Merge git://git.linux-xtensa.org/kernel/xtensa-feed
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 u64 idle_clock;
266 unsigned int clock_deep_idle_events;
267 u64 tick_timestamp;
268
269 atomic_t nr_iowait;
270
271 #ifdef CONFIG_SMP
272 struct sched_domain *sd;
273
274 /* For active balancing */
275 int active_balance;
276 int push_cpu;
277 int cpu; /* cpu of this runqueue */
278
279 struct task_struct *migration_thread;
280 struct list_head migration_queue;
281 #endif
282
283 #ifdef CONFIG_SCHEDSTATS
284 /* latency stats */
285 struct sched_info rq_sched_info;
286
287 /* sys_sched_yield() stats */
288 unsigned long yld_exp_empty;
289 unsigned long yld_act_empty;
290 unsigned long yld_both_empty;
291 unsigned long yld_cnt;
292
293 /* schedule() stats */
294 unsigned long sched_switch;
295 unsigned long sched_cnt;
296 unsigned long sched_goidle;
297
298 /* try_to_wake_up() stats */
299 unsigned long ttwu_cnt;
300 unsigned long ttwu_local;
301 #endif
302 struct lock_class_key rq_lock_key;
303 };
304
305 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
306 static DEFINE_MUTEX(sched_hotcpu_mutex);
307
308 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309 {
310 rq->curr->sched_class->check_preempt_curr(rq, p);
311 }
312
313 static inline int cpu_of(struct rq *rq)
314 {
315 #ifdef CONFIG_SMP
316 return rq->cpu;
317 #else
318 return 0;
319 #endif
320 }
321
322 /*
323 * Update the per-runqueue clock, as finegrained as the platform can give
324 * us, but without assuming monotonicity, etc.:
325 */
326 static void __update_rq_clock(struct rq *rq)
327 {
328 u64 prev_raw = rq->prev_clock_raw;
329 u64 now = sched_clock();
330 s64 delta = now - prev_raw;
331 u64 clock = rq->clock;
332
333 #ifdef CONFIG_SCHED_DEBUG
334 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
335 #endif
336 /*
337 * Protect against sched_clock() occasionally going backwards:
338 */
339 if (unlikely(delta < 0)) {
340 clock++;
341 rq->clock_warps++;
342 } else {
343 /*
344 * Catch too large forward jumps too:
345 */
346 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
347 if (clock < rq->tick_timestamp + TICK_NSEC)
348 clock = rq->tick_timestamp + TICK_NSEC;
349 else
350 clock++;
351 rq->clock_overflows++;
352 } else {
353 if (unlikely(delta > rq->clock_max_delta))
354 rq->clock_max_delta = delta;
355 clock += delta;
356 }
357 }
358
359 rq->prev_clock_raw = now;
360 rq->clock = clock;
361 }
362
363 static void update_rq_clock(struct rq *rq)
364 {
365 if (likely(smp_processor_id() == cpu_of(rq)))
366 __update_rq_clock(rq);
367 }
368
369 /*
370 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
371 * See detach_destroy_domains: synchronize_sched for details.
372 *
373 * The domain tree of any CPU may only be accessed from within
374 * preempt-disabled sections.
375 */
376 #define for_each_domain(cpu, __sd) \
377 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
378
379 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
380 #define this_rq() (&__get_cpu_var(runqueues))
381 #define task_rq(p) cpu_rq(task_cpu(p))
382 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383
384 /*
385 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
386 * clock constructed from sched_clock():
387 */
388 unsigned long long cpu_clock(int cpu)
389 {
390 unsigned long long now;
391 unsigned long flags;
392 struct rq *rq;
393
394 local_irq_save(flags);
395 rq = cpu_rq(cpu);
396 update_rq_clock(rq);
397 now = rq->clock;
398 local_irq_restore(flags);
399
400 return now;
401 }
402
403 #ifdef CONFIG_FAIR_GROUP_SCHED
404 /* Change a task's ->cfs_rq if it moves across CPUs */
405 static inline void set_task_cfs_rq(struct task_struct *p)
406 {
407 p->se.cfs_rq = &task_rq(p)->cfs;
408 }
409 #else
410 static inline void set_task_cfs_rq(struct task_struct *p)
411 {
412 }
413 #endif
414
415 #ifndef prepare_arch_switch
416 # define prepare_arch_switch(next) do { } while (0)
417 #endif
418 #ifndef finish_arch_switch
419 # define finish_arch_switch(prev) do { } while (0)
420 #endif
421
422 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
423 static inline int task_running(struct rq *rq, struct task_struct *p)
424 {
425 return rq->curr == p;
426 }
427
428 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
429 {
430 }
431
432 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
433 {
434 #ifdef CONFIG_DEBUG_SPINLOCK
435 /* this is a valid case when another task releases the spinlock */
436 rq->lock.owner = current;
437 #endif
438 /*
439 * If we are tracking spinlock dependencies then we have to
440 * fix up the runqueue lock - which gets 'carried over' from
441 * prev into current:
442 */
443 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
444
445 spin_unlock_irq(&rq->lock);
446 }
447
448 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
449 static inline int task_running(struct rq *rq, struct task_struct *p)
450 {
451 #ifdef CONFIG_SMP
452 return p->oncpu;
453 #else
454 return rq->curr == p;
455 #endif
456 }
457
458 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
459 {
460 #ifdef CONFIG_SMP
461 /*
462 * We can optimise this out completely for !SMP, because the
463 * SMP rebalancing from interrupt is the only thing that cares
464 * here.
465 */
466 next->oncpu = 1;
467 #endif
468 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
469 spin_unlock_irq(&rq->lock);
470 #else
471 spin_unlock(&rq->lock);
472 #endif
473 }
474
475 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
476 {
477 #ifdef CONFIG_SMP
478 /*
479 * After ->oncpu is cleared, the task can be moved to a different CPU.
480 * We must ensure this doesn't happen until the switch is completely
481 * finished.
482 */
483 smp_wmb();
484 prev->oncpu = 0;
485 #endif
486 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
487 local_irq_enable();
488 #endif
489 }
490 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
491
492 /*
493 * __task_rq_lock - lock the runqueue a given task resides on.
494 * Must be called interrupts disabled.
495 */
496 static inline struct rq *__task_rq_lock(struct task_struct *p)
497 __acquires(rq->lock)
498 {
499 struct rq *rq;
500
501 repeat_lock_task:
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock(&rq->lock);
506 goto repeat_lock_task;
507 }
508 return rq;
509 }
510
511 /*
512 * task_rq_lock - lock the runqueue a given task resides on and disable
513 * interrupts. Note the ordering: we can safely lookup the task_rq without
514 * explicitly disabling preemption.
515 */
516 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
517 __acquires(rq->lock)
518 {
519 struct rq *rq;
520
521 repeat_lock_task:
522 local_irq_save(*flags);
523 rq = task_rq(p);
524 spin_lock(&rq->lock);
525 if (unlikely(rq != task_rq(p))) {
526 spin_unlock_irqrestore(&rq->lock, *flags);
527 goto repeat_lock_task;
528 }
529 return rq;
530 }
531
532 static inline void __task_rq_unlock(struct rq *rq)
533 __releases(rq->lock)
534 {
535 spin_unlock(&rq->lock);
536 }
537
538 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
539 __releases(rq->lock)
540 {
541 spin_unlock_irqrestore(&rq->lock, *flags);
542 }
543
544 /*
545 * this_rq_lock - lock this runqueue and disable interrupts.
546 */
547 static inline struct rq *this_rq_lock(void)
548 __acquires(rq->lock)
549 {
550 struct rq *rq;
551
552 local_irq_disable();
553 rq = this_rq();
554 spin_lock(&rq->lock);
555
556 return rq;
557 }
558
559 /*
560 * We are going deep-idle (irqs are disabled):
561 */
562 void sched_clock_idle_sleep_event(void)
563 {
564 struct rq *rq = cpu_rq(smp_processor_id());
565
566 spin_lock(&rq->lock);
567 __update_rq_clock(rq);
568 spin_unlock(&rq->lock);
569 rq->clock_deep_idle_events++;
570 }
571 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
572
573 /*
574 * We just idled delta nanoseconds (called with irqs disabled):
575 */
576 void sched_clock_idle_wakeup_event(u64 delta_ns)
577 {
578 struct rq *rq = cpu_rq(smp_processor_id());
579 u64 now = sched_clock();
580
581 rq->idle_clock += delta_ns;
582 /*
583 * Override the previous timestamp and ignore all
584 * sched_clock() deltas that occured while we idled,
585 * and use the PM-provided delta_ns to advance the
586 * rq clock:
587 */
588 spin_lock(&rq->lock);
589 rq->prev_clock_raw = now;
590 rq->clock += delta_ns;
591 spin_unlock(&rq->lock);
592 }
593 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
594
595 /*
596 * resched_task - mark a task 'to be rescheduled now'.
597 *
598 * On UP this means the setting of the need_resched flag, on SMP it
599 * might also involve a cross-CPU call to trigger the scheduler on
600 * the target CPU.
601 */
602 #ifdef CONFIG_SMP
603
604 #ifndef tsk_is_polling
605 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
606 #endif
607
608 static void resched_task(struct task_struct *p)
609 {
610 int cpu;
611
612 assert_spin_locked(&task_rq(p)->lock);
613
614 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
615 return;
616
617 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
618
619 cpu = task_cpu(p);
620 if (cpu == smp_processor_id())
621 return;
622
623 /* NEED_RESCHED must be visible before we test polling */
624 smp_mb();
625 if (!tsk_is_polling(p))
626 smp_send_reschedule(cpu);
627 }
628
629 static void resched_cpu(int cpu)
630 {
631 struct rq *rq = cpu_rq(cpu);
632 unsigned long flags;
633
634 if (!spin_trylock_irqsave(&rq->lock, flags))
635 return;
636 resched_task(cpu_curr(cpu));
637 spin_unlock_irqrestore(&rq->lock, flags);
638 }
639 #else
640 static inline void resched_task(struct task_struct *p)
641 {
642 assert_spin_locked(&task_rq(p)->lock);
643 set_tsk_need_resched(p);
644 }
645 #endif
646
647 static u64 div64_likely32(u64 divident, unsigned long divisor)
648 {
649 #if BITS_PER_LONG == 32
650 if (likely(divident <= 0xffffffffULL))
651 return (u32)divident / divisor;
652 do_div(divident, divisor);
653
654 return divident;
655 #else
656 return divident / divisor;
657 #endif
658 }
659
660 #if BITS_PER_LONG == 32
661 # define WMULT_CONST (~0UL)
662 #else
663 # define WMULT_CONST (1UL << 32)
664 #endif
665
666 #define WMULT_SHIFT 32
667
668 /*
669 * Shift right and round:
670 */
671 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
672
673 static unsigned long
674 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
675 struct load_weight *lw)
676 {
677 u64 tmp;
678
679 if (unlikely(!lw->inv_weight))
680 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
681
682 tmp = (u64)delta_exec * weight;
683 /*
684 * Check whether we'd overflow the 64-bit multiplication:
685 */
686 if (unlikely(tmp > WMULT_CONST))
687 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
688 WMULT_SHIFT/2);
689 else
690 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
691
692 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
693 }
694
695 static inline unsigned long
696 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
697 {
698 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
699 }
700
701 static void update_load_add(struct load_weight *lw, unsigned long inc)
702 {
703 lw->weight += inc;
704 lw->inv_weight = 0;
705 }
706
707 static void update_load_sub(struct load_weight *lw, unsigned long dec)
708 {
709 lw->weight -= dec;
710 lw->inv_weight = 0;
711 }
712
713 /*
714 * To aid in avoiding the subversion of "niceness" due to uneven distribution
715 * of tasks with abnormal "nice" values across CPUs the contribution that
716 * each task makes to its run queue's load is weighted according to its
717 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
718 * scaled version of the new time slice allocation that they receive on time
719 * slice expiry etc.
720 */
721
722 #define WEIGHT_IDLEPRIO 2
723 #define WMULT_IDLEPRIO (1 << 31)
724
725 /*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
733 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
734 * If a task goes up by ~10% and another task goes down by ~10% then
735 * the relative distance between them is ~25%.)
736 */
737 static const int prio_to_weight[40] = {
738 /* -20 */ 88761, 71755, 56483, 46273, 36291,
739 /* -15 */ 29154, 23254, 18705, 14949, 11916,
740 /* -10 */ 9548, 7620, 6100, 4904, 3906,
741 /* -5 */ 3121, 2501, 1991, 1586, 1277,
742 /* 0 */ 1024, 820, 655, 526, 423,
743 /* 5 */ 335, 272, 215, 172, 137,
744 /* 10 */ 110, 87, 70, 56, 45,
745 /* 15 */ 36, 29, 23, 18, 15,
746 };
747
748 /*
749 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
750 *
751 * In cases where the weight does not change often, we can use the
752 * precalculated inverse to speed up arithmetics by turning divisions
753 * into multiplications:
754 */
755 static const u32 prio_to_wmult[40] = {
756 /* -20 */ 48388, 59856, 76040, 92818, 118348,
757 /* -15 */ 147320, 184698, 229616, 287308, 360437,
758 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
759 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
760 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
761 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
762 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
763 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
764 };
765
766 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
767
768 /*
769 * runqueue iterator, to support SMP load-balancing between different
770 * scheduling classes, without having to expose their internal data
771 * structures to the load-balancing proper:
772 */
773 struct rq_iterator {
774 void *arg;
775 struct task_struct *(*start)(void *);
776 struct task_struct *(*next)(void *);
777 };
778
779 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
780 unsigned long max_nr_move, unsigned long max_load_move,
781 struct sched_domain *sd, enum cpu_idle_type idle,
782 int *all_pinned, unsigned long *load_moved,
783 int *this_best_prio, struct rq_iterator *iterator);
784
785 #include "sched_stats.h"
786 #include "sched_rt.c"
787 #include "sched_fair.c"
788 #include "sched_idletask.c"
789 #ifdef CONFIG_SCHED_DEBUG
790 # include "sched_debug.c"
791 #endif
792
793 #define sched_class_highest (&rt_sched_class)
794
795 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
796 {
797 if (rq->curr != rq->idle && ls->load.weight) {
798 ls->delta_exec += ls->delta_stat;
799 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
800 ls->delta_stat = 0;
801 }
802 }
803
804 /*
805 * Update delta_exec, delta_fair fields for rq.
806 *
807 * delta_fair clock advances at a rate inversely proportional to
808 * total load (rq->ls.load.weight) on the runqueue, while
809 * delta_exec advances at the same rate as wall-clock (provided
810 * cpu is not idle).
811 *
812 * delta_exec / delta_fair is a measure of the (smoothened) load on this
813 * runqueue over any given interval. This (smoothened) load is used
814 * during load balance.
815 *
816 * This function is called /before/ updating rq->ls.load
817 * and when switching tasks.
818 */
819 static void update_curr_load(struct rq *rq)
820 {
821 struct load_stat *ls = &rq->ls;
822 u64 start;
823
824 start = ls->load_update_start;
825 ls->load_update_start = rq->clock;
826 ls->delta_stat += rq->clock - start;
827 /*
828 * Stagger updates to ls->delta_fair. Very frequent updates
829 * can be expensive.
830 */
831 if (ls->delta_stat >= sysctl_sched_stat_granularity)
832 __update_curr_load(rq, ls);
833 }
834
835 static inline void inc_load(struct rq *rq, const struct task_struct *p)
836 {
837 update_curr_load(rq);
838 update_load_add(&rq->ls.load, p->se.load.weight);
839 }
840
841 static inline void dec_load(struct rq *rq, const struct task_struct *p)
842 {
843 update_curr_load(rq);
844 update_load_sub(&rq->ls.load, p->se.load.weight);
845 }
846
847 static void inc_nr_running(struct task_struct *p, struct rq *rq)
848 {
849 rq->nr_running++;
850 inc_load(rq, p);
851 }
852
853 static void dec_nr_running(struct task_struct *p, struct rq *rq)
854 {
855 rq->nr_running--;
856 dec_load(rq, p);
857 }
858
859 static void set_load_weight(struct task_struct *p)
860 {
861 p->se.wait_runtime = 0;
862
863 if (task_has_rt_policy(p)) {
864 p->se.load.weight = prio_to_weight[0] * 2;
865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
866 return;
867 }
868
869 /*
870 * SCHED_IDLE tasks get minimal weight:
871 */
872 if (p->policy == SCHED_IDLE) {
873 p->se.load.weight = WEIGHT_IDLEPRIO;
874 p->se.load.inv_weight = WMULT_IDLEPRIO;
875 return;
876 }
877
878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
880 }
881
882 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
883 {
884 sched_info_queued(p);
885 p->sched_class->enqueue_task(rq, p, wakeup);
886 p->se.on_rq = 1;
887 }
888
889 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
890 {
891 p->sched_class->dequeue_task(rq, p, sleep);
892 p->se.on_rq = 0;
893 }
894
895 /*
896 * __normal_prio - return the priority that is based on the static prio
897 */
898 static inline int __normal_prio(struct task_struct *p)
899 {
900 return p->static_prio;
901 }
902
903 /*
904 * Calculate the expected normal priority: i.e. priority
905 * without taking RT-inheritance into account. Might be
906 * boosted by interactivity modifiers. Changes upon fork,
907 * setprio syscalls, and whenever the interactivity
908 * estimator recalculates.
909 */
910 static inline int normal_prio(struct task_struct *p)
911 {
912 int prio;
913
914 if (task_has_rt_policy(p))
915 prio = MAX_RT_PRIO-1 - p->rt_priority;
916 else
917 prio = __normal_prio(p);
918 return prio;
919 }
920
921 /*
922 * Calculate the current priority, i.e. the priority
923 * taken into account by the scheduler. This value might
924 * be boosted by RT tasks, or might be boosted by
925 * interactivity modifiers. Will be RT if the task got
926 * RT-boosted. If not then it returns p->normal_prio.
927 */
928 static int effective_prio(struct task_struct *p)
929 {
930 p->normal_prio = normal_prio(p);
931 /*
932 * If we are RT tasks or we were boosted to RT priority,
933 * keep the priority unchanged. Otherwise, update priority
934 * to the normal priority:
935 */
936 if (!rt_prio(p->prio))
937 return p->normal_prio;
938 return p->prio;
939 }
940
941 /*
942 * activate_task - move a task to the runqueue.
943 */
944 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
945 {
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible--;
948
949 enqueue_task(rq, p, wakeup);
950 inc_nr_running(p, rq);
951 }
952
953 /*
954 * activate_idle_task - move idle task to the _front_ of runqueue.
955 */
956 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
957 {
958 update_rq_clock(rq);
959
960 if (p->state == TASK_UNINTERRUPTIBLE)
961 rq->nr_uninterruptible--;
962
963 enqueue_task(rq, p, 0);
964 inc_nr_running(p, rq);
965 }
966
967 /*
968 * deactivate_task - remove a task from the runqueue.
969 */
970 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
971 {
972 if (p->state == TASK_UNINTERRUPTIBLE)
973 rq->nr_uninterruptible++;
974
975 dequeue_task(rq, p, sleep);
976 dec_nr_running(p, rq);
977 }
978
979 /**
980 * task_curr - is this task currently executing on a CPU?
981 * @p: the task in question.
982 */
983 inline int task_curr(const struct task_struct *p)
984 {
985 return cpu_curr(task_cpu(p)) == p;
986 }
987
988 /* Used instead of source_load when we know the type == 0 */
989 unsigned long weighted_cpuload(const int cpu)
990 {
991 return cpu_rq(cpu)->ls.load.weight;
992 }
993
994 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
995 {
996 #ifdef CONFIG_SMP
997 task_thread_info(p)->cpu = cpu;
998 set_task_cfs_rq(p);
999 #endif
1000 }
1001
1002 #ifdef CONFIG_SMP
1003
1004 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1005 {
1006 int old_cpu = task_cpu(p);
1007 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1008 u64 clock_offset, fair_clock_offset;
1009
1010 clock_offset = old_rq->clock - new_rq->clock;
1011 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1012
1013 if (p->se.wait_start_fair)
1014 p->se.wait_start_fair -= fair_clock_offset;
1015 if (p->se.sleep_start_fair)
1016 p->se.sleep_start_fair -= fair_clock_offset;
1017
1018 #ifdef CONFIG_SCHEDSTATS
1019 if (p->se.wait_start)
1020 p->se.wait_start -= clock_offset;
1021 if (p->se.sleep_start)
1022 p->se.sleep_start -= clock_offset;
1023 if (p->se.block_start)
1024 p->se.block_start -= clock_offset;
1025 #endif
1026
1027 __set_task_cpu(p, new_cpu);
1028 }
1029
1030 struct migration_req {
1031 struct list_head list;
1032
1033 struct task_struct *task;
1034 int dest_cpu;
1035
1036 struct completion done;
1037 };
1038
1039 /*
1040 * The task's runqueue lock must be held.
1041 * Returns true if you have to wait for migration thread.
1042 */
1043 static int
1044 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1045 {
1046 struct rq *rq = task_rq(p);
1047
1048 /*
1049 * If the task is not on a runqueue (and not running), then
1050 * it is sufficient to simply update the task's cpu field.
1051 */
1052 if (!p->se.on_rq && !task_running(rq, p)) {
1053 set_task_cpu(p, dest_cpu);
1054 return 0;
1055 }
1056
1057 init_completion(&req->done);
1058 req->task = p;
1059 req->dest_cpu = dest_cpu;
1060 list_add(&req->list, &rq->migration_queue);
1061
1062 return 1;
1063 }
1064
1065 /*
1066 * wait_task_inactive - wait for a thread to unschedule.
1067 *
1068 * The caller must ensure that the task *will* unschedule sometime soon,
1069 * else this function might spin for a *long* time. This function can't
1070 * be called with interrupts off, or it may introduce deadlock with
1071 * smp_call_function() if an IPI is sent by the same process we are
1072 * waiting to become inactive.
1073 */
1074 void wait_task_inactive(struct task_struct *p)
1075 {
1076 unsigned long flags;
1077 int running, on_rq;
1078 struct rq *rq;
1079
1080 repeat:
1081 /*
1082 * We do the initial early heuristics without holding
1083 * any task-queue locks at all. We'll only try to get
1084 * the runqueue lock when things look like they will
1085 * work out!
1086 */
1087 rq = task_rq(p);
1088
1089 /*
1090 * If the task is actively running on another CPU
1091 * still, just relax and busy-wait without holding
1092 * any locks.
1093 *
1094 * NOTE! Since we don't hold any locks, it's not
1095 * even sure that "rq" stays as the right runqueue!
1096 * But we don't care, since "task_running()" will
1097 * return false if the runqueue has changed and p
1098 * is actually now running somewhere else!
1099 */
1100 while (task_running(rq, p))
1101 cpu_relax();
1102
1103 /*
1104 * Ok, time to look more closely! We need the rq
1105 * lock now, to be *sure*. If we're wrong, we'll
1106 * just go back and repeat.
1107 */
1108 rq = task_rq_lock(p, &flags);
1109 running = task_running(rq, p);
1110 on_rq = p->se.on_rq;
1111 task_rq_unlock(rq, &flags);
1112
1113 /*
1114 * Was it really running after all now that we
1115 * checked with the proper locks actually held?
1116 *
1117 * Oops. Go back and try again..
1118 */
1119 if (unlikely(running)) {
1120 cpu_relax();
1121 goto repeat;
1122 }
1123
1124 /*
1125 * It's not enough that it's not actively running,
1126 * it must be off the runqueue _entirely_, and not
1127 * preempted!
1128 *
1129 * So if it wa still runnable (but just not actively
1130 * running right now), it's preempted, and we should
1131 * yield - it could be a while.
1132 */
1133 if (unlikely(on_rq)) {
1134 yield();
1135 goto repeat;
1136 }
1137
1138 /*
1139 * Ahh, all good. It wasn't running, and it wasn't
1140 * runnable, which means that it will never become
1141 * running in the future either. We're all done!
1142 */
1143 }
1144
1145 /***
1146 * kick_process - kick a running thread to enter/exit the kernel
1147 * @p: the to-be-kicked thread
1148 *
1149 * Cause a process which is running on another CPU to enter
1150 * kernel-mode, without any delay. (to get signals handled.)
1151 *
1152 * NOTE: this function doesnt have to take the runqueue lock,
1153 * because all it wants to ensure is that the remote task enters
1154 * the kernel. If the IPI races and the task has been migrated
1155 * to another CPU then no harm is done and the purpose has been
1156 * achieved as well.
