5688 return ret;
5689 }
5690
5691 /**
5692 * sys_sched_get_priority_min - return minimum RT priority.
5693 * @policy: scheduling class.
5694 *
5695 * this syscall returns the minimum rt_priority that can be used
5696 * by a given scheduling class.
5697 */
5698 asmlinkage long sys_sched_get_priority_min(int policy)
5699 {
5700 int ret = -EINVAL;
5701
5702 switch (policy) {
5703 case SCHED_FIFO:
5704 case SCHED_RR:
5705 ret = 1;
5706 break;
5707 case SCHED_NORMAL:
5708 case SCHED_BATCH:
5709 case SCHED_IDLE:
5710 ret = 0;
5711 }
5712 return ret;
5713 }
5714
5715 /**
5716 * sys_sched_rr_get_interval - return the default timeslice of a process.
5717 * @pid: pid of the process.
5718 * @interval: userspace pointer to the timeslice value.
5719 *
5720 * this syscall writes the default timeslice value of a given process
5721 * into the user-space timespec buffer. A value of '0' means infinity.
5722 */
5723 asmlinkage
5724 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5725 {
5726 struct task_struct *p;
5727 unsigned int time_slice;
5728 int retval;
5729 struct timespec t;
5730
5731 if (pid < 0)
5732 return -EINVAL;
5733
5734 retval = -ESRCH;
5735 read_lock(&tasklist_lock);
5736 p = find_process_by_pid(pid);
5737 if (!p)
5738 goto out_unlock;
5739
5740 retval = security_task_getscheduler(p);
5741 if (retval)
5742 goto out_unlock;
5743
5744 /*
5745 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5746 * tasks that are on an otherwise idle runqueue:
5747 */
5748 time_slice = 0;
5749 if (p->policy == SCHED_RR) {
5750 time_slice = DEF_TIMESLICE;
5751 } else if (p->policy != SCHED_FIFO) {
5752 struct sched_entity *se = &p->se;
5753 unsigned long flags;
5754 struct rq *rq;
5755
5756 rq = task_rq_lock(p, &flags);
5757 if (rq->cfs.load.weight)
5758 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5759 task_rq_unlock(rq, &flags);
5760 }
5761 read_unlock(&tasklist_lock);
5762 jiffies_to_timespec(time_slice, &t);
5763 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5764 return retval;
5765
5766 out_unlock:
5767 read_unlock(&tasklist_lock);
5768 return retval;
5769 }
5770
5771 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5772
5773 void sched_show_task(struct task_struct *p)
5774 {
5775 unsigned long free = 0;
5776 unsigned state;
5777
5778 state = p->state ? __ffs(p->state) + 1 : 0;
5779 printk(KERN_INFO "%-13.13s %c", p->comm,
5780 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5781 #if BITS_PER_LONG == 32
5782 if (state == TASK_RUNNING)
5783 printk(KERN_CONT " running ");
5784 else
5785 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5786 #else
5787 if (state == TASK_RUNNING)
5788 printk(KERN_CONT " running task ");
5789 else
5790 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5791 #endif
5792 #ifdef CONFIG_DEBUG_STACK_USAGE
5793 {
5794 unsigned long *n = end_of_stack(p);
5795 while (!*n)
5796 n++;
5797 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5798 }
5799 #endif
5800 printk(KERN_CONT "%5lu %5d %6d\n", free,
5801 task_pid_nr(p), task_pid_nr(p->real_parent));
5802
5803 show_stack(p, NULL);
5804 }
5805
5806 void show_state_filter(unsigned long state_filter)
5807 {
5808 struct task_struct *g, *p;
5809
5810 #if BITS_PER_LONG == 32
5811 printk(KERN_INFO
5812 " task PC stack pid father\n");
5813 #else
5814 printk(KERN_INFO
5815 " task PC stack pid father\n");
5816 #endif
5817 read_lock(&tasklist_lock);
5818 do_each_thread(g, p) {
5819 /*
5820 * reset the NMI-timeout, listing all files on a slow
5821 * console might take alot of time:
5822 */
5823 touch_nmi_watchdog();
5824 if (!state_filter || (p->state & state_filter))
5825 sched_show_task(p);
5826 } while_each_thread(g, p);
5827
5828 touch_all_softlockup_watchdogs();
5829
5830 #ifdef CONFIG_SCHED_DEBUG
5831 sysrq_sched_debug_show();
5832 #endif
5833 read_unlock(&tasklist_lock);
5834 /*
5835 * Only show locks if all tasks are dumped:
5836 */
5837 if (state_filter == -1)
5838 debug_show_all_locks();
5839 }
5840
5841 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5842 {
5843 idle->sched_class = &idle_sched_class;
5844 }
5845
5846 /**
5847 * init_idle - set up an idle thread for a given CPU
5848 * @idle: task in question
5849 * @cpu: cpu the idle task belongs to
5850 *
5851 * NOTE: this function does not set the idle thread's NEED_RESCHED
5852 * flag, to make booting more robust.
5853 */
5854 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5855 {
5856 struct rq *rq = cpu_rq(cpu);
5857 unsigned long flags;
5858
5859 __sched_fork(idle);
5860 idle->se.exec_start = sched_clock();
5861
5862 idle->prio = idle->normal_prio = MAX_PRIO;
5863 idle->cpus_allowed = cpumask_of_cpu(cpu);
5864 __set_task_cpu(idle, cpu);
5865
5866 spin_lock_irqsave(&rq->lock, flags);
5867 rq->curr = rq->idle = idle;
5868 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5869 idle->oncpu = 1;
5870 #endif
5871 spin_unlock_irqrestore(&rq->lock, flags);
5872
5873 /* Set the preempt count _outside_ the spinlocks! */
5874 #if defined(CONFIG_PREEMPT)
5875 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5876 #else
5877 task_thread_info(idle)->preempt_count = 0;
5878 #endif
5879 /*
5880 * The idle tasks have their own, simple scheduling class:
5881 */
5882 idle->sched_class = &idle_sched_class;
5883 }
5884
5885 /*
5886 * In a system that switches off the HZ timer nohz_cpu_mask
5887 * indicates which cpus entered this state. This is used
5888 * in the rcu update to wait only for active cpus. For system
5889 * which do not switch off the HZ timer nohz_cpu_mask should
5890 * always be CPU_MASK_NONE.
5891 */
5892 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5893
5894 /*
5895 * Increase the granularity value when there are more CPUs,
5896 * because with more CPUs the 'effective latency' as visible
5897 * to users decreases. But the relationship is not linear,
5898 * so pick a second-best guess by going with the log2 of the
5899 * number of CPUs.
5900 *
5901 * This idea comes from the SD scheduler of Con Kolivas:
5902 */
5903 static inline void sched_init_granularity(void)
5904 {
5905 unsigned int factor = 1 + ilog2(num_online_cpus());
5906 const unsigned long limit = 200000000;
5907
5908 sysctl_sched_min_granularity *= factor;
5909 if (sysctl_sched_min_granularity > limit)
5910 sysctl_sched_min_granularity = limit;
5911
5912 sysctl_sched_latency *= factor;
5913 if (sysctl_sched_latency > limit)
5914 sysctl_sched_latency = limit;
5915
5916 sysctl_sched_wakeup_granularity *= factor;
5917
5918 sysctl_sched_shares_ratelimit *= factor;
5919 }
5920
5921 #ifdef CONFIG_SMP
5922 /*
5923 * This is how migration works:
5924 *
5925 * 1) we queue a struct migration_req structure in the source CPU's
5926 * runqueue and wake up that CPU's migration thread.
5927 * 2) we down() the locked semaphore => thread blocks.
5928 * 3) migration thread wakes up (implicitly it forces the migrated
5929 * thread off the CPU)
5930 * 4) it gets the migration request and checks whether the migrated
5931 * task is still in the wrong runqueue.
5932 * 5) if it's in the wrong runqueue then the migration thread removes
5933 * it and puts it into the right queue.
5934 * 6) migration thread up()s the semaphore.
5935 * 7) we wake up and the migration is done.
5936 */
5937
5938 /*
5939 * Change a given task's CPU affinity. Migrate the thread to a
5940 * proper CPU and schedule it away if the CPU it's executing on
5941 * is removed from the allowed bitmask.
5942 *
5943 * NOTE: the caller must have a valid reference to the task, the
5944 * task must not exit() & deallocate itself prematurely. The
5945 * call is not atomic; no spinlocks may be held.
5946 */
5947 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5948 {
5949 struct migration_req req;
5950 unsigned long flags;
5951 struct rq *rq;
5952 int ret = 0;
5953
5954 rq = task_rq_lock(p, &flags);
5955 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5956 ret = -EINVAL;
5957 goto out;
5958 }
5959
5960 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5961 !cpus_equal(p->cpus_allowed, *new_mask))) {
5962 ret = -EINVAL;
5963 goto out;
5964 }
5965
5966 if (p->sched_class->set_cpus_allowed)
5967 p->sched_class->set_cpus_allowed(p, new_mask);
5968 else {
5969 p->cpus_allowed = *new_mask;
5970 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5971 }
5972
5973 /* Can the task run on the task's current CPU? If so, we're done */
5974 if (cpu_isset(task_cpu(p), *new_mask))
5975 goto out;
5976
5977 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5978 /* Need help from migration thread: drop lock and wait. */
5979 task_rq_unlock(rq, &flags);
5980 wake_up_process(rq->migration_thread);
5981 wait_for_completion(&req.done);
5982 tlb_migrate_finish(p->mm);
5983 return 0;
5984 }
5985 out:
5986 task_rq_unlock(rq, &flags);
5987
5988 return ret;
5989 }
5990 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5991
5992 /*
5993 * Move (not current) task off this cpu, onto dest cpu. We're doing
5994 * this because either it can't run here any more (set_cpus_allowed()
5995 * away from this CPU, or CPU going down), or because we're
5996 * attempting to rebalance this task on exec (sched_exec).
5997 *
5998 * So we race with normal scheduler movements, but that's OK, as long
5999 * as the task is no longer on this CPU.
6000 *
6001 * Returns non-zero if task was successfully migrated.
6002 */
6003 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6004 {
6005 struct rq *rq_dest, *rq_src;
6006 int ret = 0, on_rq;
6007
6008 if (unlikely(!cpu_active(dest_cpu)))
6009 return ret;
6010
6011 rq_src = cpu_rq(src_cpu);
6012 rq_dest = cpu_rq(dest_cpu);
6013
6014 double_rq_lock(rq_src, rq_dest);
6015 /* Already moved. */
6016 if (task_cpu(p) != src_cpu)
6017 goto done;
6018 /* Affinity changed (again). */
6019 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6020 goto fail;
6021
6022 on_rq = p->se.on_rq;
6023 if (on_rq)
6024 deactivate_task(rq_src, p, 0);
6025
6026 set_task_cpu(p, dest_cpu);
6027 if (on_rq) {
6028 activate_task(rq_dest, p, 0);
6029 check_preempt_curr(rq_dest, p, 0);
6030 }
6031 done:
6032 ret = 1;
6033 fail:
6034 double_rq_unlock(rq_src, rq_dest);
6035 return ret;
6036 }
6037
6038 /*
6039 * migration_thread - this is a highprio system thread that performs
6040 * thread migration by bumping thread off CPU then 'pushing' onto
6041 * another runqueue.
6042 */
6043 static int migration_thread(void *data)
6044 {
6045 int cpu = (long)data;
6046 struct rq *rq;
6047
6048 rq = cpu_rq(cpu);
6049 BUG_ON(rq->migration_thread != current);
6050
6051 set_current_state(TASK_INTERRUPTIBLE);
6052 while (!kthread_should_stop()) {
6053 struct migration_req *req;
6054 struct list_head *head;
6055
6056 spin_lock_irq(&rq->lock);
6057
6058 if (cpu_is_offline(cpu)) {
6059 spin_unlock_irq(&rq->lock);
6060 goto wait_to_die;
6061 }
6062
6063 if (rq->active_balance) {
6064 active_load_balance(rq, cpu);
6065 rq->active_balance = 0;
6066 }
6067
6068 head = &rq->migration_queue;
6069
6070 if (list_empty(head)) {
6071 spin_unlock_irq(&rq->lock);
6072 schedule();
6073 set_current_state(TASK_INTERRUPTIBLE);
6074 continue;
6075 }
6076 req = list_entry(head->next, struct migration_req, list);
6077 list_del_init(head->next);
6078
6079 spin_unlock(&rq->lock);
6080 __migrate_task(req->task, cpu, req->dest_cpu);
6081 local_irq_enable();
6082
6083 complete(&req->done);
6084 }
6085 __set_current_state(TASK_RUNNING);
6086 return 0;
6087
6088 wait_to_die:
6089 /* Wait for kthread_stop */
6090 set_current_state(TASK_INTERRUPTIBLE);
6091 while (!kthread_should_stop()) {
6092 schedule();
6093 set_current_state(TASK_INTERRUPTIBLE);
6094 }
6095 __set_current_state(TASK_RUNNING);
6096 return 0;
6097 }
6098
6099 #ifdef CONFIG_HOTPLUG_CPU
6100
6101 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6102 {
6103 int ret;
6104
6105 local_irq_disable();
6106 ret = __migrate_task(p, src_cpu, dest_cpu);
6107 local_irq_enable();
6108 return ret;
6109 }
6110
6111 /*
6112 * Figure out where task on dead CPU should go, use force if necessary.
6113 * NOTE: interrupts should be disabled by the caller
6114 */
6115 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6116 {
6117 unsigned long flags;
6118 cpumask_t mask;
6119 struct rq *rq;
6120 int dest_cpu;
6121
6122 do {
6123 /* On same node? */
6124 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6125 cpus_and(mask, mask, p->cpus_allowed);
6126 dest_cpu = any_online_cpu(mask);
6127
6128 /* On any allowed CPU? */
6129 if (dest_cpu >= nr_cpu_ids)
6130 dest_cpu = any_online_cpu(p->cpus_allowed);
6131
6132 /* No more Mr. Nice Guy. */
6133 if (dest_cpu >= nr_cpu_ids) {
6134 cpumask_t cpus_allowed;
6135
6136 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6137 /*
6138 * Try to stay on the same cpuset, where the
6139 * current cpuset may be a subset of all cpus.
