sched: clarify ifdef tangle
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
106 /*
107 * These are the 'tuning knobs' of the scheduler:
108 *
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
111 */
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 /*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117 #define RUNTIME_INF ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205 }
206
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 {
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229 }
230
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 {
234 hrtimer_cancel(&rt_b->rt_period_timer);
235 }
236 #endif
237
238 /*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242 static DEFINE_MUTEX(sched_domains_mutex);
243
244 #ifdef CONFIG_GROUP_SCHED
245
246 #include <linux/cgroup.h>
247
248 struct cfs_rq;
249
250 static LIST_HEAD(task_groups);
251
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
257
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
270 struct rt_bandwidth rt_bandwidth;
271 #endif
272
273 struct rcu_head rcu;
274 struct list_head list;
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
279 };
280
281 #ifdef CONFIG_USER_SCHED
282
283 /*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288 struct task_group root_task_group;
289
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
296
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
304
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
307 */
308 static DEFINE_SPINLOCK(task_group_lock);
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
316
317 /*
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
325 #define MIN_SHARES 2
326 #define MAX_SHARES (1UL << 18)
327
328 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329 #endif
330
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
333 */
334 struct task_group init_task_group;
335
336 /* return group to which a task belongs */
337 static inline struct task_group *task_group(struct task_struct *p)
338 {
339 struct task_group *tg;
340
341 #ifdef CONFIG_USER_SCHED
342 tg = p->user->tg;
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
346 #else
347 tg = &init_task_group;
348 #endif
349 return tg;
350 }
351
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 {
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
358 #endif
359
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
363 #endif
364 }
365
366 #else
367
368 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 static inline struct task_group *task_group(struct task_struct *p)
370 {
371 return NULL;
372 }
373
374 #endif /* CONFIG_GROUP_SCHED */
375
376 /* CFS-related fields in a runqueue */
377 struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
381 u64 exec_clock;
382 u64 min_vruntime;
383 u64 pair_start;
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
395 struct sched_entity *curr, *next;
396
397 unsigned long nr_spread_over;
398
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
412
413 #ifdef CONFIG_SMP
414 /*
415 * the part of load.weight contributed by tasks
416 */
417 unsigned long task_weight;
418
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
426
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
436 #endif
437 #endif
438 };
439
440 /* Real-Time classes' related field in a runqueue: */
441 struct rt_rq {
442 struct rt_prio_array active;
443 unsigned long rt_nr_running;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio; /* highest queued rt task prio */
446 #endif
447 #ifdef CONFIG_SMP
448 unsigned long rt_nr_migratory;
449 int overloaded;
450 #endif
451 int rt_throttled;
452 u64 rt_time;
453 u64 rt_runtime;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock;
456
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted;
459
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464 #endif
465 };
466
467 #ifdef CONFIG_SMP
468
469 /*
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
476 */
477 struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
481
482 /*
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
487 atomic_t rto_count;
488 #ifdef CONFIG_SMP
489 struct cpupri cpupri;
490 #endif
491 };
492
493 /*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
497 static struct root_domain def_root_domain;
498
499 #endif
500
501 /*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
508 struct rq {
509 /* runqueue lock: */
510 spinlock_t lock;
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519 unsigned char idle_at_tick;
520 #ifdef CONFIG_NO_HZ
521 unsigned long last_tick_seen;
522 unsigned char in_nohz_recently;
523 #endif
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
530 struct rt_rq rt;
531
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
535 #endif
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list;
538 #endif
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
548 struct task_struct *curr, *idle;
549 unsigned long next_balance;
550 struct mm_struct *prev_mm;
551
552 u64 clock;
553
554 atomic_t nr_iowait;
555
556 #ifdef CONFIG_SMP
557 struct root_domain *rd;
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
563 /* cpu of this runqueue: */
564 int cpu;
565 int online;
566
567 unsigned long avg_load_per_task;
568
569 struct task_struct *migration_thread;
570 struct list_head migration_queue;
571 #endif
572
573 #ifdef CONFIG_SCHED_HRTICK
574 #ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577 #endif
578 struct hrtimer hrtick_timer;
579 #endif
580
581 #ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
590
591 /* schedule() stats */
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
595
596 /* try_to_wake_up() stats */
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
599
600 /* BKL stats */
601 unsigned int bkl_count;
602 #endif
603 };
604
605 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
606
607 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
608 {
609 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
610 }
611
612 static inline int cpu_of(struct rq *rq)
613 {
614 #ifdef CONFIG_SMP
615 return rq->cpu;
616 #else
617 return 0;
618 #endif
619 }
620
621 /*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635
636 static inline void update_rq_clock(struct rq *rq)
637 {
638 rq->clock = sched_clock_cpu(cpu_of(rq));
639 }
640
641 /*
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 */
644 #ifdef CONFIG_SCHED_DEBUG
645 # define const_debug __read_mostly
646 #else
647 # define const_debug static const
648 #endif
649
650 /**
651 * runqueue_is_locked
652 *
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
656 */
657 int runqueue_is_locked(void)
658 {
659 int cpu = get_cpu();
660 struct rq *rq = cpu_rq(cpu);
661 int ret;
662
663 ret = spin_is_locked(&rq->lock);
664 put_cpu();
665 return ret;
666 }
667
668 /*
669 * Debugging: various feature bits
670 */
671
672 #define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
674
675 enum {
676 #include "sched_features.h"
677 };
678
679 #undef SCHED_FEAT
680
681 #define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
683
684 const_debug unsigned int sysctl_sched_features =
685 #include "sched_features.h"
686 0;
687
688 #undef SCHED_FEAT
689
690 #ifdef CONFIG_SCHED_DEBUG
691 #define SCHED_FEAT(name, enabled) \
692 #name ,
693
694 static __read_mostly char *sched_feat_names[] = {
695 #include "sched_features.h"
696 NULL
697 };
698
699 #undef SCHED_FEAT
700
701 static int sched_feat_open(struct inode *inode, struct file *filp)
702 {
703 filp->private_data = inode->i_private;
704 return 0;
705 }
706
707 static ssize_t
708 sched_feat_read(struct file *filp, char __user *ubuf,
709 size_t cnt, loff_t *ppos)
710 {
711 char *buf;
712 int r = 0;
713 int len = 0;
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 len += strlen(sched_feat_names[i]);
718 len += 4;
719 }
720
721 buf = kmalloc(len + 2, GFP_KERNEL);
722 if (!buf)
723 return -ENOMEM;
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 if (sysctl_sched_features & (1UL << i))
727 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
728 else
729 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
730 }
731
732 r += sprintf(buf + r, "\n");
733 WARN_ON(r >= len + 2);
734
735 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
736
737 kfree(buf);
738
739 return r;
740 }
741
742 static ssize_t
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745 {
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
759 if (strncmp(buf, "NO_", 3) == 0) {
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782 }
783
784 static struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .read = sched_feat_read,
787 .write = sched_feat_write,
788 };
789
790 static __init int sched_init_debug(void)
791 {
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796 }
797 late_initcall(sched_init_debug);
798
799 #endif
800
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
802
803 /*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807 const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
809 /*
810 * ratelimit for updating the group shares.
811 * default: 0.25ms
812 */
813 unsigned int sysctl_sched_shares_ratelimit = 250000;
814
815 /*
816 * period over which we measure -rt task cpu usage in us.
817 * default: 1s
818 */
819 unsigned int sysctl_sched_rt_period = 1000000;
820
821 static __read_mostly int scheduler_running;
822
823 /*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827 int sysctl_sched_rt_runtime = 950000;
828
829 static inline u64 global_rt_period(void)
830 {
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832 }
833
834 static inline u64 global_rt_runtime(void)
835 {
836 if (sysctl_sched_rt_runtime < 0)
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840 }
841
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
847 #endif
848
849 static inline int task_current(struct rq *rq, struct task_struct *p)
850 {
851 return rq->curr == p;
852 }
853
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
856 {
857 return task_current(rq, p);
858 }
859
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 {
862 }
863
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865 {
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
877 spin_unlock_irq(&rq->lock);
878 }
879
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
882 {
883 #ifdef CONFIG_SMP
884 return p->oncpu;
885 #else
886 return task_current(rq, p);
887 #endif
888 }
889
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 {
892 #ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq->lock);
902 #else
903 spin_unlock(&rq->lock);
904 #endif
905 }
906
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 {
909 #ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
920 #endif
921 }
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
923
924 /*
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
927 */
928 static inline struct rq *__task_rq_lock(struct task_struct *p)
929 __acquires(rq->lock)
930 {
931 for (;;) {
932 struct rq *rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
936 spin_unlock(&rq->lock);
937 }
938 }
939
940 /*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
942 * interrupts. Note the ordering: we can safely lookup the task_rq without
943 * explicitly disabling preemption.
944 */
945 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
946 __acquires(rq->lock)
947 {
948 struct rq *rq;
949
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
956 spin_unlock_irqrestore(&rq->lock, *flags);
957 }
958 }
959
960 static void __task_rq_unlock(struct rq *rq)
961 __releases(rq->lock)
962 {
963 spin_unlock(&rq->lock);
964 }
965
966 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
967 __releases(rq->lock)
968 {
969 spin_unlock_irqrestore(&rq->lock, *flags);
970 }
971
972 /*
973 * this_rq_lock - lock this runqueue and disable interrupts.