1157 */
1158 void kick_process(struct task_struct *p)
1159 {
1160 int cpu;
1161
1162 preempt_disable();
1163 cpu = task_cpu(p);
1164 if ((cpu != smp_processor_id()) && task_curr(p))
1165 smp_send_reschedule(cpu);
1166 preempt_enable();
1167 }
1168
1169 /*
1170 * Return a low guess at the load of a migration-source cpu weighted
1171 * according to the scheduling class and "nice" value.
1172 *
1173 * We want to under-estimate the load of migration sources, to
1174 * balance conservatively.
1175 */
1176 static inline unsigned long source_load(int cpu, int type)
1177 {
1178 struct rq *rq = cpu_rq(cpu);
1179 unsigned long total = weighted_cpuload(cpu);
1180
1181 if (type == 0)
1182 return total;
1183
1184 return min(rq->cpu_load[type-1], total);
1185 }
1186
1187 /*
1188 * Return a high guess at the load of a migration-target cpu weighted
1189 * according to the scheduling class and "nice" value.
1190 */
1191 static inline unsigned long target_load(int cpu, int type)
1192 {
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long total = weighted_cpuload(cpu);
1195
1196 if (type == 0)
1197 return total;
1198
1199 return max(rq->cpu_load[type-1], total);
1200 }
1201
1202 /*
1203 * Return the average load per task on the cpu's run queue
1204 */
1205 static inline unsigned long cpu_avg_load_per_task(int cpu)
1206 {
1207 struct rq *rq = cpu_rq(cpu);
1208 unsigned long total = weighted_cpuload(cpu);
1209 unsigned long n = rq->nr_running;
1210
1211 return n ? total / n : SCHED_LOAD_SCALE;
1212 }
1213
1214 /*
1215 * find_idlest_group finds and returns the least busy CPU group within the
1216 * domain.
1217 */
1218 static struct sched_group *
1219 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1220 {
1221 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1222 unsigned long min_load = ULONG_MAX, this_load = 0;
1223 int load_idx = sd->forkexec_idx;
1224 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1225
1226 do {
1227 unsigned long load, avg_load;
1228 int local_group;
1229 int i;
1230
1231 /* Skip over this group if it has no CPUs allowed */
1232 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1233 goto nextgroup;
1234
1235 local_group = cpu_isset(this_cpu, group->cpumask);
1236
1237 /* Tally up the load of all CPUs in the group */
1238 avg_load = 0;
1239
1240 for_each_cpu_mask(i, group->cpumask) {
1241 /* Bias balancing toward cpus of our domain */
1242 if (local_group)
1243 load = source_load(i, load_idx);
1244 else
1245 load = target_load(i, load_idx);
1246
1247 avg_load += load;
1248 }
1249
1250 /* Adjust by relative CPU power of the group */
1251 avg_load = sg_div_cpu_power(group,
1252 avg_load * SCHED_LOAD_SCALE);
1253
1254 if (local_group) {
1255 this_load = avg_load;
1256 this = group;
1257 } else if (avg_load < min_load) {
1258 min_load = avg_load;
1259 idlest = group;
1260 }
1261 nextgroup:
1262 group = group->next;
1263 } while (group != sd->groups);
1264
1265 if (!idlest || 100*this_load < imbalance*min_load)
1266 return NULL;
1267 return idlest;
1268 }
1269
1270 /*
1271 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1272 */
1273 static int
1274 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1275 {
1276 cpumask_t tmp;
1277 unsigned long load, min_load = ULONG_MAX;
1278 int idlest = -1;
1279 int i;
1280
1281 /* Traverse only the allowed CPUs */
1282 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1283
1284 for_each_cpu_mask(i, tmp) {
1285 load = weighted_cpuload(i);
1286
1287 if (load < min_load || (load == min_load && i == this_cpu)) {
1288 min_load = load;
1289 idlest = i;
1290 }
1291 }
1292
1293 return idlest;
1294 }
1295
1296 /*
1297 * sched_balance_self: balance the current task (running on cpu) in domains
1298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1299 * SD_BALANCE_EXEC.
1300 *
1301 * Balance, ie. select the least loaded group.
1302 *
1303 * Returns the target CPU number, or the same CPU if no balancing is needed.
1304 *
1305 * preempt must be disabled.
1306 */
1307 static int sched_balance_self(int cpu, int flag)
1308 {
1309 struct task_struct *t = current;
1310 struct sched_domain *tmp, *sd = NULL;
1311
1312 for_each_domain(cpu, tmp) {
1313 /*
1314 * If power savings logic is enabled for a domain, stop there.
1315 */
1316 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1317 break;
1318 if (tmp->flags & flag)
1319 sd = tmp;
1320 }
1321
1322 while (sd) {
1323 cpumask_t span;
1324 struct sched_group *group;
1325 int new_cpu, weight;
1326
1327 if (!(sd->flags & flag)) {
1328 sd = sd->child;
1329 continue;
1330 }
1331
1332 span = sd->span;
1333 group = find_idlest_group(sd, t, cpu);
1334 if (!group) {
1335 sd = sd->child;
1336 continue;
1337 }
1338
1339 new_cpu = find_idlest_cpu(group, t, cpu);
1340 if (new_cpu == -1 || new_cpu == cpu) {
1341 /* Now try balancing at a lower domain level of cpu */
1342 sd = sd->child;
1343 continue;
1344 }
1345
1346 /* Now try balancing at a lower domain level of new_cpu */
1347 cpu = new_cpu;
1348 sd = NULL;
1349 weight = cpus_weight(span);
1350 for_each_domain(cpu, tmp) {
1351 if (weight <= cpus_weight(tmp->span))
1352 break;
1353 if (tmp->flags & flag)
1354 sd = tmp;
1355 }
1356 /* while loop will break here if sd == NULL */
1357 }
1358
1359 return cpu;
1360 }
1361
1362 #endif /* CONFIG_SMP */
1363
1364 /*
1365 * wake_idle() will wake a task on an idle cpu if task->cpu is
1366 * not idle and an idle cpu is available. The span of cpus to
1367 * search starts with cpus closest then further out as needed,
1368 * so we always favor a closer, idle cpu.
1369 *
1370 * Returns the CPU we should wake onto.
1371 */
1372 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1373 static int wake_idle(int cpu, struct task_struct *p)
1374 {
1375 cpumask_t tmp;
1376 struct sched_domain *sd;
1377 int i;
1378
1379 /*
1380 * If it is idle, then it is the best cpu to run this task.
1381 *
1382 * This cpu is also the best, if it has more than one task already.
1383 * Siblings must be also busy(in most cases) as they didn't already
1384 * pickup the extra load from this cpu and hence we need not check
1385 * sibling runqueue info. This will avoid the checks and cache miss
1386 * penalities associated with that.
1387 */
1388 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1389 return cpu;
1390
1391 for_each_domain(cpu, sd) {
1392 if (sd->flags & SD_WAKE_IDLE) {
1393 cpus_and(tmp, sd->span, p->cpus_allowed);
1394 for_each_cpu_mask(i, tmp) {
1395 if (idle_cpu(i))
1396 return i;
1397 }
1398 } else {
1399 break;
1400 }
1401 }
1402 return cpu;
1403 }
1404 #else
1405 static inline int wake_idle(int cpu, struct task_struct *p)
1406 {
1407 return cpu;
1408 }
1409 #endif
1410
1411 /***
1412 * try_to_wake_up - wake up a thread
1413 * @p: the to-be-woken-up thread
1414 * @state: the mask of task states that can be woken
1415 * @sync: do a synchronous wakeup?
1416 *
1417 * Put it on the run-queue if it's not already there. The "current"
1418 * thread is always on the run-queue (except when the actual
1419 * re-schedule is in progress), and as such you're allowed to do
1420 * the simpler "current->state = TASK_RUNNING" to mark yourself
1421 * runnable without the overhead of this.
1422 *
1423 * returns failure only if the task is already active.
1424 */
1425 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1426 {
1427 int cpu, this_cpu, success = 0;
1428 unsigned long flags;
1429 long old_state;
1430 struct rq *rq;
1431 #ifdef CONFIG_SMP
1432 struct sched_domain *sd, *this_sd = NULL;
1433 unsigned long load, this_load;
1434 int new_cpu;
1435 #endif
1436
1437 rq = task_rq_lock(p, &flags);
1438 old_state = p->state;
1439 if (!(old_state & state))
1440 goto out;
1441
1442 if (p->se.on_rq)
1443 goto out_running;
1444
1445 cpu = task_cpu(p);
1446 this_cpu = smp_processor_id();
1447
1448 #ifdef CONFIG_SMP
1449 if (unlikely(task_running(rq, p)))
1450 goto out_activate;
1451
1452 new_cpu = cpu;
1453
1454 schedstat_inc(rq, ttwu_cnt);
1455 if (cpu == this_cpu) {
1456 schedstat_inc(rq, ttwu_local);
1457 goto out_set_cpu;
1458 }
1459
1460 for_each_domain(this_cpu, sd) {
1461 if (cpu_isset(cpu, sd->span)) {
1462 schedstat_inc(sd, ttwu_wake_remote);
1463 this_sd = sd;
1464 break;
1465 }
1466 }
1467
1468 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1469 goto out_set_cpu;
1470
1471 /*
1472 * Check for affine wakeup and passive balancing possibilities.
1473 */
1474 if (this_sd) {
1475 int idx = this_sd->wake_idx;
1476 unsigned int imbalance;
1477
1478 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1479
1480 load = source_load(cpu, idx);
1481 this_load = target_load(this_cpu, idx);
1482
1483 new_cpu = this_cpu; /* Wake to this CPU if we can */
1484
1485 if (this_sd->flags & SD_WAKE_AFFINE) {
1486 unsigned long tl = this_load;
1487 unsigned long tl_per_task;
1488
1489 tl_per_task = cpu_avg_load_per_task(this_cpu);
1490
1491 /*
1492 * If sync wakeup then subtract the (maximum possible)
1493 * effect of the currently running task from the load
1494 * of the current CPU:
1495 */
1496 if (sync)
1497 tl -= current->se.load.weight;
1498
1499 if ((tl <= load &&
1500 tl + target_load(cpu, idx) <= tl_per_task) ||
1501 100*(tl + p->se.load.weight) <= imbalance*load) {
1502 /*
1503 * This domain has SD_WAKE_AFFINE and
1504 * p is cache cold in this domain, and
1505 * there is no bad imbalance.
1506 */
1507 schedstat_inc(this_sd, ttwu_move_affine);
1508 goto out_set_cpu;
1509 }
1510 }
1511
1512 /*
1513 * Start passive balancing when half the imbalance_pct
1514 * limit is reached.
1515 */
1516 if (this_sd->flags & SD_WAKE_BALANCE) {
1517 if (imbalance*this_load <= 100*load) {
1518 schedstat_inc(this_sd, ttwu_move_balance);
1519 goto out_set_cpu;
1520 }
1521 }
1522 }
1523
1524 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1525 out_set_cpu:
1526 new_cpu = wake_idle(new_cpu, p);
1527 if (new_cpu != cpu) {
1528 set_task_cpu(p, new_cpu);
1529 task_rq_unlock(rq, &flags);
1530 /* might preempt at this point */
1531 rq = task_rq_lock(p, &flags);
1532 old_state = p->state;
1533 if (!(old_state & state))
1534 goto out;
1535 if (p->se.on_rq)
1536 goto out_running;
1537
1538 this_cpu = smp_processor_id();
1539 cpu = task_cpu(p);
1540 }
1541
1542 out_activate:
1543 #endif /* CONFIG_SMP */
1544 update_rq_clock(rq);
1545 activate_task(rq, p, 1);
1546 /*
1547 * Sync wakeups (i.e. those types of wakeups where the waker
1548 * has indicated that it will leave the CPU in short order)
1549 * don't trigger a preemption, if the woken up task will run on
1550 * this cpu. (in this case the 'I will reschedule' promise of
1551 * the waker guarantees that the freshly woken up task is going
1552 * to be considered on this CPU.)
1553 */
1554 if (!sync || cpu != this_cpu)
1555 check_preempt_curr(rq, p);
1556 success = 1;
1557
1558 out_running:
1559 p->state = TASK_RUNNING;
1560 out:
1561 task_rq_unlock(rq, &flags);
1562
1563 return success;
1564 }
1565
1566 int fastcall wake_up_process(struct task_struct *p)
1567 {
1568 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1569 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1570 }
1571 EXPORT_SYMBOL(wake_up_process);
1572
1573 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1574 {
1575 return try_to_wake_up(p, state, 0);
1576 }
1577
1578 /*
1579 * Perform scheduler related setup for a newly forked process p.
1580 * p is forked by current.
1581 *
1582 * __sched_fork() is basic setup used by init_idle() too:
1583 */
1584 static void __sched_fork(struct task_struct *p)
1585 {
1586 p->se.wait_start_fair = 0;
1587 p->se.exec_start = 0;
1588 p->se.sum_exec_runtime = 0;
1589 p->se.prev_sum_exec_runtime = 0;
1590 p->se.delta_exec = 0;
1591 p->se.delta_fair_run = 0;
1592 p->se.delta_fair_sleep = 0;
1593 p->se.wait_runtime = 0;
1594 p->se.sleep_start_fair = 0;
1595
1596 #ifdef CONFIG_SCHEDSTATS
1597 p->se.wait_start = 0;
1598 p->se.sum_wait_runtime = 0;
1599 p->se.sum_sleep_runtime = 0;
1600 p->se.sleep_start = 0;
1601 p->se.block_start = 0;
1602 p->se.sleep_max = 0;
1603 p->se.block_max = 0;
1604 p->se.exec_max = 0;
1605 p->se.wait_max = 0;
1606 p->se.wait_runtime_overruns = 0;
1607 p->se.wait_runtime_underruns = 0;
1608 #endif
1609
1610 INIT_LIST_HEAD(&p->run_list);
1611 p->se.on_rq = 0;
1612
1613 #ifdef CONFIG_PREEMPT_NOTIFIERS
1614 INIT_HLIST_HEAD(&p->preempt_notifiers);
1615 #endif
1616
1617 /*
1618 * We mark the process as running here, but have not actually
1619 * inserted it onto the runqueue yet. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
1624 }
1625
1626 /*
1627 * fork()/clone()-time setup:
1628 */
1629 void sched_fork(struct task_struct *p, int clone_flags)
1630 {
1631 int cpu = get_cpu();
1632
1633 __sched_fork(p);
1634
1635 #ifdef CONFIG_SMP
1636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1637 #endif
1638 __set_task_cpu(p, cpu);
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
1644
1645 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1646 if (likely(sched_info_on()))
1647 memset(&p->sched_info, 0, sizeof(p->sched_info));
1648 #endif
1649 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1650 p->oncpu = 0;
1651 #endif
1652 #ifdef CONFIG_PREEMPT
1653 /* Want to start with kernel preemption disabled. */
1654 task_thread_info(p)->preempt_count = 1;
1655 #endif
1656 put_cpu();
1657 }
1658
1659 /*
1660 * After fork, child runs first. (default) If set to 0 then
1661 * parent will (try to) run first.
1662 */
1663 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1664
1665 /*
1666 * wake_up_new_task - wake up a newly created task for the first time.
1667 *
1668 * This function will do some initial scheduler statistics housekeeping
1669 * that must be done for every newly created context, then puts the task
1670 * on the runqueue and wakes it.
1671 */
1672 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1673 {
1674 unsigned long flags;
1675 struct rq *rq;
1676 int this_cpu;
1677
1678 rq = task_rq_lock(p, &flags);
1679 BUG_ON(p->state != TASK_RUNNING);
1680 this_cpu = smp_processor_id(); /* parent's CPU */
1681 update_rq_clock(rq);
1682
1683 p->prio = effective_prio(p);
1684
1685 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1686 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1687 !current->se.on_rq) {
1688
1689 activate_task(rq, p, 0);
1690 } else {
1691 /*
1692 * Let the scheduling class do new task startup
1693 * management (if any):
1694 */
1695 p->sched_class->task_new(rq, p);
1696 inc_nr_running(p, rq);
1697 }
1698 check_preempt_curr(rq, p);
1699 task_rq_unlock(rq, &flags);
1700 }
1701
1702 #ifdef CONFIG_PREEMPT_NOTIFIERS
1703
1704 /**
1705 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1706 * @notifier: notifier struct to register
1707 */
1708 void preempt_notifier_register(struct preempt_notifier *notifier)
1709 {
1710 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1711 }
1712 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1713
1714 /**
1715 * preempt_notifier_unregister - no longer interested in preemption notifications
1716 * @notifier: notifier struct to unregister
1717 *
1718 * This is safe to call from within a preemption notifier.
1719 */
1720 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1721 {
1722 hlist_del(&notifier->link);
1723 }
1724 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1725
1726 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727 {
1728 struct preempt_notifier *notifier;
1729 struct hlist_node *node;
1730
1731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1732 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1733 }
1734
1735 static void
1736 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1737 struct task_struct *next)
1738 {
1739 struct preempt_notifier *notifier;
1740 struct hlist_node *node;
1741
1742 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1743 notifier->ops->sched_out(notifier, next);
1744 }
1745
1746 #else
1747
1748 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1749 {
1750 }
1751
1752 static void
1753 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1754 struct task_struct *next)
1755 {
1756 }
1757
1758 #endif
1759
1760 /**
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
1763 * @prev: the current task that is being switched out
1764 * @next: the task we are going to switch to.
1765 *
1766 * This is called with the rq lock held and interrupts off. It must
1767 * be paired with a subsequent finish_task_switch after the context
1768 * switch.
1769 *
1770 * prepare_task_switch sets up locking and calls architecture specific
1771 * hooks.
1772 */
1773 static inline void
1774 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1775 struct task_struct *next)
1776 {
1777 fire_sched_out_preempt_notifiers(prev, next);
1778 prepare_lock_switch(rq, next);
1779 prepare_arch_switch(next);
1780 }
1781
1782 /**
1783 * finish_task_switch - clean up after a task-switch
1784 * @rq: runqueue associated with task-switch
1785 * @prev: the thread we just switched away from.
1786 *
1787 * finish_task_switch must be called after the context switch, paired
1788 * with a prepare_task_switch call before the context switch.
1789 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1790 * and do any other architecture-specific cleanup actions.
1791 *
1792 * Note that we may have delayed dropping an mm in context_switch(). If
1793 * so, we finish that here outside of the runqueue lock. (Doing it
1794 * with the lock held can cause deadlocks; see schedule() for
1795 * details.)
1796 */
1797 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1798 __releases(rq->lock)
1799 {
1800 struct mm_struct *mm = rq->prev_mm;
1801 long prev_state;
1802
1803 rq->prev_mm = NULL;
1804
1805 /*
1806 * A task struct has one reference for the use as "current".
1807 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1808 * schedule one last time. The schedule call will never return, and
1809 * the scheduled task must drop that reference.
1810 * The test for TASK_DEAD must occur while the runqueue locks are
1811 * still held, otherwise prev could be scheduled on another cpu, die
1812 * there before we look at prev->state, and then the reference would
1813 * be dropped twice.
1814 * Manfred Spraul <manfred@colorfullife.com>
1815 */
1816 prev_state = prev->state;
1817 finish_arch_switch(prev);
1818 finish_lock_switch(rq, prev);
1819 fire_sched_in_preempt_notifiers(current);
1820 if (mm)
1821 mmdrop(mm);
1822 if (unlikely(prev_state == TASK_DEAD)) {
1823 /*
1824 * Remove function-return probe instances associated with this
1825 * task and put them back on the free list.
1826 */
1827 kprobe_flush_task(prev);
1828 put_task_struct(prev);
1829 }
1830 }
1831
1832 /**
1833 * schedule_tail - first thing a freshly forked thread must call.
1834 * @prev: the thread we just switched away from.
1835 */
1836 asmlinkage void schedule_tail(struct task_struct *prev)
1837 __releases(rq->lock)
1838 {
1839 struct rq *rq = this_rq();
1840
1841 finish_task_switch(rq, prev);
1842 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1843 /* In this case, finish_task_switch does not reenable preemption */
1844 preempt_enable();
1845 #endif
1846 if (current->set_child_tid)
1847 put_user(current->pid, current->set_child_tid);
1848 }
1849
1850 /*
1851 * context_switch - switch to the new MM and the new
1852 * thread's register state.
1853 */
1854 static inline void
1855 context_switch(struct rq *rq, struct task_struct *prev,
1856 struct task_struct *next)
1857 {
1858 struct mm_struct *mm, *oldmm;
1859
1860 prepare_task_switch(rq, prev, next);
1861 mm = next->mm;
1862 oldmm = prev->active_mm;
1863 /*
1864 * For paravirt, this is coupled with an exit in switch_to to
1865 * combine the page table reload and the switch backend into
1866 * one hypercall.
1867 */
1868 arch_enter_lazy_cpu_mode();
1869
1870 if (unlikely(!mm)) {
1871 next->active_mm = oldmm;
1872 atomic_inc(&oldmm->mm_count);
1873 enter_lazy_tlb(oldmm, next);
1874 } else
1875 switch_mm(oldmm, mm, next);
1876
1877 if (unlikely(!prev->mm)) {
1878 prev->active_mm = NULL;
1879 rq->prev_mm = oldmm;
1880 }
1881 /*
1882 * Since the runqueue lock will be released by the next
1883 * task (which is an invalid locking op but in the case
1884 * of the scheduler it's an obvious special-case), so we
1885 * do an early lockdep release here:
1886 */
1887 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1889 #endif
1890
1891 /* Here we just switch the register state and the stack. */
1892 switch_to(prev, next, prev);
1893
1894 barrier();
1895 /*
1896 * this_rq must be evaluated again because prev may have moved
1897 * CPUs since it called schedule(), thus the 'rq' on its stack
1898 * frame will be invalid.
1899 */
1900 finish_task_switch(this_rq(), prev);
1901 }
1902
1903 /*
1904 * nr_running, nr_uninterruptible and nr_context_switches:
1905 *
1906 * externally visible scheduler statistics: current number of runnable
1907 * threads, current number of uninterruptible-sleeping threads, total
1908 * number of context switches performed since bootup.
1909 */
1910 unsigned long nr_running(void)
1911 {
1912 unsigned long i, sum = 0;
1913
1914 for_each_online_cpu(i)
1915 sum += cpu_rq(i)->nr_running;
1916
1917 return sum;
1918 }
1919
1920 unsigned long nr_uninterruptible(void)
1921 {
1922 unsigned long i, sum = 0;
1923
1924 for_each_possible_cpu(i)
1925 sum += cpu_rq(i)->nr_uninterruptible;
1926
1927 /*
1928 * Since we read the counters lockless, it might be slightly
1929 * inaccurate. Do not allow it to go below zero though:
1930 */
1931 if (unlikely((long)sum < 0))
1932 sum = 0;
1933
1934 return sum;
1935 }
1936
1937 unsigned long long nr_context_switches(void)
1938 {
1939 int i;
1940 unsigned long long sum = 0;
1941
1942 for_each_possible_cpu(i)
1943 sum += cpu_rq(i)->nr_switches;
1944
1945 return sum;
1946 }
1947
1948 unsigned long nr_iowait(void)
1949 {
1950 unsigned long i, sum = 0;
1951
1952 for_each_possible_cpu(i)
1953 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954
1955 return sum;
1956 }
1957
1958 unsigned long nr_active(void)
1959 {
1960 unsigned long i, running = 0, uninterruptible = 0;
1961
1962 for_each_online_cpu(i) {
1963 running += cpu_rq(i)->nr_running;
1964 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1965 }
1966
1967 if (unlikely((long)uninterruptible < 0))
1968 uninterruptible = 0;
1969
1970 return running + uninterruptible;
1971 }
1972
1973 /*
1974 * Update rq->cpu_load[] statistics. This function is usually called every
1975 * scheduler tick (TICK_NSEC).