6140 * The cpuset_cpus_allowed_locked() variant of
6141 * cpuset_cpus_allowed() will not block. It must be
6142 * called within calls to cpuset_lock/cpuset_unlock.
6143 */
6144 rq = task_rq_lock(p, &flags);
6145 p->cpus_allowed = cpus_allowed;
6146 dest_cpu = any_online_cpu(p->cpus_allowed);
6147 task_rq_unlock(rq, &flags);
6148
6149 /*
6150 * Don't tell them about moving exiting tasks or
6151 * kernel threads (both mm NULL), since they never
6152 * leave kernel.
6153 */
6154 if (p->mm && printk_ratelimit()) {
6155 printk(KERN_INFO "process %d (%s) no "
6156 "longer affine to cpu%d\n",
6157 task_pid_nr(p), p->comm, dead_cpu);
6158 }
6159 }
6160 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6161 }
6162
6163 /*
6164 * While a dead CPU has no uninterruptible tasks queued at this point,
6165 * it might still have a nonzero ->nr_uninterruptible counter, because
6166 * for performance reasons the counter is not stricly tracking tasks to
6167 * their home CPUs. So we just add the counter to another CPU's counter,
6168 * to keep the global sum constant after CPU-down:
6169 */
6170 static void migrate_nr_uninterruptible(struct rq *rq_src)
6171 {
6172 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6173 unsigned long flags;
6174
6175 local_irq_save(flags);
6176 double_rq_lock(rq_src, rq_dest);
6177 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6178 rq_src->nr_uninterruptible = 0;
6179 double_rq_unlock(rq_src, rq_dest);
6180 local_irq_restore(flags);
6181 }
6182
6183 /* Run through task list and migrate tasks from the dead cpu. */
6184 static void migrate_live_tasks(int src_cpu)
6185 {
6186 struct task_struct *p, *t;
6187
6188 read_lock(&tasklist_lock);
6189
6190 do_each_thread(t, p) {
6191 if (p == current)
6192 continue;
6193
6194 if (task_cpu(p) == src_cpu)
6195 move_task_off_dead_cpu(src_cpu, p);
6196 } while_each_thread(t, p);
6197
6198 read_unlock(&tasklist_lock);
6199 }
6200
6201 /*
6202 * Schedules idle task to be the next runnable task on current CPU.
6203 * It does so by boosting its priority to highest possible.
6204 * Used by CPU offline code.
6205 */
6206 void sched_idle_next(void)
6207 {
6208 int this_cpu = smp_processor_id();
6209 struct rq *rq = cpu_rq(this_cpu);
6210 struct task_struct *p = rq->idle;
6211 unsigned long flags;
6212
6213 /* cpu has to be offline */
6214 BUG_ON(cpu_online(this_cpu));
6215
6216 /*
6217 * Strictly not necessary since rest of the CPUs are stopped by now
6218 * and interrupts disabled on the current cpu.
6219 */
6220 spin_lock_irqsave(&rq->lock, flags);
6221
6222 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6223
6224 update_rq_clock(rq);
6225 activate_task(rq, p, 0);
6226
6227 spin_unlock_irqrestore(&rq->lock, flags);
6228 }
6229
6230 /*
6231 * Ensures that the idle task is using init_mm right before its cpu goes
6232 * offline.
6233 */
6234 void idle_task_exit(void)
6235 {
6236 struct mm_struct *mm = current->active_mm;
6237
6238 BUG_ON(cpu_online(smp_processor_id()));
6239
6240 if (mm != &init_mm)
6241 switch_mm(mm, &init_mm, current);
6242 mmdrop(mm);
6243 }
6244
6245 /* called under rq->lock with disabled interrupts */
6246 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6247 {
6248 struct rq *rq = cpu_rq(dead_cpu);
6249
6250 /* Must be exiting, otherwise would be on tasklist. */
6251 BUG_ON(!p->exit_state);
6252
6253 /* Cannot have done final schedule yet: would have vanished. */
6254 BUG_ON(p->state == TASK_DEAD);
6255
6256 get_task_struct(p);
6257
6258 /*
6259 * Drop lock around migration; if someone else moves it,
6260 * that's OK. No task can be added to this CPU, so iteration is
6261 * fine.
6262 */
6263 spin_unlock_irq(&rq->lock);
6264 move_task_off_dead_cpu(dead_cpu, p);
6265 spin_lock_irq(&rq->lock);
6266
6267 put_task_struct(p);
6268 }
6269
6270 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6271 static void migrate_dead_tasks(unsigned int dead_cpu)
6272 {
6273 struct rq *rq = cpu_rq(dead_cpu);
6274 struct task_struct *next;
6275
6276 for ( ; ; ) {
6277 if (!rq->nr_running)
6278 break;
6279 update_rq_clock(rq);
6280 next = pick_next_task(rq, rq->curr);
6281 if (!next)
6282 break;
6283 next->sched_class->put_prev_task(rq, next);
6284 migrate_dead(dead_cpu, next);
6285
6286 }
6287 }
6288 #endif /* CONFIG_HOTPLUG_CPU */
6289
6290 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6291
6292 static struct ctl_table sd_ctl_dir[] = {
6293 {
6294 .procname = "sched_domain",
6295 .mode = 0555,
6296 },
6297 {0, },
6298 };
6299
6300 static struct ctl_table sd_ctl_root[] = {
6301 {
6302 .ctl_name = CTL_KERN,
6303 .procname = "kernel",
6304 .mode = 0555,
6305 .child = sd_ctl_dir,
6306 },
6307 {0, },
6308 };
6309
6310 static struct ctl_table *sd_alloc_ctl_entry(int n)
6311 {
6312 struct ctl_table *entry =
6313 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6314
6315 return entry;
6316 }
6317
6318 static void sd_free_ctl_entry(struct ctl_table **tablep)
6319 {
6320 struct ctl_table *entry;
6321
6322 /*
6323 * In the intermediate directories, both the child directory and
6324 * procname are dynamically allocated and could fail but the mode
6325 * will always be set. In the lowest directory the names are
6326 * static strings and all have proc handlers.
6327 */
6328 for (entry = *tablep; entry->mode; entry++) {
6329 if (entry->child)
6330 sd_free_ctl_entry(&entry->child);
6331 if (entry->proc_handler == NULL)
6332 kfree(entry->procname);
6333 }
6334
6335 kfree(*tablep);
6336 *tablep = NULL;
6337 }
6338
6339 static void
6340 set_table_entry(struct ctl_table *entry,
6341 const char *procname, void *data, int maxlen,
6342 mode_t mode, proc_handler *proc_handler)
6343 {
6344 entry->procname = procname;
6345 entry->data = data;
6346 entry->maxlen = maxlen;
6347 entry->mode = mode;
6348 entry->proc_handler = proc_handler;
6349 }
6350
6351 static struct ctl_table *
6352 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6353 {
6354 struct ctl_table *table = sd_alloc_ctl_entry(12);
6355
6356 if (table == NULL)
6357 return NULL;
6358
6359 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6360 sizeof(long), 0644, proc_doulongvec_minmax);
6361 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6362 sizeof(long), 0644, proc_doulongvec_minmax);
6363 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6364 sizeof(int), 0644, proc_dointvec_minmax);
6365 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6366 sizeof(int), 0644, proc_dointvec_minmax);
6367 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6368 sizeof(int), 0644, proc_dointvec_minmax);
6369 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6370 sizeof(int), 0644, proc_dointvec_minmax);
6371 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6372 sizeof(int), 0644, proc_dointvec_minmax);
6373 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6374 sizeof(int), 0644, proc_dointvec_minmax);
6375 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6376 sizeof(int), 0644, proc_dointvec_minmax);
6377 set_table_entry(&table[9], "cache_nice_tries",
6378 &sd->cache_nice_tries,
6379 sizeof(int), 0644, proc_dointvec_minmax);
6380 set_table_entry(&table[10], "flags", &sd->flags,
6381 sizeof(int), 0644, proc_dointvec_minmax);
6382 /* &table[11] is terminator */
6383
6384 return table;
6385 }
6386
6387 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6388 {
6389 struct ctl_table *entry, *table;
6390 struct sched_domain *sd;
6391 int domain_num = 0, i;
6392 char buf[32];
6393
6394 for_each_domain(cpu, sd)
6395 domain_num++;
6396 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6397 if (table == NULL)
6398 return NULL;
6399
6400 i = 0;
6401 for_each_domain(cpu, sd) {
6402 snprintf(buf, 32, "domain%d", i);
6403 entry->procname = kstrdup(buf, GFP_KERNEL);
6404 entry->mode = 0555;
6405 entry->child = sd_alloc_ctl_domain_table(sd);
6406 entry++;
6407 i++;
6408 }
6409 return table;
6410 }
6411
6412 static struct ctl_table_header *sd_sysctl_header;
6413 static void register_sched_domain_sysctl(void)
6414 {
6415 int i, cpu_num = num_online_cpus();
6416 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6417 char buf[32];
6418
6419 WARN_ON(sd_ctl_dir[0].child);
6420 sd_ctl_dir[0].child = entry;
6421
6422 if (entry == NULL)
6423 return;
6424
6425 for_each_online_cpu(i) {
6426 snprintf(buf, 32, "cpu%d", i);
6427 entry->procname = kstrdup(buf, GFP_KERNEL);
6428 entry->mode = 0555;
6429 entry->child = sd_alloc_ctl_cpu_table(i);
6430 entry++;
6431 }
6432
6433 WARN_ON(sd_sysctl_header);
6434 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6435 }
6436
6437 /* may be called multiple times per register */
6438 static void unregister_sched_domain_sysctl(void)
6439 {
6440 if (sd_sysctl_header)
6441 unregister_sysctl_table(sd_sysctl_header);
6442 sd_sysctl_header = NULL;
6443 if (sd_ctl_dir[0].child)
6444 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6445 }
6446 #else
6447 static void register_sched_domain_sysctl(void)
6448 {
6449 }
6450 static void unregister_sched_domain_sysctl(void)
6451 {
6452 }
6453 #endif
6454
6455 static void set_rq_online(struct rq *rq)
6456 {
6457 if (!rq->online) {
6458 const struct sched_class *class;
6459
6460 cpu_set(rq->cpu, rq->rd->online);
6461 rq->online = 1;
6462
6463 for_each_class(class) {
6464 if (class->rq_online)
6465 class->rq_online(rq);
6466 }
6467 }
6468 }
6469
6470 static void set_rq_offline(struct rq *rq)
6471 {
6472 if (rq->online) {
6473 const struct sched_class *class;
6474
6475 for_each_class(class) {
6476 if (class->rq_offline)
6477 class->rq_offline(rq);
6478 }
6479
6480 cpu_clear(rq->cpu, rq->rd->online);
6481 rq->online = 0;
6482 }
6483 }
6484
6485 /*
6486 * migration_call - callback that gets triggered when a CPU is added.
6487 * Here we can start up the necessary migration thread for the new CPU.
6488 */
6489 static int __cpuinit
6490 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6491 {
6492 struct task_struct *p;
6493 int cpu = (long)hcpu;
6494 unsigned long flags;
6495 struct rq *rq;
6496
6497 switch (action) {
6498
6499 case CPU_UP_PREPARE:
6500 case CPU_UP_PREPARE_FROZEN:
6501 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6502 if (IS_ERR(p))
6503 return NOTIFY_BAD;
6504 kthread_bind(p, cpu);
6505 /* Must be high prio: stop_machine expects to yield to it. */
6506 rq = task_rq_lock(p, &flags);
6507 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6508 task_rq_unlock(rq, &flags);
6509 cpu_rq(cpu)->migration_thread = p;
6510 break;
6511
6512 case CPU_ONLINE:
6513 case CPU_ONLINE_FROZEN:
6514 /* Strictly unnecessary, as first user will wake it. */
6515 wake_up_process(cpu_rq(cpu)->migration_thread);
6516
6517 /* Update our root-domain */
6518 rq = cpu_rq(cpu);
6519 spin_lock_irqsave(&rq->lock, flags);
6520 if (rq->rd) {
6521 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6522
6523 set_rq_online(rq);
6524 }
6525 spin_unlock_irqrestore(&rq->lock, flags);
6526 break;
6527
6528 #ifdef CONFIG_HOTPLUG_CPU
6529 case CPU_UP_CANCELED:
6530 case CPU_UP_CANCELED_FROZEN:
6531 if (!cpu_rq(cpu)->migration_thread)
6532 break;
6533 /* Unbind it from offline cpu so it can run. Fall thru. */
6534 kthread_bind(cpu_rq(cpu)->migration_thread,
6535 any_online_cpu(cpu_online_map));
6536 kthread_stop(cpu_rq(cpu)->migration_thread);
6537 cpu_rq(cpu)->migration_thread = NULL;
6538 break;
6539
6540 case CPU_DEAD:
6541 case CPU_DEAD_FROZEN:
6542 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6543 migrate_live_tasks(cpu);
6544 rq = cpu_rq(cpu);
6545 kthread_stop(rq->migration_thread);
6546 rq->migration_thread = NULL;
6547 /* Idle task back to normal (off runqueue, low prio) */
6548 spin_lock_irq(&rq->lock);
6549 update_rq_clock(rq);
6550 deactivate_task(rq, rq->idle, 0);
6551 rq->idle->static_prio = MAX_PRIO;
6552 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6553 rq->idle->sched_class = &idle_sched_class;
6554 migrate_dead_tasks(cpu);
6555 spin_unlock_irq(&rq->lock);
6556 cpuset_unlock();
6557 migrate_nr_uninterruptible(rq);
6558 BUG_ON(rq->nr_running != 0);
6559
6560 /*
6561 * No need to migrate the tasks: it was best-effort if
6562 * they didn't take sched_hotcpu_mutex. Just wake up
6563 * the requestors.