974 */
975 static struct rq *this_rq_lock(void)
976 __acquires(rq->lock)
977 {
978 struct rq *rq;
979
980 local_irq_disable();
981 rq = this_rq();
982 spin_lock(&rq->lock);
983
984 return rq;
985 }
986
987 #ifdef CONFIG_SCHED_HRTICK
988 /*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
998
999 /*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004 static inline int hrtick_enabled(struct rq *rq)
1005 {
1006 if (!sched_feat(HRTICK))
1007 return 0;
1008 if (!cpu_active(cpu_of(rq)))
1009 return 0;
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011 }
1012
1013 static void hrtick_clear(struct rq *rq)
1014 {
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017 }
1018
1019 /*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024 {
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 spin_lock(&rq->lock);
1030 update_rq_clock(rq);
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035 }
1036
1037 #ifdef CONFIG_SMP
1038 /*
1039 * called from hardirq (IPI) context
1040 */
1041 static void __hrtick_start(void *arg)
1042 {
1043 struct rq *rq = arg;
1044
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
1049 }
1050
1051 /*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056 static void hrtick_start(struct rq *rq, u64 delay)
1057 {
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060
1061 timer->expires = time;
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1068 }
1069 }
1070
1071 static int
1072 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073 {
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
1083 hrtick_clear(cpu_rq(cpu));
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088 }
1089
1090 static void init_hrtick(void)
1091 {
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093 }
1094 #else
1095 /*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100 static void hrtick_start(struct rq *rq, u64 delay)
1101 {
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103 }
1104
1105 static inline void init_hrtick(void)
1106 {
1107 }
1108 #endif /* CONFIG_SMP */
1109
1110 static void init_rq_hrtick(struct rq *rq)
1111 {
1112 #ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
1114
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118 #endif
1119
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1123 }
1124 #else /* CONFIG_SCHED_HRTICK */
1125 static inline void hrtick_clear(struct rq *rq)
1126 {
1127 }
1128
1129 static inline void init_rq_hrtick(struct rq *rq)
1130 {
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SCHED_HRTICK */
1137
1138 /*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145 #ifdef CONFIG_SMP
1146
1147 #ifndef tsk_is_polling
1148 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149 #endif
1150
1151 static void resched_task(struct task_struct *p)
1152 {
1153 int cpu;
1154
1155 assert_spin_locked(&task_rq(p)->lock);
1156
1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1158 return;
1159
1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170 }
1171
1172 static void resched_cpu(int cpu)
1173 {
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1181 }
1182
1183 #ifdef CONFIG_NO_HZ
1184 /*
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1193 */
1194 void wake_up_idle_cpu(int cpu)
1195 {
1196 struct rq *rq = cpu_rq(cpu);
1197
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /*
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1207 */
1208 if (rq->curr != rq->idle)
1209 return;
1210
1211 /*
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1215 */
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218 /* NEED_RESCHED must be visible before we test polling */
1219 smp_mb();
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1222 }
1223 #endif /* CONFIG_NO_HZ */
1224
1225 #else /* !CONFIG_SMP */
1226 static void resched_task(struct task_struct *p)
1227 {
1228 assert_spin_locked(&task_rq(p)->lock);
1229 set_tsk_need_resched(p);
1230 }
1231 #endif /* CONFIG_SMP */
1232
1233 #if BITS_PER_LONG == 32
1234 # define WMULT_CONST (~0UL)
1235 #else
1236 # define WMULT_CONST (1UL << 32)
1237 #endif
1238
1239 #define WMULT_SHIFT 32
1240
1241 /*
1242 * Shift right and round:
1243 */
1244 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1245
1246 /*
1247 * delta *= weight / lw
1248 */
1249 static unsigned long
1250 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1252 {
1253 u64 tmp;
1254
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257 lw->inv_weight = 1;
1258 else
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260 / (lw->weight+1);
1261 }
1262
1263 tmp = (u64)delta_exec * weight;
1264 /*
1265 * Check whether we'd overflow the 64-bit multiplication:
1266 */
1267 if (unlikely(tmp > WMULT_CONST))
1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1269 WMULT_SHIFT/2);
1270 else
1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272
1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 }
1275
1276 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 {
1278 lw->weight += inc;
1279 lw->inv_weight = 0;
1280 }
1281
1282 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 {
1284 lw->weight -= dec;
1285 lw->inv_weight = 0;
1286 }
1287
1288 /*
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 * scaled version of the new time slice allocation that they receive on time
1294 * slice expiry etc.
1295 */
1296
1297 #define WEIGHT_IDLEPRIO 2
1298 #define WMULT_IDLEPRIO (1 << 31)
1299
1300 /*
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1305 *
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
1311 */
1312 static const int prio_to_weight[40] = {
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
1321 };
1322
1323 /*
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325 *
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1329 */
1330 static const u32 prio_to_wmult[40] = {
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1339 };
1340
1341 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343 /*
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1347 */
1348 struct rq_iterator {
1349 void *arg;
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1352 };
1353
1354 #ifdef CONFIG_SMP
1355 static unsigned long
1356 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1360
1361 static int
1362 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
1365 #endif
1366
1367 #ifdef CONFIG_CGROUP_CPUACCT
1368 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369 #else
1370 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371 #endif
1372
1373 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374 {
1375 update_load_add(&rq->load, load);
1376 }
1377
1378 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379 {
1380 update_load_sub(&rq->load, load);
1381 }
1382
1383 #ifdef CONFIG_SMP
1384 static unsigned long source_load(int cpu, int type);
1385 static unsigned long target_load(int cpu, int type);
1386 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387
1388 static unsigned long cpu_avg_load_per_task(int cpu)
1389 {
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396 }
1397
1398 #ifdef CONFIG_FAIR_GROUP_SCHED
1399
1400 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401
1402 /*
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1405 */
1406 static void
1407 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 {
1409 struct task_group *parent, *child;
1410
1411 rcu_read_lock();
1412 parent = &root_task_group;
1413 down:
1414 (*down)(parent, cpu, sd);
1415 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child;
1417 goto down;
1418
1419 up:
1420 continue;
1421 }
1422 (*up)(parent, cpu, sd);
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 rcu_read_unlock();
1429 }
1430
1431 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432
1433 /*
1434 * Calculate and set the cpu's group shares.
1435 */
1436 static void
1437 __update_group_shares_cpu(struct task_group *tg, int cpu,
1438 unsigned long sd_shares, unsigned long sd_rq_weight)
1439 {
1440 int boost = 0;
1441 unsigned long shares;
1442 unsigned long rq_weight;
1443
1444 if (!tg->se[cpu])
1445 return;
1446
1447 rq_weight = tg->cfs_rq[cpu]->load.weight;
1448
1449 /*
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1453 */
1454 if (!rq_weight) {
1455 boost = 1;
1456 rq_weight = NICE_0_LOAD;
1457 }
1458
1459 if (unlikely(rq_weight > sd_rq_weight))
1460 rq_weight = sd_rq_weight;
1461
1462 /*
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1465 * \Sum rq_weight
1466 *
1467 */
1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469
1470 /*
1471 * record the actual number of shares, not the boosted amount.
