Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921 #else
922 spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221 void wake_up_idle_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_need_resched(rq->idle);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249 }
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265 }
1266
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 {
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271 }
1272
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1275 {
1276 assert_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1278 }
1279
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 {
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1290
1291 #define WMULT_SHIFT 32
1292
1293 /*
1294 * Shift right and round:
1295 */
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297
1298 /*
1299 * delta *= weight / lw
1300 */
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304 {
1305 u64 tmp;
1306
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 }
1327
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 {
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1332 }
1333
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 {
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1338 }
1339
1340 /*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1351
1352 /*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1363 */
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1373 };
1374
1375 /*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 };
1392
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395 /*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404 };
1405
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1418
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425 };
1426
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1436
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_add(&rq->load, load);
1440 }
1441
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_sub(&rq->load, load);
1445 }
1446
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1449
1450 /*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 {
1456 struct task_group *parent, *child;
1457 int ret;
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469 up:
1470 continue;
1471 }
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1482
1483 return ret;
1484 }
1485
1486 static int tg_nop(struct task_group *tg, void *data)
1487 {
1488 return 0;
1489 }
1490 #endif
1491
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1495 {
1496 return cpu_rq(cpu)->load.weight;
1497 }
1498
1499 /*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506 static unsigned long source_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515 }
1516
1517 /*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521 static unsigned long target_load(int cpu, int type)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530 }
1531
1532 static struct sched_group *group_of(int cpu)
1533 {
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540 }
1541
1542 static unsigned long power_of(int cpu)
1543 {
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550 }
1551
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1555 {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1558
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1563
1564 return rq->avg_load_per_task;
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568
1569 static __read_mostly unsigned long *update_shares_data;
1570
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573 /*
1574 * Calculate and set the cpu's group shares.
1575 */
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1580 {
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1583
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
1589
1590 /*
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1594 */
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609 }
1610
1611 /*
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1615 */
1616 static int tg_shares_up(struct task_group *tg, void *data)
1617 {
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1623
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1633
1634 rq_weight += weight;
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1655
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658
1659 local_irq_restore(flags);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1668 */
1669 static int tg_load_down(struct task_group *tg, void *data)
1670 {
1671 unsigned long load;
1672 long cpu = (long)data;
1673
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
1681
1682 tg->cfs_rq[cpu]->h_load = load;
1683
1684 return 0;
1685 }
1686
1687 static void update_shares(struct sched_domain *sd)
1688 {
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 }
1702 }
1703
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705 {
1706 if (root_task_group_empty())
1707 return;
1708
1709 spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 spin_lock(&rq->lock);
1712 }
1713
1714 static void update_h_load(long cpu)
1715 {
1716 if (root_task_group_empty())
1717 return;
1718
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 }
1721
1722 #else
1723
1724 static inline void update_shares(struct sched_domain *sd)
1725 {
1726 }
1727
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 {
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_PREEMPT
1735
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
1738 /*
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1745 */
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750 {
1751 spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755 }
1756
1757 #else
1758 /*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769 {
1770 int ret = 0;
1771
1772 if (unlikely(!spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 spin_unlock(&this_rq->lock);
1775 spin_lock(&busiest->lock);
1776 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1777 ret = 1;
1778 } else
1779 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1780 }
1781 return ret;
1782 }
1783
1784 #endif /* CONFIG_PREEMPT */
1785
1786 /*
1787 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 */
1789 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1790 {
1791 if (unlikely(!irqs_disabled())) {
1792 /* printk() doesn't work good under rq->lock */
1793 spin_unlock(&this_rq->lock);
1794 BUG_ON(1);
1795 }
1796
1797 return _double_lock_balance(this_rq, busiest);
1798 }
1799
1800 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1801 __releases(busiest->lock)
1802 {
1803 spin_unlock(&busiest->lock);
1804 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1805 }
1806 #endif
1807
1808 #ifdef CONFIG_FAIR_GROUP_SCHED
1809 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810 {
1811 #ifdef CONFIG_SMP
1812 cfs_rq->shares = shares;
1813 #endif
1814 }
1815 #endif
1816
1817 static void calc_load_account_active(struct rq *this_rq);
1818 static void update_sysctl(void);
1819 static int get_update_sysctl_factor(void);
1820
1821 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822 {
1823 set_task_rq(p, cpu);
1824 #ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832 #endif
1833 }
1834
1835 #include "sched_stats.h"
1836 #include "sched_idletask.c"
1837 #include "sched_fair.c"
1838 #include "sched_rt.c"
1839 #ifdef CONFIG_SCHED_DEBUG
1840 # include "sched_debug.c"
1841 #endif
1842
1843 #define sched_class_highest (&rt_sched_class)
1844 #define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
1846
1847 static void inc_nr_running(struct rq *rq)
1848 {
1849 rq->nr_running++;
1850 }
1851
1852 static void dec_nr_running(struct rq *rq)
1853 {
1854 rq->nr_running--;
1855 }
1856
1857 static void set_load_weight(struct task_struct *p)
1858 {
1859 if (task_has_rt_policy(p)) {
1860 p->se.load.weight = prio_to_weight[0] * 2;
1861 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1862 return;
1863 }
1864
1865 /*
1866 * SCHED_IDLE tasks get minimal weight:
1867 */
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1872 }
1873
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1876 }
1877
1878 static void update_avg(u64 *avg, u64 sample)
1879 {
1880 s64 diff = sample - *avg;
1881 *avg += diff >> 3;
1882 }
1883
1884 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1885 {
1886 if (wakeup)
1887 p->se.start_runtime = p->se.sum_exec_runtime;
1888
1889 sched_info_queued(p);
1890 p->sched_class->enqueue_task(rq, p, wakeup);
1891 p->se.on_rq = 1;
1892 }
1893
1894 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1895 {
1896 if (sleep) {
1897 if (p->se.last_wakeup) {
1898 update_avg(&p->se.avg_overlap,
1899 p->se.sum_exec_runtime - p->se.last_wakeup);
1900 p->se.last_wakeup = 0;
1901 } else {
1902 update_avg(&p->se.avg_wakeup,
1903 sysctl_sched_wakeup_granularity);
1904 }
1905 }
1906
1907 sched_info_dequeued(p);
1908 p->sched_class->dequeue_task(rq, p, sleep);
1909 p->se.on_rq = 0;
1910 }
1911
1912 /*
1913 * __normal_prio - return the priority that is based on the static prio
1914 */
1915 static inline int __normal_prio(struct task_struct *p)
1916 {
1917 return p->static_prio;
1918 }
1919
1920 /*
1921 * Calculate the expected normal priority: i.e. priority
1922 * without taking RT-inheritance into account. Might be
1923 * boosted by interactivity modifiers. Changes upon fork,
1924 * setprio syscalls, and whenever the interactivity
1925 * estimator recalculates.
1926 */
1927 static inline int normal_prio(struct task_struct *p)
1928 {
1929 int prio;
1930
1931 if (task_has_rt_policy(p))
1932 prio = MAX_RT_PRIO-1 - p->rt_priority;
1933 else
1934 prio = __normal_prio(p);
1935 return prio;
1936 }
1937
1938 /*
1939 * Calculate the current priority, i.e. the priority
1940 * taken into account by the scheduler. This value might
1941 * be boosted by RT tasks, or might be boosted by
1942 * interactivity modifiers. Will be RT if the task got
1943 * RT-boosted. If not then it returns p->normal_prio.
1944 */
1945 static int effective_prio(struct task_struct *p)
1946 {
1947 p->normal_prio = normal_prio(p);
1948 /*
1949 * If we are RT tasks or we were boosted to RT priority,
1950 * keep the priority unchanged. Otherwise, update priority
1951 * to the normal priority:
1952 */
1953 if (!rt_prio(p->prio))
1954 return p->normal_prio;
1955 return p->prio;
1956 }
1957
1958 /*
1959 * activate_task - move a task to the runqueue.
1960 */
1961 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1962 {
1963 if (task_contributes_to_load(p))
1964 rq->nr_uninterruptible--;
1965
1966 enqueue_task(rq, p, wakeup);
1967 inc_nr_running(rq);
1968 }
1969
1970 /*
1971 * deactivate_task - remove a task from the runqueue.
1972 */
1973 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1974 {
1975 if (task_contributes_to_load(p))
1976 rq->nr_uninterruptible++;
1977
1978 dequeue_task(rq, p, sleep);
1979 dec_nr_running(rq);
1980 }
1981
1982 /**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
1986 inline int task_curr(const struct task_struct *p)
1987 {
1988 return cpu_curr(task_cpu(p)) == p;
1989 }
1990
1991 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994 {
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001 }
2002
2003 /**
2004 * kthread_bind - bind a just-created kthread to a cpu.
2005 * @p: thread created by kthread_create().
2006 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2007 *
2008 * Description: This function is equivalent to set_cpus_allowed(),
2009 * except that @cpu doesn't need to be online, and the thread must be
2010 * stopped (i.e., just returned from kthread_create()).
2011 *
2012 * Function lives here instead of kthread.c because it messes with
2013 * scheduler internals which require locking.
2014 */
2015 void kthread_bind(struct task_struct *p, unsigned int cpu)
2016 {
2017 struct rq *rq = cpu_rq(cpu);
2018 unsigned long flags;
2019
2020 /* Must have done schedule() in kthread() before we set_task_cpu */
2021 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2022 WARN_ON(1);
2023 return;
2024 }
2025
2026 spin_lock_irqsave(&rq->lock, flags);
2027 update_rq_clock(rq);
2028 set_task_cpu(p, cpu);
2029 p->cpus_allowed = cpumask_of_cpu(cpu);
2030 p->rt.nr_cpus_allowed = 1;
2031 p->flags |= PF_THREAD_BOUND;
2032 spin_unlock_irqrestore(&rq->lock, flags);
2033 }
2034 EXPORT_SYMBOL(kthread_bind);
2035
2036 #ifdef CONFIG_SMP
2037 /*
2038 * Is this task likely cache-hot:
2039 */
2040 static int
2041 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2042 {
2043 s64 delta;
2044
2045 /*
2046 * Buddy candidates are cache hot:
2047 */
2048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2049 (&p->se == cfs_rq_of(&p->se)->next ||
2050 &p->se == cfs_rq_of(&p->se)->last))
2051 return 1;
2052
2053 if (p->sched_class != &fair_sched_class)
2054 return 0;
2055
2056 if (sysctl_sched_migration_cost == -1)
2057 return 1;
2058 if (sysctl_sched_migration_cost == 0)
2059 return 0;
2060
2061 delta = now - p->se.exec_start;
2062
2063 return delta < (s64)sysctl_sched_migration_cost;
2064 }
2065
2066
2067 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2068 {
2069 int old_cpu = task_cpu(p);
2070 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2071 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2072
2073 trace_sched_migrate_task(p, new_cpu);
2074
2075 if (old_cpu != new_cpu) {
2076 p->se.nr_migrations++;
2077 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2078 1, 1, NULL, 0);
2079 }
2080 p->se.vruntime -= old_cfsrq->min_vruntime -
2081 new_cfsrq->min_vruntime;
2082
2083 __set_task_cpu(p, new_cpu);
2084 }
2085
2086 struct migration_req {
2087 struct list_head list;
2088
2089 struct task_struct *task;
2090 int dest_cpu;
2091
2092 struct completion done;
2093 };
2094
2095 /*
2096 * The task's runqueue lock must be held.
2097 * Returns true if you have to wait for migration thread.
2098 */
2099 static int
2100 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2101 {
2102 struct rq *rq = task_rq(p);
2103
2104 /*
2105 * If the task is not on a runqueue (and not running), then
2106 * it is sufficient to simply update the task's cpu field.
2107 */
2108 if (!p->se.on_rq && !task_running(rq, p)) {
2109 update_rq_clock(rq);
2110 set_task_cpu(p, dest_cpu);
2111 return 0;
2112 }
2113
2114 init_completion(&req->done);
2115 req->task = p;
2116 req->dest_cpu = dest_cpu;
2117 list_add(&req->list, &rq->migration_queue);
2118
2119 return 1;
2120 }
2121
2122 /*
2123 * wait_task_context_switch - wait for a thread to complete at least one
2124 * context switch.
2125 *
2126 * @p must not be current.
2127 */
2128 void wait_task_context_switch(struct task_struct *p)
2129 {
2130 unsigned long nvcsw, nivcsw, flags;
2131 int running;
2132 struct rq *rq;
2133
2134 nvcsw = p->nvcsw;
2135 nivcsw = p->nivcsw;
2136 for (;;) {
2137 /*
2138 * The runqueue is assigned before the actual context
2139 * switch. We need to take the runqueue lock.
2140 *
2141 * We could check initially without the lock but it is
2142 * very likely that we need to take the lock in every
2143 * iteration.
2144 */
2145 rq = task_rq_lock(p, &flags);
2146 running = task_running(rq, p);
2147 task_rq_unlock(rq, &flags);
2148
2149 if (likely(!running))
2150 break;
2151 /*
2152 * The switch count is incremented before the actual
2153 * context switch. We thus wait for two switches to be
2154 * sure at least one completed.
2155 */
2156 if ((p->nvcsw - nvcsw) > 1)
2157 break;
2158 if ((p->nivcsw - nivcsw) > 1)
2159 break;
2160
2161 cpu_relax();
2162 }
2163 }
2164
2165 /*
2166 * wait_task_inactive - wait for a thread to unschedule.
2167 *
2168 * If @match_state is nonzero, it's the @p->state value just checked and
2169 * not expected to change. If it changes, i.e. @p might have woken up,
2170 * then return zero. When we succeed in waiting for @p to be off its CPU,
2171 * we return a positive number (its total switch count). If a second call
2172 * a short while later returns the same number, the caller can be sure that
2173 * @p has remained unscheduled the whole time.
2174 *
2175 * The caller must ensure that the task *will* unschedule sometime soon,
2176 * else this function might spin for a *long* time. This function can't
2177 * be called with interrupts off, or it may introduce deadlock with
2178 * smp_call_function() if an IPI is sent by the same process we are
2179 * waiting to become inactive.
2180 */
2181 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2182 {
2183 unsigned long flags;
2184 int running, on_rq;
2185 unsigned long ncsw;
2186 struct rq *rq;
2187
2188 for (;;) {
2189 /*
2190 * We do the initial early heuristics without holding
2191 * any task-queue locks at all. We'll only try to get
2192 * the runqueue lock when things look like they will
2193 * work out!
2194 */
2195 rq = task_rq(p);
2196
2197 /*
2198 * If the task is actively running on another CPU
2199 * still, just relax and busy-wait without holding
2200 * any locks.
2201 *
2202 * NOTE! Since we don't hold any locks, it's not
2203 * even sure that "rq" stays as the right runqueue!
2204 * But we don't care, since "task_running()" will
2205 * return false if the runqueue has changed and p
2206 * is actually now running somewhere else!
2207 */
2208 while (task_running(rq, p)) {
2209 if (match_state && unlikely(p->state != match_state))
2210 return 0;
2211 cpu_relax();
2212 }
2213
2214 /*
2215 * Ok, time to look more closely! We need the rq
2216 * lock now, to be *sure*. If we're wrong, we'll
2217 * just go back and repeat.
2218 */
2219 rq = task_rq_lock(p, &flags);
2220 trace_sched_wait_task(rq, p);
2221 running = task_running(rq, p);
2222 on_rq = p->se.on_rq;
2223 ncsw = 0;
2224 if (!match_state || p->state == match_state)
2225 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2226 task_rq_unlock(rq, &flags);
2227
2228 /*
2229 * If it changed from the expected state, bail out now.
2230 */
2231 if (unlikely(!ncsw))
2232 break;
2233
2234 /*
2235 * Was it really running after all now that we
2236 * checked with the proper locks actually held?
2237 *
2238 * Oops. Go back and try again..
2239 */
2240 if (unlikely(running)) {
2241 cpu_relax();
2242 continue;
2243 }
2244
2245 /*
2246 * It's not enough that it's not actively running,
2247 * it must be off the runqueue _entirely_, and not
2248 * preempted!
2249 *
2250 * So if it was still runnable (but just not actively
2251 * running right now), it's preempted, and we should
2252 * yield - it could be a while.
2253 */
2254 if (unlikely(on_rq)) {
2255 schedule_timeout_uninterruptible(1);
2256 continue;
2257 }
2258
2259 /*
2260 * Ahh, all good. It wasn't running, and it wasn't
2261 * runnable, which means that it will never become
2262 * running in the future either. We're all done!
2263 */
2264 break;
2265 }
2266
2267 return ncsw;
2268 }
2269
2270 /***
2271 * kick_process - kick a running thread to enter/exit the kernel
2272 * @p: the to-be-kicked thread
2273 *
2274 * Cause a process which is running on another CPU to enter
2275 * kernel-mode, without any delay. (to get signals handled.)
2276 *
2277 * NOTE: this function doesnt have to take the runqueue lock,
2278 * because all it wants to ensure is that the remote task enters
2279 * the kernel. If the IPI races and the task has been migrated
2280 * to another CPU then no harm is done and the purpose has been
2281 * achieved as well.
2282 */
2283 void kick_process(struct task_struct *p)
2284 {
2285 int cpu;
2286
2287 preempt_disable();
2288 cpu = task_cpu(p);
2289 if ((cpu != smp_processor_id()) && task_curr(p))
2290 smp_send_reschedule(cpu);
2291 preempt_enable();
2292 }
2293 EXPORT_SYMBOL_GPL(kick_process);
2294 #endif /* CONFIG_SMP */
2295
2296 /**
2297 * task_oncpu_function_call - call a function on the cpu on which a task runs
2298 * @p: the task to evaluate
2299 * @func: the function to be called
2300 * @info: the function call argument
2301 *
2302 * Calls the function @func when the task is currently running. This might
2303 * be on the current CPU, which just calls the function directly
2304 */
2305 void task_oncpu_function_call(struct task_struct *p,
2306 void (*func) (void *info), void *info)
2307 {
2308 int cpu;
2309
2310 preempt_disable();
2311 cpu = task_cpu(p);
2312 if (task_curr(p))
2313 smp_call_function_single(cpu, func, info, 1);
2314 preempt_enable();
2315 }
2316
2317 #ifdef CONFIG_SMP
2318 static inline
2319 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2320 {
2321 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2322 }
2323 #endif
2324
2325 /***
2326 * try_to_wake_up - wake up a thread
2327 * @p: the to-be-woken-up thread
2328 * @state: the mask of task states that can be woken
2329 * @sync: do a synchronous wakeup?
2330 *
2331 * Put it on the run-queue if it's not already there. The "current"
2332 * thread is always on the run-queue (except when the actual
2333 * re-schedule is in progress), and as such you're allowed to do
2334 * the simpler "current->state = TASK_RUNNING" to mark yourself
2335 * runnable without the overhead of this.
2336 *
2337 * returns failure only if the task is already active.
2338 */
2339 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2340 int wake_flags)
2341 {
2342 int cpu, orig_cpu, this_cpu, success = 0;
2343 unsigned long flags;
2344 struct rq *rq, *orig_rq;
2345
2346 if (!sched_feat(SYNC_WAKEUPS))
2347 wake_flags &= ~WF_SYNC;
2348
2349 this_cpu = get_cpu();
2350
2351 smp_wmb();
2352 rq = orig_rq = task_rq_lock(p, &flags);
2353 update_rq_clock(rq);
2354 if (!(p->state & state))
2355 goto out;
2356
2357 if (p->se.on_rq)
2358 goto out_running;
2359
2360 cpu = task_cpu(p);
2361 orig_cpu = cpu;
2362
2363 #ifdef CONFIG_SMP
2364 if (unlikely(task_running(rq, p)))
2365 goto out_activate;
2366
2367 /*
2368 * In order to handle concurrent wakeups and release the rq->lock
2369 * we put the task in TASK_WAKING state.
2370 *
2371 * First fix up the nr_uninterruptible count:
2372 */
2373 if (task_contributes_to_load(p))
2374 rq->nr_uninterruptible--;
2375 p->state = TASK_WAKING;
2376 __task_rq_unlock(rq);
2377
2378 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2379 if (cpu != orig_cpu)
2380 set_task_cpu(p, cpu);
2381
2382 rq = __task_rq_lock(p);
2383 update_rq_clock(rq);
2384
2385 WARN_ON(p->state != TASK_WAKING);
2386 cpu = task_cpu(p);
2387
2388 #ifdef CONFIG_SCHEDSTATS
2389 schedstat_inc(rq, ttwu_count);
2390 if (cpu == this_cpu)
2391 schedstat_inc(rq, ttwu_local);
2392 else {
2393 struct sched_domain *sd;
2394 for_each_domain(this_cpu, sd) {
2395 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2396 schedstat_inc(sd, ttwu_wake_remote);
2397 break;
2398 }
2399 }
2400 }
2401 #endif /* CONFIG_SCHEDSTATS */
2402
2403 out_activate:
2404 #endif /* CONFIG_SMP */
2405 schedstat_inc(p, se.nr_wakeups);
2406 if (wake_flags & WF_SYNC)
2407 schedstat_inc(p, se.nr_wakeups_sync);
2408 if (orig_cpu != cpu)
2409 schedstat_inc(p, se.nr_wakeups_migrate);
2410 if (cpu == this_cpu)
2411 schedstat_inc(p, se.nr_wakeups_local);
2412 else
2413 schedstat_inc(p, se.nr_wakeups_remote);
2414 activate_task(rq, p, 1);
2415 success = 1;
2416
2417 /*
2418 * Only attribute actual wakeups done by this task.
2419 */
2420 if (!in_interrupt()) {
2421 struct sched_entity *se = &current->se;
2422 u64 sample = se->sum_exec_runtime;
2423
2424 if (se->last_wakeup)
2425 sample -= se->last_wakeup;
2426 else
2427 sample -= se->start_runtime;
2428 update_avg(&se->avg_wakeup, sample);
2429
2430 se->last_wakeup = se->sum_exec_runtime;
2431 }
2432
2433 out_running:
2434 trace_sched_wakeup(rq, p, success);
2435 check_preempt_curr(rq, p, wake_flags);
2436
2437 p->state = TASK_RUNNING;
2438 #ifdef CONFIG_SMP
2439 if (p->sched_class->task_wake_up)
2440 p->sched_class->task_wake_up(rq, p);
2441
2442 if (unlikely(rq->idle_stamp)) {
2443 u64 delta = rq->clock - rq->idle_stamp;
2444 u64 max = 2*sysctl_sched_migration_cost;
2445
2446 if (delta > max)
2447 rq->avg_idle = max;
2448 else
2449 update_avg(&rq->avg_idle, delta);
2450 rq->idle_stamp = 0;
2451 }
2452 #endif
2453 out:
2454 task_rq_unlock(rq, &flags);
2455 put_cpu();
2456
2457 return success;
2458 }
2459
2460 /**
2461 * wake_up_process - Wake up a specific process
2462 * @p: The process to be woken up.
2463 *
2464 * Attempt to wake up the nominated process and move it to the set of runnable
2465 * processes. Returns 1 if the process was woken up, 0 if it was already
2466 * running.
2467 *
2468 * It may be assumed that this function implies a write memory barrier before
2469 * changing the task state if and only if any tasks are woken up.
2470 */
2471 int wake_up_process(struct task_struct *p)
2472 {
2473 return try_to_wake_up(p, TASK_ALL, 0);
2474 }
2475 EXPORT_SYMBOL(wake_up_process);
2476
2477 int wake_up_state(struct task_struct *p, unsigned int state)
2478 {
2479 return try_to_wake_up(p, state, 0);
2480 }
2481
2482 /*
2483 * Perform scheduler related setup for a newly forked process p.
2484 * p is forked by current.
2485 *
2486 * __sched_fork() is basic setup used by init_idle() too:
2487 */
2488 static void __sched_fork(struct task_struct *p)
2489 {
2490 p->se.exec_start = 0;
2491 p->se.sum_exec_runtime = 0;
2492 p->se.prev_sum_exec_runtime = 0;
2493 p->se.nr_migrations = 0;
2494 p->se.last_wakeup = 0;
2495 p->se.avg_overlap = 0;
2496 p->se.start_runtime = 0;
2497 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2498
2499 #ifdef CONFIG_SCHEDSTATS
2500 p->se.wait_start = 0;
2501 p->se.wait_max = 0;
2502 p->se.wait_count = 0;
2503 p->se.wait_sum = 0;
2504
2505 p->se.sleep_start = 0;
2506 p->se.sleep_max = 0;
2507 p->se.sum_sleep_runtime = 0;
2508
2509 p->se.block_start = 0;
2510 p->se.block_max = 0;
2511 p->se.exec_max = 0;
2512 p->se.slice_max = 0;
2513
2514 p->se.nr_migrations_cold = 0;
2515 p->se.nr_failed_migrations_affine = 0;
2516 p->se.nr_failed_migrations_running = 0;
2517 p->se.nr_failed_migrations_hot = 0;
2518 p->se.nr_forced_migrations = 0;
2519
2520 p->se.nr_wakeups = 0;
2521 p->se.nr_wakeups_sync = 0;
2522 p->se.nr_wakeups_migrate = 0;
2523 p->se.nr_wakeups_local = 0;
2524 p->se.nr_wakeups_remote = 0;
2525 p->se.nr_wakeups_affine = 0;
2526 p->se.nr_wakeups_affine_attempts = 0;
2527 p->se.nr_wakeups_passive = 0;
2528 p->se.nr_wakeups_idle = 0;
2529
2530 #endif
2531
2532 INIT_LIST_HEAD(&p->rt.run_list);
2533 p->se.on_rq = 0;
2534 INIT_LIST_HEAD(&p->se.group_node);
2535
2536 #ifdef CONFIG_PREEMPT_NOTIFIERS
2537 INIT_HLIST_HEAD(&p->preempt_notifiers);
2538 #endif
2539
2540 /*
2541 * We mark the process as running here, but have not actually
2542 * inserted it onto the runqueue yet. This guarantees that
2543 * nobody will actually run it, and a signal or other external
2544 * event cannot wake it up and insert it on the runqueue either.
2545 */
2546 p->state = TASK_RUNNING;
2547 }
2548
2549 /*
2550 * fork()/clone()-time setup:
2551 */
2552 void sched_fork(struct task_struct *p, int clone_flags)
2553 {
2554 int cpu = get_cpu();
2555
2556 __sched_fork(p);
2557
2558 /*
2559 * Revert to default priority/policy on fork if requested.
2560 */
2561 if (unlikely(p->sched_reset_on_fork)) {
2562 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2563 p->policy = SCHED_NORMAL;
2564 p->normal_prio = p->static_prio;
2565 }
2566
2567 if (PRIO_TO_NICE(p->static_prio) < 0) {
2568 p->static_prio = NICE_TO_PRIO(0);
2569 p->normal_prio = p->static_prio;
2570 set_load_weight(p);
2571 }
2572
2573 /*
2574 * We don't need the reset flag anymore after the fork. It has
2575 * fulfilled its duty:
2576 */
2577 p->sched_reset_on_fork = 0;
2578 }
2579
2580 /*
2581 * Make sure we do not leak PI boosting priority to the child.
2582 */
2583 p->prio = current->normal_prio;
2584
2585 if (!rt_prio(p->prio))
2586 p->sched_class = &fair_sched_class;
2587
2588 if (p->sched_class->task_fork)
2589 p->sched_class->task_fork(p);
2590
2591 #ifdef CONFIG_SMP
2592 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2593 #endif
2594 set_task_cpu(p, cpu);
2595
2596 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2597 if (likely(sched_info_on()))
2598 memset(&p->sched_info, 0, sizeof(p->sched_info));
2599 #endif
2600 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2601 p->oncpu = 0;
2602 #endif
2603 #ifdef CONFIG_PREEMPT
2604 /* Want to start with kernel preemption disabled. */
2605 task_thread_info(p)->preempt_count = 1;
2606 #endif
2607 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2608
2609 put_cpu();
2610 }
2611
2612 /*
2613 * wake_up_new_task - wake up a newly created task for the first time.
2614 *
2615 * This function will do some initial scheduler statistics housekeeping
2616 * that must be done for every newly created context, then puts the task
2617 * on the runqueue and wakes it.
2618 */
2619 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2620 {
2621 unsigned long flags;
2622 struct rq *rq;
2623
2624 rq = task_rq_lock(p, &flags);
2625 BUG_ON(p->state != TASK_RUNNING);
2626 update_rq_clock(rq);
2627 activate_task(rq, p, 0);
2628 trace_sched_wakeup_new(rq, p, 1);
2629 check_preempt_curr(rq, p, WF_FORK);
2630 #ifdef CONFIG_SMP
2631 if (p->sched_class->task_wake_up)
2632 p->sched_class->task_wake_up(rq, p);
2633 #endif
2634 task_rq_unlock(rq, &flags);
2635 }
2636
2637 #ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639 /**
2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2641 * @notifier: notifier struct to register
2642 */
2643 void preempt_notifier_register(struct preempt_notifier *notifier)
2644 {
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646 }
2647 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649 /**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
2651 * @notifier: notifier struct to unregister
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656 {
2657 hlist_del(&notifier->link);
2658 }
2659 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662 {
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668 }
2669
2670 static void
2671 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673 {
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2679 }
2680
2681 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2682
2683 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684 {
2685 }
2686
2687 static void
2688 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690 {
2691 }
2692
2693 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2694
2695 /**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
2698 * @prev: the current task that is being switched out
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
2708 static inline void
2709 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
2711 {
2712 fire_sched_out_preempt_notifiers(prev, next);
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2715 }
2716
2717 /**
2718 * finish_task_switch - clean up after a task-switch
2719 * @rq: runqueue associated with task-switch
2720 * @prev: the thread we just switched away from.
2721 *
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
2728 * so, we finish that here outside of the runqueue lock. (Doing it
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
2732 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2733 __releases(rq->lock)
2734 {
2735 struct mm_struct *mm = rq->prev_mm;
2736 long prev_state;
2737
2738 rq->prev_mm = NULL;
2739
2740 /*
2741 * A task struct has one reference for the use as "current".
2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
2745 * The test for TASK_DEAD must occur while the runqueue locks are
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2750 */
2751 prev_state = prev->state;
2752 finish_arch_switch(prev);
2753 perf_event_task_sched_in(current, cpu_of(rq));
2754 finish_lock_switch(rq, prev);
2755
2756 fire_sched_in_preempt_notifiers(current);
2757 if (mm)
2758 mmdrop(mm);
2759 if (unlikely(prev_state == TASK_DEAD)) {
2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
2763 */
2764 kprobe_flush_task(prev);
2765 put_task_struct(prev);
2766 }
2767 }
2768
2769 #ifdef CONFIG_SMP
2770
2771 /* assumes rq->lock is held */
2772 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773 {
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776 }
2777
2778 /* rq->lock is NOT held, but preemption is disabled */
2779 static inline void post_schedule(struct rq *rq)
2780 {
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
2784 spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
2787 spin_unlock_irqrestore(&rq->lock, flags);
2788
2789 rq->post_schedule = 0;
2790 }
2791 }
2792
2793 #else
2794
2795 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796 {
2797 }
2798
2799 static inline void post_schedule(struct rq *rq)
2800 {
2801 }
2802
2803 #endif
2804
2805 /**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
2809 asmlinkage void schedule_tail(struct task_struct *prev)
2810 __releases(rq->lock)
2811 {
2812 struct rq *rq = this_rq();
2813
2814 finish_task_switch(rq, prev);
2815
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
2821
2822 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825 #endif
2826 if (current->set_child_tid)
2827 put_user(task_pid_vnr(current), current->set_child_tid);
2828 }
2829
2830 /*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
2834 static inline void
2835 context_switch(struct rq *rq, struct task_struct *prev,
2836 struct task_struct *next)
2837 {
2838 struct mm_struct *mm, *oldmm;
2839
2840 prepare_task_switch(rq, prev, next);
2841 trace_sched_switch(rq, prev, next);
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
2849 arch_start_context_switch(prev);
2850
2851 if (likely(!mm)) {
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
2858 if (likely(!prev->mm)) {
2859 prev->active_mm = NULL;
2860 rq->prev_mm = oldmm;
2861 }
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870 #endif
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
2882 }
2883
2884 /*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891 unsigned long nr_running(void)
2892 {
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899 }
2900
2901 unsigned long nr_uninterruptible(void)
2902 {
2903 unsigned long i, sum = 0;
2904
2905 for_each_possible_cpu(i)
2906 sum += cpu_rq(i)->nr_uninterruptible;
2907
2908 /*
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2911 */
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
2914
2915 return sum;
2916 }
2917
2918 unsigned long long nr_context_switches(void)
2919 {
2920 int i;
2921 unsigned long long sum = 0;
2922
2923 for_each_possible_cpu(i)
2924 sum += cpu_rq(i)->nr_switches;
2925
2926 return sum;
2927 }
2928
2929 unsigned long nr_iowait(void)
2930 {
2931 unsigned long i, sum = 0;
2932
2933 for_each_possible_cpu(i)
2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936 return sum;
2937 }
2938
2939 unsigned long nr_iowait_cpu(void)
2940 {
2941 struct rq *this = this_rq();
2942 return atomic_read(&this->nr_iowait);
2943 }
2944
2945 unsigned long this_cpu_load(void)
2946 {
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949 }
2950
2951
2952 /* Variables and functions for calc_load */
2953 static atomic_long_t calc_load_tasks;
2954 static unsigned long calc_load_update;
2955 unsigned long avenrun[3];
2956 EXPORT_SYMBOL(avenrun);
2957
2958 /**
2959 * get_avenrun - get the load average array
2960 * @loads: pointer to dest load array
2961 * @offset: offset to add
2962 * @shift: shift count to shift the result left
2963 *
2964 * These values are estimates at best, so no need for locking.