6564 */
6565 spin_lock_irq(&rq->lock);
6566 while (!list_empty(&rq->migration_queue)) {
6567 struct migration_req *req;
6568
6569 req = list_entry(rq->migration_queue.next,
6570 struct migration_req, list);
6571 list_del_init(&req->list);
6572 complete(&req->done);
6573 }
6574 spin_unlock_irq(&rq->lock);
6575 break;
6576
6577 case CPU_DYING:
6578 case CPU_DYING_FROZEN:
6579 /* Update our root-domain */
6580 rq = cpu_rq(cpu);
6581 spin_lock_irqsave(&rq->lock, flags);
6582 if (rq->rd) {
6583 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6584 set_rq_offline(rq);
6585 }
6586 spin_unlock_irqrestore(&rq->lock, flags);
6587 break;
6588 #endif
6589 }
6590 return NOTIFY_OK;
6591 }
6592
6593 /* Register at highest priority so that task migration (migrate_all_tasks)
6594 * happens before everything else.
6595 */
6596 static struct notifier_block __cpuinitdata migration_notifier = {
6597 .notifier_call = migration_call,
6598 .priority = 10
6599 };
6600
6601 static int __init migration_init(void)
6602 {
6603 void *cpu = (void *)(long)smp_processor_id();
6604 int err;
6605
6606 /* Start one for the boot CPU: */
6607 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6608 BUG_ON(err == NOTIFY_BAD);
6609 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6610 register_cpu_notifier(&migration_notifier);
6611
6612 return err;
6613 }
6614 early_initcall(migration_init);
6615 #endif
6616
6617 #ifdef CONFIG_SMP
6618
6619 #ifdef CONFIG_SCHED_DEBUG
6620
6621 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6622 {
6623 switch (lvl) {
6624 case SD_LV_NONE:
6625 return "NONE";
6626 case SD_LV_SIBLING:
6627 return "SIBLING";
6628 case SD_LV_MC:
6629 return "MC";
6630 case SD_LV_CPU:
6631 return "CPU";
6632 case SD_LV_NODE:
6633 return "NODE";
6634 case SD_LV_ALLNODES:
6635 return "ALLNODES";
6636 case SD_LV_MAX:
6637 return "MAX";
6638
6639 }
6640 return "MAX";
6641 }
6642
6643 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6644 cpumask_t *groupmask)
6645 {
6646 struct sched_group *group = sd->groups;
6647 char str[256];
6648
6649 cpulist_scnprintf(str, sizeof(str), sd->span);
6650 cpus_clear(*groupmask);
6651
6652 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6653
6654 if (!(sd->flags & SD_LOAD_BALANCE)) {
6655 printk("does not load-balance\n");
6656 if (sd->parent)
6657 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6658 " has parent");
6659 return -1;
6660 }
6661
6662 printk(KERN_CONT "span %s level %s\n",
6663 str, sd_level_to_string(sd->level));
6664
6665 if (!cpu_isset(cpu, sd->span)) {
6666 printk(KERN_ERR "ERROR: domain->span does not contain "
6667 "CPU%d\n", cpu);
6668 }
6669 if (!cpu_isset(cpu, group->cpumask)) {
6670 printk(KERN_ERR "ERROR: domain->groups does not contain"
6671 " CPU%d\n", cpu);
6672 }
6673
6674 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6675 do {
6676 if (!group) {
6677 printk("\n");
6678 printk(KERN_ERR "ERROR: group is NULL\n");
6679 break;
6680 }
6681
6682 if (!group->__cpu_power) {
6683 printk(KERN_CONT "\n");
6684 printk(KERN_ERR "ERROR: domain->cpu_power not "
6685 "set\n");
6686 break;
6687 }
6688
6689 if (!cpus_weight(group->cpumask)) {
6690 printk(KERN_CONT "\n");
6691 printk(KERN_ERR "ERROR: empty group\n");
6692 break;
6693 }
6694
6695 if (cpus_intersects(*groupmask, group->cpumask)) {
6696 printk(KERN_CONT "\n");
6697 printk(KERN_ERR "ERROR: repeated CPUs\n");
6698 break;
6699 }
6700
6701 cpus_or(*groupmask, *groupmask, group->cpumask);
6702
6703 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6704 printk(KERN_CONT " %s", str);
6705
6706 group = group->next;
6707 } while (group != sd->groups);
6708 printk(KERN_CONT "\n");
6709
6710 if (!cpus_equal(sd->span, *groupmask))
6711 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6712
6713 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6714 printk(KERN_ERR "ERROR: parent span is not a superset "
6715 "of domain->span\n");
6716 return 0;
6717 }
6718
6719 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6720 {
6721 cpumask_t *groupmask;
6722 int level = 0;
6723
6724 if (!sd) {
6725 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6726 return;
6727 }
6728
6729 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6730
6731 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6732 if (!groupmask) {
6733 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6734 return;
6735 }
6736
6737 for (;;) {
6738 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6739 break;
6740 level++;
6741 sd = sd->parent;
6742 if (!sd)
6743 break;
6744 }
6745 kfree(groupmask);
6746 }
6747 #else /* !CONFIG_SCHED_DEBUG */
6748 # define sched_domain_debug(sd, cpu) do { } while (0)
6749 #endif /* CONFIG_SCHED_DEBUG */
6750
6751 static int sd_degenerate(struct sched_domain *sd)
6752 {
6753 if (cpus_weight(sd->span) == 1)
6754 return 1;
6755
6756 /* Following flags need at least 2 groups */
6757 if (sd->flags & (SD_LOAD_BALANCE |
6758 SD_BALANCE_NEWIDLE |
6759 SD_BALANCE_FORK |
6760 SD_BALANCE_EXEC |
6761 SD_SHARE_CPUPOWER |
6762 SD_SHARE_PKG_RESOURCES)) {
6763 if (sd->groups != sd->groups->next)
6764 return 0;
6765 }
6766
6767 /* Following flags don't use groups */
6768 if (sd->flags & (SD_WAKE_IDLE |
6769 SD_WAKE_AFFINE |
6770 SD_WAKE_BALANCE))
6771 return 0;
6772
6773 return 1;
6774 }
6775
6776 static int
6777 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6778 {
6779 unsigned long cflags = sd->flags, pflags = parent->flags;
6780
6781 if (sd_degenerate(parent))
6782 return 1;
6783
6784 if (!cpus_equal(sd->span, parent->span))
6785 return 0;
6786
6787 /* Does parent contain flags not in child? */
6788 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6789 if (cflags & SD_WAKE_AFFINE)
6790 pflags &= ~SD_WAKE_BALANCE;
6791 /* Flags needing groups don't count if only 1 group in parent */
6792 if (parent->groups == parent->groups->next) {
6793 pflags &= ~(SD_LOAD_BALANCE |
6794 SD_BALANCE_NEWIDLE |
6795 SD_BALANCE_FORK |
6796 SD_BALANCE_EXEC |
6797 SD_SHARE_CPUPOWER |
6798 SD_SHARE_PKG_RESOURCES);
6799 }
6800 if (~cflags & pflags)
6801 return 0;
6802
6803 return 1;
6804 }
6805
6806 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6807 {
6808 unsigned long flags;
6809
6810 spin_lock_irqsave(&rq->lock, flags);
6811
6812 if (rq->rd) {
6813 struct root_domain *old_rd = rq->rd;
6814
6815 if (cpu_isset(rq->cpu, old_rd->online))
6816 set_rq_offline(rq);
6817
6818 cpu_clear(rq->cpu, old_rd->span);
6819
6820 if (atomic_dec_and_test(&old_rd->refcount))
6821 kfree(old_rd);
6822 }
6823
6824 atomic_inc(&rd->refcount);
6825 rq->rd = rd;
6826
6827 cpu_set(rq->cpu, rd->span);
6828 if (cpu_isset(rq->cpu, cpu_online_map))
6829 set_rq_online(rq);
6830
6831 spin_unlock_irqrestore(&rq->lock, flags);
6832 }
6833
6834 static void init_rootdomain(struct root_domain *rd)
6835 {
6836 memset(rd, 0, sizeof(*rd));
6837
6838 cpus_clear(rd->span);
6839 cpus_clear(rd->online);
6840
6841 cpupri_init(&rd->cpupri);
6842 }
6843
6844 static void init_defrootdomain(void)
6845 {
6846 init_rootdomain(&def_root_domain);
6847 atomic_set(&def_root_domain.refcount, 1);
6848 }
6849
6850 static struct root_domain *alloc_rootdomain(void)
6851 {
6852 struct root_domain *rd;
6853
6854 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6855 if (!rd)
6856 return NULL;
6857
6858 init_rootdomain(rd);
6859
6860 return rd;
6861 }
6862
6863 /*
6864 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6865 * hold the hotplug lock.
6866 */
6867 static void
6868 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6869 {
6870 struct rq *rq = cpu_rq(cpu);
6871 struct sched_domain *tmp;
6872
6873 /* Remove the sched domains which do not contribute to scheduling. */
6874 for (tmp = sd; tmp; tmp = tmp->parent) {
6875 struct sched_domain *parent = tmp->parent;
6876 if (!parent)
6877 break;
6878 if (sd_parent_degenerate(tmp, parent)) {
6879 tmp->parent = parent->parent;
6880 if (parent->parent)
6881 parent->parent->child = tmp;
6882 }
6883 }
6884
6885 if (sd && sd_degenerate(sd)) {
6886 sd = sd->parent;
6887 if (sd)
6888 sd->child = NULL;
6889 }
6890
6891 sched_domain_debug(sd, cpu);
6892
6893 rq_attach_root(rq, rd);
6894 rcu_assign_pointer(rq->sd, sd);
6895 }
6896
6897 /* cpus with isolated domains */
6898 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6899
6900 /* Setup the mask of cpus configured for isolated domains */
6901 static int __init isolated_cpu_setup(char *str)
6902 {
6903 static int __initdata ints[NR_CPUS];
6904 int i;
6905
6906 str = get_options(str, ARRAY_SIZE(ints), ints);
6907 cpus_clear(cpu_isolated_map);
6908 for (i = 1; i <= ints[0]; i++)
6909 if (ints[i] < NR_CPUS)
6910 cpu_set(ints[i], cpu_isolated_map);
6911 return 1;
6912 }
6913
6914 __setup("isolcpus=", isolated_cpu_setup);
6915
6916 /*
6917 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6918 * to a function which identifies what group(along with sched group) a CPU
6919 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6920 * (due to the fact that we keep track of groups covered with a cpumask_t).
6921 *
6922 * init_sched_build_groups will build a circular linked list of the groups
6923 * covered by the given span, and will set each group's ->cpumask correctly,
6924 * and ->cpu_power to 0.
6925 */
6926 static void
6927 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6928 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6929 struct sched_group **sg,
6930 cpumask_t *tmpmask),
6931 cpumask_t *covered, cpumask_t *tmpmask)
6932 {
6933 struct sched_group *first = NULL, *last = NULL;
6934 int i;
6935
6936 cpus_clear(*covered);
6937
6938 for_each_cpu_mask_nr(i, *span) {
6939 struct sched_group *sg;
6940 int group = group_fn(i, cpu_map, &sg, tmpmask);
6941 int j;
6942
6943 if (cpu_isset(i, *covered))
6944 continue;
6945
6946 cpus_clear(sg->cpumask);
6947 sg->__cpu_power = 0;
6948
6949 for_each_cpu_mask_nr(j, *span) {
6950 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6951 continue;
6952
6953 cpu_set(j, *covered);
6954 cpu_set(j, sg->cpumask);
6955 }
6956 if (!first)
6957 first = sg;
6958 if (last)
6959 last->next = sg;
6960 last = sg;
6961 }
6962 last->next = first;
6963 }
6964
6965 #define SD_NODES_PER_DOMAIN 16
6966
6967 #ifdef CONFIG_NUMA
6968
6969 /**
6970 * find_next_best_node - find the next node to include in a sched_domain
6971 * @node: node whose sched_domain we're building
6972 * @used_nodes: nodes already in the sched_domain
6973 *
6974 * Find the next node to include in a given scheduling domain. Simply
6975 * finds the closest node not already in the @used_nodes map.
6976 *
6977 * Should use nodemask_t.
6978 */
6979 static int find_next_best_node(int node, nodemask_t *used_nodes)
6980 {
6981 int i, n, val, min_val, best_node = 0;
6982
6983 min_val = INT_MAX;
6984
6985 for (i = 0; i < nr_node_ids; i++) {
6986 /* Start at @node */
6987 n = (node + i) % nr_node_ids;
6988
6989 if (!nr_cpus_node(n))
6990 continue;
6991
6992 /* Skip already used nodes */
6993 if (node_isset(n, *used_nodes))
6994 continue;
6995
6996 /* Simple min distance search */
6997 val = node_distance(node, n);
6998
6999 if (val < min_val) {
7000 min_val = val;
7001 best_node = n;
7002 }
7003 }
7004
7005 node_set(best_node, *used_nodes);
7006 return best_node;
7007 }
7008
7009 /**
7010 * sched_domain_node_span - get a cpumask for a node's sched_domain
7011 * @node: node whose cpumask we're constructing
7012 * @span: resulting cpumask
7013 *
7014 * Given a node, construct a good cpumask for its sched_domain to span. It
7015 * should be one that prevents unnecessary balancing, but also spreads tasks
7016 * out optimally.
