Merge branch 'for-linus' of git://git.o-hand.com/linux-mfd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
106 /*
107 * These are the 'tuning knobs' of the scheduler:
108 *
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
111 */
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 /*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117 #define RUNTIME_INF ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
205 }
206
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 {
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229 }
230
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 {
234 hrtimer_cancel(&rt_b->rt_period_timer);
235 }
236 #endif
237
238 /*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242 static DEFINE_MUTEX(sched_domains_mutex);
243
244 #ifdef CONFIG_GROUP_SCHED
245
246 #include <linux/cgroup.h>
247
248 struct cfs_rq;
249
250 static LIST_HEAD(task_groups);
251
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
270 struct rt_bandwidth rt_bandwidth;
271 #endif
272
273 struct rcu_head rcu;
274 struct list_head list;
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
279 };
280
281 #ifdef CONFIG_USER_SCHED
282
283 /*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288 struct task_group root_task_group;
289
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
304
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
307 */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
316
317 /*
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
325 #define MIN_SHARES 2
326 #define MAX_SHARES (1UL << 18)
327
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
330
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
333 */
334 struct task_group init_task_group;
335
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
338 {
339 struct task_group *tg;
340
341 #ifdef CONFIG_USER_SCHED
342 tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
346 #else
347 tg = &init_task_group;
348 #endif
349 return tg;
350 }
351
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 {
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
358 #endif
359
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
364 }
365
366 #else
367
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
370 {
371 return NULL;
372 }
373
374 #endif /* CONFIG_GROUP_SCHED */
375
376 /* CFS-related fields in a runqueue */
377 struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
381 u64 exec_clock;
382 u64 min_vruntime;
383 u64 pair_start;
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
395 struct sched_entity *curr, *next;
396
397 unsigned long nr_spread_over;
398
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
412
413 #ifdef CONFIG_SMP
414 /*
415 * the part of load.weight contributed by tasks
416 */
417 unsigned long task_weight;
418
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
426
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
436 #endif
437 #endif
438 };
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio; /* highest queued rt task prio */
446 #endif
447 #ifdef CONFIG_SMP
448 unsigned long rt_nr_migratory;
449 int overloaded;
450 #endif
451 int rt_throttled;
452 u64 rt_time;
453 u64 rt_runtime;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock;
456
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted;
459
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464 #endif
465 };
466
467 #ifdef CONFIG_SMP
468
469 /*
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
476 */
477 struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
481
482 /*
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
487 atomic_t rto_count;
488 #ifdef CONFIG_SMP
489 struct cpupri cpupri;
490 #endif
491 };
492
493 /*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
497 static struct root_domain def_root_domain;
498
499 #endif
500
501 /*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
508 struct rq {
509 /* runqueue lock: */
510 spinlock_t lock;
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519 unsigned char idle_at_tick;
520 #ifdef CONFIG_NO_HZ
521 unsigned long last_tick_seen;
522 unsigned char in_nohz_recently;
523 #endif
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
530 struct rt_rq rt;
531
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
535 #endif
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list;
538 #endif
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
548 struct task_struct *curr, *idle;
549 unsigned long next_balance;
550 struct mm_struct *prev_mm;
551
552 u64 clock;
553
554 atomic_t nr_iowait;
555
556 #ifdef CONFIG_SMP
557 struct root_domain *rd;
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
563 /* cpu of this runqueue: */
564 int cpu;
565 int online;
566
567 unsigned long avg_load_per_task;
568
569 struct task_struct *migration_thread;
570 struct list_head migration_queue;
571 #endif
572
573 #ifdef CONFIG_SCHED_HRTICK
574 #ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577 #endif
578 struct hrtimer hrtick_timer;
579 #endif
580
581 #ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
590
591 /* schedule() stats */
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
595
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
599
600 /* BKL stats */
601 unsigned int bkl_count;
602 #endif
603 };
604
605 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
606
607 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
608 {
609 rq->curr->sched_class->check_preempt_curr(rq, p);
610 }
611
612 static inline int cpu_of(struct rq *rq)
613 {
614 #ifdef CONFIG_SMP
615 return rq->cpu;
616 #else
617 return 0;
618 #endif
619 }
620
621 /*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635
636 static inline void update_rq_clock(struct rq *rq)
637 {
638 rq->clock = sched_clock_cpu(cpu_of(rq));
639 }
640
641 /*
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 */
644 #ifdef CONFIG_SCHED_DEBUG
645 # define const_debug __read_mostly
646 #else
647 # define const_debug static const
648 #endif
649
650 /**
651 * runqueue_is_locked
652 *
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
656 */
657 int runqueue_is_locked(void)
658 {
659 int cpu = get_cpu();
660 struct rq *rq = cpu_rq(cpu);
661 int ret;
662
663 ret = spin_is_locked(&rq->lock);
664 put_cpu();
665 return ret;
666 }
667
668 /*
669 * Debugging: various feature bits
670 */
671
672 #define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
674
675 enum {
676 #include "sched_features.h"
677 };
678
679 #undef SCHED_FEAT
680
681 #define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
683
684 const_debug unsigned int sysctl_sched_features =
685 #include "sched_features.h"
686 0;
687
688 #undef SCHED_FEAT
689
690 #ifdef CONFIG_SCHED_DEBUG
691 #define SCHED_FEAT(name, enabled) \
692 #name ,
693
694 static __read_mostly char *sched_feat_names[] = {
695 #include "sched_features.h"
696 NULL
697 };
698
699 #undef SCHED_FEAT
700
701 static int sched_feat_open(struct inode *inode, struct file *filp)
702 {
703 filp->private_data = inode->i_private;
704 return 0;
705 }
706
707 static ssize_t
708 sched_feat_read(struct file *filp, char __user *ubuf,
709 size_t cnt, loff_t *ppos)
710 {
711 char *buf;
712 int r = 0;
713 int len = 0;
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 len += strlen(sched_feat_names[i]);
718 len += 4;
719 }
720
721 buf = kmalloc(len + 2, GFP_KERNEL);
722 if (!buf)
723 return -ENOMEM;
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 if (sysctl_sched_features & (1UL << i))
727 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
728 else
729 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
730 }
731
732 r += sprintf(buf + r, "\n");
733 WARN_ON(r >= len + 2);
734
735 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
736
737 kfree(buf);
738
739 return r;
740 }
741
742 static ssize_t
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745 {
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
759 if (strncmp(buf, "NO_", 3) == 0) {
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782 }
783
784 static struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .read = sched_feat_read,
787 .write = sched_feat_write,
788 };
789
790 static __init int sched_init_debug(void)
791 {
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796 }
797 late_initcall(sched_init_debug);
798
799 #endif
800
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
802
803 /*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807 const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
809 /*
810 * ratelimit for updating the group shares.
811 * default: 0.25ms
812 */
813 unsigned int sysctl_sched_shares_ratelimit = 250000;
814
815 /*
816 * period over which we measure -rt task cpu usage in us.
817 * default: 1s
818 */
819 unsigned int sysctl_sched_rt_period = 1000000;
820
821 static __read_mostly int scheduler_running;
822
823 /*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827 int sysctl_sched_rt_runtime = 950000;
828
829 static inline u64 global_rt_period(void)
830 {
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832 }
833
834 static inline u64 global_rt_runtime(void)
835 {
836 if (sysctl_sched_rt_runtime < 0)
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840 }
841
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
847 #endif
848
849 static inline int task_current(struct rq *rq, struct task_struct *p)
850 {
851 return rq->curr == p;
852 }
853
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
856 {
857 return task_current(rq, p);
858 }
859
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 {
862 }
863
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865 {
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
877 spin_unlock_irq(&rq->lock);
878 }
879
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
882 {
883 #ifdef CONFIG_SMP
884 return p->oncpu;
885 #else
886 return task_current(rq, p);
887 #endif
888 }
889
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 {
892 #ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq->lock);
902 #else
903 spin_unlock(&rq->lock);
904 #endif
905 }
906
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 {
909 #ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
920 #endif
921 }
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
923
924 /*
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
927 */
928 static inline struct rq *__task_rq_lock(struct task_struct *p)
929 __acquires(rq->lock)
930 {
931 for (;;) {
932 struct rq *rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
936 spin_unlock(&rq->lock);
937 }
938 }
939
940 /*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
942 * interrupts. Note the ordering: we can safely lookup the task_rq without
943 * explicitly disabling preemption.
944 */
945 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
946 __acquires(rq->lock)
947 {
948 struct rq *rq;
949
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
956 spin_unlock_irqrestore(&rq->lock, *flags);
957 }
958 }
959
960 static void __task_rq_unlock(struct rq *rq)
961 __releases(rq->lock)
962 {
963 spin_unlock(&rq->lock);
964 }
965
966 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
967 __releases(rq->lock)
968 {
969 spin_unlock_irqrestore(&rq->lock, *flags);
970 }
971
972 /*
973 * this_rq_lock - lock this runqueue and disable interrupts.
974 */
975 static struct rq *this_rq_lock(void)
976 __acquires(rq->lock)
977 {
978 struct rq *rq;
979
980 local_irq_disable();
981 rq = this_rq();
982 spin_lock(&rq->lock);
983
984 return rq;
985 }
986
987 #ifdef CONFIG_SCHED_HRTICK
988 /*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
998
999 /*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004 static inline int hrtick_enabled(struct rq *rq)
1005 {
1006 if (!sched_feat(HRTICK))
1007 return 0;
1008 if (!cpu_active(cpu_of(rq)))
1009 return 0;
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011 }
1012
1013 static void hrtick_clear(struct rq *rq)
1014 {
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017 }
1018
1019 /*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024 {
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 spin_lock(&rq->lock);
1030 update_rq_clock(rq);
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035 }
1036
1037 #ifdef CONFIG_SMP
1038 /*
1039 * called from hardirq (IPI) context
1040 */
1041 static void __hrtick_start(void *arg)
1042 {
1043 struct rq *rq = arg;
1044
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
1049 }
1050
1051 /*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056 static void hrtick_start(struct rq *rq, u64 delay)
1057 {
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060
1061 timer->expires = time;
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1068 }
1069 }
1070
1071 static int
1072 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073 {
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
1083 hrtick_clear(cpu_rq(cpu));
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088 }
1089
1090 static __init void init_hrtick(void)
1091 {
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093 }
1094 #else
1095 /*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100 static void hrtick_start(struct rq *rq, u64 delay)
1101 {
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103 }
1104
1105 static void init_hrtick(void)
1106 {
1107 }
1108 #endif /* CONFIG_SMP */
1109
1110 static void init_rq_hrtick(struct rq *rq)
1111 {
1112 #ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
1114
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118 #endif
1119
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1123 }
1124 #else
1125 static inline void hrtick_clear(struct rq *rq)
1126 {
1127 }
1128
1129 static inline void init_rq_hrtick(struct rq *rq)
1130 {
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif
1137
1138 /*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145 #ifdef CONFIG_SMP
1146
1147 #ifndef tsk_is_polling
1148 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149 #endif
1150
1151 static void resched_task(struct task_struct *p)
1152 {
1153 int cpu;
1154
1155 assert_spin_locked(&task_rq(p)->lock);
1156
1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1158 return;
1159
1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170 }
1171
1172 static void resched_cpu(int cpu)
1173 {
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1181 }
1182
1183 #ifdef CONFIG_NO_HZ
1184 /*
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1193 */
1194 void wake_up_idle_cpu(int cpu)
1195 {
1196 struct rq *rq = cpu_rq(cpu);
1197
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /*
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1207 */
1208 if (rq->curr != rq->idle)
1209 return;
1210
1211 /*
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1215 */
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218 /* NEED_RESCHED must be visible before we test polling */
1219 smp_mb();
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1222 }
1223 #endif /* CONFIG_NO_HZ */
1224
1225 #else /* !CONFIG_SMP */
1226 static void resched_task(struct task_struct *p)
1227 {
1228 assert_spin_locked(&task_rq(p)->lock);
1229 set_tsk_need_resched(p);
1230 }
1231 #endif /* CONFIG_SMP */
1232
1233 #if BITS_PER_LONG == 32
1234 # define WMULT_CONST (~0UL)
1235 #else
1236 # define WMULT_CONST (1UL << 32)
1237 #endif
1238
1239 #define WMULT_SHIFT 32
1240
1241 /*
1242 * Shift right and round:
1243 */
1244 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1245
1246 /*
1247 * delta *= weight / lw
1248 */
1249 static unsigned long
1250 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1252 {
1253 u64 tmp;
1254
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257 lw->inv_weight = 1;
1258 else
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260 / (lw->weight+1);
1261 }
1262
1263 tmp = (u64)delta_exec * weight;
1264 /*
1265 * Check whether we'd overflow the 64-bit multiplication:
1266 */
1267 if (unlikely(tmp > WMULT_CONST))
1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1269 WMULT_SHIFT/2);
1270 else
1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272
1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 }
1275
1276 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 {
1278 lw->weight += inc;
1279 lw->inv_weight = 0;
1280 }
1281
1282 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 {
1284 lw->weight -= dec;
1285 lw->inv_weight = 0;
1286 }
1287
1288 /*
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 * scaled version of the new time slice allocation that they receive on time
1294 * slice expiry etc.
1295 */
1296
1297 #define WEIGHT_IDLEPRIO 2
1298 #define WMULT_IDLEPRIO (1 << 31)
1299
1300 /*
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1305 *
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
1311 */
1312 static const int prio_to_weight[40] = {
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
1321 };
1322
1323 /*
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325 *
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1329 */
1330 static const u32 prio_to_wmult[40] = {
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1339 };
1340
1341 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343 /*
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1347 */
1348 struct rq_iterator {
1349 void *arg;
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1352 };
1353
1354 #ifdef CONFIG_SMP
1355 static unsigned long
1356 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1360
1361 static int
1362 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
1365 #endif
1366
1367 #ifdef CONFIG_CGROUP_CPUACCT
1368 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369 #else
1370 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371 #endif
1372
1373 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374 {
1375 update_load_add(&rq->load, load);
1376 }
1377
1378 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379 {
1380 update_load_sub(&rq->load, load);
1381 }
1382
1383 #ifdef CONFIG_SMP
1384 static unsigned long source_load(int cpu, int type);
1385 static unsigned long target_load(int cpu, int type);
1386 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387
1388 static unsigned long cpu_avg_load_per_task(int cpu)
1389 {
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396 }
1397
1398 #ifdef CONFIG_FAIR_GROUP_SCHED
1399
1400 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401
1402 /*
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1405 */
1406 static void
1407 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 {
1409 struct task_group *parent, *child;
1410
1411 rcu_read_lock();
1412 parent = &root_task_group;
1413 down:
1414 (*down)(parent, cpu, sd);
1415 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child;
1417 goto down;
1418
1419 up:
1420 continue;
1421 }
1422 (*up)(parent, cpu, sd);
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 rcu_read_unlock();
1429 }
1430
1431 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432
1433 /*
1434 * Calculate and set the cpu's group shares.
1435 */
1436 static void
1437 __update_group_shares_cpu(struct task_group *tg, int cpu,
1438 unsigned long sd_shares, unsigned long sd_rq_weight)
1439 {
1440 int boost = 0;
1441 unsigned long shares;
1442 unsigned long rq_weight;
1443
1444 if (!tg->se[cpu])
1445 return;
1446
1447 rq_weight = tg->cfs_rq[cpu]->load.weight;
1448
1449 /*
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1453 */
1454 if (!rq_weight) {
1455 boost = 1;
1456 rq_weight = NICE_0_LOAD;
1457 }
1458
1459 if (unlikely(rq_weight > sd_rq_weight))
1460 rq_weight = sd_rq_weight;
1461
1462 /*
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1465 * \Sum rq_weight
1466 *
1467 */
1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469
1470 /*
1471 * record the actual number of shares, not the boosted amount.
1472 */
1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475
1476 if (shares < MIN_SHARES)
1477 shares = MIN_SHARES;
1478 else if (shares > MAX_SHARES)
1479 shares = MAX_SHARES;
1480
1481 __set_se_shares(tg->se[cpu], shares);
1482 }
1483
1484 /*
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
1488 */
1489 static void
1490 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491 {
1492 unsigned long rq_weight = 0;
1493 unsigned long shares = 0;
1494 int i;
1495
1496 for_each_cpu_mask(i, sd->span) {
1497 rq_weight += tg->cfs_rq[i]->load.weight;
1498 shares += tg->cfs_rq[i]->shares;
1499 }
1500
1501 if ((!shares && rq_weight) || shares > tg->shares)
1502 shares = tg->shares;
1503
1504 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505 shares = tg->shares;
1506
1507 if (!rq_weight)
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509
1510 for_each_cpu_mask(i, sd->span) {
1511 struct rq *rq = cpu_rq(i);
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&rq->lock, flags);
1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516 spin_unlock_irqrestore(&rq->lock, flags);
1517 }
1518 }
1519
1520 /*
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
1524 */
1525 static void
1526 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527 {
1528 unsigned long load;
1529
1530 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight;
1532 } else {
1533 load = tg->parent->cfs_rq[cpu]->h_load;
1534 load *= tg->cfs_rq[cpu]->shares;
1535 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1536 }
1537
1538 tg->cfs_rq[cpu]->h_load = load;
1539 }
1540
1541 static void
1542 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 {
1544 }
1545
1546 static void update_shares(struct sched_domain *sd)
1547 {
1548 u64 now = cpu_clock(raw_smp_processor_id());
1549 s64 elapsed = now - sd->last_update;
1550
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1554 }
1555 }
1556
1557 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1558 {
1559 spin_unlock(&rq->lock);
1560 update_shares(sd);
1561 spin_lock(&rq->lock);
1562 }
1563
1564 static void update_h_load(int cpu)
1565 {
1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 }
1568
1569 #else
1570
1571 static inline void update_shares(struct sched_domain *sd)
1572 {
1573 }
1574
1575 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576 {
1577 }
1578
1579 #endif
1580
1581 #endif
1582
1583 #ifdef CONFIG_FAIR_GROUP_SCHED
1584 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1585 {
1586 #ifdef CONFIG_SMP
1587 cfs_rq->shares = shares;
1588 #endif
1589 }
1590 #endif
1591
1592 #include "sched_stats.h"
1593 #include "sched_idletask.c"
1594 #include "sched_fair.c"
1595 #include "sched_rt.c"
1596 #ifdef CONFIG_SCHED_DEBUG
1597 # include "sched_debug.c"
1598 #endif
1599
1600 #define sched_class_highest (&rt_sched_class)
1601 #define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
1603
1604 static void inc_nr_running(struct rq *rq)
1605 {
1606 rq->nr_running++;
1607 }
1608
1609 static void dec_nr_running(struct rq *rq)
1610 {
1611 rq->nr_running--;
1612 }
1613
1614 static void set_load_weight(struct task_struct *p)
1615 {
1616 if (task_has_rt_policy(p)) {
1617 p->se.load.weight = prio_to_weight[0] * 2;
1618 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1619 return;
1620 }
1621
1622 /*
1623 * SCHED_IDLE tasks get minimal weight:
1624 */
1625 if (p->policy == SCHED_IDLE) {
1626 p->se.load.weight = WEIGHT_IDLEPRIO;
1627 p->se.load.inv_weight = WMULT_IDLEPRIO;
1628 return;
1629 }
1630
1631 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 }
1634
1635 static void update_avg(u64 *avg, u64 sample)
1636 {
1637 s64 diff = sample - *avg;
1638 *avg += diff >> 3;
1639 }
1640
1641 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642 {
1643 sched_info_queued(p);
1644 p->sched_class->enqueue_task(rq, p, wakeup);
1645 p->se.on_rq = 1;
1646 }
1647
1648 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649 {
1650 if (sleep && p->se.last_wakeup) {
1651 update_avg(&p->se.avg_overlap,
1652 p->se.sum_exec_runtime - p->se.last_wakeup);
1653 p->se.last_wakeup = 0;
1654 }
1655
1656 sched_info_dequeued(p);
1657 p->sched_class->dequeue_task(rq, p, sleep);
1658 p->se.on_rq = 0;
1659 }
1660
1661 /*
1662 * __normal_prio - return the priority that is based on the static prio
1663 */
1664 static inline int __normal_prio(struct task_struct *p)
1665 {
1666 return p->static_prio;
1667 }
1668
1669 /*
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1675 */
1676 static inline int normal_prio(struct task_struct *p)
1677 {
1678 int prio;
1679
1680 if (task_has_rt_policy(p))
1681 prio = MAX_RT_PRIO-1 - p->rt_priority;
1682 else
1683 prio = __normal_prio(p);
1684 return prio;
1685 }
1686
1687 /*
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1693 */
1694 static int effective_prio(struct task_struct *p)
1695 {
1696 p->normal_prio = normal_prio(p);
1697 /*
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1701 */
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1704 return p->prio;
1705 }
1706
1707 /*
1708 * activate_task - move a task to the runqueue.
1709 */
1710 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1711 {
1712 if (task_contributes_to_load(p))
1713 rq->nr_uninterruptible--;
1714
1715 enqueue_task(rq, p, wakeup);
1716 inc_nr_running(rq);
1717 }
1718
1719 /*
1720 * deactivate_task - remove a task from the runqueue.
1721 */
1722 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1723 {
1724 if (task_contributes_to_load(p))
1725 rq->nr_uninterruptible++;
1726
1727 dequeue_task(rq, p, sleep);
1728 dec_nr_running(rq);
1729 }
1730
1731 /**
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1734 */
1735 inline int task_curr(const struct task_struct *p)
1736 {
1737 return cpu_curr(task_cpu(p)) == p;
1738 }
1739
1740 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741 {
1742 set_task_rq(p, cpu);
1743 #ifdef CONFIG_SMP
1744 /*
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1748 */
1749 smp_wmb();
1750 task_thread_info(p)->cpu = cpu;
1751 #endif
1752 }
1753
1754 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755 const struct sched_class *prev_class,
1756 int oldprio, int running)
1757 {
1758 if (prev_class != p->sched_class) {
1759 if (prev_class->switched_from)
1760 prev_class->switched_from(rq, p, running);
1761 p->sched_class->switched_to(rq, p, running);
1762 } else
1763 p->sched_class->prio_changed(rq, p, oldprio, running);
1764 }
1765
1766 #ifdef CONFIG_SMP
1767
1768 /* Used instead of source_load when we know the type == 0 */
1769 static unsigned long weighted_cpuload(const int cpu)
1770 {
1771 return cpu_rq(cpu)->load.weight;
1772 }
1773
1774 /*
1775 * Is this task likely cache-hot:
1776 */
1777 static int
1778 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1779 {
1780 s64 delta;
1781
1782 /*
1783 * Buddy candidates are cache hot:
1784 */
1785 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786 return 1;
1787
1788 if (p->sched_class != &fair_sched_class)
1789 return 0;
1790
1791 if (sysctl_sched_migration_cost == -1)
1792 return 1;
1793 if (sysctl_sched_migration_cost == 0)
1794 return 0;
1795
1796 delta = now - p->se.exec_start;
1797
1798 return delta < (s64)sysctl_sched_migration_cost;
1799 }
1800
1801
1802 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1803 {
1804 int old_cpu = task_cpu(p);
1805 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808 u64 clock_offset;
1809
1810 clock_offset = old_rq->clock - new_rq->clock;
1811
1812 #ifdef CONFIG_SCHEDSTATS
1813 if (p->se.wait_start)
1814 p->se.wait_start -= clock_offset;
1815 if (p->se.sleep_start)
1816 p->se.sleep_start -= clock_offset;
1817 if (p->se.block_start)
1818 p->se.block_start -= clock_offset;
1819 if (old_cpu != new_cpu) {
1820 schedstat_inc(p, se.nr_migrations);
1821 if (task_hot(p, old_rq->clock, NULL))
1822 schedstat_inc(p, se.nr_forced2_migrations);
1823 }
1824 #endif
1825 p->se.vruntime -= old_cfsrq->min_vruntime -
1826 new_cfsrq->min_vruntime;
1827
1828 __set_task_cpu(p, new_cpu);
1829 }
1830
1831 struct migration_req {
1832 struct list_head list;
1833
1834 struct task_struct *task;
1835 int dest_cpu;
1836
1837 struct completion done;
1838 };
1839
1840 /*
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1843 */
1844 static int
1845 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1846 {
1847 struct rq *rq = task_rq(p);
1848
1849 /*
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1852 */
1853 if (!p->se.on_rq && !task_running(rq, p)) {
1854 set_task_cpu(p, dest_cpu);
1855 return 0;
1856 }
1857
1858 init_completion(&req->done);
1859 req->task = p;
1860 req->dest_cpu = dest_cpu;
1861 list_add(&req->list, &rq->migration_queue);
1862
1863 return 1;
1864 }
1865
1866 /*
1867 * wait_task_inactive - wait for a thread to unschedule.
1868 *
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1875 *
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1881 */
1882 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1883 {
1884 unsigned long flags;
1885 int running, on_rq;
1886 unsigned long ncsw;
1887 struct rq *rq;
1888
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
1897
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
1909 while (task_running(rq, p)) {
1910 if (match_state && unlikely(p->state != match_state))
1911 return 0;
1912 cpu_relax();
1913 }
1914
1915 /*
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1919 */
1920 rq = task_rq_lock(p, &flags);
1921 running = task_running(rq, p);
1922 on_rq = p->se.on_rq;
1923 ncsw = 0;
1924 if (!match_state || p->state == match_state) {
1925 ncsw = p->nivcsw + p->nvcsw;
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
1929 task_rq_unlock(rq, &flags);
1930
1931 /*
1932 * If it changed from the expected state, bail out now.
1933 */
1934 if (unlikely(!ncsw))
1935 break;
1936
1937 /*
1938 * Was it really running after all now that we
1939 * checked with the proper locks actually held?
1940 *
1941 * Oops. Go back and try again..
1942 */
1943 if (unlikely(running)) {
1944 cpu_relax();
1945 continue;
1946 }
1947
1948 /*
1949 * It's not enough that it's not actively running,
1950 * it must be off the runqueue _entirely_, and not
1951 * preempted!
1952 *
1953 * So if it wa still runnable (but just not actively
1954 * running right now), it's preempted, and we should
1955 * yield - it could be a while.
1956 */
1957 if (unlikely(on_rq)) {
1958 schedule_timeout_uninterruptible(1);
1959 continue;
1960 }
1961
1962 /*
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1966 */
1967 break;
1968 }
1969
1970 return ncsw;
1971 }
1972
1973 /***
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1976 *
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1979 *
1980 * NOTE: this function doesnt have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1984 * achieved as well.
1985 */
1986 void kick_process(struct task_struct *p)
1987 {
1988 int cpu;
1989
1990 preempt_disable();
1991 cpu = task_cpu(p);
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1994 preempt_enable();
1995 }
1996
1997 /*
1998 * Return a low guess at the load of a migration-source cpu weighted
1999 * according to the scheduling class and "nice" value.
2000 *
2001 * We want to under-estimate the load of migration sources, to
2002 * balance conservatively.
2003 */
2004 static unsigned long source_load(int cpu, int type)
2005 {
2006 struct rq *rq = cpu_rq(cpu);
2007 unsigned long total = weighted_cpuload(cpu);
2008
2009 if (type == 0 || !sched_feat(LB_BIAS))
2010 return total;
2011
2012 return min(rq->cpu_load[type-1], total);
2013 }
2014
2015 /*
2016 * Return a high guess at the load of a migration-target cpu weighted
2017 * according to the scheduling class and "nice" value.
2018 */
2019 static unsigned long target_load(int cpu, int type)
2020 {
2021 struct rq *rq = cpu_rq(cpu);
2022 unsigned long total = weighted_cpuload(cpu);
2023
2024 if (type == 0 || !sched_feat(LB_BIAS))
2025 return total;
2026
2027 return max(rq->cpu_load[type-1], total);
2028 }
2029
2030 /*
2031 * find_idlest_group finds and returns the least busy CPU group within the
2032 * domain.
2033 */
2034 static struct sched_group *
2035 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2036 {
2037 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2038 unsigned long min_load = ULONG_MAX, this_load = 0;
2039 int load_idx = sd->forkexec_idx;
2040 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2041
2042 do {
2043 unsigned long load, avg_load;
2044 int local_group;
2045 int i;
2046
2047 /* Skip over this group if it has no CPUs allowed */
2048 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2049 continue;
2050
2051 local_group = cpu_isset(this_cpu, group->cpumask);
2052
2053 /* Tally up the load of all CPUs in the group */
2054 avg_load = 0;
2055
2056 for_each_cpu_mask_nr(i, group->cpumask) {
2057 /* Bias balancing toward cpus of our domain */
2058 if (local_group)
2059 load = source_load(i, load_idx);
2060 else
2061 load = target_load(i, load_idx);
2062
2063 avg_load += load;
2064 }
2065
2066 /* Adjust by relative CPU power of the group */
2067 avg_load = sg_div_cpu_power(group,
2068 avg_load * SCHED_LOAD_SCALE);
2069
2070 if (local_group) {
2071 this_load = avg_load;
2072 this = group;
2073 } else if (avg_load < min_load) {
2074 min_load = avg_load;
2075 idlest = group;
2076 }
2077 } while (group = group->next, group != sd->groups);
2078
2079 if (!idlest || 100*this_load < imbalance*min_load)
2080 return NULL;
2081 return idlest;
2082 }
2083
2084 /*
2085 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2086 */
2087 static int
2088 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2089 cpumask_t *tmp)
2090 {
2091 unsigned long load, min_load = ULONG_MAX;
2092 int idlest = -1;
2093 int i;
2094
2095 /* Traverse only the allowed CPUs */
2096 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2097
2098 for_each_cpu_mask_nr(i, *tmp) {
2099 load = weighted_cpuload(i);
2100
2101 if (load < min_load || (load == min_load && i == this_cpu)) {
2102 min_load = load;
2103 idlest = i;
2104 }
2105 }
2106
2107 return idlest;
2108 }
2109
2110 /*
2111 * sched_balance_self: balance the current task (running on cpu) in domains
2112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2113 * SD_BALANCE_EXEC.
2114 *
2115 * Balance, ie. select the least loaded group.
2116 *
2117 * Returns the target CPU number, or the same CPU if no balancing is needed.
2118 *
2119 * preempt must be disabled.
2120 */
2121 static int sched_balance_self(int cpu, int flag)
2122 {
2123 struct task_struct *t = current;
2124 struct sched_domain *tmp, *sd = NULL;
2125
2126 for_each_domain(cpu, tmp) {
2127 /*
2128 * If power savings logic is enabled for a domain, stop there.