2965 */
2966 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967 {
2968 loads[0] = (avenrun[0] + offset) << shift;
2969 loads[1] = (avenrun[1] + offset) << shift;
2970 loads[2] = (avenrun[2] + offset) << shift;
2971 }
2972
2973 static unsigned long
2974 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2975 {
2976 load *= exp;
2977 load += active * (FIXED_1 - exp);
2978 return load >> FSHIFT;
2979 }
2980
2981 /*
2982 * calc_load - update the avenrun load estimates 10 ticks after the
2983 * CPUs have updated calc_load_tasks.
2984 */
2985 void calc_global_load(void)
2986 {
2987 unsigned long upd = calc_load_update + 10;
2988 long active;
2989
2990 if (time_before(jiffies, upd))
2991 return;
2992
2993 active = atomic_long_read(&calc_load_tasks);
2994 active = active > 0 ? active * FIXED_1 : 0;
2995
2996 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2997 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2998 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999
3000 calc_load_update += LOAD_FREQ;
3001 }
3002
3003 /*
3004 * Either called from update_cpu_load() or from a cpu going idle
3005 */
3006 static void calc_load_account_active(struct rq *this_rq)
3007 {
3008 long nr_active, delta;
3009
3010 nr_active = this_rq->nr_running;
3011 nr_active += (long) this_rq->nr_uninterruptible;
3012
3013 if (nr_active != this_rq->calc_load_active) {
3014 delta = nr_active - this_rq->calc_load_active;
3015 this_rq->calc_load_active = nr_active;
3016 atomic_long_add(delta, &calc_load_tasks);
3017 }
3018 }
3019
3020 /*
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
3023 */
3024 static void update_cpu_load(struct rq *this_rq)
3025 {
3026 unsigned long this_load = this_rq->load.weight;
3027 int i, scale;
3028
3029 this_rq->nr_load_updates++;
3030
3031 /* Update our load: */
3032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3033 unsigned long old_load, new_load;
3034
3035 /* scale is effectively 1 << i now, and >> i divides by scale */
3036
3037 old_load = this_rq->cpu_load[i];
3038 new_load = this_load;
3039 /*
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3042 * example.
3043 */
3044 if (new_load > old_load)
3045 new_load += scale-1;
3046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 }
3048
3049 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3050 this_rq->calc_load_update += LOAD_FREQ;
3051 calc_load_account_active(this_rq);
3052 }
3053 }
3054
3055 #ifdef CONFIG_SMP
3056
3057 /*
3058 * double_rq_lock - safely lock two runqueues
3059 *
3060 * Note this does not disable interrupts like task_rq_lock,
3061 * you need to do so manually before calling.
3062 */
3063 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3064 __acquires(rq1->lock)
3065 __acquires(rq2->lock)
3066 {
3067 BUG_ON(!irqs_disabled());
3068 if (rq1 == rq2) {
3069 spin_lock(&rq1->lock);
3070 __acquire(rq2->lock); /* Fake it out ;) */
3071 } else {
3072 if (rq1 < rq2) {
3073 spin_lock(&rq1->lock);
3074 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3075 } else {
3076 spin_lock(&rq2->lock);
3077 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3078 }
3079 }
3080 update_rq_clock(rq1);
3081 update_rq_clock(rq2);
3082 }
3083
3084 /*
3085 * double_rq_unlock - safely unlock two runqueues
3086 *
3087 * Note this does not restore interrupts like task_rq_unlock,
3088 * you need to do so manually after calling.
3089 */
3090 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3091 __releases(rq1->lock)
3092 __releases(rq2->lock)
3093 {
3094 spin_unlock(&rq1->lock);
3095 if (rq1 != rq2)
3096 spin_unlock(&rq2->lock);
3097 else
3098 __release(rq2->lock);
3099 }
3100
3101 /*
3102 * If dest_cpu is allowed for this process, migrate the task to it.
3103 * This is accomplished by forcing the cpu_allowed mask to only
3104 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3105 * the cpu_allowed mask is restored.
3106 */
3107 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3108 {
3109 struct migration_req req;
3110 unsigned long flags;
3111 struct rq *rq;
3112
3113 rq = task_rq_lock(p, &flags);
3114 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3115 || unlikely(!cpu_active(dest_cpu)))
3116 goto out;
3117
3118 /* force the process onto the specified CPU */
3119 if (migrate_task(p, dest_cpu, &req)) {
3120 /* Need to wait for migration thread (might exit: take ref). */
3121 struct task_struct *mt = rq->migration_thread;
3122
3123 get_task_struct(mt);
3124 task_rq_unlock(rq, &flags);
3125 wake_up_process(mt);
3126 put_task_struct(mt);
3127 wait_for_completion(&req.done);
3128
3129 return;
3130 }
3131 out:
3132 task_rq_unlock(rq, &flags);
3133 }
3134
3135 /*
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
3138 */
3139 void sched_exec(void)
3140 {
3141 int new_cpu, this_cpu = get_cpu();
3142 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3143 put_cpu();
3144 if (new_cpu != this_cpu)
3145 sched_migrate_task(current, new_cpu);
3146 }
3147
3148 /*
3149 * pull_task - move a task from a remote runqueue to the local runqueue.
3150 * Both runqueues must be locked.
3151 */
3152 static void pull_task(struct rq *src_rq, struct task_struct *p,
3153 struct rq *this_rq, int this_cpu)
3154 {
3155 deactivate_task(src_rq, p, 0);
3156 set_task_cpu(p, this_cpu);
3157 activate_task(this_rq, p, 0);
3158 check_preempt_curr(this_rq, p, 0);
3159 }
3160
3161 /*
3162 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3163 */
3164 static
3165 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3166 struct sched_domain *sd, enum cpu_idle_type idle,
3167 int *all_pinned)
3168 {
3169 int tsk_cache_hot = 0;
3170 /*
3171 * We do not migrate tasks that are:
3172 * 1) running (obviously), or
3173 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3174 * 3) are cache-hot on their current CPU.
3175 */
3176 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3177 schedstat_inc(p, se.nr_failed_migrations_affine);
3178 return 0;
3179 }
3180 *all_pinned = 0;
3181
3182 if (task_running(rq, p)) {
3183 schedstat_inc(p, se.nr_failed_migrations_running);
3184 return 0;
3185 }
3186
3187 /*
3188 * Aggressive migration if:
3189 * 1) task is cache cold, or
3190 * 2) too many balance attempts have failed.
3191 */
3192
3193 tsk_cache_hot = task_hot(p, rq->clock, sd);
3194 if (!tsk_cache_hot ||
3195 sd->nr_balance_failed > sd->cache_nice_tries) {
3196 #ifdef CONFIG_SCHEDSTATS
3197 if (tsk_cache_hot) {
3198 schedstat_inc(sd, lb_hot_gained[idle]);
3199 schedstat_inc(p, se.nr_forced_migrations);
3200 }
3201 #endif
3202 return 1;
3203 }
3204
3205 if (tsk_cache_hot) {
3206 schedstat_inc(p, se.nr_failed_migrations_hot);
3207 return 0;
3208 }
3209 return 1;
3210 }
3211
3212 static unsigned long
3213 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3214 unsigned long max_load_move, struct sched_domain *sd,
3215 enum cpu_idle_type idle, int *all_pinned,
3216 int *this_best_prio, struct rq_iterator *iterator)
3217 {
3218 int loops = 0, pulled = 0, pinned = 0;
3219 struct task_struct *p;
3220 long rem_load_move = max_load_move;
3221
3222 if (max_load_move == 0)
3223 goto out;
3224
3225 pinned = 1;
3226
3227 /*
3228 * Start the load-balancing iterator:
3229 */
3230 p = iterator->start(iterator->arg);
3231 next:
3232 if (!p || loops++ > sysctl_sched_nr_migrate)
3233 goto out;
3234
3235 if ((p->se.load.weight >> 1) > rem_load_move ||
3236 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3237 p = iterator->next(iterator->arg);
3238 goto next;
3239 }
3240
3241 pull_task(busiest, p, this_rq, this_cpu);
3242 pulled++;
3243 rem_load_move -= p->se.load.weight;
3244
3245 #ifdef CONFIG_PREEMPT
3246 /*
3247 * NEWIDLE balancing is a source of latency, so preemptible kernels
3248 * will stop after the first task is pulled to minimize the critical
3249 * section.
3250 */
3251 if (idle == CPU_NEWLY_IDLE)
3252 goto out;
3253 #endif
3254
3255 /*
3256 * We only want to steal up to the prescribed amount of weighted load.
3257 */
3258 if (rem_load_move > 0) {
3259 if (p->prio < *this_best_prio)
3260 *this_best_prio = p->prio;
3261 p = iterator->next(iterator->arg);
3262 goto next;
3263 }
3264 out:
3265 /*
3266 * Right now, this is one of only two places pull_task() is called,
3267 * so we can safely collect pull_task() stats here rather than
3268 * inside pull_task().
3269 */
3270 schedstat_add(sd, lb_gained[idle], pulled);
3271
3272 if (all_pinned)
3273 *all_pinned = pinned;
3274
3275 return max_load_move - rem_load_move;
3276 }
3277
3278 /*
3279 * move_tasks tries to move up to max_load_move weighted load from busiest to
3280 * this_rq, as part of a balancing operation within domain "sd".
3281 * Returns 1 if successful and 0 otherwise.
3282 *
3283 * Called with both runqueues locked.
3284 */
3285 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3286 unsigned long max_load_move,
3287 struct sched_domain *sd, enum cpu_idle_type idle,
3288 int *all_pinned)
3289 {
3290 const struct sched_class *class = sched_class_highest;
3291 unsigned long total_load_moved = 0;
3292 int this_best_prio = this_rq->curr->prio;
3293
3294 do {
3295 total_load_moved +=
3296 class->load_balance(this_rq, this_cpu, busiest,
3297 max_load_move - total_load_moved,
3298 sd, idle, all_pinned, &this_best_prio);
3299 class = class->next;
3300
3301 #ifdef CONFIG_PREEMPT
3302 /*
3303 * NEWIDLE balancing is a source of latency, so preemptible
3304 * kernels will stop after the first task is pulled to minimize
3305 * the critical section.
3306 */
3307 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3308 break;
3309 #endif
3310 } while (class && max_load_move > total_load_moved);
3311
3312 return total_load_moved > 0;
3313 }
3314
3315 static int
3316 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3317 struct sched_domain *sd, enum cpu_idle_type idle,
3318 struct rq_iterator *iterator)
3319 {
3320 struct task_struct *p = iterator->start(iterator->arg);
3321 int pinned = 0;
3322
3323 while (p) {
3324 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3325 pull_task(busiest, p, this_rq, this_cpu);
3326 /*
3327 * Right now, this is only the second place pull_task()
3328 * is called, so we can safely collect pull_task()
3329 * stats here rather than inside pull_task().
3330 */
3331 schedstat_inc(sd, lb_gained[idle]);
3332
3333 return 1;
3334 }
3335 p = iterator->next(iterator->arg);
3336 }
3337
3338 return 0;
3339 }
3340
3341 /*
3342 * move_one_task tries to move exactly one task from busiest to this_rq, as
3343 * part of active balancing operations within "domain".
3344 * Returns 1 if successful and 0 otherwise.
3345 *
3346 * Called with both runqueues locked.
3347 */
3348 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3349 struct sched_domain *sd, enum cpu_idle_type idle)
3350 {
3351 const struct sched_class *class;
3352
3353 for_each_class(class) {
3354 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3355 return 1;
3356 }
3357
3358 return 0;
3359 }
3360 /********** Helpers for find_busiest_group ************************/
3361 /*
3362 * sd_lb_stats - Structure to store the statistics of a sched_domain
3363 * during load balancing.
3364 */
3365 struct sd_lb_stats {
3366 struct sched_group *busiest; /* Busiest group in this sd */
3367 struct sched_group *this; /* Local group in this sd */
3368 unsigned long total_load; /* Total load of all groups in sd */
3369 unsigned long total_pwr; /* Total power of all groups in sd */
3370 unsigned long avg_load; /* Average load across all groups in sd */
3371
3372 /** Statistics of this group */
3373 unsigned long this_load;
3374 unsigned long this_load_per_task;
3375 unsigned long this_nr_running;
3376
3377 /* Statistics of the busiest group */
3378 unsigned long max_load;
3379 unsigned long busiest_load_per_task;
3380 unsigned long busiest_nr_running;
3381
3382 int group_imb; /* Is there imbalance in this sd */
3383 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3384 int power_savings_balance; /* Is powersave balance needed for this sd */
3385 struct sched_group *group_min; /* Least loaded group in sd */
3386 struct sched_group *group_leader; /* Group which relieves group_min */
3387 unsigned long min_load_per_task; /* load_per_task in group_min */
3388 unsigned long leader_nr_running; /* Nr running of group_leader */
3389 unsigned long min_nr_running; /* Nr running of group_min */
3390 #endif
3391 };
3392
3393 /*
3394 * sg_lb_stats - stats of a sched_group required for load_balancing
3395 */
3396 struct sg_lb_stats {
3397 unsigned long avg_load; /*Avg load across the CPUs of the group */
3398 unsigned long group_load; /* Total load over the CPUs of the group */
3399 unsigned long sum_nr_running; /* Nr tasks running in the group */
3400 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3401 unsigned long group_capacity;
3402 int group_imb; /* Is there an imbalance in the group ? */
3403 };
3404
3405 /**
3406 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3407 * @group: The group whose first cpu is to be returned.
3408 */
3409 static inline unsigned int group_first_cpu(struct sched_group *group)
3410 {
3411 return cpumask_first(sched_group_cpus(group));
3412 }
3413
3414 /**
3415 * get_sd_load_idx - Obtain the load index for a given sched domain.
3416 * @sd: The sched_domain whose load_idx is to be obtained.
3417 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3418 */
3419 static inline int get_sd_load_idx(struct sched_domain *sd,
3420 enum cpu_idle_type idle)
3421 {
3422 int load_idx;
3423
3424 switch (idle) {
3425 case CPU_NOT_IDLE:
3426 load_idx = sd->busy_idx;
3427 break;
3428
3429 case CPU_NEWLY_IDLE:
3430 load_idx = sd->newidle_idx;
3431 break;
3432 default:
3433 load_idx = sd->idle_idx;
3434 break;
3435 }
3436
3437 return load_idx;
3438 }
3439
3440
3441 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3442 /**
3443 * init_sd_power_savings_stats - Initialize power savings statistics for
3444 * the given sched_domain, during load balancing.
3445 *
3446 * @sd: Sched domain whose power-savings statistics are to be initialized.
3447 * @sds: Variable containing the statistics for sd.
3448 * @idle: Idle status of the CPU at which we're performing load-balancing.
3449 */
3450 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3451 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3452 {
3453 /*
3454 * Busy processors will not participate in power savings
3455 * balance.
3456 */
3457 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3458 sds->power_savings_balance = 0;
3459 else {
3460 sds->power_savings_balance = 1;
3461 sds->min_nr_running = ULONG_MAX;
3462 sds->leader_nr_running = 0;
3463 }
3464 }
3465
3466 /**
3467 * update_sd_power_savings_stats - Update the power saving stats for a
3468 * sched_domain while performing load balancing.
3469 *
3470 * @group: sched_group belonging to the sched_domain under consideration.
3471 * @sds: Variable containing the statistics of the sched_domain
3472 * @local_group: Does group contain the CPU for which we're performing
3473 * load balancing ?
3474 * @sgs: Variable containing the statistics of the group.
3475 */
3476 static inline void update_sd_power_savings_stats(struct sched_group *group,
3477 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3478 {
3479
3480 if (!sds->power_savings_balance)
3481 return;
3482
3483 /*
3484 * If the local group is idle or completely loaded
3485 * no need to do power savings balance at this domain
3486 */
3487 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3488 !sds->this_nr_running))
3489 sds->power_savings_balance = 0;
3490
3491 /*
3492 * If a group is already running at full capacity or idle,
3493 * don't include that group in power savings calculations
3494 */
3495 if (!sds->power_savings_balance ||
3496 sgs->sum_nr_running >= sgs->group_capacity ||
3497 !sgs->sum_nr_running)
3498 return;
3499
3500 /*
3501 * Calculate the group which has the least non-idle load.
3502 * This is the group from where we need to pick up the load
3503 * for saving power
3504 */
3505 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3506 (sgs->sum_nr_running == sds->min_nr_running &&
3507 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3508 sds->group_min = group;
3509 sds->min_nr_running = sgs->sum_nr_running;
3510 sds->min_load_per_task = sgs->sum_weighted_load /
3511 sgs->sum_nr_running;
3512 }
3513
3514 /*
3515 * Calculate the group which is almost near its
3516 * capacity but still has some space to pick up some load
3517 * from other group and save more power
3518 */
3519 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3520 return;
3521
3522 if (sgs->sum_nr_running > sds->leader_nr_running ||
3523 (sgs->sum_nr_running == sds->leader_nr_running &&
3524 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3525 sds->group_leader = group;
3526 sds->leader_nr_running = sgs->sum_nr_running;
3527 }
3528 }
3529
3530 /**
3531 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3532 * @sds: Variable containing the statistics of the sched_domain
3533 * under consideration.
3534 * @this_cpu: Cpu at which we're currently performing load-balancing.
3535 * @imbalance: Variable to store the imbalance.
3536 *
3537 * Description:
3538 * Check if we have potential to perform some power-savings balance.
3539 * If yes, set the busiest group to be the least loaded group in the
3540 * sched_domain, so that it's CPUs can be put to idle.
3541 *
3542 * Returns 1 if there is potential to perform power-savings balance.
3543 * Else returns 0.
3544 */
3545 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3546 int this_cpu, unsigned long *imbalance)
3547 {
3548 if (!sds->power_savings_balance)
3549 return 0;
3550
3551 if (sds->this != sds->group_leader ||
3552 sds->group_leader == sds->group_min)
3553 return 0;
3554
3555 *imbalance = sds->min_load_per_task;
3556 sds->busiest = sds->group_min;
3557
3558 return 1;
3559
3560 }
3561 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3562 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3563 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3564 {
3565 return;
3566 }
3567
3568 static inline void update_sd_power_savings_stats(struct sched_group *group,
3569 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3570 {
3571 return;
3572 }
3573
3574 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3575 int this_cpu, unsigned long *imbalance)
3576 {
3577 return 0;
3578 }
3579 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3580
3581
3582 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3583 {
3584 return SCHED_LOAD_SCALE;
3585 }
3586
3587 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3588 {
3589 return default_scale_freq_power(sd, cpu);
3590 }
3591
3592 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3593 {
3594 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3595 unsigned long smt_gain = sd->smt_gain;
3596
3597 smt_gain /= weight;
3598
3599 return smt_gain;
3600 }
3601
3602 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3603 {
3604 return default_scale_smt_power(sd, cpu);
3605 }
3606
3607 unsigned long scale_rt_power(int cpu)
3608 {
3609 struct rq *rq = cpu_rq(cpu);
3610 u64 total, available;
3611
3612 sched_avg_update(rq);
3613
3614 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3615 available = total - rq->rt_avg;
3616
3617 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3618 total = SCHED_LOAD_SCALE;
3619
3620 total >>= SCHED_LOAD_SHIFT;
3621
3622 return div_u64(available, total);
3623 }
3624
3625 static void update_cpu_power(struct sched_domain *sd, int cpu)
3626 {
3627 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3628 unsigned long power = SCHED_LOAD_SCALE;
3629 struct sched_group *sdg = sd->groups;
3630
3631 if (sched_feat(ARCH_POWER))
3632 power *= arch_scale_freq_power(sd, cpu);
3633 else
3634 power *= default_scale_freq_power(sd, cpu);
3635
3636 power >>= SCHED_LOAD_SHIFT;
3637
3638 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3639 if (sched_feat(ARCH_POWER))
3640 power *= arch_scale_smt_power(sd, cpu);
3641 else
3642 power *= default_scale_smt_power(sd, cpu);
3643
3644 power >>= SCHED_LOAD_SHIFT;
3645 }
3646
3647 power *= scale_rt_power(cpu);
3648 power >>= SCHED_LOAD_SHIFT;
3649
3650 if (!power)
3651 power = 1;
3652
3653 sdg->cpu_power = power;
3654 }
3655
3656 static void update_group_power(struct sched_domain *sd, int cpu)
3657 {
3658 struct sched_domain *child = sd->child;
3659 struct sched_group *group, *sdg = sd->groups;
3660 unsigned long power;
3661
3662 if (!child) {
3663 update_cpu_power(sd, cpu);
3664 return;
3665 }
3666
3667 power = 0;
3668
3669 group = child->groups;
3670 do {
3671 power += group->cpu_power;
3672 group = group->next;
3673 } while (group != child->groups);
3674
3675 sdg->cpu_power = power;
3676 }
3677
3678 /**
3679 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3680 * @sd: The sched_domain whose statistics are to be updated.
3681 * @group: sched_group whose statistics are to be updated.
3682 * @this_cpu: Cpu for which load balance is currently performed.
3683 * @idle: Idle status of this_cpu
3684 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3685 * @sd_idle: Idle status of the sched_domain containing group.
3686 * @local_group: Does group contain this_cpu.
3687 * @cpus: Set of cpus considered for load balancing.
3688 * @balance: Should we balance.
3689 * @sgs: variable to hold the statistics for this group.
3690 */
3691 static inline void update_sg_lb_stats(struct sched_domain *sd,
3692 struct sched_group *group, int this_cpu,
3693 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3694 int local_group, const struct cpumask *cpus,
3695 int *balance, struct sg_lb_stats *sgs)
3696 {
3697 unsigned long load, max_cpu_load, min_cpu_load;
3698 int i;
3699 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3700 unsigned long sum_avg_load_per_task;
3701 unsigned long avg_load_per_task;
3702
3703 if (local_group) {
3704 balance_cpu = group_first_cpu(group);
3705 if (balance_cpu == this_cpu)
3706 update_group_power(sd, this_cpu);
3707 }
3708
3709 /* Tally up the load of all CPUs in the group */
3710 sum_avg_load_per_task = avg_load_per_task = 0;
3711 max_cpu_load = 0;
3712 min_cpu_load = ~0UL;
3713
3714 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3715 struct rq *rq = cpu_rq(i);
3716
3717 if (*sd_idle && rq->nr_running)
3718 *sd_idle = 0;
3719
3720 /* Bias balancing toward cpus of our domain */
3721 if (local_group) {
3722 if (idle_cpu(i) && !first_idle_cpu) {
3723 first_idle_cpu = 1;
3724 balance_cpu = i;
3725 }
3726
3727 load = target_load(i, load_idx);
3728 } else {
3729 load = source_load(i, load_idx);
3730 if (load > max_cpu_load)
3731 max_cpu_load = load;
3732 if (min_cpu_load > load)
3733 min_cpu_load = load;
3734 }
3735
3736 sgs->group_load += load;
3737 sgs->sum_nr_running += rq->nr_running;
3738 sgs->sum_weighted_load += weighted_cpuload(i);
3739
3740 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3741 }
3742
3743 /*
3744 * First idle cpu or the first cpu(busiest) in this sched group
3745 * is eligible for doing load balancing at this and above
3746 * domains. In the newly idle case, we will allow all the cpu's
3747 * to do the newly idle load balance.
3748 */
3749 if (idle != CPU_NEWLY_IDLE && local_group &&
3750 balance_cpu != this_cpu && balance) {
3751 *balance = 0;
3752 return;
3753 }
3754
3755 /* Adjust by relative CPU power of the group */
3756 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3757
3758
3759 /*
3760 * Consider the group unbalanced when the imbalance is larger
3761 * than the average weight of two tasks.
3762 *
3763 * APZ: with cgroup the avg task weight can vary wildly and
3764 * might not be a suitable number - should we keep a
3765 * normalized nr_running number somewhere that negates
3766 * the hierarchy?
3767 */
3768 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3769 group->cpu_power;
3770
3771 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3772 sgs->group_imb = 1;
3773
3774 sgs->group_capacity =
3775 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3776 }
3777
3778 /**
3779 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3780 * @sd: sched_domain whose statistics are to be updated.
3781 * @this_cpu: Cpu for which load balance is currently performed.
3782 * @idle: Idle status of this_cpu
3783 * @sd_idle: Idle status of the sched_domain containing group.
3784 * @cpus: Set of cpus considered for load balancing.
3785 * @balance: Should we balance.
3786 * @sds: variable to hold the statistics for this sched_domain.
3787 */
3788 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3789 enum cpu_idle_type idle, int *sd_idle,
3790 const struct cpumask *cpus, int *balance,
3791 struct sd_lb_stats *sds)
3792 {
3793 struct sched_domain *child = sd->child;
3794 struct sched_group *group = sd->groups;
3795 struct sg_lb_stats sgs;
3796 int load_idx, prefer_sibling = 0;
3797
3798 if (child && child->flags & SD_PREFER_SIBLING)
3799 prefer_sibling = 1;
3800
3801 init_sd_power_savings_stats(sd, sds, idle);
3802 load_idx = get_sd_load_idx(sd, idle);
3803
3804 do {
3805 int local_group;
3806
3807 local_group = cpumask_test_cpu(this_cpu,
3808 sched_group_cpus(group));
3809 memset(&sgs, 0, sizeof(sgs));
3810 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3811 local_group, cpus, balance, &sgs);
3812
3813 if (local_group && balance && !(*balance))
3814 return;
3815
3816 sds->total_load += sgs.group_load;
3817 sds->total_pwr += group->cpu_power;
3818
3819 /*
3820 * In case the child domain prefers tasks go to siblings
3821 * first, lower the group capacity to one so that we'll try
3822 * and move all the excess tasks away.
3823 */
3824 if (prefer_sibling)
3825 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3826
3827 if (local_group) {
3828 sds->this_load = sgs.avg_load;
3829 sds->this = group;
3830 sds->this_nr_running = sgs.sum_nr_running;
3831 sds->this_load_per_task = sgs.sum_weighted_load;
3832 } else if (sgs.avg_load > sds->max_load &&
3833 (sgs.sum_nr_running > sgs.group_capacity ||
3834 sgs.group_imb)) {
3835 sds->max_load = sgs.avg_load;
3836 sds->busiest = group;
3837 sds->busiest_nr_running = sgs.sum_nr_running;
3838 sds->busiest_load_per_task = sgs.sum_weighted_load;
3839 sds->group_imb = sgs.group_imb;
3840 }
3841
3842 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3843 group = group->next;
3844 } while (group != sd->groups);
3845 }
3846
3847 /**
3848 * fix_small_imbalance - Calculate the minor imbalance that exists
3849 * amongst the groups of a sched_domain, during
3850 * load balancing.
3851 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3852 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3853 * @imbalance: Variable to store the imbalance.
3854 */
3855 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3856 int this_cpu, unsigned long *imbalance)
3857 {
3858 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3859 unsigned int imbn = 2;
3860
3861 if (sds->this_nr_running) {
3862 sds->this_load_per_task /= sds->this_nr_running;
3863 if (sds->busiest_load_per_task >
3864 sds->this_load_per_task)
3865 imbn = 1;
3866 } else
3867 sds->this_load_per_task =
3868 cpu_avg_load_per_task(this_cpu);
3869
3870 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3871 sds->busiest_load_per_task * imbn) {
3872 *imbalance = sds->busiest_load_per_task;
3873 return;
3874 }
3875
3876 /*
3877 * OK, we don't have enough imbalance to justify moving tasks,
3878 * however we may be able to increase total CPU power used by
3879 * moving them.
3880 */
3881
3882 pwr_now += sds->busiest->cpu_power *
3883 min(sds->busiest_load_per_task, sds->max_load);
3884 pwr_now += sds->this->cpu_power *
3885 min(sds->this_load_per_task, sds->this_load);
3886 pwr_now /= SCHED_LOAD_SCALE;
3887
3888 /* Amount of load we'd subtract */
3889 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3890 sds->busiest->cpu_power;
3891 if (sds->max_load > tmp)
3892 pwr_move += sds->busiest->cpu_power *
3893 min(sds->busiest_load_per_task, sds->max_load - tmp);
3894
3895 /* Amount of load we'd add */
3896 if (sds->max_load * sds->busiest->cpu_power <
3897 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3898 tmp = (sds->max_load * sds->busiest->cpu_power) /
3899 sds->this->cpu_power;
3900 else
3901 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3902 sds->this->cpu_power;
3903 pwr_move += sds->this->cpu_power *
3904 min(sds->this_load_per_task, sds->this_load + tmp);
3905 pwr_move /= SCHED_LOAD_SCALE;
3906
3907 /* Move if we gain throughput */
3908 if (pwr_move > pwr_now)
3909 *imbalance = sds->busiest_load_per_task;
3910 }
3911
3912 /**
3913 * calculate_imbalance - Calculate the amount of imbalance present within the
3914 * groups of a given sched_domain during load balance.
3915 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3916 * @this_cpu: Cpu for which currently load balance is being performed.
3917 * @imbalance: The variable to store the imbalance.
3918 */
3919 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3920 unsigned long *imbalance)
3921 {
3922 unsigned long max_pull;
3923 /*
3924 * In the presence of smp nice balancing, certain scenarios can have
3925 * max load less than avg load(as we skip the groups at or below
3926 * its cpu_power, while calculating max_load..)
3927 */
3928 if (sds->max_load < sds->avg_load) {
3929 *imbalance = 0;
3930 return fix_small_imbalance(sds, this_cpu, imbalance);
3931 }
3932
3933 /* Don't want to pull so many tasks that a group would go idle */
3934 max_pull = min(sds->max_load - sds->avg_load,
3935 sds->max_load - sds->busiest_load_per_task);
3936
3937 /* How much load to actually move to equalise the imbalance */
3938 *imbalance = min(max_pull * sds->busiest->cpu_power,
3939 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3940 / SCHED_LOAD_SCALE;
3941
3942 /*
3943 * if *imbalance is less than the average load per runnable task
3944 * there is no gaurantee that any tasks will be moved so we'll have
3945 * a think about bumping its value to force at least one task to be
3946 * moved
3947 */
3948 if (*imbalance < sds->busiest_load_per_task)
3949 return fix_small_imbalance(sds, this_cpu, imbalance);
3950
3951 }
3952 /******* find_busiest_group() helpers end here *********************/
3953
3954 /**
3955 * find_busiest_group - Returns the busiest group within the sched_domain
3956 * if there is an imbalance. If there isn't an imbalance, and
3957 * the user has opted for power-savings, it returns a group whose
3958 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3959 * such a group exists.
3960 *
3961 * Also calculates the amount of weighted load which should be moved
3962 * to restore balance.
3963 *
3964 * @sd: The sched_domain whose busiest group is to be returned.
3965 * @this_cpu: The cpu for which load balancing is currently being performed.
3966 * @imbalance: Variable which stores amount of weighted load which should
3967 * be moved to restore balance/put a group to idle.
3968 * @idle: The idle status of this_cpu.
3969 * @sd_idle: The idleness of sd
3970 * @cpus: The set of CPUs under consideration for load-balancing.
3971 * @balance: Pointer to a variable indicating if this_cpu
3972 * is the appropriate cpu to perform load balancing at this_level.
3973 *
3974 * Returns: - the busiest group if imbalance exists.
3975 * - If no imbalance and user has opted for power-savings balance,
3976 * return the least loaded group whose CPUs can be
3977 * put to idle by rebalancing its tasks onto our group.
3978 */
3979 static struct sched_group *
3980 find_busiest_group(struct sched_domain *sd, int this_cpu,
3981 unsigned long *imbalance, enum cpu_idle_type idle,
3982 int *sd_idle, const struct cpumask *cpus, int *balance)
3983 {
3984 struct sd_lb_stats sds;
3985
3986 memset(&sds, 0, sizeof(sds));
3987
3988 /*
3989 * Compute the various statistics relavent for load balancing at
3990 * this level.
3991 */
3992 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3993 balance, &sds);
3994
3995 /* Cases where imbalance does not exist from POV of this_cpu */
3996 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3997 * at this level.
3998 * 2) There is no busy sibling group to pull from.
3999 * 3) This group is the busiest group.
4000 * 4) This group is more busy than the avg busieness at this
4001 * sched_domain.
4002 * 5) The imbalance is within the specified limit.
4003 * 6) Any rebalance would lead to ping-pong
4004 */
4005 if (balance && !(*balance))
4006 goto ret;
4007
4008 if (!sds.busiest || sds.busiest_nr_running == 0)
4009 goto out_balanced;
4010
4011 if (sds.this_load >= sds.max_load)
4012 goto out_balanced;
4013
4014 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4015
4016 if (sds.this_load >= sds.avg_load)
4017 goto out_balanced;
4018
4019 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4020 goto out_balanced;
4021
4022 sds.busiest_load_per_task /= sds.busiest_nr_running;
4023 if (sds.group_imb)
4024 sds.busiest_load_per_task =
4025 min(sds.busiest_load_per_task, sds.avg_load);
4026
4027 /*
4028 * We're trying to get all the cpus to the average_load, so we don't
4029 * want to push ourselves above the average load, nor do we wish to
4030 * reduce the max loaded cpu below the average load, as either of these
4031 * actions would just result in more rebalancing later, and ping-pong
4032 * tasks around. Thus we look for the minimum possible imbalance.
4033 * Negative imbalances (*we* are more loaded than anyone else) will
4034 * be counted as no imbalance for these purposes -- we can't fix that
4035 * by pulling tasks to us. Be careful of negative numbers as they'll
4036 * appear as very large values with unsigned longs.
4037 */
4038 if (sds.max_load <= sds.busiest_load_per_task)
4039 goto out_balanced;
4040
4041 /* Looks like there is an imbalance. Compute it */
4042 calculate_imbalance(&sds, this_cpu, imbalance);
4043 return sds.busiest;
4044
4045 out_balanced:
4046 /*
4047 * There is no obvious imbalance. But check if we can do some balancing
4048 * to save power.