1472 */
1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475
1476 if (shares < MIN_SHARES)
1477 shares = MIN_SHARES;
1478 else if (shares > MAX_SHARES)
1479 shares = MAX_SHARES;
1480
1481 __set_se_shares(tg->se[cpu], shares);
1482 }
1483
1484 /*
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
1488 */
1489 static void
1490 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491 {
1492 unsigned long rq_weight = 0;
1493 unsigned long shares = 0;
1494 int i;
1495
1496 for_each_cpu_mask(i, sd->span) {
1497 rq_weight += tg->cfs_rq[i]->load.weight;
1498 shares += tg->cfs_rq[i]->shares;
1499 }
1500
1501 if ((!shares && rq_weight) || shares > tg->shares)
1502 shares = tg->shares;
1503
1504 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505 shares = tg->shares;
1506
1507 if (!rq_weight)
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509
1510 for_each_cpu_mask(i, sd->span) {
1511 struct rq *rq = cpu_rq(i);
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&rq->lock, flags);
1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
1516 spin_unlock_irqrestore(&rq->lock, flags);
1517 }
1518 }
1519
1520 /*
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
1524 */
1525 static void
1526 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527 {
1528 unsigned long load;
1529
1530 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight;
1532 } else {
1533 load = tg->parent->cfs_rq[cpu]->h_load;
1534 load *= tg->cfs_rq[cpu]->shares;
1535 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1536 }
1537
1538 tg->cfs_rq[cpu]->h_load = load;
1539 }
1540
1541 static void
1542 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 {
1544 }
1545
1546 static void update_shares(struct sched_domain *sd)
1547 {
1548 u64 now = cpu_clock(raw_smp_processor_id());
1549 s64 elapsed = now - sd->last_update;
1550
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1554 }
1555 }
1556
1557 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1558 {
1559 spin_unlock(&rq->lock);
1560 update_shares(sd);
1561 spin_lock(&rq->lock);
1562 }
1563
1564 static void update_h_load(int cpu)
1565 {
1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 }
1568
1569 #else
1570
1571 static inline void update_shares(struct sched_domain *sd)
1572 {
1573 }
1574
1575 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576 {
1577 }
1578
1579 #endif
1580
1581 #endif
1582
1583 #ifdef CONFIG_FAIR_GROUP_SCHED
1584 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1585 {
1586 #ifdef CONFIG_SMP
1587 cfs_rq->shares = shares;
1588 #endif
1589 }
1590 #endif
1591
1592 #include "sched_stats.h"
1593 #include "sched_idletask.c"
1594 #include "sched_fair.c"
1595 #include "sched_rt.c"
1596 #ifdef CONFIG_SCHED_DEBUG
1597 # include "sched_debug.c"
1598 #endif
1599
1600 #define sched_class_highest (&rt_sched_class)
1601 #define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
1603
1604 static void inc_nr_running(struct rq *rq)
1605 {
1606 rq->nr_running++;
1607 }
1608
1609 static void dec_nr_running(struct rq *rq)
1610 {
1611 rq->nr_running--;
1612 }
1613
1614 static void set_load_weight(struct task_struct *p)
1615 {
1616 if (task_has_rt_policy(p)) {
1617 p->se.load.weight = prio_to_weight[0] * 2;
1618 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1619 return;
1620 }
1621
1622 /*
1623 * SCHED_IDLE tasks get minimal weight:
1624 */
1625 if (p->policy == SCHED_IDLE) {
1626 p->se.load.weight = WEIGHT_IDLEPRIO;
1627 p->se.load.inv_weight = WMULT_IDLEPRIO;
1628 return;
1629 }
1630
1631 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 }
1634
1635 static void update_avg(u64 *avg, u64 sample)
1636 {
1637 s64 diff = sample - *avg;
1638 *avg += diff >> 3;
1639 }
1640
1641 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642 {
1643 sched_info_queued(p);
1644 p->sched_class->enqueue_task(rq, p, wakeup);
1645 p->se.on_rq = 1;
1646 }
1647
1648 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649 {
1650 if (sleep && p->se.last_wakeup) {
1651 update_avg(&p->se.avg_overlap,
1652 p->se.sum_exec_runtime - p->se.last_wakeup);
1653 p->se.last_wakeup = 0;
1654 }
1655
1656 sched_info_dequeued(p);
1657 p->sched_class->dequeue_task(rq, p, sleep);
1658 p->se.on_rq = 0;
1659 }
1660
1661 /*
1662 * __normal_prio - return the priority that is based on the static prio
1663 */
1664 static inline int __normal_prio(struct task_struct *p)
1665 {
1666 return p->static_prio;
1667 }
1668
1669 /*
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1675 */
1676 static inline int normal_prio(struct task_struct *p)
1677 {
1678 int prio;
1679
1680 if (task_has_rt_policy(p))
1681 prio = MAX_RT_PRIO-1 - p->rt_priority;
1682 else
1683 prio = __normal_prio(p);
1684 return prio;
1685 }
1686
1687 /*
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1693 */
1694 static int effective_prio(struct task_struct *p)
1695 {
1696 p->normal_prio = normal_prio(p);
1697 /*
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1701 */
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1704 return p->prio;
1705 }
1706
1707 /*
1708 * activate_task - move a task to the runqueue.
1709 */
1710 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1711 {
1712 if (task_contributes_to_load(p))
1713 rq->nr_uninterruptible--;
1714
1715 enqueue_task(rq, p, wakeup);
1716 inc_nr_running(rq);
1717 }
1718
1719 /*
1720 * deactivate_task - remove a task from the runqueue.
1721 */
1722 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1723 {
1724 if (task_contributes_to_load(p))
1725 rq->nr_uninterruptible++;
1726
1727 dequeue_task(rq, p, sleep);
1728 dec_nr_running(rq);
1729 }
1730
1731 /**
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1734 */
1735 inline int task_curr(const struct task_struct *p)
1736 {
1737 return cpu_curr(task_cpu(p)) == p;
1738 }
1739
1740 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741 {
1742 set_task_rq(p, cpu);
1743 #ifdef CONFIG_SMP
1744 /*
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1748 */
1749 smp_wmb();
1750 task_thread_info(p)->cpu = cpu;
1751 #endif
1752 }
1753
1754 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755 const struct sched_class *prev_class,
1756 int oldprio, int running)
1757 {
1758 if (prev_class != p->sched_class) {
1759 if (prev_class->switched_from)
1760 prev_class->switched_from(rq, p, running);
1761 p->sched_class->switched_to(rq, p, running);
1762 } else
1763 p->sched_class->prio_changed(rq, p, oldprio, running);
1764 }
1765
1766 #ifdef CONFIG_SMP
1767
1768 /* Used instead of source_load when we know the type == 0 */
1769 static unsigned long weighted_cpuload(const int cpu)
1770 {
1771 return cpu_rq(cpu)->load.weight;
1772 }
1773
1774 /*
1775 * Is this task likely cache-hot:
1776 */
1777 static int
1778 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1779 {
1780 s64 delta;
1781
1782 /*
1783 * Buddy candidates are cache hot:
1784 */
1785 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786 return 1;
1787
1788 if (p->sched_class != &fair_sched_class)
1789 return 0;
1790
1791 if (sysctl_sched_migration_cost == -1)
1792 return 1;
1793 if (sysctl_sched_migration_cost == 0)
1794 return 0;
1795
1796 delta = now - p->se.exec_start;
1797
1798 return delta < (s64)sysctl_sched_migration_cost;
1799 }
1800
1801
1802 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1803 {
1804 int old_cpu = task_cpu(p);
1805 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808 u64 clock_offset;
1809
1810 clock_offset = old_rq->clock - new_rq->clock;
1811
1812 #ifdef CONFIG_SCHEDSTATS
1813 if (p->se.wait_start)
1814 p->se.wait_start -= clock_offset;
1815 if (p->se.sleep_start)
1816 p->se.sleep_start -= clock_offset;
1817 if (p->se.block_start)
1818 p->se.block_start -= clock_offset;
1819 if (old_cpu != new_cpu) {
1820 schedstat_inc(p, se.nr_migrations);
1821 if (task_hot(p, old_rq->clock, NULL))
1822 schedstat_inc(p, se.nr_forced2_migrations);
1823 }
1824 #endif
1825 p->se.vruntime -= old_cfsrq->min_vruntime -
1826 new_cfsrq->min_vruntime;
1827
1828 __set_task_cpu(p, new_cpu);
1829 }
1830
1831 struct migration_req {
1832 struct list_head list;
1833
1834 struct task_struct *task;
1835 int dest_cpu;
1836
1837 struct completion done;
1838 };
1839
1840 /*
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1843 */
1844 static int
1845 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1846 {
1847 struct rq *rq = task_rq(p);
1848
1849 /*
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1852 */
1853 if (!p->se.on_rq && !task_running(rq, p)) {
1854 set_task_cpu(p, dest_cpu);
1855 return 0;
1856 }
1857
1858 init_completion(&req->done);
1859 req->task = p;
1860 req->dest_cpu = dest_cpu;
1861 list_add(&req->list, &rq->migration_queue);
1862
1863 return 1;
1864 }
1865
1866 /*
1867 * wait_task_inactive - wait for a thread to unschedule.
1868 *
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1875 *
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1881 */
1882 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1883 {
1884 unsigned long flags;
1885 int running, on_rq;
1886 unsigned long ncsw;
1887 struct rq *rq;
1888
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
1897
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
1909 while (task_running(rq, p)) {
1910 if (match_state && unlikely(p->state != match_state))
1911 return 0;
1912 cpu_relax();
1913 }
1914
1915 /*
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1919 */
1920 rq = task_rq_lock(p, &flags);
1921 running = task_running(rq, p);
1922 on_rq = p->se.on_rq;
1923 ncsw = 0;
1924 if (!match_state || p->state == match_state)
1925 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926 task_rq_unlock(rq, &flags);
1927
1928 /*
1929 * If it changed from the expected state, bail out now.
1930 */
1931 if (unlikely(!ncsw))
1932 break;
1933
1934 /*
1935 * Was it really running after all now that we
1936 * checked with the proper locks actually held?
1937 *
1938 * Oops. Go back and try again..
1939 */
1940 if (unlikely(running)) {
1941 cpu_relax();
1942 continue;
1943 }
1944
1945 /*
1946 * It's not enough that it's not actively running,
1947 * it must be off the runqueue _entirely_, and not
1948 * preempted!
1949 *
1950 * So if it wa still runnable (but just not actively
1951 * running right now), it's preempted, and we should
1952 * yield - it could be a while.
1953 */
1954 if (unlikely(on_rq)) {
1955 schedule_timeout_uninterruptible(1);
1956 continue;
1957 }
1958
1959 /*
1960 * Ahh, all good. It wasn't running, and it wasn't
1961 * runnable, which means that it will never become
1962 * running in the future either. We're all done!
1963 */
1964 break;
1965 }
1966
1967 return ncsw;
1968 }
1969
1970 /***
1971 * kick_process - kick a running thread to enter/exit the kernel
1972 * @p: the to-be-kicked thread
1973 *
1974 * Cause a process which is running on another CPU to enter
1975 * kernel-mode, without any delay. (to get signals handled.)