2129 */
2130 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2131 break;
2132 if (tmp->flags & flag)
2133 sd = tmp;
2134 }
2135
2136 if (sd)
2137 update_shares(sd);
2138
2139 while (sd) {
2140 cpumask_t span, tmpmask;
2141 struct sched_group *group;
2142 int new_cpu, weight;
2143
2144 if (!(sd->flags & flag)) {
2145 sd = sd->child;
2146 continue;
2147 }
2148
2149 span = sd->span;
2150 group = find_idlest_group(sd, t, cpu);
2151 if (!group) {
2152 sd = sd->child;
2153 continue;
2154 }
2155
2156 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2157 if (new_cpu == -1 || new_cpu == cpu) {
2158 /* Now try balancing at a lower domain level of cpu */
2159 sd = sd->child;
2160 continue;
2161 }
2162
2163 /* Now try balancing at a lower domain level of new_cpu */
2164 cpu = new_cpu;
2165 sd = NULL;
2166 weight = cpus_weight(span);
2167 for_each_domain(cpu, tmp) {
2168 if (weight <= cpus_weight(tmp->span))
2169 break;
2170 if (tmp->flags & flag)
2171 sd = tmp;
2172 }
2173 /* while loop will break here if sd == NULL */
2174 }
2175
2176 return cpu;
2177 }
2178
2179 #endif /* CONFIG_SMP */
2180
2181 /***
2182 * try_to_wake_up - wake up a thread
2183 * @p: the to-be-woken-up thread
2184 * @state: the mask of task states that can be woken
2185 * @sync: do a synchronous wakeup?
2186 *
2187 * Put it on the run-queue if it's not already there. The "current"
2188 * thread is always on the run-queue (except when the actual
2189 * re-schedule is in progress), and as such you're allowed to do
2190 * the simpler "current->state = TASK_RUNNING" to mark yourself
2191 * runnable without the overhead of this.
2192 *
2193 * returns failure only if the task is already active.
2194 */
2195 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2196 {
2197 int cpu, orig_cpu, this_cpu, success = 0;
2198 unsigned long flags;
2199 long old_state;
2200 struct rq *rq;
2201
2202 if (!sched_feat(SYNC_WAKEUPS))
2203 sync = 0;
2204
2205 #ifdef CONFIG_SMP
2206 if (sched_feat(LB_WAKEUP_UPDATE)) {
2207 struct sched_domain *sd;
2208
2209 this_cpu = raw_smp_processor_id();
2210 cpu = task_cpu(p);
2211
2212 for_each_domain(this_cpu, sd) {
2213 if (cpu_isset(cpu, sd->span)) {
2214 update_shares(sd);
2215 break;
2216 }
2217 }
2218 }
2219 #endif
2220
2221 smp_wmb();
2222 rq = task_rq_lock(p, &flags);
2223 old_state = p->state;
2224 if (!(old_state & state))
2225 goto out;
2226
2227 if (p->se.on_rq)
2228 goto out_running;
2229
2230 cpu = task_cpu(p);
2231 orig_cpu = cpu;
2232 this_cpu = smp_processor_id();
2233
2234 #ifdef CONFIG_SMP
2235 if (unlikely(task_running(rq, p)))
2236 goto out_activate;
2237
2238 cpu = p->sched_class->select_task_rq(p, sync);
2239 if (cpu != orig_cpu) {
2240 set_task_cpu(p, cpu);
2241 task_rq_unlock(rq, &flags);
2242 /* might preempt at this point */
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2246 goto out;
2247 if (p->se.on_rq)
2248 goto out_running;
2249
2250 this_cpu = smp_processor_id();
2251 cpu = task_cpu(p);
2252 }
2253
2254 #ifdef CONFIG_SCHEDSTATS
2255 schedstat_inc(rq, ttwu_count);
2256 if (cpu == this_cpu)
2257 schedstat_inc(rq, ttwu_local);
2258 else {
2259 struct sched_domain *sd;
2260 for_each_domain(this_cpu, sd) {
2261 if (cpu_isset(cpu, sd->span)) {
2262 schedstat_inc(sd, ttwu_wake_remote);
2263 break;
2264 }
2265 }
2266 }
2267 #endif /* CONFIG_SCHEDSTATS */
2268
2269 out_activate:
2270 #endif /* CONFIG_SMP */
2271 schedstat_inc(p, se.nr_wakeups);
2272 if (sync)
2273 schedstat_inc(p, se.nr_wakeups_sync);
2274 if (orig_cpu != cpu)
2275 schedstat_inc(p, se.nr_wakeups_migrate);
2276 if (cpu == this_cpu)
2277 schedstat_inc(p, se.nr_wakeups_local);
2278 else
2279 schedstat_inc(p, se.nr_wakeups_remote);
2280 update_rq_clock(rq);
2281 activate_task(rq, p, 1);
2282 success = 1;
2283
2284 out_running:
2285 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr);
2288 check_preempt_curr(rq, p);
2289
2290 p->state = TASK_RUNNING;
2291 #ifdef CONFIG_SMP
2292 if (p->sched_class->task_wake_up)
2293 p->sched_class->task_wake_up(rq, p);
2294 #endif
2295 out:
2296 current->se.last_wakeup = current->se.sum_exec_runtime;
2297
2298 task_rq_unlock(rq, &flags);
2299
2300 return success;
2301 }
2302
2303 int wake_up_process(struct task_struct *p)
2304 {
2305 return try_to_wake_up(p, TASK_ALL, 0);
2306 }
2307 EXPORT_SYMBOL(wake_up_process);
2308
2309 int wake_up_state(struct task_struct *p, unsigned int state)
2310 {
2311 return try_to_wake_up(p, state, 0);
2312 }
2313
2314 /*
2315 * Perform scheduler related setup for a newly forked process p.
2316 * p is forked by current.
2317 *
2318 * __sched_fork() is basic setup used by init_idle() too:
2319 */
2320 static void __sched_fork(struct task_struct *p)
2321 {
2322 p->se.exec_start = 0;
2323 p->se.sum_exec_runtime = 0;
2324 p->se.prev_sum_exec_runtime = 0;
2325 p->se.last_wakeup = 0;
2326 p->se.avg_overlap = 0;
2327
2328 #ifdef CONFIG_SCHEDSTATS
2329 p->se.wait_start = 0;
2330 p->se.sum_sleep_runtime = 0;
2331 p->se.sleep_start = 0;
2332 p->se.block_start = 0;
2333 p->se.sleep_max = 0;
2334 p->se.block_max = 0;
2335 p->se.exec_max = 0;
2336 p->se.slice_max = 0;
2337 p->se.wait_max = 0;
2338 #endif
2339
2340 INIT_LIST_HEAD(&p->rt.run_list);
2341 p->se.on_rq = 0;
2342 INIT_LIST_HEAD(&p->se.group_node);
2343
2344 #ifdef CONFIG_PREEMPT_NOTIFIERS
2345 INIT_HLIST_HEAD(&p->preempt_notifiers);
2346 #endif
2347
2348 /*
2349 * We mark the process as running here, but have not actually
2350 * inserted it onto the runqueue yet. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2353 */
2354 p->state = TASK_RUNNING;
2355 }
2356
2357 /*
2358 * fork()/clone()-time setup:
2359 */
2360 void sched_fork(struct task_struct *p, int clone_flags)
2361 {
2362 int cpu = get_cpu();
2363
2364 __sched_fork(p);
2365
2366 #ifdef CONFIG_SMP
2367 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2368 #endif
2369 set_task_cpu(p, cpu);
2370
2371 /*
2372 * Make sure we do not leak PI boosting priority to the child:
2373 */
2374 p->prio = current->normal_prio;
2375 if (!rt_prio(p->prio))
2376 p->sched_class = &fair_sched_class;
2377
2378 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2379 if (likely(sched_info_on()))
2380 memset(&p->sched_info, 0, sizeof(p->sched_info));
2381 #endif
2382 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2383 p->oncpu = 0;
2384 #endif
2385 #ifdef CONFIG_PREEMPT
2386 /* Want to start with kernel preemption disabled. */
2387 task_thread_info(p)->preempt_count = 1;
2388 #endif
2389 put_cpu();
2390 }
2391
2392 /*
2393 * wake_up_new_task - wake up a newly created task for the first time.
2394 *
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2398 */
2399 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2400 {
2401 unsigned long flags;
2402 struct rq *rq;
2403
2404 rq = task_rq_lock(p, &flags);
2405 BUG_ON(p->state != TASK_RUNNING);
2406 update_rq_clock(rq);
2407
2408 p->prio = effective_prio(p);
2409
2410 if (!p->sched_class->task_new || !current->se.on_rq) {
2411 activate_task(rq, p, 0);
2412 } else {
2413 /*
2414 * Let the scheduling class do new task startup
2415 * management (if any):
2416 */
2417 p->sched_class->task_new(rq, p);
2418 inc_nr_running(rq);
2419 }
2420 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr);
2423 check_preempt_curr(rq, p);
2424 #ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p);
2427 #endif
2428 task_rq_unlock(rq, &flags);
2429 }
2430
2431 #ifdef CONFIG_PREEMPT_NOTIFIERS
2432
2433 /**
2434 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435 * @notifier: notifier struct to register
2436 */
2437 void preempt_notifier_register(struct preempt_notifier *notifier)
2438 {
2439 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2440 }
2441 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2442
2443 /**
2444 * preempt_notifier_unregister - no longer interested in preemption notifications
2445 * @notifier: notifier struct to unregister
2446 *
2447 * This is safe to call from within a preemption notifier.
2448 */
2449 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2450 {
2451 hlist_del(&notifier->link);
2452 }
2453 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2454
2455 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2456 {
2457 struct preempt_notifier *notifier;
2458 struct hlist_node *node;
2459
2460 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2461 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2462 }
2463
2464 static void
2465 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2466 struct task_struct *next)
2467 {
2468 struct preempt_notifier *notifier;
2469 struct hlist_node *node;
2470
2471 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472 notifier->ops->sched_out(notifier, next);
2473 }
2474
2475 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2476
2477 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 {
2479 }
2480
2481 static void
2482 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2484 {
2485 }
2486
2487 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2488
2489 /**
2490 * prepare_task_switch - prepare to switch tasks
2491 * @rq: the runqueue preparing to switch
2492 * @prev: the current task that is being switched out
2493 * @next: the task we are going to switch to.
2494 *
2495 * This is called with the rq lock held and interrupts off. It must
2496 * be paired with a subsequent finish_task_switch after the context
2497 * switch.
2498 *
2499 * prepare_task_switch sets up locking and calls architecture specific
2500 * hooks.
2501 */
2502 static inline void
2503 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2504 struct task_struct *next)
2505 {
2506 fire_sched_out_preempt_notifiers(prev, next);
2507 prepare_lock_switch(rq, next);
2508 prepare_arch_switch(next);
2509 }
2510
2511 /**
2512 * finish_task_switch - clean up after a task-switch
2513 * @rq: runqueue associated with task-switch
2514 * @prev: the thread we just switched away from.
2515 *
2516 * finish_task_switch must be called after the context switch, paired
2517 * with a prepare_task_switch call before the context switch.
2518 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519 * and do any other architecture-specific cleanup actions.
2520 *
2521 * Note that we may have delayed dropping an mm in context_switch(). If
2522 * so, we finish that here outside of the runqueue lock. (Doing it
2523 * with the lock held can cause deadlocks; see schedule() for
2524 * details.)
2525 */
2526 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2527 __releases(rq->lock)
2528 {
2529 struct mm_struct *mm = rq->prev_mm;
2530 long prev_state;
2531
2532 rq->prev_mm = NULL;
2533
2534 /*
2535 * A task struct has one reference for the use as "current".
2536 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2537 * schedule one last time. The schedule call will never return, and
2538 * the scheduled task must drop that reference.
2539 * The test for TASK_DEAD must occur while the runqueue locks are
2540 * still held, otherwise prev could be scheduled on another cpu, die
2541 * there before we look at prev->state, and then the reference would
2542 * be dropped twice.
2543 * Manfred Spraul <manfred@colorfullife.com>
2544 */
2545 prev_state = prev->state;
2546 finish_arch_switch(prev);
2547 finish_lock_switch(rq, prev);
2548 #ifdef CONFIG_SMP
2549 if (current->sched_class->post_schedule)
2550 current->sched_class->post_schedule(rq);
2551 #endif
2552
2553 fire_sched_in_preempt_notifiers(current);
2554 if (mm)
2555 mmdrop(mm);
2556 if (unlikely(prev_state == TASK_DEAD)) {
2557 /*
2558 * Remove function-return probe instances associated with this
2559 * task and put them back on the free list.
2560 */
2561 kprobe_flush_task(prev);
2562 put_task_struct(prev);
2563 }
2564 }
2565
2566 /**
2567 * schedule_tail - first thing a freshly forked thread must call.
2568 * @prev: the thread we just switched away from.
2569 */
2570 asmlinkage void schedule_tail(struct task_struct *prev)
2571 __releases(rq->lock)
2572 {
2573 struct rq *rq = this_rq();
2574
2575 finish_task_switch(rq, prev);
2576 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577 /* In this case, finish_task_switch does not reenable preemption */
2578 preempt_enable();
2579 #endif
2580 if (current->set_child_tid)
2581 put_user(task_pid_vnr(current), current->set_child_tid);
2582 }
2583
2584 /*
2585 * context_switch - switch to the new MM and the new
2586 * thread's register state.
2587 */
2588 static inline void
2589 context_switch(struct rq *rq, struct task_struct *prev,
2590 struct task_struct *next)
2591 {
2592 struct mm_struct *mm, *oldmm;
2593
2594 prepare_task_switch(rq, prev, next);
2595 trace_mark(kernel_sched_schedule,
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev->pid, next->pid, prev->state,
2599 rq, prev, next);
2600 mm = next->mm;
2601 oldmm = prev->active_mm;
2602 /*
2603 * For paravirt, this is coupled with an exit in switch_to to
2604 * combine the page table reload and the switch backend into
2605 * one hypercall.
2606 */
2607 arch_enter_lazy_cpu_mode();
2608
2609 if (unlikely(!mm)) {
2610 next->active_mm = oldmm;
2611 atomic_inc(&oldmm->mm_count);
2612 enter_lazy_tlb(oldmm, next);
2613 } else
2614 switch_mm(oldmm, mm, next);
2615
2616 if (unlikely(!prev->mm)) {
2617 prev->active_mm = NULL;
2618 rq->prev_mm = oldmm;
2619 }
2620 /*
2621 * Since the runqueue lock will be released by the next
2622 * task (which is an invalid locking op but in the case
2623 * of the scheduler it's an obvious special-case), so we
2624 * do an early lockdep release here:
2625 */
2626 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2628 #endif
2629
2630 /* Here we just switch the register state and the stack. */
2631 switch_to(prev, next, prev);
2632
2633 barrier();
2634 /*
2635 * this_rq must be evaluated again because prev may have moved
2636 * CPUs since it called schedule(), thus the 'rq' on its stack
2637 * frame will be invalid.
2638 */
2639 finish_task_switch(this_rq(), prev);
2640 }
2641
2642 /*
2643 * nr_running, nr_uninterruptible and nr_context_switches:
2644 *
2645 * externally visible scheduler statistics: current number of runnable
2646 * threads, current number of uninterruptible-sleeping threads, total
2647 * number of context switches performed since bootup.
2648 */
2649 unsigned long nr_running(void)
2650 {
2651 unsigned long i, sum = 0;
2652
2653 for_each_online_cpu(i)
2654 sum += cpu_rq(i)->nr_running;
2655
2656 return sum;
2657 }
2658
2659 unsigned long nr_uninterruptible(void)
2660 {
2661 unsigned long i, sum = 0;
2662
2663 for_each_possible_cpu(i)
2664 sum += cpu_rq(i)->nr_uninterruptible;
2665
2666 /*
2667 * Since we read the counters lockless, it might be slightly
2668 * inaccurate. Do not allow it to go below zero though:
2669 */
2670 if (unlikely((long)sum < 0))
2671 sum = 0;
2672
2673 return sum;
2674 }
2675
2676 unsigned long long nr_context_switches(void)
2677 {
2678 int i;
2679 unsigned long long sum = 0;
2680
2681 for_each_possible_cpu(i)
2682 sum += cpu_rq(i)->nr_switches;
2683
2684 return sum;
2685 }
2686
2687 unsigned long nr_iowait(void)
2688 {
2689 unsigned long i, sum = 0;
2690
2691 for_each_possible_cpu(i)
2692 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2693
2694 return sum;
2695 }
2696
2697 unsigned long nr_active(void)
2698 {
2699 unsigned long i, running = 0, uninterruptible = 0;
2700
2701 for_each_online_cpu(i) {
2702 running += cpu_rq(i)->nr_running;
2703 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2704 }
2705
2706 if (unlikely((long)uninterruptible < 0))
2707 uninterruptible = 0;
2708
2709 return running + uninterruptible;
2710 }
2711
2712 /*
2713 * Update rq->cpu_load[] statistics. This function is usually called every
2714 * scheduler tick (TICK_NSEC).
2715 */
2716 static void update_cpu_load(struct rq *this_rq)
2717 {
2718 unsigned long this_load = this_rq->load.weight;
2719 int i, scale;
2720
2721 this_rq->nr_load_updates++;
2722
2723 /* Update our load: */
2724 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2725 unsigned long old_load, new_load;
2726
2727 /* scale is effectively 1 << i now, and >> i divides by scale */
2728
2729 old_load = this_rq->cpu_load[i];
2730 new_load = this_load;
2731 /*
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2734 * example.
2735 */
2736 if (new_load > old_load)
2737 new_load += scale-1;
2738 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2739 }
2740 }
2741
2742 #ifdef CONFIG_SMP
2743
2744 /*
2745 * double_rq_lock - safely lock two runqueues
2746 *
2747 * Note this does not disable interrupts like task_rq_lock,
2748 * you need to do so manually before calling.
2749 */
2750 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2751 __acquires(rq1->lock)
2752 __acquires(rq2->lock)
2753 {
2754 BUG_ON(!irqs_disabled());
2755 if (rq1 == rq2) {
2756 spin_lock(&rq1->lock);
2757 __acquire(rq2->lock); /* Fake it out ;) */
2758 } else {
2759 if (rq1 < rq2) {
2760 spin_lock(&rq1->lock);
2761 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2762 } else {
2763 spin_lock(&rq2->lock);
2764 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2765 }
2766 }
2767 update_rq_clock(rq1);
2768 update_rq_clock(rq2);
2769 }
2770
2771 /*
2772 * double_rq_unlock - safely unlock two runqueues
2773 *
2774 * Note this does not restore interrupts like task_rq_unlock,
2775 * you need to do so manually after calling.
2776 */
2777 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2778 __releases(rq1->lock)
2779 __releases(rq2->lock)
2780 {
2781 spin_unlock(&rq1->lock);
2782 if (rq1 != rq2)
2783 spin_unlock(&rq2->lock);
2784 else
2785 __release(rq2->lock);
2786 }
2787
2788 /*
2789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2790 */
2791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2792 __releases(this_rq->lock)
2793 __acquires(busiest->lock)
2794 __acquires(this_rq->lock)
2795 {
2796 int ret = 0;
2797
2798 if (unlikely(!irqs_disabled())) {
2799 /* printk() doesn't work good under rq->lock */
2800 spin_unlock(&this_rq->lock);
2801 BUG_ON(1);
2802 }
2803 if (unlikely(!spin_trylock(&busiest->lock))) {
2804 if (busiest < this_rq) {
2805 spin_unlock(&this_rq->lock);
2806 spin_lock(&busiest->lock);
2807 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2808 ret = 1;
2809 } else
2810 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2811 }
2812 return ret;
2813 }
2814
2815 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2816 __releases(busiest->lock)
2817 {
2818 spin_unlock(&busiest->lock);
2819 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2820 }
2821
2822 /*
2823 * If dest_cpu is allowed for this process, migrate the task to it.
2824 * This is accomplished by forcing the cpu_allowed mask to only
2825 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2826 * the cpu_allowed mask is restored.
2827 */
2828 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2829 {
2830 struct migration_req req;
2831 unsigned long flags;
2832 struct rq *rq;
2833
2834 rq = task_rq_lock(p, &flags);
2835 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2836 || unlikely(!cpu_active(dest_cpu)))
2837 goto out;
2838
2839 /* force the process onto the specified CPU */
2840 if (migrate_task(p, dest_cpu, &req)) {
2841 /* Need to wait for migration thread (might exit: take ref). */
2842 struct task_struct *mt = rq->migration_thread;
2843
2844 get_task_struct(mt);
2845 task_rq_unlock(rq, &flags);
2846 wake_up_process(mt);
2847 put_task_struct(mt);
2848 wait_for_completion(&req.done);
2849
2850 return;
2851 }
2852 out:
2853 task_rq_unlock(rq, &flags);
2854 }
2855
2856 /*
2857 * sched_exec - execve() is a valuable balancing opportunity, because at
2858 * this point the task has the smallest effective memory and cache footprint.
2859 */
2860 void sched_exec(void)
2861 {
2862 int new_cpu, this_cpu = get_cpu();
2863 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2864 put_cpu();
2865 if (new_cpu != this_cpu)
2866 sched_migrate_task(current, new_cpu);
2867 }
2868
2869 /*
2870 * pull_task - move a task from a remote runqueue to the local runqueue.
2871 * Both runqueues must be locked.
2872 */
2873 static void pull_task(struct rq *src_rq, struct task_struct *p,
2874 struct rq *this_rq, int this_cpu)
2875 {
2876 deactivate_task(src_rq, p, 0);
2877 set_task_cpu(p, this_cpu);
2878 activate_task(this_rq, p, 0);
2879 /*
2880 * Note that idle threads have a prio of MAX_PRIO, for this test
2881 * to be always true for them.
2882 */
2883 check_preempt_curr(this_rq, p);
2884 }
2885
2886 /*
2887 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2888 */
2889 static
2890 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2891 struct sched_domain *sd, enum cpu_idle_type idle,
2892 int *all_pinned)
2893 {
2894 /*
2895 * We do not migrate tasks that are:
2896 * 1) running (obviously), or
2897 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2898 * 3) are cache-hot on their current CPU.
2899 */
2900 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2901 schedstat_inc(p, se.nr_failed_migrations_affine);
2902 return 0;
2903 }
2904 *all_pinned = 0;
2905
2906 if (task_running(rq, p)) {
2907 schedstat_inc(p, se.nr_failed_migrations_running);
2908 return 0;
2909 }
2910
2911 /*
2912 * Aggressive migration if:
2913 * 1) task is cache cold, or
2914 * 2) too many balance attempts have failed.
2915 */
2916
2917 if (!task_hot(p, rq->clock, sd) ||
2918 sd->nr_balance_failed > sd->cache_nice_tries) {
2919 #ifdef CONFIG_SCHEDSTATS
2920 if (task_hot(p, rq->clock, sd)) {
2921 schedstat_inc(sd, lb_hot_gained[idle]);
2922 schedstat_inc(p, se.nr_forced_migrations);
2923 }
2924 #endif
2925 return 1;
2926 }
2927
2928 if (task_hot(p, rq->clock, sd)) {
2929 schedstat_inc(p, se.nr_failed_migrations_hot);
2930 return 0;
2931 }
2932 return 1;
2933 }
2934
2935 static unsigned long
2936 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2937 unsigned long max_load_move, struct sched_domain *sd,
2938 enum cpu_idle_type idle, int *all_pinned,
2939 int *this_best_prio, struct rq_iterator *iterator)
2940 {
2941 int loops = 0, pulled = 0, pinned = 0;
2942 struct task_struct *p;
2943 long rem_load_move = max_load_move;
2944
2945 if (max_load_move == 0)
2946 goto out;
2947
2948 pinned = 1;
2949
2950 /*
2951 * Start the load-balancing iterator:
2952 */
2953 p = iterator->start(iterator->arg);
2954 next:
2955 if (!p || loops++ > sysctl_sched_nr_migrate)
2956 goto out;
2957
2958 if ((p->se.load.weight >> 1) > rem_load_move ||
2959 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2960 p = iterator->next(iterator->arg);
2961 goto next;
2962 }
2963
2964 pull_task(busiest, p, this_rq, this_cpu);
2965 pulled++;
2966 rem_load_move -= p->se.load.weight;
2967
2968 /*
2969 * We only want to steal up to the prescribed amount of weighted load.
2970 */
2971 if (rem_load_move > 0) {
2972 if (p->prio < *this_best_prio)
2973 *this_best_prio = p->prio;
2974 p = iterator->next(iterator->arg);
2975 goto next;
2976 }
2977 out:
2978 /*
2979 * Right now, this is one of only two places pull_task() is called,
2980 * so we can safely collect pull_task() stats here rather than
2981 * inside pull_task().
2982 */
2983 schedstat_add(sd, lb_gained[idle], pulled);
2984
2985 if (all_pinned)
2986 *all_pinned = pinned;
2987
2988 return max_load_move - rem_load_move;
2989 }
2990
2991 /*
2992 * move_tasks tries to move up to max_load_move weighted load from busiest to
2993 * this_rq, as part of a balancing operation within domain "sd".
2994 * Returns 1 if successful and 0 otherwise.
2995 *
2996 * Called with both runqueues locked.
2997 */
2998 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2999 unsigned long max_load_move,
3000 struct sched_domain *sd, enum cpu_idle_type idle,
3001 int *all_pinned)
3002 {
3003 const struct sched_class *class = sched_class_highest;
3004 unsigned long total_load_moved = 0;
3005 int this_best_prio = this_rq->curr->prio;
3006
3007 do {
3008 total_load_moved +=
3009 class->load_balance(this_rq, this_cpu, busiest,
3010 max_load_move - total_load_moved,
3011 sd, idle, all_pinned, &this_best_prio);
3012 class = class->next;
3013
3014 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3015 break;
3016
3017 } while (class && max_load_move > total_load_moved);
3018
3019 return total_load_moved > 0;
3020 }
3021
3022 static int
3023 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3024 struct sched_domain *sd, enum cpu_idle_type idle,
3025 struct rq_iterator *iterator)
3026 {
3027 struct task_struct *p = iterator->start(iterator->arg);
3028 int pinned = 0;
3029
3030 while (p) {
3031 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3032 pull_task(busiest, p, this_rq, this_cpu);
3033 /*
3034 * Right now, this is only the second place pull_task()
3035 * is called, so we can safely collect pull_task()
3036 * stats here rather than inside pull_task().
3037 */
3038 schedstat_inc(sd, lb_gained[idle]);
3039
3040 return 1;
3041 }
3042 p = iterator->next(iterator->arg);
3043 }
3044
3045 return 0;
3046 }
3047
3048 /*
3049 * move_one_task tries to move exactly one task from busiest to this_rq, as
3050 * part of active balancing operations within "domain".
3051 * Returns 1 if successful and 0 otherwise.
3052 *
3053 * Called with both runqueues locked.
3054 */
3055 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle)
3057 {
3058 const struct sched_class *class;
3059
3060 for (class = sched_class_highest; class; class = class->next)
3061 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3062 return 1;
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * find_busiest_group finds and returns the busiest CPU group within the
3069 * domain. It calculates and returns the amount of weighted load which
3070 * should be moved to restore balance via the imbalance parameter.
3071 */
3072 static struct sched_group *
3073 find_busiest_group(struct sched_domain *sd, int this_cpu,
3074 unsigned long *imbalance, enum cpu_idle_type idle,
3075 int *sd_idle, const cpumask_t *cpus, int *balance)
3076 {
3077 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3078 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3079 unsigned long max_pull;
3080 unsigned long busiest_load_per_task, busiest_nr_running;
3081 unsigned long this_load_per_task, this_nr_running;
3082 int load_idx, group_imb = 0;
3083 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3084 int power_savings_balance = 1;
3085 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3086 unsigned long min_nr_running = ULONG_MAX;
3087 struct sched_group *group_min = NULL, *group_leader = NULL;
3088 #endif
3089
3090 max_load = this_load = total_load = total_pwr = 0;
3091 busiest_load_per_task = busiest_nr_running = 0;
3092 this_load_per_task = this_nr_running = 0;
3093
3094 if (idle == CPU_NOT_IDLE)
3095 load_idx = sd->busy_idx;
3096 else if (idle == CPU_NEWLY_IDLE)
3097 load_idx = sd->newidle_idx;
3098 else
3099 load_idx = sd->idle_idx;
3100
3101 do {
3102 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3103 int local_group;
3104 int i;
3105 int __group_imb = 0;
3106 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3107 unsigned long sum_nr_running, sum_weighted_load;
3108 unsigned long sum_avg_load_per_task;
3109 unsigned long avg_load_per_task;
3110
3111 local_group = cpu_isset(this_cpu, group->cpumask);
3112
3113 if (local_group)
3114 balance_cpu = first_cpu(group->cpumask);
3115
3116 /* Tally up the load of all CPUs in the group */
3117 sum_weighted_load = sum_nr_running = avg_load = 0;
3118 sum_avg_load_per_task = avg_load_per_task = 0;
3119
3120 max_cpu_load = 0;
3121 min_cpu_load = ~0UL;
3122
3123 for_each_cpu_mask_nr(i, group->cpumask) {
3124 struct rq *rq;
3125
3126 if (!cpu_isset(i, *cpus))
3127 continue;
3128
3129 rq = cpu_rq(i);
3130
3131 if (*sd_idle && rq->nr_running)
3132 *sd_idle = 0;
3133
3134 /* Bias balancing toward cpus of our domain */
3135 if (local_group) {
3136 if (idle_cpu(i) && !first_idle_cpu) {
3137 first_idle_cpu = 1;
3138 balance_cpu = i;
3139 }
3140
3141 load = target_load(i, load_idx);
3142 } else {
3143 load = source_load(i, load_idx);
3144 if (load > max_cpu_load)
3145 max_cpu_load = load;
3146 if (min_cpu_load > load)
3147 min_cpu_load = load;
3148 }
3149
3150 avg_load += load;
3151 sum_nr_running += rq->nr_running;
3152 sum_weighted_load += weighted_cpuload(i);
3153
3154 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3155 }
3156
3157 /*
3158 * First idle cpu or the first cpu(busiest) in this sched group
3159 * is eligible for doing load balancing at this and above
3160 * domains. In the newly idle case, we will allow all the cpu's
3161 * to do the newly idle load balance.