4049 */
4050 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4051 return sds.busiest;
4052 ret:
4053 *imbalance = 0;
4054 return NULL;
4055 }
4056
4057 /*
4058 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4059 */
4060 static struct rq *
4061 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4062 unsigned long imbalance, const struct cpumask *cpus)
4063 {
4064 struct rq *busiest = NULL, *rq;
4065 unsigned long max_load = 0;
4066 int i;
4067
4068 for_each_cpu(i, sched_group_cpus(group)) {
4069 unsigned long power = power_of(i);
4070 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4071 unsigned long wl;
4072
4073 if (!cpumask_test_cpu(i, cpus))
4074 continue;
4075
4076 rq = cpu_rq(i);
4077 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4078 wl /= power;
4079
4080 if (capacity && rq->nr_running == 1 && wl > imbalance)
4081 continue;
4082
4083 if (wl > max_load) {
4084 max_load = wl;
4085 busiest = rq;
4086 }
4087 }
4088
4089 return busiest;
4090 }
4091
4092 /*
4093 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4094 * so long as it is large enough.
4095 */
4096 #define MAX_PINNED_INTERVAL 512
4097
4098 /* Working cpumask for load_balance and load_balance_newidle. */
4099 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4100
4101 /*
4102 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4103 * tasks if there is an imbalance.
4104 */
4105 static int load_balance(int this_cpu, struct rq *this_rq,
4106 struct sched_domain *sd, enum cpu_idle_type idle,
4107 int *balance)
4108 {
4109 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4110 struct sched_group *group;
4111 unsigned long imbalance;
4112 struct rq *busiest;
4113 unsigned long flags;
4114 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4115
4116 cpumask_copy(cpus, cpu_active_mask);
4117
4118 /*
4119 * When power savings policy is enabled for the parent domain, idle
4120 * sibling can pick up load irrespective of busy siblings. In this case,
4121 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4122 * portraying it as CPU_NOT_IDLE.
4123 */
4124 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4125 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4126 sd_idle = 1;
4127
4128 schedstat_inc(sd, lb_count[idle]);
4129
4130 redo:
4131 update_shares(sd);
4132 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4133 cpus, balance);
4134
4135 if (*balance == 0)
4136 goto out_balanced;
4137
4138 if (!group) {
4139 schedstat_inc(sd, lb_nobusyg[idle]);
4140 goto out_balanced;
4141 }
4142
4143 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4144 if (!busiest) {
4145 schedstat_inc(sd, lb_nobusyq[idle]);
4146 goto out_balanced;
4147 }
4148
4149 BUG_ON(busiest == this_rq);
4150
4151 schedstat_add(sd, lb_imbalance[idle], imbalance);
4152
4153 ld_moved = 0;
4154 if (busiest->nr_running > 1) {
4155 /*
4156 * Attempt to move tasks. If find_busiest_group has found
4157 * an imbalance but busiest->nr_running <= 1, the group is
4158 * still unbalanced. ld_moved simply stays zero, so it is
4159 * correctly treated as an imbalance.
4160 */
4161 local_irq_save(flags);
4162 double_rq_lock(this_rq, busiest);
4163 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4164 imbalance, sd, idle, &all_pinned);
4165 double_rq_unlock(this_rq, busiest);
4166 local_irq_restore(flags);
4167
4168 /*
4169 * some other cpu did the load balance for us.
4170 */
4171 if (ld_moved && this_cpu != smp_processor_id())
4172 resched_cpu(this_cpu);
4173
4174 /* All tasks on this runqueue were pinned by CPU affinity */
4175 if (unlikely(all_pinned)) {
4176 cpumask_clear_cpu(cpu_of(busiest), cpus);
4177 if (!cpumask_empty(cpus))
4178 goto redo;
4179 goto out_balanced;
4180 }
4181 }
4182
4183 if (!ld_moved) {
4184 schedstat_inc(sd, lb_failed[idle]);
4185 sd->nr_balance_failed++;
4186
4187 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4188
4189 spin_lock_irqsave(&busiest->lock, flags);
4190
4191 /* don't kick the migration_thread, if the curr
4192 * task on busiest cpu can't be moved to this_cpu
4193 */
4194 if (!cpumask_test_cpu(this_cpu,
4195 &busiest->curr->cpus_allowed)) {
4196 spin_unlock_irqrestore(&busiest->lock, flags);
4197 all_pinned = 1;
4198 goto out_one_pinned;
4199 }
4200
4201 if (!busiest->active_balance) {
4202 busiest->active_balance = 1;
4203 busiest->push_cpu = this_cpu;
4204 active_balance = 1;
4205 }
4206 spin_unlock_irqrestore(&busiest->lock, flags);
4207 if (active_balance)
4208 wake_up_process(busiest->migration_thread);
4209
4210 /*
4211 * We've kicked active balancing, reset the failure
4212 * counter.
4213 */
4214 sd->nr_balance_failed = sd->cache_nice_tries+1;
4215 }
4216 } else
4217 sd->nr_balance_failed = 0;
4218
4219 if (likely(!active_balance)) {
4220 /* We were unbalanced, so reset the balancing interval */
4221 sd->balance_interval = sd->min_interval;
4222 } else {
4223 /*
4224 * If we've begun active balancing, start to back off. This
4225 * case may not be covered by the all_pinned logic if there
4226 * is only 1 task on the busy runqueue (because we don't call
4227 * move_tasks).
4228 */
4229 if (sd->balance_interval < sd->max_interval)
4230 sd->balance_interval *= 2;
4231 }
4232
4233 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4234 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4235 ld_moved = -1;
4236
4237 goto out;
4238
4239 out_balanced:
4240 schedstat_inc(sd, lb_balanced[idle]);
4241
4242 sd->nr_balance_failed = 0;
4243
4244 out_one_pinned:
4245 /* tune up the balancing interval */
4246 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4247 (sd->balance_interval < sd->max_interval))
4248 sd->balance_interval *= 2;
4249
4250 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4251 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4252 ld_moved = -1;
4253 else
4254 ld_moved = 0;
4255 out:
4256 if (ld_moved)
4257 update_shares(sd);
4258 return ld_moved;
4259 }
4260
4261 /*
4262 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4263 * tasks if there is an imbalance.
4264 *
4265 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4266 * this_rq is locked.
4267 */
4268 static int
4269 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4270 {
4271 struct sched_group *group;
4272 struct rq *busiest = NULL;
4273 unsigned long imbalance;
4274 int ld_moved = 0;
4275 int sd_idle = 0;
4276 int all_pinned = 0;
4277 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4278
4279 cpumask_copy(cpus, cpu_active_mask);
4280
4281 /*
4282 * When power savings policy is enabled for the parent domain, idle
4283 * sibling can pick up load irrespective of busy siblings. In this case,
4284 * let the state of idle sibling percolate up as IDLE, instead of
4285 * portraying it as CPU_NOT_IDLE.
4286 */
4287 if (sd->flags & SD_SHARE_CPUPOWER &&
4288 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4289 sd_idle = 1;
4290
4291 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4292 redo:
4293 update_shares_locked(this_rq, sd);
4294 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4295 &sd_idle, cpus, NULL);
4296 if (!group) {
4297 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4298 goto out_balanced;
4299 }
4300
4301 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4302 if (!busiest) {
4303 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4304 goto out_balanced;
4305 }
4306
4307 BUG_ON(busiest == this_rq);
4308
4309 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4310
4311 ld_moved = 0;
4312 if (busiest->nr_running > 1) {
4313 /* Attempt to move tasks */
4314 double_lock_balance(this_rq, busiest);
4315 /* this_rq->clock is already updated */
4316 update_rq_clock(busiest);
4317 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4318 imbalance, sd, CPU_NEWLY_IDLE,
4319 &all_pinned);
4320 double_unlock_balance(this_rq, busiest);
4321
4322 if (unlikely(all_pinned)) {
4323 cpumask_clear_cpu(cpu_of(busiest), cpus);
4324 if (!cpumask_empty(cpus))
4325 goto redo;
4326 }
4327 }
4328
4329 if (!ld_moved) {
4330 int active_balance = 0;
4331
4332 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4333 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4334 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4335 return -1;
4336
4337 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4338 return -1;
4339
4340 if (sd->nr_balance_failed++ < 2)
4341 return -1;
4342
4343 /*
4344 * The only task running in a non-idle cpu can be moved to this
4345 * cpu in an attempt to completely freeup the other CPU
4346 * package. The same method used to move task in load_balance()
4347 * have been extended for load_balance_newidle() to speedup
4348 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4349 *
4350 * The package power saving logic comes from
4351 * find_busiest_group(). If there are no imbalance, then
4352 * f_b_g() will return NULL. However when sched_mc={1,2} then
4353 * f_b_g() will select a group from which a running task may be
4354 * pulled to this cpu in order to make the other package idle.
4355 * If there is no opportunity to make a package idle and if
4356 * there are no imbalance, then f_b_g() will return NULL and no
4357 * action will be taken in load_balance_newidle().
4358 *
4359 * Under normal task pull operation due to imbalance, there
4360 * will be more than one task in the source run queue and
4361 * move_tasks() will succeed. ld_moved will be true and this
4362 * active balance code will not be triggered.
4363 */
4364
4365 /* Lock busiest in correct order while this_rq is held */
4366 double_lock_balance(this_rq, busiest);
4367
4368 /*
4369 * don't kick the migration_thread, if the curr
4370 * task on busiest cpu can't be moved to this_cpu
4371 */
4372 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4373 double_unlock_balance(this_rq, busiest);
4374 all_pinned = 1;
4375 return ld_moved;
4376 }
4377
4378 if (!busiest->active_balance) {
4379 busiest->active_balance = 1;
4380 busiest->push_cpu = this_cpu;
4381 active_balance = 1;
4382 }
4383
4384 double_unlock_balance(this_rq, busiest);
4385 /*
4386 * Should not call ttwu while holding a rq->lock
4387 */
4388 spin_unlock(&this_rq->lock);
4389 if (active_balance)
4390 wake_up_process(busiest->migration_thread);
4391 spin_lock(&this_rq->lock);
4392
4393 } else
4394 sd->nr_balance_failed = 0;
4395
4396 update_shares_locked(this_rq, sd);
4397 return ld_moved;
4398
4399 out_balanced:
4400 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4403 return -1;
4404 sd->nr_balance_failed = 0;
4405
4406 return 0;
4407 }
4408
4409 /*
4410 * idle_balance is called by schedule() if this_cpu is about to become
4411 * idle. Attempts to pull tasks from other CPUs.
4412 */
4413 static void idle_balance(int this_cpu, struct rq *this_rq)
4414 {
4415 struct sched_domain *sd;
4416 int pulled_task = 0;
4417 unsigned long next_balance = jiffies + HZ;
4418
4419 this_rq->idle_stamp = this_rq->clock;
4420
4421 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4422 return;
4423
4424 for_each_domain(this_cpu, sd) {
4425 unsigned long interval;
4426
4427 if (!(sd->flags & SD_LOAD_BALANCE))
4428 continue;
4429
4430 if (sd->flags & SD_BALANCE_NEWIDLE)
4431 /* If we've pulled tasks over stop searching: */
4432 pulled_task = load_balance_newidle(this_cpu, this_rq,
4433 sd);
4434
4435 interval = msecs_to_jiffies(sd->balance_interval);
4436 if (time_after(next_balance, sd->last_balance + interval))
4437 next_balance = sd->last_balance + interval;
4438 if (pulled_task) {
4439 this_rq->idle_stamp = 0;
4440 break;
4441 }
4442 }
4443 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4444 /*
4445 * We are going idle. next_balance may be set based on
4446 * a busy processor. So reset next_balance.
4447 */
4448 this_rq->next_balance = next_balance;
4449 }
4450 }
4451
4452 /*
4453 * active_load_balance is run by migration threads. It pushes running tasks
4454 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4455 * running on each physical CPU where possible, and avoids physical /
4456 * logical imbalances.
4457 *
4458 * Called with busiest_rq locked.
4459 */
4460 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4461 {
4462 int target_cpu = busiest_rq->push_cpu;
4463 struct sched_domain *sd;
4464 struct rq *target_rq;
4465
4466 /* Is there any task to move? */
4467 if (busiest_rq->nr_running <= 1)
4468 return;
4469
4470 target_rq = cpu_rq(target_cpu);
4471
4472 /*
4473 * This condition is "impossible", if it occurs
4474 * we need to fix it. Originally reported by
4475 * Bjorn Helgaas on a 128-cpu setup.
4476 */
4477 BUG_ON(busiest_rq == target_rq);
4478
4479 /* move a task from busiest_rq to target_rq */
4480 double_lock_balance(busiest_rq, target_rq);
4481 update_rq_clock(busiest_rq);
4482 update_rq_clock(target_rq);
4483
4484 /* Search for an sd spanning us and the target CPU. */
4485 for_each_domain(target_cpu, sd) {
4486 if ((sd->flags & SD_LOAD_BALANCE) &&
4487 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4488 break;
4489 }
4490
4491 if (likely(sd)) {
4492 schedstat_inc(sd, alb_count);
4493
4494 if (move_one_task(target_rq, target_cpu, busiest_rq,
4495 sd, CPU_IDLE))
4496 schedstat_inc(sd, alb_pushed);
4497 else
4498 schedstat_inc(sd, alb_failed);
4499 }
4500 double_unlock_balance(busiest_rq, target_rq);
4501 }
4502
4503 #ifdef CONFIG_NO_HZ
4504 static struct {
4505 atomic_t load_balancer;
4506 cpumask_var_t cpu_mask;
4507 cpumask_var_t ilb_grp_nohz_mask;
4508 } nohz ____cacheline_aligned = {
4509 .load_balancer = ATOMIC_INIT(-1),
4510 };
4511
4512 int get_nohz_load_balancer(void)
4513 {
4514 return atomic_read(&nohz.load_balancer);
4515 }
4516
4517 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4518 /**
4519 * lowest_flag_domain - Return lowest sched_domain containing flag.
4520 * @cpu: The cpu whose lowest level of sched domain is to
4521 * be returned.
4522 * @flag: The flag to check for the lowest sched_domain
4523 * for the given cpu.
4524 *
4525 * Returns the lowest sched_domain of a cpu which contains the given flag.
4526 */
4527 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4528 {
4529 struct sched_domain *sd;
4530
4531 for_each_domain(cpu, sd)
4532 if (sd && (sd->flags & flag))
4533 break;
4534
4535 return sd;
4536 }
4537
4538 /**
4539 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4540 * @cpu: The cpu whose domains we're iterating over.
4541 * @sd: variable holding the value of the power_savings_sd
4542 * for cpu.
4543 * @flag: The flag to filter the sched_domains to be iterated.
4544 *
4545 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4546 * set, starting from the lowest sched_domain to the highest.
4547 */
4548 #define for_each_flag_domain(cpu, sd, flag) \
4549 for (sd = lowest_flag_domain(cpu, flag); \
4550 (sd && (sd->flags & flag)); sd = sd->parent)
4551
4552 /**
4553 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4554 * @ilb_group: group to be checked for semi-idleness
4555 *
4556 * Returns: 1 if the group is semi-idle. 0 otherwise.
4557 *
4558 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4559 * and atleast one non-idle CPU. This helper function checks if the given
4560 * sched_group is semi-idle or not.
4561 */
4562 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4563 {
4564 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4565 sched_group_cpus(ilb_group));
4566
4567 /*
4568 * A sched_group is semi-idle when it has atleast one busy cpu
4569 * and atleast one idle cpu.
4570 */
4571 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4572 return 0;
4573
4574 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4575 return 0;
4576
4577 return 1;
4578 }
4579 /**
4580 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4581 * @cpu: The cpu which is nominating a new idle_load_balancer.
4582 *
4583 * Returns: Returns the id of the idle load balancer if it exists,
4584 * Else, returns >= nr_cpu_ids.
4585 *
4586 * This algorithm picks the idle load balancer such that it belongs to a
4587 * semi-idle powersavings sched_domain. The idea is to try and avoid
4588 * completely idle packages/cores just for the purpose of idle load balancing
4589 * when there are other idle cpu's which are better suited for that job.
4590 */
4591 static int find_new_ilb(int cpu)
4592 {
4593 struct sched_domain *sd;
4594 struct sched_group *ilb_group;
4595
4596 /*
4597 * Have idle load balancer selection from semi-idle packages only
4598 * when power-aware load balancing is enabled
4599 */
4600 if (!(sched_smt_power_savings || sched_mc_power_savings))
4601 goto out_done;
4602
4603 /*
4604 * Optimize for the case when we have no idle CPUs or only one
4605 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4606 */
4607 if (cpumask_weight(nohz.cpu_mask) < 2)
4608 goto out_done;
4609
4610 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4611 ilb_group = sd->groups;
4612
4613 do {
4614 if (is_semi_idle_group(ilb_group))
4615 return cpumask_first(nohz.ilb_grp_nohz_mask);
4616
4617 ilb_group = ilb_group->next;
4618
4619 } while (ilb_group != sd->groups);
4620 }
4621
4622 out_done:
4623 return cpumask_first(nohz.cpu_mask);
4624 }
4625 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4626 static inline int find_new_ilb(int call_cpu)
4627 {
4628 return cpumask_first(nohz.cpu_mask);
4629 }
4630 #endif
4631
4632 /*
4633 * This routine will try to nominate the ilb (idle load balancing)
4634 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4635 * load balancing on behalf of all those cpus. If all the cpus in the system
4636 * go into this tickless mode, then there will be no ilb owner (as there is
4637 * no need for one) and all the cpus will sleep till the next wakeup event
4638 * arrives...
4639 *
4640 * For the ilb owner, tick is not stopped. And this tick will be used
4641 * for idle load balancing. ilb owner will still be part of
4642 * nohz.cpu_mask..
4643 *
4644 * While stopping the tick, this cpu will become the ilb owner if there
4645 * is no other owner. And will be the owner till that cpu becomes busy
4646 * or if all cpus in the system stop their ticks at which point
4647 * there is no need for ilb owner.
4648 *
4649 * When the ilb owner becomes busy, it nominates another owner, during the
4650 * next busy scheduler_tick()
4651 */
4652 int select_nohz_load_balancer(int stop_tick)
4653 {
4654 int cpu = smp_processor_id();
4655
4656 if (stop_tick) {
4657 cpu_rq(cpu)->in_nohz_recently = 1;
4658
4659 if (!cpu_active(cpu)) {
4660 if (atomic_read(&nohz.load_balancer) != cpu)
4661 return 0;
4662
4663 /*
4664 * If we are going offline and still the leader,
4665 * give up!
4666 */
4667 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4668 BUG();
4669
4670 return 0;
4671 }
4672
4673 cpumask_set_cpu(cpu, nohz.cpu_mask);
4674
4675 /* time for ilb owner also to sleep */
4676 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4677 if (atomic_read(&nohz.load_balancer) == cpu)
4678 atomic_set(&nohz.load_balancer, -1);
4679 return 0;
4680 }
4681
4682 if (atomic_read(&nohz.load_balancer) == -1) {
4683 /* make me the ilb owner */
4684 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4685 return 1;
4686 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4687 int new_ilb;
4688
4689 if (!(sched_smt_power_savings ||
4690 sched_mc_power_savings))
4691 return 1;
4692 /*
4693 * Check to see if there is a more power-efficient
4694 * ilb.
4695 */
4696 new_ilb = find_new_ilb(cpu);
4697 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4698 atomic_set(&nohz.load_balancer, -1);
4699 resched_cpu(new_ilb);
4700 return 0;
4701 }
4702 return 1;
4703 }
4704 } else {
4705 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4706 return 0;
4707
4708 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4709
4710 if (atomic_read(&nohz.load_balancer) == cpu)
4711 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4712 BUG();
4713 }
4714 return 0;
4715 }
4716 #endif
4717
4718 static DEFINE_SPINLOCK(balancing);
4719
4720 /*
4721 * It checks each scheduling domain to see if it is due to be balanced,
4722 * and initiates a balancing operation if so.
4723 *
4724 * Balancing parameters are set up in arch_init_sched_domains.
4725 */
4726 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4727 {
4728 int balance = 1;
4729 struct rq *rq = cpu_rq(cpu);
4730 unsigned long interval;
4731 struct sched_domain *sd;
4732 /* Earliest time when we have to do rebalance again */
4733 unsigned long next_balance = jiffies + 60*HZ;
4734 int update_next_balance = 0;
4735 int need_serialize;
4736
4737 for_each_domain(cpu, sd) {
4738 if (!(sd->flags & SD_LOAD_BALANCE))
4739 continue;
4740
4741 interval = sd->balance_interval;
4742 if (idle != CPU_IDLE)
4743 interval *= sd->busy_factor;
4744
4745 /* scale ms to jiffies */
4746 interval = msecs_to_jiffies(interval);
4747 if (unlikely(!interval))
4748 interval = 1;
4749 if (interval > HZ*NR_CPUS/10)
4750 interval = HZ*NR_CPUS/10;
4751
4752 need_serialize = sd->flags & SD_SERIALIZE;
4753
4754 if (need_serialize) {
4755 if (!spin_trylock(&balancing))
4756 goto out;
4757 }
4758
4759 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4760 if (load_balance(cpu, rq, sd, idle, &balance)) {
4761 /*
4762 * We've pulled tasks over so either we're no
4763 * longer idle, or one of our SMT siblings is
4764 * not idle.
4765 */
4766 idle = CPU_NOT_IDLE;
4767 }
4768 sd->last_balance = jiffies;
4769 }
4770 if (need_serialize)
4771 spin_unlock(&balancing);
4772 out:
4773 if (time_after(next_balance, sd->last_balance + interval)) {
4774 next_balance = sd->last_balance + interval;
4775 update_next_balance = 1;
4776 }
4777
4778 /*
4779 * Stop the load balance at this level. There is another
4780 * CPU in our sched group which is doing load balancing more
4781 * actively.
4782 */
4783 if (!balance)
4784 break;
4785 }
4786
4787 /*
4788 * next_balance will be updated only when there is a need.
4789 * When the cpu is attached to null domain for ex, it will not be
4790 * updated.
4791 */
4792 if (likely(update_next_balance))
4793 rq->next_balance = next_balance;
4794 }
4795
4796 /*
4797 * run_rebalance_domains is triggered when needed from the scheduler tick.
4798 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4799 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4800 */
4801 static void run_rebalance_domains(struct softirq_action *h)
4802 {
4803 int this_cpu = smp_processor_id();
4804 struct rq *this_rq = cpu_rq(this_cpu);
4805 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4806 CPU_IDLE : CPU_NOT_IDLE;
4807
4808 rebalance_domains(this_cpu, idle);
4809
4810 #ifdef CONFIG_NO_HZ
4811 /*
4812 * If this cpu is the owner for idle load balancing, then do the
4813 * balancing on behalf of the other idle cpus whose ticks are
4814 * stopped.
4815 */
4816 if (this_rq->idle_at_tick &&
4817 atomic_read(&nohz.load_balancer) == this_cpu) {
4818 struct rq *rq;
4819 int balance_cpu;
4820
4821 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4822 if (balance_cpu == this_cpu)
4823 continue;
4824
4825 /*
4826 * If this cpu gets work to do, stop the load balancing
4827 * work being done for other cpus. Next load
4828 * balancing owner will pick it up.
4829 */
4830 if (need_resched())
4831 break;
4832
4833 rebalance_domains(balance_cpu, CPU_IDLE);
4834
4835 rq = cpu_rq(balance_cpu);
4836 if (time_after(this_rq->next_balance, rq->next_balance))
4837 this_rq->next_balance = rq->next_balance;
4838 }
4839 }
4840 #endif
4841 }
4842
4843 static inline int on_null_domain(int cpu)
4844 {
4845 return !rcu_dereference(cpu_rq(cpu)->sd);
4846 }
4847
4848 /*
4849 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4850 *
4851 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4852 * idle load balancing owner or decide to stop the periodic load balancing,
4853 * if the whole system is idle.
4854 */
4855 static inline void trigger_load_balance(struct rq *rq, int cpu)
4856 {
4857 #ifdef CONFIG_NO_HZ
4858 /*
4859 * If we were in the nohz mode recently and busy at the current
4860 * scheduler tick, then check if we need to nominate new idle
4861 * load balancer.
4862 */
4863 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4864 rq->in_nohz_recently = 0;
4865
4866 if (atomic_read(&nohz.load_balancer) == cpu) {
4867 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4868 atomic_set(&nohz.load_balancer, -1);
4869 }
4870
4871 if (atomic_read(&nohz.load_balancer) == -1) {
4872 int ilb = find_new_ilb(cpu);
4873
4874 if (ilb < nr_cpu_ids)
4875 resched_cpu(ilb);
4876 }
4877 }
4878
4879 /*
4880 * If this cpu is idle and doing idle load balancing for all the
4881 * cpus with ticks stopped, is it time for that to stop?
4882 */
4883 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4884 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4885 resched_cpu(cpu);
4886 return;
4887 }
4888
4889 /*
4890 * If this cpu is idle and the idle load balancing is done by
4891 * someone else, then no need raise the SCHED_SOFTIRQ
4892 */
4893 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4894 cpumask_test_cpu(cpu, nohz.cpu_mask))
4895 return;
4896 #endif
4897 /* Don't need to rebalance while attached to NULL domain */
4898 if (time_after_eq(jiffies, rq->next_balance) &&
4899 likely(!on_null_domain(cpu)))
4900 raise_softirq(SCHED_SOFTIRQ);
4901 }
4902
4903 #else /* CONFIG_SMP */
4904
4905 /*
4906 * on UP we do not need to balance between CPUs:
4907 */
4908 static inline void idle_balance(int cpu, struct rq *rq)
4909 {
4910 }
4911
4912 #endif
4913
4914 DEFINE_PER_CPU(struct kernel_stat, kstat);
4915
4916 EXPORT_PER_CPU_SYMBOL(kstat);
4917
4918 /*
4919 * Return any ns on the sched_clock that have not yet been accounted in
4920 * @p in case that task is currently running.
4921 *
4922 * Called with task_rq_lock() held on @rq.
4923 */
4924 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4925 {
4926 u64 ns = 0;
4927
4928 if (task_current(rq, p)) {
4929 update_rq_clock(rq);
4930 ns = rq->clock - p->se.exec_start;
4931 if ((s64)ns < 0)
4932 ns = 0;
4933 }
4934
4935 return ns;
4936 }
4937
4938 unsigned long long task_delta_exec(struct task_struct *p)
4939 {
4940 unsigned long flags;
4941 struct rq *rq;
4942 u64 ns = 0;
4943
4944 rq = task_rq_lock(p, &flags);
4945 ns = do_task_delta_exec(p, rq);
4946 task_rq_unlock(rq, &flags);
4947
4948 return ns;
4949 }
4950
4951 /*
4952 * Return accounted runtime for the task.
4953 * In case the task is currently running, return the runtime plus current's
4954 * pending runtime that have not been accounted yet.
4955 */
4956 unsigned long long task_sched_runtime(struct task_struct *p)
4957 {
4958 unsigned long flags;
4959 struct rq *rq;
4960 u64 ns = 0;
4961
4962 rq = task_rq_lock(p, &flags);
4963 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4964 task_rq_unlock(rq, &flags);
4965
4966 return ns;
4967 }
4968
4969 /*
4970 * Return sum_exec_runtime for the thread group.
4971 * In case the task is currently running, return the sum plus current's
4972 * pending runtime that have not been accounted yet.
4973 *
4974 * Note that the thread group might have other running tasks as well,
4975 * so the return value not includes other pending runtime that other
4976 * running tasks might have.
4977 */
4978 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4979 {
4980 struct task_cputime totals;
4981 unsigned long flags;
4982 struct rq *rq;
4983 u64 ns;
4984
4985 rq = task_rq_lock(p, &flags);
4986 thread_group_cputime(p, &totals);
4987 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4988 task_rq_unlock(rq, &flags);
4989
4990 return ns;
4991 }
4992
4993 /*
4994 * Account user cpu time to a process.
4995 * @p: the process that the cpu time gets accounted to
4996 * @cputime: the cpu time spent in user space since the last update
4997 * @cputime_scaled: cputime scaled by cpu frequency
4998 */
4999 void account_user_time(struct task_struct *p, cputime_t cputime,
5000 cputime_t cputime_scaled)
5001 {
5002 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5003 cputime64_t tmp;
5004
5005 /* Add user time to process. */
5006 p->utime = cputime_add(p->utime, cputime);
5007 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5008 account_group_user_time(p, cputime);
5009
5010 /* Add user time to cpustat. */
5011 tmp = cputime_to_cputime64(cputime);
5012 if (TASK_NICE(p) > 0)
5013 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5014 else
5015 cpustat->user = cputime64_add(cpustat->user, tmp);
5016
5017 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5018 /* Account for user time used */
5019 acct_update_integrals(p);
5020 }
5021
5022 /*
5023 * Account guest cpu time to a process.
5024 * @p: the process that the cpu time gets accounted to
5025 * @cputime: the cpu time spent in virtual machine since the last update
5026 * @cputime_scaled: cputime scaled by cpu frequency
5027 */
5028 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5029 cputime_t cputime_scaled)
5030 {
5031 cputime64_t tmp;
5032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5033
5034 tmp = cputime_to_cputime64(cputime);
5035
5036 /* Add guest time to process. */
5037 p->utime = cputime_add(p->utime, cputime);
5038 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5039 account_group_user_time(p, cputime);
5040 p->gtime = cputime_add(p->gtime, cputime);
5041
5042 /* Add guest time to cpustat. */
5043 if (TASK_NICE(p) > 0) {
5044 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5045 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5046 } else {
5047 cpustat->user = cputime64_add(cpustat->user, tmp);
5048 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5049 }
5050 }
5051
5052 /*
5053 * Account system cpu time to a process.
5054 * @p: the process that the cpu time gets accounted to
5055 * @hardirq_offset: the offset to subtract from hardirq_count()
5056 * @cputime: the cpu time spent in kernel space since the last update
5057 * @cputime_scaled: cputime scaled by cpu frequency
5058 */
5059 void account_system_time(struct task_struct *p, int hardirq_offset,
5060 cputime_t cputime, cputime_t cputime_scaled)
5061 {
5062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5063 cputime64_t tmp;
5064
5065 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5066 account_guest_time(p, cputime, cputime_scaled);
5067 return;
5068 }
5069
5070 /* Add system time to process. */
5071 p->stime = cputime_add(p->stime, cputime);
5072 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5073 account_group_system_time(p, cputime);
5074
5075 /* Add system time to cpustat. */
5076 tmp = cputime_to_cputime64(cputime);
5077 if (hardirq_count() - hardirq_offset)
5078 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5079 else if (softirq_count())
5080 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5081 else
5082 cpustat->system = cputime64_add(cpustat->system, tmp);
5083
5084 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5085
5086 /* Account for system time used */
5087 acct_update_integrals(p);
5088 }
5089
5090 /*
5091 * Account for involuntary wait time.
5092 * @steal: the cpu time spent in involuntary wait
5093 */
5094 void account_steal_time(cputime_t cputime)
5095 {
5096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5097 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5098
5099 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5100 }
5101
5102 /*
5103 * Account for idle time.
5104 * @cputime: the cpu time spent in idle wait
5105 */
5106 void account_idle_time(cputime_t cputime)
5107 {
5108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5109 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5110 struct rq *rq = this_rq();
5111
5112 if (atomic_read(&rq->nr_iowait) > 0)
5113 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5114 else
5115 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5116 }
5117
5118 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5119
5120 /*
5121 * Account a single tick of cpu time.
5122 * @p: the process that the cpu time gets accounted to
5123 * @user_tick: indicates if the tick is a user or a system tick
5124 */
5125 void account_process_tick(struct task_struct *p, int user_tick)
5126 {
5127 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5128 struct rq *rq = this_rq();
5129
5130 if (user_tick)
5131 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5132 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5133 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5134 one_jiffy_scaled);
5135 else
5136 account_idle_time(cputime_one_jiffy);
5137 }
5138
5139 /*
5140 * Account multiple ticks of steal time.
5141 * @p: the process from which the cpu time has been stolen
5142 * @ticks: number of stolen ticks
5143 */
5144 void account_steal_ticks(unsigned long ticks)
5145 {
5146 account_steal_time(jiffies_to_cputime(ticks));
5147 }
5148
5149 /*
5150 * Account multiple ticks of idle time.
5151 * @ticks: number of stolen ticks
5152 */
5153 void account_idle_ticks(unsigned long ticks)
5154 {
5155 account_idle_time(jiffies_to_cputime(ticks));
5156 }
5157
5158 #endif
5159
5160 /*
5161 * Use precise platform statistics if available:
5162 */
5163 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5164 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5165 {
5166 *ut = p->utime;
5167 *st = p->stime;
5168 }
5169
5170 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5171 {
5172 struct task_cputime cputime;
5173
5174 thread_group_cputime(p, &cputime);
5175
5176 *ut = cputime.utime;
5177 *st = cputime.stime;
5178 }
5179 #else
5180
5181 #ifndef nsecs_to_cputime
5182 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5183 #endif
5184
5185 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5186 {
5187 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5188
5189 /*
5190 * Use CFS's precise accounting:
5191 */
5192 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5193
5194 if (total) {
5195 u64 temp;
5196
5197 temp = (u64)(rtime * utime);
5198 do_div(temp, total);
5199 utime = (cputime_t)temp;
5200 } else
5201 utime = rtime;
5202
5203 /*
5204 * Compare with previous values, to keep monotonicity:
5205 */
5206 p->prev_utime = max(p->prev_utime, utime);
5207 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5208
5209 *ut = p->prev_utime;
5210 *st = p->prev_stime;
5211 }
5212
5213 /*
5214 * Must be called with siglock held.