1976 *
1977 * NOTE: this function doesnt have to take the runqueue lock,
1978 * because all it wants to ensure is that the remote task enters
1979 * the kernel. If the IPI races and the task has been migrated
1980 * to another CPU then no harm is done and the purpose has been
1981 * achieved as well.
1982 */
1983 void kick_process(struct task_struct *p)
1984 {
1985 int cpu;
1986
1987 preempt_disable();
1988 cpu = task_cpu(p);
1989 if ((cpu != smp_processor_id()) && task_curr(p))
1990 smp_send_reschedule(cpu);
1991 preempt_enable();
1992 }
1993
1994 /*
1995 * Return a low guess at the load of a migration-source cpu weighted
1996 * according to the scheduling class and "nice" value.
1997 *
1998 * We want to under-estimate the load of migration sources, to
1999 * balance conservatively.
2000 */
2001 static unsigned long source_load(int cpu, int type)
2002 {
2003 struct rq *rq = cpu_rq(cpu);
2004 unsigned long total = weighted_cpuload(cpu);
2005
2006 if (type == 0 || !sched_feat(LB_BIAS))
2007 return total;
2008
2009 return min(rq->cpu_load[type-1], total);
2010 }
2011
2012 /*
2013 * Return a high guess at the load of a migration-target cpu weighted
2014 * according to the scheduling class and "nice" value.
2015 */
2016 static unsigned long target_load(int cpu, int type)
2017 {
2018 struct rq *rq = cpu_rq(cpu);
2019 unsigned long total = weighted_cpuload(cpu);
2020
2021 if (type == 0 || !sched_feat(LB_BIAS))
2022 return total;
2023
2024 return max(rq->cpu_load[type-1], total);
2025 }
2026
2027 /*
2028 * find_idlest_group finds and returns the least busy CPU group within the
2029 * domain.
2030 */
2031 static struct sched_group *
2032 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2033 {
2034 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2035 unsigned long min_load = ULONG_MAX, this_load = 0;
2036 int load_idx = sd->forkexec_idx;
2037 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2038
2039 do {
2040 unsigned long load, avg_load;
2041 int local_group;
2042 int i;
2043
2044 /* Skip over this group if it has no CPUs allowed */
2045 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2046 continue;
2047
2048 local_group = cpu_isset(this_cpu, group->cpumask);
2049
2050 /* Tally up the load of all CPUs in the group */
2051 avg_load = 0;
2052
2053 for_each_cpu_mask_nr(i, group->cpumask) {
2054 /* Bias balancing toward cpus of our domain */
2055 if (local_group)
2056 load = source_load(i, load_idx);
2057 else
2058 load = target_load(i, load_idx);
2059
2060 avg_load += load;
2061 }
2062
2063 /* Adjust by relative CPU power of the group */
2064 avg_load = sg_div_cpu_power(group,
2065 avg_load * SCHED_LOAD_SCALE);
2066
2067 if (local_group) {
2068 this_load = avg_load;
2069 this = group;
2070 } else if (avg_load < min_load) {
2071 min_load = avg_load;
2072 idlest = group;
2073 }
2074 } while (group = group->next, group != sd->groups);
2075
2076 if (!idlest || 100*this_load < imbalance*min_load)
2077 return NULL;
2078 return idlest;
2079 }
2080
2081 /*
2082 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2083 */
2084 static int
2085 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2086 cpumask_t *tmp)
2087 {
2088 unsigned long load, min_load = ULONG_MAX;
2089 int idlest = -1;
2090 int i;
2091
2092 /* Traverse only the allowed CPUs */
2093 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2094
2095 for_each_cpu_mask_nr(i, *tmp) {
2096 load = weighted_cpuload(i);
2097
2098 if (load < min_load || (load == min_load && i == this_cpu)) {
2099 min_load = load;
2100 idlest = i;
2101 }
2102 }
2103
2104 return idlest;
2105 }
2106
2107 /*
2108 * sched_balance_self: balance the current task (running on cpu) in domains
2109 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2110 * SD_BALANCE_EXEC.
2111 *
2112 * Balance, ie. select the least loaded group.
2113 *
2114 * Returns the target CPU number, or the same CPU if no balancing is needed.
2115 *
2116 * preempt must be disabled.
2117 */
2118 static int sched_balance_self(int cpu, int flag)
2119 {
2120 struct task_struct *t = current;
2121 struct sched_domain *tmp, *sd = NULL;
2122
2123 for_each_domain(cpu, tmp) {
2124 /*
2125 * If power savings logic is enabled for a domain, stop there.
2126 */
2127 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2128 break;
2129 if (tmp->flags & flag)
2130 sd = tmp;
2131 }
2132
2133 if (sd)
2134 update_shares(sd);
2135
2136 while (sd) {
2137 cpumask_t span, tmpmask;
2138 struct sched_group *group;
2139 int new_cpu, weight;
2140
2141 if (!(sd->flags & flag)) {
2142 sd = sd->child;
2143 continue;
2144 }
2145
2146 span = sd->span;
2147 group = find_idlest_group(sd, t, cpu);
2148 if (!group) {
2149 sd = sd->child;
2150 continue;
2151 }
2152
2153 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2154 if (new_cpu == -1 || new_cpu == cpu) {
2155 /* Now try balancing at a lower domain level of cpu */
2156 sd = sd->child;
2157 continue;
2158 }
2159
2160 /* Now try balancing at a lower domain level of new_cpu */
2161 cpu = new_cpu;
2162 sd = NULL;
2163 weight = cpus_weight(span);
2164 for_each_domain(cpu, tmp) {
2165 if (weight <= cpus_weight(tmp->span))
2166 break;
2167 if (tmp->flags & flag)
2168 sd = tmp;
2169 }
2170 /* while loop will break here if sd == NULL */
2171 }
2172
2173 return cpu;
2174 }
2175
2176 #endif /* CONFIG_SMP */
2177
2178 /***
2179 * try_to_wake_up - wake up a thread
2180 * @p: the to-be-woken-up thread
2181 * @state: the mask of task states that can be woken
2182 * @sync: do a synchronous wakeup?
2183 *
2184 * Put it on the run-queue if it's not already there. The "current"
2185 * thread is always on the run-queue (except when the actual
2186 * re-schedule is in progress), and as such you're allowed to do
2187 * the simpler "current->state = TASK_RUNNING" to mark yourself
2188 * runnable without the overhead of this.
2189 *
2190 * returns failure only if the task is already active.
2191 */
2192 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2193 {
2194 int cpu, orig_cpu, this_cpu, success = 0;
2195 unsigned long flags;
2196 long old_state;
2197 struct rq *rq;
2198
2199 if (!sched_feat(SYNC_WAKEUPS))
2200 sync = 0;
2201
2202 #ifdef CONFIG_SMP
2203 if (sched_feat(LB_WAKEUP_UPDATE)) {
2204 struct sched_domain *sd;
2205
2206 this_cpu = raw_smp_processor_id();
2207 cpu = task_cpu(p);
2208
2209 for_each_domain(this_cpu, sd) {
2210 if (cpu_isset(cpu, sd->span)) {
2211 update_shares(sd);
2212 break;
2213 }
2214 }
2215 }
2216 #endif
2217
2218 smp_wmb();
2219 rq = task_rq_lock(p, &flags);
2220 old_state = p->state;
2221 if (!(old_state & state))
2222 goto out;
2223
2224 if (p->se.on_rq)
2225 goto out_running;
2226
2227 cpu = task_cpu(p);
2228 orig_cpu = cpu;
2229 this_cpu = smp_processor_id();
2230
2231 #ifdef CONFIG_SMP
2232 if (unlikely(task_running(rq, p)))
2233 goto out_activate;
2234
2235 cpu = p->sched_class->select_task_rq(p, sync);
2236 if (cpu != orig_cpu) {
2237 set_task_cpu(p, cpu);
2238 task_rq_unlock(rq, &flags);
2239 /* might preempt at this point */
2240 rq = task_rq_lock(p, &flags);
2241 old_state = p->state;
2242 if (!(old_state & state))
2243 goto out;
2244 if (p->se.on_rq)
2245 goto out_running;
2246
2247 this_cpu = smp_processor_id();
2248 cpu = task_cpu(p);
2249 }
2250
2251 #ifdef CONFIG_SCHEDSTATS
2252 schedstat_inc(rq, ttwu_count);
2253 if (cpu == this_cpu)
2254 schedstat_inc(rq, ttwu_local);
2255 else {
2256 struct sched_domain *sd;
2257 for_each_domain(this_cpu, sd) {
2258 if (cpu_isset(cpu, sd->span)) {
2259 schedstat_inc(sd, ttwu_wake_remote);
2260 break;
2261 }
2262 }
2263 }
2264 #endif /* CONFIG_SCHEDSTATS */
2265
2266 out_activate:
2267 #endif /* CONFIG_SMP */
2268 schedstat_inc(p, se.nr_wakeups);
2269 if (sync)
2270 schedstat_inc(p, se.nr_wakeups_sync);
2271 if (orig_cpu != cpu)
2272 schedstat_inc(p, se.nr_wakeups_migrate);
2273 if (cpu == this_cpu)
2274 schedstat_inc(p, se.nr_wakeups_local);
2275 else
2276 schedstat_inc(p, se.nr_wakeups_remote);
2277 update_rq_clock(rq);
2278 activate_task(rq, p, 1);
2279 success = 1;
2280
2281 out_running:
2282 trace_mark(kernel_sched_wakeup,
2283 "pid %d state %ld ## rq %p task %p rq->curr %p",
2284 p->pid, p->state, rq, p, rq->curr);
2285 check_preempt_curr(rq, p, sync);
2286
2287 p->state = TASK_RUNNING;
2288 #ifdef CONFIG_SMP
2289 if (p->sched_class->task_wake_up)
2290 p->sched_class->task_wake_up(rq, p);
2291 #endif
2292 out:
2293 current->se.last_wakeup = current->se.sum_exec_runtime;
2294
2295 task_rq_unlock(rq, &flags);
2296
2297 return success;
2298 }
2299
2300 int wake_up_process(struct task_struct *p)
2301 {
2302 return try_to_wake_up(p, TASK_ALL, 0);
2303 }
2304 EXPORT_SYMBOL(wake_up_process);
2305
2306 int wake_up_state(struct task_struct *p, unsigned int state)
2307 {
2308 return try_to_wake_up(p, state, 0);
2309 }
2310
2311 /*
2312 * Perform scheduler related setup for a newly forked process p.