1976 */
1977 static void update_cpu_load(struct rq *this_rq)
1978 {
1979 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1980 unsigned long total_load = this_rq->ls.load.weight;
1981 unsigned long this_load = total_load;
1982 struct load_stat *ls = &this_rq->ls;
1983 int i, scale;
1984
1985 this_rq->nr_load_updates++;
1986 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1987 goto do_avg;
1988
1989 /* Update delta_fair/delta_exec fields first */
1990 update_curr_load(this_rq);
1991
1992 fair_delta64 = ls->delta_fair + 1;
1993 ls->delta_fair = 0;
1994
1995 exec_delta64 = ls->delta_exec + 1;
1996 ls->delta_exec = 0;
1997
1998 sample_interval64 = this_rq->clock - ls->load_update_last;
1999 ls->load_update_last = this_rq->clock;
2000
2001 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2002 sample_interval64 = TICK_NSEC;
2003
2004 if (exec_delta64 > sample_interval64)
2005 exec_delta64 = sample_interval64;
2006
2007 idle_delta64 = sample_interval64 - exec_delta64;
2008
2009 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2010 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2011
2012 this_load = (unsigned long)tmp64;
2013
2014 do_avg:
2015
2016 /* Update our load: */
2017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2018 unsigned long old_load, new_load;
2019
2020 /* scale is effectively 1 << i now, and >> i divides by scale */
2021
2022 old_load = this_rq->cpu_load[i];
2023 new_load = this_load;
2024
2025 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2026 }
2027 }
2028
2029 #ifdef CONFIG_SMP
2030
2031 /*
2032 * double_rq_lock - safely lock two runqueues
2033 *
2034 * Note this does not disable interrupts like task_rq_lock,
2035 * you need to do so manually before calling.
2036 */
2037 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2038 __acquires(rq1->lock)
2039 __acquires(rq2->lock)
2040 {
2041 BUG_ON(!irqs_disabled());
2042 if (rq1 == rq2) {
2043 spin_lock(&rq1->lock);
2044 __acquire(rq2->lock); /* Fake it out ;) */
2045 } else {
2046 if (rq1 < rq2) {
2047 spin_lock(&rq1->lock);
2048 spin_lock(&rq2->lock);
2049 } else {
2050 spin_lock(&rq2->lock);
2051 spin_lock(&rq1->lock);
2052 }
2053 }
2054 update_rq_clock(rq1);
2055 update_rq_clock(rq2);
2056 }
2057
2058 /*
2059 * double_rq_unlock - safely unlock two runqueues
2060 *
2061 * Note this does not restore interrupts like task_rq_unlock,
2062 * you need to do so manually after calling.
2063 */
2064 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2065 __releases(rq1->lock)
2066 __releases(rq2->lock)
2067 {
2068 spin_unlock(&rq1->lock);
2069 if (rq1 != rq2)
2070 spin_unlock(&rq2->lock);
2071 else
2072 __release(rq2->lock);
2073 }
2074
2075 /*
2076 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2077 */
2078 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2079 __releases(this_rq->lock)
2080 __acquires(busiest->lock)
2081 __acquires(this_rq->lock)
2082 {
2083 if (unlikely(!irqs_disabled())) {
2084 /* printk() doesn't work good under rq->lock */
2085 spin_unlock(&this_rq->lock);
2086 BUG_ON(1);
2087 }
2088 if (unlikely(!spin_trylock(&busiest->lock))) {
2089 if (busiest < this_rq) {
2090 spin_unlock(&this_rq->lock);
2091 spin_lock(&busiest->lock);
2092 spin_lock(&this_rq->lock);
2093 } else
2094 spin_lock(&busiest->lock);
2095 }
2096 }
2097
2098 /*
2099 * If dest_cpu is allowed for this process, migrate the task to it.
2100 * This is accomplished by forcing the cpu_allowed mask to only
2101 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2102 * the cpu_allowed mask is restored.
2103 */
2104 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2105 {
2106 struct migration_req req;
2107 unsigned long flags;
2108 struct rq *rq;
2109
2110 rq = task_rq_lock(p, &flags);
2111 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2112 || unlikely(cpu_is_offline(dest_cpu)))
2113 goto out;
2114
2115 /* force the process onto the specified CPU */
2116 if (migrate_task(p, dest_cpu, &req)) {
2117 /* Need to wait for migration thread (might exit: take ref). */
2118 struct task_struct *mt = rq->migration_thread;
2119
2120 get_task_struct(mt);
2121 task_rq_unlock(rq, &flags);
2122 wake_up_process(mt);
2123 put_task_struct(mt);
2124 wait_for_completion(&req.done);
2125
2126 return;
2127 }
2128 out:
2129 task_rq_unlock(rq, &flags);
2130 }
2131
2132 /*
2133 * sched_exec - execve() is a valuable balancing opportunity, because at
2134 * this point the task has the smallest effective memory and cache footprint.
2135 */
2136 void sched_exec(void)
2137 {
2138 int new_cpu, this_cpu = get_cpu();
2139 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2140 put_cpu();
2141 if (new_cpu != this_cpu)
2142 sched_migrate_task(current, new_cpu);
2143 }
2144
2145 /*
2146 * pull_task - move a task from a remote runqueue to the local runqueue.
2147 * Both runqueues must be locked.
2148 */
2149 static void pull_task(struct rq *src_rq, struct task_struct *p,
2150 struct rq *this_rq, int this_cpu)
2151 {
2152 deactivate_task(src_rq, p, 0);
2153 set_task_cpu(p, this_cpu);
2154 activate_task(this_rq, p, 0);
2155 /*
2156 * Note that idle threads have a prio of MAX_PRIO, for this test
2157 * to be always true for them.
2158 */
2159 check_preempt_curr(this_rq, p);
2160 }
2161
2162 /*
2163 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2164 */
2165 static
2166 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2167 struct sched_domain *sd, enum cpu_idle_type idle,
2168 int *all_pinned)
2169 {
2170 /*
2171 * We do not migrate tasks that are:
2172 * 1) running (obviously), or
2173 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2174 * 3) are cache-hot on their current CPU.
2175 */
2176 if (!cpu_isset(this_cpu, p->cpus_allowed))
2177 return 0;
2178 *all_pinned = 0;
2179
2180 if (task_running(rq, p))
2181 return 0;
2182
2183 return 1;
2184 }
2185
2186 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2187 unsigned long max_nr_move, unsigned long max_load_move,
2188 struct sched_domain *sd, enum cpu_idle_type idle,
2189 int *all_pinned, unsigned long *load_moved,
2190 int *this_best_prio, struct rq_iterator *iterator)
2191 {
2192 int pulled = 0, pinned = 0, skip_for_load;
2193 struct task_struct *p;
2194 long rem_load_move = max_load_move;
2195
2196 if (max_nr_move == 0 || max_load_move == 0)
2197 goto out;
2198
2199 pinned = 1;
2200
2201 /*
2202 * Start the load-balancing iterator:
2203 */
2204 p = iterator->start(iterator->arg);
2205 next:
2206 if (!p)
2207 goto out;
2208 /*
2209 * To help distribute high priority tasks accross CPUs we don't
2210 * skip a task if it will be the highest priority task (i.e. smallest
2211 * prio value) on its new queue regardless of its load weight
2212 */
2213 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2214 SCHED_LOAD_SCALE_FUZZ;
2215 if ((skip_for_load && p->prio >= *this_best_prio) ||
2216 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2217 p = iterator->next(iterator->arg);
2218 goto next;
2219 }
2220
2221 pull_task(busiest, p, this_rq, this_cpu);
2222 pulled++;
2223 rem_load_move -= p->se.load.weight;
2224
2225 /*
2226 * We only want to steal up to the prescribed number of tasks
2227 * and the prescribed amount of weighted load.
2228 */
2229 if (pulled < max_nr_move && rem_load_move > 0) {
2230 if (p->prio < *this_best_prio)
2231 *this_best_prio = p->prio;
2232 p = iterator->next(iterator->arg);
2233 goto next;
2234 }
2235 out:
2236 /*
2237 * Right now, this is the only place pull_task() is called,
2238 * so we can safely collect pull_task() stats here rather than
2239 * inside pull_task().
2240 */
2241 schedstat_add(sd, lb_gained[idle], pulled);
2242
2243 if (all_pinned)
2244 *all_pinned = pinned;
2245 *load_moved = max_load_move - rem_load_move;
2246 return pulled;
2247 }
2248
2249 /*
2250 * move_tasks tries to move up to max_load_move weighted load from busiest to
2251 * this_rq, as part of a balancing operation within domain "sd".
2252 * Returns 1 if successful and 0 otherwise.
2253 *
2254 * Called with both runqueues locked.
2255 */
2256 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2257 unsigned long max_load_move,
2258 struct sched_domain *sd, enum cpu_idle_type idle,
2259 int *all_pinned)
2260 {
2261 struct sched_class *class = sched_class_highest;
2262 unsigned long total_load_moved = 0;
2263 int this_best_prio = this_rq->curr->prio;
2264
2265 do {
2266 total_load_moved +=
2267 class->load_balance(this_rq, this_cpu, busiest,
2268 ULONG_MAX, max_load_move - total_load_moved,
2269 sd, idle, all_pinned, &this_best_prio);
2270 class = class->next;
2271 } while (class && max_load_move > total_load_moved);
2272
2273 return total_load_moved > 0;
2274 }
2275
2276 /*
2277 * move_one_task tries to move exactly one task from busiest to this_rq, as
2278 * part of active balancing operations within "domain".
2279 * Returns 1 if successful and 0 otherwise.
2280 *
2281 * Called with both runqueues locked.
2282 */
2283 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2284 struct sched_domain *sd, enum cpu_idle_type idle)
2285 {
2286 struct sched_class *class;
2287 int this_best_prio = MAX_PRIO;
2288
2289 for (class = sched_class_highest; class; class = class->next)
2290 if (class->load_balance(this_rq, this_cpu, busiest,
2291 1, ULONG_MAX, sd, idle, NULL,
2292 &this_best_prio))
2293 return 1;
2294
2295 return 0;
2296 }
2297
2298 /*
2299 * find_busiest_group finds and returns the busiest CPU group within the
2300 * domain. It calculates and returns the amount of weighted load which
2301 * should be moved to restore balance via the imbalance parameter.
2302 */
2303 static struct sched_group *
2304 find_busiest_group(struct sched_domain *sd, int this_cpu,
2305 unsigned long *imbalance, enum cpu_idle_type idle,
2306 int *sd_idle, cpumask_t *cpus, int *balance)
2307 {
2308 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2309 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2310 unsigned long max_pull;
2311 unsigned long busiest_load_per_task, busiest_nr_running;
2312 unsigned long this_load_per_task, this_nr_running;
2313 int load_idx;
2314 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2315 int power_savings_balance = 1;
2316 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2317 unsigned long min_nr_running = ULONG_MAX;
2318 struct sched_group *group_min = NULL, *group_leader = NULL;
2319 #endif
2320
2321 max_load = this_load = total_load = total_pwr = 0;
2322 busiest_load_per_task = busiest_nr_running = 0;
2323 this_load_per_task = this_nr_running = 0;
2324 if (idle == CPU_NOT_IDLE)
2325 load_idx = sd->busy_idx;
2326 else if (idle == CPU_NEWLY_IDLE)
2327 load_idx = sd->newidle_idx;
2328 else
2329 load_idx = sd->idle_idx;
2330
2331 do {
2332 unsigned long load, group_capacity;
2333 int local_group;
2334 int i;
2335 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2336 unsigned long sum_nr_running, sum_weighted_load;
2337
2338 local_group = cpu_isset(this_cpu, group->cpumask);
2339
2340 if (local_group)
2341 balance_cpu = first_cpu(group->cpumask);
2342
2343 /* Tally up the load of all CPUs in the group */
2344 sum_weighted_load = sum_nr_running = avg_load = 0;
2345
2346 for_each_cpu_mask(i, group->cpumask) {
2347 struct rq *rq;
2348
2349 if (!cpu_isset(i, *cpus))
2350 continue;
2351
2352 rq = cpu_rq(i);
2353
2354 if (*sd_idle && rq->nr_running)
2355 *sd_idle = 0;
2356
2357 /* Bias balancing toward cpus of our domain */
2358 if (local_group) {
2359 if (idle_cpu(i) && !first_idle_cpu) {
2360 first_idle_cpu = 1;
2361 balance_cpu = i;
2362 }
2363
2364 load = target_load(i, load_idx);
2365 } else
2366 load = source_load(i, load_idx);
2367
2368 avg_load += load;
2369 sum_nr_running += rq->nr_running;
2370 sum_weighted_load += weighted_cpuload(i);
2371 }
2372
2373 /*
2374 * First idle cpu or the first cpu(busiest) in this sched group
2375 * is eligible for doing load balancing at this and above
2376 * domains. In the newly idle case, we will allow all the cpu's
2377 * to do the newly idle load balance.
2378 */
2379 if (idle != CPU_NEWLY_IDLE && local_group &&
2380 balance_cpu != this_cpu && balance) {
2381 *balance = 0;
2382 goto ret;
2383 }
2384
2385 total_load += avg_load;
2386 total_pwr += group->__cpu_power;
2387
2388 /* Adjust by relative CPU power of the group */
2389 avg_load = sg_div_cpu_power(group,
2390 avg_load * SCHED_LOAD_SCALE);
2391
2392 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2393
2394 if (local_group) {
2395 this_load = avg_load;
2396 this = group;
2397 this_nr_running = sum_nr_running;
2398 this_load_per_task = sum_weighted_load;
2399 } else if (avg_load > max_load &&
2400 sum_nr_running > group_capacity) {
2401 max_load = avg_load;
2402 busiest = group;
2403 busiest_nr_running = sum_nr_running;
2404 busiest_load_per_task = sum_weighted_load;
2405 }
2406
2407 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2408 /*
2409 * Busy processors will not participate in power savings
2410 * balance.
2411 */
2412 if (idle == CPU_NOT_IDLE ||
2413 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2414 goto group_next;
2415
2416 /*
2417 * If the local group is idle or completely loaded
2418 * no need to do power savings balance at this domain
2419 */
2420 if (local_group && (this_nr_running >= group_capacity ||
2421 !this_nr_running))
2422 power_savings_balance = 0;
2423
2424 /*
2425 * If a group is already running at full capacity or idle,
2426 * don't include that group in power savings calculations
2427 */
2428 if (!power_savings_balance || sum_nr_running >= group_capacity
2429 || !sum_nr_running)
2430 goto group_next;
2431
2432 /*
2433 * Calculate the group which has the least non-idle load.
2434 * This is the group from where we need to pick up the load
2435 * for saving power
2436 */
2437 if ((sum_nr_running < min_nr_running) ||
2438 (sum_nr_running == min_nr_running &&
2439 first_cpu(group->cpumask) <
2440 first_cpu(group_min->cpumask))) {
2441 group_min = group;
2442 min_nr_running = sum_nr_running;
2443 min_load_per_task = sum_weighted_load /
2444 sum_nr_running;
2445 }
2446
2447 /*
2448 * Calculate the group which is almost near its
2449 * capacity but still has some space to pick up some load
2450 * from other group and save more power
2451 */
2452 if (sum_nr_running <= group_capacity - 1) {
2453 if (sum_nr_running > leader_nr_running ||
2454 (sum_nr_running == leader_nr_running &&
2455 first_cpu(group->cpumask) >
2456 first_cpu(group_leader->cpumask))) {
2457 group_leader = group;
2458 leader_nr_running = sum_nr_running;
2459 }
2460 }
2461 group_next:
2462 #endif
2463 group = group->next;
2464 } while (group != sd->groups);
2465
2466 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2467 goto out_balanced;
2468
2469 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2470
2471 if (this_load >= avg_load ||
2472 100*max_load <= sd->imbalance_pct*this_load)
2473 goto out_balanced;
2474
2475 busiest_load_per_task /= busiest_nr_running;
2476 /*
2477 * We're trying to get all the cpus to the average_load, so we don't
2478 * want to push ourselves above the average load, nor do we wish to
2479 * reduce the max loaded cpu below the average load, as either of these
2480 * actions would just result in more rebalancing later, and ping-pong
2481 * tasks around. Thus we look for the minimum possible imbalance.
2482 * Negative imbalances (*we* are more loaded than anyone else) will
2483 * be counted as no imbalance for these purposes -- we can't fix that
2484 * by pulling tasks to us. Be careful of negative numbers as they'll
2485 * appear as very large values with unsigned longs.
2486 */
2487 if (max_load <= busiest_load_per_task)
2488 goto out_balanced;
2489
2490 /*
2491 * In the presence of smp nice balancing, certain scenarios can have
2492 * max load less than avg load(as we skip the groups at or below
2493 * its cpu_power, while calculating max_load..)
2494 */
2495 if (max_load < avg_load) {
2496 *imbalance = 0;
2497 goto small_imbalance;
2498 }
2499
2500 /* Don't want to pull so many tasks that a group would go idle */
2501 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2502
2503 /* How much load to actually move to equalise the imbalance */
2504 *imbalance = min(max_pull * busiest->__cpu_power,
2505 (avg_load - this_load) * this->__cpu_power)
2506 / SCHED_LOAD_SCALE;
2507
2508 /*
2509 * if *imbalance is less than the average load per runnable task
2510 * there is no gaurantee that any tasks will be moved so we'll have
2511 * a think about bumping its value to force at least one task to be
2512 * moved
2513 */
2514 if (*imbalance < busiest_load_per_task) {
2515 unsigned long tmp, pwr_now, pwr_move;
2516 unsigned int imbn;
2517
2518 small_imbalance:
2519 pwr_move = pwr_now = 0;
2520 imbn = 2;
2521 if (this_nr_running) {
2522 this_load_per_task /= this_nr_running;
2523 if (busiest_load_per_task > this_load_per_task)
2524 imbn = 1;
2525 } else
2526 this_load_per_task = SCHED_LOAD_SCALE;
2527
2528 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2529 busiest_load_per_task * imbn) {
2530 *imbalance = busiest_load_per_task;
2531 return busiest;
2532 }
2533
2534 /*
2535 * OK, we don't have enough imbalance to justify moving tasks,
2536 * however we may be able to increase total CPU power used by
2537 * moving them.
2538 */
2539
2540 pwr_now += busiest->__cpu_power *
2541 min(busiest_load_per_task, max_load);
2542 pwr_now += this->__cpu_power *
2543 min(this_load_per_task, this_load);
2544 pwr_now /= SCHED_LOAD_SCALE;
2545
2546 /* Amount of load we'd subtract */
2547 tmp = sg_div_cpu_power(busiest,
2548 busiest_load_per_task * SCHED_LOAD_SCALE);
2549 if (max_load > tmp)
2550 pwr_move += busiest->__cpu_power *
2551 min(busiest_load_per_task, max_load - tmp);
2552
2553 /* Amount of load we'd add */
2554 if (max_load * busiest->__cpu_power <
2555 busiest_load_per_task * SCHED_LOAD_SCALE)
2556 tmp = sg_div_cpu_power(this,
2557 max_load * busiest->__cpu_power);
2558 else
2559 tmp = sg_div_cpu_power(this,
2560 busiest_load_per_task * SCHED_LOAD_SCALE);
2561 pwr_move += this->__cpu_power *
2562 min(this_load_per_task, this_load + tmp);
2563 pwr_move /= SCHED_LOAD_SCALE;
2564
2565 /* Move if we gain throughput */
2566 if (pwr_move > pwr_now)
2567 *imbalance = busiest_load_per_task;
2568 }
2569
2570 return busiest;
2571
2572 out_balanced:
2573 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2574 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2575 goto ret;
2576
2577 if (this == group_leader && group_leader != group_min) {
2578 *imbalance = min_load_per_task;
2579 return group_min;
2580 }
2581 #endif
2582 ret:
2583 *imbalance = 0;
2584 return NULL;
2585 }
2586
2587 /*
2588 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2589 */
2590 static struct rq *
2591 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2592 unsigned long imbalance, cpumask_t *cpus)
2593 {
2594 struct rq *busiest = NULL, *rq;
2595 unsigned long max_load = 0;
2596 int i;
2597
2598 for_each_cpu_mask(i, group->cpumask) {
2599 unsigned long wl;
2600
2601 if (!cpu_isset(i, *cpus))
2602 continue;
2603
2604 rq = cpu_rq(i);
2605 wl = weighted_cpuload(i);
2606
2607 if (rq->nr_running == 1 && wl > imbalance)
2608 continue;
2609
2610 if (wl > max_load) {
2611 max_load = wl;
2612 busiest = rq;
2613 }
2614 }
2615
2616 return busiest;
2617 }
2618
2619 /*
2620 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2621 * so long as it is large enough.
2622 */
2623 #define MAX_PINNED_INTERVAL 512
2624
2625 /*
2626 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2627 * tasks if there is an imbalance.
2628 */
2629 static int load_balance(int this_cpu, struct rq *this_rq,
2630 struct sched_domain *sd, enum cpu_idle_type idle,
2631 int *balance)
2632 {
2633 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2634 struct sched_group *group;
2635 unsigned long imbalance;
2636 struct rq *busiest;
2637 cpumask_t cpus = CPU_MASK_ALL;
2638 unsigned long flags;
2639
2640 /*
2641 * When power savings policy is enabled for the parent domain, idle
2642 * sibling can pick up load irrespective of busy siblings. In this case,
2643 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2644 * portraying it as CPU_NOT_IDLE.
2645 */
2646 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2648 sd_idle = 1;
2649
2650 schedstat_inc(sd, lb_cnt[idle]);
2651
2652 redo:
2653 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2654 &cpus, balance);
2655
2656 if (*balance == 0)
2657 goto out_balanced;
2658
2659 if (!group) {
2660 schedstat_inc(sd, lb_nobusyg[idle]);
2661 goto out_balanced;
2662 }
2663
2664 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2665 if (!busiest) {
2666 schedstat_inc(sd, lb_nobusyq[idle]);
2667 goto out_balanced;
2668 }
2669
2670 BUG_ON(busiest == this_rq);
2671
2672 schedstat_add(sd, lb_imbalance[idle], imbalance);
2673
2674 ld_moved = 0;
2675 if (busiest->nr_running > 1) {
2676 /*
2677 * Attempt to move tasks. If find_busiest_group has found
2678 * an imbalance but busiest->nr_running <= 1, the group is
2679 * still unbalanced. ld_moved simply stays zero, so it is
2680 * correctly treated as an imbalance.
2681 */
2682 local_irq_save(flags);
2683 double_rq_lock(this_rq, busiest);
2684 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2685 imbalance, sd, idle, &all_pinned);
2686 double_rq_unlock(this_rq, busiest);
2687 local_irq_restore(flags);
2688
2689 /*
2690 * some other cpu did the load balance for us.
2691 */
2692 if (ld_moved && this_cpu != smp_processor_id())
2693 resched_cpu(this_cpu);
2694
2695 /* All tasks on this runqueue were pinned by CPU affinity */
2696 if (unlikely(all_pinned)) {
2697 cpu_clear(cpu_of(busiest), cpus);
2698 if (!cpus_empty(cpus))
2699 goto redo;
2700 goto out_balanced;
2701 }
2702 }
2703
2704 if (!ld_moved) {
2705 schedstat_inc(sd, lb_failed[idle]);
2706 sd->nr_balance_failed++;
2707
2708 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2709
2710 spin_lock_irqsave(&busiest->lock, flags);
2711
2712 /* don't kick the migration_thread, if the curr
2713 * task on busiest cpu can't be moved to this_cpu
2714 */
2715 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2716 spin_unlock_irqrestore(&busiest->lock, flags);
2717 all_pinned = 1;
2718 goto out_one_pinned;
2719 }
2720
2721 if (!busiest->active_balance) {
2722 busiest->active_balance = 1;
2723 busiest->push_cpu = this_cpu;
2724 active_balance = 1;
2725 }
2726 spin_unlock_irqrestore(&busiest->lock, flags);
2727 if (active_balance)
2728 wake_up_process(busiest->migration_thread);
2729
2730 /*
2731 * We've kicked active balancing, reset the failure
2732 * counter.
2733 */
2734 sd->nr_balance_failed = sd->cache_nice_tries+1;
2735 }
2736 } else
2737 sd->nr_balance_failed = 0;
2738
2739 if (likely(!active_balance)) {
2740 /* We were unbalanced, so reset the balancing interval */
2741 sd->balance_interval = sd->min_interval;
2742 } else {
2743 /*
2744 * If we've begun active balancing, start to back off. This
2745 * case may not be covered by the all_pinned logic if there
2746 * is only 1 task on the busy runqueue (because we don't call
2747 * move_tasks).
2748 */
2749 if (sd->balance_interval < sd->max_interval)
2750 sd->balance_interval *= 2;
2751 }
2752
2753 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2754 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2755 return -1;
2756 return ld_moved;
2757
2758 out_balanced:
2759 schedstat_inc(sd, lb_balanced[idle]);
2760
2761 sd->nr_balance_failed = 0;
2762
2763 out_one_pinned:
2764 /* tune up the balancing interval */
2765 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2766 (sd->balance_interval < sd->max_interval))
2767 sd->balance_interval *= 2;
2768
2769 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2770 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2771 return -1;
2772 return 0;
2773 }
2774
2775 /*
2776 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2777 * tasks if there is an imbalance.