5215 */
5216 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5217 {
5218 struct signal_struct *sig = p->signal;
5219 struct task_cputime cputime;
5220 cputime_t rtime, utime, total;
5221
5222 thread_group_cputime(p, &cputime);
5223
5224 total = cputime_add(cputime.utime, cputime.stime);
5225 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5226
5227 if (total) {
5228 u64 temp;
5229
5230 temp = (u64)(rtime * cputime.utime);
5231 do_div(temp, total);
5232 utime = (cputime_t)temp;
5233 } else
5234 utime = rtime;
5235
5236 sig->prev_utime = max(sig->prev_utime, utime);
5237 sig->prev_stime = max(sig->prev_stime,
5238 cputime_sub(rtime, sig->prev_utime));
5239
5240 *ut = sig->prev_utime;
5241 *st = sig->prev_stime;
5242 }
5243 #endif
5244
5245 /*
5246 * This function gets called by the timer code, with HZ frequency.
5247 * We call it with interrupts disabled.
5248 *
5249 * It also gets called by the fork code, when changing the parent's
5250 * timeslices.
5251 */
5252 void scheduler_tick(void)
5253 {
5254 int cpu = smp_processor_id();
5255 struct rq *rq = cpu_rq(cpu);
5256 struct task_struct *curr = rq->curr;
5257
5258 sched_clock_tick();
5259
5260 spin_lock(&rq->lock);
5261 update_rq_clock(rq);
5262 update_cpu_load(rq);
5263 curr->sched_class->task_tick(rq, curr, 0);
5264 spin_unlock(&rq->lock);
5265
5266 perf_event_task_tick(curr, cpu);
5267
5268 #ifdef CONFIG_SMP
5269 rq->idle_at_tick = idle_cpu(cpu);
5270 trigger_load_balance(rq, cpu);
5271 #endif
5272 }
5273
5274 notrace unsigned long get_parent_ip(unsigned long addr)
5275 {
5276 if (in_lock_functions(addr)) {
5277 addr = CALLER_ADDR2;
5278 if (in_lock_functions(addr))
5279 addr = CALLER_ADDR3;
5280 }
5281 return addr;
5282 }
5283
5284 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5285 defined(CONFIG_PREEMPT_TRACER))
5286
5287 void __kprobes add_preempt_count(int val)
5288 {
5289 #ifdef CONFIG_DEBUG_PREEMPT
5290 /*
5291 * Underflow?
5292 */
5293 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5294 return;
5295 #endif
5296 preempt_count() += val;
5297 #ifdef CONFIG_DEBUG_PREEMPT
5298 /*
5299 * Spinlock count overflowing soon?
5300 */
5301 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5302 PREEMPT_MASK - 10);
5303 #endif
5304 if (preempt_count() == val)
5305 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5306 }
5307 EXPORT_SYMBOL(add_preempt_count);
5308
5309 void __kprobes sub_preempt_count(int val)
5310 {
5311 #ifdef CONFIG_DEBUG_PREEMPT
5312 /*
5313 * Underflow?
5314 */
5315 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5316 return;
5317 /*
5318 * Is the spinlock portion underflowing?
5319 */
5320 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5321 !(preempt_count() & PREEMPT_MASK)))
5322 return;
5323 #endif
5324
5325 if (preempt_count() == val)
5326 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5327 preempt_count() -= val;
5328 }
5329 EXPORT_SYMBOL(sub_preempt_count);
5330
5331 #endif
5332
5333 /*
5334 * Print scheduling while atomic bug:
5335 */
5336 static noinline void __schedule_bug(struct task_struct *prev)
5337 {
5338 struct pt_regs *regs = get_irq_regs();
5339
5340 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5341 prev->comm, prev->pid, preempt_count());
5342
5343 debug_show_held_locks(prev);
5344 print_modules();
5345 if (irqs_disabled())
5346 print_irqtrace_events(prev);
5347
5348 if (regs)
5349 show_regs(regs);
5350 else
5351 dump_stack();
5352 }
5353
5354 /*
5355 * Various schedule()-time debugging checks and statistics:
5356 */
5357 static inline void schedule_debug(struct task_struct *prev)
5358 {
5359 /*
5360 * Test if we are atomic. Since do_exit() needs to call into
5361 * schedule() atomically, we ignore that path for now.
5362 * Otherwise, whine if we are scheduling when we should not be.
5363 */
5364 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5365 __schedule_bug(prev);
5366
5367 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5368
5369 schedstat_inc(this_rq(), sched_count);
5370 #ifdef CONFIG_SCHEDSTATS
5371 if (unlikely(prev->lock_depth >= 0)) {
5372 schedstat_inc(this_rq(), bkl_count);
5373 schedstat_inc(prev, sched_info.bkl_count);
5374 }
5375 #endif
5376 }
5377
5378 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5379 {
5380 if (prev->state == TASK_RUNNING) {
5381 u64 runtime = prev->se.sum_exec_runtime;
5382
5383 runtime -= prev->se.prev_sum_exec_runtime;
5384 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5385
5386 /*
5387 * In order to avoid avg_overlap growing stale when we are
5388 * indeed overlapping and hence not getting put to sleep, grow
5389 * the avg_overlap on preemption.
5390 *
5391 * We use the average preemption runtime because that
5392 * correlates to the amount of cache footprint a task can
5393 * build up.
5394 */
5395 update_avg(&prev->se.avg_overlap, runtime);
5396 }
5397 prev->sched_class->put_prev_task(rq, prev);
5398 }
5399
5400 /*
5401 * Pick up the highest-prio task:
5402 */
5403 static inline struct task_struct *
5404 pick_next_task(struct rq *rq)
5405 {
5406 const struct sched_class *class;
5407 struct task_struct *p;
5408
5409 /*
5410 * Optimization: we know that if all tasks are in
5411 * the fair class we can call that function directly:
5412 */
5413 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5414 p = fair_sched_class.pick_next_task(rq);
5415 if (likely(p))
5416 return p;
5417 }
5418
5419 class = sched_class_highest;
5420 for ( ; ; ) {
5421 p = class->pick_next_task(rq);
5422 if (p)
5423 return p;
5424 /*
5425 * Will never be NULL as the idle class always
5426 * returns a non-NULL p:
5427 */
5428 class = class->next;
5429 }
5430 }
5431
5432 /*
5433 * schedule() is the main scheduler function.
5434 */
5435 asmlinkage void __sched schedule(void)
5436 {
5437 struct task_struct *prev, *next;
5438 unsigned long *switch_count;
5439 struct rq *rq;
5440 int cpu;
5441
5442 need_resched:
5443 preempt_disable();
5444 cpu = smp_processor_id();
5445 rq = cpu_rq(cpu);
5446 rcu_sched_qs(cpu);
5447 prev = rq->curr;
5448 switch_count = &prev->nivcsw;
5449
5450 release_kernel_lock(prev);
5451 need_resched_nonpreemptible:
5452
5453 schedule_debug(prev);
5454
5455 if (sched_feat(HRTICK))
5456 hrtick_clear(rq);
5457
5458 spin_lock_irq(&rq->lock);
5459 update_rq_clock(rq);
5460 clear_tsk_need_resched(prev);
5461
5462 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5463 if (unlikely(signal_pending_state(prev->state, prev)))
5464 prev->state = TASK_RUNNING;
5465 else
5466 deactivate_task(rq, prev, 1);
5467 switch_count = &prev->nvcsw;
5468 }
5469
5470 pre_schedule(rq, prev);
5471
5472 if (unlikely(!rq->nr_running))
5473 idle_balance(cpu, rq);
5474
5475 put_prev_task(rq, prev);
5476 next = pick_next_task(rq);
5477
5478 if (likely(prev != next)) {
5479 sched_info_switch(prev, next);
5480 perf_event_task_sched_out(prev, next, cpu);
5481
5482 rq->nr_switches++;
5483 rq->curr = next;
5484 ++*switch_count;
5485
5486 context_switch(rq, prev, next); /* unlocks the rq */
5487 /*
5488 * the context switch might have flipped the stack from under
5489 * us, hence refresh the local variables.
5490 */
5491 cpu = smp_processor_id();
5492 rq = cpu_rq(cpu);
5493 } else
5494 spin_unlock_irq(&rq->lock);
5495
5496 post_schedule(rq);
5497
5498 if (unlikely(reacquire_kernel_lock(current) < 0))
5499 goto need_resched_nonpreemptible;
5500
5501 preempt_enable_no_resched();
5502 if (need_resched())
5503 goto need_resched;
5504 }
5505 EXPORT_SYMBOL(schedule);
5506
5507 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5508 /*
5509 * Look out! "owner" is an entirely speculative pointer
5510 * access and not reliable.
5511 */
5512 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5513 {
5514 unsigned int cpu;
5515 struct rq *rq;
5516
5517 if (!sched_feat(OWNER_SPIN))
5518 return 0;
5519
5520 #ifdef CONFIG_DEBUG_PAGEALLOC
5521 /*
5522 * Need to access the cpu field knowing that
5523 * DEBUG_PAGEALLOC could have unmapped it if
5524 * the mutex owner just released it and exited.
5525 */
5526 if (probe_kernel_address(&owner->cpu, cpu))
5527 goto out;
5528 #else
5529 cpu = owner->cpu;
5530 #endif
5531
5532 /*
5533 * Even if the access succeeded (likely case),
5534 * the cpu field may no longer be valid.
5535 */
5536 if (cpu >= nr_cpumask_bits)
5537 goto out;
5538
5539 /*
5540 * We need to validate that we can do a
5541 * get_cpu() and that we have the percpu area.
5542 */
5543 if (!cpu_online(cpu))
5544 goto out;
5545
5546 rq = cpu_rq(cpu);
5547
5548 for (;;) {
5549 /*
5550 * Owner changed, break to re-assess state.
5551 */
5552 if (lock->owner != owner)
5553 break;
5554
5555 /*
5556 * Is that owner really running on that cpu?
5557 */
5558 if (task_thread_info(rq->curr) != owner || need_resched())
5559 return 0;
5560
5561 cpu_relax();
5562 }
5563 out:
5564 return 1;
5565 }
5566 #endif
5567
5568 #ifdef CONFIG_PREEMPT
5569 /*
5570 * this is the entry point to schedule() from in-kernel preemption
5571 * off of preempt_enable. Kernel preemptions off return from interrupt
5572 * occur there and call schedule directly.
5573 */
5574 asmlinkage void __sched preempt_schedule(void)
5575 {
5576 struct thread_info *ti = current_thread_info();
5577
5578 /*
5579 * If there is a non-zero preempt_count or interrupts are disabled,
5580 * we do not want to preempt the current task. Just return..
5581 */
5582 if (likely(ti->preempt_count || irqs_disabled()))
5583 return;
5584
5585 do {
5586 add_preempt_count(PREEMPT_ACTIVE);
5587 schedule();
5588 sub_preempt_count(PREEMPT_ACTIVE);
5589
5590 /*
5591 * Check again in case we missed a preemption opportunity
5592 * between schedule and now.
5593 */
5594 barrier();
5595 } while (need_resched());
5596 }
5597 EXPORT_SYMBOL(preempt_schedule);
5598
5599 /*
5600 * this is the entry point to schedule() from kernel preemption
5601 * off of irq context.
5602 * Note, that this is called and return with irqs disabled. This will
5603 * protect us against recursive calling from irq.
5604 */
5605 asmlinkage void __sched preempt_schedule_irq(void)
5606 {
5607 struct thread_info *ti = current_thread_info();
5608
5609 /* Catch callers which need to be fixed */
5610 BUG_ON(ti->preempt_count || !irqs_disabled());
5611
5612 do {
5613 add_preempt_count(PREEMPT_ACTIVE);
5614 local_irq_enable();
5615 schedule();
5616 local_irq_disable();
5617 sub_preempt_count(PREEMPT_ACTIVE);
5618
5619 /*
5620 * Check again in case we missed a preemption opportunity
5621 * between schedule and now.
5622 */
5623 barrier();
5624 } while (need_resched());
5625 }
5626
5627 #endif /* CONFIG_PREEMPT */
5628
5629 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5630 void *key)
5631 {
5632 return try_to_wake_up(curr->private, mode, wake_flags);
5633 }
5634 EXPORT_SYMBOL(default_wake_function);
5635
5636 /*
5637 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5638 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5639 * number) then we wake all the non-exclusive tasks and one exclusive task.
5640 *
5641 * There are circumstances in which we can try to wake a task which has already
5642 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5643 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5644 */
5645 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5646 int nr_exclusive, int wake_flags, void *key)
5647 {
5648 wait_queue_t *curr, *next;
5649
5650 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5651 unsigned flags = curr->flags;
5652
5653 if (curr->func(curr, mode, wake_flags, key) &&
5654 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5655 break;
5656 }
5657 }
5658
5659 /**
5660 * __wake_up - wake up threads blocked on a waitqueue.
5661 * @q: the waitqueue
5662 * @mode: which threads
5663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5664 * @key: is directly passed to the wakeup function
5665 *
5666 * It may be assumed that this function implies a write memory barrier before
5667 * changing the task state if and only if any tasks are woken up.
5668 */
5669 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5670 int nr_exclusive, void *key)
5671 {
5672 unsigned long flags;
5673
5674 spin_lock_irqsave(&q->lock, flags);
5675 __wake_up_common(q, mode, nr_exclusive, 0, key);
5676 spin_unlock_irqrestore(&q->lock, flags);
5677 }
5678 EXPORT_SYMBOL(__wake_up);
5679
5680 /*
5681 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5682 */
5683 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5684 {
5685 __wake_up_common(q, mode, 1, 0, NULL);
5686 }
5687
5688 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5689 {
5690 __wake_up_common(q, mode, 1, 0, key);
5691 }
5692
5693 /**
5694 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5695 * @q: the waitqueue
5696 * @mode: which threads
5697 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5698 * @key: opaque value to be passed to wakeup targets
5699 *
5700 * The sync wakeup differs that the waker knows that it will schedule
5701 * away soon, so while the target thread will be woken up, it will not
5702 * be migrated to another CPU - ie. the two threads are 'synchronized'
5703 * with each other. This can prevent needless bouncing between CPUs.
5704 *
5705 * On UP it can prevent extra preemption.
5706 *
5707 * It may be assumed that this function implies a write memory barrier before
5708 * changing the task state if and only if any tasks are woken up.
5709 */
5710 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5711 int nr_exclusive, void *key)
5712 {
5713 unsigned long flags;
5714 int wake_flags = WF_SYNC;
5715
5716 if (unlikely(!q))
5717 return;
5718
5719 if (unlikely(!nr_exclusive))
5720 wake_flags = 0;
5721
5722 spin_lock_irqsave(&q->lock, flags);
5723 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5724 spin_unlock_irqrestore(&q->lock, flags);
5725 }
5726 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5727
5728 /*
5729 * __wake_up_sync - see __wake_up_sync_key()
5730 */
5731 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5732 {
5733 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5734 }
5735 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5736
5737 /**
5738 * complete: - signals a single thread waiting on this completion
5739 * @x: holds the state of this particular completion
5740 *
5741 * This will wake up a single thread waiting on this completion. Threads will be
5742 * awakened in the same order in which they were queued.
5743 *
5744 * See also complete_all(), wait_for_completion() and related routines.
5745 *
5746 * It may be assumed that this function implies a write memory barrier before
5747 * changing the task state if and only if any tasks are woken up.
5748 */
5749 void complete(struct completion *x)
5750 {
5751 unsigned long flags;
5752
5753 spin_lock_irqsave(&x->wait.lock, flags);
5754 x->done++;
5755 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5756 spin_unlock_irqrestore(&x->wait.lock, flags);
5757 }
5758 EXPORT_SYMBOL(complete);
5759
5760 /**
5761 * complete_all: - signals all threads waiting on this completion
5762 * @x: holds the state of this particular completion
5763 *
5764 * This will wake up all threads waiting on this particular completion event.
5765 *
5766 * It may be assumed that this function implies a write memory barrier before
5767 * changing the task state if and only if any tasks are woken up.
5768 */
5769 void complete_all(struct completion *x)
5770 {
5771 unsigned long flags;
5772
5773 spin_lock_irqsave(&x->wait.lock, flags);
5774 x->done += UINT_MAX/2;
5775 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5776 spin_unlock_irqrestore(&x->wait.lock, flags);
5777 }
5778 EXPORT_SYMBOL(complete_all);
5779
5780 static inline long __sched
5781 do_wait_for_common(struct completion *x, long timeout, int state)
5782 {
5783 if (!x->done) {
5784 DECLARE_WAITQUEUE(wait, current);
5785
5786 wait.flags |= WQ_FLAG_EXCLUSIVE;
5787 __add_wait_queue_tail(&x->wait, &wait);
5788 do {
5789 if (signal_pending_state(state, current)) {
5790 timeout = -ERESTARTSYS;
5791 break;
5792 }
5793 __set_current_state(state);
5794 spin_unlock_irq(&x->wait.lock);
5795 timeout = schedule_timeout(timeout);
5796 spin_lock_irq(&x->wait.lock);
5797 } while (!x->done && timeout);
5798 __remove_wait_queue(&x->wait, &wait);
5799 if (!x->done)
5800 return timeout;
5801 }
5802 x->done--;
5803 return timeout ?: 1;
5804 }
5805
5806 static long __sched
5807 wait_for_common(struct completion *x, long timeout, int state)
5808 {
5809 might_sleep();
5810
5811 spin_lock_irq(&x->wait.lock);
5812 timeout = do_wait_for_common(x, timeout, state);
5813 spin_unlock_irq(&x->wait.lock);
5814 return timeout;
5815 }
5816
5817 /**
5818 * wait_for_completion: - waits for completion of a task
5819 * @x: holds the state of this particular completion
5820 *
5821 * This waits to be signaled for completion of a specific task. It is NOT
5822 * interruptible and there is no timeout.
5823 *
5824 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5825 * and interrupt capability. Also see complete().
5826 */
5827 void __sched wait_for_completion(struct completion *x)
5828 {
5829 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5830 }
5831 EXPORT_SYMBOL(wait_for_completion);
5832
5833 /**
5834 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5835 * @x: holds the state of this particular completion
5836 * @timeout: timeout value in jiffies
5837 *
5838 * This waits for either a completion of a specific task to be signaled or for a
5839 * specified timeout to expire. The timeout is in jiffies. It is not
5840 * interruptible.
5841 */
5842 unsigned long __sched
5843 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5844 {
5845 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5846 }
5847 EXPORT_SYMBOL(wait_for_completion_timeout);
5848
5849 /**
5850 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5851 * @x: holds the state of this particular completion
5852 *
5853 * This waits for completion of a specific task to be signaled. It is
5854 * interruptible.
5855 */
5856 int __sched wait_for_completion_interruptible(struct completion *x)
5857 {
5858 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5859 if (t == -ERESTARTSYS)
5860 return t;
5861 return 0;
5862 }
5863 EXPORT_SYMBOL(wait_for_completion_interruptible);
5864
5865 /**
5866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5867 * @x: holds the state of this particular completion
5868 * @timeout: timeout value in jiffies
5869 *
5870 * This waits for either a completion of a specific task to be signaled or for a
5871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5872 */
5873 unsigned long __sched
5874 wait_for_completion_interruptible_timeout(struct completion *x,
5875 unsigned long timeout)
5876 {
5877 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5878 }
5879 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5880
5881 /**
5882 * wait_for_completion_killable: - waits for completion of a task (killable)
5883 * @x: holds the state of this particular completion
5884 *
5885 * This waits to be signaled for completion of a specific task. It can be
5886 * interrupted by a kill signal.
5887 */
5888 int __sched wait_for_completion_killable(struct completion *x)
5889 {
5890 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5891 if (t == -ERESTARTSYS)
5892 return t;
5893 return 0;
5894 }
5895 EXPORT_SYMBOL(wait_for_completion_killable);
5896
5897 /**
5898 * try_wait_for_completion - try to decrement a completion without blocking
5899 * @x: completion structure
5900 *
5901 * Returns: 0 if a decrement cannot be done without blocking
5902 * 1 if a decrement succeeded.
5903 *
5904 * If a completion is being used as a counting completion,
5905 * attempt to decrement the counter without blocking. This
5906 * enables us to avoid waiting if the resource the completion
5907 * is protecting is not available.
5908 */
5909 bool try_wait_for_completion(struct completion *x)
5910 {
5911 int ret = 1;
5912
5913 spin_lock_irq(&x->wait.lock);
5914 if (!x->done)
5915 ret = 0;
5916 else
5917 x->done--;
5918 spin_unlock_irq(&x->wait.lock);
5919 return ret;
5920 }
5921 EXPORT_SYMBOL(try_wait_for_completion);
5922
5923 /**
5924 * completion_done - Test to see if a completion has any waiters
5925 * @x: completion structure
5926 *
5927 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5928 * 1 if there are no waiters.
5929 *
5930 */
5931 bool completion_done(struct completion *x)
5932 {
5933 int ret = 1;
5934
5935 spin_lock_irq(&x->wait.lock);
5936 if (!x->done)
5937 ret = 0;
5938 spin_unlock_irq(&x->wait.lock);
5939 return ret;
5940 }
5941 EXPORT_SYMBOL(completion_done);
5942
5943 static long __sched
5944 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5945 {
5946 unsigned long flags;
5947 wait_queue_t wait;
5948
5949 init_waitqueue_entry(&wait, current);
5950
5951 __set_current_state(state);
5952
5953 spin_lock_irqsave(&q->lock, flags);
5954 __add_wait_queue(q, &wait);
5955 spin_unlock(&q->lock);
5956 timeout = schedule_timeout(timeout);
5957 spin_lock_irq(&q->lock);
5958 __remove_wait_queue(q, &wait);
5959 spin_unlock_irqrestore(&q->lock, flags);
5960
5961 return timeout;
5962 }
5963
5964 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5965 {
5966 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5967 }
5968 EXPORT_SYMBOL(interruptible_sleep_on);
5969
5970 long __sched
5971 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5972 {
5973 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5974 }
5975 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5976
5977 void __sched sleep_on(wait_queue_head_t *q)
5978 {
5979 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5980 }
5981 EXPORT_SYMBOL(sleep_on);
5982
5983 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5984 {
5985 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5986 }
5987 EXPORT_SYMBOL(sleep_on_timeout);
5988
5989 #ifdef CONFIG_RT_MUTEXES
5990
5991 /*
5992 * rt_mutex_setprio - set the current priority of a task
5993 * @p: task
5994 * @prio: prio value (kernel-internal form)
5995 *
5996 * This function changes the 'effective' priority of a task. It does
5997 * not touch ->normal_prio like __setscheduler().
5998 *
5999 * Used by the rt_mutex code to implement priority inheritance logic.
6000 */
6001 void rt_mutex_setprio(struct task_struct *p, int prio)
6002 {
6003 unsigned long flags;
6004 int oldprio, on_rq, running;
6005 struct rq *rq;
6006 const struct sched_class *prev_class = p->sched_class;
6007
6008 BUG_ON(prio < 0 || prio > MAX_PRIO);
6009
6010 rq = task_rq_lock(p, &flags);
6011 update_rq_clock(rq);
6012
6013 oldprio = p->prio;
6014 on_rq = p->se.on_rq;
6015 running = task_current(rq, p);
6016 if (on_rq)
6017 dequeue_task(rq, p, 0);
6018 if (running)
6019 p->sched_class->put_prev_task(rq, p);
6020
6021 if (rt_prio(prio))
6022 p->sched_class = &rt_sched_class;
6023 else
6024 p->sched_class = &fair_sched_class;
6025
6026 p->prio = prio;
6027
6028 if (running)
6029 p->sched_class->set_curr_task(rq);
6030 if (on_rq) {
6031 enqueue_task(rq, p, 0);
6032
6033 check_class_changed(rq, p, prev_class, oldprio, running);
6034 }
6035 task_rq_unlock(rq, &flags);
6036 }
6037
6038 #endif
6039
6040 void set_user_nice(struct task_struct *p, long nice)
6041 {
6042 int old_prio, delta, on_rq;
6043 unsigned long flags;
6044 struct rq *rq;
6045
6046 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6047 return;
6048 /*
6049 * We have to be careful, if called from sys_setpriority(),
6050 * the task might be in the middle of scheduling on another CPU.
6051 */
6052 rq = task_rq_lock(p, &flags);
6053 update_rq_clock(rq);
6054 /*
6055 * The RT priorities are set via sched_setscheduler(), but we still
6056 * allow the 'normal' nice value to be set - but as expected
6057 * it wont have any effect on scheduling until the task is
6058 * SCHED_FIFO/SCHED_RR:
6059 */
6060 if (task_has_rt_policy(p)) {
6061 p->static_prio = NICE_TO_PRIO(nice);
6062 goto out_unlock;
6063 }
6064 on_rq = p->se.on_rq;
6065 if (on_rq)
6066 dequeue_task(rq, p, 0);
6067
6068 p->static_prio = NICE_TO_PRIO(nice);
6069 set_load_weight(p);
6070 old_prio = p->prio;
6071 p->prio = effective_prio(p);
6072 delta = p->prio - old_prio;
6073
6074 if (on_rq) {
6075 enqueue_task(rq, p, 0);
6076 /*
6077 * If the task increased its priority or is running and
6078 * lowered its priority, then reschedule its CPU:
6079 */
6080 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6081 resched_task(rq->curr);
6082 }
6083 out_unlock:
6084 task_rq_unlock(rq, &flags);
6085 }
6086 EXPORT_SYMBOL(set_user_nice);
6087
6088 /*
6089 * can_nice - check if a task can reduce its nice value
6090 * @p: task
6091 * @nice: nice value
6092 */
6093 int can_nice(const struct task_struct *p, const int nice)
6094 {
6095 /* convert nice value [19,-20] to rlimit style value [1,40] */
6096 int nice_rlim = 20 - nice;
6097
6098 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6099 capable(CAP_SYS_NICE));
6100 }
6101
6102 #ifdef __ARCH_WANT_SYS_NICE
6103
6104 /*
6105 * sys_nice - change the priority of the current process.
6106 * @increment: priority increment
6107 *
6108 * sys_setpriority is a more generic, but much slower function that
6109 * does similar things.
6110 */
6111 SYSCALL_DEFINE1(nice, int, increment)
6112 {
6113 long nice, retval;
6114
6115 /*
6116 * Setpriority might change our priority at the same moment.
6117 * We don't have to worry. Conceptually one call occurs first
6118 * and we have a single winner.
6119 */
6120 if (increment < -40)
6121 increment = -40;
6122 if (increment > 40)
6123 increment = 40;
6124
6125 nice = TASK_NICE(current) + increment;
6126 if (nice < -20)
6127 nice = -20;
6128 if (nice > 19)
6129 nice = 19;
6130
6131 if (increment < 0 && !can_nice(current, nice))
6132 return -EPERM;
6133
6134 retval = security_task_setnice(current, nice);
6135 if (retval)
6136 return retval;
6137
6138 set_user_nice(current, nice);
6139 return 0;
6140 }
6141
6142 #endif
6143
6144 /**
6145 * task_prio - return the priority value of a given task.
6146 * @p: the task in question.
6147 *
6148 * This is the priority value as seen by users in /proc.
6149 * RT tasks are offset by -200. Normal tasks are centered
6150 * around 0, value goes from -16 to +15.
6151 */
6152 int task_prio(const struct task_struct *p)
6153 {
6154 return p->prio - MAX_RT_PRIO;
6155 }
6156
6157 /**
6158 * task_nice - return the nice value of a given task.
6159 * @p: the task in question.
6160 */
6161 int task_nice(const struct task_struct *p)
6162 {
6163 return TASK_NICE(p);
6164 }
6165 EXPORT_SYMBOL(task_nice);
6166
6167 /**
6168 * idle_cpu - is a given cpu idle currently?
6169 * @cpu: the processor in question.
6170 */
6171 int idle_cpu(int cpu)
6172 {
6173 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6174 }
6175
6176 /**
6177 * idle_task - return the idle task for a given cpu.
6178 * @cpu: the processor in question.
6179 */
6180 struct task_struct *idle_task(int cpu)
6181 {
6182 return cpu_rq(cpu)->idle;
6183 }
6184
6185 /**
6186 * find_process_by_pid - find a process with a matching PID value.
6187 * @pid: the pid in question.
6188 */
6189 static struct task_struct *find_process_by_pid(pid_t pid)
6190 {
6191 return pid ? find_task_by_vpid(pid) : current;
6192 }
6193
6194 /* Actually do priority change: must hold rq lock. */
6195 static void
6196 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6197 {
6198 BUG_ON(p->se.on_rq);
6199
6200 p->policy = policy;
6201 p->rt_priority = prio;
6202 p->normal_prio = normal_prio(p);
6203 /* we are holding p->pi_lock already */
6204 p->prio = rt_mutex_getprio(p);
6205 if (rt_prio(p->prio))
6206 p->sched_class = &rt_sched_class;
6207 else
6208 p->sched_class = &fair_sched_class;
6209 set_load_weight(p);
6210 }
6211
6212 /*
6213 * check the target process has a UID that matches the current process's
6214 */
6215 static bool check_same_owner(struct task_struct *p)
6216 {
6217 const struct cred *cred = current_cred(), *pcred;
6218 bool match;
6219
6220 rcu_read_lock();
6221 pcred = __task_cred(p);
6222 match = (cred->euid == pcred->euid ||
6223 cred->euid == pcred->uid);
6224 rcu_read_unlock();
6225 return match;
6226 }
6227
6228 static int __sched_setscheduler(struct task_struct *p, int policy,
6229 struct sched_param *param, bool user)
6230 {
6231 int retval, oldprio, oldpolicy = -1, on_rq, running;
6232 unsigned long flags;
6233 const struct sched_class *prev_class = p->sched_class;
6234 struct rq *rq;
6235 int reset_on_fork;
6236
6237 /* may grab non-irq protected spin_locks */
6238 BUG_ON(in_interrupt());
6239 recheck:
6240 /* double check policy once rq lock held */
6241 if (policy < 0) {
6242 reset_on_fork = p->sched_reset_on_fork;
6243 policy = oldpolicy = p->policy;
6244 } else {
6245 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6246 policy &= ~SCHED_RESET_ON_FORK;
6247
6248 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6249 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6250 policy != SCHED_IDLE)
6251 return -EINVAL;
6252 }
6253
6254 /*
6255 * Valid priorities for SCHED_FIFO and SCHED_RR are
6256 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6257 * SCHED_BATCH and SCHED_IDLE is 0.
6258 */
6259 if (param->sched_priority < 0 ||
6260 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6261 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6262 return -EINVAL;
6263 if (rt_policy(policy) != (param->sched_priority != 0))
6264 return -EINVAL;
6265
6266 /*
6267 * Allow unprivileged RT tasks to decrease priority:
6268 */
6269 if (user && !capable(CAP_SYS_NICE)) {
6270 if (rt_policy(policy)) {
6271 unsigned long rlim_rtprio;
6272
6273 if (!lock_task_sighand(p, &flags))
6274 return -ESRCH;
6275 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6276 unlock_task_sighand(p, &flags);
6277
6278 /* can't set/change the rt policy */
6279 if (policy != p->policy && !rlim_rtprio)
6280 return -EPERM;
6281
6282 /* can't increase priority */
6283 if (param->sched_priority > p->rt_priority &&
6284 param->sched_priority > rlim_rtprio)
6285 return -EPERM;
6286 }
6287 /*
6288 * Like positive nice levels, dont allow tasks to
6289 * move out of SCHED_IDLE either:
6290 */
6291 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6292 return -EPERM;
6293
6294 /* can't change other user's priorities */
6295 if (!check_same_owner(p))
6296 return -EPERM;
6297
6298 /* Normal users shall not reset the sched_reset_on_fork flag */
6299 if (p->sched_reset_on_fork && !reset_on_fork)
6300 return -EPERM;
6301 }
6302
6303 if (user) {
6304 #ifdef CONFIG_RT_GROUP_SCHED
6305 /*
6306 * Do not allow realtime tasks into groups that have no runtime
6307 * assigned.
6308 */
6309 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6310 task_group(p)->rt_bandwidth.rt_runtime == 0)
6311 return -EPERM;
6312 #endif
6313
6314 retval = security_task_setscheduler(p, policy, param);
6315 if (retval)
6316 return retval;
6317 }
6318
6319 /*
6320 * make sure no PI-waiters arrive (or leave) while we are
6321 * changing the priority of the task:
6322 */
6323 spin_lock_irqsave(&p->pi_lock, flags);
6324 /*
6325 * To be able to change p->policy safely, the apropriate
6326 * runqueue lock must be held.
6327 */
6328 rq = __task_rq_lock(p);
6329 /* recheck policy now with rq lock held */
6330 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6331 policy = oldpolicy = -1;
6332 __task_rq_unlock(rq);
6333 spin_unlock_irqrestore(&p->pi_lock, flags);
6334 goto recheck;
6335 }
6336 update_rq_clock(rq);
6337 on_rq = p->se.on_rq;
6338 running = task_current(rq, p);
6339 if (on_rq)
6340 deactivate_task(rq, p, 0);
6341 if (running)
6342 p->sched_class->put_prev_task(rq, p);
6343
6344 p->sched_reset_on_fork = reset_on_fork;
6345
6346 oldprio = p->prio;
6347 __setscheduler(rq, p, policy, param->sched_priority);
6348
6349 if (running)
6350 p->sched_class->set_curr_task(rq);
6351 if (on_rq) {
6352 activate_task(rq, p, 0);
6353
6354 check_class_changed(rq, p, prev_class, oldprio, running);
6355 }
6356 __task_rq_unlock(rq);
6357 spin_unlock_irqrestore(&p->pi_lock, flags);
6358
6359 rt_mutex_adjust_pi(p);
6360
6361 return 0;
6362 }
6363
6364 /**
6365 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6366 * @p: the task in question.
6367 * @policy: new policy.
6368 * @param: structure containing the new RT priority.
6369 *
6370 * NOTE that the task may be already dead.
6371 */
6372 int sched_setscheduler(struct task_struct *p, int policy,
6373 struct sched_param *param)
6374 {
6375 return __sched_setscheduler(p, policy, param, true);
6376 }
6377 EXPORT_SYMBOL_GPL(sched_setscheduler);
6378
6379 /**
6380 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6381 * @p: the task in question.