2313 * p is forked by current.
2314 *
2315 * __sched_fork() is basic setup used by init_idle() too:
2316 */
2317 static void __sched_fork(struct task_struct *p)
2318 {
2319 p->se.exec_start = 0;
2320 p->se.sum_exec_runtime = 0;
2321 p->se.prev_sum_exec_runtime = 0;
2322 p->se.last_wakeup = 0;
2323 p->se.avg_overlap = 0;
2324
2325 #ifdef CONFIG_SCHEDSTATS
2326 p->se.wait_start = 0;
2327 p->se.sum_sleep_runtime = 0;
2328 p->se.sleep_start = 0;
2329 p->se.block_start = 0;
2330 p->se.sleep_max = 0;
2331 p->se.block_max = 0;
2332 p->se.exec_max = 0;
2333 p->se.slice_max = 0;
2334 p->se.wait_max = 0;
2335 #endif
2336
2337 INIT_LIST_HEAD(&p->rt.run_list);
2338 p->se.on_rq = 0;
2339 INIT_LIST_HEAD(&p->se.group_node);
2340
2341 #ifdef CONFIG_PREEMPT_NOTIFIERS
2342 INIT_HLIST_HEAD(&p->preempt_notifiers);
2343 #endif
2344
2345 /*
2346 * We mark the process as running here, but have not actually
2347 * inserted it onto the runqueue yet. This guarantees that
2348 * nobody will actually run it, and a signal or other external
2349 * event cannot wake it up and insert it on the runqueue either.
2350 */
2351 p->state = TASK_RUNNING;
2352 }
2353
2354 /*
2355 * fork()/clone()-time setup:
2356 */
2357 void sched_fork(struct task_struct *p, int clone_flags)
2358 {
2359 int cpu = get_cpu();
2360
2361 __sched_fork(p);
2362
2363 #ifdef CONFIG_SMP
2364 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2365 #endif
2366 set_task_cpu(p, cpu);
2367
2368 /*
2369 * Make sure we do not leak PI boosting priority to the child:
2370 */
2371 p->prio = current->normal_prio;
2372 if (!rt_prio(p->prio))
2373 p->sched_class = &fair_sched_class;
2374
2375 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2376 if (likely(sched_info_on()))
2377 memset(&p->sched_info, 0, sizeof(p->sched_info));
2378 #endif
2379 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2380 p->oncpu = 0;
2381 #endif
2382 #ifdef CONFIG_PREEMPT
2383 /* Want to start with kernel preemption disabled. */
2384 task_thread_info(p)->preempt_count = 1;
2385 #endif
2386 put_cpu();
2387 }
2388
2389 /*
2390 * wake_up_new_task - wake up a newly created task for the first time.
2391 *
2392 * This function will do some initial scheduler statistics housekeeping
2393 * that must be done for every newly created context, then puts the task
2394 * on the runqueue and wakes it.
2395 */
2396 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2397 {
2398 unsigned long flags;
2399 struct rq *rq;
2400
2401 rq = task_rq_lock(p, &flags);
2402 BUG_ON(p->state != TASK_RUNNING);
2403 update_rq_clock(rq);
2404
2405 p->prio = effective_prio(p);
2406
2407 if (!p->sched_class->task_new || !current->se.on_rq) {
2408 activate_task(rq, p, 0);
2409 } else {
2410 /*
2411 * Let the scheduling class do new task startup
2412 * management (if any):
2413 */
2414 p->sched_class->task_new(rq, p);
2415 inc_nr_running(rq);
2416 }
2417 trace_mark(kernel_sched_wakeup_new,
2418 "pid %d state %ld ## rq %p task %p rq->curr %p",
2419 p->pid, p->state, rq, p, rq->curr);
2420 check_preempt_curr(rq, p, 0);
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_wake_up)
2423 p->sched_class->task_wake_up(rq, p);
2424 #endif
2425 task_rq_unlock(rq, &flags);
2426 }
2427
2428 #ifdef CONFIG_PREEMPT_NOTIFIERS
2429
2430 /**
2431 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2432 * @notifier: notifier struct to register
2433 */
2434 void preempt_notifier_register(struct preempt_notifier *notifier)
2435 {
2436 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2437 }
2438 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2439
2440 /**
2441 * preempt_notifier_unregister - no longer interested in preemption notifications
2442 * @notifier: notifier struct to unregister
2443 *
2444 * This is safe to call from within a preemption notifier.
2445 */
2446 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2447 {
2448 hlist_del(&notifier->link);
2449 }
2450 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2451
2452 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2453 {
2454 struct preempt_notifier *notifier;
2455 struct hlist_node *node;
2456
2457 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2458 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2459 }
2460
2461 static void
2462 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2463 struct task_struct *next)
2464 {
2465 struct preempt_notifier *notifier;
2466 struct hlist_node *node;
2467
2468 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2469 notifier->ops->sched_out(notifier, next);
2470 }
2471
2472 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2473
2474 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2475 {
2476 }
2477
2478 static void
2479 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2480 struct task_struct *next)
2481 {
2482 }
2483
2484 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2485
2486 /**
2487 * prepare_task_switch - prepare to switch tasks
2488 * @rq: the runqueue preparing to switch
2489 * @prev: the current task that is being switched out
2490 * @next: the task we are going to switch to.
2491 *
2492 * This is called with the rq lock held and interrupts off. It must
2493 * be paired with a subsequent finish_task_switch after the context
2494 * switch.
2495 *
2496 * prepare_task_switch sets up locking and calls architecture specific
2497 * hooks.
2498 */
2499 static inline void
2500 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2501 struct task_struct *next)
2502 {
2503 fire_sched_out_preempt_notifiers(prev, next);
2504 prepare_lock_switch(rq, next);
2505 prepare_arch_switch(next);
2506 }
2507
2508 /**
2509 * finish_task_switch - clean up after a task-switch
2510 * @rq: runqueue associated with task-switch
2511 * @prev: the thread we just switched away from.
2512 *
2513 * finish_task_switch must be called after the context switch, paired
2514 * with a prepare_task_switch call before the context switch.
2515 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2516 * and do any other architecture-specific cleanup actions.
2517 *
2518 * Note that we may have delayed dropping an mm in context_switch(). If
2519 * so, we finish that here outside of the runqueue lock. (Doing it
2520 * with the lock held can cause deadlocks; see schedule() for
2521 * details.)
2522 */
2523 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2524 __releases(rq->lock)
2525 {
2526 struct mm_struct *mm = rq->prev_mm;
2527 long prev_state;
2528
2529 rq->prev_mm = NULL;
2530
2531 /*
2532 * A task struct has one reference for the use as "current".
2533 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2534 * schedule one last time. The schedule call will never return, and
2535 * the scheduled task must drop that reference.
2536 * The test for TASK_DEAD must occur while the runqueue locks are
2537 * still held, otherwise prev could be scheduled on another cpu, die
2538 * there before we look at prev->state, and then the reference would
2539 * be dropped twice.
2540 * Manfred Spraul <manfred@colorfullife.com>
2541 */
2542 prev_state = prev->state;
2543 finish_arch_switch(prev);
2544 finish_lock_switch(rq, prev);
2545 #ifdef CONFIG_SMP
2546 if (current->sched_class->post_schedule)
2547 current->sched_class->post_schedule(rq);
2548 #endif
2549
2550 fire_sched_in_preempt_notifiers(current);
2551 if (mm)
2552 mmdrop(mm);
2553 if (unlikely(prev_state == TASK_DEAD)) {
2554 /*
2555 * Remove function-return probe instances associated with this
2556 * task and put them back on the free list.
2557 */
2558 kprobe_flush_task(prev);
2559 put_task_struct(prev);
2560 }
2561 }
2562
2563 /**
2564 * schedule_tail - first thing a freshly forked thread must call.