7017 */
7018 static void sched_domain_node_span(int node, cpumask_t *span)
7019 {
7020 nodemask_t used_nodes;
7021 node_to_cpumask_ptr(nodemask, node);
7022 int i;
7023
7024 cpus_clear(*span);
7025 nodes_clear(used_nodes);
7026
7027 cpus_or(*span, *span, *nodemask);
7028 node_set(node, used_nodes);
7029
7030 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7031 int next_node = find_next_best_node(node, &used_nodes);
7032
7033 node_to_cpumask_ptr_next(nodemask, next_node);
7034 cpus_or(*span, *span, *nodemask);
7035 }
7036 }
7037 #endif /* CONFIG_NUMA */
7038
7039 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7040
7041 /*
7042 * SMT sched-domains:
7043 */
7044 #ifdef CONFIG_SCHED_SMT
7045 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7046 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7047
7048 static int
7049 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7050 cpumask_t *unused)
7051 {
7052 if (sg)
7053 *sg = &per_cpu(sched_group_cpus, cpu);
7054 return cpu;
7055 }
7056 #endif /* CONFIG_SCHED_SMT */
7057
7058 /*
7059 * multi-core sched-domains:
7060 */
7061 #ifdef CONFIG_SCHED_MC
7062 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7063 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7064 #endif /* CONFIG_SCHED_MC */
7065
7066 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7067 static int
7068 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7069 cpumask_t *mask)
7070 {
7071 int group;
7072
7073 *mask = per_cpu(cpu_sibling_map, cpu);
7074 cpus_and(*mask, *mask, *cpu_map);
7075 group = first_cpu(*mask);
7076 if (sg)
7077 *sg = &per_cpu(sched_group_core, group);
7078 return group;
7079 }
7080 #elif defined(CONFIG_SCHED_MC)
7081 static int
7082 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7083 cpumask_t *unused)
7084 {
7085 if (sg)
7086 *sg = &per_cpu(sched_group_core, cpu);
7087 return cpu;
7088 }
7089 #endif
7090
7091 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7092 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7093
7094 static int
7095 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7096 cpumask_t *mask)
7097 {
7098 int group;
7099 #ifdef CONFIG_SCHED_MC
7100 *mask = cpu_coregroup_map(cpu);
7101 cpus_and(*mask, *mask, *cpu_map);
7102 group = first_cpu(*mask);
7103 #elif defined(CONFIG_SCHED_SMT)
7104 *mask = per_cpu(cpu_sibling_map, cpu);
7105 cpus_and(*mask, *mask, *cpu_map);
7106 group = first_cpu(*mask);
7107 #else
7108 group = cpu;
7109 #endif
7110 if (sg)
7111 *sg = &per_cpu(sched_group_phys, group);
7112 return group;
7113 }
7114
7115 #ifdef CONFIG_NUMA
7116 /*
7117 * The init_sched_build_groups can't handle what we want to do with node
7118 * groups, so roll our own. Now each node has its own list of groups which
7119 * gets dynamically allocated.
7120 */
7121 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7122 static struct sched_group ***sched_group_nodes_bycpu;
7123
7124 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7125 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7126
7127 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7128 struct sched_group **sg, cpumask_t *nodemask)
7129 {
7130 int group;
7131
7132 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7133 cpus_and(*nodemask, *nodemask, *cpu_map);
7134 group = first_cpu(*nodemask);
7135
7136 if (sg)
7137 *sg = &per_cpu(sched_group_allnodes, group);
7138 return group;
7139 }
7140
7141 static void init_numa_sched_groups_power(struct sched_group *group_head)
7142 {
7143 struct sched_group *sg = group_head;
7144 int j;
7145
7146 if (!sg)
7147 return;
7148 do {
7149 for_each_cpu_mask_nr(j, sg->cpumask) {
7150 struct sched_domain *sd;
7151
7152 sd = &per_cpu(phys_domains, j);
7153 if (j != first_cpu(sd->groups->cpumask)) {
7154 /*
7155 * Only add "power" once for each
7156 * physical package.
7157 */
7158 continue;
7159 }
7160
7161 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7162 }
7163 sg = sg->next;
7164 } while (sg != group_head);
7165 }
7166 #endif /* CONFIG_NUMA */
7167
7168 #ifdef CONFIG_NUMA
7169 /* Free memory allocated for various sched_group structures */
7170 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7171 {
7172 int cpu, i;
7173
7174 for_each_cpu_mask_nr(cpu, *cpu_map) {
7175 struct sched_group **sched_group_nodes
7176 = sched_group_nodes_bycpu[cpu];
7177
7178 if (!sched_group_nodes)
7179 continue;
7180
7181 for (i = 0; i < nr_node_ids; i++) {
7182 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7183
7184 *nodemask = node_to_cpumask(i);
7185 cpus_and(*nodemask, *nodemask, *cpu_map);
7186 if (cpus_empty(*nodemask))
7187 continue;
7188
7189 if (sg == NULL)
7190 continue;
7191 sg = sg->next;
7192 next_sg:
7193 oldsg = sg;
7194 sg = sg->next;
7195 kfree(oldsg);
7196 if (oldsg != sched_group_nodes[i])
7197 goto next_sg;
7198 }
7199 kfree(sched_group_nodes);
7200 sched_group_nodes_bycpu[cpu] = NULL;
7201 }
7202 }
7203 #else /* !CONFIG_NUMA */
7204 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7205 {
7206 }
7207 #endif /* CONFIG_NUMA */
7208
7209 /*
7210 * Initialize sched groups cpu_power.
7211 *
7212 * cpu_power indicates the capacity of sched group, which is used while
7213 * distributing the load between different sched groups in a sched domain.
7214 * Typically cpu_power for all the groups in a sched domain will be same unless
7215 * there are asymmetries in the topology. If there are asymmetries, group
7216 * having more cpu_power will pickup more load compared to the group having
7217 * less cpu_power.
7218 *
7219 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7220 * the maximum number of tasks a group can handle in the presence of other idle
7221 * or lightly loaded groups in the same sched domain.
7222 */
7223 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7224 {
7225 struct sched_domain *child;
7226 struct sched_group *group;
7227
7228 WARN_ON(!sd || !sd->groups);
7229
7230 if (cpu != first_cpu(sd->groups->cpumask))
7231 return;
7232
7233 child = sd->child;
7234
7235 sd->groups->__cpu_power = 0;
7236
7237 /*
7238 * For perf policy, if the groups in child domain share resources
7239 * (for example cores sharing some portions of the cache hierarchy
7240 * or SMT), then set this domain groups cpu_power such that each group
7241 * can handle only one task, when there are other idle groups in the
7242 * same sched domain.
7243 */
7244 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7245 (child->flags &
7246 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7247 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7248 return;
7249 }
7250
7251 /*
7252 * add cpu_power of each child group to this groups cpu_power
7253 */
7254 group = child->groups;
7255 do {
7256 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7257 group = group->next;
7258 } while (group != child->groups);
7259 }
7260
7261 /*
7262 * Initializers for schedule domains
7263 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7264 */
7265
7266 #define SD_INIT(sd, type) sd_init_##type(sd)
7267 #define SD_INIT_FUNC(type) \
7268 static noinline void sd_init_##type(struct sched_domain *sd) \
7269 { \
7270 memset(sd, 0, sizeof(*sd)); \
7271 *sd = SD_##type##_INIT; \
7272 sd->level = SD_LV_##type; \
7273 }
7274
7275 SD_INIT_FUNC(CPU)
7276 #ifdef CONFIG_NUMA
7277 SD_INIT_FUNC(ALLNODES)
7278 SD_INIT_FUNC(NODE)
7279 #endif
7280 #ifdef CONFIG_SCHED_SMT
7281 SD_INIT_FUNC(SIBLING)
7282 #endif
7283 #ifdef CONFIG_SCHED_MC
7284 SD_INIT_FUNC(MC)
7285 #endif
7286
7287 /*
7288 * To minimize stack usage kmalloc room for cpumasks and share the
7289 * space as the usage in build_sched_domains() dictates. Used only
7290 * if the amount of space is significant.
7291 */
7292 struct allmasks {
7293 cpumask_t tmpmask; /* make this one first */
7294 union {
7295 cpumask_t nodemask;
7296 cpumask_t this_sibling_map;
7297 cpumask_t this_core_map;
7298 };
7299 cpumask_t send_covered;
7300
7301 #ifdef CONFIG_NUMA
7302 cpumask_t domainspan;
7303 cpumask_t covered;
7304 cpumask_t notcovered;
7305 #endif
7306 };
7307
7308 #if NR_CPUS > 128
7309 #define SCHED_CPUMASK_ALLOC 1
7310 #define SCHED_CPUMASK_FREE(v) kfree(v)
7311 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7312 #else
7313 #define SCHED_CPUMASK_ALLOC 0
7314 #define SCHED_CPUMASK_FREE(v)
7315 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7316 #endif
7317
7318 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7319 ((unsigned long)(a) + offsetof(struct allmasks, v))
7320
7321 static int default_relax_domain_level = -1;
7322
7323 static int __init setup_relax_domain_level(char *str)
7324 {
7325 unsigned long val;
7326
7327 val = simple_strtoul(str, NULL, 0);
7328 if (val < SD_LV_MAX)
7329 default_relax_domain_level = val;
7330
7331 return 1;
7332 }
7333 __setup("relax_domain_level=", setup_relax_domain_level);
7334
7335 static void set_domain_attribute(struct sched_domain *sd,
7336 struct sched_domain_attr *attr)
7337 {
7338 int request;
7339
7340 if (!attr || attr->relax_domain_level < 0) {
7341 if (default_relax_domain_level < 0)
7342 return;
7343 else
7344 request = default_relax_domain_level;
7345 } else
7346 request = attr->relax_domain_level;
7347 if (request < sd->level) {
7348 /* turn off idle balance on this domain */
7349 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7350 } else {
7351 /* turn on idle balance on this domain */
7352 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7353 }
7354 }
7355
7356 /*
7357 * Build sched domains for a given set of cpus and attach the sched domains
7358 * to the individual cpus
7359 */
7360 static int __build_sched_domains(const cpumask_t *cpu_map,
7361 struct sched_domain_attr *attr)
7362 {
7363 int i;
7364 struct root_domain *rd;
7365 SCHED_CPUMASK_DECLARE(allmasks);
7366 cpumask_t *tmpmask;
7367 #ifdef CONFIG_NUMA
7368 struct sched_group **sched_group_nodes = NULL;
7369 int sd_allnodes = 0;
7370
7371 /*
7372 * Allocate the per-node list of sched groups
7373 */
7374 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7375 GFP_KERNEL);
7376 if (!sched_group_nodes) {
7377 printk(KERN_WARNING "Can not alloc sched group node list\n");
7378 return -ENOMEM;
7379 }
7380 #endif
7381
7382 rd = alloc_rootdomain();
7383 if (!rd) {
7384 printk(KERN_WARNING "Cannot alloc root domain\n");
7385 #ifdef CONFIG_NUMA
7386 kfree(sched_group_nodes);
7387 #endif
7388 return -ENOMEM;
7389 }
7390
7391 #if SCHED_CPUMASK_ALLOC
7392 /* get space for all scratch cpumask variables */
7393 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7394 if (!allmasks) {
7395 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7396 kfree(rd);
7397 #ifdef CONFIG_NUMA
7398 kfree(sched_group_nodes);
7399 #endif
7400 return -ENOMEM;
7401 }
7402 #endif
7403 tmpmask = (cpumask_t *)allmasks;
7404
7405
7406 #ifdef CONFIG_NUMA
7407 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7408 #endif
7409
7410 /*
7411 * Set up domains for cpus specified by the cpu_map.