3162 */
3163 if (idle != CPU_NEWLY_IDLE && local_group &&
3164 balance_cpu != this_cpu && balance) {
3165 *balance = 0;
3166 goto ret;
3167 }
3168
3169 total_load += avg_load;
3170 total_pwr += group->__cpu_power;
3171
3172 /* Adjust by relative CPU power of the group */
3173 avg_load = sg_div_cpu_power(group,
3174 avg_load * SCHED_LOAD_SCALE);
3175
3176
3177 /*
3178 * Consider the group unbalanced when the imbalance is larger
3179 * than the average weight of two tasks.
3180 *
3181 * APZ: with cgroup the avg task weight can vary wildly and
3182 * might not be a suitable number - should we keep a
3183 * normalized nr_running number somewhere that negates
3184 * the hierarchy?
3185 */
3186 avg_load_per_task = sg_div_cpu_power(group,
3187 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3188
3189 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3190 __group_imb = 1;
3191
3192 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3193
3194 if (local_group) {
3195 this_load = avg_load;
3196 this = group;
3197 this_nr_running = sum_nr_running;
3198 this_load_per_task = sum_weighted_load;
3199 } else if (avg_load > max_load &&
3200 (sum_nr_running > group_capacity || __group_imb)) {
3201 max_load = avg_load;
3202 busiest = group;
3203 busiest_nr_running = sum_nr_running;
3204 busiest_load_per_task = sum_weighted_load;
3205 group_imb = __group_imb;
3206 }
3207
3208 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3209 /*
3210 * Busy processors will not participate in power savings
3211 * balance.
3212 */
3213 if (idle == CPU_NOT_IDLE ||
3214 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3215 goto group_next;
3216
3217 /*
3218 * If the local group is idle or completely loaded
3219 * no need to do power savings balance at this domain
3220 */
3221 if (local_group && (this_nr_running >= group_capacity ||
3222 !this_nr_running))
3223 power_savings_balance = 0;
3224
3225 /*
3226 * If a group is already running at full capacity or idle,
3227 * don't include that group in power savings calculations
3228 */
3229 if (!power_savings_balance || sum_nr_running >= group_capacity
3230 || !sum_nr_running)
3231 goto group_next;
3232
3233 /*
3234 * Calculate the group which has the least non-idle load.
3235 * This is the group from where we need to pick up the load
3236 * for saving power
3237 */
3238 if ((sum_nr_running < min_nr_running) ||
3239 (sum_nr_running == min_nr_running &&
3240 first_cpu(group->cpumask) <
3241 first_cpu(group_min->cpumask))) {
3242 group_min = group;
3243 min_nr_running = sum_nr_running;
3244 min_load_per_task = sum_weighted_load /
3245 sum_nr_running;
3246 }
3247
3248 /*
3249 * Calculate the group which is almost near its
3250 * capacity but still has some space to pick up some load
3251 * from other group and save more power
3252 */
3253 if (sum_nr_running <= group_capacity - 1) {
3254 if (sum_nr_running > leader_nr_running ||
3255 (sum_nr_running == leader_nr_running &&
3256 first_cpu(group->cpumask) >
3257 first_cpu(group_leader->cpumask))) {
3258 group_leader = group;
3259 leader_nr_running = sum_nr_running;
3260 }
3261 }
3262 group_next:
3263 #endif
3264 group = group->next;
3265 } while (group != sd->groups);
3266
3267 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3268 goto out_balanced;
3269
3270 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3271
3272 if (this_load >= avg_load ||
3273 100*max_load <= sd->imbalance_pct*this_load)
3274 goto out_balanced;
3275
3276 busiest_load_per_task /= busiest_nr_running;
3277 if (group_imb)
3278 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3279
3280 /*
3281 * We're trying to get all the cpus to the average_load, so we don't
3282 * want to push ourselves above the average load, nor do we wish to
3283 * reduce the max loaded cpu below the average load, as either of these
3284 * actions would just result in more rebalancing later, and ping-pong
3285 * tasks around. Thus we look for the minimum possible imbalance.
3286 * Negative imbalances (*we* are more loaded than anyone else) will
3287 * be counted as no imbalance for these purposes -- we can't fix that
3288 * by pulling tasks to us. Be careful of negative numbers as they'll
3289 * appear as very large values with unsigned longs.
3290 */
3291 if (max_load <= busiest_load_per_task)
3292 goto out_balanced;
3293
3294 /*
3295 * In the presence of smp nice balancing, certain scenarios can have
3296 * max load less than avg load(as we skip the groups at or below
3297 * its cpu_power, while calculating max_load..)
3298 */
3299 if (max_load < avg_load) {
3300 *imbalance = 0;
3301 goto small_imbalance;
3302 }
3303
3304 /* Don't want to pull so many tasks that a group would go idle */
3305 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3306
3307 /* How much load to actually move to equalise the imbalance */
3308 *imbalance = min(max_pull * busiest->__cpu_power,
3309 (avg_load - this_load) * this->__cpu_power)
3310 / SCHED_LOAD_SCALE;
3311
3312 /*
3313 * if *imbalance is less than the average load per runnable task
3314 * there is no gaurantee that any tasks will be moved so we'll have
3315 * a think about bumping its value to force at least one task to be
3316 * moved
3317 */
3318 if (*imbalance < busiest_load_per_task) {
3319 unsigned long tmp, pwr_now, pwr_move;
3320 unsigned int imbn;
3321
3322 small_imbalance:
3323 pwr_move = pwr_now = 0;
3324 imbn = 2;
3325 if (this_nr_running) {
3326 this_load_per_task /= this_nr_running;
3327 if (busiest_load_per_task > this_load_per_task)
3328 imbn = 1;
3329 } else
3330 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3331
3332 if (max_load - this_load + 2*busiest_load_per_task >=
3333 busiest_load_per_task * imbn) {
3334 *imbalance = busiest_load_per_task;
3335 return busiest;
3336 }
3337
3338 /*
3339 * OK, we don't have enough imbalance to justify moving tasks,
3340 * however we may be able to increase total CPU power used by
3341 * moving them.
3342 */
3343
3344 pwr_now += busiest->__cpu_power *
3345 min(busiest_load_per_task, max_load);
3346 pwr_now += this->__cpu_power *
3347 min(this_load_per_task, this_load);
3348 pwr_now /= SCHED_LOAD_SCALE;
3349
3350 /* Amount of load we'd subtract */
3351 tmp = sg_div_cpu_power(busiest,
3352 busiest_load_per_task * SCHED_LOAD_SCALE);
3353 if (max_load > tmp)
3354 pwr_move += busiest->__cpu_power *
3355 min(busiest_load_per_task, max_load - tmp);
3356
3357 /* Amount of load we'd add */
3358 if (max_load * busiest->__cpu_power <
3359 busiest_load_per_task * SCHED_LOAD_SCALE)
3360 tmp = sg_div_cpu_power(this,
3361 max_load * busiest->__cpu_power);
3362 else
3363 tmp = sg_div_cpu_power(this,
3364 busiest_load_per_task * SCHED_LOAD_SCALE);
3365 pwr_move += this->__cpu_power *
3366 min(this_load_per_task, this_load + tmp);
3367 pwr_move /= SCHED_LOAD_SCALE;
3368
3369 /* Move if we gain throughput */
3370 if (pwr_move > pwr_now)
3371 *imbalance = busiest_load_per_task;
3372 }
3373
3374 return busiest;
3375
3376 out_balanced:
3377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3378 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3379 goto ret;
3380
3381 if (this == group_leader && group_leader != group_min) {
3382 *imbalance = min_load_per_task;
3383 return group_min;
3384 }
3385 #endif
3386 ret:
3387 *imbalance = 0;
3388 return NULL;
3389 }
3390
3391 /*
3392 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3393 */
3394 static struct rq *
3395 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3396 unsigned long imbalance, const cpumask_t *cpus)
3397 {
3398 struct rq *busiest = NULL, *rq;
3399 unsigned long max_load = 0;
3400 int i;
3401
3402 for_each_cpu_mask_nr(i, group->cpumask) {
3403 unsigned long wl;
3404
3405 if (!cpu_isset(i, *cpus))
3406 continue;
3407
3408 rq = cpu_rq(i);
3409 wl = weighted_cpuload(i);
3410
3411 if (rq->nr_running == 1 && wl > imbalance)
3412 continue;
3413
3414 if (wl > max_load) {
3415 max_load = wl;
3416 busiest = rq;
3417 }
3418 }
3419
3420 return busiest;
3421 }
3422
3423 /*
3424 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3425 * so long as it is large enough.
3426 */
3427 #define MAX_PINNED_INTERVAL 512
3428
3429 /*
3430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3431 * tasks if there is an imbalance.
3432 */
3433 static int load_balance(int this_cpu, struct rq *this_rq,
3434 struct sched_domain *sd, enum cpu_idle_type idle,
3435 int *balance, cpumask_t *cpus)
3436 {
3437 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3438 struct sched_group *group;
3439 unsigned long imbalance;
3440 struct rq *busiest;
3441 unsigned long flags;
3442
3443 cpus_setall(*cpus);
3444
3445 /*
3446 * When power savings policy is enabled for the parent domain, idle
3447 * sibling can pick up load irrespective of busy siblings. In this case,
3448 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3449 * portraying it as CPU_NOT_IDLE.
3450 */
3451 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3452 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3453 sd_idle = 1;
3454
3455 schedstat_inc(sd, lb_count[idle]);
3456
3457 redo:
3458 update_shares(sd);
3459 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3460 cpus, balance);
3461
3462 if (*balance == 0)
3463 goto out_balanced;
3464
3465 if (!group) {
3466 schedstat_inc(sd, lb_nobusyg[idle]);
3467 goto out_balanced;
3468 }
3469
3470 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3471 if (!busiest) {
3472 schedstat_inc(sd, lb_nobusyq[idle]);
3473 goto out_balanced;
3474 }
3475
3476 BUG_ON(busiest == this_rq);
3477
3478 schedstat_add(sd, lb_imbalance[idle], imbalance);
3479
3480 ld_moved = 0;
3481 if (busiest->nr_running > 1) {
3482 /*
3483 * Attempt to move tasks. If find_busiest_group has found
3484 * an imbalance but busiest->nr_running <= 1, the group is
3485 * still unbalanced. ld_moved simply stays zero, so it is
3486 * correctly treated as an imbalance.
3487 */
3488 local_irq_save(flags);
3489 double_rq_lock(this_rq, busiest);
3490 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3491 imbalance, sd, idle, &all_pinned);
3492 double_rq_unlock(this_rq, busiest);
3493 local_irq_restore(flags);
3494
3495 /*
3496 * some other cpu did the load balance for us.
3497 */
3498 if (ld_moved && this_cpu != smp_processor_id())
3499 resched_cpu(this_cpu);
3500
3501 /* All tasks on this runqueue were pinned by CPU affinity */
3502 if (unlikely(all_pinned)) {
3503 cpu_clear(cpu_of(busiest), *cpus);
3504 if (!cpus_empty(*cpus))
3505 goto redo;
3506 goto out_balanced;
3507 }
3508 }
3509
3510 if (!ld_moved) {
3511 schedstat_inc(sd, lb_failed[idle]);
3512 sd->nr_balance_failed++;
3513
3514 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3515
3516 spin_lock_irqsave(&busiest->lock, flags);
3517
3518 /* don't kick the migration_thread, if the curr
3519 * task on busiest cpu can't be moved to this_cpu
3520 */
3521 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3522 spin_unlock_irqrestore(&busiest->lock, flags);
3523 all_pinned = 1;
3524 goto out_one_pinned;
3525 }
3526
3527 if (!busiest->active_balance) {
3528 busiest->active_balance = 1;
3529 busiest->push_cpu = this_cpu;
3530 active_balance = 1;
3531 }
3532 spin_unlock_irqrestore(&busiest->lock, flags);
3533 if (active_balance)
3534 wake_up_process(busiest->migration_thread);
3535
3536 /*
3537 * We've kicked active balancing, reset the failure
3538 * counter.
3539 */
3540 sd->nr_balance_failed = sd->cache_nice_tries+1;
3541 }
3542 } else
3543 sd->nr_balance_failed = 0;
3544
3545 if (likely(!active_balance)) {
3546 /* We were unbalanced, so reset the balancing interval */
3547 sd->balance_interval = sd->min_interval;
3548 } else {
3549 /*
3550 * If we've begun active balancing, start to back off. This
3551 * case may not be covered by the all_pinned logic if there
3552 * is only 1 task on the busy runqueue (because we don't call
3553 * move_tasks).
3554 */
3555 if (sd->balance_interval < sd->max_interval)
3556 sd->balance_interval *= 2;
3557 }
3558
3559 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3560 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3561 ld_moved = -1;
3562
3563 goto out;
3564
3565 out_balanced:
3566 schedstat_inc(sd, lb_balanced[idle]);
3567
3568 sd->nr_balance_failed = 0;
3569
3570 out_one_pinned:
3571 /* tune up the balancing interval */
3572 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3573 (sd->balance_interval < sd->max_interval))
3574 sd->balance_interval *= 2;
3575
3576 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578 ld_moved = -1;
3579 else
3580 ld_moved = 0;
3581 out:
3582 if (ld_moved)
3583 update_shares(sd);
3584 return ld_moved;
3585 }
3586
3587 /*
3588 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3589 * tasks if there is an imbalance.
3590 *
3591 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3592 * this_rq is locked.
3593 */
3594 static int
3595 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3596 cpumask_t *cpus)
3597 {
3598 struct sched_group *group;
3599 struct rq *busiest = NULL;
3600 unsigned long imbalance;
3601 int ld_moved = 0;
3602 int sd_idle = 0;
3603 int all_pinned = 0;
3604
3605 cpus_setall(*cpus);
3606
3607 /*
3608 * When power savings policy is enabled for the parent domain, idle
3609 * sibling can pick up load irrespective of busy siblings. In this case,
3610 * let the state of idle sibling percolate up as IDLE, instead of
3611 * portraying it as CPU_NOT_IDLE.
3612 */
3613 if (sd->flags & SD_SHARE_CPUPOWER &&
3614 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3615 sd_idle = 1;
3616
3617 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3618 redo:
3619 update_shares_locked(this_rq, sd);
3620 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3621 &sd_idle, cpus, NULL);
3622 if (!group) {
3623 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3624 goto out_balanced;
3625 }
3626
3627 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3628 if (!busiest) {
3629 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3630 goto out_balanced;
3631 }
3632
3633 BUG_ON(busiest == this_rq);
3634
3635 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3636
3637 ld_moved = 0;
3638 if (busiest->nr_running > 1) {
3639 /* Attempt to move tasks */
3640 double_lock_balance(this_rq, busiest);
3641 /* this_rq->clock is already updated */
3642 update_rq_clock(busiest);
3643 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3644 imbalance, sd, CPU_NEWLY_IDLE,
3645 &all_pinned);
3646 double_unlock_balance(this_rq, busiest);
3647
3648 if (unlikely(all_pinned)) {
3649 cpu_clear(cpu_of(busiest), *cpus);
3650 if (!cpus_empty(*cpus))
3651 goto redo;
3652 }
3653 }
3654
3655 if (!ld_moved) {
3656 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3657 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3658 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3659 return -1;
3660 } else
3661 sd->nr_balance_failed = 0;
3662
3663 update_shares_locked(this_rq, sd);
3664 return ld_moved;
3665
3666 out_balanced:
3667 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3668 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3669 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3670 return -1;
3671 sd->nr_balance_failed = 0;
3672
3673 return 0;
3674 }
3675
3676 /*
3677 * idle_balance is called by schedule() if this_cpu is about to become
3678 * idle. Attempts to pull tasks from other CPUs.
3679 */
3680 static void idle_balance(int this_cpu, struct rq *this_rq)
3681 {
3682 struct sched_domain *sd;
3683 int pulled_task = -1;
3684 unsigned long next_balance = jiffies + HZ;
3685 cpumask_t tmpmask;
3686
3687 for_each_domain(this_cpu, sd) {
3688 unsigned long interval;
3689
3690 if (!(sd->flags & SD_LOAD_BALANCE))
3691 continue;
3692
3693 if (sd->flags & SD_BALANCE_NEWIDLE)
3694 /* If we've pulled tasks over stop searching: */
3695 pulled_task = load_balance_newidle(this_cpu, this_rq,
3696 sd, &tmpmask);
3697
3698 interval = msecs_to_jiffies(sd->balance_interval);
3699 if (time_after(next_balance, sd->last_balance + interval))
3700 next_balance = sd->last_balance + interval;
3701 if (pulled_task)
3702 break;
3703 }
3704 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3705 /*
3706 * We are going idle. next_balance may be set based on
3707 * a busy processor. So reset next_balance.
3708 */
3709 this_rq->next_balance = next_balance;
3710 }
3711 }
3712
3713 /*
3714 * active_load_balance is run by migration threads. It pushes running tasks
3715 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3716 * running on each physical CPU where possible, and avoids physical /
3717 * logical imbalances.
3718 *
3719 * Called with busiest_rq locked.
3720 */
3721 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3722 {
3723 int target_cpu = busiest_rq->push_cpu;
3724 struct sched_domain *sd;
3725 struct rq *target_rq;
3726
3727 /* Is there any task to move? */
3728 if (busiest_rq->nr_running <= 1)
3729 return;
3730
3731 target_rq = cpu_rq(target_cpu);
3732
3733 /*
3734 * This condition is "impossible", if it occurs
3735 * we need to fix it. Originally reported by
3736 * Bjorn Helgaas on a 128-cpu setup.
3737 */
3738 BUG_ON(busiest_rq == target_rq);
3739
3740 /* move a task from busiest_rq to target_rq */
3741 double_lock_balance(busiest_rq, target_rq);
3742 update_rq_clock(busiest_rq);
3743 update_rq_clock(target_rq);
3744
3745 /* Search for an sd spanning us and the target CPU. */
3746 for_each_domain(target_cpu, sd) {
3747 if ((sd->flags & SD_LOAD_BALANCE) &&
3748 cpu_isset(busiest_cpu, sd->span))
3749 break;
3750 }
3751
3752 if (likely(sd)) {
3753 schedstat_inc(sd, alb_count);
3754
3755 if (move_one_task(target_rq, target_cpu, busiest_rq,
3756 sd, CPU_IDLE))
3757 schedstat_inc(sd, alb_pushed);
3758 else
3759 schedstat_inc(sd, alb_failed);
3760 }
3761 double_unlock_balance(busiest_rq, target_rq);
3762 }
3763
3764 #ifdef CONFIG_NO_HZ
3765 static struct {
3766 atomic_t load_balancer;
3767 cpumask_t cpu_mask;
3768 } nohz ____cacheline_aligned = {
3769 .load_balancer = ATOMIC_INIT(-1),
3770 .cpu_mask = CPU_MASK_NONE,
3771 };
3772
3773 /*
3774 * This routine will try to nominate the ilb (idle load balancing)
3775 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3776 * load balancing on behalf of all those cpus. If all the cpus in the system
3777 * go into this tickless mode, then there will be no ilb owner (as there is
3778 * no need for one) and all the cpus will sleep till the next wakeup event
3779 * arrives...
3780 *
3781 * For the ilb owner, tick is not stopped. And this tick will be used
3782 * for idle load balancing. ilb owner will still be part of
3783 * nohz.cpu_mask..
3784 *
3785 * While stopping the tick, this cpu will become the ilb owner if there
3786 * is no other owner. And will be the owner till that cpu becomes busy
3787 * or if all cpus in the system stop their ticks at which point
3788 * there is no need for ilb owner.
3789 *
3790 * When the ilb owner becomes busy, it nominates another owner, during the
3791 * next busy scheduler_tick()
3792 */
3793 int select_nohz_load_balancer(int stop_tick)
3794 {
3795 int cpu = smp_processor_id();
3796
3797 if (stop_tick) {
3798 cpu_set(cpu, nohz.cpu_mask);
3799 cpu_rq(cpu)->in_nohz_recently = 1;
3800
3801 /*
3802 * If we are going offline and still the leader, give up!
3803 */
3804 if (!cpu_active(cpu) &&
3805 atomic_read(&nohz.load_balancer) == cpu) {
3806 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3807 BUG();
3808 return 0;
3809 }
3810
3811 /* time for ilb owner also to sleep */
3812 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3813 if (atomic_read(&nohz.load_balancer) == cpu)
3814 atomic_set(&nohz.load_balancer, -1);
3815 return 0;
3816 }
3817
3818 if (atomic_read(&nohz.load_balancer) == -1) {
3819 /* make me the ilb owner */
3820 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3821 return 1;
3822 } else if (atomic_read(&nohz.load_balancer) == cpu)
3823 return 1;
3824 } else {
3825 if (!cpu_isset(cpu, nohz.cpu_mask))
3826 return 0;
3827
3828 cpu_clear(cpu, nohz.cpu_mask);
3829
3830 if (atomic_read(&nohz.load_balancer) == cpu)
3831 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3832 BUG();
3833 }
3834 return 0;
3835 }
3836 #endif
3837
3838 static DEFINE_SPINLOCK(balancing);
3839
3840 /*
3841 * It checks each scheduling domain to see if it is due to be balanced,
3842 * and initiates a balancing operation if so.
3843 *
3844 * Balancing parameters are set up in arch_init_sched_domains.
3845 */
3846 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3847 {
3848 int balance = 1;
3849 struct rq *rq = cpu_rq(cpu);
3850 unsigned long interval;
3851 struct sched_domain *sd;
3852 /* Earliest time when we have to do rebalance again */
3853 unsigned long next_balance = jiffies + 60*HZ;
3854 int update_next_balance = 0;
3855 int need_serialize;
3856 cpumask_t tmp;
3857
3858 for_each_domain(cpu, sd) {
3859 if (!(sd->flags & SD_LOAD_BALANCE))
3860 continue;
3861
3862 interval = sd->balance_interval;
3863 if (idle != CPU_IDLE)
3864 interval *= sd->busy_factor;
3865
3866 /* scale ms to jiffies */
3867 interval = msecs_to_jiffies(interval);
3868 if (unlikely(!interval))
3869 interval = 1;
3870 if (interval > HZ*NR_CPUS/10)
3871 interval = HZ*NR_CPUS/10;
3872
3873 need_serialize = sd->flags & SD_SERIALIZE;
3874
3875 if (need_serialize) {
3876 if (!spin_trylock(&balancing))
3877 goto out;
3878 }
3879
3880 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3881 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3882 /*
3883 * We've pulled tasks over so either we're no
3884 * longer idle, or one of our SMT siblings is
3885 * not idle.
3886 */
3887 idle = CPU_NOT_IDLE;
3888 }
3889 sd->last_balance = jiffies;
3890 }
3891 if (need_serialize)
3892 spin_unlock(&balancing);
3893 out:
3894 if (time_after(next_balance, sd->last_balance + interval)) {
3895 next_balance = sd->last_balance + interval;
3896 update_next_balance = 1;
3897 }
3898
3899 /*
3900 * Stop the load balance at this level. There is another
3901 * CPU in our sched group which is doing load balancing more
3902 * actively.
3903 */
3904 if (!balance)
3905 break;
3906 }
3907
3908 /*
3909 * next_balance will be updated only when there is a need.
3910 * When the cpu is attached to null domain for ex, it will not be
3911 * updated.
3912 */
3913 if (likely(update_next_balance))
3914 rq->next_balance = next_balance;
3915 }
3916
3917 /*
3918 * run_rebalance_domains is triggered when needed from the scheduler tick.
3919 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3920 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3921 */
3922 static void run_rebalance_domains(struct softirq_action *h)
3923 {
3924 int this_cpu = smp_processor_id();
3925 struct rq *this_rq = cpu_rq(this_cpu);
3926 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3927 CPU_IDLE : CPU_NOT_IDLE;
3928
3929 rebalance_domains(this_cpu, idle);
3930
3931 #ifdef CONFIG_NO_HZ
3932 /*
3933 * If this cpu is the owner for idle load balancing, then do the
3934 * balancing on behalf of the other idle cpus whose ticks are
3935 * stopped.
3936 */
3937 if (this_rq->idle_at_tick &&
3938 atomic_read(&nohz.load_balancer) == this_cpu) {
3939 cpumask_t cpus = nohz.cpu_mask;
3940 struct rq *rq;
3941 int balance_cpu;
3942
3943 cpu_clear(this_cpu, cpus);
3944 for_each_cpu_mask_nr(balance_cpu, cpus) {
3945 /*
3946 * If this cpu gets work to do, stop the load balancing
3947 * work being done for other cpus. Next load
3948 * balancing owner will pick it up.
3949 */
3950 if (need_resched())
3951 break;
3952
3953 rebalance_domains(balance_cpu, CPU_IDLE);
3954
3955 rq = cpu_rq(balance_cpu);
3956 if (time_after(this_rq->next_balance, rq->next_balance))
3957 this_rq->next_balance = rq->next_balance;
3958 }
3959 }
3960 #endif
3961 }
3962
3963 /*
3964 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3965 *
3966 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3967 * idle load balancing owner or decide to stop the periodic load balancing,
3968 * if the whole system is idle.
3969 */
3970 static inline void trigger_load_balance(struct rq *rq, int cpu)
3971 {
3972 #ifdef CONFIG_NO_HZ
3973 /*
3974 * If we were in the nohz mode recently and busy at the current
3975 * scheduler tick, then check if we need to nominate new idle
3976 * load balancer.
3977 */
3978 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3979 rq->in_nohz_recently = 0;
3980
3981 if (atomic_read(&nohz.load_balancer) == cpu) {
3982 cpu_clear(cpu, nohz.cpu_mask);
3983 atomic_set(&nohz.load_balancer, -1);
3984 }
3985
3986 if (atomic_read(&nohz.load_balancer) == -1) {
3987 /*
3988 * simple selection for now: Nominate the
3989 * first cpu in the nohz list to be the next
3990 * ilb owner.
3991 *
3992 * TBD: Traverse the sched domains and nominate
3993 * the nearest cpu in the nohz.cpu_mask.
3994 */
3995 int ilb = first_cpu(nohz.cpu_mask);
3996
3997 if (ilb < nr_cpu_ids)
3998 resched_cpu(ilb);
3999 }
4000 }
4001
4002 /*
4003 * If this cpu is idle and doing idle load balancing for all the
4004 * cpus with ticks stopped, is it time for that to stop?
4005 */
4006 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4007 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4008 resched_cpu(cpu);
4009 return;
4010 }
4011
4012 /*
4013 * If this cpu is idle and the idle load balancing is done by
4014 * someone else, then no need raise the SCHED_SOFTIRQ
4015 */
4016 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4017 cpu_isset(cpu, nohz.cpu_mask))
4018 return;
4019 #endif
4020 if (time_after_eq(jiffies, rq->next_balance))
4021 raise_softirq(SCHED_SOFTIRQ);
4022 }
4023
4024 #else /* CONFIG_SMP */
4025
4026 /*
4027 * on UP we do not need to balance between CPUs:
4028 */
4029 static inline void idle_balance(int cpu, struct rq *rq)
4030 {
4031 }
4032
4033 #endif
4034
4035 DEFINE_PER_CPU(struct kernel_stat, kstat);
4036
4037 EXPORT_PER_CPU_SYMBOL(kstat);
4038
4039 /*
4040 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4041 * that have not yet been banked in case the task is currently running.
4042 */
4043 unsigned long long task_sched_runtime(struct task_struct *p)
4044 {
4045 unsigned long flags;
4046 u64 ns, delta_exec;
4047 struct rq *rq;
4048
4049 rq = task_rq_lock(p, &flags);
4050 ns = p->se.sum_exec_runtime;
4051 if (task_current(rq, p)) {
4052 update_rq_clock(rq);
4053 delta_exec = rq->clock - p->se.exec_start;
4054 if ((s64)delta_exec > 0)
4055 ns += delta_exec;
4056 }
4057 task_rq_unlock(rq, &flags);
4058
4059 return ns;
4060 }
4061
4062 /*
4063 * Account user cpu time to a process.
4064 * @p: the process that the cpu time gets accounted to
4065 * @cputime: the cpu time spent in user space since the last update
4066 */
4067 void account_user_time(struct task_struct *p, cputime_t cputime)
4068 {
4069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4070 cputime64_t tmp;
4071
4072 p->utime = cputime_add(p->utime, cputime);
4073
4074 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime);
4076 if (TASK_NICE(p) > 0)
4077 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4078 else
4079 cpustat->user = cputime64_add(cpustat->user, tmp);
4080 /* Account for user time used */
4081 acct_update_integrals(p);
4082 }
4083
4084 /*
4085 * Account guest cpu time to a process.
4086 * @p: the process that the cpu time gets accounted to
4087 * @cputime: the cpu time spent in virtual machine since the last update
4088 */
4089 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4090 {
4091 cputime64_t tmp;
4092 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4093
4094 tmp = cputime_to_cputime64(cputime);
4095
4096 p->utime = cputime_add(p->utime, cputime);
4097 p->gtime = cputime_add(p->gtime, cputime);
4098
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4101 }
4102
4103 /*
4104 * Account scaled user cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in user space since the last update
4107 */
4108 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4109 {
4110 p->utimescaled = cputime_add(p->utimescaled, cputime);
4111 }
4112
4113 /*
4114 * Account system cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @hardirq_offset: the offset to subtract from hardirq_count()
4117 * @cputime: the cpu time spent in kernel space since the last update
4118 */
4119 void account_system_time(struct task_struct *p, int hardirq_offset,
4120 cputime_t cputime)
4121 {
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4123 struct rq *rq = this_rq();
4124 cputime64_t tmp;
4125
4126 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4127 account_guest_time(p, cputime);
4128 return;
4129 }
4130
4131 p->stime = cputime_add(p->stime, cputime);
4132
4133 /* Add system time to cpustat. */
4134 tmp = cputime_to_cputime64(cputime);
4135 if (hardirq_count() - hardirq_offset)
4136 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4137 else if (softirq_count())
4138 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4139 else if (p != rq->idle)
4140 cpustat->system = cputime64_add(cpustat->system, tmp);
4141 else if (atomic_read(&rq->nr_iowait) > 0)
4142 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4143 else
4144 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4145 /* Account for system time used */
4146 acct_update_integrals(p);
4147 }
4148
4149 /*
4150 * Account scaled system cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @hardirq_offset: the offset to subtract from hardirq_count()
4153 * @cputime: the cpu time spent in kernel space since the last update
4154 */
4155 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4156 {
4157 p->stimescaled = cputime_add(p->stimescaled, cputime);
4158 }
4159
4160 /*
4161 * Account for involuntary wait time.