2565 * @prev: the thread we just switched away from.
2566 */
2567 asmlinkage void schedule_tail(struct task_struct *prev)
2568 __releases(rq->lock)
2569 {
2570 struct rq *rq = this_rq();
2571
2572 finish_task_switch(rq, prev);
2573 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2574 /* In this case, finish_task_switch does not reenable preemption */
2575 preempt_enable();
2576 #endif
2577 if (current->set_child_tid)
2578 put_user(task_pid_vnr(current), current->set_child_tid);
2579 }
2580
2581 /*
2582 * context_switch - switch to the new MM and the new
2583 * thread's register state.
2584 */
2585 static inline void
2586 context_switch(struct rq *rq, struct task_struct *prev,
2587 struct task_struct *next)
2588 {
2589 struct mm_struct *mm, *oldmm;
2590
2591 prepare_task_switch(rq, prev, next);
2592 trace_mark(kernel_sched_schedule,
2593 "prev_pid %d next_pid %d prev_state %ld "
2594 "## rq %p prev %p next %p",
2595 prev->pid, next->pid, prev->state,
2596 rq, prev, next);
2597 mm = next->mm;
2598 oldmm = prev->active_mm;
2599 /*
2600 * For paravirt, this is coupled with an exit in switch_to to
2601 * combine the page table reload and the switch backend into
2602 * one hypercall.
2603 */
2604 arch_enter_lazy_cpu_mode();
2605
2606 if (unlikely(!mm)) {
2607 next->active_mm = oldmm;
2608 atomic_inc(&oldmm->mm_count);
2609 enter_lazy_tlb(oldmm, next);
2610 } else
2611 switch_mm(oldmm, mm, next);
2612
2613 if (unlikely(!prev->mm)) {
2614 prev->active_mm = NULL;
2615 rq->prev_mm = oldmm;
2616 }
2617 /*
2618 * Since the runqueue lock will be released by the next
2619 * task (which is an invalid locking op but in the case
2620 * of the scheduler it's an obvious special-case), so we
2621 * do an early lockdep release here:
2622 */
2623 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2624 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2625 #endif
2626
2627 /* Here we just switch the register state and the stack. */
2628 switch_to(prev, next, prev);
2629
2630 barrier();
2631 /*
2632 * this_rq must be evaluated again because prev may have moved
2633 * CPUs since it called schedule(), thus the 'rq' on its stack
2634 * frame will be invalid.
2635 */
2636 finish_task_switch(this_rq(), prev);
2637 }
2638
2639 /*
2640 * nr_running, nr_uninterruptible and nr_context_switches:
2641 *
2642 * externally visible scheduler statistics: current number of runnable
2643 * threads, current number of uninterruptible-sleeping threads, total
2644 * number of context switches performed since bootup.
2645 */
2646 unsigned long nr_running(void)
2647 {
2648 unsigned long i, sum = 0;
2649
2650 for_each_online_cpu(i)
2651 sum += cpu_rq(i)->nr_running;
2652
2653 return sum;
2654 }
2655
2656 unsigned long nr_uninterruptible(void)
2657 {
2658 unsigned long i, sum = 0;
2659
2660 for_each_possible_cpu(i)
2661 sum += cpu_rq(i)->nr_uninterruptible;
2662
2663 /*
2664 * Since we read the counters lockless, it might be slightly
2665 * inaccurate. Do not allow it to go below zero though:
2666 */
2667 if (unlikely((long)sum < 0))
2668 sum = 0;
2669
2670 return sum;
2671 }
2672
2673 unsigned long long nr_context_switches(void)
2674 {
2675 int i;
2676 unsigned long long sum = 0;
2677
2678 for_each_possible_cpu(i)
2679 sum += cpu_rq(i)->nr_switches;
2680
2681 return sum;
2682 }
2683
2684 unsigned long nr_iowait(void)
2685 {
2686 unsigned long i, sum = 0;
2687
2688 for_each_possible_cpu(i)
2689 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2690
2691 return sum;
2692 }
2693
2694 unsigned long nr_active(void)
2695 {
2696 unsigned long i, running = 0, uninterruptible = 0;
2697
2698 for_each_online_cpu(i) {
2699 running += cpu_rq(i)->nr_running;
2700 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2701 }
2702
2703 if (unlikely((long)uninterruptible < 0))
2704 uninterruptible = 0;
2705
2706 return running + uninterruptible;
2707 }
2708
2709 /*
2710 * Update rq->cpu_load[] statistics. This function is usually called every
2711 * scheduler tick (TICK_NSEC).
2712 */
2713 static void update_cpu_load(struct rq *this_rq)
2714 {
2715 unsigned long this_load = this_rq->load.weight;
2716 int i, scale;
2717
2718 this_rq->nr_load_updates++;
2719
2720 /* Update our load: */
2721 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2722 unsigned long old_load, new_load;
2723
2724 /* scale is effectively 1 << i now, and >> i divides by scale */
2725
2726 old_load = this_rq->cpu_load[i];
2727 new_load = this_load;
2728 /*
2729 * Round up the averaging division if load is increasing. This
2730 * prevents us from getting stuck on 9 if the load is 10, for
2731 * example.
2732 */
2733 if (new_load > old_load)
2734 new_load += scale-1;
2735 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2736 }
2737 }
2738
2739 #ifdef CONFIG_SMP
2740
2741 /*
2742 * double_rq_lock - safely lock two runqueues
2743 *
2744 * Note this does not disable interrupts like task_rq_lock,
2745 * you need to do so manually before calling.
2746 */
2747 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2748 __acquires(rq1->lock)
2749 __acquires(rq2->lock)
2750 {
2751 BUG_ON(!irqs_disabled());
2752 if (rq1 == rq2) {
2753 spin_lock(&rq1->lock);
2754 __acquire(rq2->lock); /* Fake it out ;) */
2755 } else {
2756 if (rq1 < rq2) {
2757 spin_lock(&rq1->lock);
2758 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2759 } else {
2760 spin_lock(&rq2->lock);
2761 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2762 }
2763 }
2764 update_rq_clock(rq1);
2765 update_rq_clock(rq2);
2766 }
2767
2768 /*
2769 * double_rq_unlock - safely unlock two runqueues
2770 *
2771 * Note this does not restore interrupts like task_rq_unlock,
2772 * you need to do so manually after calling.
2773 */
2774 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2775 __releases(rq1->lock)
2776 __releases(rq2->lock)
2777 {
2778 spin_unlock(&rq1->lock);
2779 if (rq1 != rq2)
2780 spin_unlock(&rq2->lock);
2781 else
2782 __release(rq2->lock);
2783 }
2784
2785 /*
2786 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2787 */
2788 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2789 __releases(this_rq->lock)
2790 __acquires(busiest->lock)
2791 __acquires(this_rq->lock)
2792 {
2793 int ret = 0;
2794
2795 if (unlikely(!irqs_disabled())) {
2796 /* printk() doesn't work good under rq->lock */
2797 spin_unlock(&this_rq->lock);
2798 BUG_ON(1);
2799 }
2800 if (unlikely(!spin_trylock(&busiest->lock))) {
2801 if (busiest < this_rq) {
2802 spin_unlock(&this_rq->lock);
2803 spin_lock(&busiest->lock);
2804 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2805 ret = 1;
2806 } else
2807 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2808 }
2809 return ret;
2810 }
2811
2812 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2813 __releases(busiest->lock)
2814 {
2815 spin_unlock(&busiest->lock);
2816 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2817 }
2818
2819 /*
2820 * If dest_cpu is allowed for this process, migrate the task to it.
2821 * This is accomplished by forcing the cpu_allowed mask to only
2822 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2823 * the cpu_allowed mask is restored.
2824 */
2825 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2826 {
2827 struct migration_req req;
2828 unsigned long flags;
2829 struct rq *rq;
2830
2831 rq = task_rq_lock(p, &flags);
2832 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2833 || unlikely(!cpu_active(dest_cpu)))
2834 goto out;
2835
2836 /* force the process onto the specified CPU */
2837 if (migrate_task(p, dest_cpu, &req)) {
2838 /* Need to wait for migration thread (might exit: take ref). */
2839 struct task_struct *mt = rq->migration_thread;
2840
2841 get_task_struct(mt);
2842 task_rq_unlock(rq, &flags);
2843 wake_up_process(mt);
2844 put_task_struct(mt);
2845 wait_for_completion(&req.done);
2846
2847 return;
2848 }
2849 out:
2850 task_rq_unlock(rq, &flags);
2851 }
2852
2853 /*
2854 * sched_exec - execve() is a valuable balancing opportunity, because at
2855 * this point the task has the smallest effective memory and cache footprint.
2856 */
2857 void sched_exec(void)
2858 {
2859 int new_cpu, this_cpu = get_cpu();
2860 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2861 put_cpu();
2862 if (new_cpu != this_cpu)
2863 sched_migrate_task(current, new_cpu);
2864 }
2865
2866 /*
2867 * pull_task - move a task from a remote runqueue to the local runqueue.
2868 * Both runqueues must be locked.