2778 *
2779 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2780 * this_rq is locked.
2781 */
2782 static int
2783 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2784 {
2785 struct sched_group *group;
2786 struct rq *busiest = NULL;
2787 unsigned long imbalance;
2788 int ld_moved = 0;
2789 int sd_idle = 0;
2790 int all_pinned = 0;
2791 cpumask_t cpus = CPU_MASK_ALL;
2792
2793 /*
2794 * When power savings policy is enabled for the parent domain, idle
2795 * sibling can pick up load irrespective of busy siblings. In this case,
2796 * let the state of idle sibling percolate up as IDLE, instead of
2797 * portraying it as CPU_NOT_IDLE.
2798 */
2799 if (sd->flags & SD_SHARE_CPUPOWER &&
2800 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2801 sd_idle = 1;
2802
2803 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2804 redo:
2805 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2806 &sd_idle, &cpus, NULL);
2807 if (!group) {
2808 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2809 goto out_balanced;
2810 }
2811
2812 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2813 &cpus);
2814 if (!busiest) {
2815 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2816 goto out_balanced;
2817 }
2818
2819 BUG_ON(busiest == this_rq);
2820
2821 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2822
2823 ld_moved = 0;
2824 if (busiest->nr_running > 1) {
2825 /* Attempt to move tasks */
2826 double_lock_balance(this_rq, busiest);
2827 /* this_rq->clock is already updated */
2828 update_rq_clock(busiest);
2829 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2830 imbalance, sd, CPU_NEWLY_IDLE,
2831 &all_pinned);
2832 spin_unlock(&busiest->lock);
2833
2834 if (unlikely(all_pinned)) {
2835 cpu_clear(cpu_of(busiest), cpus);
2836 if (!cpus_empty(cpus))
2837 goto redo;
2838 }
2839 }
2840
2841 if (!ld_moved) {
2842 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2843 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2844 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2845 return -1;
2846 } else
2847 sd->nr_balance_failed = 0;
2848
2849 return ld_moved;
2850
2851 out_balanced:
2852 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2853 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2854 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2855 return -1;
2856 sd->nr_balance_failed = 0;
2857
2858 return 0;
2859 }
2860
2861 /*
2862 * idle_balance is called by schedule() if this_cpu is about to become
2863 * idle. Attempts to pull tasks from other CPUs.
2864 */
2865 static void idle_balance(int this_cpu, struct rq *this_rq)
2866 {
2867 struct sched_domain *sd;
2868 int pulled_task = -1;
2869 unsigned long next_balance = jiffies + HZ;
2870
2871 for_each_domain(this_cpu, sd) {
2872 unsigned long interval;
2873
2874 if (!(sd->flags & SD_LOAD_BALANCE))
2875 continue;
2876
2877 if (sd->flags & SD_BALANCE_NEWIDLE)
2878 /* If we've pulled tasks over stop searching: */
2879 pulled_task = load_balance_newidle(this_cpu,
2880 this_rq, sd);
2881
2882 interval = msecs_to_jiffies(sd->balance_interval);
2883 if (time_after(next_balance, sd->last_balance + interval))
2884 next_balance = sd->last_balance + interval;
2885 if (pulled_task)
2886 break;
2887 }
2888 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2889 /*
2890 * We are going idle. next_balance may be set based on
2891 * a busy processor. So reset next_balance.
2892 */
2893 this_rq->next_balance = next_balance;
2894 }
2895 }
2896
2897 /*
2898 * active_load_balance is run by migration threads. It pushes running tasks
2899 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2900 * running on each physical CPU where possible, and avoids physical /
2901 * logical imbalances.
2902 *
2903 * Called with busiest_rq locked.
2904 */
2905 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2906 {
2907 int target_cpu = busiest_rq->push_cpu;
2908 struct sched_domain *sd;
2909 struct rq *target_rq;
2910
2911 /* Is there any task to move? */
2912 if (busiest_rq->nr_running <= 1)
2913 return;
2914
2915 target_rq = cpu_rq(target_cpu);
2916
2917 /*
2918 * This condition is "impossible", if it occurs
2919 * we need to fix it. Originally reported by
2920 * Bjorn Helgaas on a 128-cpu setup.
2921 */
2922 BUG_ON(busiest_rq == target_rq);
2923
2924 /* move a task from busiest_rq to target_rq */
2925 double_lock_balance(busiest_rq, target_rq);
2926 update_rq_clock(busiest_rq);
2927 update_rq_clock(target_rq);
2928
2929 /* Search for an sd spanning us and the target CPU. */
2930 for_each_domain(target_cpu, sd) {
2931 if ((sd->flags & SD_LOAD_BALANCE) &&
2932 cpu_isset(busiest_cpu, sd->span))
2933 break;
2934 }
2935
2936 if (likely(sd)) {
2937 schedstat_inc(sd, alb_cnt);
2938
2939 if (move_one_task(target_rq, target_cpu, busiest_rq,
2940 sd, CPU_IDLE))
2941 schedstat_inc(sd, alb_pushed);
2942 else
2943 schedstat_inc(sd, alb_failed);
2944 }
2945 spin_unlock(&target_rq->lock);
2946 }
2947
2948 #ifdef CONFIG_NO_HZ
2949 static struct {
2950 atomic_t load_balancer;
2951 cpumask_t cpu_mask;
2952 } nohz ____cacheline_aligned = {
2953 .load_balancer = ATOMIC_INIT(-1),
2954 .cpu_mask = CPU_MASK_NONE,
2955 };
2956
2957 /*
2958 * This routine will try to nominate the ilb (idle load balancing)
2959 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2960 * load balancing on behalf of all those cpus. If all the cpus in the system
2961 * go into this tickless mode, then there will be no ilb owner (as there is
2962 * no need for one) and all the cpus will sleep till the next wakeup event
2963 * arrives...
2964 *
2965 * For the ilb owner, tick is not stopped. And this tick will be used
2966 * for idle load balancing. ilb owner will still be part of
2967 * nohz.cpu_mask..
2968 *
2969 * While stopping the tick, this cpu will become the ilb owner if there
2970 * is no other owner. And will be the owner till that cpu becomes busy
2971 * or if all cpus in the system stop their ticks at which point
2972 * there is no need for ilb owner.
2973 *
2974 * When the ilb owner becomes busy, it nominates another owner, during the
2975 * next busy scheduler_tick()
2976 */
2977 int select_nohz_load_balancer(int stop_tick)
2978 {
2979 int cpu = smp_processor_id();
2980
2981 if (stop_tick) {
2982 cpu_set(cpu, nohz.cpu_mask);
2983 cpu_rq(cpu)->in_nohz_recently = 1;
2984
2985 /*
2986 * If we are going offline and still the leader, give up!
2987 */
2988 if (cpu_is_offline(cpu) &&
2989 atomic_read(&nohz.load_balancer) == cpu) {
2990 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2991 BUG();
2992 return 0;
2993 }
2994
2995 /* time for ilb owner also to sleep */
2996 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2997 if (atomic_read(&nohz.load_balancer) == cpu)
2998 atomic_set(&nohz.load_balancer, -1);
2999 return 0;
3000 }
3001
3002 if (atomic_read(&nohz.load_balancer) == -1) {
3003 /* make me the ilb owner */
3004 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3005 return 1;
3006 } else if (atomic_read(&nohz.load_balancer) == cpu)
3007 return 1;
3008 } else {
3009 if (!cpu_isset(cpu, nohz.cpu_mask))
3010 return 0;
3011
3012 cpu_clear(cpu, nohz.cpu_mask);
3013
3014 if (atomic_read(&nohz.load_balancer) == cpu)
3015 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3016 BUG();
3017 }
3018 return 0;
3019 }
3020 #endif
3021
3022 static DEFINE_SPINLOCK(balancing);
3023
3024 /*
3025 * It checks each scheduling domain to see if it is due to be balanced,
3026 * and initiates a balancing operation if so.
3027 *
3028 * Balancing parameters are set up in arch_init_sched_domains.
3029 */
3030 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3031 {
3032 int balance = 1;
3033 struct rq *rq = cpu_rq(cpu);
3034 unsigned long interval;
3035 struct sched_domain *sd;
3036 /* Earliest time when we have to do rebalance again */
3037 unsigned long next_balance = jiffies + 60*HZ;
3038 int update_next_balance = 0;
3039
3040 for_each_domain(cpu, sd) {
3041 if (!(sd->flags & SD_LOAD_BALANCE))
3042 continue;
3043
3044 interval = sd->balance_interval;
3045 if (idle != CPU_IDLE)
3046 interval *= sd->busy_factor;
3047
3048 /* scale ms to jiffies */
3049 interval = msecs_to_jiffies(interval);
3050 if (unlikely(!interval))
3051 interval = 1;
3052 if (interval > HZ*NR_CPUS/10)
3053 interval = HZ*NR_CPUS/10;
3054
3055
3056 if (sd->flags & SD_SERIALIZE) {
3057 if (!spin_trylock(&balancing))
3058 goto out;
3059 }
3060
3061 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3062 if (load_balance(cpu, rq, sd, idle, &balance)) {
3063 /*
3064 * We've pulled tasks over so either we're no
3065 * longer idle, or one of our SMT siblings is
3066 * not idle.
3067 */
3068 idle = CPU_NOT_IDLE;
3069 }
3070 sd->last_balance = jiffies;
3071 }
3072 if (sd->flags & SD_SERIALIZE)
3073 spin_unlock(&balancing);
3074 out:
3075 if (time_after(next_balance, sd->last_balance + interval)) {
3076 next_balance = sd->last_balance + interval;
3077 update_next_balance = 1;
3078 }
3079
3080 /*
3081 * Stop the load balance at this level. There is another
3082 * CPU in our sched group which is doing load balancing more
3083 * actively.
3084 */
3085 if (!balance)
3086 break;
3087 }
3088
3089 /*
3090 * next_balance will be updated only when there is a need.
3091 * When the cpu is attached to null domain for ex, it will not be
3092 * updated.
3093 */
3094 if (likely(update_next_balance))
3095 rq->next_balance = next_balance;
3096 }
3097
3098 /*
3099 * run_rebalance_domains is triggered when needed from the scheduler tick.
3100 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3101 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3102 */
3103 static void run_rebalance_domains(struct softirq_action *h)
3104 {
3105 int this_cpu = smp_processor_id();
3106 struct rq *this_rq = cpu_rq(this_cpu);
3107 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3108 CPU_IDLE : CPU_NOT_IDLE;
3109
3110 rebalance_domains(this_cpu, idle);
3111
3112 #ifdef CONFIG_NO_HZ
3113 /*
3114 * If this cpu is the owner for idle load balancing, then do the
3115 * balancing on behalf of the other idle cpus whose ticks are
3116 * stopped.
3117 */
3118 if (this_rq->idle_at_tick &&
3119 atomic_read(&nohz.load_balancer) == this_cpu) {
3120 cpumask_t cpus = nohz.cpu_mask;
3121 struct rq *rq;
3122 int balance_cpu;
3123
3124 cpu_clear(this_cpu, cpus);
3125 for_each_cpu_mask(balance_cpu, cpus) {
3126 /*
3127 * If this cpu gets work to do, stop the load balancing
3128 * work being done for other cpus. Next load
3129 * balancing owner will pick it up.
3130 */
3131 if (need_resched())
3132 break;
3133
3134 rebalance_domains(balance_cpu, CPU_IDLE);
3135
3136 rq = cpu_rq(balance_cpu);
3137 if (time_after(this_rq->next_balance, rq->next_balance))
3138 this_rq->next_balance = rq->next_balance;
3139 }
3140 }
3141 #endif
3142 }
3143
3144 /*
3145 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3146 *
3147 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3148 * idle load balancing owner or decide to stop the periodic load balancing,
3149 * if the whole system is idle.
3150 */
3151 static inline void trigger_load_balance(struct rq *rq, int cpu)
3152 {
3153 #ifdef CONFIG_NO_HZ
3154 /*
3155 * If we were in the nohz mode recently and busy at the current
3156 * scheduler tick, then check if we need to nominate new idle
3157 * load balancer.
3158 */
3159 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3160 rq->in_nohz_recently = 0;
3161
3162 if (atomic_read(&nohz.load_balancer) == cpu) {
3163 cpu_clear(cpu, nohz.cpu_mask);
3164 atomic_set(&nohz.load_balancer, -1);
3165 }
3166
3167 if (atomic_read(&nohz.load_balancer) == -1) {
3168 /*
3169 * simple selection for now: Nominate the
3170 * first cpu in the nohz list to be the next
3171 * ilb owner.
3172 *
3173 * TBD: Traverse the sched domains and nominate
3174 * the nearest cpu in the nohz.cpu_mask.
3175 */
3176 int ilb = first_cpu(nohz.cpu_mask);
3177
3178 if (ilb != NR_CPUS)
3179 resched_cpu(ilb);
3180 }
3181 }
3182
3183 /*
3184 * If this cpu is idle and doing idle load balancing for all the
3185 * cpus with ticks stopped, is it time for that to stop?
3186 */
3187 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3188 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3189 resched_cpu(cpu);
3190 return;
3191 }
3192
3193 /*
3194 * If this cpu is idle and the idle load balancing is done by
3195 * someone else, then no need raise the SCHED_SOFTIRQ
3196 */
3197 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3198 cpu_isset(cpu, nohz.cpu_mask))
3199 return;
3200 #endif
3201 if (time_after_eq(jiffies, rq->next_balance))
3202 raise_softirq(SCHED_SOFTIRQ);
3203 }
3204
3205 #else /* CONFIG_SMP */
3206
3207 /*
3208 * on UP we do not need to balance between CPUs:
3209 */
3210 static inline void idle_balance(int cpu, struct rq *rq)
3211 {
3212 }
3213
3214 /* Avoid "used but not defined" warning on UP */
3215 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3216 unsigned long max_nr_move, unsigned long max_load_move,
3217 struct sched_domain *sd, enum cpu_idle_type idle,
3218 int *all_pinned, unsigned long *load_moved,
3219 int *this_best_prio, struct rq_iterator *iterator)
3220 {
3221 *load_moved = 0;
3222
3223 return 0;
3224 }
3225
3226 #endif
3227
3228 DEFINE_PER_CPU(struct kernel_stat, kstat);
3229
3230 EXPORT_PER_CPU_SYMBOL(kstat);
3231
3232 /*
3233 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3234 * that have not yet been banked in case the task is currently running.
3235 */
3236 unsigned long long task_sched_runtime(struct task_struct *p)
3237 {
3238 unsigned long flags;
3239 u64 ns, delta_exec;
3240 struct rq *rq;
3241
3242 rq = task_rq_lock(p, &flags);
3243 ns = p->se.sum_exec_runtime;
3244 if (rq->curr == p) {
3245 update_rq_clock(rq);
3246 delta_exec = rq->clock - p->se.exec_start;
3247 if ((s64)delta_exec > 0)
3248 ns += delta_exec;
3249 }
3250 task_rq_unlock(rq, &flags);
3251
3252 return ns;
3253 }
3254
3255 /*
3256 * Account user cpu time to a process.
3257 * @p: the process that the cpu time gets accounted to
3258 * @hardirq_offset: the offset to subtract from hardirq_count()
3259 * @cputime: the cpu time spent in user space since the last update
3260 */
3261 void account_user_time(struct task_struct *p, cputime_t cputime)
3262 {
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t tmp;
3265
3266 p->utime = cputime_add(p->utime, cputime);
3267
3268 /* Add user time to cpustat. */
3269 tmp = cputime_to_cputime64(cputime);
3270 if (TASK_NICE(p) > 0)
3271 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3272 else
3273 cpustat->user = cputime64_add(cpustat->user, tmp);
3274 }
3275
3276 /*
3277 * Account system cpu time to a process.
3278 * @p: the process that the cpu time gets accounted to
3279 * @hardirq_offset: the offset to subtract from hardirq_count()
3280 * @cputime: the cpu time spent in kernel space since the last update
3281 */
3282 void account_system_time(struct task_struct *p, int hardirq_offset,
3283 cputime_t cputime)
3284 {
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286 struct rq *rq = this_rq();
3287 cputime64_t tmp;
3288
3289 p->stime = cputime_add(p->stime, cputime);
3290
3291 /* Add system time to cpustat. */
3292 tmp = cputime_to_cputime64(cputime);
3293 if (hardirq_count() - hardirq_offset)
3294 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3295 else if (softirq_count())
3296 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3297 else if (p != rq->idle)
3298 cpustat->system = cputime64_add(cpustat->system, tmp);
3299 else if (atomic_read(&rq->nr_iowait) > 0)
3300 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3301 else
3302 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3303 /* Account for system time used */
3304 acct_update_integrals(p);
3305 }
3306
3307 /*
3308 * Account for involuntary wait time.
3309 * @p: the process from which the cpu time has been stolen
3310 * @steal: the cpu time spent in involuntary wait
3311 */
3312 void account_steal_time(struct task_struct *p, cputime_t steal)
3313 {
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315 cputime64_t tmp = cputime_to_cputime64(steal);
3316 struct rq *rq = this_rq();
3317
3318 if (p == rq->idle) {
3319 p->stime = cputime_add(p->stime, steal);
3320 if (atomic_read(&rq->nr_iowait) > 0)
3321 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3322 else
3323 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3324 } else
3325 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3326 }
3327
3328 /*
3329 * This function gets called by the timer code, with HZ frequency.
3330 * We call it with interrupts disabled.
3331 *
3332 * It also gets called by the fork code, when changing the parent's
3333 * timeslices.
3334 */
3335 void scheduler_tick(void)
3336 {
3337 int cpu = smp_processor_id();
3338 struct rq *rq = cpu_rq(cpu);
3339 struct task_struct *curr = rq->curr;
3340 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3341
3342 spin_lock(&rq->lock);
3343 __update_rq_clock(rq);
3344 /*
3345 * Let rq->clock advance by at least TICK_NSEC:
3346 */
3347 if (unlikely(rq->clock < next_tick))
3348 rq->clock = next_tick;
3349 rq->tick_timestamp = rq->clock;
3350 update_cpu_load(rq);
3351 if (curr != rq->idle) /* FIXME: needed? */
3352 curr->sched_class->task_tick(rq, curr);
3353 spin_unlock(&rq->lock);
3354
3355 #ifdef CONFIG_SMP
3356 rq->idle_at_tick = idle_cpu(cpu);
3357 trigger_load_balance(rq, cpu);
3358 #endif
3359 }
3360
3361 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3362
3363 void fastcall add_preempt_count(int val)
3364 {
3365 /*
3366 * Underflow?
3367 */
3368 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3369 return;
3370 preempt_count() += val;
3371 /*
3372 * Spinlock count overflowing soon?
3373 */
3374 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3375 PREEMPT_MASK - 10);
3376 }
3377 EXPORT_SYMBOL(add_preempt_count);
3378
3379 void fastcall sub_preempt_count(int val)
3380 {
3381 /*
3382 * Underflow?
3383 */
3384 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3385 return;
3386 /*
3387 * Is the spinlock portion underflowing?
3388 */
3389 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3390 !(preempt_count() & PREEMPT_MASK)))
3391 return;
3392
3393 preempt_count() -= val;
3394 }
3395 EXPORT_SYMBOL(sub_preempt_count);
3396
3397 #endif
3398
3399 /*
3400 * Print scheduling while atomic bug:
3401 */
3402 static noinline void __schedule_bug(struct task_struct *prev)
3403 {
3404 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3405 prev->comm, preempt_count(), prev->pid);
3406 debug_show_held_locks(prev);
3407 if (irqs_disabled())
3408 print_irqtrace_events(prev);
3409 dump_stack();
3410 }
3411
3412 /*
3413 * Various schedule()-time debugging checks and statistics:
3414 */
3415 static inline void schedule_debug(struct task_struct *prev)
3416 {
3417 /*
3418 * Test if we are atomic. Since do_exit() needs to call into
3419 * schedule() atomically, we ignore that path for now.
3420 * Otherwise, whine if we are scheduling when we should not be.
3421 */
3422 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3423 __schedule_bug(prev);
3424
3425 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3426
3427 schedstat_inc(this_rq(), sched_cnt);
3428 }
3429
3430 /*
3431 * Pick up the highest-prio task:
3432 */
3433 static inline struct task_struct *
3434 pick_next_task(struct rq *rq, struct task_struct *prev)
3435 {
3436 struct sched_class *class;
3437 struct task_struct *p;
3438
3439 /*
3440 * Optimization: we know that if all tasks are in
3441 * the fair class we can call that function directly:
3442 */
3443 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3444 p = fair_sched_class.pick_next_task(rq);
3445 if (likely(p))
3446 return p;
3447 }
3448
3449 class = sched_class_highest;
3450 for ( ; ; ) {
3451 p = class->pick_next_task(rq);
3452 if (p)
3453 return p;
3454 /*
3455 * Will never be NULL as the idle class always
3456 * returns a non-NULL p:
3457 */
3458 class = class->next;
3459 }
3460 }
3461
3462 /*
3463 * schedule() is the main scheduler function.
3464 */
3465 asmlinkage void __sched schedule(void)
3466 {
3467 struct task_struct *prev, *next;
3468 long *switch_count;
3469 struct rq *rq;
3470 int cpu;
3471
3472 need_resched:
3473 preempt_disable();
3474 cpu = smp_processor_id();
3475 rq = cpu_rq(cpu);
3476 rcu_qsctr_inc(cpu);
3477 prev = rq->curr;
3478 switch_count = &prev->nivcsw;
3479
3480 release_kernel_lock(prev);
3481 need_resched_nonpreemptible:
3482
3483 schedule_debug(prev);
3484
3485 spin_lock_irq(&rq->lock);
3486 clear_tsk_need_resched(prev);
3487 __update_rq_clock(rq);
3488
3489 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3490 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3491 unlikely(signal_pending(prev)))) {
3492 prev->state = TASK_RUNNING;
3493 } else {
3494 deactivate_task(rq, prev, 1);
3495 }
3496 switch_count = &prev->nvcsw;
3497 }
3498
3499 if (unlikely(!rq->nr_running))
3500 idle_balance(cpu, rq);
3501
3502 prev->sched_class->put_prev_task(rq, prev);
3503 next = pick_next_task(rq, prev);
3504
3505 sched_info_switch(prev, next);
3506
3507 if (likely(prev != next)) {
3508 rq->nr_switches++;
3509 rq->curr = next;
3510 ++*switch_count;
3511
3512 context_switch(rq, prev, next); /* unlocks the rq */
3513 } else
3514 spin_unlock_irq(&rq->lock);
3515
3516 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3517 cpu = smp_processor_id();
3518 rq = cpu_rq(cpu);
3519 goto need_resched_nonpreemptible;
3520 }
3521 preempt_enable_no_resched();
3522 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3523 goto need_resched;
3524 }
3525 EXPORT_SYMBOL(schedule);
3526
3527 #ifdef CONFIG_PREEMPT
3528 /*
3529 * this is the entry point to schedule() from in-kernel preemption
3530 * off of preempt_enable. Kernel preemptions off return from interrupt
3531 * occur there and call schedule directly.
3532 */
3533 asmlinkage void __sched preempt_schedule(void)
3534 {
3535 struct thread_info *ti = current_thread_info();
3536 #ifdef CONFIG_PREEMPT_BKL
3537 struct task_struct *task = current;
3538 int saved_lock_depth;
3539 #endif
3540 /*
3541 * If there is a non-zero preempt_count or interrupts are disabled,
3542 * we do not want to preempt the current task. Just return..
3543 */
3544 if (likely(ti->preempt_count || irqs_disabled()))
3545 return;
3546
3547 need_resched:
3548 add_preempt_count(PREEMPT_ACTIVE);
3549 /*
3550 * We keep the big kernel semaphore locked, but we
3551 * clear ->lock_depth so that schedule() doesnt
3552 * auto-release the semaphore:
3553 */
3554 #ifdef CONFIG_PREEMPT_BKL
3555 saved_lock_depth = task->lock_depth;
3556 task->lock_depth = -1;
3557 #endif
3558 schedule();
3559 #ifdef CONFIG_PREEMPT_BKL
3560 task->lock_depth = saved_lock_depth;
3561 #endif
3562 sub_preempt_count(PREEMPT_ACTIVE);
3563
3564 /* we could miss a preemption opportunity between schedule and now */
3565 barrier();
3566 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3567 goto need_resched;
3568 }
3569 EXPORT_SYMBOL(preempt_schedule);
3570
3571 /*
3572 * this is the entry point to schedule() from kernel preemption
3573 * off of irq context.
3574 * Note, that this is called and return with irqs disabled. This will
3575 * protect us against recursive calling from irq.