7412 */
7413 for_each_cpu_mask_nr(i, *cpu_map) {
7414 struct sched_domain *sd = NULL, *p;
7415 SCHED_CPUMASK_VAR(nodemask, allmasks);
7416
7417 *nodemask = node_to_cpumask(cpu_to_node(i));
7418 cpus_and(*nodemask, *nodemask, *cpu_map);
7419
7420 #ifdef CONFIG_NUMA
7421 if (cpus_weight(*cpu_map) >
7422 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7423 sd = &per_cpu(allnodes_domains, i);
7424 SD_INIT(sd, ALLNODES);
7425 set_domain_attribute(sd, attr);
7426 sd->span = *cpu_map;
7427 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7428 p = sd;
7429 sd_allnodes = 1;
7430 } else
7431 p = NULL;
7432
7433 sd = &per_cpu(node_domains, i);
7434 SD_INIT(sd, NODE);
7435 set_domain_attribute(sd, attr);
7436 sched_domain_node_span(cpu_to_node(i), &sd->span);
7437 sd->parent = p;
7438 if (p)
7439 p->child = sd;
7440 cpus_and(sd->span, sd->span, *cpu_map);
7441 #endif
7442
7443 p = sd;
7444 sd = &per_cpu(phys_domains, i);
7445 SD_INIT(sd, CPU);
7446 set_domain_attribute(sd, attr);
7447 sd->span = *nodemask;
7448 sd->parent = p;
7449 if (p)
7450 p->child = sd;
7451 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7452
7453 #ifdef CONFIG_SCHED_MC
7454 p = sd;
7455 sd = &per_cpu(core_domains, i);
7456 SD_INIT(sd, MC);
7457 set_domain_attribute(sd, attr);
7458 sd->span = cpu_coregroup_map(i);
7459 cpus_and(sd->span, sd->span, *cpu_map);
7460 sd->parent = p;
7461 p->child = sd;
7462 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7463 #endif
7464
7465 #ifdef CONFIG_SCHED_SMT
7466 p = sd;
7467 sd = &per_cpu(cpu_domains, i);
7468 SD_INIT(sd, SIBLING);
7469 set_domain_attribute(sd, attr);
7470 sd->span = per_cpu(cpu_sibling_map, i);
7471 cpus_and(sd->span, sd->span, *cpu_map);
7472 sd->parent = p;
7473 p->child = sd;
7474 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7475 #endif
7476 }
7477
7478 #ifdef CONFIG_SCHED_SMT
7479 /* Set up CPU (sibling) groups */
7480 for_each_cpu_mask_nr(i, *cpu_map) {
7481 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7482 SCHED_CPUMASK_VAR(send_covered, allmasks);
7483
7484 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7485 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7486 if (i != first_cpu(*this_sibling_map))
7487 continue;
7488
7489 init_sched_build_groups(this_sibling_map, cpu_map,
7490 &cpu_to_cpu_group,
7491 send_covered, tmpmask);
7492 }
7493 #endif
7494
7495 #ifdef CONFIG_SCHED_MC
7496 /* Set up multi-core groups */
7497 for_each_cpu_mask_nr(i, *cpu_map) {
7498 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7499 SCHED_CPUMASK_VAR(send_covered, allmasks);
7500
7501 *this_core_map = cpu_coregroup_map(i);
7502 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7503 if (i != first_cpu(*this_core_map))
7504 continue;
7505
7506 init_sched_build_groups(this_core_map, cpu_map,
7507 &cpu_to_core_group,
7508 send_covered, tmpmask);
7509 }
7510 #endif
7511
7512 /* Set up physical groups */
7513 for (i = 0; i < nr_node_ids; i++) {
7514 SCHED_CPUMASK_VAR(nodemask, allmasks);
7515 SCHED_CPUMASK_VAR(send_covered, allmasks);
7516
7517 *nodemask = node_to_cpumask(i);
7518 cpus_and(*nodemask, *nodemask, *cpu_map);
7519 if (cpus_empty(*nodemask))
7520 continue;
7521
7522 init_sched_build_groups(nodemask, cpu_map,
7523 &cpu_to_phys_group,
7524 send_covered, tmpmask);
7525 }
7526
7527 #ifdef CONFIG_NUMA
7528 /* Set up node groups */
7529 if (sd_allnodes) {
7530 SCHED_CPUMASK_VAR(send_covered, allmasks);
7531
7532 init_sched_build_groups(cpu_map, cpu_map,
7533 &cpu_to_allnodes_group,
7534 send_covered, tmpmask);
7535 }
7536
7537 for (i = 0; i < nr_node_ids; i++) {
7538 /* Set up node groups */
7539 struct sched_group *sg, *prev;
7540 SCHED_CPUMASK_VAR(nodemask, allmasks);
7541 SCHED_CPUMASK_VAR(domainspan, allmasks);
7542 SCHED_CPUMASK_VAR(covered, allmasks);
7543 int j;
7544
7545 *nodemask = node_to_cpumask(i);
7546 cpus_clear(*covered);
7547
7548 cpus_and(*nodemask, *nodemask, *cpu_map);
7549 if (cpus_empty(*nodemask)) {
7550 sched_group_nodes[i] = NULL;
7551 continue;
7552 }
7553
7554 sched_domain_node_span(i, domainspan);
7555 cpus_and(*domainspan, *domainspan, *cpu_map);
7556
7557 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7558 if (!sg) {
7559 printk(KERN_WARNING "Can not alloc domain group for "
7560 "node %d\n", i);
7561 goto error;
7562 }
7563 sched_group_nodes[i] = sg;
7564 for_each_cpu_mask_nr(j, *nodemask) {
7565 struct sched_domain *sd;
7566
7567 sd = &per_cpu(node_domains, j);
7568 sd->groups = sg;
7569 }
7570 sg->__cpu_power = 0;
7571 sg->cpumask = *nodemask;
7572 sg->next = sg;
7573 cpus_or(*covered, *covered, *nodemask);
7574 prev = sg;
7575
7576 for (j = 0; j < nr_node_ids; j++) {
7577 SCHED_CPUMASK_VAR(notcovered, allmasks);
7578 int n = (i + j) % nr_node_ids;
7579 node_to_cpumask_ptr(pnodemask, n);
7580
7581 cpus_complement(*notcovered, *covered);
7582 cpus_and(*tmpmask, *notcovered, *cpu_map);
7583 cpus_and(*tmpmask, *tmpmask, *domainspan);
7584 if (cpus_empty(*tmpmask))
7585 break;
7586
7587 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7588 if (cpus_empty(*tmpmask))
7589 continue;
7590
7591 sg = kmalloc_node(sizeof(struct sched_group),
7592 GFP_KERNEL, i);
7593 if (!sg) {
7594 printk(KERN_WARNING
7595 "Can not alloc domain group for node %d\n", j);
7596 goto error;
7597 }
7598 sg->__cpu_power = 0;
7599 sg->cpumask = *tmpmask;
7600 sg->next = prev->next;
7601 cpus_or(*covered, *covered, *tmpmask);
7602 prev->next = sg;
7603 prev = sg;
7604 }
7605 }
7606 #endif
7607
7608 /* Calculate CPU power for physical packages and nodes */
7609 #ifdef CONFIG_SCHED_SMT
7610 for_each_cpu_mask_nr(i, *cpu_map) {
7611 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7612
7613 init_sched_groups_power(i, sd);
7614 }
7615 #endif
7616 #ifdef CONFIG_SCHED_MC
7617 for_each_cpu_mask_nr(i, *cpu_map) {
7618 struct sched_domain *sd = &per_cpu(core_domains, i);
7619
7620 init_sched_groups_power(i, sd);
7621 }
7622 #endif
7623
7624 for_each_cpu_mask_nr(i, *cpu_map) {
7625 struct sched_domain *sd = &per_cpu(phys_domains, i);
7626
7627 init_sched_groups_power(i, sd);
7628 }
7629
7630 #ifdef CONFIG_NUMA
7631 for (i = 0; i < nr_node_ids; i++)
7632 init_numa_sched_groups_power(sched_group_nodes[i]);
7633
7634 if (sd_allnodes) {
7635 struct sched_group *sg;
7636
7637 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7638 tmpmask);
7639 init_numa_sched_groups_power(sg);
7640 }
7641 #endif
7642
7643 /* Attach the domains */
7644 for_each_cpu_mask_nr(i, *cpu_map) {
7645 struct sched_domain *sd;
7646 #ifdef CONFIG_SCHED_SMT
7647 sd = &per_cpu(cpu_domains, i);
7648 #elif defined(CONFIG_SCHED_MC)
7649 sd = &per_cpu(core_domains, i);
7650 #else
7651 sd = &per_cpu(phys_domains, i);
7652 #endif
7653 cpu_attach_domain(sd, rd, i);
7654 }
7655
7656 SCHED_CPUMASK_FREE((void *)allmasks);
7657 return 0;
7658
7659 #ifdef CONFIG_NUMA
7660 error:
7661 free_sched_groups(cpu_map, tmpmask);
7662 SCHED_CPUMASK_FREE((void *)allmasks);
7663 return -ENOMEM;
7664 #endif
7665 }
7666
7667 static int build_sched_domains(const cpumask_t *cpu_map)
7668 {
7669 return __build_sched_domains(cpu_map, NULL);
7670 }
7671
7672 static cpumask_t *doms_cur; /* current sched domains */
7673 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7674 static struct sched_domain_attr *dattr_cur;
7675 /* attribues of custom domains in 'doms_cur' */
7676
7677 /*
7678 * Special case: If a kmalloc of a doms_cur partition (array of
7679 * cpumask_t) fails, then fallback to a single sched domain,
7680 * as determined by the single cpumask_t fallback_doms.
7681 */
7682 static cpumask_t fallback_doms;
7683
7684 void __attribute__((weak)) arch_update_cpu_topology(void)
7685 {
7686 }
7687
7688 /*
7689 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7690 * For now this just excludes isolated cpus, but could be used to
7691 * exclude other special cases in the future.
7692 */
7693 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7694 {
7695 int err;
7696
7697 arch_update_cpu_topology();
7698 ndoms_cur = 1;
7699 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7700 if (!doms_cur)
7701 doms_cur = &fallback_doms;
7702 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7703 dattr_cur = NULL;
7704 err = build_sched_domains(doms_cur);
7705 register_sched_domain_sysctl();
7706
7707 return err;
7708 }
7709
7710 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7711 cpumask_t *tmpmask)
7712 {
7713 free_sched_groups(cpu_map, tmpmask);
7714 }
7715
7716 /*
7717 * Detach sched domains from a group of cpus specified in cpu_map
7718 * These cpus will now be attached to the NULL domain
7719 */
7720 static void detach_destroy_domains(const cpumask_t *cpu_map)
7721 {
7722 cpumask_t tmpmask;
7723 int i;
7724
7725 unregister_sched_domain_sysctl();
7726
7727 for_each_cpu_mask_nr(i, *cpu_map)
7728 cpu_attach_domain(NULL, &def_root_domain, i);
7729 synchronize_sched();
7730 arch_destroy_sched_domains(cpu_map, &tmpmask);
7731 }
7732
7733 /* handle null as "default" */
7734 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7735 struct sched_domain_attr *new, int idx_new)
7736 {
7737 struct sched_domain_attr tmp;
7738
7739 /* fast path */
7740 if (!new && !cur)
7741 return 1;
7742
7743 tmp = SD_ATTR_INIT;
7744 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7745 new ? (new + idx_new) : &tmp,
7746 sizeof(struct sched_domain_attr));
7747 }
7748
7749 /*
7750 * Partition sched domains as specified by the 'ndoms_new'
7751 * cpumasks in the array doms_new[] of cpumasks. This compares
7752 * doms_new[] to the current sched domain partitioning, doms_cur[].
7753 * It destroys each deleted domain and builds each new domain.
7754 *
7755 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7756 * The masks don't intersect (don't overlap.) We should setup one
7757 * sched domain for each mask. CPUs not in any of the cpumasks will
7758 * not be load balanced. If the same cpumask appears both in the
7759 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7760 * it as it is.
7761 *
7762 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7763 * ownership of it and will kfree it when done with it. If the caller
7764 * failed the kmalloc call, then it can pass in doms_new == NULL,
7765 * and partition_sched_domains() will fallback to the single partition
7766 * 'fallback_doms', it also forces the domains to be rebuilt.
7767 *
7768 * If doms_new==NULL it will be replaced with cpu_online_map.
7769 * ndoms_new==0 is a special case for destroying existing domains.
7770 * It will not create the default domain.
7771 *
7772 * Call with hotplug lock held
7773 */
7774 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7775 struct sched_domain_attr *dattr_new)
7776 {
7777 int i, j, n;
7778
7779 mutex_lock(&sched_domains_mutex);
7780
7781 /* always unregister in case we don't destroy any domains */
7782 unregister_sched_domain_sysctl();
7783
7784 n = doms_new ? ndoms_new : 0;
7785
7786 /* Destroy deleted domains */
7787 for (i = 0; i < ndoms_cur; i++) {
7788 for (j = 0; j < n; j++) {
7789 if (cpus_equal(doms_cur[i], doms_new[j])
7790 && dattrs_equal(dattr_cur, i, dattr_new, j))
7791 goto match1;
7792 }
7793 /* no match - a current sched domain not in new doms_new[] */
7794 detach_destroy_domains(doms_cur + i);
7795 match1:
7796 ;
7797 }
7798
7799 if (doms_new == NULL) {
7800 ndoms_cur = 0;
7801 doms_new = &fallback_doms;
7802 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7803 dattr_new = NULL;
7804 }
7805
7806 /* Build new domains */
7807 for (i = 0; i < ndoms_new; i++) {
7808 for (j = 0; j < ndoms_cur; j++) {
7809 if (cpus_equal(doms_new[i], doms_cur[j])
7810 && dattrs_equal(dattr_new, i, dattr_cur, j))
7811 goto match2;
7812 }
7813 /* no match - add a new doms_new */
7814 __build_sched_domains(doms_new + i,
7815 dattr_new ? dattr_new + i : NULL);
7816 match2:
7817 ;
7818 }
7819
7820 /* Remember the new sched domains */
7821 if (doms_cur != &fallback_doms)
7822 kfree(doms_cur);
7823 kfree(dattr_cur); /* kfree(NULL) is safe */
7824 doms_cur = doms_new;
7825 dattr_cur = dattr_new;
7826 ndoms_cur = ndoms_new;
7827
7828 register_sched_domain_sysctl();
7829
7830 mutex_unlock(&sched_domains_mutex);
7831 }
7832
7833 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7834 int arch_reinit_sched_domains(void)
7835 {
7836 get_online_cpus();
7837
7838 /* Destroy domains first to force the rebuild */
7839 partition_sched_domains(0, NULL, NULL);
7840
7841 rebuild_sched_domains();
7842 put_online_cpus();
7843
7844 return 0;
7845 }
7846
7847 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7848 {
7849 int ret;
7850
7851 if (buf[0] != '0' && buf[0] != '1')
7852 return -EINVAL;
7853
7854 if (smt)
7855 sched_smt_power_savings = (buf[0] == '1');
7856 else
7857 sched_mc_power_savings = (buf[0] == '1');
7858
7859 ret = arch_reinit_sched_domains();
7860
7861 return ret ? ret : count;
7862 }
7863
7864 #ifdef CONFIG_SCHED_MC
7865 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7866 char *page)
7867 {
7868 return sprintf(page, "%u\n", sched_mc_power_savings);
7869 }
7870 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7871 const char *buf, size_t count)
7872 {
7873 return sched_power_savings_store(buf, count, 0);
7874 }
7875 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7876 sched_mc_power_savings_show,
7877 sched_mc_power_savings_store);
7878 #endif
7879
7880 #ifdef CONFIG_SCHED_SMT
7881 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7882 char *page)
7883 {
7884 return sprintf(page, "%u\n", sched_smt_power_savings);
7885 }
7886 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7887 const char *buf, size_t count)
7888 {
7889 return sched_power_savings_store(buf, count, 1);
7890 }
7891 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7892 sched_smt_power_savings_show,
7893 sched_smt_power_savings_store);
7894 #endif
7895
7896 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7897 {
7898 int err = 0;
7899
7900 #ifdef CONFIG_SCHED_SMT
7901 if (smt_capable())
7902 err = sysfs_create_file(&cls->kset.kobj,
7903 &attr_sched_smt_power_savings.attr);
7904 #endif
7905 #ifdef CONFIG_SCHED_MC
7906 if (!err && mc_capable())
7907 err = sysfs_create_file(&cls->kset.kobj,
7908 &attr_sched_mc_power_savings.attr);
7909 #endif
7910 return err;
7911 }
7912 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7913
7914 #ifndef CONFIG_CPUSETS
7915 /*
7916 * Add online and remove offline CPUs from the scheduler domains.
7917 * When cpusets are enabled they take over this function.