2869 */
2870 static void pull_task(struct rq *src_rq, struct task_struct *p,
2871 struct rq *this_rq, int this_cpu)
2872 {
2873 deactivate_task(src_rq, p, 0);
2874 set_task_cpu(p, this_cpu);
2875 activate_task(this_rq, p, 0);
2876 /*
2877 * Note that idle threads have a prio of MAX_PRIO, for this test
2878 * to be always true for them.
2879 */
2880 check_preempt_curr(this_rq, p, 0);
2881 }
2882
2883 /*
2884 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2885 */
2886 static
2887 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2888 struct sched_domain *sd, enum cpu_idle_type idle,
2889 int *all_pinned)
2890 {
2891 /*
2892 * We do not migrate tasks that are:
2893 * 1) running (obviously), or
2894 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2895 * 3) are cache-hot on their current CPU.
2896 */
2897 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2898 schedstat_inc(p, se.nr_failed_migrations_affine);
2899 return 0;
2900 }
2901 *all_pinned = 0;
2902
2903 if (task_running(rq, p)) {
2904 schedstat_inc(p, se.nr_failed_migrations_running);
2905 return 0;
2906 }
2907
2908 /*
2909 * Aggressive migration if:
2910 * 1) task is cache cold, or
2911 * 2) too many balance attempts have failed.
2912 */
2913
2914 if (!task_hot(p, rq->clock, sd) ||
2915 sd->nr_balance_failed > sd->cache_nice_tries) {
2916 #ifdef CONFIG_SCHEDSTATS
2917 if (task_hot(p, rq->clock, sd)) {
2918 schedstat_inc(sd, lb_hot_gained[idle]);
2919 schedstat_inc(p, se.nr_forced_migrations);
2920 }
2921 #endif
2922 return 1;
2923 }
2924
2925 if (task_hot(p, rq->clock, sd)) {
2926 schedstat_inc(p, se.nr_failed_migrations_hot);
2927 return 0;
2928 }
2929 return 1;
2930 }
2931
2932 static unsigned long
2933 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2934 unsigned long max_load_move, struct sched_domain *sd,
2935 enum cpu_idle_type idle, int *all_pinned,
2936 int *this_best_prio, struct rq_iterator *iterator)
2937 {
2938 int loops = 0, pulled = 0, pinned = 0;
2939 struct task_struct *p;
2940 long rem_load_move = max_load_move;
2941
2942 if (max_load_move == 0)
2943 goto out;
2944
2945 pinned = 1;
2946
2947 /*
2948 * Start the load-balancing iterator:
2949 */
2950 p = iterator->start(iterator->arg);
2951 next:
2952 if (!p || loops++ > sysctl_sched_nr_migrate)
2953 goto out;
2954
2955 if ((p->se.load.weight >> 1) > rem_load_move ||
2956 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2957 p = iterator->next(iterator->arg);
2958 goto next;
2959 }
2960
2961 pull_task(busiest, p, this_rq, this_cpu);
2962 pulled++;
2963 rem_load_move -= p->se.load.weight;
2964
2965 /*
2966 * We only want to steal up to the prescribed amount of weighted load.
2967 */
2968 if (rem_load_move > 0) {
2969 if (p->prio < *this_best_prio)
2970 *this_best_prio = p->prio;
2971 p = iterator->next(iterator->arg);
2972 goto next;
2973 }
2974 out:
2975 /*
2976 * Right now, this is one of only two places pull_task() is called,
2977 * so we can safely collect pull_task() stats here rather than
2978 * inside pull_task().
2979 */
2980 schedstat_add(sd, lb_gained[idle], pulled);
2981
2982 if (all_pinned)
2983 *all_pinned = pinned;
2984
2985 return max_load_move - rem_load_move;
2986 }
2987
2988 /*
2989 * move_tasks tries to move up to max_load_move weighted load from busiest to
2990 * this_rq, as part of a balancing operation within domain "sd".
2991 * Returns 1 if successful and 0 otherwise.
2992 *
2993 * Called with both runqueues locked.
2994 */
2995 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2996 unsigned long max_load_move,
2997 struct sched_domain *sd, enum cpu_idle_type idle,
2998 int *all_pinned)
2999 {
3000 const struct sched_class *class = sched_class_highest;
3001 unsigned long total_load_moved = 0;
3002 int this_best_prio = this_rq->curr->prio;
3003
3004 do {
3005 total_load_moved +=
3006 class->load_balance(this_rq, this_cpu, busiest,
3007 max_load_move - total_load_moved,
3008 sd, idle, all_pinned, &this_best_prio);
3009 class = class->next;
3010
3011 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3012 break;
3013
3014 } while (class && max_load_move > total_load_moved);
3015
3016 return total_load_moved > 0;
3017 }
3018
3019 static int
3020 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3021 struct sched_domain *sd, enum cpu_idle_type idle,
3022 struct rq_iterator *iterator)
3023 {
3024 struct task_struct *p = iterator->start(iterator->arg);
3025 int pinned = 0;
3026
3027 while (p) {
3028 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3029 pull_task(busiest, p, this_rq, this_cpu);
3030 /*
3031 * Right now, this is only the second place pull_task()
3032 * is called, so we can safely collect pull_task()
3033 * stats here rather than inside pull_task().
3034 */
3035 schedstat_inc(sd, lb_gained[idle]);
3036
3037 return 1;
3038 }
3039 p = iterator->next(iterator->arg);
3040 }
3041
3042 return 0;
3043 }
3044
3045 /*
3046 * move_one_task tries to move exactly one task from busiest to this_rq, as
3047 * part of active balancing operations within "domain".
3048 * Returns 1 if successful and 0 otherwise.
3049 *
3050 * Called with both runqueues locked.
3051 */
3052 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3053 struct sched_domain *sd, enum cpu_idle_type idle)
3054 {
3055 const struct sched_class *class;
3056
3057 for (class = sched_class_highest; class; class = class->next)
3058 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3059 return 1;
3060
3061 return 0;
3062 }
3063
3064 /*
3065 * find_busiest_group finds and returns the busiest CPU group within the
3066 * domain. It calculates and returns the amount of weighted load which
3067 * should be moved to restore balance via the imbalance parameter.
3068 */
3069 static struct sched_group *
3070 find_busiest_group(struct sched_domain *sd, int this_cpu,
3071 unsigned long *imbalance, enum cpu_idle_type idle,
3072 int *sd_idle, const cpumask_t *cpus, int *balance)
3073 {
3074 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3075 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3076 unsigned long max_pull;
3077 unsigned long busiest_load_per_task, busiest_nr_running;
3078 unsigned long this_load_per_task, this_nr_running;
3079 int load_idx, group_imb = 0;
3080 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3081 int power_savings_balance = 1;
3082 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3083 unsigned long min_nr_running = ULONG_MAX;
3084 struct sched_group *group_min = NULL, *group_leader = NULL;
3085 #endif
3086
3087 max_load = this_load = total_load = total_pwr = 0;
3088 busiest_load_per_task = busiest_nr_running = 0;
3089 this_load_per_task = this_nr_running = 0;
3090
3091 if (idle == CPU_NOT_IDLE)
3092 load_idx = sd->busy_idx;
3093 else if (idle == CPU_NEWLY_IDLE)
3094 load_idx = sd->newidle_idx;
3095 else
3096 load_idx = sd->idle_idx;
3097
3098 do {
3099 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3100 int local_group;
3101 int i;
3102 int __group_imb = 0;
3103 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3104 unsigned long sum_nr_running, sum_weighted_load;
3105 unsigned long sum_avg_load_per_task;
3106 unsigned long avg_load_per_task;
3107
3108 local_group = cpu_isset(this_cpu, group->cpumask);
3109
3110 if (local_group)
3111 balance_cpu = first_cpu(group->cpumask);
3112
3113 /* Tally up the load of all CPUs in the group */
3114 sum_weighted_load = sum_nr_running = avg_load = 0;
3115 sum_avg_load_per_task = avg_load_per_task = 0;
3116
3117 max_cpu_load = 0;
3118 min_cpu_load = ~0UL;
3119
3120 for_each_cpu_mask_nr(i, group->cpumask) {
3121 struct rq *rq;
3122
3123 if (!cpu_isset(i, *cpus))
3124 continue;
3125
3126 rq = cpu_rq(i);
3127
3128 if (*sd_idle && rq->nr_running)
3129 *sd_idle = 0;
3130
3131 /* Bias balancing toward cpus of our domain */
3132 if (local_group) {
3133 if (idle_cpu(i) && !first_idle_cpu) {
3134 first_idle_cpu = 1;
3135 balance_cpu = i;
3136 }
3137
3138 load = target_load(i, load_idx);
3139 } else {
3140 load = source_load(i, load_idx);
3141 if (load > max_cpu_load)
3142 max_cpu_load = load;
3143 if (min_cpu_load > load)
3144 min_cpu_load = load;
3145 }
3146
3147 avg_load += load;
3148 sum_nr_running += rq->nr_running;
3149 sum_weighted_load += weighted_cpuload(i);
3150
3151 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3152 }
3153
3154 /*
3155 * First idle cpu or the first cpu(busiest) in this sched group
3156 * is eligible for doing load balancing at this and above
3157 * domains. In the newly idle case, we will allow all the cpu's
3158 * to do the newly idle load balance.