3576 */
3577 asmlinkage void __sched preempt_schedule_irq(void)
3578 {
3579 struct thread_info *ti = current_thread_info();
3580 #ifdef CONFIG_PREEMPT_BKL
3581 struct task_struct *task = current;
3582 int saved_lock_depth;
3583 #endif
3584 /* Catch callers which need to be fixed */
3585 BUG_ON(ti->preempt_count || !irqs_disabled());
3586
3587 need_resched:
3588 add_preempt_count(PREEMPT_ACTIVE);
3589 /*
3590 * We keep the big kernel semaphore locked, but we
3591 * clear ->lock_depth so that schedule() doesnt
3592 * auto-release the semaphore:
3593 */
3594 #ifdef CONFIG_PREEMPT_BKL
3595 saved_lock_depth = task->lock_depth;
3596 task->lock_depth = -1;
3597 #endif
3598 local_irq_enable();
3599 schedule();
3600 local_irq_disable();
3601 #ifdef CONFIG_PREEMPT_BKL
3602 task->lock_depth = saved_lock_depth;
3603 #endif
3604 sub_preempt_count(PREEMPT_ACTIVE);
3605
3606 /* we could miss a preemption opportunity between schedule and now */
3607 barrier();
3608 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3609 goto need_resched;
3610 }
3611
3612 #endif /* CONFIG_PREEMPT */
3613
3614 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3615 void *key)
3616 {
3617 return try_to_wake_up(curr->private, mode, sync);
3618 }
3619 EXPORT_SYMBOL(default_wake_function);
3620
3621 /*
3622 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3623 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3624 * number) then we wake all the non-exclusive tasks and one exclusive task.
3625 *
3626 * There are circumstances in which we can try to wake a task which has already
3627 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3628 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3629 */
3630 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3631 int nr_exclusive, int sync, void *key)
3632 {
3633 struct list_head *tmp, *next;
3634
3635 list_for_each_safe(tmp, next, &q->task_list) {
3636 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3637 unsigned flags = curr->flags;
3638
3639 if (curr->func(curr, mode, sync, key) &&
3640 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3641 break;
3642 }
3643 }
3644
3645 /**
3646 * __wake_up - wake up threads blocked on a waitqueue.
3647 * @q: the waitqueue
3648 * @mode: which threads
3649 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3650 * @key: is directly passed to the wakeup function
3651 */
3652 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3653 int nr_exclusive, void *key)
3654 {
3655 unsigned long flags;
3656
3657 spin_lock_irqsave(&q->lock, flags);
3658 __wake_up_common(q, mode, nr_exclusive, 0, key);
3659 spin_unlock_irqrestore(&q->lock, flags);
3660 }
3661 EXPORT_SYMBOL(__wake_up);
3662
3663 /*
3664 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3665 */
3666 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3667 {
3668 __wake_up_common(q, mode, 1, 0, NULL);
3669 }
3670
3671 /**
3672 * __wake_up_sync - wake up threads blocked on a waitqueue.
3673 * @q: the waitqueue
3674 * @mode: which threads
3675 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3676 *
3677 * The sync wakeup differs that the waker knows that it will schedule
3678 * away soon, so while the target thread will be woken up, it will not
3679 * be migrated to another CPU - ie. the two threads are 'synchronized'
3680 * with each other. This can prevent needless bouncing between CPUs.
3681 *
3682 * On UP it can prevent extra preemption.
3683 */
3684 void fastcall
3685 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3686 {
3687 unsigned long flags;
3688 int sync = 1;
3689
3690 if (unlikely(!q))
3691 return;
3692
3693 if (unlikely(!nr_exclusive))
3694 sync = 0;
3695
3696 spin_lock_irqsave(&q->lock, flags);
3697 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3698 spin_unlock_irqrestore(&q->lock, flags);
3699 }
3700 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3701
3702 void fastcall complete(struct completion *x)
3703 {
3704 unsigned long flags;
3705
3706 spin_lock_irqsave(&x->wait.lock, flags);
3707 x->done++;
3708 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3709 1, 0, NULL);
3710 spin_unlock_irqrestore(&x->wait.lock, flags);
3711 }
3712 EXPORT_SYMBOL(complete);
3713
3714 void fastcall complete_all(struct completion *x)
3715 {
3716 unsigned long flags;
3717
3718 spin_lock_irqsave(&x->wait.lock, flags);
3719 x->done += UINT_MAX/2;
3720 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3721 0, 0, NULL);
3722 spin_unlock_irqrestore(&x->wait.lock, flags);
3723 }
3724 EXPORT_SYMBOL(complete_all);
3725
3726 void fastcall __sched wait_for_completion(struct completion *x)
3727 {
3728 might_sleep();
3729
3730 spin_lock_irq(&x->wait.lock);
3731 if (!x->done) {
3732 DECLARE_WAITQUEUE(wait, current);
3733
3734 wait.flags |= WQ_FLAG_EXCLUSIVE;
3735 __add_wait_queue_tail(&x->wait, &wait);
3736 do {
3737 __set_current_state(TASK_UNINTERRUPTIBLE);
3738 spin_unlock_irq(&x->wait.lock);
3739 schedule();
3740 spin_lock_irq(&x->wait.lock);
3741 } while (!x->done);
3742 __remove_wait_queue(&x->wait, &wait);
3743 }
3744 x->done--;
3745 spin_unlock_irq(&x->wait.lock);
3746 }
3747 EXPORT_SYMBOL(wait_for_completion);
3748
3749 unsigned long fastcall __sched
3750 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3751 {
3752 might_sleep();
3753
3754 spin_lock_irq(&x->wait.lock);
3755 if (!x->done) {
3756 DECLARE_WAITQUEUE(wait, current);
3757
3758 wait.flags |= WQ_FLAG_EXCLUSIVE;
3759 __add_wait_queue_tail(&x->wait, &wait);
3760 do {
3761 __set_current_state(TASK_UNINTERRUPTIBLE);
3762 spin_unlock_irq(&x->wait.lock);
3763 timeout = schedule_timeout(timeout);
3764 spin_lock_irq(&x->wait.lock);
3765 if (!timeout) {
3766 __remove_wait_queue(&x->wait, &wait);
3767 goto out;
3768 }
3769 } while (!x->done);
3770 __remove_wait_queue(&x->wait, &wait);
3771 }
3772 x->done--;
3773 out:
3774 spin_unlock_irq(&x->wait.lock);
3775 return timeout;
3776 }
3777 EXPORT_SYMBOL(wait_for_completion_timeout);
3778
3779 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3780 {
3781 int ret = 0;
3782
3783 might_sleep();
3784
3785 spin_lock_irq(&x->wait.lock);
3786 if (!x->done) {
3787 DECLARE_WAITQUEUE(wait, current);
3788
3789 wait.flags |= WQ_FLAG_EXCLUSIVE;
3790 __add_wait_queue_tail(&x->wait, &wait);
3791 do {
3792 if (signal_pending(current)) {
3793 ret = -ERESTARTSYS;
3794 __remove_wait_queue(&x->wait, &wait);
3795 goto out;
3796 }
3797 __set_current_state(TASK_INTERRUPTIBLE);
3798 spin_unlock_irq(&x->wait.lock);
3799 schedule();
3800 spin_lock_irq(&x->wait.lock);
3801 } while (!x->done);
3802 __remove_wait_queue(&x->wait, &wait);
3803 }
3804 x->done--;
3805 out:
3806 spin_unlock_irq(&x->wait.lock);
3807
3808 return ret;
3809 }
3810 EXPORT_SYMBOL(wait_for_completion_interruptible);
3811
3812 unsigned long fastcall __sched
3813 wait_for_completion_interruptible_timeout(struct completion *x,
3814 unsigned long timeout)
3815 {
3816 might_sleep();
3817
3818 spin_lock_irq(&x->wait.lock);
3819 if (!x->done) {
3820 DECLARE_WAITQUEUE(wait, current);
3821
3822 wait.flags |= WQ_FLAG_EXCLUSIVE;
3823 __add_wait_queue_tail(&x->wait, &wait);
3824 do {
3825 if (signal_pending(current)) {
3826 timeout = -ERESTARTSYS;
3827 __remove_wait_queue(&x->wait, &wait);
3828 goto out;
3829 }
3830 __set_current_state(TASK_INTERRUPTIBLE);
3831 spin_unlock_irq(&x->wait.lock);
3832 timeout = schedule_timeout(timeout);
3833 spin_lock_irq(&x->wait.lock);
3834 if (!timeout) {
3835 __remove_wait_queue(&x->wait, &wait);
3836 goto out;
3837 }
3838 } while (!x->done);
3839 __remove_wait_queue(&x->wait, &wait);
3840 }
3841 x->done--;
3842 out:
3843 spin_unlock_irq(&x->wait.lock);
3844 return timeout;
3845 }
3846 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3847
3848 static inline void
3849 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3850 {
3851 spin_lock_irqsave(&q->lock, *flags);
3852 __add_wait_queue(q, wait);
3853 spin_unlock(&q->lock);
3854 }
3855
3856 static inline void
3857 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3858 {
3859 spin_lock_irq(&q->lock);
3860 __remove_wait_queue(q, wait);
3861 spin_unlock_irqrestore(&q->lock, *flags);
3862 }
3863
3864 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3865 {
3866 unsigned long flags;
3867 wait_queue_t wait;
3868
3869 init_waitqueue_entry(&wait, current);
3870
3871 current->state = TASK_INTERRUPTIBLE;
3872
3873 sleep_on_head(q, &wait, &flags);
3874 schedule();
3875 sleep_on_tail(q, &wait, &flags);
3876 }
3877 EXPORT_SYMBOL(interruptible_sleep_on);
3878
3879 long __sched
3880 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3881 {
3882 unsigned long flags;
3883 wait_queue_t wait;
3884
3885 init_waitqueue_entry(&wait, current);
3886
3887 current->state = TASK_INTERRUPTIBLE;
3888
3889 sleep_on_head(q, &wait, &flags);
3890 timeout = schedule_timeout(timeout);
3891 sleep_on_tail(q, &wait, &flags);
3892
3893 return timeout;
3894 }
3895 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3896
3897 void __sched sleep_on(wait_queue_head_t *q)
3898 {
3899 unsigned long flags;
3900 wait_queue_t wait;
3901
3902 init_waitqueue_entry(&wait, current);
3903
3904 current->state = TASK_UNINTERRUPTIBLE;
3905
3906 sleep_on_head(q, &wait, &flags);
3907 schedule();
3908 sleep_on_tail(q, &wait, &flags);
3909 }
3910 EXPORT_SYMBOL(sleep_on);
3911
3912 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3913 {
3914 unsigned long flags;
3915 wait_queue_t wait;
3916
3917 init_waitqueue_entry(&wait, current);
3918
3919 current->state = TASK_UNINTERRUPTIBLE;
3920
3921 sleep_on_head(q, &wait, &flags);
3922 timeout = schedule_timeout(timeout);
3923 sleep_on_tail(q, &wait, &flags);
3924
3925 return timeout;
3926 }
3927 EXPORT_SYMBOL(sleep_on_timeout);
3928
3929 #ifdef CONFIG_RT_MUTEXES
3930
3931 /*
3932 * rt_mutex_setprio - set the current priority of a task
3933 * @p: task
3934 * @prio: prio value (kernel-internal form)
3935 *
3936 * This function changes the 'effective' priority of a task. It does
3937 * not touch ->normal_prio like __setscheduler().
3938 *
3939 * Used by the rt_mutex code to implement priority inheritance logic.
3940 */
3941 void rt_mutex_setprio(struct task_struct *p, int prio)
3942 {
3943 unsigned long flags;
3944 int oldprio, on_rq;
3945 struct rq *rq;
3946
3947 BUG_ON(prio < 0 || prio > MAX_PRIO);
3948
3949 rq = task_rq_lock(p, &flags);
3950 update_rq_clock(rq);
3951
3952 oldprio = p->prio;
3953 on_rq = p->se.on_rq;
3954 if (on_rq)
3955 dequeue_task(rq, p, 0);
3956
3957 if (rt_prio(prio))
3958 p->sched_class = &rt_sched_class;
3959 else
3960 p->sched_class = &fair_sched_class;
3961
3962 p->prio = prio;
3963
3964 if (on_rq) {
3965 enqueue_task(rq, p, 0);
3966 /*
3967 * Reschedule if we are currently running on this runqueue and
3968 * our priority decreased, or if we are not currently running on
3969 * this runqueue and our priority is higher than the current's
3970 */
3971 if (task_running(rq, p)) {
3972 if (p->prio > oldprio)
3973 resched_task(rq->curr);
3974 } else {
3975 check_preempt_curr(rq, p);
3976 }
3977 }
3978 task_rq_unlock(rq, &flags);
3979 }
3980
3981 #endif
3982
3983 void set_user_nice(struct task_struct *p, long nice)
3984 {
3985 int old_prio, delta, on_rq;
3986 unsigned long flags;
3987 struct rq *rq;
3988
3989 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3990 return;
3991 /*
3992 * We have to be careful, if called from sys_setpriority(),
3993 * the task might be in the middle of scheduling on another CPU.
3994 */
3995 rq = task_rq_lock(p, &flags);
3996 update_rq_clock(rq);
3997 /*
3998 * The RT priorities are set via sched_setscheduler(), but we still
3999 * allow the 'normal' nice value to be set - but as expected
4000 * it wont have any effect on scheduling until the task is
4001 * SCHED_FIFO/SCHED_RR:
4002 */
4003 if (task_has_rt_policy(p)) {
4004 p->static_prio = NICE_TO_PRIO(nice);
4005 goto out_unlock;
4006 }
4007 on_rq = p->se.on_rq;
4008 if (on_rq) {
4009 dequeue_task(rq, p, 0);
4010 dec_load(rq, p);
4011 }
4012
4013 p->static_prio = NICE_TO_PRIO(nice);
4014 set_load_weight(p);
4015 old_prio = p->prio;
4016 p->prio = effective_prio(p);
4017 delta = p->prio - old_prio;
4018
4019 if (on_rq) {
4020 enqueue_task(rq, p, 0);
4021 inc_load(rq, p);
4022 /*
4023 * If the task increased its priority or is running and
4024 * lowered its priority, then reschedule its CPU:
4025 */
4026 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4027 resched_task(rq->curr);
4028 }
4029 out_unlock:
4030 task_rq_unlock(rq, &flags);
4031 }
4032 EXPORT_SYMBOL(set_user_nice);
4033
4034 /*
4035 * can_nice - check if a task can reduce its nice value
4036 * @p: task
4037 * @nice: nice value
4038 */
4039 int can_nice(const struct task_struct *p, const int nice)
4040 {
4041 /* convert nice value [19,-20] to rlimit style value [1,40] */
4042 int nice_rlim = 20 - nice;
4043
4044 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4045 capable(CAP_SYS_NICE));
4046 }
4047
4048 #ifdef __ARCH_WANT_SYS_NICE
4049
4050 /*
4051 * sys_nice - change the priority of the current process.
4052 * @increment: priority increment
4053 *
4054 * sys_setpriority is a more generic, but much slower function that
4055 * does similar things.
4056 */
4057 asmlinkage long sys_nice(int increment)
4058 {
4059 long nice, retval;
4060
4061 /*
4062 * Setpriority might change our priority at the same moment.
4063 * We don't have to worry. Conceptually one call occurs first
4064 * and we have a single winner.
4065 */
4066 if (increment < -40)
4067 increment = -40;
4068 if (increment > 40)
4069 increment = 40;
4070
4071 nice = PRIO_TO_NICE(current->static_prio) + increment;
4072 if (nice < -20)
4073 nice = -20;
4074 if (nice > 19)
4075 nice = 19;
4076
4077 if (increment < 0 && !can_nice(current, nice))
4078 return -EPERM;
4079
4080 retval = security_task_setnice(current, nice);
4081 if (retval)
4082 return retval;
4083
4084 set_user_nice(current, nice);
4085 return 0;
4086 }
4087
4088 #endif
4089
4090 /**
4091 * task_prio - return the priority value of a given task.
4092 * @p: the task in question.
4093 *
4094 * This is the priority value as seen by users in /proc.
4095 * RT tasks are offset by -200. Normal tasks are centered
4096 * around 0, value goes from -16 to +15.
4097 */
4098 int task_prio(const struct task_struct *p)
4099 {
4100 return p->prio - MAX_RT_PRIO;
4101 }
4102
4103 /**
4104 * task_nice - return the nice value of a given task.
4105 * @p: the task in question.
4106 */
4107 int task_nice(const struct task_struct *p)
4108 {
4109 return TASK_NICE(p);
4110 }
4111 EXPORT_SYMBOL_GPL(task_nice);
4112
4113 /**
4114 * idle_cpu - is a given cpu idle currently?
4115 * @cpu: the processor in question.
4116 */
4117 int idle_cpu(int cpu)
4118 {
4119 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4120 }
4121
4122 /**
4123 * idle_task - return the idle task for a given cpu.
4124 * @cpu: the processor in question.
4125 */
4126 struct task_struct *idle_task(int cpu)
4127 {
4128 return cpu_rq(cpu)->idle;
4129 }
4130
4131 /**
4132 * find_process_by_pid - find a process with a matching PID value.
4133 * @pid: the pid in question.
4134 */
4135 static inline struct task_struct *find_process_by_pid(pid_t pid)
4136 {
4137 return pid ? find_task_by_pid(pid) : current;
4138 }
4139
4140 /* Actually do priority change: must hold rq lock. */
4141 static void
4142 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4143 {
4144 BUG_ON(p->se.on_rq);
4145
4146 p->policy = policy;
4147 switch (p->policy) {
4148 case SCHED_NORMAL:
4149 case SCHED_BATCH:
4150 case SCHED_IDLE:
4151 p->sched_class = &fair_sched_class;
4152 break;
4153 case SCHED_FIFO:
4154 case SCHED_RR:
4155 p->sched_class = &rt_sched_class;
4156 break;
4157 }
4158
4159 p->rt_priority = prio;
4160 p->normal_prio = normal_prio(p);
4161 /* we are holding p->pi_lock already */
4162 p->prio = rt_mutex_getprio(p);
4163 set_load_weight(p);
4164 }
4165
4166 /**
4167 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4168 * @p: the task in question.
4169 * @policy: new policy.
4170 * @param: structure containing the new RT priority.
4171 *
4172 * NOTE that the task may be already dead.
4173 */
4174 int sched_setscheduler(struct task_struct *p, int policy,
4175 struct sched_param *param)
4176 {
4177 int retval, oldprio, oldpolicy = -1, on_rq;
4178 unsigned long flags;
4179 struct rq *rq;
4180
4181 /* may grab non-irq protected spin_locks */
4182 BUG_ON(in_interrupt());
4183 recheck:
4184 /* double check policy once rq lock held */
4185 if (policy < 0)
4186 policy = oldpolicy = p->policy;
4187 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4188 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4189 policy != SCHED_IDLE)
4190 return -EINVAL;
4191 /*
4192 * Valid priorities for SCHED_FIFO and SCHED_RR are
4193 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4194 * SCHED_BATCH and SCHED_IDLE is 0.
4195 */
4196 if (param->sched_priority < 0 ||
4197 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4198 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4199 return -EINVAL;
4200 if (rt_policy(policy) != (param->sched_priority != 0))
4201 return -EINVAL;
4202
4203 /*
4204 * Allow unprivileged RT tasks to decrease priority:
4205 */
4206 if (!capable(CAP_SYS_NICE)) {
4207 if (rt_policy(policy)) {
4208 unsigned long rlim_rtprio;
4209
4210 if (!lock_task_sighand(p, &flags))
4211 return -ESRCH;
4212 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4213 unlock_task_sighand(p, &flags);
4214
4215 /* can't set/change the rt policy */
4216 if (policy != p->policy && !rlim_rtprio)
4217 return -EPERM;
4218
4219 /* can't increase priority */
4220 if (param->sched_priority > p->rt_priority &&
4221 param->sched_priority > rlim_rtprio)
4222 return -EPERM;
4223 }
4224 /*
4225 * Like positive nice levels, dont allow tasks to
4226 * move out of SCHED_IDLE either:
4227 */
4228 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4229 return -EPERM;
4230
4231 /* can't change other user's priorities */
4232 if ((current->euid != p->euid) &&
4233 (current->euid != p->uid))
4234 return -EPERM;
4235 }
4236
4237 retval = security_task_setscheduler(p, policy, param);
4238 if (retval)
4239 return retval;
4240 /*
4241 * make sure no PI-waiters arrive (or leave) while we are
4242 * changing the priority of the task:
4243 */
4244 spin_lock_irqsave(&p->pi_lock, flags);
4245 /*
4246 * To be able to change p->policy safely, the apropriate
4247 * runqueue lock must be held.
4248 */
4249 rq = __task_rq_lock(p);
4250 /* recheck policy now with rq lock held */
4251 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4252 policy = oldpolicy = -1;
4253 __task_rq_unlock(rq);
4254 spin_unlock_irqrestore(&p->pi_lock, flags);
4255 goto recheck;
4256 }
4257 update_rq_clock(rq);
4258 on_rq = p->se.on_rq;
4259 if (on_rq)
4260 deactivate_task(rq, p, 0);
4261 oldprio = p->prio;
4262 __setscheduler(rq, p, policy, param->sched_priority);
4263 if (on_rq) {
4264 activate_task(rq, p, 0);
4265 /*
4266 * Reschedule if we are currently running on this runqueue and
4267 * our priority decreased, or if we are not currently running on
4268 * this runqueue and our priority is higher than the current's
4269 */
4270 if (task_running(rq, p)) {
4271 if (p->prio > oldprio)
4272 resched_task(rq->curr);
4273 } else {
4274 check_preempt_curr(rq, p);
4275 }
4276 }
4277 __task_rq_unlock(rq);
4278 spin_unlock_irqrestore(&p->pi_lock, flags);
4279
4280 rt_mutex_adjust_pi(p);
4281
4282 return 0;
4283 }
4284 EXPORT_SYMBOL_GPL(sched_setscheduler);
4285
4286 static int
4287 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4288 {
4289 struct sched_param lparam;
4290 struct task_struct *p;
4291 int retval;
4292
4293 if (!param || pid < 0)
4294 return -EINVAL;
4295 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4296 return -EFAULT;
4297
4298 rcu_read_lock();
4299 retval = -ESRCH;
4300 p = find_process_by_pid(pid);
4301 if (p != NULL)
4302 retval = sched_setscheduler(p, policy, &lparam);
4303 rcu_read_unlock();
4304
4305 return retval;
4306 }
4307
4308 /**
4309 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4310 * @pid: the pid in question.
4311 * @policy: new policy.
4312 * @param: structure containing the new RT priority.
4313 */
4314 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4315 struct sched_param __user *param)
4316 {
4317 /* negative values for policy are not valid */
4318 if (policy < 0)
4319 return -EINVAL;
4320
4321 return do_sched_setscheduler(pid, policy, param);
4322 }
4323
4324 /**
4325 * sys_sched_setparam - set/change the RT priority of a thread
4326 * @pid: the pid in question.
4327 * @param: structure containing the new RT priority.
4328 */
4329 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4330 {
4331 return do_sched_setscheduler(pid, -1, param);
4332 }
4333
4334 /**
4335 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4336 * @pid: the pid in question.
4337 */
4338 asmlinkage long sys_sched_getscheduler(pid_t pid)
4339 {
4340 struct task_struct *p;
4341 int retval = -EINVAL;
4342
4343 if (pid < 0)
4344 goto out_nounlock;
4345
4346 retval = -ESRCH;
4347 read_lock(&tasklist_lock);
4348 p = find_process_by_pid(pid);
4349 if (p) {
4350 retval = security_task_getscheduler(p);
4351 if (!retval)
4352 retval = p->policy;
4353 }
4354 read_unlock(&tasklist_lock);
4355
4356 out_nounlock:
4357 return retval;
4358 }
4359
4360 /**
4361 * sys_sched_getscheduler - get the RT priority of a thread
4362 * @pid: the pid in question.
4363 * @param: structure containing the RT priority.
4364 */
4365 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4366 {
4367 struct sched_param lp;
4368 struct task_struct *p;
4369 int retval = -EINVAL;
4370
4371 if (!param || pid < 0)
4372 goto out_nounlock;
4373
4374 read_lock(&tasklist_lock);
4375 p = find_process_by_pid(pid);
4376 retval = -ESRCH;
4377 if (!p)
4378 goto out_unlock;
4379
4380 retval = security_task_getscheduler(p);
4381 if (retval)
4382 goto out_unlock;
4383
4384 lp.sched_priority = p->rt_priority;
4385 read_unlock(&tasklist_lock);
4386
4387 /*
4388 * This one might sleep, we cannot do it with a spinlock held ...