4162 * @p: the process from which the cpu time has been stolen
4163 * @steal: the cpu time spent in involuntary wait
4164 */
4165 void account_steal_time(struct task_struct *p, cputime_t steal)
4166 {
4167 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4168 cputime64_t tmp = cputime_to_cputime64(steal);
4169 struct rq *rq = this_rq();
4170
4171 if (p == rq->idle) {
4172 p->stime = cputime_add(p->stime, steal);
4173 if (atomic_read(&rq->nr_iowait) > 0)
4174 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4175 else
4176 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4177 } else
4178 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4179 }
4180
4181 /*
4182 * Use precise platform statistics if available:
4183 */
4184 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4185 cputime_t task_utime(struct task_struct *p)
4186 {
4187 return p->utime;
4188 }
4189
4190 cputime_t task_stime(struct task_struct *p)
4191 {
4192 return p->stime;
4193 }
4194 #else
4195 cputime_t task_utime(struct task_struct *p)
4196 {
4197 clock_t utime = cputime_to_clock_t(p->utime),
4198 total = utime + cputime_to_clock_t(p->stime);
4199 u64 temp;
4200
4201 /*
4202 * Use CFS's precise accounting:
4203 */
4204 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4205
4206 if (total) {
4207 temp *= utime;
4208 do_div(temp, total);
4209 }
4210 utime = (clock_t)temp;
4211
4212 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4213 return p->prev_utime;
4214 }
4215
4216 cputime_t task_stime(struct task_struct *p)
4217 {
4218 clock_t stime;
4219
4220 /*
4221 * Use CFS's precise accounting. (we subtract utime from
4222 * the total, to make sure the total observed by userspace
4223 * grows monotonically - apps rely on that):
4224 */
4225 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4226 cputime_to_clock_t(task_utime(p));
4227
4228 if (stime >= 0)
4229 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4230
4231 return p->prev_stime;
4232 }
4233 #endif
4234
4235 inline cputime_t task_gtime(struct task_struct *p)
4236 {
4237 return p->gtime;
4238 }
4239
4240 /*
4241 * This function gets called by the timer code, with HZ frequency.
4242 * We call it with interrupts disabled.
4243 *
4244 * It also gets called by the fork code, when changing the parent's
4245 * timeslices.
4246 */
4247 void scheduler_tick(void)
4248 {
4249 int cpu = smp_processor_id();
4250 struct rq *rq = cpu_rq(cpu);
4251 struct task_struct *curr = rq->curr;
4252
4253 sched_clock_tick();
4254
4255 spin_lock(&rq->lock);
4256 update_rq_clock(rq);
4257 update_cpu_load(rq);
4258 curr->sched_class->task_tick(rq, curr, 0);
4259 spin_unlock(&rq->lock);
4260
4261 #ifdef CONFIG_SMP
4262 rq->idle_at_tick = idle_cpu(cpu);
4263 trigger_load_balance(rq, cpu);
4264 #endif
4265 }
4266
4267 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
4270 static inline unsigned long get_parent_ip(unsigned long addr)
4271 {
4272 if (in_lock_functions(addr)) {
4273 addr = CALLER_ADDR2;
4274 if (in_lock_functions(addr))
4275 addr = CALLER_ADDR3;
4276 }
4277 return addr;
4278 }
4279
4280 void __kprobes add_preempt_count(int val)
4281 {
4282 #ifdef CONFIG_DEBUG_PREEMPT
4283 /*
4284 * Underflow?
4285 */
4286 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4287 return;
4288 #endif
4289 preempt_count() += val;
4290 #ifdef CONFIG_DEBUG_PREEMPT
4291 /*
4292 * Spinlock count overflowing soon?
4293 */
4294 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4295 PREEMPT_MASK - 10);
4296 #endif
4297 if (preempt_count() == val)
4298 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4299 }
4300 EXPORT_SYMBOL(add_preempt_count);
4301
4302 void __kprobes sub_preempt_count(int val)
4303 {
4304 #ifdef CONFIG_DEBUG_PREEMPT
4305 /*
4306 * Underflow?
4307 */
4308 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4309 return;
4310 /*
4311 * Is the spinlock portion underflowing?
4312 */
4313 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4314 !(preempt_count() & PREEMPT_MASK)))
4315 return;
4316 #endif
4317
4318 if (preempt_count() == val)
4319 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4320 preempt_count() -= val;
4321 }
4322 EXPORT_SYMBOL(sub_preempt_count);
4323
4324 #endif
4325
4326 /*
4327 * Print scheduling while atomic bug:
4328 */
4329 static noinline void __schedule_bug(struct task_struct *prev)
4330 {
4331 struct pt_regs *regs = get_irq_regs();
4332
4333 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4334 prev->comm, prev->pid, preempt_count());
4335
4336 debug_show_held_locks(prev);
4337 print_modules();
4338 if (irqs_disabled())
4339 print_irqtrace_events(prev);
4340
4341 if (regs)
4342 show_regs(regs);
4343 else
4344 dump_stack();
4345 }
4346
4347 /*
4348 * Various schedule()-time debugging checks and statistics:
4349 */
4350 static inline void schedule_debug(struct task_struct *prev)
4351 {
4352 /*
4353 * Test if we are atomic. Since do_exit() needs to call into
4354 * schedule() atomically, we ignore that path for now.
4355 * Otherwise, whine if we are scheduling when we should not be.
4356 */
4357 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4358 __schedule_bug(prev);
4359
4360 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4361
4362 schedstat_inc(this_rq(), sched_count);
4363 #ifdef CONFIG_SCHEDSTATS
4364 if (unlikely(prev->lock_depth >= 0)) {
4365 schedstat_inc(this_rq(), bkl_count);
4366 schedstat_inc(prev, sched_info.bkl_count);
4367 }
4368 #endif
4369 }
4370
4371 /*
4372 * Pick up the highest-prio task:
4373 */
4374 static inline struct task_struct *
4375 pick_next_task(struct rq *rq, struct task_struct *prev)
4376 {
4377 const struct sched_class *class;
4378 struct task_struct *p;
4379
4380 /*
4381 * Optimization: we know that if all tasks are in
4382 * the fair class we can call that function directly:
4383 */
4384 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4385 p = fair_sched_class.pick_next_task(rq);
4386 if (likely(p))
4387 return p;
4388 }
4389
4390 class = sched_class_highest;
4391 for ( ; ; ) {
4392 p = class->pick_next_task(rq);
4393 if (p)
4394 return p;
4395 /*
4396 * Will never be NULL as the idle class always
4397 * returns a non-NULL p:
4398 */
4399 class = class->next;
4400 }
4401 }
4402
4403 /*
4404 * schedule() is the main scheduler function.
4405 */
4406 asmlinkage void __sched schedule(void)
4407 {
4408 struct task_struct *prev, *next;
4409 unsigned long *switch_count;
4410 struct rq *rq;
4411 int cpu;
4412
4413 need_resched:
4414 preempt_disable();
4415 cpu = smp_processor_id();
4416 rq = cpu_rq(cpu);
4417 rcu_qsctr_inc(cpu);
4418 prev = rq->curr;
4419 switch_count = &prev->nivcsw;
4420
4421 release_kernel_lock(prev);
4422 need_resched_nonpreemptible:
4423
4424 schedule_debug(prev);
4425
4426 if (sched_feat(HRTICK))
4427 hrtick_clear(rq);
4428
4429 /*
4430 * Do the rq-clock update outside the rq lock:
4431 */
4432 local_irq_disable();
4433 update_rq_clock(rq);
4434 spin_lock(&rq->lock);
4435 clear_tsk_need_resched(prev);
4436
4437 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4438 if (unlikely(signal_pending_state(prev->state, prev)))
4439 prev->state = TASK_RUNNING;
4440 else
4441 deactivate_task(rq, prev, 1);
4442 switch_count = &prev->nvcsw;
4443 }
4444
4445 #ifdef CONFIG_SMP
4446 if (prev->sched_class->pre_schedule)
4447 prev->sched_class->pre_schedule(rq, prev);
4448 #endif
4449
4450 if (unlikely(!rq->nr_running))
4451 idle_balance(cpu, rq);
4452
4453 prev->sched_class->put_prev_task(rq, prev);
4454 next = pick_next_task(rq, prev);
4455
4456 if (likely(prev != next)) {
4457 sched_info_switch(prev, next);
4458
4459 rq->nr_switches++;
4460 rq->curr = next;
4461 ++*switch_count;
4462
4463 context_switch(rq, prev, next); /* unlocks the rq */
4464 /*
4465 * the context switch might have flipped the stack from under
4466 * us, hence refresh the local variables.
4467 */
4468 cpu = smp_processor_id();
4469 rq = cpu_rq(cpu);
4470 } else
4471 spin_unlock_irq(&rq->lock);
4472
4473 if (unlikely(reacquire_kernel_lock(current) < 0))
4474 goto need_resched_nonpreemptible;
4475
4476 preempt_enable_no_resched();
4477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4478 goto need_resched;
4479 }
4480 EXPORT_SYMBOL(schedule);
4481
4482 #ifdef CONFIG_PREEMPT
4483 /*
4484 * this is the entry point to schedule() from in-kernel preemption
4485 * off of preempt_enable. Kernel preemptions off return from interrupt
4486 * occur there and call schedule directly.
4487 */
4488 asmlinkage void __sched preempt_schedule(void)
4489 {
4490 struct thread_info *ti = current_thread_info();
4491
4492 /*
4493 * If there is a non-zero preempt_count or interrupts are disabled,
4494 * we do not want to preempt the current task. Just return..
4495 */
4496 if (likely(ti->preempt_count || irqs_disabled()))
4497 return;
4498
4499 do {
4500 add_preempt_count(PREEMPT_ACTIVE);
4501 schedule();
4502 sub_preempt_count(PREEMPT_ACTIVE);
4503
4504 /*
4505 * Check again in case we missed a preemption opportunity
4506 * between schedule and now.
4507 */
4508 barrier();
4509 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4510 }
4511 EXPORT_SYMBOL(preempt_schedule);
4512
4513 /*
4514 * this is the entry point to schedule() from kernel preemption
4515 * off of irq context.
4516 * Note, that this is called and return with irqs disabled. This will
4517 * protect us against recursive calling from irq.
4518 */
4519 asmlinkage void __sched preempt_schedule_irq(void)
4520 {
4521 struct thread_info *ti = current_thread_info();
4522
4523 /* Catch callers which need to be fixed */
4524 BUG_ON(ti->preempt_count || !irqs_disabled());
4525
4526 do {
4527 add_preempt_count(PREEMPT_ACTIVE);
4528 local_irq_enable();
4529 schedule();
4530 local_irq_disable();
4531 sub_preempt_count(PREEMPT_ACTIVE);
4532
4533 /*
4534 * Check again in case we missed a preemption opportunity
4535 * between schedule and now.
4536 */
4537 barrier();
4538 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4539 }
4540
4541 #endif /* CONFIG_PREEMPT */
4542
4543 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4544 void *key)
4545 {
4546 return try_to_wake_up(curr->private, mode, sync);
4547 }
4548 EXPORT_SYMBOL(default_wake_function);
4549
4550 /*
4551 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4552 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4553 * number) then we wake all the non-exclusive tasks and one exclusive task.
4554 *
4555 * There are circumstances in which we can try to wake a task which has already
4556 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4557 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4558 */
4559 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4560 int nr_exclusive, int sync, void *key)
4561 {
4562 wait_queue_t *curr, *next;
4563
4564 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4565 unsigned flags = curr->flags;
4566
4567 if (curr->func(curr, mode, sync, key) &&
4568 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4569 break;
4570 }
4571 }
4572
4573 /**
4574 * __wake_up - wake up threads blocked on a waitqueue.
4575 * @q: the waitqueue
4576 * @mode: which threads
4577 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4578 * @key: is directly passed to the wakeup function
4579 */
4580 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4581 int nr_exclusive, void *key)
4582 {
4583 unsigned long flags;
4584
4585 spin_lock_irqsave(&q->lock, flags);
4586 __wake_up_common(q, mode, nr_exclusive, 0, key);
4587 spin_unlock_irqrestore(&q->lock, flags);
4588 }
4589 EXPORT_SYMBOL(__wake_up);
4590
4591 /*
4592 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4593 */
4594 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4595 {
4596 __wake_up_common(q, mode, 1, 0, NULL);
4597 }
4598
4599 /**
4600 * __wake_up_sync - wake up threads blocked on a waitqueue.
4601 * @q: the waitqueue
4602 * @mode: which threads
4603 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4604 *
4605 * The sync wakeup differs that the waker knows that it will schedule
4606 * away soon, so while the target thread will be woken up, it will not
4607 * be migrated to another CPU - ie. the two threads are 'synchronized'
4608 * with each other. This can prevent needless bouncing between CPUs.
4609 *
4610 * On UP it can prevent extra preemption.
4611 */
4612 void
4613 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4614 {
4615 unsigned long flags;
4616 int sync = 1;
4617
4618 if (unlikely(!q))
4619 return;
4620
4621 if (unlikely(!nr_exclusive))
4622 sync = 0;
4623
4624 spin_lock_irqsave(&q->lock, flags);
4625 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4626 spin_unlock_irqrestore(&q->lock, flags);
4627 }
4628 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4629
4630 void complete(struct completion *x)
4631 {
4632 unsigned long flags;
4633
4634 spin_lock_irqsave(&x->wait.lock, flags);
4635 x->done++;
4636 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4637 spin_unlock_irqrestore(&x->wait.lock, flags);
4638 }
4639 EXPORT_SYMBOL(complete);
4640
4641 void complete_all(struct completion *x)
4642 {
4643 unsigned long flags;
4644
4645 spin_lock_irqsave(&x->wait.lock, flags);
4646 x->done += UINT_MAX/2;
4647 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4648 spin_unlock_irqrestore(&x->wait.lock, flags);
4649 }
4650 EXPORT_SYMBOL(complete_all);
4651
4652 static inline long __sched
4653 do_wait_for_common(struct completion *x, long timeout, int state)
4654 {
4655 if (!x->done) {
4656 DECLARE_WAITQUEUE(wait, current);
4657
4658 wait.flags |= WQ_FLAG_EXCLUSIVE;
4659 __add_wait_queue_tail(&x->wait, &wait);
4660 do {
4661 if ((state == TASK_INTERRUPTIBLE &&
4662 signal_pending(current)) ||
4663 (state == TASK_KILLABLE &&
4664 fatal_signal_pending(current))) {
4665 timeout = -ERESTARTSYS;
4666 break;
4667 }
4668 __set_current_state(state);
4669 spin_unlock_irq(&x->wait.lock);
4670 timeout = schedule_timeout(timeout);
4671 spin_lock_irq(&x->wait.lock);
4672 } while (!x->done && timeout);
4673 __remove_wait_queue(&x->wait, &wait);
4674 if (!x->done)
4675 return timeout;
4676 }
4677 x->done--;
4678 return timeout ?: 1;
4679 }
4680
4681 static long __sched
4682 wait_for_common(struct completion *x, long timeout, int state)
4683 {
4684 might_sleep();
4685
4686 spin_lock_irq(&x->wait.lock);
4687 timeout = do_wait_for_common(x, timeout, state);
4688 spin_unlock_irq(&x->wait.lock);
4689 return timeout;
4690 }
4691
4692 void __sched wait_for_completion(struct completion *x)
4693 {
4694 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4695 }
4696 EXPORT_SYMBOL(wait_for_completion);
4697
4698 unsigned long __sched
4699 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4700 {
4701 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4702 }
4703 EXPORT_SYMBOL(wait_for_completion_timeout);
4704
4705 int __sched wait_for_completion_interruptible(struct completion *x)
4706 {
4707 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4708 if (t == -ERESTARTSYS)
4709 return t;
4710 return 0;
4711 }
4712 EXPORT_SYMBOL(wait_for_completion_interruptible);
4713
4714 unsigned long __sched
4715 wait_for_completion_interruptible_timeout(struct completion *x,
4716 unsigned long timeout)
4717 {
4718 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4719 }
4720 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4721
4722 int __sched wait_for_completion_killable(struct completion *x)
4723 {
4724 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4725 if (t == -ERESTARTSYS)
4726 return t;
4727 return 0;
4728 }
4729 EXPORT_SYMBOL(wait_for_completion_killable);
4730
4731 /**
4732 * try_wait_for_completion - try to decrement a completion without blocking
4733 * @x: completion structure
4734 *
4735 * Returns: 0 if a decrement cannot be done without blocking
4736 * 1 if a decrement succeeded.
4737 *
4738 * If a completion is being used as a counting completion,
4739 * attempt to decrement the counter without blocking. This
4740 * enables us to avoid waiting if the resource the completion
4741 * is protecting is not available.
4742 */
4743 bool try_wait_for_completion(struct completion *x)
4744 {
4745 int ret = 1;
4746
4747 spin_lock_irq(&x->wait.lock);
4748 if (!x->done)
4749 ret = 0;
4750 else
4751 x->done--;
4752 spin_unlock_irq(&x->wait.lock);
4753 return ret;
4754 }
4755 EXPORT_SYMBOL(try_wait_for_completion);
4756
4757 /**
4758 * completion_done - Test to see if a completion has any waiters
4759 * @x: completion structure
4760 *
4761 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4762 * 1 if there are no waiters.
4763 *
4764 */
4765 bool completion_done(struct completion *x)
4766 {
4767 int ret = 1;
4768
4769 spin_lock_irq(&x->wait.lock);
4770 if (!x->done)
4771 ret = 0;
4772 spin_unlock_irq(&x->wait.lock);
4773 return ret;
4774 }
4775 EXPORT_SYMBOL(completion_done);
4776
4777 static long __sched
4778 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4779 {
4780 unsigned long flags;
4781 wait_queue_t wait;
4782
4783 init_waitqueue_entry(&wait, current);
4784
4785 __set_current_state(state);
4786
4787 spin_lock_irqsave(&q->lock, flags);
4788 __add_wait_queue(q, &wait);
4789 spin_unlock(&q->lock);
4790 timeout = schedule_timeout(timeout);
4791 spin_lock_irq(&q->lock);
4792 __remove_wait_queue(q, &wait);
4793 spin_unlock_irqrestore(&q->lock, flags);
4794
4795 return timeout;
4796 }
4797
4798 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4799 {
4800 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4801 }
4802 EXPORT_SYMBOL(interruptible_sleep_on);
4803
4804 long __sched
4805 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4806 {
4807 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4808 }
4809 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4810
4811 void __sched sleep_on(wait_queue_head_t *q)
4812 {
4813 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4814 }
4815 EXPORT_SYMBOL(sleep_on);
4816
4817 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4818 {
4819 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4820 }
4821 EXPORT_SYMBOL(sleep_on_timeout);
4822
4823 #ifdef CONFIG_RT_MUTEXES
4824
4825 /*
4826 * rt_mutex_setprio - set the current priority of a task
4827 * @p: task
4828 * @prio: prio value (kernel-internal form)
4829 *
4830 * This function changes the 'effective' priority of a task. It does
4831 * not touch ->normal_prio like __setscheduler().
4832 *
4833 * Used by the rt_mutex code to implement priority inheritance logic.
4834 */
4835 void rt_mutex_setprio(struct task_struct *p, int prio)
4836 {
4837 unsigned long flags;
4838 int oldprio, on_rq, running;
4839 struct rq *rq;
4840 const struct sched_class *prev_class = p->sched_class;
4841
4842 BUG_ON(prio < 0 || prio > MAX_PRIO);
4843
4844 rq = task_rq_lock(p, &flags);
4845 update_rq_clock(rq);
4846
4847 oldprio = p->prio;
4848 on_rq = p->se.on_rq;
4849 running = task_current(rq, p);
4850 if (on_rq)
4851 dequeue_task(rq, p, 0);
4852 if (running)
4853 p->sched_class->put_prev_task(rq, p);
4854
4855 if (rt_prio(prio))
4856 p->sched_class = &rt_sched_class;
4857 else
4858 p->sched_class = &fair_sched_class;
4859
4860 p->prio = prio;
4861
4862 if (running)
4863 p->sched_class->set_curr_task(rq);
4864 if (on_rq) {
4865 enqueue_task(rq, p, 0);
4866
4867 check_class_changed(rq, p, prev_class, oldprio, running);
4868 }
4869 task_rq_unlock(rq, &flags);
4870 }
4871
4872 #endif
4873
4874 void set_user_nice(struct task_struct *p, long nice)
4875 {
4876 int old_prio, delta, on_rq;
4877 unsigned long flags;
4878 struct rq *rq;
4879
4880 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4881 return;
4882 /*
4883 * We have to be careful, if called from sys_setpriority(),
4884 * the task might be in the middle of scheduling on another CPU.
4885 */
4886 rq = task_rq_lock(p, &flags);
4887 update_rq_clock(rq);
4888 /*
4889 * The RT priorities are set via sched_setscheduler(), but we still
4890 * allow the 'normal' nice value to be set - but as expected
4891 * it wont have any effect on scheduling until the task is
4892 * SCHED_FIFO/SCHED_RR:
4893 */
4894 if (task_has_rt_policy(p)) {
4895 p->static_prio = NICE_TO_PRIO(nice);
4896 goto out_unlock;
4897 }
4898 on_rq = p->se.on_rq;
4899 if (on_rq)
4900 dequeue_task(rq, p, 0);
4901
4902 p->static_prio = NICE_TO_PRIO(nice);
4903 set_load_weight(p);
4904 old_prio = p->prio;
4905 p->prio = effective_prio(p);
4906 delta = p->prio - old_prio;
4907
4908 if (on_rq) {
4909 enqueue_task(rq, p, 0);
4910 /*
4911 * If the task increased its priority or is running and
4912 * lowered its priority, then reschedule its CPU:
4913 */
4914 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4915 resched_task(rq->curr);
4916 }
4917 out_unlock:
4918 task_rq_unlock(rq, &flags);
4919 }
4920 EXPORT_SYMBOL(set_user_nice);
4921
4922 /*
4923 * can_nice - check if a task can reduce its nice value
4924 * @p: task
4925 * @nice: nice value
4926 */
4927 int can_nice(const struct task_struct *p, const int nice)
4928 {
4929 /* convert nice value [19,-20] to rlimit style value [1,40] */
4930 int nice_rlim = 20 - nice;
4931
4932 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4933 capable(CAP_SYS_NICE));
4934 }
4935
4936 #ifdef __ARCH_WANT_SYS_NICE
4937
4938 /*
4939 * sys_nice - change the priority of the current process.
4940 * @increment: priority increment
4941 *
4942 * sys_setpriority is a more generic, but much slower function that
4943 * does similar things.
4944 */
4945 asmlinkage long sys_nice(int increment)
4946 {
4947 long nice, retval;
4948
4949 /*
4950 * Setpriority might change our priority at the same moment.
4951 * We don't have to worry. Conceptually one call occurs first
4952 * and we have a single winner.
4953 */
4954 if (increment < -40)
4955 increment = -40;
4956 if (increment > 40)
4957 increment = 40;
4958
4959 nice = PRIO_TO_NICE(current->static_prio) + increment;
4960 if (nice < -20)
4961 nice = -20;
4962 if (nice > 19)
4963 nice = 19;
4964
4965 if (increment < 0 && !can_nice(current, nice))
4966 return -EPERM;
4967
4968 retval = security_task_setnice(current, nice);
4969 if (retval)
4970 return retval;
4971
4972 set_user_nice(current, nice);
4973 return 0;
4974 }
4975
4976 #endif
4977
4978 /**
4979 * task_prio - return the priority value of a given task.
4980 * @p: the task in question.
4981 *
4982 * This is the priority value as seen by users in /proc.
4983 * RT tasks are offset by -200. Normal tasks are centered
4984 * around 0, value goes from -16 to +15.
4985 */
4986 int task_prio(const struct task_struct *p)
4987 {
4988 return p->prio - MAX_RT_PRIO;
4989 }
4990
4991 /**
4992 * task_nice - return the nice value of a given task.
4993 * @p: the task in question.
4994 */
4995 int task_nice(const struct task_struct *p)
4996 {
4997 return TASK_NICE(p);
4998 }
4999 EXPORT_SYMBOL(task_nice);
5000
5001 /**
5002 * idle_cpu - is a given cpu idle currently?
5003 * @cpu: the processor in question.
5004 */
5005 int idle_cpu(int cpu)
5006 {
5007 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5008 }
5009
5010 /**
5011 * idle_task - return the idle task for a given cpu.
5012 * @cpu: the processor in question.
5013 */
5014 struct task_struct *idle_task(int cpu)
5015 {
5016 return cpu_rq(cpu)->idle;
5017 }
5018
5019 /**
5020 * find_process_by_pid - find a process with a matching PID value.
5021 * @pid: the pid in question.
5022 */
5023 static struct task_struct *find_process_by_pid(pid_t pid)
5024 {
5025 return pid ? find_task_by_vpid(pid) : current;
5026 }
5027
5028 /* Actually do priority change: must hold rq lock. */
5029 static void
5030 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5031 {
5032 BUG_ON(p->se.on_rq);
5033
5034 p->policy = policy;
5035 switch (p->policy) {
5036 case SCHED_NORMAL:
5037 case SCHED_BATCH:
5038 case SCHED_IDLE:
5039 p->sched_class = &fair_sched_class;
5040 break;
5041 case SCHED_FIFO:
5042 case SCHED_RR:
5043 p->sched_class = &rt_sched_class;
5044 break;
5045 }
5046
5047 p->rt_priority = prio;
5048 p->normal_prio = normal_prio(p);
5049 /* we are holding p->pi_lock already */
5050 p->prio = rt_mutex_getprio(p);
5051 set_load_weight(p);
5052 }
5053
5054 static int __sched_setscheduler(struct task_struct *p, int policy,
5055 struct sched_param *param, bool user)
5056 {
5057 int retval, oldprio, oldpolicy = -1, on_rq, running;
5058 unsigned long flags;
5059 const struct sched_class *prev_class = p->sched_class;
5060 struct rq *rq;
5061
5062 /* may grab non-irq protected spin_locks */
5063 BUG_ON(in_interrupt());
5064 recheck:
5065 /* double check policy once rq lock held */
5066 if (policy < 0)
5067 policy = oldpolicy = p->policy;
5068 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5069 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5070 policy != SCHED_IDLE)
5071 return -EINVAL;
5072 /*
5073 * Valid priorities for SCHED_FIFO and SCHED_RR are
5074 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5075 * SCHED_BATCH and SCHED_IDLE is 0.
5076 */
5077 if (param->sched_priority < 0 ||
5078 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5079 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5080 return -EINVAL;
5081 if (rt_policy(policy) != (param->sched_priority != 0))
5082 return -EINVAL;
5083
5084 /*
5085 * Allow unprivileged RT tasks to decrease priority:
5086 */
5087 if (user && !capable(CAP_SYS_NICE)) {
5088 if (rt_policy(policy)) {
5089 unsigned long rlim_rtprio;
5090
5091 if (!lock_task_sighand(p, &flags))
5092 return -ESRCH;
5093 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5094 unlock_task_sighand(p, &flags);
5095
5096 /* can't set/change the rt policy */
5097 if (policy != p->policy && !rlim_rtprio)
5098 return -EPERM;
5099
5100 /* can't increase priority */
5101 if (param->sched_priority > p->rt_priority &&
5102 param->sched_priority > rlim_rtprio)
5103 return -EPERM;
5104 }
5105 /*
5106 * Like positive nice levels, dont allow tasks to
5107 * move out of SCHED_IDLE either:
5108 */
5109 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5110 return -EPERM;
5111
5112 /* can't change other user's priorities */
5113 if ((current->euid != p->euid) &&
5114 (current->euid != p->uid))
5115 return -EPERM;
5116 }
5117
5118 if (user) {
5119 #ifdef CONFIG_RT_GROUP_SCHED
5120 /*
5121 * Do not allow realtime tasks into groups that have no runtime
5122 * assigned.
5123 */
5124 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5125 return -EPERM;
5126 #endif
5127
5128 retval = security_task_setscheduler(p, policy, param);
5129 if (retval)
5130 return retval;
5131 }
5132
5133 /*
5134 * make sure no PI-waiters arrive (or leave) while we are
5135 * changing the priority of the task:
5136 */
5137 spin_lock_irqsave(&p->pi_lock, flags);
5138 /*
5139 * To be able to change p->policy safely, the apropriate
5140 * runqueue lock must be held.
5141 */
5142 rq = __task_rq_lock(p);
5143 /* recheck policy now with rq lock held */
5144 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5145 policy = oldpolicy = -1;
5146 __task_rq_unlock(rq);
5147 spin_unlock_irqrestore(&p->pi_lock, flags);
5148 goto recheck;
5149 }
5150 update_rq_clock(rq);
5151 on_rq = p->se.on_rq;
5152 running = task_current(rq, p);
5153 if (on_rq)
5154 deactivate_task(rq, p, 0);
5155 if (running)
5156 p->sched_class->put_prev_task(rq, p);
5157
5158 oldprio = p->prio;
5159 __setscheduler(rq, p, policy, param->sched_priority);
5160
5161 if (running)
5162 p->sched_class->set_curr_task(rq);
5163 if (on_rq) {
5164 activate_task(rq, p, 0);
5165
5166 check_class_changed(rq, p, prev_class, oldprio, running);
5167 }
5168 __task_rq_unlock(rq);
5169 spin_unlock_irqrestore(&p->pi_lock, flags);
5170
5171 rt_mutex_adjust_pi(p);
5172
5173 return 0;
5174 }
5175
5176 /**
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5181 *
5182 * NOTE that the task may be already dead.
5183 */
5184 int sched_setscheduler(struct task_struct *p, int policy,
5185 struct sched_param *param)
5186 {
5187 return __sched_setscheduler(p, policy, param, true);
5188 }
5189 EXPORT_SYMBOL_GPL(sched_setscheduler);
5190
5191 /**
5192 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5193 * @p: the task in question.
5194 * @policy: new policy.
5195 * @param: structure containing the new RT priority.
5196 *
5197 * Just like sched_setscheduler, only don't bother checking if the
5198 * current context has permission. For example, this is needed in
5199 * stop_machine(): we create temporary high priority worker threads,
5200 * but our caller might not have that capability.
5201 */
5202 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5203 struct sched_param *param)
5204 {
5205 return __sched_setscheduler(p, policy, param, false);
5206 }
5207
5208 static int
5209 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5210 {
5211 struct sched_param lparam;
5212 struct task_struct *p;
5213 int retval;
5214
5215 if (!param || pid < 0)
5216 return -EINVAL;
5217 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5218 return -EFAULT;
5219
5220 rcu_read_lock();
5221 retval = -ESRCH;
5222 p = find_process_by_pid(pid);
5223 if (p != NULL)
5224 retval = sched_setscheduler(p, policy, &lparam);
5225 rcu_read_unlock();
5226
5227 return retval;
5228 }
5229
5230 /**
5231 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5232 * @pid: the pid in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5235 */
5236 asmlinkage long
5237 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5238 {
5239 /* negative values for policy are not valid */
5240 if (policy < 0)
5241 return -EINVAL;
5242
5243 return do_sched_setscheduler(pid, policy, param);
5244 }
5245
5246 /**
5247 * sys_sched_setparam - set/change the RT priority of a thread
5248 * @pid: the pid in question.