6382 * @policy: new policy.
6383 * @param: structure containing the new RT priority.
6384 *
6385 * Just like sched_setscheduler, only don't bother checking if the
6386 * current context has permission. For example, this is needed in
6387 * stop_machine(): we create temporary high priority worker threads,
6388 * but our caller might not have that capability.
6389 */
6390 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6391 struct sched_param *param)
6392 {
6393 return __sched_setscheduler(p, policy, param, false);
6394 }
6395
6396 static int
6397 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6398 {
6399 struct sched_param lparam;
6400 struct task_struct *p;
6401 int retval;
6402
6403 if (!param || pid < 0)
6404 return -EINVAL;
6405 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6406 return -EFAULT;
6407
6408 rcu_read_lock();
6409 retval = -ESRCH;
6410 p = find_process_by_pid(pid);
6411 if (p != NULL)
6412 retval = sched_setscheduler(p, policy, &lparam);
6413 rcu_read_unlock();
6414
6415 return retval;
6416 }
6417
6418 /**
6419 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6420 * @pid: the pid in question.
6421 * @policy: new policy.
6422 * @param: structure containing the new RT priority.
6423 */
6424 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6425 struct sched_param __user *, param)
6426 {
6427 /* negative values for policy are not valid */
6428 if (policy < 0)
6429 return -EINVAL;
6430
6431 return do_sched_setscheduler(pid, policy, param);
6432 }
6433
6434 /**
6435 * sys_sched_setparam - set/change the RT priority of a thread
6436 * @pid: the pid in question.
6437 * @param: structure containing the new RT priority.
6438 */
6439 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6440 {
6441 return do_sched_setscheduler(pid, -1, param);
6442 }
6443
6444 /**
6445 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6446 * @pid: the pid in question.
6447 */
6448 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6449 {
6450 struct task_struct *p;
6451 int retval;
6452
6453 if (pid < 0)
6454 return -EINVAL;
6455
6456 retval = -ESRCH;
6457 read_lock(&tasklist_lock);
6458 p = find_process_by_pid(pid);
6459 if (p) {
6460 retval = security_task_getscheduler(p);
6461 if (!retval)
6462 retval = p->policy
6463 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6464 }
6465 read_unlock(&tasklist_lock);
6466 return retval;
6467 }
6468
6469 /**
6470 * sys_sched_getparam - get the RT priority of a thread
6471 * @pid: the pid in question.
6472 * @param: structure containing the RT priority.
6473 */
6474 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6475 {
6476 struct sched_param lp;
6477 struct task_struct *p;
6478 int retval;
6479
6480 if (!param || pid < 0)
6481 return -EINVAL;
6482
6483 read_lock(&tasklist_lock);
6484 p = find_process_by_pid(pid);
6485 retval = -ESRCH;
6486 if (!p)
6487 goto out_unlock;
6488
6489 retval = security_task_getscheduler(p);
6490 if (retval)
6491 goto out_unlock;
6492
6493 lp.sched_priority = p->rt_priority;
6494 read_unlock(&tasklist_lock);
6495
6496 /*
6497 * This one might sleep, we cannot do it with a spinlock held ...
6498 */
6499 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6500
6501 return retval;
6502
6503 out_unlock:
6504 read_unlock(&tasklist_lock);
6505 return retval;
6506 }
6507
6508 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6509 {
6510 cpumask_var_t cpus_allowed, new_mask;
6511 struct task_struct *p;
6512 int retval;
6513
6514 get_online_cpus();
6515 read_lock(&tasklist_lock);
6516
6517 p = find_process_by_pid(pid);
6518 if (!p) {
6519 read_unlock(&tasklist_lock);
6520 put_online_cpus();
6521 return -ESRCH;
6522 }
6523
6524 /*
6525 * It is not safe to call set_cpus_allowed with the
6526 * tasklist_lock held. We will bump the task_struct's
6527 * usage count and then drop tasklist_lock.
6528 */
6529 get_task_struct(p);
6530 read_unlock(&tasklist_lock);
6531
6532 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6533 retval = -ENOMEM;
6534 goto out_put_task;
6535 }
6536 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6537 retval = -ENOMEM;
6538 goto out_free_cpus_allowed;
6539 }
6540 retval = -EPERM;
6541 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6542 goto out_unlock;
6543
6544 retval = security_task_setscheduler(p, 0, NULL);
6545 if (retval)
6546 goto out_unlock;
6547
6548 cpuset_cpus_allowed(p, cpus_allowed);
6549 cpumask_and(new_mask, in_mask, cpus_allowed);
6550 again:
6551 retval = set_cpus_allowed_ptr(p, new_mask);
6552
6553 if (!retval) {
6554 cpuset_cpus_allowed(p, cpus_allowed);
6555 if (!cpumask_subset(new_mask, cpus_allowed)) {
6556 /*
6557 * We must have raced with a concurrent cpuset
6558 * update. Just reset the cpus_allowed to the
6559 * cpuset's cpus_allowed
6560 */
6561 cpumask_copy(new_mask, cpus_allowed);
6562 goto again;
6563 }
6564 }
6565 out_unlock:
6566 free_cpumask_var(new_mask);
6567 out_free_cpus_allowed:
6568 free_cpumask_var(cpus_allowed);
6569 out_put_task:
6570 put_task_struct(p);
6571 put_online_cpus();
6572 return retval;
6573 }
6574
6575 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6576 struct cpumask *new_mask)
6577 {
6578 if (len < cpumask_size())
6579 cpumask_clear(new_mask);
6580 else if (len > cpumask_size())
6581 len = cpumask_size();
6582
6583 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6584 }
6585
6586 /**
6587 * sys_sched_setaffinity - set the cpu affinity of a process
6588 * @pid: pid of the process
6589 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6590 * @user_mask_ptr: user-space pointer to the new cpu mask
6591 */
6592 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6593 unsigned long __user *, user_mask_ptr)
6594 {
6595 cpumask_var_t new_mask;
6596 int retval;
6597
6598 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6599 return -ENOMEM;
6600
6601 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6602 if (retval == 0)
6603 retval = sched_setaffinity(pid, new_mask);
6604 free_cpumask_var(new_mask);
6605 return retval;
6606 }
6607
6608 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6609 {
6610 struct task_struct *p;
6611 unsigned long flags;
6612 struct rq *rq;
6613 int retval;
6614
6615 get_online_cpus();
6616 read_lock(&tasklist_lock);
6617
6618 retval = -ESRCH;
6619 p = find_process_by_pid(pid);
6620 if (!p)
6621 goto out_unlock;
6622
6623 retval = security_task_getscheduler(p);
6624 if (retval)
6625 goto out_unlock;
6626
6627 rq = task_rq_lock(p, &flags);
6628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6629 task_rq_unlock(rq, &flags);
6630
6631 out_unlock:
6632 read_unlock(&tasklist_lock);
6633 put_online_cpus();
6634
6635 return retval;
6636 }
6637
6638 /**
6639 * sys_sched_getaffinity - get the cpu affinity of a process
6640 * @pid: pid of the process
6641 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6642 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6643 */
6644 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6645 unsigned long __user *, user_mask_ptr)
6646 {
6647 int ret;
6648 cpumask_var_t mask;
6649
6650 if (len < cpumask_size())
6651 return -EINVAL;
6652
6653 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6654 return -ENOMEM;
6655
6656 ret = sched_getaffinity(pid, mask);
6657 if (ret == 0) {
6658 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6659 ret = -EFAULT;
6660 else
6661 ret = cpumask_size();
6662 }
6663 free_cpumask_var(mask);
6664
6665 return ret;
6666 }
6667
6668 /**
6669 * sys_sched_yield - yield the current processor to other threads.
6670 *
6671 * This function yields the current CPU to other tasks. If there are no
6672 * other threads running on this CPU then this function will return.
6673 */
6674 SYSCALL_DEFINE0(sched_yield)
6675 {
6676 struct rq *rq = this_rq_lock();
6677
6678 schedstat_inc(rq, yld_count);
6679 current->sched_class->yield_task(rq);
6680
6681 /*
6682 * Since we are going to call schedule() anyway, there's
6683 * no need to preempt or enable interrupts:
6684 */
6685 __release(rq->lock);
6686 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6687 _raw_spin_unlock(&rq->lock);
6688 preempt_enable_no_resched();
6689
6690 schedule();
6691
6692 return 0;
6693 }
6694
6695 static inline int should_resched(void)
6696 {
6697 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6698 }
6699
6700 static void __cond_resched(void)
6701 {
6702 add_preempt_count(PREEMPT_ACTIVE);
6703 schedule();
6704 sub_preempt_count(PREEMPT_ACTIVE);
6705 }
6706
6707 int __sched _cond_resched(void)
6708 {
6709 if (should_resched()) {
6710 __cond_resched();
6711 return 1;
6712 }
6713 return 0;
6714 }
6715 EXPORT_SYMBOL(_cond_resched);
6716
6717 /*
6718 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6719 * call schedule, and on return reacquire the lock.
6720 *
6721 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6722 * operations here to prevent schedule() from being called twice (once via
6723 * spin_unlock(), once by hand).
6724 */
6725 int __cond_resched_lock(spinlock_t *lock)
6726 {
6727 int resched = should_resched();
6728 int ret = 0;
6729
6730 lockdep_assert_held(lock);
6731
6732 if (spin_needbreak(lock) || resched) {
6733 spin_unlock(lock);
6734 if (resched)
6735 __cond_resched();
6736 else
6737 cpu_relax();
6738 ret = 1;
6739 spin_lock(lock);
6740 }
6741 return ret;
6742 }
6743 EXPORT_SYMBOL(__cond_resched_lock);
6744
6745 int __sched __cond_resched_softirq(void)
6746 {
6747 BUG_ON(!in_softirq());
6748
6749 if (should_resched()) {
6750 local_bh_enable();
6751 __cond_resched();
6752 local_bh_disable();
6753 return 1;
6754 }
6755 return 0;
6756 }
6757 EXPORT_SYMBOL(__cond_resched_softirq);
6758
6759 /**
6760 * yield - yield the current processor to other threads.
6761 *
6762 * This is a shortcut for kernel-space yielding - it marks the
6763 * thread runnable and calls sys_sched_yield().
6764 */
6765 void __sched yield(void)
6766 {
6767 set_current_state(TASK_RUNNING);
6768 sys_sched_yield();
6769 }
6770 EXPORT_SYMBOL(yield);
6771
6772 /*
6773 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6774 * that process accounting knows that this is a task in IO wait state.
6775 */
6776 void __sched io_schedule(void)
6777 {
6778 struct rq *rq = raw_rq();
6779
6780 delayacct_blkio_start();
6781 atomic_inc(&rq->nr_iowait);
6782 current->in_iowait = 1;
6783 schedule();
6784 current->in_iowait = 0;
6785 atomic_dec(&rq->nr_iowait);
6786 delayacct_blkio_end();
6787 }
6788 EXPORT_SYMBOL(io_schedule);
6789
6790 long __sched io_schedule_timeout(long timeout)
6791 {
6792 struct rq *rq = raw_rq();
6793 long ret;
6794
6795 delayacct_blkio_start();
6796 atomic_inc(&rq->nr_iowait);
6797 current->in_iowait = 1;
6798 ret = schedule_timeout(timeout);
6799 current->in_iowait = 0;
6800 atomic_dec(&rq->nr_iowait);
6801 delayacct_blkio_end();
6802 return ret;
6803 }
6804
6805 /**
6806 * sys_sched_get_priority_max - return maximum RT priority.
6807 * @policy: scheduling class.
6808 *
6809 * this syscall returns the maximum rt_priority that can be used
6810 * by a given scheduling class.
6811 */
6812 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6813 {
6814 int ret = -EINVAL;
6815
6816 switch (policy) {
6817 case SCHED_FIFO:
6818 case SCHED_RR:
6819 ret = MAX_USER_RT_PRIO-1;
6820 break;
6821 case SCHED_NORMAL:
6822 case SCHED_BATCH:
6823 case SCHED_IDLE:
6824 ret = 0;
6825 break;
6826 }
6827 return ret;
6828 }
6829
6830 /**
6831 * sys_sched_get_priority_min - return minimum RT priority.
6832 * @policy: scheduling class.
6833 *
6834 * this syscall returns the minimum rt_priority that can be used
6835 * by a given scheduling class.
6836 */
6837 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6838 {
6839 int ret = -EINVAL;
6840
6841 switch (policy) {
6842 case SCHED_FIFO:
6843 case SCHED_RR:
6844 ret = 1;
6845 break;
6846 case SCHED_NORMAL:
6847 case SCHED_BATCH:
6848 case SCHED_IDLE:
6849 ret = 0;
6850 }
6851 return ret;
6852 }
6853
6854 /**
6855 * sys_sched_rr_get_interval - return the default timeslice of a process.
6856 * @pid: pid of the process.
6857 * @interval: userspace pointer to the timeslice value.
6858 *
6859 * this syscall writes the default timeslice value of a given process
6860 * into the user-space timespec buffer. A value of '0' means infinity.
6861 */
6862 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6863 struct timespec __user *, interval)
6864 {
6865 struct task_struct *p;
6866 unsigned int time_slice;
6867 unsigned long flags;
6868 struct rq *rq;
6869 int retval;
6870 struct timespec t;
6871
6872 if (pid < 0)
6873 return -EINVAL;
6874
6875 retval = -ESRCH;
6876 read_lock(&tasklist_lock);
6877 p = find_process_by_pid(pid);
6878 if (!p)
6879 goto out_unlock;
6880
6881 retval = security_task_getscheduler(p);
6882 if (retval)
6883 goto out_unlock;
6884
6885 rq = task_rq_lock(p, &flags);
6886 time_slice = p->sched_class->get_rr_interval(rq, p);
6887 task_rq_unlock(rq, &flags);
6888
6889 read_unlock(&tasklist_lock);
6890 jiffies_to_timespec(time_slice, &t);
6891 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6892 return retval;
6893
6894 out_unlock:
6895 read_unlock(&tasklist_lock);
6896 return retval;
6897 }
6898
6899 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6900
6901 void sched_show_task(struct task_struct *p)
6902 {
6903 unsigned long free = 0;
6904 unsigned state;
6905
6906 state = p->state ? __ffs(p->state) + 1 : 0;
6907 printk(KERN_INFO "%-13.13s %c", p->comm,
6908 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6909 #if BITS_PER_LONG == 32
6910 if (state == TASK_RUNNING)
6911 printk(KERN_CONT " running ");
6912 else
6913 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6914 #else
6915 if (state == TASK_RUNNING)
6916 printk(KERN_CONT " running task ");
6917 else
6918 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6919 #endif
6920 #ifdef CONFIG_DEBUG_STACK_USAGE
6921 free = stack_not_used(p);
6922 #endif
6923 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6924 task_pid_nr(p), task_pid_nr(p->real_parent),
6925 (unsigned long)task_thread_info(p)->flags);
6926
6927 show_stack(p, NULL);
6928 }
6929
6930 void show_state_filter(unsigned long state_filter)
6931 {
6932 struct task_struct *g, *p;
6933
6934 #if BITS_PER_LONG == 32
6935 printk(KERN_INFO
6936 " task PC stack pid father\n");
6937 #else
6938 printk(KERN_INFO
6939 " task PC stack pid father\n");
6940 #endif
6941 read_lock(&tasklist_lock);
6942 do_each_thread(g, p) {
6943 /*
6944 * reset the NMI-timeout, listing all files on a slow
6945 * console might take alot of time:
6946 */
6947 touch_nmi_watchdog();
6948 if (!state_filter || (p->state & state_filter))
6949 sched_show_task(p);
6950 } while_each_thread(g, p);
6951
6952 touch_all_softlockup_watchdogs();
6953
6954 #ifdef CONFIG_SCHED_DEBUG
6955 sysrq_sched_debug_show();
6956 #endif
6957 read_unlock(&tasklist_lock);
6958 /*
6959 * Only show locks if all tasks are dumped:
6960 */
6961 if (!state_filter)
6962 debug_show_all_locks();
6963 }
6964
6965 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6966 {
6967 idle->sched_class = &idle_sched_class;
6968 }
6969
6970 /**
6971 * init_idle - set up an idle thread for a given CPU
6972 * @idle: task in question
6973 * @cpu: cpu the idle task belongs to
6974 *
6975 * NOTE: this function does not set the idle thread's NEED_RESCHED
6976 * flag, to make booting more robust.
6977 */
6978 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6979 {
6980 struct rq *rq = cpu_rq(cpu);
6981 unsigned long flags;
6982
6983 spin_lock_irqsave(&rq->lock, flags);
6984
6985 __sched_fork(idle);
6986 idle->se.exec_start = sched_clock();
6987
6988 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6989 __set_task_cpu(idle, cpu);
6990
6991 rq->curr = rq->idle = idle;
6992 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6993 idle->oncpu = 1;
6994 #endif
6995 spin_unlock_irqrestore(&rq->lock, flags);
6996
6997 /* Set the preempt count _outside_ the spinlocks! */
6998 #if defined(CONFIG_PREEMPT)
6999 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7000 #else
7001 task_thread_info(idle)->preempt_count = 0;
7002 #endif
7003 /*
7004 * The idle tasks have their own, simple scheduling class:
7005 */
7006 idle->sched_class = &idle_sched_class;
7007 ftrace_graph_init_task(idle);
7008 }
7009
7010 /*
7011 * In a system that switches off the HZ timer nohz_cpu_mask
7012 * indicates which cpus entered this state. This is used
7013 * in the rcu update to wait only for active cpus. For system
7014 * which do not switch off the HZ timer nohz_cpu_mask should
7015 * always be CPU_BITS_NONE.
7016 */
7017 cpumask_var_t nohz_cpu_mask;
7018
7019 /*
7020 * Increase the granularity value when there are more CPUs,
7021 * because with more CPUs the 'effective latency' as visible
7022 * to users decreases. But the relationship is not linear,
7023 * so pick a second-best guess by going with the log2 of the
7024 * number of CPUs.
7025 *
7026 * This idea comes from the SD scheduler of Con Kolivas:
7027 */
7028 static int get_update_sysctl_factor(void)
7029 {
7030 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7031 unsigned int factor;
7032
7033 switch (sysctl_sched_tunable_scaling) {
7034 case SCHED_TUNABLESCALING_NONE:
7035 factor = 1;
7036 break;
7037 case SCHED_TUNABLESCALING_LINEAR:
7038 factor = cpus;
7039 break;
7040 case SCHED_TUNABLESCALING_LOG:
7041 default:
7042 factor = 1 + ilog2(cpus);
7043 break;
7044 }
7045
7046 return factor;
7047 }
7048
7049 static void update_sysctl(void)
7050 {
7051 unsigned int factor = get_update_sysctl_factor();
7052
7053 #define SET_SYSCTL(name) \
7054 (sysctl_##name = (factor) * normalized_sysctl_##name)
7055 SET_SYSCTL(sched_min_granularity);
7056 SET_SYSCTL(sched_latency);
7057 SET_SYSCTL(sched_wakeup_granularity);
7058 SET_SYSCTL(sched_shares_ratelimit);
7059 #undef SET_SYSCTL
7060 }
7061
7062 static inline void sched_init_granularity(void)
7063 {
7064 update_sysctl();
7065 }
7066
7067 #ifdef CONFIG_SMP
7068 /*
7069 * This is how migration works:
7070 *
7071 * 1) we queue a struct migration_req structure in the source CPU's
7072 * runqueue and wake up that CPU's migration thread.
7073 * 2) we down() the locked semaphore => thread blocks.
7074 * 3) migration thread wakes up (implicitly it forces the migrated
7075 * thread off the CPU)
7076 * 4) it gets the migration request and checks whether the migrated
7077 * task is still in the wrong runqueue.
7078 * 5) if it's in the wrong runqueue then the migration thread removes
7079 * it and puts it into the right queue.
7080 * 6) migration thread up()s the semaphore.
7081 * 7) we wake up and the migration is done.
7082 */
7083
7084 /*
7085 * Change a given task's CPU affinity. Migrate the thread to a
7086 * proper CPU and schedule it away if the CPU it's executing on
7087 * is removed from the allowed bitmask.
7088 *
7089 * NOTE: the caller must have a valid reference to the task, the
7090 * task must not exit() & deallocate itself prematurely. The
7091 * call is not atomic; no spinlocks may be held.
7092 */
7093 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7094 {
7095 struct migration_req req;
7096 unsigned long flags;
7097 struct rq *rq;
7098 int ret = 0;
7099
7100 rq = task_rq_lock(p, &flags);
7101 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7102 ret = -EINVAL;
7103 goto out;
7104 }
7105
7106 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7107 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7108 ret = -EINVAL;
7109 goto out;
7110 }
7111
7112 if (p->sched_class->set_cpus_allowed)
7113 p->sched_class->set_cpus_allowed(p, new_mask);
7114 else {
7115 cpumask_copy(&p->cpus_allowed, new_mask);
7116 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7117 }
7118
7119 /* Can the task run on the task's current CPU? If so, we're done */
7120 if (cpumask_test_cpu(task_cpu(p), new_mask))
7121 goto out;
7122
7123 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7124 /* Need help from migration thread: drop lock and wait. */
7125 struct task_struct *mt = rq->migration_thread;
7126
7127 get_task_struct(mt);
7128 task_rq_unlock(rq, &flags);
7129 wake_up_process(rq->migration_thread);
7130 put_task_struct(mt);
7131 wait_for_completion(&req.done);
7132 tlb_migrate_finish(p->mm);
7133 return 0;
7134 }
7135 out:
7136 task_rq_unlock(rq, &flags);
7137
7138 return ret;
7139 }
7140 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7141
7142 /*
7143 * Move (not current) task off this cpu, onto dest cpu. We're doing
7144 * this because either it can't run here any more (set_cpus_allowed()
7145 * away from this CPU, or CPU going down), or because we're
7146 * attempting to rebalance this task on exec (sched_exec).
7147 *
7148 * So we race with normal scheduler movements, but that's OK, as long
7149 * as the task is no longer on this CPU.
7150 *
7151 * Returns non-zero if task was successfully migrated.
7152 */
7153 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7154 {
7155 struct rq *rq_dest, *rq_src;
7156 int ret = 0, on_rq;
7157
7158 if (unlikely(!cpu_active(dest_cpu)))
7159 return ret;
7160
7161 rq_src = cpu_rq(src_cpu);
7162 rq_dest = cpu_rq(dest_cpu);
7163
7164 double_rq_lock(rq_src, rq_dest);
7165 /* Already moved. */
7166 if (task_cpu(p) != src_cpu)
7167 goto done;
7168 /* Affinity changed (again). */
7169 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7170 goto fail;
7171
7172 on_rq = p->se.on_rq;
7173 if (on_rq)
7174 deactivate_task(rq_src, p, 0);
7175
7176 set_task_cpu(p, dest_cpu);
7177 if (on_rq) {
7178 activate_task(rq_dest, p, 0);
7179 check_preempt_curr(rq_dest, p, 0);
7180 }
7181 done:
7182 ret = 1;
7183 fail:
7184 double_rq_unlock(rq_src, rq_dest);
7185 return ret;
7186 }
7187
7188 #define RCU_MIGRATION_IDLE 0
7189 #define RCU_MIGRATION_NEED_QS 1
7190 #define RCU_MIGRATION_GOT_QS 2
7191 #define RCU_MIGRATION_MUST_SYNC 3
7192
7193 /*
7194 * migration_thread - this is a highprio system thread that performs
7195 * thread migration by bumping thread off CPU then 'pushing' onto
7196 * another runqueue.
7197 */
7198 static int migration_thread(void *data)
7199 {
7200 int badcpu;
7201 int cpu = (long)data;
7202 struct rq *rq;
7203
7204 rq = cpu_rq(cpu);
7205 BUG_ON(rq->migration_thread != current);
7206
7207 set_current_state(TASK_INTERRUPTIBLE);
7208 while (!kthread_should_stop()) {
7209 struct migration_req *req;
7210 struct list_head *head;
7211
7212 spin_lock_irq(&rq->lock);
7213
7214 if (cpu_is_offline(cpu)) {
7215 spin_unlock_irq(&rq->lock);
7216 break;
7217 }
7218
7219 if (rq->active_balance) {
7220 active_load_balance(rq, cpu);
7221 rq->active_balance = 0;
7222 }
7223
7224 head = &rq->migration_queue;
7225
7226 if (list_empty(head)) {
7227 spin_unlock_irq(&rq->lock);
7228 schedule();
7229 set_current_state(TASK_INTERRUPTIBLE);
7230 continue;
7231 }
7232 req = list_entry(head->next, struct migration_req, list);
7233 list_del_init(head->next);
7234
7235 if (req->task != NULL) {
7236 spin_unlock(&rq->lock);
7237 __migrate_task(req->task, cpu, req->dest_cpu);
7238 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7239 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7240 spin_unlock(&rq->lock);
7241 } else {
7242 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7243 spin_unlock(&rq->lock);
7244 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7245 }
7246 local_irq_enable();
7247
7248 complete(&req->done);
7249 }
7250 __set_current_state(TASK_RUNNING);
7251
7252 return 0;
7253 }
7254
7255 #ifdef CONFIG_HOTPLUG_CPU
7256
7257 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7258 {
7259 int ret;
7260
7261 local_irq_disable();
7262 ret = __migrate_task(p, src_cpu, dest_cpu);
7263 local_irq_enable();
7264 return ret;
7265 }
7266
7267 /*
7268 * Figure out where task on dead CPU should go, use force if necessary.
7269 */
7270 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7271 {
7272 int dest_cpu;
7273 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7274
7275 again:
7276 /* Look for allowed, online CPU in same node. */
7277 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7278 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7279 goto move;
7280
7281 /* Any allowed, online CPU? */
7282 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7283 if (dest_cpu < nr_cpu_ids)
7284 goto move;
7285
7286 /* No more Mr. Nice Guy. */
7287 if (dest_cpu >= nr_cpu_ids) {
7288 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7289 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7290
7291 /*
7292 * Don't tell them about moving exiting tasks or
7293 * kernel threads (both mm NULL), since they never
7294 * leave kernel.
7295 */
7296 if (p->mm && printk_ratelimit()) {
7297 printk(KERN_INFO "process %d (%s) no "
7298 "longer affine to cpu%d\n",
7299 task_pid_nr(p), p->comm, dead_cpu);
7300 }
7301 }
7302
7303 move:
7304 /* It can have affinity changed while we were choosing. */
7305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7306 goto again;
7307 }
7308
7309 /*
7310 * While a dead CPU has no uninterruptible tasks queued at this point,
7311 * it might still have a nonzero ->nr_uninterruptible counter, because
7312 * for performance reasons the counter is not stricly tracking tasks to
7313 * their home CPUs. So we just add the counter to another CPU's counter,
7314 * to keep the global sum constant after CPU-down:
7315 */
7316 static void migrate_nr_uninterruptible(struct rq *rq_src)
7317 {
7318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7319 unsigned long flags;
7320
7321 local_irq_save(flags);
7322 double_rq_lock(rq_src, rq_dest);
7323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7324 rq_src->nr_uninterruptible = 0;
7325 double_rq_unlock(rq_src, rq_dest);
7326 local_irq_restore(flags);
7327 }
7328
7329 /* Run through task list and migrate tasks from the dead cpu. */
7330 static void migrate_live_tasks(int src_cpu)
7331 {
7332 struct task_struct *p, *t;
7333
7334 read_lock(&tasklist_lock);
7335
7336 do_each_thread(t, p) {
7337 if (p == current)
7338 continue;
7339
7340 if (task_cpu(p) == src_cpu)
7341 move_task_off_dead_cpu(src_cpu, p);
7342 } while_each_thread(t, p);
7343
7344 read_unlock(&tasklist_lock);
7345 }
7346
7347 /*
7348 * Schedules idle task to be the next runnable task on current CPU.
7349 * It does so by boosting its priority to highest possible.
7350 * Used by CPU offline code.
7351 */
7352 void sched_idle_next(void)
7353 {
7354 int this_cpu = smp_processor_id();
7355 struct rq *rq = cpu_rq(this_cpu);
7356 struct task_struct *p = rq->idle;
7357 unsigned long flags;
7358
7359 /* cpu has to be offline */
7360 BUG_ON(cpu_online(this_cpu));
7361
7362 /*
7363 * Strictly not necessary since rest of the CPUs are stopped by now
7364 * and interrupts disabled on the current cpu.
7365 */
7366 spin_lock_irqsave(&rq->lock, flags);
7367
7368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7369
7370 update_rq_clock(rq);
7371 activate_task(rq, p, 0);
7372
7373 spin_unlock_irqrestore(&rq->lock, flags);
7374 }
7375
7376 /*
7377 * Ensures that the idle task is using init_mm right before its cpu goes
7378 * offline.
7379 */
7380 void idle_task_exit(void)
7381 {
7382 struct mm_struct *mm = current->active_mm;
7383
7384 BUG_ON(cpu_online(smp_processor_id()));
7385
7386 if (mm != &init_mm)
7387 switch_mm(mm, &init_mm, current);
7388 mmdrop(mm);
7389 }
7390
7391 /* called under rq->lock with disabled interrupts */
7392 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7393 {
7394 struct rq *rq = cpu_rq(dead_cpu);
7395
7396 /* Must be exiting, otherwise would be on tasklist. */
7397 BUG_ON(!p->exit_state);
7398
7399 /* Cannot have done final schedule yet: would have vanished. */
7400 BUG_ON(p->state == TASK_DEAD);
7401
7402 get_task_struct(p);
7403
7404 /*
7405 * Drop lock around migration; if someone else moves it,
7406 * that's OK. No task can be added to this CPU, so iteration is
7407 * fine.
7408 */
7409 spin_unlock_irq(&rq->lock);
7410 move_task_off_dead_cpu(dead_cpu, p);
7411 spin_lock_irq(&rq->lock);
7412
7413 put_task_struct(p);
7414 }
7415
7416 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7417 static void migrate_dead_tasks(unsigned int dead_cpu)
7418 {
7419 struct rq *rq = cpu_rq(dead_cpu);
7420 struct task_struct *next;
7421
7422 for ( ; ; ) {
7423 if (!rq->nr_running)
7424 break;
7425 update_rq_clock(rq);
7426 next = pick_next_task(rq);
7427 if (!next)
7428 break;
7429 next->sched_class->put_prev_task(rq, next);
7430 migrate_dead(dead_cpu, next);
7431
7432 }
7433 }
7434
7435 /*
7436 * remove the tasks which were accounted by rq from calc_load_tasks.
7437 */
7438 static void calc_global_load_remove(struct rq *rq)
7439 {
7440 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7441 rq->calc_load_active = 0;
7442 }
7443 #endif /* CONFIG_HOTPLUG_CPU */
7444
7445 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7446
7447 static struct ctl_table sd_ctl_dir[] = {
7448 {
7449 .procname = "sched_domain",
7450 .mode = 0555,
7451 },
7452 {}
7453 };
7454
7455 static struct ctl_table sd_ctl_root[] = {
7456 {
7457 .procname = "kernel",
7458 .mode = 0555,
7459 .child = sd_ctl_dir,
7460 },
7461 {}
7462 };
7463
7464 static struct ctl_table *sd_alloc_ctl_entry(int n)
7465 {
7466 struct ctl_table *entry =
7467 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7468
7469 return entry;
7470 }
7471
7472 static void sd_free_ctl_entry(struct ctl_table **tablep)
7473 {
7474 struct ctl_table *entry;
7475
7476 /*
7477 * In the intermediate directories, both the child directory and
7478 * procname are dynamically allocated and could fail but the mode
7479 * will always be set. In the lowest directory the names are
7480 * static strings and all have proc handlers.