7918 */
7919 static int update_sched_domains(struct notifier_block *nfb,
7920 unsigned long action, void *hcpu)
7921 {
7922 switch (action) {
7923 case CPU_ONLINE:
7924 case CPU_ONLINE_FROZEN:
7925 case CPU_DEAD:
7926 case CPU_DEAD_FROZEN:
7927 partition_sched_domains(1, NULL, NULL);
7928 return NOTIFY_OK;
7929
7930 default:
7931 return NOTIFY_DONE;
7932 }
7933 }
7934 #endif
7935
7936 static int update_runtime(struct notifier_block *nfb,
7937 unsigned long action, void *hcpu)
7938 {
7939 int cpu = (int)(long)hcpu;
7940
7941 switch (action) {
7942 case CPU_DOWN_PREPARE:
7943 case CPU_DOWN_PREPARE_FROZEN:
7944 disable_runtime(cpu_rq(cpu));
7945 return NOTIFY_OK;
7946
7947 case CPU_DOWN_FAILED:
7948 case CPU_DOWN_FAILED_FROZEN:
7949 case CPU_ONLINE:
7950 case CPU_ONLINE_FROZEN:
7951 enable_runtime(cpu_rq(cpu));
7952 return NOTIFY_OK;
7953
7954 default:
7955 return NOTIFY_DONE;
7956 }
7957 }
7958
7959 void __init sched_init_smp(void)
7960 {
7961 cpumask_t non_isolated_cpus;
7962
7963 #if defined(CONFIG_NUMA)
7964 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7965 GFP_KERNEL);
7966 BUG_ON(sched_group_nodes_bycpu == NULL);
7967 #endif
7968 get_online_cpus();
7969 mutex_lock(&sched_domains_mutex);
7970 arch_init_sched_domains(&cpu_online_map);
7971 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7972 if (cpus_empty(non_isolated_cpus))
7973 cpu_set(smp_processor_id(), non_isolated_cpus);
7974 mutex_unlock(&sched_domains_mutex);
7975 put_online_cpus();
7976
7977 #ifndef CONFIG_CPUSETS
7978 /* XXX: Theoretical race here - CPU may be hotplugged now */
7979 hotcpu_notifier(update_sched_domains, 0);
7980 #endif
7981
7982 /* RT runtime code needs to handle some hotplug events */
7983 hotcpu_notifier(update_runtime, 0);
7984
7985 init_hrtick();
7986
7987 /* Move init over to a non-isolated CPU */
7988 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7989 BUG();
7990 sched_init_granularity();
7991 }
7992 #else
7993 void __init sched_init_smp(void)
7994 {
7995 sched_init_granularity();
7996 }
7997 #endif /* CONFIG_SMP */
7998
7999 int in_sched_functions(unsigned long addr)
8000 {
8001 return in_lock_functions(addr) ||
8002 (addr >= (unsigned long)__sched_text_start
8003 && addr < (unsigned long)__sched_text_end);
8004 }
8005
8006 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8007 {
8008 cfs_rq->tasks_timeline = RB_ROOT;
8009 INIT_LIST_HEAD(&cfs_rq->tasks);
8010 #ifdef CONFIG_FAIR_GROUP_SCHED
8011 cfs_rq->rq = rq;
8012 #endif
8013 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8014 }
8015
8016 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8017 {
8018 struct rt_prio_array *array;
8019 int i;
8020
8021 array = &rt_rq->active;
8022 for (i = 0; i < MAX_RT_PRIO; i++) {
8023 INIT_LIST_HEAD(array->queue + i);
8024 __clear_bit(i, array->bitmap);
8025 }
8026 /* delimiter for bitsearch: */
8027 __set_bit(MAX_RT_PRIO, array->bitmap);
8028
8029 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8030 rt_rq->highest_prio = MAX_RT_PRIO;
8031 #endif
8032 #ifdef CONFIG_SMP
8033 rt_rq->rt_nr_migratory = 0;
8034 rt_rq->overloaded = 0;
8035 #endif
8036
8037 rt_rq->rt_time = 0;
8038 rt_rq->rt_throttled = 0;
8039 rt_rq->rt_runtime = 0;
8040 spin_lock_init(&rt_rq->rt_runtime_lock);
8041
8042 #ifdef CONFIG_RT_GROUP_SCHED
8043 rt_rq->rt_nr_boosted = 0;
8044 rt_rq->rq = rq;
8045 #endif
8046 }
8047
8048 #ifdef CONFIG_FAIR_GROUP_SCHED
8049 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8050 struct sched_entity *se, int cpu, int add,
8051 struct sched_entity *parent)
8052 {
8053 struct rq *rq = cpu_rq(cpu);
8054 tg->cfs_rq[cpu] = cfs_rq;
8055 init_cfs_rq(cfs_rq, rq);
8056 cfs_rq->tg = tg;
8057 if (add)
8058 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8059
8060 tg->se[cpu] = se;
8061 /* se could be NULL for init_task_group */
8062 if (!se)
8063 return;
8064
8065 if (!parent)
8066 se->cfs_rq = &rq->cfs;
8067 else
8068 se->cfs_rq = parent->my_q;
8069
8070 se->my_q = cfs_rq;
8071 se->load.weight = tg->shares;
8072 se->load.inv_weight = 0;
8073 se->parent = parent;
8074 }
8075 #endif
8076
8077 #ifdef CONFIG_RT_GROUP_SCHED
8078 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8079 struct sched_rt_entity *rt_se, int cpu, int add,
8080 struct sched_rt_entity *parent)
8081 {
8082 struct rq *rq = cpu_rq(cpu);
8083
8084 tg->rt_rq[cpu] = rt_rq;
8085 init_rt_rq(rt_rq, rq);
8086 rt_rq->tg = tg;
8087 rt_rq->rt_se = rt_se;
8088 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8089 if (add)
8090 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8091
8092 tg->rt_se[cpu] = rt_se;
8093 if (!rt_se)
8094 return;
8095
8096 if (!parent)
8097 rt_se->rt_rq = &rq->rt;
8098 else
8099 rt_se->rt_rq = parent->my_q;
8100
8101 rt_se->my_q = rt_rq;
8102 rt_se->parent = parent;
8103 INIT_LIST_HEAD(&rt_se->run_list);
8104 }
8105 #endif
8106
8107 void __init sched_init(void)
8108 {
8109 int i, j;
8110 unsigned long alloc_size = 0, ptr;
8111
8112 #ifdef CONFIG_FAIR_GROUP_SCHED
8113 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8114 #endif
8115 #ifdef CONFIG_RT_GROUP_SCHED
8116 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8117 #endif
8118 #ifdef CONFIG_USER_SCHED
8119 alloc_size *= 2;
8120 #endif
8121 /*
8122 * As sched_init() is called before page_alloc is setup,
8123 * we use alloc_bootmem().
8124 */
8125 if (alloc_size) {
8126 ptr = (unsigned long)alloc_bootmem(alloc_size);
8127
8128 #ifdef CONFIG_FAIR_GROUP_SCHED
8129 init_task_group.se = (struct sched_entity **)ptr;
8130 ptr += nr_cpu_ids * sizeof(void **);
8131
8132 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8134
8135 #ifdef CONFIG_USER_SCHED
8136 root_task_group.se = (struct sched_entity **)ptr;
8137 ptr += nr_cpu_ids * sizeof(void **);
8138
8139 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8140 ptr += nr_cpu_ids * sizeof(void **);
8141 #endif /* CONFIG_USER_SCHED */
8142 #endif /* CONFIG_FAIR_GROUP_SCHED */
8143 #ifdef CONFIG_RT_GROUP_SCHED
8144 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
8146
8147 init_task_group.rt_rq = (struct rt_rq **)ptr;
8148 ptr += nr_cpu_ids * sizeof(void **);
8149
8150 #ifdef CONFIG_USER_SCHED
8151 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8152 ptr += nr_cpu_ids * sizeof(void **);
8153
8154 root_task_group.rt_rq = (struct rt_rq **)ptr;
8155 ptr += nr_cpu_ids * sizeof(void **);
8156 #endif /* CONFIG_USER_SCHED */
8157 #endif /* CONFIG_RT_GROUP_SCHED */
8158 }
8159
8160 #ifdef CONFIG_SMP
8161 init_defrootdomain();
8162 #endif
8163
8164 init_rt_bandwidth(&def_rt_bandwidth,
8165 global_rt_period(), global_rt_runtime());
8166
8167 #ifdef CONFIG_RT_GROUP_SCHED
8168 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8169 global_rt_period(), global_rt_runtime());
8170 #ifdef CONFIG_USER_SCHED
8171 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8172 global_rt_period(), RUNTIME_INF);
8173 #endif /* CONFIG_USER_SCHED */
8174 #endif /* CONFIG_RT_GROUP_SCHED */
8175
8176 #ifdef CONFIG_GROUP_SCHED
8177 list_add(&init_task_group.list, &task_groups);
8178 INIT_LIST_HEAD(&init_task_group.children);
8179
8180 #ifdef CONFIG_USER_SCHED
8181 INIT_LIST_HEAD(&root_task_group.children);
8182 init_task_group.parent = &root_task_group;
8183 list_add(&init_task_group.siblings, &root_task_group.children);
8184 #endif /* CONFIG_USER_SCHED */
8185 #endif /* CONFIG_GROUP_SCHED */
8186
8187 for_each_possible_cpu(i) {
8188 struct rq *rq;
8189
8190 rq = cpu_rq(i);
8191 spin_lock_init(&rq->lock);
8192 rq->nr_running = 0;
8193 init_cfs_rq(&rq->cfs, rq);
8194 init_rt_rq(&rq->rt, rq);
8195 #ifdef CONFIG_FAIR_GROUP_SCHED
8196 init_task_group.shares = init_task_group_load;
8197 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8198 #ifdef CONFIG_CGROUP_SCHED
8199 /*
8200 * How much cpu bandwidth does init_task_group get?
8201 *
8202 * In case of task-groups formed thr' the cgroup filesystem, it
8203 * gets 100% of the cpu resources in the system. This overall
8204 * system cpu resource is divided among the tasks of
8205 * init_task_group and its child task-groups in a fair manner,
8206 * based on each entity's (task or task-group's) weight
8207 * (se->load.weight).
8208 *
8209 * In other words, if init_task_group has 10 tasks of weight
8210 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8211 * then A0's share of the cpu resource is:
8212 *
8213 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8214 *
8215 * We achieve this by letting init_task_group's tasks sit
8216 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8217 */
8218 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8219 #elif defined CONFIG_USER_SCHED
8220 root_task_group.shares = NICE_0_LOAD;
8221 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8222 /*
8223 * In case of task-groups formed thr' the user id of tasks,
8224 * init_task_group represents tasks belonging to root user.
8225 * Hence it forms a sibling of all subsequent groups formed.
8226 * In this case, init_task_group gets only a fraction of overall
8227 * system cpu resource, based on the weight assigned to root
8228 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8229 * by letting tasks of init_task_group sit in a separate cfs_rq
8230 * (init_cfs_rq) and having one entity represent this group of
8231 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8232 */
8233 init_tg_cfs_entry(&init_task_group,
8234 &per_cpu(init_cfs_rq, i),
8235 &per_cpu(init_sched_entity, i), i, 1,
8236 root_task_group.se[i]);
8237
8238 #endif
8239 #endif /* CONFIG_FAIR_GROUP_SCHED */
8240
8241 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8242 #ifdef CONFIG_RT_GROUP_SCHED
8243 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8244 #ifdef CONFIG_CGROUP_SCHED
8245 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8246 #elif defined CONFIG_USER_SCHED
8247 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8248 init_tg_rt_entry(&init_task_group,
8249 &per_cpu(init_rt_rq, i),
8250 &per_cpu(init_sched_rt_entity, i), i, 1,
8251 root_task_group.rt_se[i]);
8252 #endif
8253 #endif
8254
8255 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8256 rq->cpu_load[j] = 0;
8257 #ifdef CONFIG_SMP
8258 rq->sd = NULL;
8259 rq->rd = NULL;
8260 rq->active_balance = 0;
8261 rq->next_balance = jiffies;
8262 rq->push_cpu = 0;
8263 rq->cpu = i;
8264 rq->online = 0;
8265 rq->migration_thread = NULL;
8266 INIT_LIST_HEAD(&rq->migration_queue);
8267 rq_attach_root(rq, &def_root_domain);
8268 #endif
8269 init_rq_hrtick(rq);
8270 atomic_set(&rq->nr_iowait, 0);
8271 }
8272
8273 set_load_weight(&init_task);
8274
8275 #ifdef CONFIG_PREEMPT_NOTIFIERS
8276 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8277 #endif
8278
8279 #ifdef CONFIG_SMP
8280 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8281 #endif
8282
8283 #ifdef CONFIG_RT_MUTEXES
8284 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8285 #endif
8286
8287 /*
8288 * The boot idle thread does lazy MMU switching as well:
8289 */
8290 atomic_inc(&init_mm.mm_count);
8291 enter_lazy_tlb(&init_mm, current);
8292
8293 /*
8294 * Make us the idle thread. Technically, schedule() should not be
8295 * called from this thread, however somewhere below it might be,
8296 * but because we are the idle thread, we just pick up running again
8297 * when this runqueue becomes "idle".
8298 */
8299 init_idle(current, smp_processor_id());
8300 /*
8301 * During early bootup we pretend to be a normal task:
8302 */
8303 current->sched_class = &fair_sched_class;
8304
8305 scheduler_running = 1;
8306 }
8307
8308 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8309 void __might_sleep(char *file, int line)
8310 {
8311 #ifdef in_atomic
8312 static unsigned long prev_jiffy; /* ratelimiting */
8313
8314 if ((!in_atomic() && !irqs_disabled()) ||
8315 system_state != SYSTEM_RUNNING || oops_in_progress)
8316 return;
8317 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8318 return;
8319 prev_jiffy = jiffies;
8320
8321 printk(KERN_ERR
8322 "BUG: sleeping function called from invalid context at %s:%d\n",
8323 file, line);
8324 printk(KERN_ERR
8325 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8326 in_atomic(), irqs_disabled(),
8327 current->pid, current->comm);
8328
8329 debug_show_held_locks(current);
8330 if (irqs_disabled())
8331 print_irqtrace_events(current);
8332 dump_stack();
8333 #endif
8334 }
8335 EXPORT_SYMBOL(__might_sleep);
8336 #endif
8337
8338 #ifdef CONFIG_MAGIC_SYSRQ
8339 static void normalize_task(struct rq *rq, struct task_struct *p)
8340 {
8341 int on_rq;
8342
8343 update_rq_clock(rq);
8344 on_rq = p->se.on_rq;
8345 if (on_rq)
8346 deactivate_task(rq, p, 0);
8347 __setscheduler(rq, p, SCHED_NORMAL, 0);
8348 if (on_rq) {
8349 activate_task(rq, p, 0);
8350 resched_task(rq->curr);
8351 }
8352 }
8353
8354 void normalize_rt_tasks(void)
8355 {
8356 struct task_struct *g, *p;
8357 unsigned long flags;
8358 struct rq *rq;
8359
8360 read_lock_irqsave(&tasklist_lock, flags);
8361 do_each_thread(g, p) {
8362 /*
8363 * Only normalize user tasks:
8364 */
8365 if (!p->mm)
8366 continue;
8367
8368 p->se.exec_start = 0;
8369 #ifdef CONFIG_SCHEDSTATS
8370 p->se.wait_start = 0;
8371 p->se.sleep_start = 0;
8372 p->se.block_start = 0;
8373 #endif
8374
8375 if (!rt_task(p)) {
8376 /*
8377 * Renice negative nice level userspace
8378 * tasks back to 0:
8379 */
8380 if (TASK_NICE(p) < 0 && p->mm)
8381 set_user_nice(p, 0);
8382 continue;
8383 }
8384
8385 spin_lock(&p->pi_lock);
8386 rq = __task_rq_lock(p);
8387
8388 normalize_task(rq, p);
8389
8390 __task_rq_unlock(rq);
8391 spin_unlock(&p->pi_lock);
8392 } while_each_thread(g, p);
8393
8394 read_unlock_irqrestore(&tasklist_lock, flags);
8395 }
8396
8397 #endif /* CONFIG_MAGIC_SYSRQ */
8398
8399 #ifdef CONFIG_IA64
8400 /*
8401 * These functions are only useful for the IA64 MCA handling.