5249 * @param: structure containing the new RT priority.
5250 */
5251 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5252 {
5253 return do_sched_setscheduler(pid, -1, param);
5254 }
5255
5256 /**
5257 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5258 * @pid: the pid in question.
5259 */
5260 asmlinkage long sys_sched_getscheduler(pid_t pid)
5261 {
5262 struct task_struct *p;
5263 int retval;
5264
5265 if (pid < 0)
5266 return -EINVAL;
5267
5268 retval = -ESRCH;
5269 read_lock(&tasklist_lock);
5270 p = find_process_by_pid(pid);
5271 if (p) {
5272 retval = security_task_getscheduler(p);
5273 if (!retval)
5274 retval = p->policy;
5275 }
5276 read_unlock(&tasklist_lock);
5277 return retval;
5278 }
5279
5280 /**
5281 * sys_sched_getscheduler - get the RT priority of a thread
5282 * @pid: the pid in question.
5283 * @param: structure containing the RT priority.
5284 */
5285 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5286 {
5287 struct sched_param lp;
5288 struct task_struct *p;
5289 int retval;
5290
5291 if (!param || pid < 0)
5292 return -EINVAL;
5293
5294 read_lock(&tasklist_lock);
5295 p = find_process_by_pid(pid);
5296 retval = -ESRCH;
5297 if (!p)
5298 goto out_unlock;
5299
5300 retval = security_task_getscheduler(p);
5301 if (retval)
5302 goto out_unlock;
5303
5304 lp.sched_priority = p->rt_priority;
5305 read_unlock(&tasklist_lock);
5306
5307 /*
5308 * This one might sleep, we cannot do it with a spinlock held ...
5309 */
5310 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5311
5312 return retval;
5313
5314 out_unlock:
5315 read_unlock(&tasklist_lock);
5316 return retval;
5317 }
5318
5319 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5320 {
5321 cpumask_t cpus_allowed;
5322 cpumask_t new_mask = *in_mask;
5323 struct task_struct *p;
5324 int retval;
5325
5326 get_online_cpus();
5327 read_lock(&tasklist_lock);
5328
5329 p = find_process_by_pid(pid);
5330 if (!p) {
5331 read_unlock(&tasklist_lock);
5332 put_online_cpus();
5333 return -ESRCH;
5334 }
5335
5336 /*
5337 * It is not safe to call set_cpus_allowed with the
5338 * tasklist_lock held. We will bump the task_struct's
5339 * usage count and then drop tasklist_lock.
5340 */
5341 get_task_struct(p);
5342 read_unlock(&tasklist_lock);
5343
5344 retval = -EPERM;
5345 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5346 !capable(CAP_SYS_NICE))
5347 goto out_unlock;
5348
5349 retval = security_task_setscheduler(p, 0, NULL);
5350 if (retval)
5351 goto out_unlock;
5352
5353 cpuset_cpus_allowed(p, &cpus_allowed);
5354 cpus_and(new_mask, new_mask, cpus_allowed);
5355 again:
5356 retval = set_cpus_allowed_ptr(p, &new_mask);
5357
5358 if (!retval) {
5359 cpuset_cpus_allowed(p, &cpus_allowed);
5360 if (!cpus_subset(new_mask, cpus_allowed)) {
5361 /*
5362 * We must have raced with a concurrent cpuset
5363 * update. Just reset the cpus_allowed to the
5364 * cpuset's cpus_allowed
5365 */
5366 new_mask = cpus_allowed;
5367 goto again;
5368 }
5369 }
5370 out_unlock:
5371 put_task_struct(p);
5372 put_online_cpus();
5373 return retval;
5374 }
5375
5376 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5377 cpumask_t *new_mask)
5378 {
5379 if (len < sizeof(cpumask_t)) {
5380 memset(new_mask, 0, sizeof(cpumask_t));
5381 } else if (len > sizeof(cpumask_t)) {
5382 len = sizeof(cpumask_t);
5383 }
5384 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5385 }
5386
5387 /**
5388 * sys_sched_setaffinity - set the cpu affinity of a process
5389 * @pid: pid of the process
5390 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5391 * @user_mask_ptr: user-space pointer to the new cpu mask
5392 */
5393 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5394 unsigned long __user *user_mask_ptr)
5395 {
5396 cpumask_t new_mask;
5397 int retval;
5398
5399 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5400 if (retval)
5401 return retval;
5402
5403 return sched_setaffinity(pid, &new_mask);
5404 }
5405
5406 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5407 {
5408 struct task_struct *p;
5409 int retval;
5410
5411 get_online_cpus();
5412 read_lock(&tasklist_lock);
5413
5414 retval = -ESRCH;
5415 p = find_process_by_pid(pid);
5416 if (!p)
5417 goto out_unlock;
5418
5419 retval = security_task_getscheduler(p);
5420 if (retval)
5421 goto out_unlock;
5422
5423 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5424
5425 out_unlock:
5426 read_unlock(&tasklist_lock);
5427 put_online_cpus();
5428
5429 return retval;
5430 }
5431
5432 /**
5433 * sys_sched_getaffinity - get the cpu affinity of a process
5434 * @pid: pid of the process
5435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5436 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5437 */
5438 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5439 unsigned long __user *user_mask_ptr)
5440 {
5441 int ret;
5442 cpumask_t mask;
5443
5444 if (len < sizeof(cpumask_t))
5445 return -EINVAL;
5446
5447 ret = sched_getaffinity(pid, &mask);
5448 if (ret < 0)
5449 return ret;
5450
5451 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5452 return -EFAULT;
5453
5454 return sizeof(cpumask_t);
5455 }
5456
5457 /**
5458 * sys_sched_yield - yield the current processor to other threads.
5459 *
5460 * This function yields the current CPU to other tasks. If there are no
5461 * other threads running on this CPU then this function will return.
5462 */
5463 asmlinkage long sys_sched_yield(void)
5464 {
5465 struct rq *rq = this_rq_lock();
5466
5467 schedstat_inc(rq, yld_count);
5468 current->sched_class->yield_task(rq);
5469
5470 /*
5471 * Since we are going to call schedule() anyway, there's
5472 * no need to preempt or enable interrupts:
5473 */
5474 __release(rq->lock);
5475 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5476 _raw_spin_unlock(&rq->lock);
5477 preempt_enable_no_resched();
5478
5479 schedule();
5480
5481 return 0;
5482 }
5483
5484 static void __cond_resched(void)
5485 {
5486 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5487 __might_sleep(__FILE__, __LINE__);
5488 #endif
5489 /*
5490 * The BKS might be reacquired before we have dropped
5491 * PREEMPT_ACTIVE, which could trigger a second
5492 * cond_resched() call.
5493 */
5494 do {
5495 add_preempt_count(PREEMPT_ACTIVE);
5496 schedule();
5497 sub_preempt_count(PREEMPT_ACTIVE);
5498 } while (need_resched());
5499 }
5500
5501 int __sched _cond_resched(void)
5502 {
5503 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5504 system_state == SYSTEM_RUNNING) {
5505 __cond_resched();
5506 return 1;
5507 }
5508 return 0;
5509 }
5510 EXPORT_SYMBOL(_cond_resched);
5511
5512 /*
5513 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5514 * call schedule, and on return reacquire the lock.
5515 *
5516 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5517 * operations here to prevent schedule() from being called twice (once via
5518 * spin_unlock(), once by hand).
5519 */
5520 int cond_resched_lock(spinlock_t *lock)
5521 {
5522 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5523 int ret = 0;
5524
5525 if (spin_needbreak(lock) || resched) {
5526 spin_unlock(lock);
5527 if (resched && need_resched())
5528 __cond_resched();
5529 else
5530 cpu_relax();
5531 ret = 1;
5532 spin_lock(lock);
5533 }
5534 return ret;
5535 }
5536 EXPORT_SYMBOL(cond_resched_lock);
5537
5538 int __sched cond_resched_softirq(void)
5539 {
5540 BUG_ON(!in_softirq());
5541
5542 if (need_resched() && system_state == SYSTEM_RUNNING) {
5543 local_bh_enable();
5544 __cond_resched();
5545 local_bh_disable();
5546 return 1;
5547 }
5548 return 0;
5549 }
5550 EXPORT_SYMBOL(cond_resched_softirq);
5551
5552 /**
5553 * yield - yield the current processor to other threads.
5554 *
5555 * This is a shortcut for kernel-space yielding - it marks the
5556 * thread runnable and calls sys_sched_yield().
5557 */
5558 void __sched yield(void)
5559 {
5560 set_current_state(TASK_RUNNING);
5561 sys_sched_yield();
5562 }
5563 EXPORT_SYMBOL(yield);
5564
5565 /*
5566 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5567 * that process accounting knows that this is a task in IO wait state.
5568 *
5569 * But don't do that if it is a deliberate, throttling IO wait (this task
5570 * has set its backing_dev_info: the queue against which it should throttle)
5571 */
5572 void __sched io_schedule(void)
5573 {
5574 struct rq *rq = &__raw_get_cpu_var(runqueues);
5575
5576 delayacct_blkio_start();
5577 atomic_inc(&rq->nr_iowait);
5578 schedule();
5579 atomic_dec(&rq->nr_iowait);
5580 delayacct_blkio_end();
5581 }
5582 EXPORT_SYMBOL(io_schedule);
5583
5584 long __sched io_schedule_timeout(long timeout)
5585 {
5586 struct rq *rq = &__raw_get_cpu_var(runqueues);
5587 long ret;
5588
5589 delayacct_blkio_start();
5590 atomic_inc(&rq->nr_iowait);
5591 ret = schedule_timeout(timeout);
5592 atomic_dec(&rq->nr_iowait);
5593 delayacct_blkio_end();
5594 return ret;
5595 }
5596
5597 /**
5598 * sys_sched_get_priority_max - return maximum RT priority.
5599 * @policy: scheduling class.
5600 *
5601 * this syscall returns the maximum rt_priority that can be used
5602 * by a given scheduling class.
5603 */
5604 asmlinkage long sys_sched_get_priority_max(int policy)
5605 {
5606 int ret = -EINVAL;
5607
5608 switch (policy) {
5609 case SCHED_FIFO:
5610 case SCHED_RR:
5611 ret = MAX_USER_RT_PRIO-1;
5612 break;
5613 case SCHED_NORMAL:
5614 case SCHED_BATCH:
5615 case SCHED_IDLE:
5616 ret = 0;
5617 break;
5618 }
5619 return ret;
5620 }
5621
5622 /**
5623 * sys_sched_get_priority_min - return minimum RT priority.
5624 * @policy: scheduling class.
5625 *
5626 * this syscall returns the minimum rt_priority that can be used
5627 * by a given scheduling class.
5628 */
5629 asmlinkage long sys_sched_get_priority_min(int policy)
5630 {
5631 int ret = -EINVAL;
5632
5633 switch (policy) {
5634 case SCHED_FIFO:
5635 case SCHED_RR:
5636 ret = 1;
5637 break;
5638 case SCHED_NORMAL:
5639 case SCHED_BATCH:
5640 case SCHED_IDLE:
5641 ret = 0;
5642 }
5643 return ret;
5644 }
5645
5646 /**
5647 * sys_sched_rr_get_interval - return the default timeslice of a process.
5648 * @pid: pid of the process.
5649 * @interval: userspace pointer to the timeslice value.
5650 *
5651 * this syscall writes the default timeslice value of a given process
5652 * into the user-space timespec buffer. A value of '0' means infinity.
5653 */
5654 asmlinkage
5655 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5656 {
5657 struct task_struct *p;
5658 unsigned int time_slice;
5659 int retval;
5660 struct timespec t;
5661
5662 if (pid < 0)
5663 return -EINVAL;
5664
5665 retval = -ESRCH;
5666 read_lock(&tasklist_lock);
5667 p = find_process_by_pid(pid);
5668 if (!p)
5669 goto out_unlock;
5670
5671 retval = security_task_getscheduler(p);
5672 if (retval)
5673 goto out_unlock;
5674
5675 /*
5676 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5677 * tasks that are on an otherwise idle runqueue:
5678 */
5679 time_slice = 0;
5680 if (p->policy == SCHED_RR) {
5681 time_slice = DEF_TIMESLICE;
5682 } else if (p->policy != SCHED_FIFO) {
5683 struct sched_entity *se = &p->se;
5684 unsigned long flags;
5685 struct rq *rq;
5686
5687 rq = task_rq_lock(p, &flags);
5688 if (rq->cfs.load.weight)
5689 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5690 task_rq_unlock(rq, &flags);
5691 }
5692 read_unlock(&tasklist_lock);
5693 jiffies_to_timespec(time_slice, &t);
5694 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5695 return retval;
5696
5697 out_unlock:
5698 read_unlock(&tasklist_lock);
5699 return retval;
5700 }
5701
5702 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5703
5704 void sched_show_task(struct task_struct *p)
5705 {
5706 unsigned long free = 0;
5707 unsigned state;
5708
5709 state = p->state ? __ffs(p->state) + 1 : 0;
5710 printk(KERN_INFO "%-13.13s %c", p->comm,
5711 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5712 #if BITS_PER_LONG == 32
5713 if (state == TASK_RUNNING)
5714 printk(KERN_CONT " running ");
5715 else
5716 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5717 #else
5718 if (state == TASK_RUNNING)
5719 printk(KERN_CONT " running task ");
5720 else
5721 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5722 #endif
5723 #ifdef CONFIG_DEBUG_STACK_USAGE
5724 {
5725 unsigned long *n = end_of_stack(p);
5726 while (!*n)
5727 n++;
5728 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5729 }
5730 #endif
5731 printk(KERN_CONT "%5lu %5d %6d\n", free,
5732 task_pid_nr(p), task_pid_nr(p->real_parent));
5733
5734 show_stack(p, NULL);
5735 }
5736
5737 void show_state_filter(unsigned long state_filter)
5738 {
5739 struct task_struct *g, *p;
5740
5741 #if BITS_PER_LONG == 32
5742 printk(KERN_INFO
5743 " task PC stack pid father\n");
5744 #else
5745 printk(KERN_INFO
5746 " task PC stack pid father\n");
5747 #endif
5748 read_lock(&tasklist_lock);
5749 do_each_thread(g, p) {
5750 /*
5751 * reset the NMI-timeout, listing all files on a slow
5752 * console might take alot of time:
5753 */
5754 touch_nmi_watchdog();
5755 if (!state_filter || (p->state & state_filter))
5756 sched_show_task(p);
5757 } while_each_thread(g, p);
5758
5759 touch_all_softlockup_watchdogs();
5760
5761 #ifdef CONFIG_SCHED_DEBUG
5762 sysrq_sched_debug_show();
5763 #endif
5764 read_unlock(&tasklist_lock);
5765 /*
5766 * Only show locks if all tasks are dumped:
5767 */
5768 if (state_filter == -1)
5769 debug_show_all_locks();
5770 }
5771
5772 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5773 {
5774 idle->sched_class = &idle_sched_class;
5775 }
5776
5777 /**
5778 * init_idle - set up an idle thread for a given CPU
5779 * @idle: task in question
5780 * @cpu: cpu the idle task belongs to
5781 *
5782 * NOTE: this function does not set the idle thread's NEED_RESCHED
5783 * flag, to make booting more robust.
5784 */
5785 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5786 {
5787 struct rq *rq = cpu_rq(cpu);
5788 unsigned long flags;
5789
5790 __sched_fork(idle);
5791 idle->se.exec_start = sched_clock();
5792
5793 idle->prio = idle->normal_prio = MAX_PRIO;
5794 idle->cpus_allowed = cpumask_of_cpu(cpu);
5795 __set_task_cpu(idle, cpu);
5796
5797 spin_lock_irqsave(&rq->lock, flags);
5798 rq->curr = rq->idle = idle;
5799 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5800 idle->oncpu = 1;
5801 #endif
5802 spin_unlock_irqrestore(&rq->lock, flags);
5803
5804 /* Set the preempt count _outside_ the spinlocks! */
5805 #if defined(CONFIG_PREEMPT)
5806 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5807 #else
5808 task_thread_info(idle)->preempt_count = 0;
5809 #endif
5810 /*
5811 * The idle tasks have their own, simple scheduling class:
5812 */
5813 idle->sched_class = &idle_sched_class;
5814 }
5815
5816 /*
5817 * In a system that switches off the HZ timer nohz_cpu_mask
5818 * indicates which cpus entered this state. This is used
5819 * in the rcu update to wait only for active cpus. For system
5820 * which do not switch off the HZ timer nohz_cpu_mask should
5821 * always be CPU_MASK_NONE.
5822 */
5823 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5824
5825 /*
5826 * Increase the granularity value when there are more CPUs,
5827 * because with more CPUs the 'effective latency' as visible
5828 * to users decreases. But the relationship is not linear,
5829 * so pick a second-best guess by going with the log2 of the
5830 * number of CPUs.
5831 *
5832 * This idea comes from the SD scheduler of Con Kolivas:
5833 */
5834 static inline void sched_init_granularity(void)
5835 {
5836 unsigned int factor = 1 + ilog2(num_online_cpus());
5837 const unsigned long limit = 200000000;
5838
5839 sysctl_sched_min_granularity *= factor;
5840 if (sysctl_sched_min_granularity > limit)
5841 sysctl_sched_min_granularity = limit;
5842
5843 sysctl_sched_latency *= factor;
5844 if (sysctl_sched_latency > limit)
5845 sysctl_sched_latency = limit;
5846
5847 sysctl_sched_wakeup_granularity *= factor;
5848
5849 sysctl_sched_shares_ratelimit *= factor;
5850 }
5851
5852 #ifdef CONFIG_SMP
5853 /*
5854 * This is how migration works:
5855 *
5856 * 1) we queue a struct migration_req structure in the source CPU's
5857 * runqueue and wake up that CPU's migration thread.
5858 * 2) we down() the locked semaphore => thread blocks.
5859 * 3) migration thread wakes up (implicitly it forces the migrated
5860 * thread off the CPU)
5861 * 4) it gets the migration request and checks whether the migrated
5862 * task is still in the wrong runqueue.
5863 * 5) if it's in the wrong runqueue then the migration thread removes
5864 * it and puts it into the right queue.
5865 * 6) migration thread up()s the semaphore.
5866 * 7) we wake up and the migration is done.
5867 */
5868
5869 /*
5870 * Change a given task's CPU affinity. Migrate the thread to a
5871 * proper CPU and schedule it away if the CPU it's executing on
5872 * is removed from the allowed bitmask.
5873 *
5874 * NOTE: the caller must have a valid reference to the task, the
5875 * task must not exit() & deallocate itself prematurely. The
5876 * call is not atomic; no spinlocks may be held.
5877 */
5878 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5879 {
5880 struct migration_req req;
5881 unsigned long flags;
5882 struct rq *rq;
5883 int ret = 0;
5884
5885 rq = task_rq_lock(p, &flags);
5886 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5887 ret = -EINVAL;
5888 goto out;
5889 }
5890
5891 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5892 !cpus_equal(p->cpus_allowed, *new_mask))) {
5893 ret = -EINVAL;
5894 goto out;
5895 }
5896
5897 if (p->sched_class->set_cpus_allowed)
5898 p->sched_class->set_cpus_allowed(p, new_mask);
5899 else {
5900 p->cpus_allowed = *new_mask;
5901 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5902 }
5903
5904 /* Can the task run on the task's current CPU? If so, we're done */
5905 if (cpu_isset(task_cpu(p), *new_mask))
5906 goto out;
5907
5908 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5909 /* Need help from migration thread: drop lock and wait. */
5910 task_rq_unlock(rq, &flags);
5911 wake_up_process(rq->migration_thread);
5912 wait_for_completion(&req.done);
5913 tlb_migrate_finish(p->mm);
5914 return 0;
5915 }
5916 out:
5917 task_rq_unlock(rq, &flags);
5918
5919 return ret;
5920 }
5921 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5922
5923 /*
5924 * Move (not current) task off this cpu, onto dest cpu. We're doing
5925 * this because either it can't run here any more (set_cpus_allowed()
5926 * away from this CPU, or CPU going down), or because we're
5927 * attempting to rebalance this task on exec (sched_exec).
5928 *
5929 * So we race with normal scheduler movements, but that's OK, as long
5930 * as the task is no longer on this CPU.
5931 *
5932 * Returns non-zero if task was successfully migrated.
5933 */
5934 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5935 {
5936 struct rq *rq_dest, *rq_src;
5937 int ret = 0, on_rq;
5938
5939 if (unlikely(!cpu_active(dest_cpu)))
5940 return ret;
5941
5942 rq_src = cpu_rq(src_cpu);
5943 rq_dest = cpu_rq(dest_cpu);
5944
5945 double_rq_lock(rq_src, rq_dest);
5946 /* Already moved. */
5947 if (task_cpu(p) != src_cpu)
5948 goto done;
5949 /* Affinity changed (again). */
5950 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5951 goto fail;
5952
5953 on_rq = p->se.on_rq;
5954 if (on_rq)
5955 deactivate_task(rq_src, p, 0);
5956
5957 set_task_cpu(p, dest_cpu);
5958 if (on_rq) {
5959 activate_task(rq_dest, p, 0);
5960 check_preempt_curr(rq_dest, p);
5961 }
5962 done:
5963 ret = 1;
5964 fail:
5965 double_rq_unlock(rq_src, rq_dest);
5966 return ret;
5967 }
5968
5969 /*
5970 * migration_thread - this is a highprio system thread that performs
5971 * thread migration by bumping thread off CPU then 'pushing' onto
5972 * another runqueue.
5973 */
5974 static int migration_thread(void *data)
5975 {
5976 int cpu = (long)data;
5977 struct rq *rq;
5978
5979 rq = cpu_rq(cpu);
5980 BUG_ON(rq->migration_thread != current);
5981
5982 set_current_state(TASK_INTERRUPTIBLE);
5983 while (!kthread_should_stop()) {
5984 struct migration_req *req;
5985 struct list_head *head;
5986
5987 spin_lock_irq(&rq->lock);
5988
5989 if (cpu_is_offline(cpu)) {
5990 spin_unlock_irq(&rq->lock);
5991 goto wait_to_die;
5992 }
5993
5994 if (rq->active_balance) {
5995 active_load_balance(rq, cpu);
5996 rq->active_balance = 0;
5997 }
5998
5999 head = &rq->migration_queue;
6000
6001 if (list_empty(head)) {
6002 spin_unlock_irq(&rq->lock);
6003 schedule();
6004 set_current_state(TASK_INTERRUPTIBLE);
6005 continue;
6006 }
6007 req = list_entry(head->next, struct migration_req, list);
6008 list_del_init(head->next);
6009
6010 spin_unlock(&rq->lock);
6011 __migrate_task(req->task, cpu, req->dest_cpu);
6012 local_irq_enable();
6013
6014 complete(&req->done);
6015 }
6016 __set_current_state(TASK_RUNNING);
6017 return 0;
6018
6019 wait_to_die:
6020 /* Wait for kthread_stop */
6021 set_current_state(TASK_INTERRUPTIBLE);
6022 while (!kthread_should_stop()) {
6023 schedule();
6024 set_current_state(TASK_INTERRUPTIBLE);
6025 }
6026 __set_current_state(TASK_RUNNING);
6027 return 0;
6028 }
6029
6030 #ifdef CONFIG_HOTPLUG_CPU
6031
6032 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6033 {
6034 int ret;
6035
6036 local_irq_disable();
6037 ret = __migrate_task(p, src_cpu, dest_cpu);
6038 local_irq_enable();
6039 return ret;
6040 }
6041
6042 /*
6043 * Figure out where task on dead CPU should go, use force if necessary.
6044 * NOTE: interrupts should be disabled by the caller
6045 */
6046 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6047 {
6048 unsigned long flags;
6049 cpumask_t mask;
6050 struct rq *rq;
6051 int dest_cpu;
6052
6053 do {
6054 /* On same node? */
6055 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6056 cpus_and(mask, mask, p->cpus_allowed);
6057 dest_cpu = any_online_cpu(mask);
6058
6059 /* On any allowed CPU? */
6060 if (dest_cpu >= nr_cpu_ids)
6061 dest_cpu = any_online_cpu(p->cpus_allowed);
6062
6063 /* No more Mr. Nice Guy. */
6064 if (dest_cpu >= nr_cpu_ids) {
6065 cpumask_t cpus_allowed;
6066
6067 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6068 /*
6069 * Try to stay on the same cpuset, where the
6070 * current cpuset may be a subset of all cpus.
6071 * The cpuset_cpus_allowed_locked() variant of
6072 * cpuset_cpus_allowed() will not block. It must be
6073 * called within calls to cpuset_lock/cpuset_unlock.
6074 */
6075 rq = task_rq_lock(p, &flags);
6076 p->cpus_allowed = cpus_allowed;
6077 dest_cpu = any_online_cpu(p->cpus_allowed);
6078 task_rq_unlock(rq, &flags);
6079
6080 /*
6081 * Don't tell them about moving exiting tasks or
6082 * kernel threads (both mm NULL), since they never
6083 * leave kernel.
6084 */
6085 if (p->mm && printk_ratelimit()) {
6086 printk(KERN_INFO "process %d (%s) no "
6087 "longer affine to cpu%d\n",
6088 task_pid_nr(p), p->comm, dead_cpu);
6089 }
6090 }
6091 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6092 }
6093
6094 /*
6095 * While a dead CPU has no uninterruptible tasks queued at this point,
6096 * it might still have a nonzero ->nr_uninterruptible counter, because
6097 * for performance reasons the counter is not stricly tracking tasks to
6098 * their home CPUs. So we just add the counter to another CPU's counter,
6099 * to keep the global sum constant after CPU-down:
6100 */
6101 static void migrate_nr_uninterruptible(struct rq *rq_src)
6102 {
6103 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6104 unsigned long flags;
6105
6106 local_irq_save(flags);
6107 double_rq_lock(rq_src, rq_dest);
6108 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6109 rq_src->nr_uninterruptible = 0;
6110 double_rq_unlock(rq_src, rq_dest);
6111 local_irq_restore(flags);
6112 }
6113
6114 /* Run through task list and migrate tasks from the dead cpu. */
6115 static void migrate_live_tasks(int src_cpu)
6116 {
6117 struct task_struct *p, *t;
6118
6119 read_lock(&tasklist_lock);
6120
6121 do_each_thread(t, p) {
6122 if (p == current)
6123 continue;
6124
6125 if (task_cpu(p) == src_cpu)
6126 move_task_off_dead_cpu(src_cpu, p);
6127 } while_each_thread(t, p);
6128
6129 read_unlock(&tasklist_lock);
6130 }
6131
6132 /*
6133 * Schedules idle task to be the next runnable task on current CPU.
6134 * It does so by boosting its priority to highest possible.
6135 * Used by CPU offline code.
6136 */
6137 void sched_idle_next(void)
6138 {
6139 int this_cpu = smp_processor_id();
6140 struct rq *rq = cpu_rq(this_cpu);
6141 struct task_struct *p = rq->idle;
6142 unsigned long flags;
6143
6144 /* cpu has to be offline */
6145 BUG_ON(cpu_online(this_cpu));
6146
6147 /*
6148 * Strictly not necessary since rest of the CPUs are stopped by now
6149 * and interrupts disabled on the current cpu.
6150 */
6151 spin_lock_irqsave(&rq->lock, flags);
6152
6153 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6154
6155 update_rq_clock(rq);
6156 activate_task(rq, p, 0);
6157
6158 spin_unlock_irqrestore(&rq->lock, flags);
6159 }
6160
6161 /*
6162 * Ensures that the idle task is using init_mm right before its cpu goes
6163 * offline.
6164 */
6165 void idle_task_exit(void)
6166 {
6167 struct mm_struct *mm = current->active_mm;
6168
6169 BUG_ON(cpu_online(smp_processor_id()));
6170
6171 if (mm != &init_mm)
6172 switch_mm(mm, &init_mm, current);
6173 mmdrop(mm);
6174 }
6175
6176 /* called under rq->lock with disabled interrupts */
6177 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6178 {
6179 struct rq *rq = cpu_rq(dead_cpu);
6180
6181 /* Must be exiting, otherwise would be on tasklist. */
6182 BUG_ON(!p->exit_state);
6183
6184 /* Cannot have done final schedule yet: would have vanished. */
6185 BUG_ON(p->state == TASK_DEAD);
6186
6187 get_task_struct(p);
6188
6189 /*
6190 * Drop lock around migration; if someone else moves it,
6191 * that's OK. No task can be added to this CPU, so iteration is
6192 * fine.
6193 */
6194 spin_unlock_irq(&rq->lock);
6195 move_task_off_dead_cpu(dead_cpu, p);
6196 spin_lock_irq(&rq->lock);
6197
6198 put_task_struct(p);
6199 }
6200
6201 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6202 static void migrate_dead_tasks(unsigned int dead_cpu)
6203 {
6204 struct rq *rq = cpu_rq(dead_cpu);
6205 struct task_struct *next;
6206
6207 for ( ; ; ) {
6208 if (!rq->nr_running)
6209 break;
6210 update_rq_clock(rq);
6211 next = pick_next_task(rq, rq->curr);
6212 if (!next)
6213 break;
6214 next->sched_class->put_prev_task(rq, next);
6215 migrate_dead(dead_cpu, next);
6216
6217 }
6218 }
6219 #endif /* CONFIG_HOTPLUG_CPU */
6220
6221 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6222
6223 static struct ctl_table sd_ctl_dir[] = {
6224 {
6225 .procname = "sched_domain",
6226 .mode = 0555,
6227 },
6228 {0, },
6229 };
6230
6231 static struct ctl_table sd_ctl_root[] = {
6232 {
6233 .ctl_name = CTL_KERN,
6234 .procname = "kernel",
6235 .mode = 0555,
6236 .child = sd_ctl_dir,
6237 },
6238 {0, },
6239 };
6240
6241 static struct ctl_table *sd_alloc_ctl_entry(int n)
6242 {
6243 struct ctl_table *entry =
6244 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6245
6246 return entry;
6247 }
6248
6249 static void sd_free_ctl_entry(struct ctl_table **tablep)
6250 {
6251 struct ctl_table *entry;
6252
6253 /*
6254 * In the intermediate directories, both the child directory and
6255 * procname are dynamically allocated and could fail but the mode
6256 * will always be set. In the lowest directory the names are
6257 * static strings and all have proc handlers.