7481 */
7482 for (entry = *tablep; entry->mode; entry++) {
7483 if (entry->child)
7484 sd_free_ctl_entry(&entry->child);
7485 if (entry->proc_handler == NULL)
7486 kfree(entry->procname);
7487 }
7488
7489 kfree(*tablep);
7490 *tablep = NULL;
7491 }
7492
7493 static void
7494 set_table_entry(struct ctl_table *entry,
7495 const char *procname, void *data, int maxlen,
7496 mode_t mode, proc_handler *proc_handler)
7497 {
7498 entry->procname = procname;
7499 entry->data = data;
7500 entry->maxlen = maxlen;
7501 entry->mode = mode;
7502 entry->proc_handler = proc_handler;
7503 }
7504
7505 static struct ctl_table *
7506 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7507 {
7508 struct ctl_table *table = sd_alloc_ctl_entry(13);
7509
7510 if (table == NULL)
7511 return NULL;
7512
7513 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7514 sizeof(long), 0644, proc_doulongvec_minmax);
7515 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7516 sizeof(long), 0644, proc_doulongvec_minmax);
7517 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7518 sizeof(int), 0644, proc_dointvec_minmax);
7519 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7520 sizeof(int), 0644, proc_dointvec_minmax);
7521 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7522 sizeof(int), 0644, proc_dointvec_minmax);
7523 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7524 sizeof(int), 0644, proc_dointvec_minmax);
7525 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7526 sizeof(int), 0644, proc_dointvec_minmax);
7527 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7528 sizeof(int), 0644, proc_dointvec_minmax);
7529 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7530 sizeof(int), 0644, proc_dointvec_minmax);
7531 set_table_entry(&table[9], "cache_nice_tries",
7532 &sd->cache_nice_tries,
7533 sizeof(int), 0644, proc_dointvec_minmax);
7534 set_table_entry(&table[10], "flags", &sd->flags,
7535 sizeof(int), 0644, proc_dointvec_minmax);
7536 set_table_entry(&table[11], "name", sd->name,
7537 CORENAME_MAX_SIZE, 0444, proc_dostring);
7538 /* &table[12] is terminator */
7539
7540 return table;
7541 }
7542
7543 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7544 {
7545 struct ctl_table *entry, *table;
7546 struct sched_domain *sd;
7547 int domain_num = 0, i;
7548 char buf[32];
7549
7550 for_each_domain(cpu, sd)
7551 domain_num++;
7552 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7553 if (table == NULL)
7554 return NULL;
7555
7556 i = 0;
7557 for_each_domain(cpu, sd) {
7558 snprintf(buf, 32, "domain%d", i);
7559 entry->procname = kstrdup(buf, GFP_KERNEL);
7560 entry->mode = 0555;
7561 entry->child = sd_alloc_ctl_domain_table(sd);
7562 entry++;
7563 i++;
7564 }
7565 return table;
7566 }
7567
7568 static struct ctl_table_header *sd_sysctl_header;
7569 static void register_sched_domain_sysctl(void)
7570 {
7571 int i, cpu_num = num_possible_cpus();
7572 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7573 char buf[32];
7574
7575 WARN_ON(sd_ctl_dir[0].child);
7576 sd_ctl_dir[0].child = entry;
7577
7578 if (entry == NULL)
7579 return;
7580
7581 for_each_possible_cpu(i) {
7582 snprintf(buf, 32, "cpu%d", i);
7583 entry->procname = kstrdup(buf, GFP_KERNEL);
7584 entry->mode = 0555;
7585 entry->child = sd_alloc_ctl_cpu_table(i);
7586 entry++;
7587 }
7588
7589 WARN_ON(sd_sysctl_header);
7590 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7591 }
7592
7593 /* may be called multiple times per register */
7594 static void unregister_sched_domain_sysctl(void)
7595 {
7596 if (sd_sysctl_header)
7597 unregister_sysctl_table(sd_sysctl_header);
7598 sd_sysctl_header = NULL;
7599 if (sd_ctl_dir[0].child)
7600 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7601 }
7602 #else
7603 static void register_sched_domain_sysctl(void)
7604 {
7605 }
7606 static void unregister_sched_domain_sysctl(void)
7607 {
7608 }
7609 #endif
7610
7611 static void set_rq_online(struct rq *rq)
7612 {
7613 if (!rq->online) {
7614 const struct sched_class *class;
7615
7616 cpumask_set_cpu(rq->cpu, rq->rd->online);
7617 rq->online = 1;
7618
7619 for_each_class(class) {
7620 if (class->rq_online)
7621 class->rq_online(rq);
7622 }
7623 }
7624 }
7625
7626 static void set_rq_offline(struct rq *rq)
7627 {
7628 if (rq->online) {
7629 const struct sched_class *class;
7630
7631 for_each_class(class) {
7632 if (class->rq_offline)
7633 class->rq_offline(rq);
7634 }
7635
7636 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7637 rq->online = 0;
7638 }
7639 }
7640
7641 /*
7642 * migration_call - callback that gets triggered when a CPU is added.
7643 * Here we can start up the necessary migration thread for the new CPU.
7644 */
7645 static int __cpuinit
7646 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7647 {
7648 struct task_struct *p;
7649 int cpu = (long)hcpu;
7650 unsigned long flags;
7651 struct rq *rq;
7652
7653 switch (action) {
7654
7655 case CPU_UP_PREPARE:
7656 case CPU_UP_PREPARE_FROZEN:
7657 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7658 if (IS_ERR(p))
7659 return NOTIFY_BAD;
7660 kthread_bind(p, cpu);
7661 /* Must be high prio: stop_machine expects to yield to it. */
7662 rq = task_rq_lock(p, &flags);
7663 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7664 task_rq_unlock(rq, &flags);
7665 get_task_struct(p);
7666 cpu_rq(cpu)->migration_thread = p;
7667 rq->calc_load_update = calc_load_update;
7668 break;
7669
7670 case CPU_ONLINE:
7671 case CPU_ONLINE_FROZEN:
7672 /* Strictly unnecessary, as first user will wake it. */
7673 wake_up_process(cpu_rq(cpu)->migration_thread);
7674
7675 /* Update our root-domain */
7676 rq = cpu_rq(cpu);
7677 spin_lock_irqsave(&rq->lock, flags);
7678 if (rq->rd) {
7679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7680
7681 set_rq_online(rq);
7682 }
7683 spin_unlock_irqrestore(&rq->lock, flags);
7684 break;
7685
7686 #ifdef CONFIG_HOTPLUG_CPU
7687 case CPU_UP_CANCELED:
7688 case CPU_UP_CANCELED_FROZEN:
7689 if (!cpu_rq(cpu)->migration_thread)
7690 break;
7691 /* Unbind it from offline cpu so it can run. Fall thru. */
7692 kthread_bind(cpu_rq(cpu)->migration_thread,
7693 cpumask_any(cpu_online_mask));
7694 kthread_stop(cpu_rq(cpu)->migration_thread);
7695 put_task_struct(cpu_rq(cpu)->migration_thread);
7696 cpu_rq(cpu)->migration_thread = NULL;
7697 break;
7698
7699 case CPU_DEAD:
7700 case CPU_DEAD_FROZEN:
7701 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7702 migrate_live_tasks(cpu);
7703 rq = cpu_rq(cpu);
7704 kthread_stop(rq->migration_thread);
7705 put_task_struct(rq->migration_thread);
7706 rq->migration_thread = NULL;
7707 /* Idle task back to normal (off runqueue, low prio) */
7708 spin_lock_irq(&rq->lock);
7709 update_rq_clock(rq);
7710 deactivate_task(rq, rq->idle, 0);
7711 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7712 rq->idle->sched_class = &idle_sched_class;
7713 migrate_dead_tasks(cpu);
7714 spin_unlock_irq(&rq->lock);
7715 cpuset_unlock();
7716 migrate_nr_uninterruptible(rq);
7717 BUG_ON(rq->nr_running != 0);
7718 calc_global_load_remove(rq);
7719 /*
7720 * No need to migrate the tasks: it was best-effort if
7721 * they didn't take sched_hotcpu_mutex. Just wake up
7722 * the requestors.
7723 */
7724 spin_lock_irq(&rq->lock);
7725 while (!list_empty(&rq->migration_queue)) {
7726 struct migration_req *req;
7727
7728 req = list_entry(rq->migration_queue.next,
7729 struct migration_req, list);
7730 list_del_init(&req->list);
7731 spin_unlock_irq(&rq->lock);
7732 complete(&req->done);
7733 spin_lock_irq(&rq->lock);
7734 }
7735 spin_unlock_irq(&rq->lock);
7736 break;
7737
7738 case CPU_DYING:
7739 case CPU_DYING_FROZEN:
7740 /* Update our root-domain */
7741 rq = cpu_rq(cpu);
7742 spin_lock_irqsave(&rq->lock, flags);
7743 if (rq->rd) {
7744 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7745 set_rq_offline(rq);
7746 }
7747 spin_unlock_irqrestore(&rq->lock, flags);
7748 break;
7749 #endif
7750 }
7751 return NOTIFY_OK;
7752 }
7753
7754 /*
7755 * Register at high priority so that task migration (migrate_all_tasks)
7756 * happens before everything else. This has to be lower priority than
7757 * the notifier in the perf_event subsystem, though.
7758 */
7759 static struct notifier_block __cpuinitdata migration_notifier = {
7760 .notifier_call = migration_call,
7761 .priority = 10
7762 };
7763
7764 static int __init migration_init(void)
7765 {
7766 void *cpu = (void *)(long)smp_processor_id();
7767 int err;
7768
7769 /* Start one for the boot CPU: */
7770 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7771 BUG_ON(err == NOTIFY_BAD);
7772 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7773 register_cpu_notifier(&migration_notifier);
7774
7775 return 0;
7776 }
7777 early_initcall(migration_init);
7778 #endif
7779
7780 #ifdef CONFIG_SMP
7781
7782 #ifdef CONFIG_SCHED_DEBUG
7783
7784 static __read_mostly int sched_domain_debug_enabled;
7785
7786 static int __init sched_domain_debug_setup(char *str)
7787 {
7788 sched_domain_debug_enabled = 1;
7789
7790 return 0;
7791 }
7792 early_param("sched_debug", sched_domain_debug_setup);
7793
7794 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7795 struct cpumask *groupmask)
7796 {
7797 struct sched_group *group = sd->groups;
7798 char str[256];
7799
7800 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7801 cpumask_clear(groupmask);
7802
7803 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7804
7805 if (!(sd->flags & SD_LOAD_BALANCE)) {
7806 printk("does not load-balance\n");
7807 if (sd->parent)
7808 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7809 " has parent");
7810 return -1;
7811 }
7812
7813 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7814
7815 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7816 printk(KERN_ERR "ERROR: domain->span does not contain "
7817 "CPU%d\n", cpu);
7818 }
7819 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7820 printk(KERN_ERR "ERROR: domain->groups does not contain"
7821 " CPU%d\n", cpu);
7822 }
7823
7824 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7825 do {
7826 if (!group) {
7827 printk("\n");
7828 printk(KERN_ERR "ERROR: group is NULL\n");
7829 break;
7830 }
7831
7832 if (!group->cpu_power) {
7833 printk(KERN_CONT "\n");
7834 printk(KERN_ERR "ERROR: domain->cpu_power not "
7835 "set\n");
7836 break;
7837 }
7838
7839 if (!cpumask_weight(sched_group_cpus(group))) {
7840 printk(KERN_CONT "\n");
7841 printk(KERN_ERR "ERROR: empty group\n");
7842 break;
7843 }
7844
7845 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7846 printk(KERN_CONT "\n");
7847 printk(KERN_ERR "ERROR: repeated CPUs\n");
7848 break;
7849 }
7850
7851 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7852
7853 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7854
7855 printk(KERN_CONT " %s", str);
7856 if (group->cpu_power != SCHED_LOAD_SCALE) {
7857 printk(KERN_CONT " (cpu_power = %d)",
7858 group->cpu_power);
7859 }
7860
7861 group = group->next;
7862 } while (group != sd->groups);
7863 printk(KERN_CONT "\n");
7864
7865 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7866 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7867
7868 if (sd->parent &&
7869 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7870 printk(KERN_ERR "ERROR: parent span is not a superset "
7871 "of domain->span\n");
7872 return 0;
7873 }
7874
7875 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7876 {
7877 cpumask_var_t groupmask;
7878 int level = 0;
7879
7880 if (!sched_domain_debug_enabled)
7881 return;
7882
7883 if (!sd) {
7884 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7885 return;
7886 }
7887
7888 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7889
7890 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7891 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7892 return;
7893 }
7894
7895 for (;;) {
7896 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7897 break;
7898 level++;
7899 sd = sd->parent;
7900 if (!sd)
7901 break;
7902 }
7903 free_cpumask_var(groupmask);
7904 }
7905 #else /* !CONFIG_SCHED_DEBUG */
7906 # define sched_domain_debug(sd, cpu) do { } while (0)
7907 #endif /* CONFIG_SCHED_DEBUG */
7908
7909 static int sd_degenerate(struct sched_domain *sd)
7910 {
7911 if (cpumask_weight(sched_domain_span(sd)) == 1)
7912 return 1;
7913
7914 /* Following flags need at least 2 groups */
7915 if (sd->flags & (SD_LOAD_BALANCE |
7916 SD_BALANCE_NEWIDLE |
7917 SD_BALANCE_FORK |
7918 SD_BALANCE_EXEC |
7919 SD_SHARE_CPUPOWER |
7920 SD_SHARE_PKG_RESOURCES)) {
7921 if (sd->groups != sd->groups->next)
7922 return 0;
7923 }
7924
7925 /* Following flags don't use groups */
7926 if (sd->flags & (SD_WAKE_AFFINE))
7927 return 0;
7928
7929 return 1;
7930 }
7931
7932 static int
7933 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7934 {
7935 unsigned long cflags = sd->flags, pflags = parent->flags;
7936
7937 if (sd_degenerate(parent))
7938 return 1;
7939
7940 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7941 return 0;
7942
7943 /* Flags needing groups don't count if only 1 group in parent */
7944 if (parent->groups == parent->groups->next) {
7945 pflags &= ~(SD_LOAD_BALANCE |
7946 SD_BALANCE_NEWIDLE |
7947 SD_BALANCE_FORK |
7948 SD_BALANCE_EXEC |
7949 SD_SHARE_CPUPOWER |
7950 SD_SHARE_PKG_RESOURCES);
7951 if (nr_node_ids == 1)
7952 pflags &= ~SD_SERIALIZE;
7953 }
7954 if (~cflags & pflags)
7955 return 0;
7956
7957 return 1;
7958 }
7959
7960 static void free_rootdomain(struct root_domain *rd)
7961 {
7962 synchronize_sched();
7963
7964 cpupri_cleanup(&rd->cpupri);
7965
7966 free_cpumask_var(rd->rto_mask);
7967 free_cpumask_var(rd->online);
7968 free_cpumask_var(rd->span);
7969 kfree(rd);
7970 }
7971
7972 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7973 {
7974 struct root_domain *old_rd = NULL;
7975 unsigned long flags;
7976
7977 spin_lock_irqsave(&rq->lock, flags);
7978
7979 if (rq->rd) {
7980 old_rd = rq->rd;
7981
7982 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7983 set_rq_offline(rq);
7984
7985 cpumask_clear_cpu(rq->cpu, old_rd->span);
7986
7987 /*
7988 * If we dont want to free the old_rt yet then
7989 * set old_rd to NULL to skip the freeing later
7990 * in this function:
7991 */
7992 if (!atomic_dec_and_test(&old_rd->refcount))
7993 old_rd = NULL;
7994 }
7995
7996 atomic_inc(&rd->refcount);
7997 rq->rd = rd;
7998
7999 cpumask_set_cpu(rq->cpu, rd->span);
8000 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8001 set_rq_online(rq);
8002
8003 spin_unlock_irqrestore(&rq->lock, flags);
8004
8005 if (old_rd)
8006 free_rootdomain(old_rd);
8007 }
8008
8009 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8010 {
8011 gfp_t gfp = GFP_KERNEL;
8012
8013 memset(rd, 0, sizeof(*rd));
8014
8015 if (bootmem)
8016 gfp = GFP_NOWAIT;
8017
8018 if (!alloc_cpumask_var(&rd->span, gfp))
8019 goto out;
8020 if (!alloc_cpumask_var(&rd->online, gfp))
8021 goto free_span;
8022 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8023 goto free_online;
8024
8025 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8026 goto free_rto_mask;
8027 return 0;
8028
8029 free_rto_mask:
8030 free_cpumask_var(rd->rto_mask);
8031 free_online:
8032 free_cpumask_var(rd->online);
8033 free_span:
8034 free_cpumask_var(rd->span);
8035 out:
8036 return -ENOMEM;
8037 }
8038
8039 static void init_defrootdomain(void)
8040 {
8041 init_rootdomain(&def_root_domain, true);
8042
8043 atomic_set(&def_root_domain.refcount, 1);
8044 }
8045
8046 static struct root_domain *alloc_rootdomain(void)
8047 {
8048 struct root_domain *rd;
8049
8050 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8051 if (!rd)
8052 return NULL;
8053
8054 if (init_rootdomain(rd, false) != 0) {
8055 kfree(rd);
8056 return NULL;
8057 }
8058
8059 return rd;
8060 }
8061
8062 /*
8063 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8064 * hold the hotplug lock.
8065 */
8066 static void
8067 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8068 {
8069 struct rq *rq = cpu_rq(cpu);
8070 struct sched_domain *tmp;
8071
8072 /* Remove the sched domains which do not contribute to scheduling. */
8073 for (tmp = sd; tmp; ) {
8074 struct sched_domain *parent = tmp->parent;
8075 if (!parent)
8076 break;
8077
8078 if (sd_parent_degenerate(tmp, parent)) {
8079 tmp->parent = parent->parent;
8080 if (parent->parent)
8081 parent->parent->child = tmp;
8082 } else
8083 tmp = tmp->parent;
8084 }
8085
8086 if (sd && sd_degenerate(sd)) {
8087 sd = sd->parent;
8088 if (sd)
8089 sd->child = NULL;
8090 }
8091
8092 sched_domain_debug(sd, cpu);
8093
8094 rq_attach_root(rq, rd);
8095 rcu_assign_pointer(rq->sd, sd);
8096 }
8097
8098 /* cpus with isolated domains */
8099 static cpumask_var_t cpu_isolated_map;
8100
8101 /* Setup the mask of cpus configured for isolated domains */
8102 static int __init isolated_cpu_setup(char *str)
8103 {
8104 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8105 cpulist_parse(str, cpu_isolated_map);
8106 return 1;
8107 }
8108
8109 __setup("isolcpus=", isolated_cpu_setup);
8110
8111 /*
8112 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8113 * to a function which identifies what group(along with sched group) a CPU
8114 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8115 * (due to the fact that we keep track of groups covered with a struct cpumask).
8116 *
8117 * init_sched_build_groups will build a circular linked list of the groups
8118 * covered by the given span, and will set each group's ->cpumask correctly,
8119 * and ->cpu_power to 0.
8120 */
8121 static void
8122 init_sched_build_groups(const struct cpumask *span,
8123 const struct cpumask *cpu_map,
8124 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8125 struct sched_group **sg,
8126 struct cpumask *tmpmask),
8127 struct cpumask *covered, struct cpumask *tmpmask)
8128 {
8129 struct sched_group *first = NULL, *last = NULL;
8130 int i;
8131
8132 cpumask_clear(covered);
8133
8134 for_each_cpu(i, span) {
8135 struct sched_group *sg;
8136 int group = group_fn(i, cpu_map, &sg, tmpmask);
8137 int j;
8138
8139 if (cpumask_test_cpu(i, covered))
8140 continue;
8141
8142 cpumask_clear(sched_group_cpus(sg));
8143 sg->cpu_power = 0;
8144
8145 for_each_cpu(j, span) {
8146 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8147 continue;
8148
8149 cpumask_set_cpu(j, covered);
8150 cpumask_set_cpu(j, sched_group_cpus(sg));
8151 }
8152 if (!first)
8153 first = sg;
8154 if (last)
8155 last->next = sg;
8156 last = sg;
8157 }
8158 last->next = first;
8159 }
8160
8161 #define SD_NODES_PER_DOMAIN 16
8162
8163 #ifdef CONFIG_NUMA
8164
8165 /**
8166 * find_next_best_node - find the next node to include in a sched_domain
8167 * @node: node whose sched_domain we're building
8168 * @used_nodes: nodes already in the sched_domain
8169 *
8170 * Find the next node to include in a given scheduling domain. Simply
8171 * finds the closest node not already in the @used_nodes map.
8172 *
8173 * Should use nodemask_t.
8174 */
8175 static int find_next_best_node(int node, nodemask_t *used_nodes)
8176 {
8177 int i, n, val, min_val, best_node = 0;
8178
8179 min_val = INT_MAX;
8180
8181 for (i = 0; i < nr_node_ids; i++) {
8182 /* Start at @node */
8183 n = (node + i) % nr_node_ids;
8184
8185 if (!nr_cpus_node(n))
8186 continue;
8187
8188 /* Skip already used nodes */
8189 if (node_isset(n, *used_nodes))
8190 continue;
8191
8192 /* Simple min distance search */
8193 val = node_distance(node, n);
8194
8195 if (val < min_val) {
8196 min_val = val;
8197 best_node = n;
8198 }
8199 }
8200
8201 node_set(best_node, *used_nodes);
8202 return best_node;
8203 }
8204
8205 /**
8206 * sched_domain_node_span - get a cpumask for a node's sched_domain
8207 * @node: node whose cpumask we're constructing
8208 * @span: resulting cpumask
8209 *
8210 * Given a node, construct a good cpumask for its sched_domain to span. It
8211 * should be one that prevents unnecessary balancing, but also spreads tasks
8212 * out optimally.
8213 */
8214 static void sched_domain_node_span(int node, struct cpumask *span)
8215 {
8216 nodemask_t used_nodes;
8217 int i;
8218
8219 cpumask_clear(span);
8220 nodes_clear(used_nodes);
8221
8222 cpumask_or(span, span, cpumask_of_node(node));
8223 node_set(node, used_nodes);
8224
8225 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8226 int next_node = find_next_best_node(node, &used_nodes);
8227
8228 cpumask_or(span, span, cpumask_of_node(next_node));
8229 }
8230 }
8231 #endif /* CONFIG_NUMA */
8232
8233 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8234
8235 /*
8236 * The cpus mask in sched_group and sched_domain hangs off the end.
8237 *
8238 * ( See the the comments in include/linux/sched.h:struct sched_group
8239 * and struct sched_domain. )
8240 */
8241 struct static_sched_group {
8242 struct sched_group sg;
8243 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8244 };
8245
8246 struct static_sched_domain {
8247 struct sched_domain sd;
8248 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8249 };
8250
8251 struct s_data {
8252 #ifdef CONFIG_NUMA
8253 int sd_allnodes;
8254 cpumask_var_t domainspan;
8255 cpumask_var_t covered;
8256 cpumask_var_t notcovered;
8257 #endif
8258 cpumask_var_t nodemask;
8259 cpumask_var_t this_sibling_map;
8260 cpumask_var_t this_core_map;
8261 cpumask_var_t send_covered;
8262 cpumask_var_t tmpmask;
8263 struct sched_group **sched_group_nodes;
8264 struct root_domain *rd;
8265 };
8266
8267 enum s_alloc {
8268 sa_sched_groups = 0,
8269 sa_rootdomain,
8270 sa_tmpmask,
8271 sa_send_covered,
8272 sa_this_core_map,
8273 sa_this_sibling_map,
8274 sa_nodemask,
8275 sa_sched_group_nodes,
8276 #ifdef CONFIG_NUMA
8277 sa_notcovered,
8278 sa_covered,
8279 sa_domainspan,
8280 #endif
8281 sa_none,
8282 };
8283
8284 /*
8285 * SMT sched-domains:
8286 */
8287 #ifdef CONFIG_SCHED_SMT
8288 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8289 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8290
8291 static int
8292 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8293 struct sched_group **sg, struct cpumask *unused)
8294 {
8295 if (sg)
8296 *sg = &per_cpu(sched_groups, cpu).sg;
8297 return cpu;
8298 }
8299 #endif /* CONFIG_SCHED_SMT */
8300
8301 /*
8302 * multi-core sched-domains:
8303 */
8304 #ifdef CONFIG_SCHED_MC
8305 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8306 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8307 #endif /* CONFIG_SCHED_MC */
8308
8309 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8310 static int
8311 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8312 struct sched_group **sg, struct cpumask *mask)
8313 {
8314 int group;
8315
8316 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8317 group = cpumask_first(mask);
8318 if (sg)
8319 *sg = &per_cpu(sched_group_core, group).sg;
8320 return group;
8321 }
8322 #elif defined(CONFIG_SCHED_MC)
8323 static int
8324 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8325 struct sched_group **sg, struct cpumask *unused)
8326 {
8327 if (sg)
8328 *sg = &per_cpu(sched_group_core, cpu).sg;
8329 return cpu;
8330 }
8331 #endif
8332
8333 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8334 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8335
8336 static int
8337 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8338 struct sched_group **sg, struct cpumask *mask)
8339 {
8340 int group;
8341 #ifdef CONFIG_SCHED_MC
8342 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8343 group = cpumask_first(mask);
8344 #elif defined(CONFIG_SCHED_SMT)
8345 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8346 group = cpumask_first(mask);
8347 #else
8348 group = cpu;
8349 #endif
8350 if (sg)
8351 *sg = &per_cpu(sched_group_phys, group).sg;
8352 return group;
8353 }
8354
8355 #ifdef CONFIG_NUMA
8356 /*
8357 * The init_sched_build_groups can't handle what we want to do with node
8358 * groups, so roll our own. Now each node has its own list of groups which
8359 * gets dynamically allocated.
8360 */
8361 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8362 static struct sched_group ***sched_group_nodes_bycpu;
8363
8364 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8365 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8366
8367 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8368 struct sched_group **sg,
8369 struct cpumask *nodemask)
8370 {
8371 int group;
8372
8373 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8374 group = cpumask_first(nodemask);
8375
8376 if (sg)
8377 *sg = &per_cpu(sched_group_allnodes, group).sg;
8378 return group;
8379 }
8380
8381 static void init_numa_sched_groups_power(struct sched_group *group_head)
8382 {
8383 struct sched_group *sg = group_head;
8384 int j;
8385
8386 if (!sg)
8387 return;
8388 do {
8389 for_each_cpu(j, sched_group_cpus(sg)) {
8390 struct sched_domain *sd;
8391
8392 sd = &per_cpu(phys_domains, j).sd;
8393 if (j != group_first_cpu(sd->groups)) {
8394 /*
8395 * Only add "power" once for each
8396 * physical package.
8397 */
8398 continue;
8399 }
8400
8401 sg->cpu_power += sd->groups->cpu_power;
8402 }
8403 sg = sg->next;
8404 } while (sg != group_head);
8405 }
8406
8407 static int build_numa_sched_groups(struct s_data *d,
8408 const struct cpumask *cpu_map, int num)
8409 {
8410 struct sched_domain *sd;
8411 struct sched_group *sg, *prev;
8412 int n, j;
8413
8414 cpumask_clear(d->covered);
8415 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8416 if (cpumask_empty(d->nodemask)) {
8417 d->sched_group_nodes[num] = NULL;
8418 goto out;
8419 }
8420
8421 sched_domain_node_span(num, d->domainspan);
8422 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8423
8424 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8425 GFP_KERNEL, num);
8426 if (!sg) {
8427 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8428 num);
8429 return -ENOMEM;
8430 }
8431 d->sched_group_nodes[num] = sg;
8432
8433 for_each_cpu(j, d->nodemask) {
8434 sd = &per_cpu(node_domains, j).sd;
8435 sd->groups = sg;
8436 }
8437
8438 sg->cpu_power = 0;
8439 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8440 sg->next = sg;
8441 cpumask_or(d->covered, d->covered, d->nodemask);
8442
8443 prev = sg;
8444 for (j = 0; j < nr_node_ids; j++) {
8445 n = (num + j) % nr_node_ids;
8446 cpumask_complement(d->notcovered, d->covered);
8447 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8448 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8449 if (cpumask_empty(d->tmpmask))
8450 break;
8451 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8452 if (cpumask_empty(d->tmpmask))
8453 continue;
8454 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8455 GFP_KERNEL, num);
8456 if (!sg) {
8457 printk(KERN_WARNING
8458 "Can not alloc domain group for node %d\n", j);
8459 return -ENOMEM;
8460 }
8461 sg->cpu_power = 0;
8462 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8463 sg->next = prev->next;
8464 cpumask_or(d->covered, d->covered, d->tmpmask);
8465 prev->next = sg;
8466 prev = sg;
8467 }
8468 out:
8469 return 0;
8470 }
8471 #endif /* CONFIG_NUMA */
8472
8473 #ifdef CONFIG_NUMA
8474 /* Free memory allocated for various sched_group structures */
8475 static void free_sched_groups(const struct cpumask *cpu_map,
8476 struct cpumask *nodemask)
8477 {
8478 int cpu, i;
8479
8480 for_each_cpu(cpu, cpu_map) {
8481 struct sched_group **sched_group_nodes
8482 = sched_group_nodes_bycpu[cpu];
8483
8484 if (!sched_group_nodes)
8485 continue;
8486
8487 for (i = 0; i < nr_node_ids; i++) {
8488 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8489
8490 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8491 if (cpumask_empty(nodemask))
8492 continue;
8493
8494 if (sg == NULL)
8495 continue;
8496 sg = sg->next;
8497 next_sg:
8498 oldsg = sg;
8499 sg = sg->next;
8500 kfree(oldsg);
8501 if (oldsg != sched_group_nodes[i])
8502 goto next_sg;
8503 }
8504 kfree(sched_group_nodes);
8505 sched_group_nodes_bycpu[cpu] = NULL;
8506 }
8507 }
8508 #else /* !CONFIG_NUMA */
8509 static void free_sched_groups(const struct cpumask *cpu_map,
8510 struct cpumask *nodemask)
8511 {
8512 }
8513 #endif /* CONFIG_NUMA */
8514
8515 /*
8516 * Initialize sched groups cpu_power.
8517 *
8518 * cpu_power indicates the capacity of sched group, which is used while
8519 * distributing the load between different sched groups in a sched domain.
8520 * Typically cpu_power for all the groups in a sched domain will be same unless
8521 * there are asymmetries in the topology. If there are asymmetries, group
8522 * having more cpu_power will pickup more load compared to the group having
8523 * less cpu_power.
8524 */
8525 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8526 {
8527 struct sched_domain *child;
8528 struct sched_group *group;
8529 long power;
8530 int weight;
8531
8532 WARN_ON(!sd || !sd->groups);
8533
8534 if (cpu != group_first_cpu(sd->groups))
8535 return;
8536
8537 child = sd->child;
8538
8539 sd->groups->cpu_power = 0;
8540
8541 if (!child) {
8542 power = SCHED_LOAD_SCALE;
8543 weight = cpumask_weight(sched_domain_span(sd));
8544 /*
8545 * SMT siblings share the power of a single core.
8546 * Usually multiple threads get a better yield out of
8547 * that one core than a single thread would have,
8548 * reflect that in sd->smt_gain.
8549 */
8550 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8551 power *= sd->smt_gain;
8552 power /= weight;
8553 power >>= SCHED_LOAD_SHIFT;
8554 }
8555 sd->groups->cpu_power += power;
8556 return;
8557 }
8558
8559 /*
8560 * Add cpu_power of each child group to this groups cpu_power.