8402 *
8403 * They can only be called when the whole system has been
8404 * stopped - every CPU needs to be quiescent, and no scheduling
8405 * activity can take place. Using them for anything else would
8406 * be a serious bug, and as a result, they aren't even visible
8407 * under any other configuration.
8408 */
8409
8410 /**
8411 * curr_task - return the current task for a given cpu.
8412 * @cpu: the processor in question.
8413 *
8414 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8415 */
8416 struct task_struct *curr_task(int cpu)
8417 {
8418 return cpu_curr(cpu);
8419 }
8420
8421 /**
8422 * set_curr_task - set the current task for a given cpu.
8423 * @cpu: the processor in question.
8424 * @p: the task pointer to set.
8425 *
8426 * Description: This function must only be used when non-maskable interrupts
8427 * are serviced on a separate stack. It allows the architecture to switch the
8428 * notion of the current task on a cpu in a non-blocking manner. This function
8429 * must be called with all CPU's synchronized, and interrupts disabled, the
8430 * and caller must save the original value of the current task (see
8431 * curr_task() above) and restore that value before reenabling interrupts and
8432 * re-starting the system.
8433 *
8434 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8435 */
8436 void set_curr_task(int cpu, struct task_struct *p)
8437 {
8438 cpu_curr(cpu) = p;
8439 }
8440
8441 #endif
8442
8443 #ifdef CONFIG_FAIR_GROUP_SCHED
8444 static void free_fair_sched_group(struct task_group *tg)
8445 {
8446 int i;
8447
8448 for_each_possible_cpu(i) {
8449 if (tg->cfs_rq)
8450 kfree(tg->cfs_rq[i]);
8451 if (tg->se)
8452 kfree(tg->se[i]);
8453 }
8454
8455 kfree(tg->cfs_rq);
8456 kfree(tg->se);
8457 }
8458
8459 static
8460 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8461 {
8462 struct cfs_rq *cfs_rq;
8463 struct sched_entity *se, *parent_se;
8464 struct rq *rq;
8465 int i;
8466
8467 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8468 if (!tg->cfs_rq)
8469 goto err;
8470 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8471 if (!tg->se)
8472 goto err;
8473
8474 tg->shares = NICE_0_LOAD;
8475
8476 for_each_possible_cpu(i) {
8477 rq = cpu_rq(i);
8478
8479 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8480 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8481 if (!cfs_rq)
8482 goto err;
8483
8484 se = kmalloc_node(sizeof(struct sched_entity),
8485 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8486 if (!se)
8487 goto err;
8488
8489 parent_se = parent ? parent->se[i] : NULL;
8490 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8491 }
8492
8493 return 1;
8494
8495 err:
8496 return 0;
8497 }
8498
8499 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8500 {
8501 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8502 &cpu_rq(cpu)->leaf_cfs_rq_list);
8503 }
8504
8505 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8506 {
8507 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8508 }
8509 #else /* !CONFG_FAIR_GROUP_SCHED */
8510 static inline void free_fair_sched_group(struct task_group *tg)
8511 {
8512 }
8513
8514 static inline
8515 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8516 {
8517 return 1;
8518 }
8519
8520 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8521 {
8522 }
8523
8524 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8525 {
8526 }
8527 #endif /* CONFIG_FAIR_GROUP_SCHED */
8528
8529 #ifdef CONFIG_RT_GROUP_SCHED
8530 static void free_rt_sched_group(struct task_group *tg)
8531 {
8532 int i;
8533
8534 destroy_rt_bandwidth(&tg->rt_bandwidth);
8535
8536 for_each_possible_cpu(i) {
8537 if (tg->rt_rq)
8538 kfree(tg->rt_rq[i]);
8539 if (tg->rt_se)
8540 kfree(tg->rt_se[i]);
8541 }
8542
8543 kfree(tg->rt_rq);
8544 kfree(tg->rt_se);
8545 }
8546
8547 static
8548 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8549 {
8550 struct rt_rq *rt_rq;
8551 struct sched_rt_entity *rt_se, *parent_se;
8552 struct rq *rq;
8553 int i;
8554
8555 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8556 if (!tg->rt_rq)
8557 goto err;
8558 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8559 if (!tg->rt_se)
8560 goto err;
8561
8562 init_rt_bandwidth(&tg->rt_bandwidth,
8563 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8564
8565 for_each_possible_cpu(i) {
8566 rq = cpu_rq(i);
8567
8568 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8569 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8570 if (!rt_rq)
8571 goto err;
8572
8573 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8574 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8575 if (!rt_se)
8576 goto err;
8577
8578 parent_se = parent ? parent->rt_se[i] : NULL;
8579 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8580 }
8581
8582 return 1;
8583
8584 err:
8585 return 0;
8586 }
8587
8588 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8589 {
8590 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8591 &cpu_rq(cpu)->leaf_rt_rq_list);
8592 }
8593
8594 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8595 {
8596 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8597 }
8598 #else /* !CONFIG_RT_GROUP_SCHED */
8599 static inline void free_rt_sched_group(struct task_group *tg)
8600 {
8601 }
8602
8603 static inline
8604 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8605 {
8606 return 1;
8607 }
8608
8609 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8610 {
8611 }
8612
8613 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8614 {
8615 }
8616 #endif /* CONFIG_RT_GROUP_SCHED */
8617
8618 #ifdef CONFIG_GROUP_SCHED
8619 static void free_sched_group(struct task_group *tg)
8620 {
8621 free_fair_sched_group(tg);
8622 free_rt_sched_group(tg);
8623 kfree(tg);
8624 }
8625
8626 /* allocate runqueue etc for a new task group */
8627 struct task_group *sched_create_group(struct task_group *parent)
8628 {
8629 struct task_group *tg;
8630 unsigned long flags;
8631 int i;
8632
8633 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8634 if (!tg)
8635 return ERR_PTR(-ENOMEM);
8636
8637 if (!alloc_fair_sched_group(tg, parent))
8638 goto err;
8639
8640 if (!alloc_rt_sched_group(tg, parent))
8641 goto err;
8642
8643 spin_lock_irqsave(&task_group_lock, flags);
8644 for_each_possible_cpu(i) {
8645 register_fair_sched_group(tg, i);
8646 register_rt_sched_group(tg, i);
8647 }
8648 list_add_rcu(&tg->list, &task_groups);
8649
8650 WARN_ON(!parent); /* root should already exist */
8651
8652 tg->parent = parent;
8653 INIT_LIST_HEAD(&tg->children);
8654 list_add_rcu(&tg->siblings, &parent->children);
8655 spin_unlock_irqrestore(&task_group_lock, flags);
8656
8657 return tg;
8658
8659 err:
8660 free_sched_group(tg);
8661 return ERR_PTR(-ENOMEM);
8662 }
8663
8664 /* rcu callback to free various structures associated with a task group */
8665 static void free_sched_group_rcu(struct rcu_head *rhp)
8666 {
8667 /* now it should be safe to free those cfs_rqs */
8668 free_sched_group(container_of(rhp, struct task_group, rcu));
8669 }
8670
8671 /* Destroy runqueue etc associated with a task group */
8672 void sched_destroy_group(struct task_group *tg)
8673 {
8674 unsigned long flags;
8675 int i;
8676
8677 spin_lock_irqsave(&task_group_lock, flags);
8678 for_each_possible_cpu(i) {
8679 unregister_fair_sched_group(tg, i);
8680 unregister_rt_sched_group(tg, i);
8681 }
8682 list_del_rcu(&tg->list);
8683 list_del_rcu(&tg->siblings);
8684 spin_unlock_irqrestore(&task_group_lock, flags);
8685
8686 /* wait for possible concurrent references to cfs_rqs complete */
8687 call_rcu(&tg->rcu, free_sched_group_rcu);
8688 }
8689
8690 /* change task's runqueue when it moves between groups.
8691 * The caller of this function should have put the task in its new group
8692 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8693 * reflect its new group.
8694 */
8695 void sched_move_task(struct task_struct *tsk)
8696 {
8697 int on_rq, running;
8698 unsigned long flags;
8699 struct rq *rq;
8700
8701 rq = task_rq_lock(tsk, &flags);
8702
8703 update_rq_clock(rq);
8704
8705 running = task_current(rq, tsk);
8706 on_rq = tsk->se.on_rq;
8707
8708 if (on_rq)
8709 dequeue_task(rq, tsk, 0);
8710 if (unlikely(running))
8711 tsk->sched_class->put_prev_task(rq, tsk);
8712
8713 set_task_rq(tsk, task_cpu(tsk));
8714
8715 #ifdef CONFIG_FAIR_GROUP_SCHED
8716 if (tsk->sched_class->moved_group)
8717 tsk->sched_class->moved_group(tsk);
8718 #endif
8719
8720 if (unlikely(running))
8721 tsk->sched_class->set_curr_task(rq);
8722 if (on_rq)
8723 enqueue_task(rq, tsk, 0);
8724
8725 task_rq_unlock(rq, &flags);
8726 }
8727 #endif /* CONFIG_GROUP_SCHED */
8728
8729 #ifdef CONFIG_FAIR_GROUP_SCHED
8730 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8731 {
8732 struct cfs_rq *cfs_rq = se->cfs_rq;
8733 int on_rq;
8734
8735 on_rq = se->on_rq;
8736 if (on_rq)
8737 dequeue_entity(cfs_rq, se, 0);
8738
8739 se->load.weight = shares;
8740 se->load.inv_weight = 0;
8741
8742 if (on_rq)
8743 enqueue_entity(cfs_rq, se, 0);
8744 }
8745
8746 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8747 {
8748 struct cfs_rq *cfs_rq = se->cfs_rq;
8749 struct rq *rq = cfs_rq->rq;
8750 unsigned long flags;
8751
8752 spin_lock_irqsave(&rq->lock, flags);
8753 __set_se_shares(se, shares);
8754 spin_unlock_irqrestore(&rq->lock, flags);
8755 }
8756
8757 static DEFINE_MUTEX(shares_mutex);
8758
8759 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8760 {
8761 int i;
8762 unsigned long flags;
8763
8764 /*
8765 * We can't change the weight of the root cgroup.
8766 */
8767 if (!tg->se[0])
8768 return -EINVAL;
8769
8770 if (shares < MIN_SHARES)
8771 shares = MIN_SHARES;
8772 else if (shares > MAX_SHARES)
8773 shares = MAX_SHARES;
8774
8775 mutex_lock(&shares_mutex);
8776 if (tg->shares == shares)
8777 goto done;
8778
8779 spin_lock_irqsave(&task_group_lock, flags);
8780 for_each_possible_cpu(i)
8781 unregister_fair_sched_group(tg, i);
8782 list_del_rcu(&tg->siblings);
8783 spin_unlock_irqrestore(&task_group_lock, flags);
8784
8785 /* wait for any ongoing reference to this group to finish */
8786 synchronize_sched();
8787
8788 /*
8789 * Now we are free to modify the group's share on each cpu
8790 * w/o tripping rebalance_share or load_balance_fair.
8791 */
8792 tg->shares = shares;
8793 for_each_possible_cpu(i) {
8794 /*
8795 * force a rebalance
8796 */
8797 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8798 set_se_shares(tg->se[i], shares);
8799 }
8800
8801 /*
8802 * Enable load balance activity on this group, by inserting it back on
8803 * each cpu's rq->leaf_cfs_rq_list.
8804 */
8805 spin_lock_irqsave(&task_group_lock, flags);
8806 for_each_possible_cpu(i)
8807 register_fair_sched_group(tg, i);
8808 list_add_rcu(&tg->siblings, &tg->parent->children);
8809 spin_unlock_irqrestore(&task_group_lock, flags);
8810 done:
8811 mutex_unlock(&shares_mutex);
8812 return 0;
8813 }
8814
8815 unsigned long sched_group_shares(struct task_group *tg)
8816 {
8817 return tg->shares;
8818 }
8819 #endif
8820
8821 #ifdef CONFIG_RT_GROUP_SCHED
8822 /*
8823 * Ensure that the real time constraints are schedulable.