4389 */
4390 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4391
4392 out_nounlock:
4393 return retval;
4394
4395 out_unlock:
4396 read_unlock(&tasklist_lock);
4397 return retval;
4398 }
4399
4400 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4401 {
4402 cpumask_t cpus_allowed;
4403 struct task_struct *p;
4404 int retval;
4405
4406 mutex_lock(&sched_hotcpu_mutex);
4407 read_lock(&tasklist_lock);
4408
4409 p = find_process_by_pid(pid);
4410 if (!p) {
4411 read_unlock(&tasklist_lock);
4412 mutex_unlock(&sched_hotcpu_mutex);
4413 return -ESRCH;
4414 }
4415
4416 /*
4417 * It is not safe to call set_cpus_allowed with the
4418 * tasklist_lock held. We will bump the task_struct's
4419 * usage count and then drop tasklist_lock.
4420 */
4421 get_task_struct(p);
4422 read_unlock(&tasklist_lock);
4423
4424 retval = -EPERM;
4425 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4426 !capable(CAP_SYS_NICE))
4427 goto out_unlock;
4428
4429 retval = security_task_setscheduler(p, 0, NULL);
4430 if (retval)
4431 goto out_unlock;
4432
4433 cpus_allowed = cpuset_cpus_allowed(p);
4434 cpus_and(new_mask, new_mask, cpus_allowed);
4435 retval = set_cpus_allowed(p, new_mask);
4436
4437 out_unlock:
4438 put_task_struct(p);
4439 mutex_unlock(&sched_hotcpu_mutex);
4440 return retval;
4441 }
4442
4443 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4444 cpumask_t *new_mask)
4445 {
4446 if (len < sizeof(cpumask_t)) {
4447 memset(new_mask, 0, sizeof(cpumask_t));
4448 } else if (len > sizeof(cpumask_t)) {
4449 len = sizeof(cpumask_t);
4450 }
4451 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4452 }
4453
4454 /**
4455 * sys_sched_setaffinity - set the cpu affinity of a process
4456 * @pid: pid of the process
4457 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4458 * @user_mask_ptr: user-space pointer to the new cpu mask
4459 */
4460 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4461 unsigned long __user *user_mask_ptr)
4462 {
4463 cpumask_t new_mask;
4464 int retval;
4465
4466 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4467 if (retval)
4468 return retval;
4469
4470 return sched_setaffinity(pid, new_mask);
4471 }
4472
4473 /*
4474 * Represents all cpu's present in the system
4475 * In systems capable of hotplug, this map could dynamically grow
4476 * as new cpu's are detected in the system via any platform specific
4477 * method, such as ACPI for e.g.
4478 */
4479
4480 cpumask_t cpu_present_map __read_mostly;
4481 EXPORT_SYMBOL(cpu_present_map);
4482
4483 #ifndef CONFIG_SMP
4484 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4485 EXPORT_SYMBOL(cpu_online_map);
4486
4487 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4488 EXPORT_SYMBOL(cpu_possible_map);
4489 #endif
4490
4491 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4492 {
4493 struct task_struct *p;
4494 int retval;
4495
4496 mutex_lock(&sched_hotcpu_mutex);
4497 read_lock(&tasklist_lock);
4498
4499 retval = -ESRCH;
4500 p = find_process_by_pid(pid);
4501 if (!p)
4502 goto out_unlock;
4503
4504 retval = security_task_getscheduler(p);
4505 if (retval)
4506 goto out_unlock;
4507
4508 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4509
4510 out_unlock:
4511 read_unlock(&tasklist_lock);
4512 mutex_unlock(&sched_hotcpu_mutex);
4513
4514 return retval;
4515 }
4516
4517 /**
4518 * sys_sched_getaffinity - get the cpu affinity of a process
4519 * @pid: pid of the process
4520 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4521 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4522 */
4523 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4524 unsigned long __user *user_mask_ptr)
4525 {
4526 int ret;
4527 cpumask_t mask;
4528
4529 if (len < sizeof(cpumask_t))
4530 return -EINVAL;
4531
4532 ret = sched_getaffinity(pid, &mask);
4533 if (ret < 0)
4534 return ret;
4535
4536 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4537 return -EFAULT;
4538
4539 return sizeof(cpumask_t);
4540 }
4541
4542 /**
4543 * sys_sched_yield - yield the current processor to other threads.
4544 *
4545 * This function yields the current CPU to other tasks. If there are no
4546 * other threads running on this CPU then this function will return.
4547 */
4548 asmlinkage long sys_sched_yield(void)
4549 {
4550 struct rq *rq = this_rq_lock();
4551
4552 schedstat_inc(rq, yld_cnt);
4553 if (unlikely(rq->nr_running == 1))
4554 schedstat_inc(rq, yld_act_empty);
4555 else
4556 current->sched_class->yield_task(rq, current);
4557
4558 /*
4559 * Since we are going to call schedule() anyway, there's
4560 * no need to preempt or enable interrupts:
4561 */
4562 __release(rq->lock);
4563 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4564 _raw_spin_unlock(&rq->lock);
4565 preempt_enable_no_resched();
4566
4567 schedule();
4568
4569 return 0;
4570 }
4571
4572 static void __cond_resched(void)
4573 {
4574 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4575 __might_sleep(__FILE__, __LINE__);
4576 #endif
4577 /*
4578 * The BKS might be reacquired before we have dropped
4579 * PREEMPT_ACTIVE, which could trigger a second
4580 * cond_resched() call.
4581 */
4582 do {
4583 add_preempt_count(PREEMPT_ACTIVE);
4584 schedule();
4585 sub_preempt_count(PREEMPT_ACTIVE);
4586 } while (need_resched());
4587 }
4588
4589 int __sched cond_resched(void)
4590 {
4591 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4592 system_state == SYSTEM_RUNNING) {
4593 __cond_resched();
4594 return 1;
4595 }
4596 return 0;
4597 }
4598 EXPORT_SYMBOL(cond_resched);
4599
4600 /*
4601 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4602 * call schedule, and on return reacquire the lock.
4603 *
4604 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4605 * operations here to prevent schedule() from being called twice (once via
4606 * spin_unlock(), once by hand).
4607 */
4608 int cond_resched_lock(spinlock_t *lock)
4609 {
4610 int ret = 0;
4611
4612 if (need_lockbreak(lock)) {
4613 spin_unlock(lock);
4614 cpu_relax();
4615 ret = 1;
4616 spin_lock(lock);
4617 }
4618 if (need_resched() && system_state == SYSTEM_RUNNING) {
4619 spin_release(&lock->dep_map, 1, _THIS_IP_);
4620 _raw_spin_unlock(lock);
4621 preempt_enable_no_resched();
4622 __cond_resched();
4623 ret = 1;
4624 spin_lock(lock);
4625 }
4626 return ret;
4627 }
4628 EXPORT_SYMBOL(cond_resched_lock);
4629
4630 int __sched cond_resched_softirq(void)
4631 {
4632 BUG_ON(!in_softirq());
4633
4634 if (need_resched() && system_state == SYSTEM_RUNNING) {
4635 local_bh_enable();
4636 __cond_resched();
4637 local_bh_disable();
4638 return 1;
4639 }
4640 return 0;
4641 }
4642 EXPORT_SYMBOL(cond_resched_softirq);
4643
4644 /**
4645 * yield - yield the current processor to other threads.
4646 *
4647 * This is a shortcut for kernel-space yielding - it marks the
4648 * thread runnable and calls sys_sched_yield().
4649 */
4650 void __sched yield(void)
4651 {
4652 set_current_state(TASK_RUNNING);
4653 sys_sched_yield();
4654 }
4655 EXPORT_SYMBOL(yield);
4656
4657 /*
4658 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4659 * that process accounting knows that this is a task in IO wait state.
4660 *
4661 * But don't do that if it is a deliberate, throttling IO wait (this task
4662 * has set its backing_dev_info: the queue against which it should throttle)
4663 */
4664 void __sched io_schedule(void)
4665 {
4666 struct rq *rq = &__raw_get_cpu_var(runqueues);
4667
4668 delayacct_blkio_start();
4669 atomic_inc(&rq->nr_iowait);
4670 schedule();
4671 atomic_dec(&rq->nr_iowait);
4672 delayacct_blkio_end();
4673 }
4674 EXPORT_SYMBOL(io_schedule);
4675
4676 long __sched io_schedule_timeout(long timeout)
4677 {
4678 struct rq *rq = &__raw_get_cpu_var(runqueues);
4679 long ret;
4680
4681 delayacct_blkio_start();
4682 atomic_inc(&rq->nr_iowait);
4683 ret = schedule_timeout(timeout);
4684 atomic_dec(&rq->nr_iowait);
4685 delayacct_blkio_end();
4686 return ret;
4687 }
4688
4689 /**
4690 * sys_sched_get_priority_max - return maximum RT priority.
4691 * @policy: scheduling class.
4692 *
4693 * this syscall returns the maximum rt_priority that can be used
4694 * by a given scheduling class.
4695 */
4696 asmlinkage long sys_sched_get_priority_max(int policy)
4697 {
4698 int ret = -EINVAL;
4699
4700 switch (policy) {
4701 case SCHED_FIFO:
4702 case SCHED_RR:
4703 ret = MAX_USER_RT_PRIO-1;
4704 break;
4705 case SCHED_NORMAL:
4706 case SCHED_BATCH:
4707 case SCHED_IDLE:
4708 ret = 0;
4709 break;
4710 }
4711 return ret;
4712 }
4713
4714 /**
4715 * sys_sched_get_priority_min - return minimum RT priority.
4716 * @policy: scheduling class.
4717 *
4718 * this syscall returns the minimum rt_priority that can be used
4719 * by a given scheduling class.
4720 */
4721 asmlinkage long sys_sched_get_priority_min(int policy)
4722 {
4723 int ret = -EINVAL;
4724
4725 switch (policy) {
4726 case SCHED_FIFO:
4727 case SCHED_RR:
4728 ret = 1;
4729 break;
4730 case SCHED_NORMAL:
4731 case SCHED_BATCH:
4732 case SCHED_IDLE:
4733 ret = 0;
4734 }
4735 return ret;
4736 }
4737
4738 /**
4739 * sys_sched_rr_get_interval - return the default timeslice of a process.
4740 * @pid: pid of the process.
4741 * @interval: userspace pointer to the timeslice value.
4742 *
4743 * this syscall writes the default timeslice value of a given process
4744 * into the user-space timespec buffer. A value of '0' means infinity.
4745 */
4746 asmlinkage
4747 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4748 {
4749 struct task_struct *p;
4750 int retval = -EINVAL;
4751 struct timespec t;
4752
4753 if (pid < 0)
4754 goto out_nounlock;
4755
4756 retval = -ESRCH;
4757 read_lock(&tasklist_lock);
4758 p = find_process_by_pid(pid);
4759 if (!p)
4760 goto out_unlock;
4761
4762 retval = security_task_getscheduler(p);
4763 if (retval)
4764 goto out_unlock;
4765
4766 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4767 0 : static_prio_timeslice(p->static_prio), &t);
4768 read_unlock(&tasklist_lock);
4769 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4770 out_nounlock:
4771 return retval;
4772 out_unlock:
4773 read_unlock(&tasklist_lock);
4774 return retval;
4775 }
4776
4777 static const char stat_nam[] = "RSDTtZX";
4778
4779 static void show_task(struct task_struct *p)
4780 {
4781 unsigned long free = 0;
4782 unsigned state;
4783
4784 state = p->state ? __ffs(p->state) + 1 : 0;
4785 printk("%-13.13s %c", p->comm,
4786 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4787 #if BITS_PER_LONG == 32
4788 if (state == TASK_RUNNING)
4789 printk(" running ");
4790 else
4791 printk(" %08lx ", thread_saved_pc(p));
4792 #else
4793 if (state == TASK_RUNNING)
4794 printk(" running task ");
4795 else
4796 printk(" %016lx ", thread_saved_pc(p));
4797 #endif
4798 #ifdef CONFIG_DEBUG_STACK_USAGE
4799 {
4800 unsigned long *n = end_of_stack(p);
4801 while (!*n)
4802 n++;
4803 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4804 }
4805 #endif
4806 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4807
4808 if (state != TASK_RUNNING)
4809 show_stack(p, NULL);
4810 }
4811
4812 void show_state_filter(unsigned long state_filter)
4813 {
4814 struct task_struct *g, *p;
4815
4816 #if BITS_PER_LONG == 32
4817 printk(KERN_INFO
4818 " task PC stack pid father\n");
4819 #else
4820 printk(KERN_INFO
4821 " task PC stack pid father\n");
4822 #endif
4823 read_lock(&tasklist_lock);
4824 do_each_thread(g, p) {
4825 /*
4826 * reset the NMI-timeout, listing all files on a slow
4827 * console might take alot of time:
4828 */
4829 touch_nmi_watchdog();
4830 if (!state_filter || (p->state & state_filter))
4831 show_task(p);
4832 } while_each_thread(g, p);
4833
4834 touch_all_softlockup_watchdogs();
4835
4836 #ifdef CONFIG_SCHED_DEBUG
4837 sysrq_sched_debug_show();
4838 #endif
4839 read_unlock(&tasklist_lock);
4840 /*
4841 * Only show locks if all tasks are dumped:
4842 */
4843 if (state_filter == -1)
4844 debug_show_all_locks();
4845 }
4846
4847 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4848 {
4849 idle->sched_class = &idle_sched_class;
4850 }
4851
4852 /**
4853 * init_idle - set up an idle thread for a given CPU
4854 * @idle: task in question
4855 * @cpu: cpu the idle task belongs to
4856 *
4857 * NOTE: this function does not set the idle thread's NEED_RESCHED
4858 * flag, to make booting more robust.
4859 */
4860 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4861 {
4862 struct rq *rq = cpu_rq(cpu);
4863 unsigned long flags;
4864
4865 __sched_fork(idle);
4866 idle->se.exec_start = sched_clock();
4867
4868 idle->prio = idle->normal_prio = MAX_PRIO;
4869 idle->cpus_allowed = cpumask_of_cpu(cpu);
4870 __set_task_cpu(idle, cpu);
4871
4872 spin_lock_irqsave(&rq->lock, flags);
4873 rq->curr = rq->idle = idle;
4874 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4875 idle->oncpu = 1;
4876 #endif
4877 spin_unlock_irqrestore(&rq->lock, flags);
4878
4879 /* Set the preempt count _outside_ the spinlocks! */
4880 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4881 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4882 #else
4883 task_thread_info(idle)->preempt_count = 0;
4884 #endif
4885 /*
4886 * The idle tasks have their own, simple scheduling class:
4887 */
4888 idle->sched_class = &idle_sched_class;
4889 }
4890
4891 /*
4892 * In a system that switches off the HZ timer nohz_cpu_mask
4893 * indicates which cpus entered this state. This is used
4894 * in the rcu update to wait only for active cpus. For system
4895 * which do not switch off the HZ timer nohz_cpu_mask should
4896 * always be CPU_MASK_NONE.
4897 */
4898 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4899
4900 /*
4901 * Increase the granularity value when there are more CPUs,
4902 * because with more CPUs the 'effective latency' as visible
4903 * to users decreases. But the relationship is not linear,
4904 * so pick a second-best guess by going with the log2 of the
4905 * number of CPUs.
4906 *
4907 * This idea comes from the SD scheduler of Con Kolivas:
4908 */
4909 static inline void sched_init_granularity(void)
4910 {
4911 unsigned int factor = 1 + ilog2(num_online_cpus());
4912 const unsigned long limit = 100000000;
4913
4914 sysctl_sched_min_granularity *= factor;
4915 if (sysctl_sched_min_granularity > limit)
4916 sysctl_sched_min_granularity = limit;
4917
4918 sysctl_sched_latency *= factor;
4919 if (sysctl_sched_latency > limit)
4920 sysctl_sched_latency = limit;
4921
4922 sysctl_sched_runtime_limit = sysctl_sched_latency;
4923 sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
4924 }
4925
4926 #ifdef CONFIG_SMP
4927 /*
4928 * This is how migration works:
4929 *
4930 * 1) we queue a struct migration_req structure in the source CPU's
4931 * runqueue and wake up that CPU's migration thread.
4932 * 2) we down() the locked semaphore => thread blocks.
4933 * 3) migration thread wakes up (implicitly it forces the migrated
4934 * thread off the CPU)
4935 * 4) it gets the migration request and checks whether the migrated
4936 * task is still in the wrong runqueue.
4937 * 5) if it's in the wrong runqueue then the migration thread removes
4938 * it and puts it into the right queue.
4939 * 6) migration thread up()s the semaphore.
4940 * 7) we wake up and the migration is done.
4941 */
4942
4943 /*
4944 * Change a given task's CPU affinity. Migrate the thread to a
4945 * proper CPU and schedule it away if the CPU it's executing on
4946 * is removed from the allowed bitmask.
4947 *
4948 * NOTE: the caller must have a valid reference to the task, the
4949 * task must not exit() & deallocate itself prematurely. The
4950 * call is not atomic; no spinlocks may be held.
4951 */
4952 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4953 {
4954 struct migration_req req;
4955 unsigned long flags;
4956 struct rq *rq;
4957 int ret = 0;
4958
4959 rq = task_rq_lock(p, &flags);
4960 if (!cpus_intersects(new_mask, cpu_online_map)) {
4961 ret = -EINVAL;
4962 goto out;
4963 }
4964
4965 p->cpus_allowed = new_mask;
4966 /* Can the task run on the task's current CPU? If so, we're done */
4967 if (cpu_isset(task_cpu(p), new_mask))
4968 goto out;
4969
4970 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4971 /* Need help from migration thread: drop lock and wait. */
4972 task_rq_unlock(rq, &flags);
4973 wake_up_process(rq->migration_thread);
4974 wait_for_completion(&req.done);
4975 tlb_migrate_finish(p->mm);
4976 return 0;
4977 }
4978 out:
4979 task_rq_unlock(rq, &flags);
4980
4981 return ret;
4982 }
4983 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4984
4985 /*
4986 * Move (not current) task off this cpu, onto dest cpu. We're doing
4987 * this because either it can't run here any more (set_cpus_allowed()
4988 * away from this CPU, or CPU going down), or because we're
4989 * attempting to rebalance this task on exec (sched_exec).
4990 *
4991 * So we race with normal scheduler movements, but that's OK, as long
4992 * as the task is no longer on this CPU.
4993 *
4994 * Returns non-zero if task was successfully migrated.
4995 */
4996 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4997 {
4998 struct rq *rq_dest, *rq_src;
4999 int ret = 0, on_rq;
5000
5001 if (unlikely(cpu_is_offline(dest_cpu)))
5002 return ret;
5003
5004 rq_src = cpu_rq(src_cpu);
5005 rq_dest = cpu_rq(dest_cpu);
5006
5007 double_rq_lock(rq_src, rq_dest);
5008 /* Already moved. */
5009 if (task_cpu(p) != src_cpu)
5010 goto out;
5011 /* Affinity changed (again). */
5012 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5013 goto out;
5014
5015 on_rq = p->se.on_rq;
5016 if (on_rq)
5017 deactivate_task(rq_src, p, 0);
5018
5019 set_task_cpu(p, dest_cpu);
5020 if (on_rq) {
5021 activate_task(rq_dest, p, 0);
5022 check_preempt_curr(rq_dest, p);
5023 }
5024 ret = 1;
5025 out:
5026 double_rq_unlock(rq_src, rq_dest);
5027 return ret;
5028 }
5029
5030 /*
5031 * migration_thread - this is a highprio system thread that performs
5032 * thread migration by bumping thread off CPU then 'pushing' onto
5033 * another runqueue.
5034 */
5035 static int migration_thread(void *data)
5036 {
5037 int cpu = (long)data;
5038 struct rq *rq;
5039
5040 rq = cpu_rq(cpu);
5041 BUG_ON(rq->migration_thread != current);
5042
5043 set_current_state(TASK_INTERRUPTIBLE);
5044 while (!kthread_should_stop()) {
5045 struct migration_req *req;
5046 struct list_head *head;
5047
5048 spin_lock_irq(&rq->lock);
5049
5050 if (cpu_is_offline(cpu)) {
5051 spin_unlock_irq(&rq->lock);
5052 goto wait_to_die;
5053 }
5054
5055 if (rq->active_balance) {
5056 active_load_balance(rq, cpu);
5057 rq->active_balance = 0;
5058 }
5059
5060 head = &rq->migration_queue;
5061
5062 if (list_empty(head)) {
5063 spin_unlock_irq(&rq->lock);
5064 schedule();
5065 set_current_state(TASK_INTERRUPTIBLE);
5066 continue;
5067 }
5068 req = list_entry(head->next, struct migration_req, list);
5069 list_del_init(head->next);
5070
5071 spin_unlock(&rq->lock);
5072 __migrate_task(req->task, cpu, req->dest_cpu);
5073 local_irq_enable();
5074
5075 complete(&req->done);
5076 }
5077 __set_current_state(TASK_RUNNING);
5078 return 0;
5079
5080 wait_to_die:
5081 /* Wait for kthread_stop */
5082 set_current_state(TASK_INTERRUPTIBLE);
5083 while (!kthread_should_stop()) {
5084 schedule();
5085 set_current_state(TASK_INTERRUPTIBLE);
5086 }
5087 __set_current_state(TASK_RUNNING);
5088 return 0;
5089 }
5090
5091 #ifdef CONFIG_HOTPLUG_CPU
5092 /*
5093 * Figure out where task on dead CPU should go, use force if neccessary.
5094 * NOTE: interrupts should be disabled by the caller
5095 */
5096 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5097 {
5098 unsigned long flags;
5099 cpumask_t mask;
5100 struct rq *rq;
5101 int dest_cpu;
5102
5103 restart:
5104 /* On same node? */
5105 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5106 cpus_and(mask, mask, p->cpus_allowed);
5107 dest_cpu = any_online_cpu(mask);
5108
5109 /* On any allowed CPU? */
5110 if (dest_cpu == NR_CPUS)
5111 dest_cpu = any_online_cpu(p->cpus_allowed);
5112
5113 /* No more Mr. Nice Guy. */
5114 if (dest_cpu == NR_CPUS) {
5115 rq = task_rq_lock(p, &flags);
5116 cpus_setall(p->cpus_allowed);
5117 dest_cpu = any_online_cpu(p->cpus_allowed);
5118 task_rq_unlock(rq, &flags);
5119
5120 /*
5121 * Don't tell them about moving exiting tasks or
5122 * kernel threads (both mm NULL), since they never
5123 * leave kernel.
5124 */
5125 if (p->mm && printk_ratelimit())
5126 printk(KERN_INFO "process %d (%s) no "
5127 "longer affine to cpu%d\n",
5128 p->pid, p->comm, dead_cpu);
5129 }
5130 if (!__migrate_task(p, dead_cpu, dest_cpu))
5131 goto restart;
5132 }
5133
5134 /*
5135 * While a dead CPU has no uninterruptible tasks queued at this point,
5136 * it might still have a nonzero ->nr_uninterruptible counter, because
5137 * for performance reasons the counter is not stricly tracking tasks to
5138 * their home CPUs. So we just add the counter to another CPU's counter,
5139 * to keep the global sum constant after CPU-down:
5140 */
5141 static void migrate_nr_uninterruptible(struct rq *rq_src)
5142 {
5143 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5144 unsigned long flags;
5145
5146 local_irq_save(flags);
5147 double_rq_lock(rq_src, rq_dest);
5148 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5149 rq_src->nr_uninterruptible = 0;
5150 double_rq_unlock(rq_src, rq_dest);
5151 local_irq_restore(flags);
5152 }
5153
5154 /* Run through task list and migrate tasks from the dead cpu. */
5155 static void migrate_live_tasks(int src_cpu)
5156 {
5157 struct task_struct *p, *t;
5158
5159 write_lock_irq(&tasklist_lock);
5160
5161 do_each_thread(t, p) {
5162 if (p == current)
5163 continue;
5164
5165 if (task_cpu(p) == src_cpu)
5166 move_task_off_dead_cpu(src_cpu, p);
5167 } while_each_thread(t, p);
5168
5169 write_unlock_irq(&tasklist_lock);
5170 }
5171
5172 /*
5173 * Schedules idle task to be the next runnable task on current CPU.
5174 * It does so by boosting its priority to highest possible and adding it to
5175 * the _front_ of the runqueue. Used by CPU offline code.