6258 */
6259 for (entry = *tablep; entry->mode; entry++) {
6260 if (entry->child)
6261 sd_free_ctl_entry(&entry->child);
6262 if (entry->proc_handler == NULL)
6263 kfree(entry->procname);
6264 }
6265
6266 kfree(*tablep);
6267 *tablep = NULL;
6268 }
6269
6270 static void
6271 set_table_entry(struct ctl_table *entry,
6272 const char *procname, void *data, int maxlen,
6273 mode_t mode, proc_handler *proc_handler)
6274 {
6275 entry->procname = procname;
6276 entry->data = data;
6277 entry->maxlen = maxlen;
6278 entry->mode = mode;
6279 entry->proc_handler = proc_handler;
6280 }
6281
6282 static struct ctl_table *
6283 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6284 {
6285 struct ctl_table *table = sd_alloc_ctl_entry(12);
6286
6287 if (table == NULL)
6288 return NULL;
6289
6290 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6291 sizeof(long), 0644, proc_doulongvec_minmax);
6292 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6293 sizeof(long), 0644, proc_doulongvec_minmax);
6294 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6295 sizeof(int), 0644, proc_dointvec_minmax);
6296 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6297 sizeof(int), 0644, proc_dointvec_minmax);
6298 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6299 sizeof(int), 0644, proc_dointvec_minmax);
6300 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6301 sizeof(int), 0644, proc_dointvec_minmax);
6302 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6303 sizeof(int), 0644, proc_dointvec_minmax);
6304 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6305 sizeof(int), 0644, proc_dointvec_minmax);
6306 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6307 sizeof(int), 0644, proc_dointvec_minmax);
6308 set_table_entry(&table[9], "cache_nice_tries",
6309 &sd->cache_nice_tries,
6310 sizeof(int), 0644, proc_dointvec_minmax);
6311 set_table_entry(&table[10], "flags", &sd->flags,
6312 sizeof(int), 0644, proc_dointvec_minmax);
6313 /* &table[11] is terminator */
6314
6315 return table;
6316 }
6317
6318 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6319 {
6320 struct ctl_table *entry, *table;
6321 struct sched_domain *sd;
6322 int domain_num = 0, i;
6323 char buf[32];
6324
6325 for_each_domain(cpu, sd)
6326 domain_num++;
6327 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6328 if (table == NULL)
6329 return NULL;
6330
6331 i = 0;
6332 for_each_domain(cpu, sd) {
6333 snprintf(buf, 32, "domain%d", i);
6334 entry->procname = kstrdup(buf, GFP_KERNEL);
6335 entry->mode = 0555;
6336 entry->child = sd_alloc_ctl_domain_table(sd);
6337 entry++;
6338 i++;
6339 }
6340 return table;
6341 }
6342
6343 static struct ctl_table_header *sd_sysctl_header;
6344 static void register_sched_domain_sysctl(void)
6345 {
6346 int i, cpu_num = num_online_cpus();
6347 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6348 char buf[32];
6349
6350 WARN_ON(sd_ctl_dir[0].child);
6351 sd_ctl_dir[0].child = entry;
6352
6353 if (entry == NULL)
6354 return;
6355
6356 for_each_online_cpu(i) {
6357 snprintf(buf, 32, "cpu%d", i);
6358 entry->procname = kstrdup(buf, GFP_KERNEL);
6359 entry->mode = 0555;
6360 entry->child = sd_alloc_ctl_cpu_table(i);
6361 entry++;
6362 }
6363
6364 WARN_ON(sd_sysctl_header);
6365 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6366 }
6367
6368 /* may be called multiple times per register */
6369 static void unregister_sched_domain_sysctl(void)
6370 {
6371 if (sd_sysctl_header)
6372 unregister_sysctl_table(sd_sysctl_header);
6373 sd_sysctl_header = NULL;
6374 if (sd_ctl_dir[0].child)
6375 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6376 }
6377 #else
6378 static void register_sched_domain_sysctl(void)
6379 {
6380 }
6381 static void unregister_sched_domain_sysctl(void)
6382 {
6383 }
6384 #endif
6385
6386 static void set_rq_online(struct rq *rq)
6387 {
6388 if (!rq->online) {
6389 const struct sched_class *class;
6390
6391 cpu_set(rq->cpu, rq->rd->online);
6392 rq->online = 1;
6393
6394 for_each_class(class) {
6395 if (class->rq_online)
6396 class->rq_online(rq);
6397 }
6398 }
6399 }
6400
6401 static void set_rq_offline(struct rq *rq)
6402 {
6403 if (rq->online) {
6404 const struct sched_class *class;
6405
6406 for_each_class(class) {
6407 if (class->rq_offline)
6408 class->rq_offline(rq);
6409 }
6410
6411 cpu_clear(rq->cpu, rq->rd->online);
6412 rq->online = 0;
6413 }
6414 }
6415
6416 /*
6417 * migration_call - callback that gets triggered when a CPU is added.
6418 * Here we can start up the necessary migration thread for the new CPU.
6419 */
6420 static int __cpuinit
6421 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6422 {
6423 struct task_struct *p;
6424 int cpu = (long)hcpu;
6425 unsigned long flags;
6426 struct rq *rq;
6427
6428 switch (action) {
6429
6430 case CPU_UP_PREPARE:
6431 case CPU_UP_PREPARE_FROZEN:
6432 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6433 if (IS_ERR(p))
6434 return NOTIFY_BAD;
6435 kthread_bind(p, cpu);
6436 /* Must be high prio: stop_machine expects to yield to it. */
6437 rq = task_rq_lock(p, &flags);
6438 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6439 task_rq_unlock(rq, &flags);
6440 cpu_rq(cpu)->migration_thread = p;
6441 break;
6442
6443 case CPU_ONLINE:
6444 case CPU_ONLINE_FROZEN:
6445 /* Strictly unnecessary, as first user will wake it. */
6446 wake_up_process(cpu_rq(cpu)->migration_thread);
6447
6448 /* Update our root-domain */
6449 rq = cpu_rq(cpu);
6450 spin_lock_irqsave(&rq->lock, flags);
6451 if (rq->rd) {
6452 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6453
6454 set_rq_online(rq);
6455 }
6456 spin_unlock_irqrestore(&rq->lock, flags);
6457 break;
6458
6459 #ifdef CONFIG_HOTPLUG_CPU
6460 case CPU_UP_CANCELED:
6461 case CPU_UP_CANCELED_FROZEN:
6462 if (!cpu_rq(cpu)->migration_thread)
6463 break;
6464 /* Unbind it from offline cpu so it can run. Fall thru. */
6465 kthread_bind(cpu_rq(cpu)->migration_thread,
6466 any_online_cpu(cpu_online_map));
6467 kthread_stop(cpu_rq(cpu)->migration_thread);
6468 cpu_rq(cpu)->migration_thread = NULL;
6469 break;
6470
6471 case CPU_DEAD:
6472 case CPU_DEAD_FROZEN:
6473 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6474 migrate_live_tasks(cpu);
6475 rq = cpu_rq(cpu);
6476 kthread_stop(rq->migration_thread);
6477 rq->migration_thread = NULL;
6478 /* Idle task back to normal (off runqueue, low prio) */
6479 spin_lock_irq(&rq->lock);
6480 update_rq_clock(rq);
6481 deactivate_task(rq, rq->idle, 0);
6482 rq->idle->static_prio = MAX_PRIO;
6483 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6484 rq->idle->sched_class = &idle_sched_class;
6485 migrate_dead_tasks(cpu);
6486 spin_unlock_irq(&rq->lock);
6487 cpuset_unlock();
6488 migrate_nr_uninterruptible(rq);
6489 BUG_ON(rq->nr_running != 0);
6490
6491 /*
6492 * No need to migrate the tasks: it was best-effort if
6493 * they didn't take sched_hotcpu_mutex. Just wake up
6494 * the requestors.
6495 */
6496 spin_lock_irq(&rq->lock);
6497 while (!list_empty(&rq->migration_queue)) {
6498 struct migration_req *req;
6499
6500 req = list_entry(rq->migration_queue.next,
6501 struct migration_req, list);
6502 list_del_init(&req->list);
6503 complete(&req->done);
6504 }
6505 spin_unlock_irq(&rq->lock);
6506 break;
6507
6508 case CPU_DYING:
6509 case CPU_DYING_FROZEN:
6510 /* Update our root-domain */
6511 rq = cpu_rq(cpu);
6512 spin_lock_irqsave(&rq->lock, flags);
6513 if (rq->rd) {
6514 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6515 set_rq_offline(rq);
6516 }
6517 spin_unlock_irqrestore(&rq->lock, flags);
6518 break;
6519 #endif
6520 }
6521 return NOTIFY_OK;
6522 }
6523
6524 /* Register at highest priority so that task migration (migrate_all_tasks)
6525 * happens before everything else.
6526 */
6527 static struct notifier_block __cpuinitdata migration_notifier = {
6528 .notifier_call = migration_call,
6529 .priority = 10
6530 };
6531
6532 static int __init migration_init(void)
6533 {
6534 void *cpu = (void *)(long)smp_processor_id();
6535 int err;
6536
6537 /* Start one for the boot CPU: */
6538 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6539 BUG_ON(err == NOTIFY_BAD);
6540 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6541 register_cpu_notifier(&migration_notifier);
6542
6543 return err;
6544 }
6545 early_initcall(migration_init);
6546 #endif
6547
6548 #ifdef CONFIG_SMP
6549
6550 #ifdef CONFIG_SCHED_DEBUG
6551
6552 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6553 {
6554 switch (lvl) {
6555 case SD_LV_NONE:
6556 return "NONE";
6557 case SD_LV_SIBLING:
6558 return "SIBLING";
6559 case SD_LV_MC:
6560 return "MC";
6561 case SD_LV_CPU:
6562 return "CPU";
6563 case SD_LV_NODE:
6564 return "NODE";
6565 case SD_LV_ALLNODES:
6566 return "ALLNODES";
6567 case SD_LV_MAX:
6568 return "MAX";
6569
6570 }
6571 return "MAX";
6572 }
6573
6574 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6575 cpumask_t *groupmask)
6576 {
6577 struct sched_group *group = sd->groups;
6578 char str[256];
6579
6580 cpulist_scnprintf(str, sizeof(str), sd->span);
6581 cpus_clear(*groupmask);
6582
6583 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6584
6585 if (!(sd->flags & SD_LOAD_BALANCE)) {
6586 printk("does not load-balance\n");
6587 if (sd->parent)
6588 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6589 " has parent");
6590 return -1;
6591 }
6592
6593 printk(KERN_CONT "span %s level %s\n",
6594 str, sd_level_to_string(sd->level));
6595
6596 if (!cpu_isset(cpu, sd->span)) {
6597 printk(KERN_ERR "ERROR: domain->span does not contain "
6598 "CPU%d\n", cpu);
6599 }
6600 if (!cpu_isset(cpu, group->cpumask)) {
6601 printk(KERN_ERR "ERROR: domain->groups does not contain"
6602 " CPU%d\n", cpu);
6603 }
6604
6605 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6606 do {
6607 if (!group) {
6608 printk("\n");
6609 printk(KERN_ERR "ERROR: group is NULL\n");
6610 break;
6611 }
6612
6613 if (!group->__cpu_power) {
6614 printk(KERN_CONT "\n");
6615 printk(KERN_ERR "ERROR: domain->cpu_power not "
6616 "set\n");
6617 break;
6618 }
6619
6620 if (!cpus_weight(group->cpumask)) {
6621 printk(KERN_CONT "\n");
6622 printk(KERN_ERR "ERROR: empty group\n");
6623 break;
6624 }
6625
6626 if (cpus_intersects(*groupmask, group->cpumask)) {
6627 printk(KERN_CONT "\n");
6628 printk(KERN_ERR "ERROR: repeated CPUs\n");
6629 break;
6630 }
6631
6632 cpus_or(*groupmask, *groupmask, group->cpumask);
6633
6634 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6635 printk(KERN_CONT " %s", str);
6636
6637 group = group->next;
6638 } while (group != sd->groups);
6639 printk(KERN_CONT "\n");
6640
6641 if (!cpus_equal(sd->span, *groupmask))
6642 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6643
6644 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6645 printk(KERN_ERR "ERROR: parent span is not a superset "
6646 "of domain->span\n");
6647 return 0;
6648 }
6649
6650 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6651 {
6652 cpumask_t *groupmask;
6653 int level = 0;
6654
6655 if (!sd) {
6656 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6657 return;
6658 }
6659
6660 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6661
6662 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6663 if (!groupmask) {
6664 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6665 return;
6666 }
6667
6668 for (;;) {
6669 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6670 break;
6671 level++;
6672 sd = sd->parent;
6673 if (!sd)
6674 break;
6675 }
6676 kfree(groupmask);
6677 }
6678 #else /* !CONFIG_SCHED_DEBUG */
6679 # define sched_domain_debug(sd, cpu) do { } while (0)
6680 #endif /* CONFIG_SCHED_DEBUG */
6681
6682 static int sd_degenerate(struct sched_domain *sd)
6683 {
6684 if (cpus_weight(sd->span) == 1)
6685 return 1;
6686
6687 /* Following flags need at least 2 groups */
6688 if (sd->flags & (SD_LOAD_BALANCE |
6689 SD_BALANCE_NEWIDLE |
6690 SD_BALANCE_FORK |
6691 SD_BALANCE_EXEC |
6692 SD_SHARE_CPUPOWER |
6693 SD_SHARE_PKG_RESOURCES)) {
6694 if (sd->groups != sd->groups->next)
6695 return 0;
6696 }
6697
6698 /* Following flags don't use groups */
6699 if (sd->flags & (SD_WAKE_IDLE |
6700 SD_WAKE_AFFINE |
6701 SD_WAKE_BALANCE))
6702 return 0;
6703
6704 return 1;
6705 }
6706
6707 static int
6708 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6709 {
6710 unsigned long cflags = sd->flags, pflags = parent->flags;
6711
6712 if (sd_degenerate(parent))
6713 return 1;
6714
6715 if (!cpus_equal(sd->span, parent->span))
6716 return 0;
6717
6718 /* Does parent contain flags not in child? */
6719 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6720 if (cflags & SD_WAKE_AFFINE)
6721 pflags &= ~SD_WAKE_BALANCE;
6722 /* Flags needing groups don't count if only 1 group in parent */
6723 if (parent->groups == parent->groups->next) {
6724 pflags &= ~(SD_LOAD_BALANCE |
6725 SD_BALANCE_NEWIDLE |
6726 SD_BALANCE_FORK |
6727 SD_BALANCE_EXEC |
6728 SD_SHARE_CPUPOWER |
6729 SD_SHARE_PKG_RESOURCES);
6730 }
6731 if (~cflags & pflags)
6732 return 0;
6733
6734 return 1;
6735 }
6736
6737 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6738 {
6739 unsigned long flags;
6740
6741 spin_lock_irqsave(&rq->lock, flags);
6742
6743 if (rq->rd) {
6744 struct root_domain *old_rd = rq->rd;
6745
6746 if (cpu_isset(rq->cpu, old_rd->online))
6747 set_rq_offline(rq);
6748
6749 cpu_clear(rq->cpu, old_rd->span);
6750
6751 if (atomic_dec_and_test(&old_rd->refcount))
6752 kfree(old_rd);
6753 }
6754
6755 atomic_inc(&rd->refcount);
6756 rq->rd = rd;
6757
6758 cpu_set(rq->cpu, rd->span);
6759 if (cpu_isset(rq->cpu, cpu_online_map))
6760 set_rq_online(rq);
6761
6762 spin_unlock_irqrestore(&rq->lock, flags);
6763 }
6764
6765 static void init_rootdomain(struct root_domain *rd)
6766 {
6767 memset(rd, 0, sizeof(*rd));
6768
6769 cpus_clear(rd->span);
6770 cpus_clear(rd->online);
6771
6772 cpupri_init(&rd->cpupri);
6773 }
6774
6775 static void init_defrootdomain(void)
6776 {
6777 init_rootdomain(&def_root_domain);
6778 atomic_set(&def_root_domain.refcount, 1);
6779 }
6780
6781 static struct root_domain *alloc_rootdomain(void)
6782 {
6783 struct root_domain *rd;
6784
6785 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6786 if (!rd)
6787 return NULL;
6788
6789 init_rootdomain(rd);
6790
6791 return rd;
6792 }
6793
6794 /*
6795 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6796 * hold the hotplug lock.
6797 */
6798 static void
6799 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6800 {
6801 struct rq *rq = cpu_rq(cpu);
6802 struct sched_domain *tmp;
6803
6804 /* Remove the sched domains which do not contribute to scheduling. */
6805 for (tmp = sd; tmp; tmp = tmp->parent) {
6806 struct sched_domain *parent = tmp->parent;
6807 if (!parent)
6808 break;
6809 if (sd_parent_degenerate(tmp, parent)) {
6810 tmp->parent = parent->parent;
6811 if (parent->parent)
6812 parent->parent->child = tmp;
6813 }
6814 }
6815
6816 if (sd && sd_degenerate(sd)) {
6817 sd = sd->parent;
6818 if (sd)
6819 sd->child = NULL;
6820 }
6821
6822 sched_domain_debug(sd, cpu);
6823
6824 rq_attach_root(rq, rd);
6825 rcu_assign_pointer(rq->sd, sd);
6826 }
6827
6828 /* cpus with isolated domains */
6829 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6830
6831 /* Setup the mask of cpus configured for isolated domains */
6832 static int __init isolated_cpu_setup(char *str)
6833 {
6834 static int __initdata ints[NR_CPUS];
6835 int i;
6836
6837 str = get_options(str, ARRAY_SIZE(ints), ints);
6838 cpus_clear(cpu_isolated_map);
6839 for (i = 1; i <= ints[0]; i++)
6840 if (ints[i] < NR_CPUS)
6841 cpu_set(ints[i], cpu_isolated_map);
6842 return 1;
6843 }
6844
6845 __setup("isolcpus=", isolated_cpu_setup);
6846
6847 /*
6848 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6849 * to a function which identifies what group(along with sched group) a CPU
6850 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6851 * (due to the fact that we keep track of groups covered with a cpumask_t).
6852 *
6853 * init_sched_build_groups will build a circular linked list of the groups
6854 * covered by the given span, and will set each group's ->cpumask correctly,
6855 * and ->cpu_power to 0.
6856 */
6857 static void
6858 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6859 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6860 struct sched_group **sg,
6861 cpumask_t *tmpmask),
6862 cpumask_t *covered, cpumask_t *tmpmask)
6863 {
6864 struct sched_group *first = NULL, *last = NULL;
6865 int i;
6866
6867 cpus_clear(*covered);
6868
6869 for_each_cpu_mask_nr(i, *span) {
6870 struct sched_group *sg;
6871 int group = group_fn(i, cpu_map, &sg, tmpmask);
6872 int j;
6873
6874 if (cpu_isset(i, *covered))
6875 continue;
6876
6877 cpus_clear(sg->cpumask);
6878 sg->__cpu_power = 0;
6879
6880 for_each_cpu_mask_nr(j, *span) {
6881 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6882 continue;
6883
6884 cpu_set(j, *covered);
6885 cpu_set(j, sg->cpumask);
6886 }
6887 if (!first)
6888 first = sg;
6889 if (last)
6890 last->next = sg;
6891 last = sg;
6892 }
6893 last->next = first;
6894 }
6895
6896 #define SD_NODES_PER_DOMAIN 16
6897
6898 #ifdef CONFIG_NUMA
6899
6900 /**
6901 * find_next_best_node - find the next node to include in a sched_domain
6902 * @node: node whose sched_domain we're building
6903 * @used_nodes: nodes already in the sched_domain
6904 *
6905 * Find the next node to include in a given scheduling domain. Simply
6906 * finds the closest node not already in the @used_nodes map.
6907 *
6908 * Should use nodemask_t.
6909 */
6910 static int find_next_best_node(int node, nodemask_t *used_nodes)
6911 {
6912 int i, n, val, min_val, best_node = 0;
6913
6914 min_val = INT_MAX;
6915
6916 for (i = 0; i < nr_node_ids; i++) {
6917 /* Start at @node */
6918 n = (node + i) % nr_node_ids;
6919
6920 if (!nr_cpus_node(n))
6921 continue;
6922
6923 /* Skip already used nodes */
6924 if (node_isset(n, *used_nodes))
6925 continue;
6926
6927 /* Simple min distance search */
6928 val = node_distance(node, n);
6929
6930 if (val < min_val) {
6931 min_val = val;
6932 best_node = n;
6933 }
6934 }
6935
6936 node_set(best_node, *used_nodes);
6937 return best_node;
6938 }
6939
6940 /**
6941 * sched_domain_node_span - get a cpumask for a node's sched_domain
6942 * @node: node whose cpumask we're constructing
6943 * @span: resulting cpumask
6944 *
6945 * Given a node, construct a good cpumask for its sched_domain to span. It
6946 * should be one that prevents unnecessary balancing, but also spreads tasks
6947 * out optimally.
6948 */
6949 static void sched_domain_node_span(int node, cpumask_t *span)
6950 {
6951 nodemask_t used_nodes;
6952 node_to_cpumask_ptr(nodemask, node);
6953 int i;
6954
6955 cpus_clear(*span);
6956 nodes_clear(used_nodes);
6957
6958 cpus_or(*span, *span, *nodemask);
6959 node_set(node, used_nodes);
6960
6961 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6962 int next_node = find_next_best_node(node, &used_nodes);
6963
6964 node_to_cpumask_ptr_next(nodemask, next_node);
6965 cpus_or(*span, *span, *nodemask);
6966 }
6967 }
6968 #endif /* CONFIG_NUMA */
6969
6970 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6971
6972 /*
6973 * SMT sched-domains:
6974 */
6975 #ifdef CONFIG_SCHED_SMT
6976 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6977 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6978
6979 static int
6980 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6981 cpumask_t *unused)
6982 {
6983 if (sg)
6984 *sg = &per_cpu(sched_group_cpus, cpu);
6985 return cpu;
6986 }
6987 #endif /* CONFIG_SCHED_SMT */
6988
6989 /*
6990 * multi-core sched-domains:
6991 */
6992 #ifdef CONFIG_SCHED_MC
6993 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6994 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6995 #endif /* CONFIG_SCHED_MC */
6996
6997 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6998 static int
6999 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7000 cpumask_t *mask)
7001 {
7002 int group;
7003
7004 *mask = per_cpu(cpu_sibling_map, cpu);
7005 cpus_and(*mask, *mask, *cpu_map);
7006 group = first_cpu(*mask);
7007 if (sg)
7008 *sg = &per_cpu(sched_group_core, group);
7009 return group;
7010 }
7011 #elif defined(CONFIG_SCHED_MC)
7012 static int
7013 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7014 cpumask_t *unused)
7015 {
7016 if (sg)
7017 *sg = &per_cpu(sched_group_core, cpu);
7018 return cpu;
7019 }
7020 #endif
7021
7022 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7023 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7024
7025 static int
7026 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7027 cpumask_t *mask)
7028 {
7029 int group;
7030 #ifdef CONFIG_SCHED_MC
7031 *mask = cpu_coregroup_map(cpu);
7032 cpus_and(*mask, *mask, *cpu_map);
7033 group = first_cpu(*mask);
7034 #elif defined(CONFIG_SCHED_SMT)
7035 *mask = per_cpu(cpu_sibling_map, cpu);
7036 cpus_and(*mask, *mask, *cpu_map);
7037 group = first_cpu(*mask);
7038 #else
7039 group = cpu;
7040 #endif
7041 if (sg)
7042 *sg = &per_cpu(sched_group_phys, group);
7043 return group;
7044 }
7045
7046 #ifdef CONFIG_NUMA
7047 /*
7048 * The init_sched_build_groups can't handle what we want to do with node
7049 * groups, so roll our own. Now each node has its own list of groups which
7050 * gets dynamically allocated.
7051 */
7052 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7053 static struct sched_group ***sched_group_nodes_bycpu;
7054
7055 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7056 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7057
7058 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7059 struct sched_group **sg, cpumask_t *nodemask)
7060 {
7061 int group;
7062
7063 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7064 cpus_and(*nodemask, *nodemask, *cpu_map);
7065 group = first_cpu(*nodemask);
7066
7067 if (sg)
7068 *sg = &per_cpu(sched_group_allnodes, group);
7069 return group;
7070 }
7071
7072 static void init_numa_sched_groups_power(struct sched_group *group_head)
7073 {
7074 struct sched_group *sg = group_head;
7075 int j;
7076
7077 if (!sg)
7078 return;
7079 do {
7080 for_each_cpu_mask_nr(j, sg->cpumask) {
7081 struct sched_domain *sd;
7082
7083 sd = &per_cpu(phys_domains, j);
7084 if (j != first_cpu(sd->groups->cpumask)) {
7085 /*
7086 * Only add "power" once for each
7087 * physical package.
7088 */
7089 continue;
7090 }
7091
7092 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7093 }
7094 sg = sg->next;
7095 } while (sg != group_head);
7096 }
7097 #endif /* CONFIG_NUMA */
7098
7099 #ifdef CONFIG_NUMA
7100 /* Free memory allocated for various sched_group structures */
7101 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7102 {
7103 int cpu, i;
7104
7105 for_each_cpu_mask_nr(cpu, *cpu_map) {
7106 struct sched_group **sched_group_nodes
7107 = sched_group_nodes_bycpu[cpu];
7108
7109 if (!sched_group_nodes)
7110 continue;
7111
7112 for (i = 0; i < nr_node_ids; i++) {
7113 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7114
7115 *nodemask = node_to_cpumask(i);
7116 cpus_and(*nodemask, *nodemask, *cpu_map);
7117 if (cpus_empty(*nodemask))
7118 continue;
7119
7120 if (sg == NULL)
7121 continue;
7122 sg = sg->next;
7123 next_sg:
7124 oldsg = sg;
7125 sg = sg->next;
7126 kfree(oldsg);
7127 if (oldsg != sched_group_nodes[i])
7128 goto next_sg;
7129 }
7130 kfree(sched_group_nodes);
7131 sched_group_nodes_bycpu[cpu] = NULL;
7132 }
7133 }
7134 #else /* !CONFIG_NUMA */
7135 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7136 {
7137 }
7138 #endif /* CONFIG_NUMA */
7139
7140 /*
7141 * Initialize sched groups cpu_power.
7142 *
7143 * cpu_power indicates the capacity of sched group, which is used while
7144 * distributing the load between different sched groups in a sched domain.
7145 * Typically cpu_power for all the groups in a sched domain will be same unless
7146 * there are asymmetries in the topology. If there are asymmetries, group
7147 * having more cpu_power will pickup more load compared to the group having
7148 * less cpu_power.
7149 *
7150 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7151 * the maximum number of tasks a group can handle in the presence of other idle
7152 * or lightly loaded groups in the same sched domain.
7153 */
7154 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7155 {
7156 struct sched_domain *child;
7157 struct sched_group *group;
7158
7159 WARN_ON(!sd || !sd->groups);
7160
7161 if (cpu != first_cpu(sd->groups->cpumask))
7162 return;
7163
7164 child = sd->child;
7165
7166 sd->groups->__cpu_power = 0;
7167
7168 /*
7169 * For perf policy, if the groups in child domain share resources
7170 * (for example cores sharing some portions of the cache hierarchy
7171 * or SMT), then set this domain groups cpu_power such that each group
7172 * can handle only one task, when there are other idle groups in the
7173 * same sched domain.
7174 */
7175 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7176 (child->flags &
7177 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7178 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7179 return;
7180 }
7181
7182 /*
7183 * add cpu_power of each child group to this groups cpu_power
7184 */
7185 group = child->groups;
7186 do {
7187 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7188 group = group->next;
7189 } while (group != child->groups);
7190 }
7191
7192 /*
7193 * Initializers for schedule domains
7194 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7195 */
7196
7197 #define SD_INIT(sd, type) sd_init_##type(sd)
7198 #define SD_INIT_FUNC(type) \
7199 static noinline void sd_init_##type(struct sched_domain *sd) \
7200 { \
7201 memset(sd, 0, sizeof(*sd)); \
7202 *sd = SD_##type##_INIT; \
7203 sd->level = SD_LV_##type; \
7204 }
7205
7206 SD_INIT_FUNC(CPU)
7207 #ifdef CONFIG_NUMA
7208 SD_INIT_FUNC(ALLNODES)
7209 SD_INIT_FUNC(NODE)
7210 #endif
7211 #ifdef CONFIG_SCHED_SMT
7212 SD_INIT_FUNC(SIBLING)
7213 #endif
7214 #ifdef CONFIG_SCHED_MC
7215 SD_INIT_FUNC(MC)
7216 #endif
7217
7218 /*
7219 * To minimize stack usage kmalloc room for cpumasks and share the
7220 * space as the usage in build_sched_domains() dictates. Used only
7221 * if the amount of space is significant.