8824 */
8825 static DEFINE_MUTEX(rt_constraints_mutex);
8826
8827 static unsigned long to_ratio(u64 period, u64 runtime)
8828 {
8829 if (runtime == RUNTIME_INF)
8830 return 1ULL << 20;
8831
8832 return div64_u64(runtime << 20, period);
8833 }
8834
8835 /* Must be called with tasklist_lock held */
8836 static inline int tg_has_rt_tasks(struct task_group *tg)
8837 {
8838 struct task_struct *g, *p;
8839
8840 do_each_thread(g, p) {
8841 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8842 return 1;
8843 } while_each_thread(g, p);
8844
8845 return 0;
8846 }
8847
8848 struct rt_schedulable_data {
8849 struct task_group *tg;
8850 u64 rt_period;
8851 u64 rt_runtime;
8852 };
8853
8854 static int tg_schedulable(struct task_group *tg, void *data)
8855 {
8856 struct rt_schedulable_data *d = data;
8857 struct task_group *child;
8858 unsigned long total, sum = 0;
8859 u64 period, runtime;
8860
8861 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8862 runtime = tg->rt_bandwidth.rt_runtime;
8863
8864 if (tg == d->tg) {
8865 period = d->rt_period;
8866 runtime = d->rt_runtime;
8867 }
8868
8869 /*
8870 * Cannot have more runtime than the period.
8871 */
8872 if (runtime > period && runtime != RUNTIME_INF)
8873 return -EINVAL;
8874
8875 /*
8876 * Ensure we don't starve existing RT tasks.
8877 */
8878 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8879 return -EBUSY;
8880
8881 total = to_ratio(period, runtime);
8882
8883 /*
8884 * Nobody can have more than the global setting allows.
8885 */
8886 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8887 return -EINVAL;
8888
8889 /*
8890 * The sum of our children's runtime should not exceed our own.
8891 */
8892 list_for_each_entry_rcu(child, &tg->children, siblings) {
8893 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8894 runtime = child->rt_bandwidth.rt_runtime;
8895
8896 if (child == d->tg) {
8897 period = d->rt_period;
8898 runtime = d->rt_runtime;
8899 }
8900
8901 sum += to_ratio(period, runtime);
8902 }
8903
8904 if (sum > total)
8905 return -EINVAL;
8906
8907 return 0;
8908 }
8909
8910 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8911 {
8912 struct rt_schedulable_data data = {
8913 .tg = tg,
8914 .rt_period = period,
8915 .rt_runtime = runtime,
8916 };
8917
8918 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8919 }
8920
8921 static int tg_set_bandwidth(struct task_group *tg,
8922 u64 rt_period, u64 rt_runtime)
8923 {
8924 int i, err = 0;
8925
8926 mutex_lock(&rt_constraints_mutex);
8927 read_lock(&tasklist_lock);
8928 err = __rt_schedulable(tg, rt_period, rt_runtime);
8929 if (err)
8930 goto unlock;
8931
8932 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8933 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8934 tg->rt_bandwidth.rt_runtime = rt_runtime;
8935
8936 for_each_possible_cpu(i) {
8937 struct rt_rq *rt_rq = tg->rt_rq[i];
8938
8939 spin_lock(&rt_rq->rt_runtime_lock);
8940 rt_rq->rt_runtime = rt_runtime;
8941 spin_unlock(&rt_rq->rt_runtime_lock);
8942 }
8943 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8944 unlock:
8945 read_unlock(&tasklist_lock);
8946 mutex_unlock(&rt_constraints_mutex);
8947
8948 return err;
8949 }
8950
8951 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8952 {
8953 u64 rt_runtime, rt_period;
8954
8955 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8956 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8957 if (rt_runtime_us < 0)
8958 rt_runtime = RUNTIME_INF;
8959
8960 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8961 }
8962
8963 long sched_group_rt_runtime(struct task_group *tg)
8964 {
8965 u64 rt_runtime_us;
8966
8967 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8968 return -1;
8969
8970 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8971 do_div(rt_runtime_us, NSEC_PER_USEC);
8972 return rt_runtime_us;
8973 }
8974
8975 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8976 {
8977 u64 rt_runtime, rt_period;
8978
8979 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8980 rt_runtime = tg->rt_bandwidth.rt_runtime;
8981
8982 if (rt_period == 0)
8983 return -EINVAL;
8984
8985 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8986 }
8987
8988 long sched_group_rt_period(struct task_group *tg)
8989 {
8990 u64 rt_period_us;
8991
8992 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8993 do_div(rt_period_us, NSEC_PER_USEC);
8994 return rt_period_us;
8995 }
8996
8997 static int sched_rt_global_constraints(void)
8998 {
8999 u64 runtime, period;
9000 int ret = 0;
9001
9002 if (sysctl_sched_rt_period <= 0)
9003 return -EINVAL;
9004
9005 runtime = global_rt_runtime();
9006 period = global_rt_period();
9007
9008 /*
9009 * Sanity check on the sysctl variables.
9010 */
9011 if (runtime > period && runtime != RUNTIME_INF)
9012 return -EINVAL;
9013
9014 mutex_lock(&rt_constraints_mutex);
9015 read_lock(&tasklist_lock);
9016 ret = __rt_schedulable(NULL, 0, 0);
9017 read_unlock(&tasklist_lock);
9018 mutex_unlock(&rt_constraints_mutex);
9019
9020 return ret;
9021 }
9022 #else /* !CONFIG_RT_GROUP_SCHED */
9023 static int sched_rt_global_constraints(void)
9024 {
9025 unsigned long flags;
9026 int i;
9027
9028 if (sysctl_sched_rt_period <= 0)
9029 return -EINVAL;
9030
9031 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9032 for_each_possible_cpu(i) {
9033 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9034
9035 spin_lock(&rt_rq->rt_runtime_lock);
9036 rt_rq->rt_runtime = global_rt_runtime();
9037 spin_unlock(&rt_rq->rt_runtime_lock);
9038 }
9039 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9040
9041 return 0;
9042 }
9043 #endif /* CONFIG_RT_GROUP_SCHED */
9044
9045 int sched_rt_handler(struct ctl_table *table, int write,
9046 struct file *filp, void __user *buffer, size_t *lenp,
9047 loff_t *ppos)
9048 {
9049 int ret;
9050 int old_period, old_runtime;
9051 static DEFINE_MUTEX(mutex);
9052
9053 mutex_lock(&mutex);
9054 old_period = sysctl_sched_rt_period;
9055 old_runtime = sysctl_sched_rt_runtime;
9056
9057 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9058
9059 if (!ret && write) {
9060 ret = sched_rt_global_constraints();
9061 if (ret) {
9062 sysctl_sched_rt_period = old_period;
9063 sysctl_sched_rt_runtime = old_runtime;
9064 } else {
9065 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9066 def_rt_bandwidth.rt_period =
9067 ns_to_ktime(global_rt_period());
9068 }
9069 }
9070 mutex_unlock(&mutex);
9071
9072 return ret;
9073 }
9074
9075 #ifdef CONFIG_CGROUP_SCHED
9076
9077 /* return corresponding task_group object of a cgroup */
9078 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9079 {
9080 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9081 struct task_group, css);
9082 }
9083
9084 static struct cgroup_subsys_state *
9085 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9086 {
9087 struct task_group *tg, *parent;
9088
9089 if (!cgrp->parent) {
9090 /* This is early initialization for the top cgroup */
9091 init_task_group.css.cgroup = cgrp;
9092 return &init_task_group.css;
9093 }
9094
9095 parent = cgroup_tg(cgrp->parent);
9096 tg = sched_create_group(parent);
9097 if (IS_ERR(tg))
9098 return ERR_PTR(-ENOMEM);
9099
9100 /* Bind the cgroup to task_group object we just created */
9101 tg->css.cgroup = cgrp;
9102
9103 return &tg->css;
9104 }
9105
9106 static void
9107 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9108 {
9109 struct task_group *tg = cgroup_tg(cgrp);
9110
9111 sched_destroy_group(tg);
9112 }
9113
9114 static int
9115 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9116 struct task_struct *tsk)
9117 {
9118 #ifdef CONFIG_RT_GROUP_SCHED
9119 /* Don't accept realtime tasks when there is no way for them to run */
9120 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9121 return -EINVAL;
9122 #else
9123 /* We don't support RT-tasks being in separate groups */
9124 if (tsk->sched_class != &fair_sched_class)
9125 return -EINVAL;
9126 #endif
9127
9128 return 0;
9129 }
9130
9131 static void
9132 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9133 struct cgroup *old_cont, struct task_struct *tsk)
9134 {
9135 sched_move_task(tsk);
9136 }
9137
9138 #ifdef CONFIG_FAIR_GROUP_SCHED
9139 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9140 u64 shareval)
9141 {
9142 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9143 }
9144
9145 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9146 {
9147 struct task_group *tg = cgroup_tg(cgrp);
9148
9149 return (u64) tg->shares;
9150 }
9151 #endif /* CONFIG_FAIR_GROUP_SCHED */
9152
9153 #ifdef CONFIG_RT_GROUP_SCHED
9154 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9155 s64 val)
9156 {
9157 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9158 }
9159
9160 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9161 {
9162 return sched_group_rt_runtime(cgroup_tg(cgrp));
9163 }
9164
9165 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9166 u64 rt_period_us)
9167 {
9168 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9169 }
9170
9171 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9172 {
9173 return sched_group_rt_period(cgroup_tg(cgrp));
9174 }
9175 #endif /* CONFIG_RT_GROUP_SCHED */
9176
9177 static struct cftype cpu_files[] = {
9178 #ifdef CONFIG_FAIR_GROUP_SCHED
9179 {
9180 .name = "shares",
9181 .read_u64 = cpu_shares_read_u64,
9182 .write_u64 = cpu_shares_write_u64,
9183 },
9184 #endif
9185 #ifdef CONFIG_RT_GROUP_SCHED
9186 {
9187 .name = "rt_runtime_us",
9188 .read_s64 = cpu_rt_runtime_read,
9189 .write_s64 = cpu_rt_runtime_write,
9190 },
9191 {
9192 .name = "rt_period_us",
9193 .read_u64 = cpu_rt_period_read_uint,
9194 .write_u64 = cpu_rt_period_write_uint,
9195 },
9196 #endif
9197 };
9198
9199 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9200 {
9201 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9202 }
9203
9204 struct cgroup_subsys cpu_cgroup_subsys = {
9205 .name = "cpu",
9206 .create = cpu_cgroup_create,
9207 .destroy = cpu_cgroup_destroy,
9208 .can_attach = cpu_cgroup_can_attach,
9209 .attach = cpu_cgroup_attach,
9210 .populate = cpu_cgroup_populate,
9211 .subsys_id = cpu_cgroup_subsys_id,
9212 .early_init = 1,
9213 };
9214
9215 #endif /* CONFIG_CGROUP_SCHED */
9216
9217 #ifdef CONFIG_CGROUP_CPUACCT
9218
9219 /*
9220 * CPU accounting code for task groups.
9221 *
9222 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9223 * (balbir@in.ibm.com).
9224 */
9225
9226 /* track cpu usage of a group of tasks */
9227 struct cpuacct {
9228 struct cgroup_subsys_state css;
9229 /* cpuusage holds pointer to a u64-type object on every cpu */
9230 u64 *cpuusage;
9231 };
9232
9233 struct cgroup_subsys cpuacct_subsys;
9234
9235 /* return cpu accounting group corresponding to this container */
9236 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9237 {
9238 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9239 struct cpuacct, css);
9240 }
9241
9242 /* return cpu accounting group to which this task belongs */
9243 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9244 {
9245 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9246 struct cpuacct, css);
9247 }
9248
9249 /* create a new cpu accounting group */
9250 static struct cgroup_subsys_state *cpuacct_create(
9251 struct cgroup_subsys *ss, struct cgroup *cgrp)
9252 {
9253 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9254
9255 if (!ca)
9256 return ERR_PTR(-ENOMEM);
9257
9258 ca->cpuusage = alloc_percpu(u64);
9259 if (!ca->cpuusage) {
9260 kfree(ca);
9261 return ERR_PTR(-ENOMEM);
9262 }
9263
9264 return &ca->css;
9265 }
9266
9267 /* destroy an existing cpu accounting group */
9268 static void
9269 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9270 {
9271 struct cpuacct *ca = cgroup_ca(cgrp);
9272
9273 free_percpu(ca->cpuusage);
9274 kfree(ca);
9275 }
9276
9277 /* return total cpu usage (in nanoseconds) of a group */
9278 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9279 {
9280 struct cpuacct *ca = cgroup_ca(cgrp);
9281 u64 totalcpuusage = 0;
9282 int i;
9283
9284 for_each_possible_cpu(i) {
9285 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9286
9287 /*
9288 * Take rq->lock to make 64-bit addition safe on 32-bit
9289 * platforms.
9290 */
9291 spin_lock_irq(&cpu_rq(i)->lock);
9292 totalcpuusage += *cpuusage;
9293 spin_unlock_irq(&cpu_rq(i)->lock);
9294 }
9295
9296 return totalcpuusage;
9297 }
9298
9299 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9300 u64 reset)
9301 {
9302 struct cpuacct *ca = cgroup_ca(cgrp);
9303 int err = 0;
9304 int i;
9305
9306 if (reset) {
9307 err = -EINVAL;
9308 goto out;
9309 }
9310
9311 for_each_possible_cpu(i) {
9312 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9313
9314 spin_lock_irq(&cpu_rq(i)->lock);
9315 *cpuusage = 0;
9316 spin_unlock_irq(&cpu_rq(i)->lock);
9317 }
9318 out:
9319 return err;
9320 }
9321
9322 static struct cftype files[] = {
9323 {
9324 .name = "usage",
9325 .read_u64 = cpuusage_read,
9326 .write_u64 = cpuusage_write,
9327 },
9328 };
9329
9330 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9331 {
9332 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9333 }
9334
9335 /*
9336 * charge this task's execution time to its accounting group.
9337 *
9338 * called with rq->lock held.
9339 */
9340 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9341 {
9342 struct cpuacct *ca;
9343
9344 if (!cpuacct_subsys.active)
9345 return;
9346
9347 ca = task_ca(tsk);
9348 if (ca) {
9349 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9350
9351 *cpuusage += cputime;
9352 }
9353 }
9354
9355 struct cgroup_subsys cpuacct_subsys = {
9356 .name = "cpuacct",
9357 .create = cpuacct_create,
9358 .destroy = cpuacct_destroy,
9359 .populate = cpuacct_populate,
9360 .subsys_id = cpuacct_subsys_id,
9361 };
9362 #endif /* CONFIG_CGROUP_CPUACCT */