8561 */
8562 group = child->groups;
8563 do {
8564 sd->groups->cpu_power += group->cpu_power;
8565 group = group->next;
8566 } while (group != child->groups);
8567 }
8568
8569 /*
8570 * Initializers for schedule domains
8571 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8572 */
8573
8574 #ifdef CONFIG_SCHED_DEBUG
8575 # define SD_INIT_NAME(sd, type) sd->name = #type
8576 #else
8577 # define SD_INIT_NAME(sd, type) do { } while (0)
8578 #endif
8579
8580 #define SD_INIT(sd, type) sd_init_##type(sd)
8581
8582 #define SD_INIT_FUNC(type) \
8583 static noinline void sd_init_##type(struct sched_domain *sd) \
8584 { \
8585 memset(sd, 0, sizeof(*sd)); \
8586 *sd = SD_##type##_INIT; \
8587 sd->level = SD_LV_##type; \
8588 SD_INIT_NAME(sd, type); \
8589 }
8590
8591 SD_INIT_FUNC(CPU)
8592 #ifdef CONFIG_NUMA
8593 SD_INIT_FUNC(ALLNODES)
8594 SD_INIT_FUNC(NODE)
8595 #endif
8596 #ifdef CONFIG_SCHED_SMT
8597 SD_INIT_FUNC(SIBLING)
8598 #endif
8599 #ifdef CONFIG_SCHED_MC
8600 SD_INIT_FUNC(MC)
8601 #endif
8602
8603 static int default_relax_domain_level = -1;
8604
8605 static int __init setup_relax_domain_level(char *str)
8606 {
8607 unsigned long val;
8608
8609 val = simple_strtoul(str, NULL, 0);
8610 if (val < SD_LV_MAX)
8611 default_relax_domain_level = val;
8612
8613 return 1;
8614 }
8615 __setup("relax_domain_level=", setup_relax_domain_level);
8616
8617 static void set_domain_attribute(struct sched_domain *sd,
8618 struct sched_domain_attr *attr)
8619 {
8620 int request;
8621
8622 if (!attr || attr->relax_domain_level < 0) {
8623 if (default_relax_domain_level < 0)
8624 return;
8625 else
8626 request = default_relax_domain_level;
8627 } else
8628 request = attr->relax_domain_level;
8629 if (request < sd->level) {
8630 /* turn off idle balance on this domain */
8631 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8632 } else {
8633 /* turn on idle balance on this domain */
8634 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8635 }
8636 }
8637
8638 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8639 const struct cpumask *cpu_map)
8640 {
8641 switch (what) {
8642 case sa_sched_groups:
8643 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8644 d->sched_group_nodes = NULL;
8645 case sa_rootdomain:
8646 free_rootdomain(d->rd); /* fall through */
8647 case sa_tmpmask:
8648 free_cpumask_var(d->tmpmask); /* fall through */
8649 case sa_send_covered:
8650 free_cpumask_var(d->send_covered); /* fall through */
8651 case sa_this_core_map:
8652 free_cpumask_var(d->this_core_map); /* fall through */
8653 case sa_this_sibling_map:
8654 free_cpumask_var(d->this_sibling_map); /* fall through */
8655 case sa_nodemask:
8656 free_cpumask_var(d->nodemask); /* fall through */
8657 case sa_sched_group_nodes:
8658 #ifdef CONFIG_NUMA
8659 kfree(d->sched_group_nodes); /* fall through */
8660 case sa_notcovered:
8661 free_cpumask_var(d->notcovered); /* fall through */
8662 case sa_covered:
8663 free_cpumask_var(d->covered); /* fall through */
8664 case sa_domainspan:
8665 free_cpumask_var(d->domainspan); /* fall through */
8666 #endif
8667 case sa_none:
8668 break;
8669 }
8670 }
8671
8672 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8673 const struct cpumask *cpu_map)
8674 {
8675 #ifdef CONFIG_NUMA
8676 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8677 return sa_none;
8678 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8679 return sa_domainspan;
8680 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8681 return sa_covered;
8682 /* Allocate the per-node list of sched groups */
8683 d->sched_group_nodes = kcalloc(nr_node_ids,
8684 sizeof(struct sched_group *), GFP_KERNEL);
8685 if (!d->sched_group_nodes) {
8686 printk(KERN_WARNING "Can not alloc sched group node list\n");
8687 return sa_notcovered;
8688 }
8689 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8690 #endif
8691 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8692 return sa_sched_group_nodes;
8693 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8694 return sa_nodemask;
8695 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8696 return sa_this_sibling_map;
8697 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8698 return sa_this_core_map;
8699 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8700 return sa_send_covered;
8701 d->rd = alloc_rootdomain();
8702 if (!d->rd) {
8703 printk(KERN_WARNING "Cannot alloc root domain\n");
8704 return sa_tmpmask;
8705 }
8706 return sa_rootdomain;
8707 }
8708
8709 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8710 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8711 {
8712 struct sched_domain *sd = NULL;
8713 #ifdef CONFIG_NUMA
8714 struct sched_domain *parent;
8715
8716 d->sd_allnodes = 0;
8717 if (cpumask_weight(cpu_map) >
8718 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8719 sd = &per_cpu(allnodes_domains, i).sd;
8720 SD_INIT(sd, ALLNODES);
8721 set_domain_attribute(sd, attr);
8722 cpumask_copy(sched_domain_span(sd), cpu_map);
8723 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8724 d->sd_allnodes = 1;
8725 }
8726 parent = sd;
8727
8728 sd = &per_cpu(node_domains, i).sd;
8729 SD_INIT(sd, NODE);
8730 set_domain_attribute(sd, attr);
8731 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8732 sd->parent = parent;
8733 if (parent)
8734 parent->child = sd;
8735 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8736 #endif
8737 return sd;
8738 }
8739
8740 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8741 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8742 struct sched_domain *parent, int i)
8743 {
8744 struct sched_domain *sd;
8745 sd = &per_cpu(phys_domains, i).sd;
8746 SD_INIT(sd, CPU);
8747 set_domain_attribute(sd, attr);
8748 cpumask_copy(sched_domain_span(sd), d->nodemask);
8749 sd->parent = parent;
8750 if (parent)
8751 parent->child = sd;
8752 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8753 return sd;
8754 }
8755
8756 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8757 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8758 struct sched_domain *parent, int i)
8759 {
8760 struct sched_domain *sd = parent;
8761 #ifdef CONFIG_SCHED_MC
8762 sd = &per_cpu(core_domains, i).sd;
8763 SD_INIT(sd, MC);
8764 set_domain_attribute(sd, attr);
8765 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8766 sd->parent = parent;
8767 parent->child = sd;
8768 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8769 #endif
8770 return sd;
8771 }
8772
8773 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8774 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8775 struct sched_domain *parent, int i)
8776 {
8777 struct sched_domain *sd = parent;
8778 #ifdef CONFIG_SCHED_SMT
8779 sd = &per_cpu(cpu_domains, i).sd;
8780 SD_INIT(sd, SIBLING);
8781 set_domain_attribute(sd, attr);
8782 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8783 sd->parent = parent;
8784 parent->child = sd;
8785 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8786 #endif
8787 return sd;
8788 }
8789
8790 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8791 const struct cpumask *cpu_map, int cpu)
8792 {
8793 switch (l) {
8794 #ifdef CONFIG_SCHED_SMT
8795 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8796 cpumask_and(d->this_sibling_map, cpu_map,
8797 topology_thread_cpumask(cpu));
8798 if (cpu == cpumask_first(d->this_sibling_map))
8799 init_sched_build_groups(d->this_sibling_map, cpu_map,
8800 &cpu_to_cpu_group,
8801 d->send_covered, d->tmpmask);
8802 break;
8803 #endif
8804 #ifdef CONFIG_SCHED_MC
8805 case SD_LV_MC: /* set up multi-core groups */
8806 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8807 if (cpu == cpumask_first(d->this_core_map))
8808 init_sched_build_groups(d->this_core_map, cpu_map,
8809 &cpu_to_core_group,
8810 d->send_covered, d->tmpmask);
8811 break;
8812 #endif
8813 case SD_LV_CPU: /* set up physical groups */
8814 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8815 if (!cpumask_empty(d->nodemask))
8816 init_sched_build_groups(d->nodemask, cpu_map,
8817 &cpu_to_phys_group,
8818 d->send_covered, d->tmpmask);
8819 break;
8820 #ifdef CONFIG_NUMA
8821 case SD_LV_ALLNODES:
8822 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8823 d->send_covered, d->tmpmask);
8824 break;
8825 #endif
8826 default:
8827 break;
8828 }
8829 }
8830
8831 /*
8832 * Build sched domains for a given set of cpus and attach the sched domains
8833 * to the individual cpus
8834 */
8835 static int __build_sched_domains(const struct cpumask *cpu_map,
8836 struct sched_domain_attr *attr)
8837 {
8838 enum s_alloc alloc_state = sa_none;
8839 struct s_data d;
8840 struct sched_domain *sd;
8841 int i;
8842 #ifdef CONFIG_NUMA
8843 d.sd_allnodes = 0;
8844 #endif
8845
8846 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8847 if (alloc_state != sa_rootdomain)
8848 goto error;
8849 alloc_state = sa_sched_groups;
8850
8851 /*
8852 * Set up domains for cpus specified by the cpu_map.
8853 */
8854 for_each_cpu(i, cpu_map) {
8855 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8856 cpu_map);
8857
8858 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8859 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8860 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8861 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8862 }
8863
8864 for_each_cpu(i, cpu_map) {
8865 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8866 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8867 }
8868
8869 /* Set up physical groups */
8870 for (i = 0; i < nr_node_ids; i++)
8871 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8872
8873 #ifdef CONFIG_NUMA
8874 /* Set up node groups */
8875 if (d.sd_allnodes)
8876 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8877
8878 for (i = 0; i < nr_node_ids; i++)
8879 if (build_numa_sched_groups(&d, cpu_map, i))
8880 goto error;
8881 #endif
8882
8883 /* Calculate CPU power for physical packages and nodes */
8884 #ifdef CONFIG_SCHED_SMT
8885 for_each_cpu(i, cpu_map) {
8886 sd = &per_cpu(cpu_domains, i).sd;
8887 init_sched_groups_power(i, sd);
8888 }
8889 #endif
8890 #ifdef CONFIG_SCHED_MC
8891 for_each_cpu(i, cpu_map) {
8892 sd = &per_cpu(core_domains, i).sd;
8893 init_sched_groups_power(i, sd);
8894 }
8895 #endif
8896
8897 for_each_cpu(i, cpu_map) {
8898 sd = &per_cpu(phys_domains, i).sd;
8899 init_sched_groups_power(i, sd);
8900 }
8901
8902 #ifdef CONFIG_NUMA
8903 for (i = 0; i < nr_node_ids; i++)
8904 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8905
8906 if (d.sd_allnodes) {
8907 struct sched_group *sg;
8908
8909 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8910 d.tmpmask);
8911 init_numa_sched_groups_power(sg);
8912 }
8913 #endif
8914
8915 /* Attach the domains */
8916 for_each_cpu(i, cpu_map) {
8917 #ifdef CONFIG_SCHED_SMT
8918 sd = &per_cpu(cpu_domains, i).sd;
8919 #elif defined(CONFIG_SCHED_MC)
8920 sd = &per_cpu(core_domains, i).sd;
8921 #else
8922 sd = &per_cpu(phys_domains, i).sd;
8923 #endif
8924 cpu_attach_domain(sd, d.rd, i);
8925 }
8926
8927 d.sched_group_nodes = NULL; /* don't free this we still need it */
8928 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8929 return 0;
8930
8931 error:
8932 __free_domain_allocs(&d, alloc_state, cpu_map);
8933 return -ENOMEM;
8934 }
8935
8936 static int build_sched_domains(const struct cpumask *cpu_map)
8937 {
8938 return __build_sched_domains(cpu_map, NULL);
8939 }
8940
8941 static cpumask_var_t *doms_cur; /* current sched domains */
8942 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8943 static struct sched_domain_attr *dattr_cur;
8944 /* attribues of custom domains in 'doms_cur' */
8945
8946 /*
8947 * Special case: If a kmalloc of a doms_cur partition (array of
8948 * cpumask) fails, then fallback to a single sched domain,
8949 * as determined by the single cpumask fallback_doms.
8950 */
8951 static cpumask_var_t fallback_doms;
8952
8953 /*
8954 * arch_update_cpu_topology lets virtualized architectures update the
8955 * cpu core maps. It is supposed to return 1 if the topology changed
8956 * or 0 if it stayed the same.
8957 */
8958 int __attribute__((weak)) arch_update_cpu_topology(void)
8959 {
8960 return 0;
8961 }
8962
8963 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8964 {
8965 int i;
8966 cpumask_var_t *doms;
8967
8968 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8969 if (!doms)
8970 return NULL;
8971 for (i = 0; i < ndoms; i++) {
8972 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8973 free_sched_domains(doms, i);
8974 return NULL;
8975 }
8976 }
8977 return doms;
8978 }
8979
8980 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8981 {
8982 unsigned int i;
8983 for (i = 0; i < ndoms; i++)
8984 free_cpumask_var(doms[i]);
8985 kfree(doms);
8986 }
8987
8988 /*
8989 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8990 * For now this just excludes isolated cpus, but could be used to
8991 * exclude other special cases in the future.
8992 */
8993 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8994 {
8995 int err;
8996
8997 arch_update_cpu_topology();
8998 ndoms_cur = 1;
8999 doms_cur = alloc_sched_domains(ndoms_cur);
9000 if (!doms_cur)
9001 doms_cur = &fallback_doms;
9002 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9003 dattr_cur = NULL;
9004 err = build_sched_domains(doms_cur[0]);
9005 register_sched_domain_sysctl();
9006
9007 return err;
9008 }
9009
9010 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9011 struct cpumask *tmpmask)
9012 {
9013 free_sched_groups(cpu_map, tmpmask);
9014 }
9015
9016 /*
9017 * Detach sched domains from a group of cpus specified in cpu_map
9018 * These cpus will now be attached to the NULL domain
9019 */
9020 static void detach_destroy_domains(const struct cpumask *cpu_map)
9021 {
9022 /* Save because hotplug lock held. */
9023 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9024 int i;
9025
9026 for_each_cpu(i, cpu_map)
9027 cpu_attach_domain(NULL, &def_root_domain, i);
9028 synchronize_sched();
9029 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9030 }
9031
9032 /* handle null as "default" */
9033 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9034 struct sched_domain_attr *new, int idx_new)
9035 {
9036 struct sched_domain_attr tmp;
9037
9038 /* fast path */
9039 if (!new && !cur)
9040 return 1;
9041
9042 tmp = SD_ATTR_INIT;
9043 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9044 new ? (new + idx_new) : &tmp,
9045 sizeof(struct sched_domain_attr));
9046 }
9047
9048 /*
9049 * Partition sched domains as specified by the 'ndoms_new'
9050 * cpumasks in the array doms_new[] of cpumasks. This compares
9051 * doms_new[] to the current sched domain partitioning, doms_cur[].
9052 * It destroys each deleted domain and builds each new domain.
9053 *
9054 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9055 * The masks don't intersect (don't overlap.) We should setup one
9056 * sched domain for each mask. CPUs not in any of the cpumasks will
9057 * not be load balanced. If the same cpumask appears both in the
9058 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9059 * it as it is.
9060 *
9061 * The passed in 'doms_new' should be allocated using
9062 * alloc_sched_domains. This routine takes ownership of it and will
9063 * free_sched_domains it when done with it. If the caller failed the
9064 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9065 * and partition_sched_domains() will fallback to the single partition
9066 * 'fallback_doms', it also forces the domains to be rebuilt.
9067 *
9068 * If doms_new == NULL it will be replaced with cpu_online_mask.
9069 * ndoms_new == 0 is a special case for destroying existing domains,
9070 * and it will not create the default domain.
9071 *
9072 * Call with hotplug lock held
9073 */
9074 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9075 struct sched_domain_attr *dattr_new)
9076 {
9077 int i, j, n;
9078 int new_topology;
9079
9080 mutex_lock(&sched_domains_mutex);
9081
9082 /* always unregister in case we don't destroy any domains */
9083 unregister_sched_domain_sysctl();
9084
9085 /* Let architecture update cpu core mappings. */
9086 new_topology = arch_update_cpu_topology();
9087
9088 n = doms_new ? ndoms_new : 0;
9089
9090 /* Destroy deleted domains */
9091 for (i = 0; i < ndoms_cur; i++) {
9092 for (j = 0; j < n && !new_topology; j++) {
9093 if (cpumask_equal(doms_cur[i], doms_new[j])
9094 && dattrs_equal(dattr_cur, i, dattr_new, j))
9095 goto match1;
9096 }
9097 /* no match - a current sched domain not in new doms_new[] */
9098 detach_destroy_domains(doms_cur[i]);
9099 match1:
9100 ;
9101 }
9102
9103 if (doms_new == NULL) {
9104 ndoms_cur = 0;
9105 doms_new = &fallback_doms;
9106 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9107 WARN_ON_ONCE(dattr_new);
9108 }
9109
9110 /* Build new domains */
9111 for (i = 0; i < ndoms_new; i++) {
9112 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9113 if (cpumask_equal(doms_new[i], doms_cur[j])
9114 && dattrs_equal(dattr_new, i, dattr_cur, j))
9115 goto match2;
9116 }
9117 /* no match - add a new doms_new */
9118 __build_sched_domains(doms_new[i],
9119 dattr_new ? dattr_new + i : NULL);
9120 match2:
9121 ;
9122 }
9123
9124 /* Remember the new sched domains */
9125 if (doms_cur != &fallback_doms)
9126 free_sched_domains(doms_cur, ndoms_cur);
9127 kfree(dattr_cur); /* kfree(NULL) is safe */
9128 doms_cur = doms_new;
9129 dattr_cur = dattr_new;
9130 ndoms_cur = ndoms_new;
9131
9132 register_sched_domain_sysctl();
9133
9134 mutex_unlock(&sched_domains_mutex);
9135 }
9136
9137 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9138 static void arch_reinit_sched_domains(void)
9139 {
9140 get_online_cpus();
9141
9142 /* Destroy domains first to force the rebuild */
9143 partition_sched_domains(0, NULL, NULL);
9144
9145 rebuild_sched_domains();
9146 put_online_cpus();
9147 }
9148
9149 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9150 {
9151 unsigned int level = 0;
9152
9153 if (sscanf(buf, "%u", &level) != 1)
9154 return -EINVAL;
9155
9156 /*
9157 * level is always be positive so don't check for
9158 * level < POWERSAVINGS_BALANCE_NONE which is 0
9159 * What happens on 0 or 1 byte write,
9160 * need to check for count as well?
9161 */
9162
9163 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9164 return -EINVAL;
9165
9166 if (smt)
9167 sched_smt_power_savings = level;
9168 else
9169 sched_mc_power_savings = level;
9170
9171 arch_reinit_sched_domains();
9172
9173 return count;
9174 }
9175
9176 #ifdef CONFIG_SCHED_MC
9177 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9178 char *page)
9179 {
9180 return sprintf(page, "%u\n", sched_mc_power_savings);
9181 }
9182 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9183 const char *buf, size_t count)
9184 {
9185 return sched_power_savings_store(buf, count, 0);
9186 }
9187 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9188 sched_mc_power_savings_show,
9189 sched_mc_power_savings_store);
9190 #endif
9191
9192 #ifdef CONFIG_SCHED_SMT
9193 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9194 char *page)
9195 {
9196 return sprintf(page, "%u\n", sched_smt_power_savings);
9197 }
9198 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9199 const char *buf, size_t count)
9200 {
9201 return sched_power_savings_store(buf, count, 1);
9202 }
9203 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9204 sched_smt_power_savings_show,
9205 sched_smt_power_savings_store);
9206 #endif
9207
9208 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9209 {
9210 int err = 0;
9211
9212 #ifdef CONFIG_SCHED_SMT
9213 if (smt_capable())
9214 err = sysfs_create_file(&cls->kset.kobj,
9215 &attr_sched_smt_power_savings.attr);
9216 #endif
9217 #ifdef CONFIG_SCHED_MC
9218 if (!err && mc_capable())
9219 err = sysfs_create_file(&cls->kset.kobj,
9220 &attr_sched_mc_power_savings.attr);
9221 #endif
9222 return err;
9223 }
9224 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9225
9226 #ifndef CONFIG_CPUSETS
9227 /*
9228 * Add online and remove offline CPUs from the scheduler domains.
9229 * When cpusets are enabled they take over this function.
9230 */
9231 static int update_sched_domains(struct notifier_block *nfb,
9232 unsigned long action, void *hcpu)
9233 {
9234 switch (action) {
9235 case CPU_ONLINE:
9236 case CPU_ONLINE_FROZEN:
9237 case CPU_DOWN_PREPARE:
9238 case CPU_DOWN_PREPARE_FROZEN:
9239 case CPU_DOWN_FAILED:
9240 case CPU_DOWN_FAILED_FROZEN:
9241 partition_sched_domains(1, NULL, NULL);
9242 return NOTIFY_OK;
9243
9244 default:
9245 return NOTIFY_DONE;
9246 }
9247 }
9248 #endif
9249
9250 static int update_runtime(struct notifier_block *nfb,
9251 unsigned long action, void *hcpu)
9252 {
9253 int cpu = (int)(long)hcpu;
9254
9255 switch (action) {
9256 case CPU_DOWN_PREPARE:
9257 case CPU_DOWN_PREPARE_FROZEN:
9258 disable_runtime(cpu_rq(cpu));
9259 return NOTIFY_OK;
9260
9261 case CPU_DOWN_FAILED:
9262 case CPU_DOWN_FAILED_FROZEN:
9263 case CPU_ONLINE:
9264 case CPU_ONLINE_FROZEN:
9265 enable_runtime(cpu_rq(cpu));
9266 return NOTIFY_OK;
9267
9268 default:
9269 return NOTIFY_DONE;
9270 }
9271 }
9272
9273 void __init sched_init_smp(void)
9274 {
9275 cpumask_var_t non_isolated_cpus;
9276
9277 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9278 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9279
9280 #if defined(CONFIG_NUMA)
9281 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9282 GFP_KERNEL);
9283 BUG_ON(sched_group_nodes_bycpu == NULL);
9284 #endif
9285 get_online_cpus();
9286 mutex_lock(&sched_domains_mutex);
9287 arch_init_sched_domains(cpu_active_mask);
9288 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9289 if (cpumask_empty(non_isolated_cpus))
9290 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9291 mutex_unlock(&sched_domains_mutex);
9292 put_online_cpus();
9293
9294 #ifndef CONFIG_CPUSETS
9295 /* XXX: Theoretical race here - CPU may be hotplugged now */
9296 hotcpu_notifier(update_sched_domains, 0);
9297 #endif
9298
9299 /* RT runtime code needs to handle some hotplug events */
9300 hotcpu_notifier(update_runtime, 0);
9301
9302 init_hrtick();
9303
9304 /* Move init over to a non-isolated CPU */
9305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9306 BUG();
9307 sched_init_granularity();
9308 free_cpumask_var(non_isolated_cpus);
9309
9310 init_sched_rt_class();
9311 }
9312 #else
9313 void __init sched_init_smp(void)
9314 {
9315 sched_init_granularity();
9316 }
9317 #endif /* CONFIG_SMP */
9318
9319 const_debug unsigned int sysctl_timer_migration = 1;
9320
9321 int in_sched_functions(unsigned long addr)
9322 {
9323 return in_lock_functions(addr) ||
9324 (addr >= (unsigned long)__sched_text_start
9325 && addr < (unsigned long)__sched_text_end);
9326 }
9327
9328 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9329 {
9330 cfs_rq->tasks_timeline = RB_ROOT;
9331 INIT_LIST_HEAD(&cfs_rq->tasks);
9332 #ifdef CONFIG_FAIR_GROUP_SCHED
9333 cfs_rq->rq = rq;
9334 #endif
9335 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9336 }
9337
9338 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9339 {
9340 struct rt_prio_array *array;
9341 int i;
9342
9343 array = &rt_rq->active;
9344 for (i = 0; i < MAX_RT_PRIO; i++) {
9345 INIT_LIST_HEAD(array->queue + i);
9346 __clear_bit(i, array->bitmap);
9347 }
9348 /* delimiter for bitsearch: */
9349 __set_bit(MAX_RT_PRIO, array->bitmap);
9350
9351 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9352 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9353 #ifdef CONFIG_SMP
9354 rt_rq->highest_prio.next = MAX_RT_PRIO;
9355 #endif
9356 #endif
9357 #ifdef CONFIG_SMP
9358 rt_rq->rt_nr_migratory = 0;
9359 rt_rq->overloaded = 0;
9360 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9361 #endif
9362
9363 rt_rq->rt_time = 0;
9364 rt_rq->rt_throttled = 0;
9365 rt_rq->rt_runtime = 0;
9366 spin_lock_init(&rt_rq->rt_runtime_lock);
9367
9368 #ifdef CONFIG_RT_GROUP_SCHED
9369 rt_rq->rt_nr_boosted = 0;
9370 rt_rq->rq = rq;
9371 #endif
9372 }
9373
9374 #ifdef CONFIG_FAIR_GROUP_SCHED
9375 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9376 struct sched_entity *se, int cpu, int add,
9377 struct sched_entity *parent)
9378 {
9379 struct rq *rq = cpu_rq(cpu);
9380 tg->cfs_rq[cpu] = cfs_rq;
9381 init_cfs_rq(cfs_rq, rq);
9382 cfs_rq->tg = tg;
9383 if (add)
9384 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9385
9386 tg->se[cpu] = se;
9387 /* se could be NULL for init_task_group */
9388 if (!se)
9389 return;
9390
9391 if (!parent)
9392 se->cfs_rq = &rq->cfs;
9393 else
9394 se->cfs_rq = parent->my_q;
9395
9396 se->my_q = cfs_rq;
9397 se->load.weight = tg->shares;
9398 se->load.inv_weight = 0;
9399 se->parent = parent;
9400 }
9401 #endif
9402
9403 #ifdef CONFIG_RT_GROUP_SCHED
9404 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9405 struct sched_rt_entity *rt_se, int cpu, int add,
9406 struct sched_rt_entity *parent)
9407 {
9408 struct rq *rq = cpu_rq(cpu);
9409
9410 tg->rt_rq[cpu] = rt_rq;
9411 init_rt_rq(rt_rq, rq);
9412 rt_rq->tg = tg;
9413 rt_rq->rt_se = rt_se;
9414 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9415 if (add)
9416 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9417
9418 tg->rt_se[cpu] = rt_se;
9419 if (!rt_se)
9420 return;
9421
9422 if (!parent)
9423 rt_se->rt_rq = &rq->rt;
9424 else
9425 rt_se->rt_rq = parent->my_q;
9426
9427 rt_se->my_q = rt_rq;
9428 rt_se->parent = parent;
9429 INIT_LIST_HEAD(&rt_se->run_list);
9430 }
9431 #endif
9432
9433 void __init sched_init(void)
9434 {
9435 int i, j;
9436 unsigned long alloc_size = 0, ptr;
9437
9438 #ifdef CONFIG_FAIR_GROUP_SCHED
9439 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9440 #endif
9441 #ifdef CONFIG_RT_GROUP_SCHED
9442 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9443 #endif
9444 #ifdef CONFIG_USER_SCHED
9445 alloc_size *= 2;
9446 #endif
9447 #ifdef CONFIG_CPUMASK_OFFSTACK
9448 alloc_size += num_possible_cpus() * cpumask_size();
9449 #endif
9450 if (alloc_size) {
9451 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9452
9453 #ifdef CONFIG_FAIR_GROUP_SCHED
9454 init_task_group.se = (struct sched_entity **)ptr;
9455 ptr += nr_cpu_ids * sizeof(void **);
9456
9457 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
9459
9460 #ifdef CONFIG_USER_SCHED
9461 root_task_group.se = (struct sched_entity **)ptr;
9462 ptr += nr_cpu_ids * sizeof(void **);
9463
9464 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
9466 #endif /* CONFIG_USER_SCHED */
9467 #endif /* CONFIG_FAIR_GROUP_SCHED */
9468 #ifdef CONFIG_RT_GROUP_SCHED
9469 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9470 ptr += nr_cpu_ids * sizeof(void **);
9471
9472 init_task_group.rt_rq = (struct rt_rq **)ptr;
9473 ptr += nr_cpu_ids * sizeof(void **);
9474
9475 #ifdef CONFIG_USER_SCHED
9476 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9477 ptr += nr_cpu_ids * sizeof(void **);
9478
9479 root_task_group.rt_rq = (struct rt_rq **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
9481 #endif /* CONFIG_USER_SCHED */
9482 #endif /* CONFIG_RT_GROUP_SCHED */
9483 #ifdef CONFIG_CPUMASK_OFFSTACK
9484 for_each_possible_cpu(i) {
9485 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9486 ptr += cpumask_size();
9487 }
9488 #endif /* CONFIG_CPUMASK_OFFSTACK */
9489 }
9490
9491 #ifdef CONFIG_SMP
9492 init_defrootdomain();
9493 #endif
9494
9495 init_rt_bandwidth(&def_rt_bandwidth,
9496 global_rt_period(), global_rt_runtime());
9497
9498 #ifdef CONFIG_RT_GROUP_SCHED
9499 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9500 global_rt_period(), global_rt_runtime());
9501 #ifdef CONFIG_USER_SCHED
9502 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9503 global_rt_period(), RUNTIME_INF);
9504 #endif /* CONFIG_USER_SCHED */
9505 #endif /* CONFIG_RT_GROUP_SCHED */
9506
9507 #ifdef CONFIG_GROUP_SCHED
9508 list_add(&init_task_group.list, &task_groups);
9509 INIT_LIST_HEAD(&init_task_group.children);
9510
9511 #ifdef CONFIG_USER_SCHED
9512 INIT_LIST_HEAD(&root_task_group.children);
9513 init_task_group.parent = &root_task_group;
9514 list_add(&init_task_group.siblings, &root_task_group.children);
9515 #endif /* CONFIG_USER_SCHED */
9516 #endif /* CONFIG_GROUP_SCHED */
9517
9518 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9519 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9520 __alignof__(unsigned long));
9521 #endif
9522 for_each_possible_cpu(i) {
9523 struct rq *rq;
9524
9525 rq = cpu_rq(i);
9526 spin_lock_init(&rq->lock);
9527 rq->nr_running = 0;
9528 rq->calc_load_active = 0;
9529 rq->calc_load_update = jiffies + LOAD_FREQ;
9530 init_cfs_rq(&rq->cfs, rq);
9531 init_rt_rq(&rq->rt, rq);
9532 #ifdef CONFIG_FAIR_GROUP_SCHED
9533 init_task_group.shares = init_task_group_load;
9534 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9535 #ifdef CONFIG_CGROUP_SCHED
9536 /*
9537 * How much cpu bandwidth does init_task_group get?
9538 *
9539 * In case of task-groups formed thr' the cgroup filesystem, it
9540 * gets 100% of the cpu resources in the system. This overall
9541 * system cpu resource is divided among the tasks of
9542 * init_task_group and its child task-groups in a fair manner,
9543 * based on each entity's (task or task-group's) weight
9544 * (se->load.weight).
9545 *
9546 * In other words, if init_task_group has 10 tasks of weight
9547 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9548 * then A0's share of the cpu resource is:
9549 *
9550 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9551 *
9552 * We achieve this by letting init_task_group's tasks sit
9553 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9554 */
9555 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9556 #elif defined CONFIG_USER_SCHED
9557 root_task_group.shares = NICE_0_LOAD;
9558 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9559 /*
9560 * In case of task-groups formed thr' the user id of tasks,
9561 * init_task_group represents tasks belonging to root user.
9562 * Hence it forms a sibling of all subsequent groups formed.
9563 * In this case, init_task_group gets only a fraction of overall
9564 * system cpu resource, based on the weight assigned to root
9565 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9566 * by letting tasks of init_task_group sit in a separate cfs_rq
9567 * (init_tg_cfs_rq) and having one entity represent this group of
9568 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9569 */
9570 init_tg_cfs_entry(&init_task_group,
9571 &per_cpu(init_tg_cfs_rq, i),
9572 &per_cpu(init_sched_entity, i), i, 1,
9573 root_task_group.se[i]);
9574
9575 #endif
9576 #endif /* CONFIG_FAIR_GROUP_SCHED */
9577
9578 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9579 #ifdef CONFIG_RT_GROUP_SCHED
9580 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9581 #ifdef CONFIG_CGROUP_SCHED
9582 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9583 #elif defined CONFIG_USER_SCHED
9584 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9585 init_tg_rt_entry(&init_task_group,
9586 &per_cpu(init_rt_rq_var, i),
9587 &per_cpu(init_sched_rt_entity, i), i, 1,
9588 root_task_group.rt_se[i]);
9589 #endif
9590 #endif
9591
9592 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9593 rq->cpu_load[j] = 0;
9594 #ifdef CONFIG_SMP
9595 rq->sd = NULL;
9596 rq->rd = NULL;
9597 rq->post_schedule = 0;
9598 rq->active_balance = 0;
9599 rq->next_balance = jiffies;
9600 rq->push_cpu = 0;
9601 rq->cpu = i;
9602 rq->online = 0;
9603 rq->migration_thread = NULL;
9604 rq->idle_stamp = 0;
9605 rq->avg_idle = 2*sysctl_sched_migration_cost;
9606 INIT_LIST_HEAD(&rq->migration_queue);
9607 rq_attach_root(rq, &def_root_domain);
9608 #endif
9609 init_rq_hrtick(rq);
9610 atomic_set(&rq->nr_iowait, 0);
9611 }
9612
9613 set_load_weight(&init_task);
9614
9615 #ifdef CONFIG_PREEMPT_NOTIFIERS
9616 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9617 #endif
9618
9619 #ifdef CONFIG_SMP
9620 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9621 #endif
9622
9623 #ifdef CONFIG_RT_MUTEXES
9624 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9625 #endif
9626
9627 /*
9628 * The boot idle thread does lazy MMU switching as well:
9629 */
9630 atomic_inc(&init_mm.mm_count);
9631 enter_lazy_tlb(&init_mm, current);
9632
9633 /*
9634 * Make us the idle thread. Technically, schedule() should not be
9635 * called from this thread, however somewhere below it might be,
9636 * but because we are the idle thread, we just pick up running again
9637 * when this runqueue becomes "idle".
9638 */
9639 init_idle(current, smp_processor_id());
9640
9641 calc_load_update = jiffies + LOAD_FREQ;
9642
9643 /*
9644 * During early bootup we pretend to be a normal task:
9645 */
9646 current->sched_class = &fair_sched_class;
9647
9648 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9649 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9650 #ifdef CONFIG_SMP
9651 #ifdef CONFIG_NO_HZ
9652 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9653 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9654 #endif
9655 /* May be allocated at isolcpus cmdline parse time */
9656 if (cpu_isolated_map == NULL)
9657 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9658 #endif /* SMP */
9659
9660 perf_event_init();
9661
9662 scheduler_running = 1;
9663 }
9664
9665 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9666 static inline int preempt_count_equals(int preempt_offset)
9667 {
9668 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9669
9670 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9671 }
9672
9673 void __might_sleep(char *file, int line, int preempt_offset)
9674 {
9675 #ifdef in_atomic
9676 static unsigned long prev_jiffy; /* ratelimiting */
9677
9678 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9679 system_state != SYSTEM_RUNNING || oops_in_progress)
9680 return;
9681 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9682 return;
9683 prev_jiffy = jiffies;
9684
9685 printk(KERN_ERR
9686 "BUG: sleeping function called from invalid context at %s:%d\n",
9687 file, line);
9688 printk(KERN_ERR
9689 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9690 in_atomic(), irqs_disabled(),
9691 current->pid, current->comm);
9692
9693 debug_show_held_locks(current);
9694 if (irqs_disabled())
9695 print_irqtrace_events(current);
9696 dump_stack();
9697 #endif
9698 }
9699 EXPORT_SYMBOL(__might_sleep);
9700 #endif
9701
9702 #ifdef CONFIG_MAGIC_SYSRQ
9703 static void normalize_task(struct rq *rq, struct task_struct *p)
9704 {
9705 int on_rq;
9706
9707 update_rq_clock(rq);
9708 on_rq = p->se.on_rq;
9709 if (on_rq)
9710 deactivate_task(rq, p, 0);
9711 __setscheduler(rq, p, SCHED_NORMAL, 0);
9712 if (on_rq) {
9713 activate_task(rq, p, 0);
9714 resched_task(rq->curr);
9715 }
9716 }
9717
9718 void normalize_rt_tasks(void)
9719 {
9720 struct task_struct *g, *p;
9721 unsigned long flags;
9722 struct rq *rq;
9723
9724 read_lock_irqsave(&tasklist_lock, flags);
9725 do_each_thread(g, p) {
9726 /*
9727 * Only normalize user tasks:
9728 */
9729 if (!p->mm)
9730 continue;
9731
9732 p->se.exec_start = 0;
9733 #ifdef CONFIG_SCHEDSTATS
9734 p->se.wait_start = 0;
9735 p->se.sleep_start = 0;
9736 p->se.block_start = 0;
9737 #endif
9738
9739 if (!rt_task(p)) {
9740 /*
9741 * Renice negative nice level userspace
9742 * tasks back to 0:
9743 */
9744 if (TASK_NICE(p) < 0 && p->mm)
9745 set_user_nice(p, 0);
9746 continue;
9747 }
9748
9749 spin_lock(&p->pi_lock);
9750 rq = __task_rq_lock(p);
9751
9752 normalize_task(rq, p);
9753
9754 __task_rq_unlock(rq);
9755 spin_unlock(&p->pi_lock);
9756 } while_each_thread(g, p);
9757
9758 read_unlock_irqrestore(&tasklist_lock, flags);
9759 }
9760
9761 #endif /* CONFIG_MAGIC_SYSRQ */
9762
9763 #ifdef CONFIG_IA64
9764 /*
9765 * These functions are only useful for the IA64 MCA handling.