5176 */
5177 void sched_idle_next(void)
5178 {
5179 int this_cpu = smp_processor_id();
5180 struct rq *rq = cpu_rq(this_cpu);
5181 struct task_struct *p = rq->idle;
5182 unsigned long flags;
5183
5184 /* cpu has to be offline */
5185 BUG_ON(cpu_online(this_cpu));
5186
5187 /*
5188 * Strictly not necessary since rest of the CPUs are stopped by now
5189 * and interrupts disabled on the current cpu.
5190 */
5191 spin_lock_irqsave(&rq->lock, flags);
5192
5193 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5194
5195 /* Add idle task to the _front_ of its priority queue: */
5196 activate_idle_task(p, rq);
5197
5198 spin_unlock_irqrestore(&rq->lock, flags);
5199 }
5200
5201 /*
5202 * Ensures that the idle task is using init_mm right before its cpu goes
5203 * offline.
5204 */
5205 void idle_task_exit(void)
5206 {
5207 struct mm_struct *mm = current->active_mm;
5208
5209 BUG_ON(cpu_online(smp_processor_id()));
5210
5211 if (mm != &init_mm)
5212 switch_mm(mm, &init_mm, current);
5213 mmdrop(mm);
5214 }
5215
5216 /* called under rq->lock with disabled interrupts */
5217 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5218 {
5219 struct rq *rq = cpu_rq(dead_cpu);
5220
5221 /* Must be exiting, otherwise would be on tasklist. */
5222 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5223
5224 /* Cannot have done final schedule yet: would have vanished. */
5225 BUG_ON(p->state == TASK_DEAD);
5226
5227 get_task_struct(p);
5228
5229 /*
5230 * Drop lock around migration; if someone else moves it,
5231 * that's OK. No task can be added to this CPU, so iteration is
5232 * fine.
5233 * NOTE: interrupts should be left disabled --dev@
5234 */
5235 spin_unlock(&rq->lock);
5236 move_task_off_dead_cpu(dead_cpu, p);
5237 spin_lock(&rq->lock);
5238
5239 put_task_struct(p);
5240 }
5241
5242 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5243 static void migrate_dead_tasks(unsigned int dead_cpu)
5244 {
5245 struct rq *rq = cpu_rq(dead_cpu);
5246 struct task_struct *next;
5247
5248 for ( ; ; ) {
5249 if (!rq->nr_running)
5250 break;
5251 update_rq_clock(rq);
5252 next = pick_next_task(rq, rq->curr);
5253 if (!next)
5254 break;
5255 migrate_dead(dead_cpu, next);
5256
5257 }
5258 }
5259 #endif /* CONFIG_HOTPLUG_CPU */
5260
5261 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5262
5263 static struct ctl_table sd_ctl_dir[] = {
5264 {
5265 .procname = "sched_domain",
5266 .mode = 0555,
5267 },
5268 {0,},
5269 };
5270
5271 static struct ctl_table sd_ctl_root[] = {
5272 {
5273 .ctl_name = CTL_KERN,
5274 .procname = "kernel",
5275 .mode = 0555,
5276 .child = sd_ctl_dir,
5277 },
5278 {0,},
5279 };
5280
5281 static struct ctl_table *sd_alloc_ctl_entry(int n)
5282 {
5283 struct ctl_table *entry =
5284 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5285
5286 BUG_ON(!entry);
5287 memset(entry, 0, n * sizeof(struct ctl_table));
5288
5289 return entry;
5290 }
5291
5292 static void
5293 set_table_entry(struct ctl_table *entry,
5294 const char *procname, void *data, int maxlen,
5295 mode_t mode, proc_handler *proc_handler)
5296 {
5297 entry->procname = procname;
5298 entry->data = data;
5299 entry->maxlen = maxlen;
5300 entry->mode = mode;
5301 entry->proc_handler = proc_handler;
5302 }
5303
5304 static struct ctl_table *
5305 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5306 {
5307 struct ctl_table *table = sd_alloc_ctl_entry(14);
5308
5309 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5310 sizeof(long), 0644, proc_doulongvec_minmax);
5311 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5312 sizeof(long), 0644, proc_doulongvec_minmax);
5313 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5314 sizeof(int), 0644, proc_dointvec_minmax);
5315 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5316 sizeof(int), 0644, proc_dointvec_minmax);
5317 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5318 sizeof(int), 0644, proc_dointvec_minmax);
5319 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5320 sizeof(int), 0644, proc_dointvec_minmax);
5321 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5322 sizeof(int), 0644, proc_dointvec_minmax);
5323 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5324 sizeof(int), 0644, proc_dointvec_minmax);
5325 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5326 sizeof(int), 0644, proc_dointvec_minmax);
5327 set_table_entry(&table[10], "cache_nice_tries",
5328 &sd->cache_nice_tries,
5329 sizeof(int), 0644, proc_dointvec_minmax);
5330 set_table_entry(&table[12], "flags", &sd->flags,
5331 sizeof(int), 0644, proc_dointvec_minmax);
5332
5333 return table;
5334 }
5335
5336 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5337 {
5338 struct ctl_table *entry, *table;
5339 struct sched_domain *sd;
5340 int domain_num = 0, i;
5341 char buf[32];
5342
5343 for_each_domain(cpu, sd)
5344 domain_num++;
5345 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5346
5347 i = 0;
5348 for_each_domain(cpu, sd) {
5349 snprintf(buf, 32, "domain%d", i);
5350 entry->procname = kstrdup(buf, GFP_KERNEL);
5351 entry->mode = 0555;
5352 entry->child = sd_alloc_ctl_domain_table(sd);
5353 entry++;
5354 i++;
5355 }
5356 return table;
5357 }
5358
5359 static struct ctl_table_header *sd_sysctl_header;
5360 static void init_sched_domain_sysctl(void)
5361 {
5362 int i, cpu_num = num_online_cpus();
5363 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5364 char buf[32];
5365
5366 sd_ctl_dir[0].child = entry;
5367
5368 for (i = 0; i < cpu_num; i++, entry++) {
5369 snprintf(buf, 32, "cpu%d", i);
5370 entry->procname = kstrdup(buf, GFP_KERNEL);
5371 entry->mode = 0555;
5372 entry->child = sd_alloc_ctl_cpu_table(i);
5373 }
5374 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5375 }
5376 #else
5377 static void init_sched_domain_sysctl(void)
5378 {
5379 }
5380 #endif
5381
5382 /*
5383 * migration_call - callback that gets triggered when a CPU is added.
5384 * Here we can start up the necessary migration thread for the new CPU.
5385 */
5386 static int __cpuinit
5387 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5388 {
5389 struct task_struct *p;
5390 int cpu = (long)hcpu;
5391 unsigned long flags;
5392 struct rq *rq;
5393
5394 switch (action) {
5395 case CPU_LOCK_ACQUIRE:
5396 mutex_lock(&sched_hotcpu_mutex);
5397 break;
5398
5399 case CPU_UP_PREPARE:
5400 case CPU_UP_PREPARE_FROZEN:
5401 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5402 if (IS_ERR(p))
5403 return NOTIFY_BAD;
5404 kthread_bind(p, cpu);
5405 /* Must be high prio: stop_machine expects to yield to it. */
5406 rq = task_rq_lock(p, &flags);
5407 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5408 task_rq_unlock(rq, &flags);
5409 cpu_rq(cpu)->migration_thread = p;
5410 break;
5411
5412 case CPU_ONLINE:
5413 case CPU_ONLINE_FROZEN:
5414 /* Strictly unneccessary, as first user will wake it. */
5415 wake_up_process(cpu_rq(cpu)->migration_thread);
5416 break;
5417
5418 #ifdef CONFIG_HOTPLUG_CPU
5419 case CPU_UP_CANCELED:
5420 case CPU_UP_CANCELED_FROZEN:
5421 if (!cpu_rq(cpu)->migration_thread)
5422 break;
5423 /* Unbind it from offline cpu so it can run. Fall thru. */
5424 kthread_bind(cpu_rq(cpu)->migration_thread,
5425 any_online_cpu(cpu_online_map));
5426 kthread_stop(cpu_rq(cpu)->migration_thread);
5427 cpu_rq(cpu)->migration_thread = NULL;
5428 break;
5429
5430 case CPU_DEAD:
5431 case CPU_DEAD_FROZEN:
5432 migrate_live_tasks(cpu);
5433 rq = cpu_rq(cpu);
5434 kthread_stop(rq->migration_thread);
5435 rq->migration_thread = NULL;
5436 /* Idle task back to normal (off runqueue, low prio) */
5437 rq = task_rq_lock(rq->idle, &flags);
5438 update_rq_clock(rq);
5439 deactivate_task(rq, rq->idle, 0);
5440 rq->idle->static_prio = MAX_PRIO;
5441 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5442 rq->idle->sched_class = &idle_sched_class;
5443 migrate_dead_tasks(cpu);
5444 task_rq_unlock(rq, &flags);
5445 migrate_nr_uninterruptible(rq);
5446 BUG_ON(rq->nr_running != 0);
5447
5448 /* No need to migrate the tasks: it was best-effort if
5449 * they didn't take sched_hotcpu_mutex. Just wake up
5450 * the requestors. */
5451 spin_lock_irq(&rq->lock);
5452 while (!list_empty(&rq->migration_queue)) {
5453 struct migration_req *req;
5454
5455 req = list_entry(rq->migration_queue.next,
5456 struct migration_req, list);
5457 list_del_init(&req->list);
5458 complete(&req->done);
5459 }
5460 spin_unlock_irq(&rq->lock);
5461 break;
5462 #endif
5463 case CPU_LOCK_RELEASE:
5464 mutex_unlock(&sched_hotcpu_mutex);
5465 break;
5466 }
5467 return NOTIFY_OK;
5468 }
5469
5470 /* Register at highest priority so that task migration (migrate_all_tasks)
5471 * happens before everything else.
5472 */
5473 static struct notifier_block __cpuinitdata migration_notifier = {
5474 .notifier_call = migration_call,
5475 .priority = 10
5476 };
5477
5478 int __init migration_init(void)
5479 {
5480 void *cpu = (void *)(long)smp_processor_id();
5481 int err;
5482
5483 /* Start one for the boot CPU: */
5484 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5485 BUG_ON(err == NOTIFY_BAD);
5486 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5487 register_cpu_notifier(&migration_notifier);
5488
5489 return 0;
5490 }
5491 #endif
5492
5493 #ifdef CONFIG_SMP
5494
5495 /* Number of possible processor ids */
5496 int nr_cpu_ids __read_mostly = NR_CPUS;
5497 EXPORT_SYMBOL(nr_cpu_ids);
5498
5499 #undef SCHED_DOMAIN_DEBUG
5500 #ifdef SCHED_DOMAIN_DEBUG
5501 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5502 {
5503 int level = 0;
5504
5505 if (!sd) {
5506 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5507 return;
5508 }
5509
5510 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5511
5512 do {
5513 int i;
5514 char str[NR_CPUS];
5515 struct sched_group *group = sd->groups;
5516 cpumask_t groupmask;
5517
5518 cpumask_scnprintf(str, NR_CPUS, sd->span);
5519 cpus_clear(groupmask);
5520
5521 printk(KERN_DEBUG);
5522 for (i = 0; i < level + 1; i++)
5523 printk(" ");
5524 printk("domain %d: ", level);
5525
5526 if (!(sd->flags & SD_LOAD_BALANCE)) {
5527 printk("does not load-balance\n");
5528 if (sd->parent)
5529 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5530 " has parent");
5531 break;
5532 }
5533
5534 printk("span %s\n", str);
5535
5536 if (!cpu_isset(cpu, sd->span))
5537 printk(KERN_ERR "ERROR: domain->span does not contain "
5538 "CPU%d\n", cpu);
5539 if (!cpu_isset(cpu, group->cpumask))
5540 printk(KERN_ERR "ERROR: domain->groups does not contain"
5541 " CPU%d\n", cpu);
5542
5543 printk(KERN_DEBUG);
5544 for (i = 0; i < level + 2; i++)
5545 printk(" ");
5546 printk("groups:");
5547 do {
5548 if (!group) {
5549 printk("\n");
5550 printk(KERN_ERR "ERROR: group is NULL\n");
5551 break;
5552 }
5553
5554 if (!group->__cpu_power) {
5555 printk("\n");
5556 printk(KERN_ERR "ERROR: domain->cpu_power not "
5557 "set\n");
5558 }
5559
5560 if (!cpus_weight(group->cpumask)) {
5561 printk("\n");
5562 printk(KERN_ERR "ERROR: empty group\n");
5563 }
5564
5565 if (cpus_intersects(groupmask, group->cpumask)) {
5566 printk("\n");
5567 printk(KERN_ERR "ERROR: repeated CPUs\n");
5568 }
5569
5570 cpus_or(groupmask, groupmask, group->cpumask);
5571
5572 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5573 printk(" %s", str);
5574
5575 group = group->next;
5576 } while (group != sd->groups);
5577 printk("\n");
5578
5579 if (!cpus_equal(sd->span, groupmask))
5580 printk(KERN_ERR "ERROR: groups don't span "
5581 "domain->span\n");
5582
5583 level++;
5584 sd = sd->parent;
5585 if (!sd)
5586 continue;
5587
5588 if (!cpus_subset(groupmask, sd->span))
5589 printk(KERN_ERR "ERROR: parent span is not a superset "
5590 "of domain->span\n");
5591
5592 } while (sd);
5593 }
5594 #else
5595 # define sched_domain_debug(sd, cpu) do { } while (0)
5596 #endif
5597
5598 static int sd_degenerate(struct sched_domain *sd)
5599 {
5600 if (cpus_weight(sd->span) == 1)
5601 return 1;
5602
5603 /* Following flags need at least 2 groups */
5604 if (sd->flags & (SD_LOAD_BALANCE |
5605 SD_BALANCE_NEWIDLE |
5606 SD_BALANCE_FORK |
5607 SD_BALANCE_EXEC |
5608 SD_SHARE_CPUPOWER |
5609 SD_SHARE_PKG_RESOURCES)) {
5610 if (sd->groups != sd->groups->next)
5611 return 0;
5612 }
5613
5614 /* Following flags don't use groups */
5615 if (sd->flags & (SD_WAKE_IDLE |
5616 SD_WAKE_AFFINE |
5617 SD_WAKE_BALANCE))
5618 return 0;
5619
5620 return 1;
5621 }
5622
5623 static int
5624 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5625 {
5626 unsigned long cflags = sd->flags, pflags = parent->flags;
5627
5628 if (sd_degenerate(parent))
5629 return 1;
5630
5631 if (!cpus_equal(sd->span, parent->span))
5632 return 0;
5633
5634 /* Does parent contain flags not in child? */
5635 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5636 if (cflags & SD_WAKE_AFFINE)
5637 pflags &= ~SD_WAKE_BALANCE;
5638 /* Flags needing groups don't count if only 1 group in parent */
5639 if (parent->groups == parent->groups->next) {
5640 pflags &= ~(SD_LOAD_BALANCE |
5641 SD_BALANCE_NEWIDLE |
5642 SD_BALANCE_FORK |
5643 SD_BALANCE_EXEC |
5644 SD_SHARE_CPUPOWER |
5645 SD_SHARE_PKG_RESOURCES);
5646 }
5647 if (~cflags & pflags)
5648 return 0;
5649
5650 return 1;
5651 }
5652
5653 /*
5654 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5655 * hold the hotplug lock.
5656 */
5657 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5658 {
5659 struct rq *rq = cpu_rq(cpu);
5660 struct sched_domain *tmp;
5661
5662 /* Remove the sched domains which do not contribute to scheduling. */
5663 for (tmp = sd; tmp; tmp = tmp->parent) {
5664 struct sched_domain *parent = tmp->parent;
5665 if (!parent)
5666 break;
5667 if (sd_parent_degenerate(tmp, parent)) {
5668 tmp->parent = parent->parent;
5669 if (parent->parent)
5670 parent->parent->child = tmp;
5671 }
5672 }
5673
5674 if (sd && sd_degenerate(sd)) {
5675 sd = sd->parent;
5676 if (sd)
5677 sd->child = NULL;
5678 }
5679
5680 sched_domain_debug(sd, cpu);
5681
5682 rcu_assign_pointer(rq->sd, sd);
5683 }
5684
5685 /* cpus with isolated domains */
5686 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5687
5688 /* Setup the mask of cpus configured for isolated domains */
5689 static int __init isolated_cpu_setup(char *str)
5690 {
5691 int ints[NR_CPUS], i;
5692
5693 str = get_options(str, ARRAY_SIZE(ints), ints);
5694 cpus_clear(cpu_isolated_map);
5695 for (i = 1; i <= ints[0]; i++)
5696 if (ints[i] < NR_CPUS)
5697 cpu_set(ints[i], cpu_isolated_map);
5698 return 1;
5699 }
5700
5701 __setup ("isolcpus=", isolated_cpu_setup);
5702
5703 /*
5704 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5705 * to a function which identifies what group(along with sched group) a CPU
5706 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5707 * (due to the fact that we keep track of groups covered with a cpumask_t).
5708 *
5709 * init_sched_build_groups will build a circular linked list of the groups
5710 * covered by the given span, and will set each group's ->cpumask correctly,
5711 * and ->cpu_power to 0.
5712 */
5713 static void
5714 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5715 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5716 struct sched_group **sg))
5717 {
5718 struct sched_group *first = NULL, *last = NULL;
5719 cpumask_t covered = CPU_MASK_NONE;
5720 int i;
5721
5722 for_each_cpu_mask(i, span) {
5723 struct sched_group *sg;
5724 int group = group_fn(i, cpu_map, &sg);
5725 int j;
5726
5727 if (cpu_isset(i, covered))
5728 continue;
5729
5730 sg->cpumask = CPU_MASK_NONE;
5731 sg->__cpu_power = 0;
5732
5733 for_each_cpu_mask(j, span) {
5734 if (group_fn(j, cpu_map, NULL) != group)
5735 continue;
5736
5737 cpu_set(j, covered);
5738 cpu_set(j, sg->cpumask);
5739 }
5740 if (!first)
5741 first = sg;
5742 if (last)
5743 last->next = sg;
5744 last = sg;
5745 }
5746 last->next = first;
5747 }
5748
5749 #define SD_NODES_PER_DOMAIN 16
5750
5751 #ifdef CONFIG_NUMA
5752
5753 /**
5754 * find_next_best_node - find the next node to include in a sched_domain
5755 * @node: node whose sched_domain we're building
5756 * @used_nodes: nodes already in the sched_domain
5757 *
5758 * Find the next node to include in a given scheduling domain. Simply
5759 * finds the closest node not already in the @used_nodes map.
5760 *
5761 * Should use nodemask_t.
5762 */
5763 static int find_next_best_node(int node, unsigned long *used_nodes)
5764 {
5765 int i, n, val, min_val, best_node = 0;
5766
5767 min_val = INT_MAX;
5768
5769 for (i = 0; i < MAX_NUMNODES; i++) {
5770 /* Start at @node */
5771 n = (node + i) % MAX_NUMNODES;
5772
5773 if (!nr_cpus_node(n))
5774 continue;
5775
5776 /* Skip already used nodes */
5777 if (test_bit(n, used_nodes))
5778 continue;
5779
5780 /* Simple min distance search */
5781 val = node_distance(node, n);
5782
5783 if (val < min_val) {
5784 min_val = val;
5785 best_node = n;
5786 }
5787 }
5788
5789 set_bit(best_node, used_nodes);
5790 return best_node;
5791 }
5792
5793 /**
5794 * sched_domain_node_span - get a cpumask for a node's sched_domain
5795 * @node: node whose cpumask we're constructing
5796 * @size: number of nodes to include in this span
5797 *
5798 * Given a node, construct a good cpumask for its sched_domain to span. It
5799 * should be one that prevents unnecessary balancing, but also spreads tasks
5800 * out optimally.
5801 */
5802 static cpumask_t sched_domain_node_span(int node)
5803 {
5804 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5805 cpumask_t span, nodemask;
5806 int i;
5807
5808 cpus_clear(span);
5809 bitmap_zero(used_nodes, MAX_NUMNODES);
5810
5811 nodemask = node_to_cpumask(node);
5812 cpus_or(span, span, nodemask);
5813 set_bit(node, used_nodes);
5814
5815 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5816 int next_node = find_next_best_node(node, used_nodes);
5817
5818 nodemask = node_to_cpumask(next_node);
5819 cpus_or(span, span, nodemask);
5820 }
5821
5822 return span;
5823 }
5824 #endif
5825
5826 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5827
5828 /*
5829 * SMT sched-domains:
5830 */
5831 #ifdef CONFIG_SCHED_SMT
5832 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5833 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5834
5835 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
5837 {
5838 if (sg)
5839 *sg = &per_cpu(sched_group_cpus, cpu);
5840 return cpu;
5841 }
5842 #endif
5843
5844 /*
5845 * multi-core sched-domains:
5846 */
5847 #ifdef CONFIG_SCHED_MC
5848 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5849 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5850 #endif
5851
5852 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5853 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5854 struct sched_group **sg)
5855 {
5856 int group;
5857 cpumask_t mask = cpu_sibling_map[cpu];
5858 cpus_and(mask, mask, *cpu_map);
5859 group = first_cpu(mask);
5860 if (sg)
5861 *sg = &per_cpu(sched_group_core, group);
5862 return group;
5863 }
5864 #elif defined(CONFIG_SCHED_MC)
5865 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5866 struct sched_group **sg)
5867 {
5868 if (sg)
5869 *sg = &per_cpu(sched_group_core, cpu);
5870 return cpu;
5871 }
5872 #endif
5873
5874 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5875 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5876
5877 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5878 struct sched_group **sg)
5879 {
5880 int group;
5881 #ifdef CONFIG_SCHED_MC
5882 cpumask_t mask = cpu_coregroup_map(cpu);
5883 cpus_and(mask, mask, *cpu_map);
5884 group = first_cpu(mask);
5885 #elif defined(CONFIG_SCHED_SMT)
5886 cpumask_t mask = cpu_sibling_map[cpu];
5887 cpus_and(mask, mask, *cpu_map);
5888 group = first_cpu(mask);
5889 #else
5890 group = cpu;
5891 #endif
5892 if (sg)
5893 *sg = &per_cpu(sched_group_phys, group);
5894 return group;
5895 }
5896
5897 #ifdef CONFIG_NUMA
5898 /*
5899 * The init_sched_build_groups can't handle what we want to do with node
5900 * groups, so roll our own. Now each node has its own list of groups which
5901 * gets dynamically allocated.
5902 */
5903 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5904 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5905
5906 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5907 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5908
5909 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5910 struct sched_group **sg)
5911 {
5912 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5913 int group;
5914
5915 cpus_and(nodemask, nodemask, *cpu_map);
5916 group = first_cpu(nodemask);
5917
5918 if (sg)
5919 *sg = &per_cpu(sched_group_allnodes, group);
5920 return group;
5921 }
5922
5923 static void init_numa_sched_groups_power(struct sched_group *group_head)
5924 {
5925 struct sched_group *sg = group_head;
5926 int j;
5927
5928 if (!sg)
5929 return;
5930 next_sg:
5931 for_each_cpu_mask(j, sg->cpumask) {
5932 struct sched_domain *sd;
5933
5934 sd = &per_cpu(phys_domains, j);
5935 if (j != first_cpu(sd->groups->cpumask)) {
5936 /*
5937 * Only add "power" once for each
5938 * physical package.
5939 */
5940 continue;
5941 }
5942
5943 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5944 }
5945 sg = sg->next;
5946 if (sg != group_head)
5947 goto next_sg;
5948 }
5949 #endif
5950
5951 #ifdef CONFIG_NUMA
5952 /* Free memory allocated for various sched_group structures */
5953 static void free_sched_groups(const cpumask_t *cpu_map)
5954 {
5955 int cpu, i;
5956
5957 for_each_cpu_mask(cpu, *cpu_map) {
5958 struct sched_group **sched_group_nodes
5959 = sched_group_nodes_bycpu[cpu];
5960
5961 if (!sched_group_nodes)
5962 continue;
5963
5964 for (i = 0; i < MAX_NUMNODES; i++) {
5965 cpumask_t nodemask = node_to_cpumask(i);
5966 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5967
5968 cpus_and(nodemask, nodemask, *cpu_map);
5969 if (cpus_empty(nodemask))
5970 continue;
5971
5972 if (sg == NULL)
5973 continue;
5974 sg = sg->next;
5975 next_sg:
5976 oldsg = sg;
5977 sg = sg->next;
5978 kfree(oldsg);
5979 if (oldsg != sched_group_nodes[i])
5980 goto next_sg;
5981 }
5982 kfree(sched_group_nodes);
5983 sched_group_nodes_bycpu[cpu] = NULL;
5984 }
5985 }
5986 #else
5987 static void free_sched_groups(const cpumask_t *cpu_map)
5988 {
5989 }
5990 #endif
5991
5992 /*
5993 * Initialize sched groups cpu_power.