7222 */
7223 struct allmasks {
7224 cpumask_t tmpmask; /* make this one first */
7225 union {
7226 cpumask_t nodemask;
7227 cpumask_t this_sibling_map;
7228 cpumask_t this_core_map;
7229 };
7230 cpumask_t send_covered;
7231
7232 #ifdef CONFIG_NUMA
7233 cpumask_t domainspan;
7234 cpumask_t covered;
7235 cpumask_t notcovered;
7236 #endif
7237 };
7238
7239 #if NR_CPUS > 128
7240 #define SCHED_CPUMASK_ALLOC 1
7241 #define SCHED_CPUMASK_FREE(v) kfree(v)
7242 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7243 #else
7244 #define SCHED_CPUMASK_ALLOC 0
7245 #define SCHED_CPUMASK_FREE(v)
7246 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7247 #endif
7248
7249 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7250 ((unsigned long)(a) + offsetof(struct allmasks, v))
7251
7252 static int default_relax_domain_level = -1;
7253
7254 static int __init setup_relax_domain_level(char *str)
7255 {
7256 unsigned long val;
7257
7258 val = simple_strtoul(str, NULL, 0);
7259 if (val < SD_LV_MAX)
7260 default_relax_domain_level = val;
7261
7262 return 1;
7263 }
7264 __setup("relax_domain_level=", setup_relax_domain_level);
7265
7266 static void set_domain_attribute(struct sched_domain *sd,
7267 struct sched_domain_attr *attr)
7268 {
7269 int request;
7270
7271 if (!attr || attr->relax_domain_level < 0) {
7272 if (default_relax_domain_level < 0)
7273 return;
7274 else
7275 request = default_relax_domain_level;
7276 } else
7277 request = attr->relax_domain_level;
7278 if (request < sd->level) {
7279 /* turn off idle balance on this domain */
7280 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7281 } else {
7282 /* turn on idle balance on this domain */
7283 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7284 }
7285 }
7286
7287 /*
7288 * Build sched domains for a given set of cpus and attach the sched domains
7289 * to the individual cpus
7290 */
7291 static int __build_sched_domains(const cpumask_t *cpu_map,
7292 struct sched_domain_attr *attr)
7293 {
7294 int i;
7295 struct root_domain *rd;
7296 SCHED_CPUMASK_DECLARE(allmasks);
7297 cpumask_t *tmpmask;
7298 #ifdef CONFIG_NUMA
7299 struct sched_group **sched_group_nodes = NULL;
7300 int sd_allnodes = 0;
7301
7302 /*
7303 * Allocate the per-node list of sched groups
7304 */
7305 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7306 GFP_KERNEL);
7307 if (!sched_group_nodes) {
7308 printk(KERN_WARNING "Can not alloc sched group node list\n");
7309 return -ENOMEM;
7310 }
7311 #endif
7312
7313 rd = alloc_rootdomain();
7314 if (!rd) {
7315 printk(KERN_WARNING "Cannot alloc root domain\n");
7316 #ifdef CONFIG_NUMA
7317 kfree(sched_group_nodes);
7318 #endif
7319 return -ENOMEM;
7320 }
7321
7322 #if SCHED_CPUMASK_ALLOC
7323 /* get space for all scratch cpumask variables */
7324 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7325 if (!allmasks) {
7326 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7327 kfree(rd);
7328 #ifdef CONFIG_NUMA
7329 kfree(sched_group_nodes);
7330 #endif
7331 return -ENOMEM;
7332 }
7333 #endif
7334 tmpmask = (cpumask_t *)allmasks;
7335
7336
7337 #ifdef CONFIG_NUMA
7338 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7339 #endif
7340
7341 /*
7342 * Set up domains for cpus specified by the cpu_map.
7343 */
7344 for_each_cpu_mask_nr(i, *cpu_map) {
7345 struct sched_domain *sd = NULL, *p;
7346 SCHED_CPUMASK_VAR(nodemask, allmasks);
7347
7348 *nodemask = node_to_cpumask(cpu_to_node(i));
7349 cpus_and(*nodemask, *nodemask, *cpu_map);
7350
7351 #ifdef CONFIG_NUMA
7352 if (cpus_weight(*cpu_map) >
7353 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7354 sd = &per_cpu(allnodes_domains, i);
7355 SD_INIT(sd, ALLNODES);
7356 set_domain_attribute(sd, attr);
7357 sd->span = *cpu_map;
7358 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7359 p = sd;
7360 sd_allnodes = 1;
7361 } else
7362 p = NULL;
7363
7364 sd = &per_cpu(node_domains, i);
7365 SD_INIT(sd, NODE);
7366 set_domain_attribute(sd, attr);
7367 sched_domain_node_span(cpu_to_node(i), &sd->span);
7368 sd->parent = p;
7369 if (p)
7370 p->child = sd;
7371 cpus_and(sd->span, sd->span, *cpu_map);
7372 #endif
7373
7374 p = sd;
7375 sd = &per_cpu(phys_domains, i);
7376 SD_INIT(sd, CPU);
7377 set_domain_attribute(sd, attr);
7378 sd->span = *nodemask;
7379 sd->parent = p;
7380 if (p)
7381 p->child = sd;
7382 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7383
7384 #ifdef CONFIG_SCHED_MC
7385 p = sd;
7386 sd = &per_cpu(core_domains, i);
7387 SD_INIT(sd, MC);
7388 set_domain_attribute(sd, attr);
7389 sd->span = cpu_coregroup_map(i);
7390 cpus_and(sd->span, sd->span, *cpu_map);
7391 sd->parent = p;
7392 p->child = sd;
7393 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7394 #endif
7395
7396 #ifdef CONFIG_SCHED_SMT
7397 p = sd;
7398 sd = &per_cpu(cpu_domains, i);
7399 SD_INIT(sd, SIBLING);
7400 set_domain_attribute(sd, attr);
7401 sd->span = per_cpu(cpu_sibling_map, i);
7402 cpus_and(sd->span, sd->span, *cpu_map);
7403 sd->parent = p;
7404 p->child = sd;
7405 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7406 #endif
7407 }
7408
7409 #ifdef CONFIG_SCHED_SMT
7410 /* Set up CPU (sibling) groups */
7411 for_each_cpu_mask_nr(i, *cpu_map) {
7412 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7413 SCHED_CPUMASK_VAR(send_covered, allmasks);
7414
7415 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7416 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7417 if (i != first_cpu(*this_sibling_map))
7418 continue;
7419
7420 init_sched_build_groups(this_sibling_map, cpu_map,
7421 &cpu_to_cpu_group,
7422 send_covered, tmpmask);
7423 }
7424 #endif
7425
7426 #ifdef CONFIG_SCHED_MC
7427 /* Set up multi-core groups */
7428 for_each_cpu_mask_nr(i, *cpu_map) {
7429 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7430 SCHED_CPUMASK_VAR(send_covered, allmasks);
7431
7432 *this_core_map = cpu_coregroup_map(i);
7433 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7434 if (i != first_cpu(*this_core_map))
7435 continue;
7436
7437 init_sched_build_groups(this_core_map, cpu_map,
7438 &cpu_to_core_group,
7439 send_covered, tmpmask);
7440 }
7441 #endif
7442
7443 /* Set up physical groups */
7444 for (i = 0; i < nr_node_ids; i++) {
7445 SCHED_CPUMASK_VAR(nodemask, allmasks);
7446 SCHED_CPUMASK_VAR(send_covered, allmasks);
7447
7448 *nodemask = node_to_cpumask(i);
7449 cpus_and(*nodemask, *nodemask, *cpu_map);
7450 if (cpus_empty(*nodemask))
7451 continue;
7452
7453 init_sched_build_groups(nodemask, cpu_map,
7454 &cpu_to_phys_group,
7455 send_covered, tmpmask);
7456 }
7457
7458 #ifdef CONFIG_NUMA
7459 /* Set up node groups */
7460 if (sd_allnodes) {
7461 SCHED_CPUMASK_VAR(send_covered, allmasks);
7462
7463 init_sched_build_groups(cpu_map, cpu_map,
7464 &cpu_to_allnodes_group,
7465 send_covered, tmpmask);
7466 }
7467
7468 for (i = 0; i < nr_node_ids; i++) {
7469 /* Set up node groups */
7470 struct sched_group *sg, *prev;
7471 SCHED_CPUMASK_VAR(nodemask, allmasks);
7472 SCHED_CPUMASK_VAR(domainspan, allmasks);
7473 SCHED_CPUMASK_VAR(covered, allmasks);
7474 int j;
7475
7476 *nodemask = node_to_cpumask(i);
7477 cpus_clear(*covered);
7478
7479 cpus_and(*nodemask, *nodemask, *cpu_map);
7480 if (cpus_empty(*nodemask)) {
7481 sched_group_nodes[i] = NULL;
7482 continue;
7483 }
7484
7485 sched_domain_node_span(i, domainspan);
7486 cpus_and(*domainspan, *domainspan, *cpu_map);
7487
7488 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7489 if (!sg) {
7490 printk(KERN_WARNING "Can not alloc domain group for "
7491 "node %d\n", i);
7492 goto error;
7493 }
7494 sched_group_nodes[i] = sg;
7495 for_each_cpu_mask_nr(j, *nodemask) {
7496 struct sched_domain *sd;
7497
7498 sd = &per_cpu(node_domains, j);
7499 sd->groups = sg;
7500 }
7501 sg->__cpu_power = 0;
7502 sg->cpumask = *nodemask;
7503 sg->next = sg;
7504 cpus_or(*covered, *covered, *nodemask);
7505 prev = sg;
7506
7507 for (j = 0; j < nr_node_ids; j++) {
7508 SCHED_CPUMASK_VAR(notcovered, allmasks);
7509 int n = (i + j) % nr_node_ids;
7510 node_to_cpumask_ptr(pnodemask, n);
7511
7512 cpus_complement(*notcovered, *covered);
7513 cpus_and(*tmpmask, *notcovered, *cpu_map);
7514 cpus_and(*tmpmask, *tmpmask, *domainspan);
7515 if (cpus_empty(*tmpmask))
7516 break;
7517
7518 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7519 if (cpus_empty(*tmpmask))
7520 continue;
7521
7522 sg = kmalloc_node(sizeof(struct sched_group),
7523 GFP_KERNEL, i);
7524 if (!sg) {
7525 printk(KERN_WARNING
7526 "Can not alloc domain group for node %d\n", j);
7527 goto error;
7528 }
7529 sg->__cpu_power = 0;
7530 sg->cpumask = *tmpmask;
7531 sg->next = prev->next;
7532 cpus_or(*covered, *covered, *tmpmask);
7533 prev->next = sg;
7534 prev = sg;
7535 }
7536 }
7537 #endif
7538
7539 /* Calculate CPU power for physical packages and nodes */
7540 #ifdef CONFIG_SCHED_SMT
7541 for_each_cpu_mask_nr(i, *cpu_map) {
7542 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7543
7544 init_sched_groups_power(i, sd);
7545 }
7546 #endif
7547 #ifdef CONFIG_SCHED_MC
7548 for_each_cpu_mask_nr(i, *cpu_map) {
7549 struct sched_domain *sd = &per_cpu(core_domains, i);
7550
7551 init_sched_groups_power(i, sd);
7552 }
7553 #endif
7554
7555 for_each_cpu_mask_nr(i, *cpu_map) {
7556 struct sched_domain *sd = &per_cpu(phys_domains, i);
7557
7558 init_sched_groups_power(i, sd);
7559 }
7560
7561 #ifdef CONFIG_NUMA
7562 for (i = 0; i < nr_node_ids; i++)
7563 init_numa_sched_groups_power(sched_group_nodes[i]);
7564
7565 if (sd_allnodes) {
7566 struct sched_group *sg;
7567
7568 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7569 tmpmask);
7570 init_numa_sched_groups_power(sg);
7571 }
7572 #endif
7573
7574 /* Attach the domains */
7575 for_each_cpu_mask_nr(i, *cpu_map) {
7576 struct sched_domain *sd;
7577 #ifdef CONFIG_SCHED_SMT
7578 sd = &per_cpu(cpu_domains, i);
7579 #elif defined(CONFIG_SCHED_MC)
7580 sd = &per_cpu(core_domains, i);
7581 #else
7582 sd = &per_cpu(phys_domains, i);
7583 #endif
7584 cpu_attach_domain(sd, rd, i);
7585 }
7586
7587 SCHED_CPUMASK_FREE((void *)allmasks);
7588 return 0;
7589
7590 #ifdef CONFIG_NUMA
7591 error:
7592 free_sched_groups(cpu_map, tmpmask);
7593 SCHED_CPUMASK_FREE((void *)allmasks);
7594 return -ENOMEM;
7595 #endif
7596 }
7597
7598 static int build_sched_domains(const cpumask_t *cpu_map)
7599 {
7600 return __build_sched_domains(cpu_map, NULL);
7601 }
7602
7603 static cpumask_t *doms_cur; /* current sched domains */
7604 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7605 static struct sched_domain_attr *dattr_cur;
7606 /* attribues of custom domains in 'doms_cur' */
7607
7608 /*
7609 * Special case: If a kmalloc of a doms_cur partition (array of
7610 * cpumask_t) fails, then fallback to a single sched domain,
7611 * as determined by the single cpumask_t fallback_doms.
7612 */
7613 static cpumask_t fallback_doms;
7614
7615 void __attribute__((weak)) arch_update_cpu_topology(void)
7616 {
7617 }
7618
7619 /*
7620 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7621 * For now this just excludes isolated cpus, but could be used to
7622 * exclude other special cases in the future.
7623 */
7624 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7625 {
7626 int err;
7627
7628 arch_update_cpu_topology();
7629 ndoms_cur = 1;
7630 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7631 if (!doms_cur)
7632 doms_cur = &fallback_doms;
7633 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7634 dattr_cur = NULL;
7635 err = build_sched_domains(doms_cur);
7636 register_sched_domain_sysctl();
7637
7638 return err;
7639 }
7640
7641 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7642 cpumask_t *tmpmask)
7643 {
7644 free_sched_groups(cpu_map, tmpmask);
7645 }
7646
7647 /*
7648 * Detach sched domains from a group of cpus specified in cpu_map
7649 * These cpus will now be attached to the NULL domain
7650 */
7651 static void detach_destroy_domains(const cpumask_t *cpu_map)
7652 {
7653 cpumask_t tmpmask;
7654 int i;
7655
7656 unregister_sched_domain_sysctl();
7657
7658 for_each_cpu_mask_nr(i, *cpu_map)
7659 cpu_attach_domain(NULL, &def_root_domain, i);
7660 synchronize_sched();
7661 arch_destroy_sched_domains(cpu_map, &tmpmask);
7662 }
7663
7664 /* handle null as "default" */
7665 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7666 struct sched_domain_attr *new, int idx_new)
7667 {
7668 struct sched_domain_attr tmp;
7669
7670 /* fast path */
7671 if (!new && !cur)
7672 return 1;
7673
7674 tmp = SD_ATTR_INIT;
7675 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7676 new ? (new + idx_new) : &tmp,
7677 sizeof(struct sched_domain_attr));
7678 }
7679
7680 /*
7681 * Partition sched domains as specified by the 'ndoms_new'
7682 * cpumasks in the array doms_new[] of cpumasks. This compares
7683 * doms_new[] to the current sched domain partitioning, doms_cur[].
7684 * It destroys each deleted domain and builds each new domain.
7685 *
7686 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7687 * The masks don't intersect (don't overlap.) We should setup one
7688 * sched domain for each mask. CPUs not in any of the cpumasks will
7689 * not be load balanced. If the same cpumask appears both in the
7690 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7691 * it as it is.
7692 *
7693 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7694 * ownership of it and will kfree it when done with it. If the caller
7695 * failed the kmalloc call, then it can pass in doms_new == NULL,
7696 * and partition_sched_domains() will fallback to the single partition
7697 * 'fallback_doms', it also forces the domains to be rebuilt.
7698 *
7699 * If doms_new==NULL it will be replaced with cpu_online_map.
7700 * ndoms_new==0 is a special case for destroying existing domains.
7701 * It will not create the default domain.
7702 *
7703 * Call with hotplug lock held
7704 */
7705 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7706 struct sched_domain_attr *dattr_new)
7707 {
7708 int i, j, n;
7709
7710 mutex_lock(&sched_domains_mutex);
7711
7712 /* always unregister in case we don't destroy any domains */
7713 unregister_sched_domain_sysctl();
7714
7715 n = doms_new ? ndoms_new : 0;
7716
7717 /* Destroy deleted domains */
7718 for (i = 0; i < ndoms_cur; i++) {
7719 for (j = 0; j < n; j++) {
7720 if (cpus_equal(doms_cur[i], doms_new[j])
7721 && dattrs_equal(dattr_cur, i, dattr_new, j))
7722 goto match1;
7723 }
7724 /* no match - a current sched domain not in new doms_new[] */
7725 detach_destroy_domains(doms_cur + i);
7726 match1:
7727 ;
7728 }
7729
7730 if (doms_new == NULL) {
7731 ndoms_cur = 0;
7732 doms_new = &fallback_doms;
7733 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7734 dattr_new = NULL;
7735 }
7736
7737 /* Build new domains */
7738 for (i = 0; i < ndoms_new; i++) {
7739 for (j = 0; j < ndoms_cur; j++) {
7740 if (cpus_equal(doms_new[i], doms_cur[j])
7741 && dattrs_equal(dattr_new, i, dattr_cur, j))
7742 goto match2;
7743 }
7744 /* no match - add a new doms_new */
7745 __build_sched_domains(doms_new + i,
7746 dattr_new ? dattr_new + i : NULL);
7747 match2:
7748 ;
7749 }
7750
7751 /* Remember the new sched domains */
7752 if (doms_cur != &fallback_doms)
7753 kfree(doms_cur);
7754 kfree(dattr_cur); /* kfree(NULL) is safe */
7755 doms_cur = doms_new;
7756 dattr_cur = dattr_new;
7757 ndoms_cur = ndoms_new;
7758
7759 register_sched_domain_sysctl();
7760
7761 mutex_unlock(&sched_domains_mutex);
7762 }
7763
7764 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7765 int arch_reinit_sched_domains(void)
7766 {
7767 get_online_cpus();
7768
7769 /* Destroy domains first to force the rebuild */
7770 partition_sched_domains(0, NULL, NULL);
7771
7772 rebuild_sched_domains();
7773 put_online_cpus();
7774
7775 return 0;
7776 }
7777
7778 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7779 {
7780 int ret;
7781
7782 if (buf[0] != '0' && buf[0] != '1')
7783 return -EINVAL;
7784
7785 if (smt)
7786 sched_smt_power_savings = (buf[0] == '1');
7787 else
7788 sched_mc_power_savings = (buf[0] == '1');
7789
7790 ret = arch_reinit_sched_domains();
7791
7792 return ret ? ret : count;
7793 }
7794
7795 #ifdef CONFIG_SCHED_MC
7796 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7797 char *page)
7798 {
7799 return sprintf(page, "%u\n", sched_mc_power_savings);
7800 }
7801 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7802 const char *buf, size_t count)
7803 {
7804 return sched_power_savings_store(buf, count, 0);
7805 }
7806 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7807 sched_mc_power_savings_show,
7808 sched_mc_power_savings_store);
7809 #endif
7810
7811 #ifdef CONFIG_SCHED_SMT
7812 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7813 char *page)
7814 {
7815 return sprintf(page, "%u\n", sched_smt_power_savings);
7816 }
7817 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7818 const char *buf, size_t count)
7819 {
7820 return sched_power_savings_store(buf, count, 1);
7821 }
7822 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7823 sched_smt_power_savings_show,
7824 sched_smt_power_savings_store);
7825 #endif
7826
7827 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7828 {
7829 int err = 0;
7830
7831 #ifdef CONFIG_SCHED_SMT
7832 if (smt_capable())
7833 err = sysfs_create_file(&cls->kset.kobj,
7834 &attr_sched_smt_power_savings.attr);
7835 #endif
7836 #ifdef CONFIG_SCHED_MC
7837 if (!err && mc_capable())
7838 err = sysfs_create_file(&cls->kset.kobj,
7839 &attr_sched_mc_power_savings.attr);
7840 #endif
7841 return err;
7842 }
7843 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7844
7845 #ifndef CONFIG_CPUSETS
7846 /*
7847 * Add online and remove offline CPUs from the scheduler domains.
7848 * When cpusets are enabled they take over this function.
7849 */
7850 static int update_sched_domains(struct notifier_block *nfb,
7851 unsigned long action, void *hcpu)
7852 {
7853 switch (action) {
7854 case CPU_ONLINE:
7855 case CPU_ONLINE_FROZEN:
7856 case CPU_DEAD:
7857 case CPU_DEAD_FROZEN:
7858 partition_sched_domains(1, NULL, NULL);
7859 return NOTIFY_OK;
7860
7861 default:
7862 return NOTIFY_DONE;
7863 }
7864 }
7865 #endif
7866
7867 static int update_runtime(struct notifier_block *nfb,
7868 unsigned long action, void *hcpu)
7869 {
7870 int cpu = (int)(long)hcpu;
7871
7872 switch (action) {
7873 case CPU_DOWN_PREPARE:
7874 case CPU_DOWN_PREPARE_FROZEN:
7875 disable_runtime(cpu_rq(cpu));
7876 return NOTIFY_OK;
7877
7878 case CPU_DOWN_FAILED:
7879 case CPU_DOWN_FAILED_FROZEN:
7880 case CPU_ONLINE:
7881 case CPU_ONLINE_FROZEN:
7882 enable_runtime(cpu_rq(cpu));
7883 return NOTIFY_OK;
7884
7885 default:
7886 return NOTIFY_DONE;
7887 }
7888 }
7889
7890 void __init sched_init_smp(void)
7891 {
7892 cpumask_t non_isolated_cpus;
7893
7894 #if defined(CONFIG_NUMA)
7895 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7896 GFP_KERNEL);
7897 BUG_ON(sched_group_nodes_bycpu == NULL);
7898 #endif
7899 get_online_cpus();
7900 mutex_lock(&sched_domains_mutex);
7901 arch_init_sched_domains(&cpu_online_map);
7902 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7903 if (cpus_empty(non_isolated_cpus))
7904 cpu_set(smp_processor_id(), non_isolated_cpus);
7905 mutex_unlock(&sched_domains_mutex);
7906 put_online_cpus();
7907
7908 #ifndef CONFIG_CPUSETS
7909 /* XXX: Theoretical race here - CPU may be hotplugged now */
7910 hotcpu_notifier(update_sched_domains, 0);
7911 #endif
7912
7913 /* RT runtime code needs to handle some hotplug events */
7914 hotcpu_notifier(update_runtime, 0);
7915
7916 init_hrtick();
7917
7918 /* Move init over to a non-isolated CPU */
7919 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7920 BUG();
7921 sched_init_granularity();
7922 }
7923 #else
7924 void __init sched_init_smp(void)
7925 {
7926 sched_init_granularity();
7927 }
7928 #endif /* CONFIG_SMP */
7929
7930 int in_sched_functions(unsigned long addr)
7931 {
7932 return in_lock_functions(addr) ||
7933 (addr >= (unsigned long)__sched_text_start
7934 && addr < (unsigned long)__sched_text_end);
7935 }
7936
7937 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7938 {
7939 cfs_rq->tasks_timeline = RB_ROOT;
7940 INIT_LIST_HEAD(&cfs_rq->tasks);
7941 #ifdef CONFIG_FAIR_GROUP_SCHED
7942 cfs_rq->rq = rq;
7943 #endif
7944 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7945 }
7946
7947 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7948 {
7949 struct rt_prio_array *array;
7950 int i;
7951
7952 array = &rt_rq->active;
7953 for (i = 0; i < MAX_RT_PRIO; i++) {
7954 INIT_LIST_HEAD(array->queue + i);
7955 __clear_bit(i, array->bitmap);
7956 }
7957 /* delimiter for bitsearch: */
7958 __set_bit(MAX_RT_PRIO, array->bitmap);
7959
7960 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7961 rt_rq->highest_prio = MAX_RT_PRIO;
7962 #endif
7963 #ifdef CONFIG_SMP
7964 rt_rq->rt_nr_migratory = 0;
7965 rt_rq->overloaded = 0;
7966 #endif
7967
7968 rt_rq->rt_time = 0;
7969 rt_rq->rt_throttled = 0;
7970 rt_rq->rt_runtime = 0;
7971 spin_lock_init(&rt_rq->rt_runtime_lock);
7972
7973 #ifdef CONFIG_RT_GROUP_SCHED
7974 rt_rq->rt_nr_boosted = 0;
7975 rt_rq->rq = rq;
7976 #endif
7977 }
7978
7979 #ifdef CONFIG_FAIR_GROUP_SCHED
7980 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7981 struct sched_entity *se, int cpu, int add,
7982 struct sched_entity *parent)
7983 {
7984 struct rq *rq = cpu_rq(cpu);
7985 tg->cfs_rq[cpu] = cfs_rq;
7986 init_cfs_rq(cfs_rq, rq);
7987 cfs_rq->tg = tg;
7988 if (add)
7989 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7990
7991 tg->se[cpu] = se;
7992 /* se could be NULL for init_task_group */
7993 if (!se)
7994 return;
7995
7996 if (!parent)
7997 se->cfs_rq = &rq->cfs;
7998 else
7999 se->cfs_rq = parent->my_q;
8000
8001 se->my_q = cfs_rq;
8002 se->load.weight = tg->shares;
8003 se->load.inv_weight = 0;
8004 se->parent = parent;
8005 }
8006 #endif
8007
8008 #ifdef CONFIG_RT_GROUP_SCHED
8009 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8010 struct sched_rt_entity *rt_se, int cpu, int add,
8011 struct sched_rt_entity *parent)
8012 {
8013 struct rq *rq = cpu_rq(cpu);
8014
8015 tg->rt_rq[cpu] = rt_rq;
8016 init_rt_rq(rt_rq, rq);
8017 rt_rq->tg = tg;
8018 rt_rq->rt_se = rt_se;
8019 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8020 if (add)
8021 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8022
8023 tg->rt_se[cpu] = rt_se;
8024 if (!rt_se)
8025 return;
8026
8027 if (!parent)
8028 rt_se->rt_rq = &rq->rt;
8029 else
8030 rt_se->rt_rq = parent->my_q;
8031
8032 rt_se->my_q = rt_rq;
8033 rt_se->parent = parent;
8034 INIT_LIST_HEAD(&rt_se->run_list);
8035 }
8036 #endif
8037
8038 void __init sched_init(void)
8039 {
8040 int i, j;
8041 unsigned long alloc_size = 0, ptr;
8042
8043 #ifdef CONFIG_FAIR_GROUP_SCHED
8044 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8045 #endif
8046 #ifdef CONFIG_RT_GROUP_SCHED
8047 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8048 #endif
8049 #ifdef CONFIG_USER_SCHED
8050 alloc_size *= 2;
8051 #endif
8052 /*
8053 * As sched_init() is called before page_alloc is setup,
8054 * we use alloc_bootmem().
8055 */
8056 if (alloc_size) {
8057 ptr = (unsigned long)alloc_bootmem(alloc_size);
8058
8059 #ifdef CONFIG_FAIR_GROUP_SCHED
8060 init_task_group.se = (struct sched_entity **)ptr;
8061 ptr += nr_cpu_ids * sizeof(void **);
8062
8063 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8064 ptr += nr_cpu_ids * sizeof(void **);
8065
8066 #ifdef CONFIG_USER_SCHED
8067 root_task_group.se = (struct sched_entity **)ptr;
8068 ptr += nr_cpu_ids * sizeof(void **);
8069
8070 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8071 ptr += nr_cpu_ids * sizeof(void **);
8072 #endif /* CONFIG_USER_SCHED */
8073 #endif /* CONFIG_FAIR_GROUP_SCHED */
8074 #ifdef CONFIG_RT_GROUP_SCHED
8075 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8076 ptr += nr_cpu_ids * sizeof(void **);
8077
8078 init_task_group.rt_rq = (struct rt_rq **)ptr;
8079 ptr += nr_cpu_ids * sizeof(void **);
8080
8081 #ifdef CONFIG_USER_SCHED
8082 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8083 ptr += nr_cpu_ids * sizeof(void **);
8084
8085 root_task_group.rt_rq = (struct rt_rq **)ptr;
8086 ptr += nr_cpu_ids * sizeof(void **);
8087 #endif /* CONFIG_USER_SCHED */
8088 #endif /* CONFIG_RT_GROUP_SCHED */
8089 }
8090
8091 #ifdef CONFIG_SMP
8092 init_defrootdomain();
8093 #endif
8094
8095 init_rt_bandwidth(&def_rt_bandwidth,
8096 global_rt_period(), global_rt_runtime());
8097
8098 #ifdef CONFIG_RT_GROUP_SCHED
8099 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8100 global_rt_period(), global_rt_runtime());
8101 #ifdef CONFIG_USER_SCHED
8102 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8103 global_rt_period(), RUNTIME_INF);
8104 #endif /* CONFIG_USER_SCHED */
8105 #endif /* CONFIG_RT_GROUP_SCHED */
8106
8107 #ifdef CONFIG_GROUP_SCHED
8108 list_add(&init_task_group.list, &task_groups);
8109 INIT_LIST_HEAD(&init_task_group.children);
8110
8111 #ifdef CONFIG_USER_SCHED
8112 INIT_LIST_HEAD(&root_task_group.children);
8113 init_task_group.parent = &root_task_group;
8114 list_add(&init_task_group.siblings, &root_task_group.children);
8115 #endif /* CONFIG_USER_SCHED */
8116 #endif /* CONFIG_GROUP_SCHED */
8117
8118 for_each_possible_cpu(i) {
8119 struct rq *rq;
8120
8121 rq = cpu_rq(i);
8122 spin_lock_init(&rq->lock);
8123 rq->nr_running = 0;
8124 init_cfs_rq(&rq->cfs, rq);
8125 init_rt_rq(&rq->rt, rq);
8126 #ifdef CONFIG_FAIR_GROUP_SCHED
8127 init_task_group.shares = init_task_group_load;
8128 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8129 #ifdef CONFIG_CGROUP_SCHED
8130 /*
8131 * How much cpu bandwidth does init_task_group get?
8132 *
8133 * In case of task-groups formed thr' the cgroup filesystem, it
8134 * gets 100% of the cpu resources in the system. This overall
8135 * system cpu resource is divided among the tasks of
8136 * init_task_group and its child task-groups in a fair manner,
8137 * based on each entity's (task or task-group's) weight
8138 * (se->load.weight).
8139 *
8140 * In other words, if init_task_group has 10 tasks of weight
8141 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8142 * then A0's share of the cpu resource is:
8143 *
8144 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8145 *
8146 * We achieve this by letting init_task_group's tasks sit
8147 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8148 */
8149 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8150 #elif defined CONFIG_USER_SCHED
8151 root_task_group.shares = NICE_0_LOAD;
8152 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8153 /*
8154 * In case of task-groups formed thr' the user id of tasks,
8155 * init_task_group represents tasks belonging to root user.
8156 * Hence it forms a sibling of all subsequent groups formed.