9766 *
9767 * They can only be called when the whole system has been
9768 * stopped - every CPU needs to be quiescent, and no scheduling
9769 * activity can take place. Using them for anything else would
9770 * be a serious bug, and as a result, they aren't even visible
9771 * under any other configuration.
9772 */
9773
9774 /**
9775 * curr_task - return the current task for a given cpu.
9776 * @cpu: the processor in question.
9777 *
9778 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9779 */
9780 struct task_struct *curr_task(int cpu)
9781 {
9782 return cpu_curr(cpu);
9783 }
9784
9785 /**
9786 * set_curr_task - set the current task for a given cpu.
9787 * @cpu: the processor in question.
9788 * @p: the task pointer to set.
9789 *
9790 * Description: This function must only be used when non-maskable interrupts
9791 * are serviced on a separate stack. It allows the architecture to switch the
9792 * notion of the current task on a cpu in a non-blocking manner. This function
9793 * must be called with all CPU's synchronized, and interrupts disabled, the
9794 * and caller must save the original value of the current task (see
9795 * curr_task() above) and restore that value before reenabling interrupts and
9796 * re-starting the system.
9797 *
9798 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9799 */
9800 void set_curr_task(int cpu, struct task_struct *p)
9801 {
9802 cpu_curr(cpu) = p;
9803 }
9804
9805 #endif
9806
9807 #ifdef CONFIG_FAIR_GROUP_SCHED
9808 static void free_fair_sched_group(struct task_group *tg)
9809 {
9810 int i;
9811
9812 for_each_possible_cpu(i) {
9813 if (tg->cfs_rq)
9814 kfree(tg->cfs_rq[i]);
9815 if (tg->se)
9816 kfree(tg->se[i]);
9817 }
9818
9819 kfree(tg->cfs_rq);
9820 kfree(tg->se);
9821 }
9822
9823 static
9824 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9825 {
9826 struct cfs_rq *cfs_rq;
9827 struct sched_entity *se;
9828 struct rq *rq;
9829 int i;
9830
9831 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9832 if (!tg->cfs_rq)
9833 goto err;
9834 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9835 if (!tg->se)
9836 goto err;
9837
9838 tg->shares = NICE_0_LOAD;
9839
9840 for_each_possible_cpu(i) {
9841 rq = cpu_rq(i);
9842
9843 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9844 GFP_KERNEL, cpu_to_node(i));
9845 if (!cfs_rq)
9846 goto err;
9847
9848 se = kzalloc_node(sizeof(struct sched_entity),
9849 GFP_KERNEL, cpu_to_node(i));
9850 if (!se)
9851 goto err_free_rq;
9852
9853 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9854 }
9855
9856 return 1;
9857
9858 err_free_rq:
9859 kfree(cfs_rq);
9860 err:
9861 return 0;
9862 }
9863
9864 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9865 {
9866 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9867 &cpu_rq(cpu)->leaf_cfs_rq_list);
9868 }
9869
9870 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9871 {
9872 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9873 }
9874 #else /* !CONFG_FAIR_GROUP_SCHED */
9875 static inline void free_fair_sched_group(struct task_group *tg)
9876 {
9877 }
9878
9879 static inline
9880 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9881 {
9882 return 1;
9883 }
9884
9885 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9886 {
9887 }
9888
9889 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9890 {
9891 }
9892 #endif /* CONFIG_FAIR_GROUP_SCHED */
9893
9894 #ifdef CONFIG_RT_GROUP_SCHED
9895 static void free_rt_sched_group(struct task_group *tg)
9896 {
9897 int i;
9898
9899 destroy_rt_bandwidth(&tg->rt_bandwidth);
9900
9901 for_each_possible_cpu(i) {
9902 if (tg->rt_rq)
9903 kfree(tg->rt_rq[i]);
9904 if (tg->rt_se)
9905 kfree(tg->rt_se[i]);
9906 }
9907
9908 kfree(tg->rt_rq);
9909 kfree(tg->rt_se);
9910 }
9911
9912 static
9913 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9914 {
9915 struct rt_rq *rt_rq;
9916 struct sched_rt_entity *rt_se;
9917 struct rq *rq;
9918 int i;
9919
9920 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9921 if (!tg->rt_rq)
9922 goto err;
9923 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9924 if (!tg->rt_se)
9925 goto err;
9926
9927 init_rt_bandwidth(&tg->rt_bandwidth,
9928 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9929
9930 for_each_possible_cpu(i) {
9931 rq = cpu_rq(i);
9932
9933 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9934 GFP_KERNEL, cpu_to_node(i));
9935 if (!rt_rq)
9936 goto err;
9937
9938 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9939 GFP_KERNEL, cpu_to_node(i));
9940 if (!rt_se)
9941 goto err_free_rq;
9942
9943 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9944 }
9945
9946 return 1;
9947
9948 err_free_rq:
9949 kfree(rt_rq);
9950 err:
9951 return 0;
9952 }
9953
9954 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9955 {
9956 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9957 &cpu_rq(cpu)->leaf_rt_rq_list);
9958 }
9959
9960 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9961 {
9962 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9963 }
9964 #else /* !CONFIG_RT_GROUP_SCHED */
9965 static inline void free_rt_sched_group(struct task_group *tg)
9966 {
9967 }
9968
9969 static inline
9970 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9971 {
9972 return 1;
9973 }
9974
9975 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9976 {
9977 }
9978
9979 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9980 {
9981 }
9982 #endif /* CONFIG_RT_GROUP_SCHED */
9983
9984 #ifdef CONFIG_GROUP_SCHED
9985 static void free_sched_group(struct task_group *tg)
9986 {
9987 free_fair_sched_group(tg);
9988 free_rt_sched_group(tg);
9989 kfree(tg);
9990 }
9991
9992 /* allocate runqueue etc for a new task group */
9993 struct task_group *sched_create_group(struct task_group *parent)
9994 {
9995 struct task_group *tg;
9996 unsigned long flags;
9997 int i;
9998
9999 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10000 if (!tg)
10001 return ERR_PTR(-ENOMEM);
10002
10003 if (!alloc_fair_sched_group(tg, parent))
10004 goto err;
10005
10006 if (!alloc_rt_sched_group(tg, parent))
10007 goto err;
10008
10009 spin_lock_irqsave(&task_group_lock, flags);
10010 for_each_possible_cpu(i) {
10011 register_fair_sched_group(tg, i);
10012 register_rt_sched_group(tg, i);
10013 }
10014 list_add_rcu(&tg->list, &task_groups);
10015
10016 WARN_ON(!parent); /* root should already exist */
10017
10018 tg->parent = parent;
10019 INIT_LIST_HEAD(&tg->children);
10020 list_add_rcu(&tg->siblings, &parent->children);
10021 spin_unlock_irqrestore(&task_group_lock, flags);
10022
10023 return tg;
10024
10025 err:
10026 free_sched_group(tg);
10027 return ERR_PTR(-ENOMEM);
10028 }
10029
10030 /* rcu callback to free various structures associated with a task group */
10031 static void free_sched_group_rcu(struct rcu_head *rhp)
10032 {
10033 /* now it should be safe to free those cfs_rqs */
10034 free_sched_group(container_of(rhp, struct task_group, rcu));
10035 }
10036
10037 /* Destroy runqueue etc associated with a task group */
10038 void sched_destroy_group(struct task_group *tg)
10039 {
10040 unsigned long flags;
10041 int i;
10042
10043 spin_lock_irqsave(&task_group_lock, flags);
10044 for_each_possible_cpu(i) {
10045 unregister_fair_sched_group(tg, i);
10046 unregister_rt_sched_group(tg, i);
10047 }
10048 list_del_rcu(&tg->list);
10049 list_del_rcu(&tg->siblings);
10050 spin_unlock_irqrestore(&task_group_lock, flags);
10051
10052 /* wait for possible concurrent references to cfs_rqs complete */
10053 call_rcu(&tg->rcu, free_sched_group_rcu);
10054 }
10055
10056 /* change task's runqueue when it moves between groups.
10057 * The caller of this function should have put the task in its new group
10058 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10059 * reflect its new group.
10060 */
10061 void sched_move_task(struct task_struct *tsk)
10062 {
10063 int on_rq, running;
10064 unsigned long flags;
10065 struct rq *rq;
10066
10067 rq = task_rq_lock(tsk, &flags);
10068
10069 update_rq_clock(rq);
10070
10071 running = task_current(rq, tsk);
10072 on_rq = tsk->se.on_rq;
10073
10074 if (on_rq)
10075 dequeue_task(rq, tsk, 0);
10076 if (unlikely(running))
10077 tsk->sched_class->put_prev_task(rq, tsk);
10078
10079 set_task_rq(tsk, task_cpu(tsk));
10080
10081 #ifdef CONFIG_FAIR_GROUP_SCHED
10082 if (tsk->sched_class->moved_group)
10083 tsk->sched_class->moved_group(tsk);
10084 #endif
10085
10086 if (unlikely(running))
10087 tsk->sched_class->set_curr_task(rq);
10088 if (on_rq)
10089 enqueue_task(rq, tsk, 0);
10090
10091 task_rq_unlock(rq, &flags);
10092 }
10093 #endif /* CONFIG_GROUP_SCHED */
10094
10095 #ifdef CONFIG_FAIR_GROUP_SCHED
10096 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10097 {
10098 struct cfs_rq *cfs_rq = se->cfs_rq;
10099 int on_rq;
10100
10101 on_rq = se->on_rq;
10102 if (on_rq)
10103 dequeue_entity(cfs_rq, se, 0);
10104
10105 se->load.weight = shares;
10106 se->load.inv_weight = 0;
10107
10108 if (on_rq)
10109 enqueue_entity(cfs_rq, se, 0);
10110 }
10111
10112 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10113 {
10114 struct cfs_rq *cfs_rq = se->cfs_rq;
10115 struct rq *rq = cfs_rq->rq;
10116 unsigned long flags;
10117
10118 spin_lock_irqsave(&rq->lock, flags);
10119 __set_se_shares(se, shares);
10120 spin_unlock_irqrestore(&rq->lock, flags);
10121 }
10122
10123 static DEFINE_MUTEX(shares_mutex);
10124
10125 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10126 {
10127 int i;
10128 unsigned long flags;
10129
10130 /*
10131 * We can't change the weight of the root cgroup.
10132 */
10133 if (!tg->se[0])
10134 return -EINVAL;
10135
10136 if (shares < MIN_SHARES)
10137 shares = MIN_SHARES;
10138 else if (shares > MAX_SHARES)
10139 shares = MAX_SHARES;
10140
10141 mutex_lock(&shares_mutex);
10142 if (tg->shares == shares)
10143 goto done;
10144
10145 spin_lock_irqsave(&task_group_lock, flags);
10146 for_each_possible_cpu(i)
10147 unregister_fair_sched_group(tg, i);
10148 list_del_rcu(&tg->siblings);
10149 spin_unlock_irqrestore(&task_group_lock, flags);
10150
10151 /* wait for any ongoing reference to this group to finish */
10152 synchronize_sched();
10153
10154 /*
10155 * Now we are free to modify the group's share on each cpu
10156 * w/o tripping rebalance_share or load_balance_fair.
10157 */
10158 tg->shares = shares;
10159 for_each_possible_cpu(i) {
10160 /*
10161 * force a rebalance
10162 */
10163 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10164 set_se_shares(tg->se[i], shares);
10165 }
10166
10167 /*
10168 * Enable load balance activity on this group, by inserting it back on
10169 * each cpu's rq->leaf_cfs_rq_list.
10170 */
10171 spin_lock_irqsave(&task_group_lock, flags);
10172 for_each_possible_cpu(i)
10173 register_fair_sched_group(tg, i);
10174 list_add_rcu(&tg->siblings, &tg->parent->children);
10175 spin_unlock_irqrestore(&task_group_lock, flags);
10176 done:
10177 mutex_unlock(&shares_mutex);
10178 return 0;
10179 }
10180
10181 unsigned long sched_group_shares(struct task_group *tg)
10182 {
10183 return tg->shares;
10184 }
10185 #endif
10186
10187 #ifdef CONFIG_RT_GROUP_SCHED
10188 /*
10189 * Ensure that the real time constraints are schedulable.
10190 */
10191 static DEFINE_MUTEX(rt_constraints_mutex);
10192
10193 static unsigned long to_ratio(u64 period, u64 runtime)
10194 {
10195 if (runtime == RUNTIME_INF)
10196 return 1ULL << 20;
10197
10198 return div64_u64(runtime << 20, period);
10199 }
10200
10201 /* Must be called with tasklist_lock held */
10202 static inline int tg_has_rt_tasks(struct task_group *tg)
10203 {
10204 struct task_struct *g, *p;
10205
10206 do_each_thread(g, p) {
10207 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10208 return 1;
10209 } while_each_thread(g, p);
10210
10211 return 0;
10212 }
10213
10214 struct rt_schedulable_data {
10215 struct task_group *tg;
10216 u64 rt_period;
10217 u64 rt_runtime;
10218 };
10219
10220 static int tg_schedulable(struct task_group *tg, void *data)
10221 {
10222 struct rt_schedulable_data *d = data;
10223 struct task_group *child;
10224 unsigned long total, sum = 0;
10225 u64 period, runtime;
10226
10227 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10228 runtime = tg->rt_bandwidth.rt_runtime;
10229
10230 if (tg == d->tg) {
10231 period = d->rt_period;
10232 runtime = d->rt_runtime;
10233 }
10234
10235 #ifdef CONFIG_USER_SCHED
10236 if (tg == &root_task_group) {
10237 period = global_rt_period();
10238 runtime = global_rt_runtime();
10239 }
10240 #endif
10241
10242 /*
10243 * Cannot have more runtime than the period.
10244 */
10245 if (runtime > period && runtime != RUNTIME_INF)
10246 return -EINVAL;
10247
10248 /*
10249 * Ensure we don't starve existing RT tasks.
10250 */
10251 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10252 return -EBUSY;
10253
10254 total = to_ratio(period, runtime);
10255
10256 /*
10257 * Nobody can have more than the global setting allows.
10258 */
10259 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10260 return -EINVAL;
10261
10262 /*
10263 * The sum of our children's runtime should not exceed our own.
10264 */
10265 list_for_each_entry_rcu(child, &tg->children, siblings) {
10266 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10267 runtime = child->rt_bandwidth.rt_runtime;
10268
10269 if (child == d->tg) {
10270 period = d->rt_period;
10271 runtime = d->rt_runtime;
10272 }
10273
10274 sum += to_ratio(period, runtime);
10275 }
10276
10277 if (sum > total)
10278 return -EINVAL;
10279
10280 return 0;
10281 }
10282
10283 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10284 {
10285 struct rt_schedulable_data data = {
10286 .tg = tg,
10287 .rt_period = period,
10288 .rt_runtime = runtime,
10289 };
10290
10291 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10292 }
10293
10294 static int tg_set_bandwidth(struct task_group *tg,
10295 u64 rt_period, u64 rt_runtime)
10296 {
10297 int i, err = 0;
10298
10299 mutex_lock(&rt_constraints_mutex);
10300 read_lock(&tasklist_lock);
10301 err = __rt_schedulable(tg, rt_period, rt_runtime);
10302 if (err)
10303 goto unlock;
10304
10305 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10306 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10307 tg->rt_bandwidth.rt_runtime = rt_runtime;
10308
10309 for_each_possible_cpu(i) {
10310 struct rt_rq *rt_rq = tg->rt_rq[i];
10311
10312 spin_lock(&rt_rq->rt_runtime_lock);
10313 rt_rq->rt_runtime = rt_runtime;
10314 spin_unlock(&rt_rq->rt_runtime_lock);
10315 }
10316 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10317 unlock:
10318 read_unlock(&tasklist_lock);
10319 mutex_unlock(&rt_constraints_mutex);
10320
10321 return err;
10322 }
10323
10324 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10325 {
10326 u64 rt_runtime, rt_period;
10327
10328 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10329 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10330 if (rt_runtime_us < 0)
10331 rt_runtime = RUNTIME_INF;
10332
10333 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10334 }
10335
10336 long sched_group_rt_runtime(struct task_group *tg)
10337 {
10338 u64 rt_runtime_us;
10339
10340 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10341 return -1;
10342
10343 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10344 do_div(rt_runtime_us, NSEC_PER_USEC);
10345 return rt_runtime_us;
10346 }
10347
10348 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10349 {
10350 u64 rt_runtime, rt_period;
10351
10352 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10353 rt_runtime = tg->rt_bandwidth.rt_runtime;
10354
10355 if (rt_period == 0)
10356 return -EINVAL;
10357
10358 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10359 }
10360
10361 long sched_group_rt_period(struct task_group *tg)
10362 {
10363 u64 rt_period_us;
10364
10365 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10366 do_div(rt_period_us, NSEC_PER_USEC);
10367 return rt_period_us;
10368 }
10369
10370 static int sched_rt_global_constraints(void)
10371 {
10372 u64 runtime, period;
10373 int ret = 0;
10374
10375 if (sysctl_sched_rt_period <= 0)
10376 return -EINVAL;
10377
10378 runtime = global_rt_runtime();
10379 period = global_rt_period();
10380
10381 /*
10382 * Sanity check on the sysctl variables.
10383 */
10384 if (runtime > period && runtime != RUNTIME_INF)
10385 return -EINVAL;
10386
10387 mutex_lock(&rt_constraints_mutex);
10388 read_lock(&tasklist_lock);
10389 ret = __rt_schedulable(NULL, 0, 0);
10390 read_unlock(&tasklist_lock);
10391 mutex_unlock(&rt_constraints_mutex);
10392
10393 return ret;
10394 }
10395
10396 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10397 {
10398 /* Don't accept realtime tasks when there is no way for them to run */
10399 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10400 return 0;
10401
10402 return 1;
10403 }
10404
10405 #else /* !CONFIG_RT_GROUP_SCHED */
10406 static int sched_rt_global_constraints(void)
10407 {
10408 unsigned long flags;
10409 int i;
10410
10411 if (sysctl_sched_rt_period <= 0)
10412 return -EINVAL;
10413
10414 /*
10415 * There's always some RT tasks in the root group
10416 * -- migration, kstopmachine etc..
10417 */
10418 if (sysctl_sched_rt_runtime == 0)
10419 return -EBUSY;
10420
10421 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10422 for_each_possible_cpu(i) {
10423 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10424
10425 spin_lock(&rt_rq->rt_runtime_lock);
10426 rt_rq->rt_runtime = global_rt_runtime();
10427 spin_unlock(&rt_rq->rt_runtime_lock);
10428 }
10429 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10430
10431 return 0;
10432 }
10433 #endif /* CONFIG_RT_GROUP_SCHED */
10434
10435 int sched_rt_handler(struct ctl_table *table, int write,
10436 void __user *buffer, size_t *lenp,
10437 loff_t *ppos)
10438 {
10439 int ret;
10440 int old_period, old_runtime;
10441 static DEFINE_MUTEX(mutex);
10442
10443 mutex_lock(&mutex);
10444 old_period = sysctl_sched_rt_period;
10445 old_runtime = sysctl_sched_rt_runtime;
10446
10447 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10448
10449 if (!ret && write) {
10450 ret = sched_rt_global_constraints();
10451 if (ret) {
10452 sysctl_sched_rt_period = old_period;
10453 sysctl_sched_rt_runtime = old_runtime;
10454 } else {
10455 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10456 def_rt_bandwidth.rt_period =
10457 ns_to_ktime(global_rt_period());
10458 }
10459 }
10460 mutex_unlock(&mutex);
10461
10462 return ret;
10463 }
10464
10465 #ifdef CONFIG_CGROUP_SCHED
10466
10467 /* return corresponding task_group object of a cgroup */
10468 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10469 {
10470 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10471 struct task_group, css);
10472 }
10473
10474 static struct cgroup_subsys_state *
10475 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10476 {
10477 struct task_group *tg, *parent;
10478
10479 if (!cgrp->parent) {
10480 /* This is early initialization for the top cgroup */
10481 return &init_task_group.css;
10482 }
10483
10484 parent = cgroup_tg(cgrp->parent);
10485 tg = sched_create_group(parent);
10486 if (IS_ERR(tg))
10487 return ERR_PTR(-ENOMEM);
10488
10489 return &tg->css;
10490 }
10491
10492 static void
10493 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10494 {
10495 struct task_group *tg = cgroup_tg(cgrp);
10496
10497 sched_destroy_group(tg);
10498 }
10499
10500 static int
10501 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10502 {
10503 #ifdef CONFIG_RT_GROUP_SCHED
10504 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10505 return -EINVAL;
10506 #else
10507 /* We don't support RT-tasks being in separate groups */
10508 if (tsk->sched_class != &fair_sched_class)
10509 return -EINVAL;
10510 #endif
10511 return 0;
10512 }
10513
10514 static int
10515 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10516 struct task_struct *tsk, bool threadgroup)
10517 {
10518 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10519 if (retval)
10520 return retval;
10521 if (threadgroup) {
10522 struct task_struct *c;
10523 rcu_read_lock();
10524 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10525 retval = cpu_cgroup_can_attach_task(cgrp, c);
10526 if (retval) {
10527 rcu_read_unlock();
10528 return retval;
10529 }
10530 }
10531 rcu_read_unlock();
10532 }
10533 return 0;
10534 }
10535
10536 static void
10537 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10538 struct cgroup *old_cont, struct task_struct *tsk,
10539 bool threadgroup)
10540 {
10541 sched_move_task(tsk);
10542 if (threadgroup) {
10543 struct task_struct *c;
10544 rcu_read_lock();
10545 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10546 sched_move_task(c);
10547 }
10548 rcu_read_unlock();
10549 }
10550 }
10551
10552 #ifdef CONFIG_FAIR_GROUP_SCHED
10553 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10554 u64 shareval)
10555 {
10556 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10557 }
10558
10559 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10560 {
10561 struct task_group *tg = cgroup_tg(cgrp);
10562
10563 return (u64) tg->shares;
10564 }
10565 #endif /* CONFIG_FAIR_GROUP_SCHED */
10566
10567 #ifdef CONFIG_RT_GROUP_SCHED
10568 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10569 s64 val)
10570 {
10571 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10572 }
10573
10574 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10575 {
10576 return sched_group_rt_runtime(cgroup_tg(cgrp));
10577 }
10578
10579 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10580 u64 rt_period_us)
10581 {
10582 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10583 }
10584
10585 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10586 {
10587 return sched_group_rt_period(cgroup_tg(cgrp));
10588 }
10589 #endif /* CONFIG_RT_GROUP_SCHED */
10590
10591 static struct cftype cpu_files[] = {
10592 #ifdef CONFIG_FAIR_GROUP_SCHED
10593 {
10594 .name = "shares",
10595 .read_u64 = cpu_shares_read_u64,
10596 .write_u64 = cpu_shares_write_u64,
10597 },
10598 #endif
10599 #ifdef CONFIG_RT_GROUP_SCHED
10600 {
10601 .name = "rt_runtime_us",
10602 .read_s64 = cpu_rt_runtime_read,
10603 .write_s64 = cpu_rt_runtime_write,
10604 },
10605 {
10606 .name = "rt_period_us",
10607 .read_u64 = cpu_rt_period_read_uint,
10608 .write_u64 = cpu_rt_period_write_uint,
10609 },
10610 #endif
10611 };
10612
10613 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10614 {
10615 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10616 }
10617
10618 struct cgroup_subsys cpu_cgroup_subsys = {
10619 .name = "cpu",
10620 .create = cpu_cgroup_create,
10621 .destroy = cpu_cgroup_destroy,
10622 .can_attach = cpu_cgroup_can_attach,
10623 .attach = cpu_cgroup_attach,
10624 .populate = cpu_cgroup_populate,
10625 .subsys_id = cpu_cgroup_subsys_id,
10626 .early_init = 1,
10627 };
10628
10629 #endif /* CONFIG_CGROUP_SCHED */
10630
10631 #ifdef CONFIG_CGROUP_CPUACCT
10632
10633 /*
10634 * CPU accounting code for task groups.
10635 *
10636 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10637 * (balbir@in.ibm.com).
10638 */
10639
10640 /* track cpu usage of a group of tasks and its child groups */
10641 struct cpuacct {
10642 struct cgroup_subsys_state css;
10643 /* cpuusage holds pointer to a u64-type object on every cpu */
10644 u64 *cpuusage;
10645 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10646 struct cpuacct *parent;
10647 };
10648
10649 struct cgroup_subsys cpuacct_subsys;
10650
10651 /* return cpu accounting group corresponding to this container */
10652 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10653 {
10654 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10655 struct cpuacct, css);
10656 }
10657
10658 /* return cpu accounting group to which this task belongs */
10659 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10660 {
10661 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10662 struct cpuacct, css);
10663 }
10664
10665 /* create a new cpu accounting group */
10666 static struct cgroup_subsys_state *cpuacct_create(
10667 struct cgroup_subsys *ss, struct cgroup *cgrp)
10668 {
10669 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10670 int i;
10671
10672 if (!ca)
10673 goto out;
10674
10675 ca->cpuusage = alloc_percpu(u64);
10676 if (!ca->cpuusage)
10677 goto out_free_ca;
10678
10679 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10680 if (percpu_counter_init(&ca->cpustat[i], 0))
10681 goto out_free_counters;
10682
10683 if (cgrp->parent)
10684 ca->parent = cgroup_ca(cgrp->parent);
10685
10686 return &ca->css;
10687
10688 out_free_counters:
10689 while (--i >= 0)
10690 percpu_counter_destroy(&ca->cpustat[i]);
10691 free_percpu(ca->cpuusage);
10692 out_free_ca:
10693 kfree(ca);
10694 out:
10695 return ERR_PTR(-ENOMEM);
10696 }
10697
10698 /* destroy an existing cpu accounting group */
10699 static void
10700 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10701 {
10702 struct cpuacct *ca = cgroup_ca(cgrp);
10703 int i;
10704
10705 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10706 percpu_counter_destroy(&ca->cpustat[i]);
10707 free_percpu(ca->cpuusage);
10708 kfree(ca);
10709 }
10710
10711 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10712 {
10713 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10714 u64 data;
10715
10716 #ifndef CONFIG_64BIT
10717 /*
10718 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10719 */
10720 spin_lock_irq(&cpu_rq(cpu)->lock);
10721 data = *cpuusage;
10722 spin_unlock_irq(&cpu_rq(cpu)->lock);
10723 #else
10724 data = *cpuusage;
10725 #endif
10726
10727 return data;
10728 }
10729
10730 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10731 {
10732 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10733
10734 #ifndef CONFIG_64BIT
10735 /*
10736 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10737 */
10738 spin_lock_irq(&cpu_rq(cpu)->lock);
10739 *cpuusage = val;
10740 spin_unlock_irq(&cpu_rq(cpu)->lock);
10741 #else
10742 *cpuusage = val;
10743 #endif
10744 }
10745
10746 /* return total cpu usage (in nanoseconds) of a group */
10747 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10748 {
10749 struct cpuacct *ca = cgroup_ca(cgrp);
10750 u64 totalcpuusage = 0;
10751 int i;
10752
10753 for_each_present_cpu(i)
10754 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10755
10756 return totalcpuusage;
10757 }
10758
10759 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10760 u64 reset)
10761 {
10762 struct cpuacct *ca = cgroup_ca(cgrp);
10763 int err = 0;
10764 int i;
10765
10766 if (reset) {
10767 err = -EINVAL;
10768 goto out;
10769 }
10770
10771 for_each_present_cpu(i)
10772 cpuacct_cpuusage_write(ca, i, 0);
10773
10774 out:
10775 return err;
10776 }
10777
10778 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10779 struct seq_file *m)
10780 {
10781 struct cpuacct *ca = cgroup_ca(cgroup);
10782 u64 percpu;
10783 int i;
10784
10785 for_each_present_cpu(i) {
10786 percpu = cpuacct_cpuusage_read(ca, i);
10787 seq_printf(m, "%llu ", (unsigned long long) percpu);
10788 }
10789 seq_printf(m, "\n");
10790 return 0;
10791 }
10792
10793 static const char *cpuacct_stat_desc[] = {
10794 [CPUACCT_STAT_USER] = "user",
10795 [CPUACCT_STAT_SYSTEM] = "system",
10796 };
10797
10798 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10799 struct cgroup_map_cb *cb)
10800 {
10801 struct cpuacct *ca = cgroup_ca(cgrp);
10802 int i;
10803
10804 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10805 s64 val = percpu_counter_read(&ca->cpustat[i]);
10806 val = cputime64_to_clock_t(val);
10807 cb->fill(cb, cpuacct_stat_desc[i], val);
10808 }
10809 return 0;
10810 }
10811
10812 static struct cftype files[] = {
10813 {
10814 .name = "usage",
10815 .read_u64 = cpuusage_read,
10816 .write_u64 = cpuusage_write,
10817 },
10818 {
10819 .name = "usage_percpu",
10820 .read_seq_string = cpuacct_percpu_seq_read,
10821 },
10822 {
10823 .name = "stat",
10824 .read_map = cpuacct_stats_show,
10825 },
10826 };
10827
10828 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10829 {
10830 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10831 }
10832
10833 /*
10834 * charge this task's execution time to its accounting group.
10835 *
10836 * called with rq->lock held.
10837 */
10838 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10839 {
10840 struct cpuacct *ca;
10841 int cpu;
10842
10843 if (unlikely(!cpuacct_subsys.active))
10844 return;
10845
10846 cpu = task_cpu(tsk);
10847
10848 rcu_read_lock();
10849
10850 ca = task_ca(tsk);
10851
10852 for (; ca; ca = ca->parent) {
10853 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10854 *cpuusage += cputime;
10855 }
10856
10857 rcu_read_unlock();
10858 }
10859
10860 /*
10861 * Charge the system/user time to the task's accounting group.
10862 */
10863 static void cpuacct_update_stats(struct task_struct *tsk,
10864 enum cpuacct_stat_index idx, cputime_t val)
10865 {
10866 struct cpuacct *ca;
10867
10868 if (unlikely(!cpuacct_subsys.active))
10869 return;
10870
10871 rcu_read_lock();
10872 ca = task_ca(tsk);
10873
10874 do {
10875 percpu_counter_add(&ca->cpustat[idx], val);
10876 ca = ca->parent;
10877 } while (ca);
10878 rcu_read_unlock();
10879 }
10880
10881 struct cgroup_subsys cpuacct_subsys = {
10882 .name = "cpuacct",
10883 .create = cpuacct_create,
10884 .destroy = cpuacct_destroy,
10885 .populate = cpuacct_populate,
10886 .subsys_id = cpuacct_subsys_id,
10887 };
10888 #endif /* CONFIG_CGROUP_CPUACCT */
10889
10890 #ifndef CONFIG_SMP
10891
10892 int rcu_expedited_torture_stats(char *page)
10893 {
10894 return 0;
10895 }
10896 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10897
10898 void synchronize_sched_expedited(void)
10899 {
10900 }
10901 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10902
10903 #else /* #ifndef CONFIG_SMP */
10904
10905 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10906 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10907
10908 #define RCU_EXPEDITED_STATE_POST -2
10909 #define RCU_EXPEDITED_STATE_IDLE -1
10910
10911 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10912
10913 int rcu_expedited_torture_stats(char *page)
10914 {
10915 int cnt = 0;
10916 int cpu;
10917
10918 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10919 for_each_online_cpu(cpu) {
10920 cnt += sprintf(&page[cnt], " %d:%d",
10921 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10922 }
10923 cnt += sprintf(&page[cnt], "\n");
10924 return cnt;
10925 }
10926 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10927
10928 static long synchronize_sched_expedited_count;
10929
10930 /*
10931 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10932 * approach to force grace period to end quickly. This consumes
10933 * significant time on all CPUs, and is thus not recommended for
10934 * any sort of common-case code.
10935 *
10936 * Note that it is illegal to call this function while holding any
10937 * lock that is acquired by a CPU-hotplug notifier. Failing to
10938 * observe this restriction will result in deadlock.
10939 */
10940 void synchronize_sched_expedited(void)
10941 {
10942 int cpu;
10943 unsigned long flags;
10944 bool need_full_sync = 0;
10945 struct rq *rq;
10946 struct migration_req *req;
10947 long snap;
10948 int trycount = 0;
10949
10950 smp_mb(); /* ensure prior mod happens before capturing snap. */
10951 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10952 get_online_cpus();
10953 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10954 put_online_cpus();
10955 if (trycount++ < 10)
10956 udelay(trycount * num_online_cpus());
10957 else {
10958 synchronize_sched();
10959 return;
10960 }
10961 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10962 smp_mb(); /* ensure test happens before caller kfree */
10963 return;
10964 }
10965 get_online_cpus();
10966 }
10967 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10968 for_each_online_cpu(cpu) {
10969 rq = cpu_rq(cpu);
10970 req = &per_cpu(rcu_migration_req, cpu);
10971 init_completion(&req->done);
10972 req->task = NULL;
10973 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10974 spin_lock_irqsave(&rq->lock, flags);
10975 list_add(&req->list, &rq->migration_queue);
10976 spin_unlock_irqrestore(&rq->lock, flags);
10977 wake_up_process(rq->migration_thread);
10978 }
10979 for_each_online_cpu(cpu) {
10980 rcu_expedited_state = cpu;
10981 req = &per_cpu(rcu_migration_req, cpu);
10982 rq = cpu_rq(cpu);
10983 wait_for_completion(&req->done);
10984 spin_lock_irqsave(&rq->lock, flags);
10985 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10986 need_full_sync = 1;
10987 req->dest_cpu = RCU_MIGRATION_IDLE;
10988 spin_unlock_irqrestore(&rq->lock, flags);
10989 }
10990 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10991 synchronize_sched_expedited_count++;
10992 mutex_unlock(&rcu_sched_expedited_mutex);
10993 put_online_cpus();
10994 if (need_full_sync)
10995 synchronize_sched();
10996 }
10997 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10998
10999 #endif /* #else #ifndef CONFIG_SMP */