5994 *
5995 * cpu_power indicates the capacity of sched group, which is used while
5996 * distributing the load between different sched groups in a sched domain.
5997 * Typically cpu_power for all the groups in a sched domain will be same unless
5998 * there are asymmetries in the topology. If there are asymmetries, group
5999 * having more cpu_power will pickup more load compared to the group having
6000 * less cpu_power.
6001 *
6002 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6003 * the maximum number of tasks a group can handle in the presence of other idle
6004 * or lightly loaded groups in the same sched domain.
6005 */
6006 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6007 {
6008 struct sched_domain *child;
6009 struct sched_group *group;
6010
6011 WARN_ON(!sd || !sd->groups);
6012
6013 if (cpu != first_cpu(sd->groups->cpumask))
6014 return;
6015
6016 child = sd->child;
6017
6018 sd->groups->__cpu_power = 0;
6019
6020 /*
6021 * For perf policy, if the groups in child domain share resources
6022 * (for example cores sharing some portions of the cache hierarchy
6023 * or SMT), then set this domain groups cpu_power such that each group
6024 * can handle only one task, when there are other idle groups in the
6025 * same sched domain.
6026 */
6027 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6028 (child->flags &
6029 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6030 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6031 return;
6032 }
6033
6034 /*
6035 * add cpu_power of each child group to this groups cpu_power
6036 */
6037 group = child->groups;
6038 do {
6039 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6040 group = group->next;
6041 } while (group != child->groups);
6042 }
6043
6044 /*
6045 * Build sched domains for a given set of cpus and attach the sched domains
6046 * to the individual cpus
6047 */
6048 static int build_sched_domains(const cpumask_t *cpu_map)
6049 {
6050 int i;
6051 #ifdef CONFIG_NUMA
6052 struct sched_group **sched_group_nodes = NULL;
6053 int sd_allnodes = 0;
6054
6055 /*
6056 * Allocate the per-node list of sched groups
6057 */
6058 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6059 GFP_KERNEL);
6060 if (!sched_group_nodes) {
6061 printk(KERN_WARNING "Can not alloc sched group node list\n");
6062 return -ENOMEM;
6063 }
6064 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6065 #endif
6066
6067 /*
6068 * Set up domains for cpus specified by the cpu_map.
6069 */
6070 for_each_cpu_mask(i, *cpu_map) {
6071 struct sched_domain *sd = NULL, *p;
6072 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6073
6074 cpus_and(nodemask, nodemask, *cpu_map);
6075
6076 #ifdef CONFIG_NUMA
6077 if (cpus_weight(*cpu_map) >
6078 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6079 sd = &per_cpu(allnodes_domains, i);
6080 *sd = SD_ALLNODES_INIT;
6081 sd->span = *cpu_map;
6082 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6083 p = sd;
6084 sd_allnodes = 1;
6085 } else
6086 p = NULL;
6087
6088 sd = &per_cpu(node_domains, i);
6089 *sd = SD_NODE_INIT;
6090 sd->span = sched_domain_node_span(cpu_to_node(i));
6091 sd->parent = p;
6092 if (p)
6093 p->child = sd;
6094 cpus_and(sd->span, sd->span, *cpu_map);
6095 #endif
6096
6097 p = sd;
6098 sd = &per_cpu(phys_domains, i);
6099 *sd = SD_CPU_INIT;
6100 sd->span = nodemask;
6101 sd->parent = p;
6102 if (p)
6103 p->child = sd;
6104 cpu_to_phys_group(i, cpu_map, &sd->groups);
6105
6106 #ifdef CONFIG_SCHED_MC
6107 p = sd;
6108 sd = &per_cpu(core_domains, i);
6109 *sd = SD_MC_INIT;
6110 sd->span = cpu_coregroup_map(i);
6111 cpus_and(sd->span, sd->span, *cpu_map);
6112 sd->parent = p;
6113 p->child = sd;
6114 cpu_to_core_group(i, cpu_map, &sd->groups);
6115 #endif
6116
6117 #ifdef CONFIG_SCHED_SMT
6118 p = sd;
6119 sd = &per_cpu(cpu_domains, i);
6120 *sd = SD_SIBLING_INIT;
6121 sd->span = cpu_sibling_map[i];
6122 cpus_and(sd->span, sd->span, *cpu_map);
6123 sd->parent = p;
6124 p->child = sd;
6125 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6126 #endif
6127 }
6128
6129 #ifdef CONFIG_SCHED_SMT
6130 /* Set up CPU (sibling) groups */
6131 for_each_cpu_mask(i, *cpu_map) {
6132 cpumask_t this_sibling_map = cpu_sibling_map[i];
6133 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6134 if (i != first_cpu(this_sibling_map))
6135 continue;
6136
6137 init_sched_build_groups(this_sibling_map, cpu_map,
6138 &cpu_to_cpu_group);
6139 }
6140 #endif
6141
6142 #ifdef CONFIG_SCHED_MC
6143 /* Set up multi-core groups */
6144 for_each_cpu_mask(i, *cpu_map) {
6145 cpumask_t this_core_map = cpu_coregroup_map(i);
6146 cpus_and(this_core_map, this_core_map, *cpu_map);
6147 if (i != first_cpu(this_core_map))
6148 continue;
6149 init_sched_build_groups(this_core_map, cpu_map,
6150 &cpu_to_core_group);
6151 }
6152 #endif
6153
6154 /* Set up physical groups */
6155 for (i = 0; i < MAX_NUMNODES; i++) {
6156 cpumask_t nodemask = node_to_cpumask(i);
6157
6158 cpus_and(nodemask, nodemask, *cpu_map);
6159 if (cpus_empty(nodemask))
6160 continue;
6161
6162 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6163 }
6164
6165 #ifdef CONFIG_NUMA
6166 /* Set up node groups */
6167 if (sd_allnodes)
6168 init_sched_build_groups(*cpu_map, cpu_map,
6169 &cpu_to_allnodes_group);
6170
6171 for (i = 0; i < MAX_NUMNODES; i++) {
6172 /* Set up node groups */
6173 struct sched_group *sg, *prev;
6174 cpumask_t nodemask = node_to_cpumask(i);
6175 cpumask_t domainspan;
6176 cpumask_t covered = CPU_MASK_NONE;
6177 int j;
6178
6179 cpus_and(nodemask, nodemask, *cpu_map);
6180 if (cpus_empty(nodemask)) {
6181 sched_group_nodes[i] = NULL;
6182 continue;
6183 }
6184
6185 domainspan = sched_domain_node_span(i);
6186 cpus_and(domainspan, domainspan, *cpu_map);
6187
6188 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6189 if (!sg) {
6190 printk(KERN_WARNING "Can not alloc domain group for "
6191 "node %d\n", i);
6192 goto error;
6193 }
6194 sched_group_nodes[i] = sg;
6195 for_each_cpu_mask(j, nodemask) {
6196 struct sched_domain *sd;
6197
6198 sd = &per_cpu(node_domains, j);
6199 sd->groups = sg;
6200 }
6201 sg->__cpu_power = 0;
6202 sg->cpumask = nodemask;
6203 sg->next = sg;
6204 cpus_or(covered, covered, nodemask);
6205 prev = sg;
6206
6207 for (j = 0; j < MAX_NUMNODES; j++) {
6208 cpumask_t tmp, notcovered;
6209 int n = (i + j) % MAX_NUMNODES;
6210
6211 cpus_complement(notcovered, covered);
6212 cpus_and(tmp, notcovered, *cpu_map);
6213 cpus_and(tmp, tmp, domainspan);
6214 if (cpus_empty(tmp))
6215 break;
6216
6217 nodemask = node_to_cpumask(n);
6218 cpus_and(tmp, tmp, nodemask);
6219 if (cpus_empty(tmp))
6220 continue;
6221
6222 sg = kmalloc_node(sizeof(struct sched_group),
6223 GFP_KERNEL, i);
6224 if (!sg) {
6225 printk(KERN_WARNING
6226 "Can not alloc domain group for node %d\n", j);
6227 goto error;
6228 }
6229 sg->__cpu_power = 0;
6230 sg->cpumask = tmp;
6231 sg->next = prev->next;
6232 cpus_or(covered, covered, tmp);
6233 prev->next = sg;
6234 prev = sg;
6235 }
6236 }
6237 #endif
6238
6239 /* Calculate CPU power for physical packages and nodes */
6240 #ifdef CONFIG_SCHED_SMT
6241 for_each_cpu_mask(i, *cpu_map) {
6242 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6243
6244 init_sched_groups_power(i, sd);
6245 }
6246 #endif
6247 #ifdef CONFIG_SCHED_MC
6248 for_each_cpu_mask(i, *cpu_map) {
6249 struct sched_domain *sd = &per_cpu(core_domains, i);
6250
6251 init_sched_groups_power(i, sd);
6252 }
6253 #endif
6254
6255 for_each_cpu_mask(i, *cpu_map) {
6256 struct sched_domain *sd = &per_cpu(phys_domains, i);
6257
6258 init_sched_groups_power(i, sd);
6259 }
6260
6261 #ifdef CONFIG_NUMA
6262 for (i = 0; i < MAX_NUMNODES; i++)
6263 init_numa_sched_groups_power(sched_group_nodes[i]);
6264
6265 if (sd_allnodes) {
6266 struct sched_group *sg;
6267
6268 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6269 init_numa_sched_groups_power(sg);
6270 }
6271 #endif
6272
6273 /* Attach the domains */
6274 for_each_cpu_mask(i, *cpu_map) {
6275 struct sched_domain *sd;
6276 #ifdef CONFIG_SCHED_SMT
6277 sd = &per_cpu(cpu_domains, i);
6278 #elif defined(CONFIG_SCHED_MC)
6279 sd = &per_cpu(core_domains, i);
6280 #else
6281 sd = &per_cpu(phys_domains, i);
6282 #endif
6283 cpu_attach_domain(sd, i);
6284 }
6285
6286 return 0;
6287
6288 #ifdef CONFIG_NUMA
6289 error:
6290 free_sched_groups(cpu_map);
6291 return -ENOMEM;
6292 #endif
6293 }
6294 /*
6295 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6296 */
6297 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6298 {
6299 cpumask_t cpu_default_map;
6300 int err;
6301
6302 /*
6303 * Setup mask for cpus without special case scheduling requirements.
6304 * For now this just excludes isolated cpus, but could be used to
6305 * exclude other special cases in the future.
6306 */
6307 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6308
6309 err = build_sched_domains(&cpu_default_map);
6310
6311 return err;
6312 }
6313
6314 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6315 {
6316 free_sched_groups(cpu_map);
6317 }
6318
6319 /*
6320 * Detach sched domains from a group of cpus specified in cpu_map
6321 * These cpus will now be attached to the NULL domain
6322 */
6323 static void detach_destroy_domains(const cpumask_t *cpu_map)
6324 {
6325 int i;
6326
6327 for_each_cpu_mask(i, *cpu_map)
6328 cpu_attach_domain(NULL, i);
6329 synchronize_sched();
6330 arch_destroy_sched_domains(cpu_map);
6331 }
6332
6333 /*
6334 * Partition sched domains as specified by the cpumasks below.
6335 * This attaches all cpus from the cpumasks to the NULL domain,
6336 * waits for a RCU quiescent period, recalculates sched
6337 * domain information and then attaches them back to the
6338 * correct sched domains
6339 * Call with hotplug lock held
6340 */
6341 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6342 {
6343 cpumask_t change_map;
6344 int err = 0;
6345
6346 cpus_and(*partition1, *partition1, cpu_online_map);
6347 cpus_and(*partition2, *partition2, cpu_online_map);
6348 cpus_or(change_map, *partition1, *partition2);
6349
6350 /* Detach sched domains from all of the affected cpus */
6351 detach_destroy_domains(&change_map);
6352 if (!cpus_empty(*partition1))
6353 err = build_sched_domains(partition1);
6354 if (!err && !cpus_empty(*partition2))
6355 err = build_sched_domains(partition2);
6356
6357 return err;
6358 }
6359
6360 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6361 static int arch_reinit_sched_domains(void)
6362 {
6363 int err;
6364
6365 mutex_lock(&sched_hotcpu_mutex);
6366 detach_destroy_domains(&cpu_online_map);
6367 err = arch_init_sched_domains(&cpu_online_map);
6368 mutex_unlock(&sched_hotcpu_mutex);
6369
6370 return err;
6371 }
6372
6373 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6374 {
6375 int ret;
6376
6377 if (buf[0] != '0' && buf[0] != '1')
6378 return -EINVAL;
6379
6380 if (smt)
6381 sched_smt_power_savings = (buf[0] == '1');
6382 else
6383 sched_mc_power_savings = (buf[0] == '1');
6384
6385 ret = arch_reinit_sched_domains();
6386
6387 return ret ? ret : count;
6388 }
6389
6390 #ifdef CONFIG_SCHED_MC
6391 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6392 {
6393 return sprintf(page, "%u\n", sched_mc_power_savings);
6394 }
6395 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6396 const char *buf, size_t count)
6397 {
6398 return sched_power_savings_store(buf, count, 0);
6399 }
6400 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6401 sched_mc_power_savings_store);
6402 #endif
6403
6404 #ifdef CONFIG_SCHED_SMT
6405 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6406 {
6407 return sprintf(page, "%u\n", sched_smt_power_savings);
6408 }
6409 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6410 const char *buf, size_t count)
6411 {
6412 return sched_power_savings_store(buf, count, 1);
6413 }
6414 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6415 sched_smt_power_savings_store);
6416 #endif
6417
6418 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6419 {
6420 int err = 0;
6421
6422 #ifdef CONFIG_SCHED_SMT
6423 if (smt_capable())
6424 err = sysfs_create_file(&cls->kset.kobj,
6425 &attr_sched_smt_power_savings.attr);
6426 #endif
6427 #ifdef CONFIG_SCHED_MC
6428 if (!err && mc_capable())
6429 err = sysfs_create_file(&cls->kset.kobj,
6430 &attr_sched_mc_power_savings.attr);
6431 #endif
6432 return err;
6433 }
6434 #endif
6435
6436 /*
6437 * Force a reinitialization of the sched domains hierarchy. The domains
6438 * and groups cannot be updated in place without racing with the balancing
6439 * code, so we temporarily attach all running cpus to the NULL domain
6440 * which will prevent rebalancing while the sched domains are recalculated.
6441 */
6442 static int update_sched_domains(struct notifier_block *nfb,
6443 unsigned long action, void *hcpu)
6444 {
6445 switch (action) {
6446 case CPU_UP_PREPARE:
6447 case CPU_UP_PREPARE_FROZEN:
6448 case CPU_DOWN_PREPARE:
6449 case CPU_DOWN_PREPARE_FROZEN:
6450 detach_destroy_domains(&cpu_online_map);
6451 return NOTIFY_OK;
6452
6453 case CPU_UP_CANCELED:
6454 case CPU_UP_CANCELED_FROZEN:
6455 case CPU_DOWN_FAILED:
6456 case CPU_DOWN_FAILED_FROZEN:
6457 case CPU_ONLINE:
6458 case CPU_ONLINE_FROZEN:
6459 case CPU_DEAD:
6460 case CPU_DEAD_FROZEN:
6461 /*
6462 * Fall through and re-initialise the domains.
6463 */
6464 break;
6465 default:
6466 return NOTIFY_DONE;
6467 }
6468
6469 /* The hotplug lock is already held by cpu_up/cpu_down */
6470 arch_init_sched_domains(&cpu_online_map);
6471
6472 return NOTIFY_OK;
6473 }
6474
6475 void __init sched_init_smp(void)
6476 {
6477 cpumask_t non_isolated_cpus;
6478
6479 mutex_lock(&sched_hotcpu_mutex);
6480 arch_init_sched_domains(&cpu_online_map);
6481 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6482 if (cpus_empty(non_isolated_cpus))
6483 cpu_set(smp_processor_id(), non_isolated_cpus);
6484 mutex_unlock(&sched_hotcpu_mutex);
6485 /* XXX: Theoretical race here - CPU may be hotplugged now */
6486 hotcpu_notifier(update_sched_domains, 0);
6487
6488 init_sched_domain_sysctl();
6489
6490 /* Move init over to a non-isolated CPU */
6491 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6492 BUG();
6493 sched_init_granularity();
6494 }
6495 #else
6496 void __init sched_init_smp(void)
6497 {
6498 sched_init_granularity();
6499 }
6500 #endif /* CONFIG_SMP */
6501
6502 int in_sched_functions(unsigned long addr)
6503 {
6504 /* Linker adds these: start and end of __sched functions */
6505 extern char __sched_text_start[], __sched_text_end[];
6506
6507 return in_lock_functions(addr) ||
6508 (addr >= (unsigned long)__sched_text_start
6509 && addr < (unsigned long)__sched_text_end);
6510 }
6511
6512 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6513 {
6514 cfs_rq->tasks_timeline = RB_ROOT;
6515 cfs_rq->fair_clock = 1;
6516 #ifdef CONFIG_FAIR_GROUP_SCHED
6517 cfs_rq->rq = rq;
6518 #endif
6519 }
6520
6521 void __init sched_init(void)
6522 {
6523 u64 now = sched_clock();
6524 int highest_cpu = 0;
6525 int i, j;
6526
6527 /*
6528 * Link up the scheduling class hierarchy:
6529 */
6530 rt_sched_class.next = &fair_sched_class;
6531 fair_sched_class.next = &idle_sched_class;
6532 idle_sched_class.next = NULL;
6533
6534 for_each_possible_cpu(i) {
6535 struct rt_prio_array *array;
6536 struct rq *rq;
6537
6538 rq = cpu_rq(i);
6539 spin_lock_init(&rq->lock);
6540 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6541 rq->nr_running = 0;
6542 rq->clock = 1;
6543 init_cfs_rq(&rq->cfs, rq);
6544 #ifdef CONFIG_FAIR_GROUP_SCHED
6545 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6546 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6547 #endif
6548 rq->ls.load_update_last = now;
6549 rq->ls.load_update_start = now;
6550
6551 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6552 rq->cpu_load[j] = 0;
6553 #ifdef CONFIG_SMP
6554 rq->sd = NULL;
6555 rq->active_balance = 0;
6556 rq->next_balance = jiffies;
6557 rq->push_cpu = 0;
6558 rq->cpu = i;
6559 rq->migration_thread = NULL;
6560 INIT_LIST_HEAD(&rq->migration_queue);
6561 #endif
6562 atomic_set(&rq->nr_iowait, 0);
6563
6564 array = &rq->rt.active;
6565 for (j = 0; j < MAX_RT_PRIO; j++) {
6566 INIT_LIST_HEAD(array->queue + j);
6567 __clear_bit(j, array->bitmap);
6568 }
6569 highest_cpu = i;
6570 /* delimiter for bitsearch: */
6571 __set_bit(MAX_RT_PRIO, array->bitmap);
6572 }
6573
6574 set_load_weight(&init_task);
6575
6576 #ifdef CONFIG_PREEMPT_NOTIFIERS
6577 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6578 #endif
6579
6580 #ifdef CONFIG_SMP
6581 nr_cpu_ids = highest_cpu + 1;
6582 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6583 #endif
6584
6585 #ifdef CONFIG_RT_MUTEXES
6586 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6587 #endif
6588
6589 /*
6590 * The boot idle thread does lazy MMU switching as well:
6591 */
6592 atomic_inc(&init_mm.mm_count);
6593 enter_lazy_tlb(&init_mm, current);
6594
6595 /*
6596 * Make us the idle thread. Technically, schedule() should not be
6597 * called from this thread, however somewhere below it might be,
6598 * but because we are the idle thread, we just pick up running again
6599 * when this runqueue becomes "idle".
6600 */
6601 init_idle(current, smp_processor_id());
6602 /*
6603 * During early bootup we pretend to be a normal task:
6604 */
6605 current->sched_class = &fair_sched_class;
6606 }
6607
6608 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6609 void __might_sleep(char *file, int line)
6610 {
6611 #ifdef in_atomic
6612 static unsigned long prev_jiffy; /* ratelimiting */
6613
6614 if ((in_atomic() || irqs_disabled()) &&
6615 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6616 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6617 return;
6618 prev_jiffy = jiffies;
6619 printk(KERN_ERR "BUG: sleeping function called from invalid"
6620 " context at %s:%d\n", file, line);
6621 printk("in_atomic():%d, irqs_disabled():%d\n",
6622 in_atomic(), irqs_disabled());
6623 debug_show_held_locks(current);
6624 if (irqs_disabled())
6625 print_irqtrace_events(current);
6626 dump_stack();
6627 }
6628 #endif
6629 }
6630 EXPORT_SYMBOL(__might_sleep);
6631 #endif
6632
6633 #ifdef CONFIG_MAGIC_SYSRQ
6634 void normalize_rt_tasks(void)
6635 {
6636 struct task_struct *g, *p;
6637 unsigned long flags;
6638 struct rq *rq;
6639 int on_rq;
6640
6641 read_lock_irq(&tasklist_lock);
6642 do_each_thread(g, p) {
6643 p->se.fair_key = 0;
6644 p->se.wait_runtime = 0;
6645 p->se.exec_start = 0;
6646 p->se.wait_start_fair = 0;
6647 p->se.sleep_start_fair = 0;
6648 #ifdef CONFIG_SCHEDSTATS
6649 p->se.wait_start = 0;
6650 p->se.sleep_start = 0;
6651 p->se.block_start = 0;
6652 #endif
6653 task_rq(p)->cfs.fair_clock = 0;
6654 task_rq(p)->clock = 0;
6655
6656 if (!rt_task(p)) {
6657 /*
6658 * Renice negative nice level userspace
6659 * tasks back to 0:
6660 */
6661 if (TASK_NICE(p) < 0 && p->mm)
6662 set_user_nice(p, 0);
6663 continue;
6664 }
6665
6666 spin_lock_irqsave(&p->pi_lock, flags);
6667 rq = __task_rq_lock(p);
6668 #ifdef CONFIG_SMP
6669 /*
6670 * Do not touch the migration thread:
6671 */
6672 if (p == rq->migration_thread)
6673 goto out_unlock;
6674 #endif
6675
6676 update_rq_clock(rq);
6677 on_rq = p->se.on_rq;
6678 if (on_rq)
6679 deactivate_task(rq, p, 0);
6680 __setscheduler(rq, p, SCHED_NORMAL, 0);
6681 if (on_rq) {
6682 activate_task(rq, p, 0);
6683 resched_task(rq->curr);
6684 }
6685 #ifdef CONFIG_SMP
6686 out_unlock:
6687 #endif
6688 __task_rq_unlock(rq);
6689 spin_unlock_irqrestore(&p->pi_lock, flags);
6690 } while_each_thread(g, p);
6691
6692 read_unlock_irq(&tasklist_lock);
6693 }
6694
6695 #endif /* CONFIG_MAGIC_SYSRQ */
6696
6697 #ifdef CONFIG_IA64
6698 /*
6699 * These functions are only useful for the IA64 MCA handling.
6700 *
6701 * They can only be called when the whole system has been
6702 * stopped - every CPU needs to be quiescent, and no scheduling
6703 * activity can take place. Using them for anything else would
6704 * be a serious bug, and as a result, they aren't even visible
6705 * under any other configuration.
6706 */
6707
6708 /**
6709 * curr_task - return the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 *
6712 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6713 */
6714 struct task_struct *curr_task(int cpu)
6715 {
6716 return cpu_curr(cpu);
6717 }
6718
6719 /**
6720 * set_curr_task - set the current task for a given cpu.
6721 * @cpu: the processor in question.
6722 * @p: the task pointer to set.
6723 *
6724 * Description: This function must only be used when non-maskable interrupts
6725 * are serviced on a separate stack. It allows the architecture to switch the
6726 * notion of the current task on a cpu in a non-blocking manner. This function
6727 * must be called with all CPU's synchronized, and interrupts disabled, the
6728 * and caller must save the original value of the current task (see
6729 * curr_task() above) and restore that value before reenabling interrupts and
6730 * re-starting the system.
6731 *
6732 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6733 */
6734 void set_curr_task(int cpu, struct task_struct *p)
6735 {
6736 cpu_curr(cpu) = p;
6737 }
6738
6739 #endif