8157 * In this case, init_task_group gets only a fraction of overall
8158 * system cpu resource, based on the weight assigned to root
8159 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8160 * by letting tasks of init_task_group sit in a separate cfs_rq
8161 * (init_cfs_rq) and having one entity represent this group of
8162 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8163 */
8164 init_tg_cfs_entry(&init_task_group,
8165 &per_cpu(init_cfs_rq, i),
8166 &per_cpu(init_sched_entity, i), i, 1,
8167 root_task_group.se[i]);
8168
8169 #endif
8170 #endif /* CONFIG_FAIR_GROUP_SCHED */
8171
8172 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8173 #ifdef CONFIG_RT_GROUP_SCHED
8174 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8175 #ifdef CONFIG_CGROUP_SCHED
8176 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8177 #elif defined CONFIG_USER_SCHED
8178 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8179 init_tg_rt_entry(&init_task_group,
8180 &per_cpu(init_rt_rq, i),
8181 &per_cpu(init_sched_rt_entity, i), i, 1,
8182 root_task_group.rt_se[i]);
8183 #endif
8184 #endif
8185
8186 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8187 rq->cpu_load[j] = 0;
8188 #ifdef CONFIG_SMP
8189 rq->sd = NULL;
8190 rq->rd = NULL;
8191 rq->active_balance = 0;
8192 rq->next_balance = jiffies;
8193 rq->push_cpu = 0;
8194 rq->cpu = i;
8195 rq->online = 0;
8196 rq->migration_thread = NULL;
8197 INIT_LIST_HEAD(&rq->migration_queue);
8198 rq_attach_root(rq, &def_root_domain);
8199 #endif
8200 init_rq_hrtick(rq);
8201 atomic_set(&rq->nr_iowait, 0);
8202 }
8203
8204 set_load_weight(&init_task);
8205
8206 #ifdef CONFIG_PREEMPT_NOTIFIERS
8207 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8208 #endif
8209
8210 #ifdef CONFIG_SMP
8211 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8212 #endif
8213
8214 #ifdef CONFIG_RT_MUTEXES
8215 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8216 #endif
8217
8218 /*
8219 * The boot idle thread does lazy MMU switching as well:
8220 */
8221 atomic_inc(&init_mm.mm_count);
8222 enter_lazy_tlb(&init_mm, current);
8223
8224 /*
8225 * Make us the idle thread. Technically, schedule() should not be
8226 * called from this thread, however somewhere below it might be,
8227 * but because we are the idle thread, we just pick up running again
8228 * when this runqueue becomes "idle".
8229 */
8230 init_idle(current, smp_processor_id());
8231 /*
8232 * During early bootup we pretend to be a normal task:
8233 */
8234 current->sched_class = &fair_sched_class;
8235
8236 scheduler_running = 1;
8237 }
8238
8239 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8240 void __might_sleep(char *file, int line)
8241 {
8242 #ifdef in_atomic
8243 static unsigned long prev_jiffy; /* ratelimiting */
8244
8245 if ((in_atomic() || irqs_disabled()) &&
8246 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8247 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8248 return;
8249 prev_jiffy = jiffies;
8250 printk(KERN_ERR "BUG: sleeping function called from invalid"
8251 " context at %s:%d\n", file, line);
8252 printk("in_atomic():%d, irqs_disabled():%d\n",
8253 in_atomic(), irqs_disabled());
8254 debug_show_held_locks(current);
8255 if (irqs_disabled())
8256 print_irqtrace_events(current);
8257 dump_stack();
8258 }
8259 #endif
8260 }
8261 EXPORT_SYMBOL(__might_sleep);
8262 #endif
8263
8264 #ifdef CONFIG_MAGIC_SYSRQ
8265 static void normalize_task(struct rq *rq, struct task_struct *p)
8266 {
8267 int on_rq;
8268
8269 update_rq_clock(rq);
8270 on_rq = p->se.on_rq;
8271 if (on_rq)
8272 deactivate_task(rq, p, 0);
8273 __setscheduler(rq, p, SCHED_NORMAL, 0);
8274 if (on_rq) {
8275 activate_task(rq, p, 0);
8276 resched_task(rq->curr);
8277 }
8278 }
8279
8280 void normalize_rt_tasks(void)
8281 {
8282 struct task_struct *g, *p;
8283 unsigned long flags;
8284 struct rq *rq;
8285
8286 read_lock_irqsave(&tasklist_lock, flags);
8287 do_each_thread(g, p) {
8288 /*
8289 * Only normalize user tasks:
8290 */
8291 if (!p->mm)
8292 continue;
8293
8294 p->se.exec_start = 0;
8295 #ifdef CONFIG_SCHEDSTATS
8296 p->se.wait_start = 0;
8297 p->se.sleep_start = 0;
8298 p->se.block_start = 0;
8299 #endif
8300
8301 if (!rt_task(p)) {
8302 /*
8303 * Renice negative nice level userspace
8304 * tasks back to 0:
8305 */
8306 if (TASK_NICE(p) < 0 && p->mm)
8307 set_user_nice(p, 0);
8308 continue;
8309 }
8310
8311 spin_lock(&p->pi_lock);
8312 rq = __task_rq_lock(p);
8313
8314 normalize_task(rq, p);
8315
8316 __task_rq_unlock(rq);
8317 spin_unlock(&p->pi_lock);
8318 } while_each_thread(g, p);
8319
8320 read_unlock_irqrestore(&tasklist_lock, flags);
8321 }
8322
8323 #endif /* CONFIG_MAGIC_SYSRQ */
8324
8325 #ifdef CONFIG_IA64
8326 /*
8327 * These functions are only useful for the IA64 MCA handling.
8328 *
8329 * They can only be called when the whole system has been
8330 * stopped - every CPU needs to be quiescent, and no scheduling
8331 * activity can take place. Using them for anything else would
8332 * be a serious bug, and as a result, they aren't even visible
8333 * under any other configuration.
8334 */
8335
8336 /**
8337 * curr_task - return the current task for a given cpu.
8338 * @cpu: the processor in question.
8339 *
8340 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8341 */
8342 struct task_struct *curr_task(int cpu)
8343 {
8344 return cpu_curr(cpu);
8345 }
8346
8347 /**
8348 * set_curr_task - set the current task for a given cpu.
8349 * @cpu: the processor in question.
8350 * @p: the task pointer to set.
8351 *
8352 * Description: This function must only be used when non-maskable interrupts
8353 * are serviced on a separate stack. It allows the architecture to switch the
8354 * notion of the current task on a cpu in a non-blocking manner. This function
8355 * must be called with all CPU's synchronized, and interrupts disabled, the
8356 * and caller must save the original value of the current task (see
8357 * curr_task() above) and restore that value before reenabling interrupts and
8358 * re-starting the system.
8359 *
8360 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8361 */
8362 void set_curr_task(int cpu, struct task_struct *p)
8363 {
8364 cpu_curr(cpu) = p;
8365 }
8366
8367 #endif
8368
8369 #ifdef CONFIG_FAIR_GROUP_SCHED
8370 static void free_fair_sched_group(struct task_group *tg)
8371 {
8372 int i;
8373
8374 for_each_possible_cpu(i) {
8375 if (tg->cfs_rq)
8376 kfree(tg->cfs_rq[i]);
8377 if (tg->se)
8378 kfree(tg->se[i]);
8379 }
8380
8381 kfree(tg->cfs_rq);
8382 kfree(tg->se);
8383 }
8384
8385 static
8386 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8387 {
8388 struct cfs_rq *cfs_rq;
8389 struct sched_entity *se, *parent_se;
8390 struct rq *rq;
8391 int i;
8392
8393 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8394 if (!tg->cfs_rq)
8395 goto err;
8396 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8397 if (!tg->se)
8398 goto err;
8399
8400 tg->shares = NICE_0_LOAD;
8401
8402 for_each_possible_cpu(i) {
8403 rq = cpu_rq(i);
8404
8405 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8406 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8407 if (!cfs_rq)
8408 goto err;
8409
8410 se = kmalloc_node(sizeof(struct sched_entity),
8411 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8412 if (!se)
8413 goto err;
8414
8415 parent_se = parent ? parent->se[i] : NULL;
8416 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8417 }
8418
8419 return 1;
8420
8421 err:
8422 return 0;
8423 }
8424
8425 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8426 {
8427 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8428 &cpu_rq(cpu)->leaf_cfs_rq_list);
8429 }
8430
8431 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8432 {
8433 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8434 }
8435 #else /* !CONFG_FAIR_GROUP_SCHED */
8436 static inline void free_fair_sched_group(struct task_group *tg)
8437 {
8438 }
8439
8440 static inline
8441 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8442 {
8443 return 1;
8444 }
8445
8446 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8447 {
8448 }
8449
8450 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8451 {
8452 }
8453 #endif /* CONFIG_FAIR_GROUP_SCHED */
8454
8455 #ifdef CONFIG_RT_GROUP_SCHED
8456 static void free_rt_sched_group(struct task_group *tg)
8457 {
8458 int i;
8459
8460 destroy_rt_bandwidth(&tg->rt_bandwidth);
8461
8462 for_each_possible_cpu(i) {
8463 if (tg->rt_rq)
8464 kfree(tg->rt_rq[i]);
8465 if (tg->rt_se)
8466 kfree(tg->rt_se[i]);
8467 }
8468
8469 kfree(tg->rt_rq);
8470 kfree(tg->rt_se);
8471 }
8472
8473 static
8474 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8475 {
8476 struct rt_rq *rt_rq;
8477 struct sched_rt_entity *rt_se, *parent_se;
8478 struct rq *rq;
8479 int i;
8480
8481 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8482 if (!tg->rt_rq)
8483 goto err;
8484 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8485 if (!tg->rt_se)
8486 goto err;
8487
8488 init_rt_bandwidth(&tg->rt_bandwidth,
8489 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8490
8491 for_each_possible_cpu(i) {
8492 rq = cpu_rq(i);
8493
8494 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8495 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8496 if (!rt_rq)
8497 goto err;
8498
8499 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8500 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8501 if (!rt_se)
8502 goto err;
8503
8504 parent_se = parent ? parent->rt_se[i] : NULL;
8505 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8506 }
8507
8508 return 1;
8509
8510 err:
8511 return 0;
8512 }
8513
8514 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8515 {
8516 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8517 &cpu_rq(cpu)->leaf_rt_rq_list);
8518 }
8519
8520 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8521 {
8522 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8523 }
8524 #else /* !CONFIG_RT_GROUP_SCHED */
8525 static inline void free_rt_sched_group(struct task_group *tg)
8526 {
8527 }
8528
8529 static inline
8530 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8531 {
8532 return 1;
8533 }
8534
8535 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8536 {
8537 }
8538
8539 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8540 {
8541 }
8542 #endif /* CONFIG_RT_GROUP_SCHED */
8543
8544 #ifdef CONFIG_GROUP_SCHED
8545 static void free_sched_group(struct task_group *tg)
8546 {
8547 free_fair_sched_group(tg);
8548 free_rt_sched_group(tg);
8549 kfree(tg);
8550 }
8551
8552 /* allocate runqueue etc for a new task group */
8553 struct task_group *sched_create_group(struct task_group *parent)
8554 {
8555 struct task_group *tg;
8556 unsigned long flags;
8557 int i;
8558
8559 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8560 if (!tg)
8561 return ERR_PTR(-ENOMEM);
8562
8563 if (!alloc_fair_sched_group(tg, parent))
8564 goto err;
8565
8566 if (!alloc_rt_sched_group(tg, parent))
8567 goto err;
8568
8569 spin_lock_irqsave(&task_group_lock, flags);
8570 for_each_possible_cpu(i) {
8571 register_fair_sched_group(tg, i);
8572 register_rt_sched_group(tg, i);
8573 }
8574 list_add_rcu(&tg->list, &task_groups);
8575
8576 WARN_ON(!parent); /* root should already exist */
8577
8578 tg->parent = parent;
8579 INIT_LIST_HEAD(&tg->children);
8580 list_add_rcu(&tg->siblings, &parent->children);
8581 spin_unlock_irqrestore(&task_group_lock, flags);
8582
8583 return tg;
8584
8585 err:
8586 free_sched_group(tg);
8587 return ERR_PTR(-ENOMEM);
8588 }
8589
8590 /* rcu callback to free various structures associated with a task group */
8591 static void free_sched_group_rcu(struct rcu_head *rhp)
8592 {
8593 /* now it should be safe to free those cfs_rqs */
8594 free_sched_group(container_of(rhp, struct task_group, rcu));
8595 }
8596
8597 /* Destroy runqueue etc associated with a task group */
8598 void sched_destroy_group(struct task_group *tg)
8599 {
8600 unsigned long flags;
8601 int i;
8602
8603 spin_lock_irqsave(&task_group_lock, flags);
8604 for_each_possible_cpu(i) {
8605 unregister_fair_sched_group(tg, i);
8606 unregister_rt_sched_group(tg, i);
8607 }
8608 list_del_rcu(&tg->list);
8609 list_del_rcu(&tg->siblings);
8610 spin_unlock_irqrestore(&task_group_lock, flags);
8611
8612 /* wait for possible concurrent references to cfs_rqs complete */
8613 call_rcu(&tg->rcu, free_sched_group_rcu);
8614 }
8615
8616 /* change task's runqueue when it moves between groups.
8617 * The caller of this function should have put the task in its new group
8618 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8619 * reflect its new group.
8620 */
8621 void sched_move_task(struct task_struct *tsk)
8622 {
8623 int on_rq, running;
8624 unsigned long flags;
8625 struct rq *rq;
8626
8627 rq = task_rq_lock(tsk, &flags);
8628
8629 update_rq_clock(rq);
8630
8631 running = task_current(rq, tsk);
8632 on_rq = tsk->se.on_rq;
8633
8634 if (on_rq)
8635 dequeue_task(rq, tsk, 0);
8636 if (unlikely(running))
8637 tsk->sched_class->put_prev_task(rq, tsk);
8638
8639 set_task_rq(tsk, task_cpu(tsk));
8640
8641 #ifdef CONFIG_FAIR_GROUP_SCHED
8642 if (tsk->sched_class->moved_group)
8643 tsk->sched_class->moved_group(tsk);
8644 #endif
8645
8646 if (unlikely(running))
8647 tsk->sched_class->set_curr_task(rq);
8648 if (on_rq)
8649 enqueue_task(rq, tsk, 0);
8650
8651 task_rq_unlock(rq, &flags);
8652 }
8653 #endif /* CONFIG_GROUP_SCHED */
8654
8655 #ifdef CONFIG_FAIR_GROUP_SCHED
8656 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8657 {
8658 struct cfs_rq *cfs_rq = se->cfs_rq;
8659 int on_rq;
8660
8661 on_rq = se->on_rq;
8662 if (on_rq)
8663 dequeue_entity(cfs_rq, se, 0);
8664
8665 se->load.weight = shares;
8666 se->load.inv_weight = 0;
8667
8668 if (on_rq)
8669 enqueue_entity(cfs_rq, se, 0);
8670 }
8671
8672 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8673 {
8674 struct cfs_rq *cfs_rq = se->cfs_rq;
8675 struct rq *rq = cfs_rq->rq;
8676 unsigned long flags;
8677
8678 spin_lock_irqsave(&rq->lock, flags);
8679 __set_se_shares(se, shares);
8680 spin_unlock_irqrestore(&rq->lock, flags);
8681 }
8682
8683 static DEFINE_MUTEX(shares_mutex);
8684
8685 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8686 {
8687 int i;
8688 unsigned long flags;
8689
8690 /*
8691 * We can't change the weight of the root cgroup.
8692 */
8693 if (!tg->se[0])
8694 return -EINVAL;
8695
8696 if (shares < MIN_SHARES)
8697 shares = MIN_SHARES;
8698 else if (shares > MAX_SHARES)
8699 shares = MAX_SHARES;
8700
8701 mutex_lock(&shares_mutex);
8702 if (tg->shares == shares)
8703 goto done;
8704
8705 spin_lock_irqsave(&task_group_lock, flags);
8706 for_each_possible_cpu(i)
8707 unregister_fair_sched_group(tg, i);
8708 list_del_rcu(&tg->siblings);
8709 spin_unlock_irqrestore(&task_group_lock, flags);
8710
8711 /* wait for any ongoing reference to this group to finish */
8712 synchronize_sched();
8713
8714 /*
8715 * Now we are free to modify the group's share on each cpu
8716 * w/o tripping rebalance_share or load_balance_fair.
8717 */
8718 tg->shares = shares;
8719 for_each_possible_cpu(i) {
8720 /*
8721 * force a rebalance
8722 */
8723 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8724 set_se_shares(tg->se[i], shares);
8725 }
8726
8727 /*
8728 * Enable load balance activity on this group, by inserting it back on
8729 * each cpu's rq->leaf_cfs_rq_list.
8730 */
8731 spin_lock_irqsave(&task_group_lock, flags);
8732 for_each_possible_cpu(i)
8733 register_fair_sched_group(tg, i);
8734 list_add_rcu(&tg->siblings, &tg->parent->children);
8735 spin_unlock_irqrestore(&task_group_lock, flags);
8736 done:
8737 mutex_unlock(&shares_mutex);
8738 return 0;
8739 }
8740
8741 unsigned long sched_group_shares(struct task_group *tg)
8742 {
8743 return tg->shares;
8744 }
8745 #endif
8746
8747 #ifdef CONFIG_RT_GROUP_SCHED
8748 /*
8749 * Ensure that the real time constraints are schedulable.
8750 */
8751 static DEFINE_MUTEX(rt_constraints_mutex);
8752
8753 static unsigned long to_ratio(u64 period, u64 runtime)
8754 {
8755 if (runtime == RUNTIME_INF)
8756 return 1ULL << 16;
8757
8758 return div64_u64(runtime << 16, period);
8759 }
8760
8761 #ifdef CONFIG_CGROUP_SCHED
8762 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8763 {
8764 struct task_group *tgi, *parent = tg->parent;
8765 unsigned long total = 0;
8766
8767 if (!parent) {
8768 if (global_rt_period() < period)
8769 return 0;
8770
8771 return to_ratio(period, runtime) <
8772 to_ratio(global_rt_period(), global_rt_runtime());
8773 }
8774
8775 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8776 return 0;
8777
8778 rcu_read_lock();
8779 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8780 if (tgi == tg)
8781 continue;
8782
8783 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8784 tgi->rt_bandwidth.rt_runtime);
8785 }
8786 rcu_read_unlock();
8787
8788 return total + to_ratio(period, runtime) <=
8789 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8790 parent->rt_bandwidth.rt_runtime);
8791 }
8792 #elif defined CONFIG_USER_SCHED
8793 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8794 {
8795 struct task_group *tgi;
8796 unsigned long total = 0;
8797 unsigned long global_ratio =
8798 to_ratio(global_rt_period(), global_rt_runtime());
8799
8800 rcu_read_lock();
8801 list_for_each_entry_rcu(tgi, &task_groups, list) {
8802 if (tgi == tg)
8803 continue;
8804
8805 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8806 tgi->rt_bandwidth.rt_runtime);
8807 }
8808 rcu_read_unlock();
8809
8810 return total + to_ratio(period, runtime) < global_ratio;
8811 }
8812 #endif
8813
8814 /* Must be called with tasklist_lock held */
8815 static inline int tg_has_rt_tasks(struct task_group *tg)
8816 {
8817 struct task_struct *g, *p;
8818 do_each_thread(g, p) {
8819 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8820 return 1;
8821 } while_each_thread(g, p);
8822 return 0;
8823 }
8824
8825 static int tg_set_bandwidth(struct task_group *tg,
8826 u64 rt_period, u64 rt_runtime)
8827 {
8828 int i, err = 0;
8829
8830 mutex_lock(&rt_constraints_mutex);
8831 read_lock(&tasklist_lock);
8832 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8833 err = -EBUSY;
8834 goto unlock;
8835 }
8836 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8837 err = -EINVAL;
8838 goto unlock;
8839 }
8840
8841 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8842 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8843 tg->rt_bandwidth.rt_runtime = rt_runtime;
8844
8845 for_each_possible_cpu(i) {
8846 struct rt_rq *rt_rq = tg->rt_rq[i];
8847
8848 spin_lock(&rt_rq->rt_runtime_lock);
8849 rt_rq->rt_runtime = rt_runtime;
8850 spin_unlock(&rt_rq->rt_runtime_lock);
8851 }
8852 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8853 unlock:
8854 read_unlock(&tasklist_lock);
8855 mutex_unlock(&rt_constraints_mutex);
8856
8857 return err;
8858 }
8859
8860 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8861 {
8862 u64 rt_runtime, rt_period;
8863
8864 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8865 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8866 if (rt_runtime_us < 0)
8867 rt_runtime = RUNTIME_INF;
8868
8869 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8870 }
8871
8872 long sched_group_rt_runtime(struct task_group *tg)
8873 {
8874 u64 rt_runtime_us;
8875
8876 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8877 return -1;
8878
8879 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8880 do_div(rt_runtime_us, NSEC_PER_USEC);
8881 return rt_runtime_us;
8882 }
8883
8884 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8885 {
8886 u64 rt_runtime, rt_period;
8887
8888 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8889 rt_runtime = tg->rt_bandwidth.rt_runtime;
8890
8891 if (rt_period == 0)
8892 return -EINVAL;
8893
8894 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8895 }
8896
8897 long sched_group_rt_period(struct task_group *tg)
8898 {
8899 u64 rt_period_us;
8900
8901 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8902 do_div(rt_period_us, NSEC_PER_USEC);
8903 return rt_period_us;
8904 }
8905
8906 static int sched_rt_global_constraints(void)
8907 {
8908 struct task_group *tg = &root_task_group;
8909 u64 rt_runtime, rt_period;
8910 int ret = 0;
8911
8912 if (sysctl_sched_rt_period <= 0)
8913 return -EINVAL;
8914
8915 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8916 rt_runtime = tg->rt_bandwidth.rt_runtime;
8917
8918 mutex_lock(&rt_constraints_mutex);
8919 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8920 ret = -EINVAL;
8921 mutex_unlock(&rt_constraints_mutex);
8922
8923 return ret;
8924 }
8925 #else /* !CONFIG_RT_GROUP_SCHED */
8926 static int sched_rt_global_constraints(void)
8927 {
8928 unsigned long flags;
8929 int i;
8930
8931 if (sysctl_sched_rt_period <= 0)
8932 return -EINVAL;
8933
8934 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8935 for_each_possible_cpu(i) {
8936 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8937
8938 spin_lock(&rt_rq->rt_runtime_lock);
8939 rt_rq->rt_runtime = global_rt_runtime();
8940 spin_unlock(&rt_rq->rt_runtime_lock);
8941 }
8942 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8943
8944 return 0;
8945 }
8946 #endif /* CONFIG_RT_GROUP_SCHED */
8947
8948 int sched_rt_handler(struct ctl_table *table, int write,
8949 struct file *filp, void __user *buffer, size_t *lenp,
8950 loff_t *ppos)
8951 {
8952 int ret;
8953 int old_period, old_runtime;
8954 static DEFINE_MUTEX(mutex);
8955
8956 mutex_lock(&mutex);
8957 old_period = sysctl_sched_rt_period;
8958 old_runtime = sysctl_sched_rt_runtime;
8959
8960 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8961
8962 if (!ret && write) {
8963 ret = sched_rt_global_constraints();
8964 if (ret) {
8965 sysctl_sched_rt_period = old_period;
8966 sysctl_sched_rt_runtime = old_runtime;
8967 } else {
8968 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8969 def_rt_bandwidth.rt_period =
8970 ns_to_ktime(global_rt_period());
8971 }
8972 }
8973 mutex_unlock(&mutex);
8974
8975 return ret;
8976 }
8977
8978 #ifdef CONFIG_CGROUP_SCHED
8979
8980 /* return corresponding task_group object of a cgroup */
8981 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8982 {
8983 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8984 struct task_group, css);
8985 }
8986
8987 static struct cgroup_subsys_state *
8988 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8989 {
8990 struct task_group *tg, *parent;
8991
8992 if (!cgrp->parent) {
8993 /* This is early initialization for the top cgroup */
8994 init_task_group.css.cgroup = cgrp;
8995 return &init_task_group.css;
8996 }
8997
8998 parent = cgroup_tg(cgrp->parent);
8999 tg = sched_create_group(parent);
9000 if (IS_ERR(tg))
9001 return ERR_PTR(-ENOMEM);
9002
9003 /* Bind the cgroup to task_group object we just created */
9004 tg->css.cgroup = cgrp;
9005
9006 return &tg->css;
9007 }
9008
9009 static void
9010 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9011 {
9012 struct task_group *tg = cgroup_tg(cgrp);
9013
9014 sched_destroy_group(tg);
9015 }
9016
9017 static int
9018 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9019 struct task_struct *tsk)
9020 {
9021 #ifdef CONFIG_RT_GROUP_SCHED
9022 /* Don't accept realtime tasks when there is no way for them to run */
9023 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9024 return -EINVAL;
9025 #else
9026 /* We don't support RT-tasks being in separate groups */
9027 if (tsk->sched_class != &fair_sched_class)
9028 return -EINVAL;
9029 #endif
9030
9031 return 0;
9032 }
9033
9034 static void
9035 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9036 struct cgroup *old_cont, struct task_struct *tsk)
9037 {
9038 sched_move_task(tsk);
9039 }
9040
9041 #ifdef CONFIG_FAIR_GROUP_SCHED
9042 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9043 u64 shareval)
9044 {
9045 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9046 }
9047
9048 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9049 {
9050 struct task_group *tg = cgroup_tg(cgrp);
9051
9052 return (u64) tg->shares;
9053 }
9054 #endif /* CONFIG_FAIR_GROUP_SCHED */
9055
9056 #ifdef CONFIG_RT_GROUP_SCHED
9057 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9058 s64 val)
9059 {
9060 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9061 }
9062
9063 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9064 {
9065 return sched_group_rt_runtime(cgroup_tg(cgrp));
9066 }
9067
9068 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9069 u64 rt_period_us)
9070 {
9071 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9072 }
9073
9074 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9075 {
9076 return sched_group_rt_period(cgroup_tg(cgrp));
9077 }
9078 #endif /* CONFIG_RT_GROUP_SCHED */
9079
9080 static struct cftype cpu_files[] = {
9081 #ifdef CONFIG_FAIR_GROUP_SCHED
9082 {
9083 .name = "shares",
9084 .read_u64 = cpu_shares_read_u64,
9085 .write_u64 = cpu_shares_write_u64,
9086 },
9087 #endif
9088 #ifdef CONFIG_RT_GROUP_SCHED
9089 {
9090 .name = "rt_runtime_us",
9091 .read_s64 = cpu_rt_runtime_read,
9092 .write_s64 = cpu_rt_runtime_write,
9093 },
9094 {
9095 .name = "rt_period_us",
9096 .read_u64 = cpu_rt_period_read_uint,
9097 .write_u64 = cpu_rt_period_write_uint,
9098 },
9099 #endif
9100 };
9101
9102 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9103 {
9104 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9105 }
9106
9107 struct cgroup_subsys cpu_cgroup_subsys = {
9108 .name = "cpu",
9109 .create = cpu_cgroup_create,
9110 .destroy = cpu_cgroup_destroy,
9111 .can_attach = cpu_cgroup_can_attach,
9112 .attach = cpu_cgroup_attach,
9113 .populate = cpu_cgroup_populate,
9114 .subsys_id = cpu_cgroup_subsys_id,
9115 .early_init = 1,
9116 };
9117
9118 #endif /* CONFIG_CGROUP_SCHED */
9119
9120 #ifdef CONFIG_CGROUP_CPUACCT
9121
9122 /*
9123 * CPU accounting code for task groups.
9124 *
9125 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9126 * (balbir@in.ibm.com).
9127 */
9128
9129 /* track cpu usage of a group of tasks */
9130 struct cpuacct {
9131 struct cgroup_subsys_state css;
9132 /* cpuusage holds pointer to a u64-type object on every cpu */
9133 u64 *cpuusage;
9134 };
9135
9136 struct cgroup_subsys cpuacct_subsys;
9137
9138 /* return cpu accounting group corresponding to this container */
9139 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9140 {
9141 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9142 struct cpuacct, css);
9143 }
9144
9145 /* return cpu accounting group to which this task belongs */
9146 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9147 {
9148 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9149 struct cpuacct, css);
9150 }
9151
9152 /* create a new cpu accounting group */
9153 static struct cgroup_subsys_state *cpuacct_create(
9154 struct cgroup_subsys *ss, struct cgroup *cgrp)
9155 {
9156 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9157
9158 if (!ca)
9159 return ERR_PTR(-ENOMEM);
9160
9161 ca->cpuusage = alloc_percpu(u64);
9162 if (!ca->cpuusage) {
9163 kfree(ca);
9164 return ERR_PTR(-ENOMEM);
9165 }
9166
9167 return &ca->css;
9168 }
9169
9170 /* destroy an existing cpu accounting group */
9171 static void
9172 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9173 {
9174 struct cpuacct *ca = cgroup_ca(cgrp);
9175
9176 free_percpu(ca->cpuusage);
9177 kfree(ca);
9178 }
9179
9180 /* return total cpu usage (in nanoseconds) of a group */
9181 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9182 {
9183 struct cpuacct *ca = cgroup_ca(cgrp);
9184 u64 totalcpuusage = 0;
9185 int i;
9186
9187 for_each_possible_cpu(i) {
9188 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9189
9190 /*
9191 * Take rq->lock to make 64-bit addition safe on 32-bit
9192 * platforms.
9193 */
9194 spin_lock_irq(&cpu_rq(i)->lock);
9195 totalcpuusage += *cpuusage;
9196 spin_unlock_irq(&cpu_rq(i)->lock);
9197 }
9198
9199 return totalcpuusage;
9200 }
9201
9202 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9203 u64 reset)
9204 {
9205 struct cpuacct *ca = cgroup_ca(cgrp);
9206 int err = 0;
9207 int i;
9208
9209 if (reset) {
9210 err = -EINVAL;
9211 goto out;
9212 }
9213
9214 for_each_possible_cpu(i) {
9215 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9216
9217 spin_lock_irq(&cpu_rq(i)->lock);
9218 *cpuusage = 0;
9219 spin_unlock_irq(&cpu_rq(i)->lock);
9220 }
9221 out:
9222 return err;
9223 }
9224
9225 static struct cftype files[] = {
9226 {
9227 .name = "usage",
9228 .read_u64 = cpuusage_read,
9229 .write_u64 = cpuusage_write,
9230 },
9231 };
9232
9233 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9234 {
9235 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9236 }
9237
9238 /*
9239 * charge this task's execution time to its accounting group.
9240 *
9241 * called with rq->lock held.
9242 */
9243 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9244 {
9245 struct cpuacct *ca;
9246
9247 if (!cpuacct_subsys.active)
9248 return;
9249
9250 ca = task_ca(tsk);
9251 if (ca) {
9252 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9253
9254 *cpuusage += cputime;
9255 }
9256 }
9257
9258 struct cgroup_subsys cpuacct_subsys = {
9259 .name = "cpuacct",
9260 .create = cpuacct_create,
9261 .destroy = cpuacct_destroy,
9262 .populate = cpuacct_populate,
9263 .subsys_id = cpuacct_subsys_id,
9264 };
9265 #endif /* CONFIG_CGROUP_CPUACCT */