3159 */
3160 if (idle != CPU_NEWLY_IDLE && local_group &&
3161 balance_cpu != this_cpu && balance) {
3162 *balance = 0;
3163 goto ret;
3164 }
3165
3166 total_load += avg_load;
3167 total_pwr += group->__cpu_power;
3168
3169 /* Adjust by relative CPU power of the group */
3170 avg_load = sg_div_cpu_power(group,
3171 avg_load * SCHED_LOAD_SCALE);
3172
3173
3174 /*
3175 * Consider the group unbalanced when the imbalance is larger
3176 * than the average weight of two tasks.
3177 *
3178 * APZ: with cgroup the avg task weight can vary wildly and
3179 * might not be a suitable number - should we keep a
3180 * normalized nr_running number somewhere that negates
3181 * the hierarchy?
3182 */
3183 avg_load_per_task = sg_div_cpu_power(group,
3184 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3185
3186 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3187 __group_imb = 1;
3188
3189 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3190
3191 if (local_group) {
3192 this_load = avg_load;
3193 this = group;
3194 this_nr_running = sum_nr_running;
3195 this_load_per_task = sum_weighted_load;
3196 } else if (avg_load > max_load &&
3197 (sum_nr_running > group_capacity || __group_imb)) {
3198 max_load = avg_load;
3199 busiest = group;
3200 busiest_nr_running = sum_nr_running;
3201 busiest_load_per_task = sum_weighted_load;
3202 group_imb = __group_imb;
3203 }
3204
3205 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3206 /*
3207 * Busy processors will not participate in power savings
3208 * balance.
3209 */
3210 if (idle == CPU_NOT_IDLE ||
3211 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3212 goto group_next;
3213
3214 /*
3215 * If the local group is idle or completely loaded
3216 * no need to do power savings balance at this domain
3217 */
3218 if (local_group && (this_nr_running >= group_capacity ||
3219 !this_nr_running))
3220 power_savings_balance = 0;
3221
3222 /*
3223 * If a group is already running at full capacity or idle,
3224 * don't include that group in power savings calculations
3225 */
3226 if (!power_savings_balance || sum_nr_running >= group_capacity
3227 || !sum_nr_running)
3228 goto group_next;
3229
3230 /*
3231 * Calculate the group which has the least non-idle load.
3232 * This is the group from where we need to pick up the load
3233 * for saving power
3234 */
3235 if ((sum_nr_running < min_nr_running) ||
3236 (sum_nr_running == min_nr_running &&
3237 first_cpu(group->cpumask) <
3238 first_cpu(group_min->cpumask))) {
3239 group_min = group;
3240 min_nr_running = sum_nr_running;
3241 min_load_per_task = sum_weighted_load /
3242 sum_nr_running;
3243 }
3244
3245 /*
3246 * Calculate the group which is almost near its
3247 * capacity but still has some space to pick up some load
3248 * from other group and save more power
3249 */
3250 if (sum_nr_running <= group_capacity - 1) {
3251 if (sum_nr_running > leader_nr_running ||
3252 (sum_nr_running == leader_nr_running &&
3253 first_cpu(group->cpumask) >
3254 first_cpu(group_leader->cpumask))) {
3255 group_leader = group;
3256 leader_nr_running = sum_nr_running;
3257 }
3258 }
3259 group_next:
3260 #endif
3261 group = group->next;
3262 } while (group != sd->groups);
3263
3264 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3265 goto out_balanced;
3266
3267 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3268
3269 if (this_load >= avg_load ||
3270 100*max_load <= sd->imbalance_pct*this_load)
3271 goto out_balanced;
3272
3273 busiest_load_per_task /= busiest_nr_running;
3274 if (group_imb)
3275 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3276
3277 /*
3278 * We're trying to get all the cpus to the average_load, so we don't
3279 * want to push ourselves above the average load, nor do we wish to
3280 * reduce the max loaded cpu below the average load, as either of these
3281 * actions would just result in more rebalancing later, and ping-pong
3282 * tasks around. Thus we look for the minimum possible imbalance.
3283 * Negative imbalances (*we* are more loaded than anyone else) will
3284 * be counted as no imbalance for these purposes -- we can't fix that
3285 * by pulling tasks to us. Be careful of negative numbers as they'll
3286 * appear as very large values with unsigned longs.
3287 */
3288 if (max_load <= busiest_load_per_task)
3289 goto out_balanced;
3290
3291 /*
3292 * In the presence of smp nice balancing, certain scenarios can have
3293 * max load less than avg load(as we skip the groups at or below
3294 * its cpu_power, while calculating max_load..)
3295 */
3296 if (max_load < avg_load) {
3297 *imbalance = 0;
3298 goto small_imbalance;
3299 }
3300
3301 /* Don't want to pull so many tasks that a group would go idle */
3302 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3303
3304 /* How much load to actually move to equalise the imbalance */
3305 *imbalance = min(max_pull * busiest->__cpu_power,
3306 (avg_load - this_load) * this->__cpu_power)
3307 / SCHED_LOAD_SCALE;
3308
3309 /*
3310 * if *imbalance is less than the average load per runnable task
3311 * there is no gaurantee that any tasks will be moved so we'll have
3312 * a think about bumping its value to force at least one task to be
3313 * moved
3314 */
3315 if (*imbalance < busiest_load_per_task) {
3316 unsigned long tmp, pwr_now, pwr_move;
3317 unsigned int imbn;
3318
3319 small_imbalance:
3320 pwr_move = pwr_now = 0;
3321 imbn = 2;
3322 if (this_nr_running) {
3323 this_load_per_task /= this_nr_running;
3324 if (busiest_load_per_task > this_load_per_task)
3325 imbn = 1;
3326 } else
3327 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3328
3329 if (max_load - this_load + 2*busiest_load_per_task >=
3330 busiest_load_per_task * imbn) {
3331 *imbalance = busiest_load_per_task;
3332 return busiest;
3333 }
3334
3335 /*
3336 * OK, we don't have enough imbalance to justify moving tasks,
3337 * however we may be able to increase total CPU power used by
3338 * moving them.
3339 */
3340
3341 pwr_now += busiest->__cpu_power *
3342 min(busiest_load_per_task, max_load);
3343 pwr_now += this->__cpu_power *
3344 min(this_load_per_task, this_load);
3345 pwr_now /= SCHED_LOAD_SCALE;
3346
3347 /* Amount of load we'd subtract */
3348 tmp = sg_div_cpu_power(busiest,
3349 busiest_load_per_task * SCHED_LOAD_SCALE);
3350 if (max_load > tmp)
3351 pwr_move += busiest->__cpu_power *
3352 min(busiest_load_per_task, max_load - tmp);
3353
3354 /* Amount of load we'd add */
3355 if (max_load * busiest->__cpu_power <
3356 busiest_load_per_task * SCHED_LOAD_SCALE)
3357 tmp = sg_div_cpu_power(this,
3358 max_load * busiest->__cpu_power);
3359 else
3360 tmp = sg_div_cpu_power(this,
3361 busiest_load_per_task * SCHED_LOAD_SCALE);
3362 pwr_move += this->__cpu_power *
3363 min(this_load_per_task, this_load + tmp);
3364 pwr_move /= SCHED_LOAD_SCALE;
3365
3366 /* Move if we gain throughput */
3367 if (pwr_move > pwr_now)
3368 *imbalance = busiest_load_per_task;
3369 }
3370
3371 return busiest;
3372
3373 out_balanced:
3374 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3375 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3376 goto ret;
3377
3378 if (this == group_leader && group_leader != group_min) {
3379 *imbalance = min_load_per_task;
3380 return group_min;
3381 }
3382 #endif
3383 ret:
3384 *imbalance = 0;
3385 return NULL;
3386 }
3387
3388 /*
3389 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3390 */
3391 static struct rq *
3392 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3393 unsigned long imbalance, const cpumask_t *cpus)
3394 {
3395 struct rq *busiest = NULL, *rq;
3396 unsigned long max_load = 0;
3397 int i;
3398
3399 for_each_cpu_mask_nr(i, group->cpumask) {
3400 unsigned long wl;
3401
3402 if (!cpu_isset(i, *cpus))
3403 continue;
3404
3405 rq = cpu_rq(i);
3406 wl = weighted_cpuload(i);
3407
3408 if (rq->nr_running == 1 && wl > imbalance)
3409 continue;
3410
3411 if (wl > max_load) {
3412 max_load = wl;
3413 busiest = rq;
3414 }
3415 }
3416
3417 return busiest;
3418 }
3419
3420 /*
3421 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3422 * so long as it is large enough.
3423 */
3424 #define MAX_PINNED_INTERVAL 512
3425
3426 /*
3427 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3428 * tasks if there is an imbalance.
3429 */
3430 static int load_balance(int this_cpu, struct rq *this_rq,
3431 struct sched_domain *sd, enum cpu_idle_type idle,
3432 int *balance, cpumask_t *cpus)
3433 {
3434 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3435 struct sched_group *group;
3436 unsigned long imbalance;
3437 struct rq *busiest;
3438 unsigned long flags;
3439
3440 cpus_setall(*cpus);
3441
3442 /*
3443 * When power savings policy is enabled for the parent domain, idle
3444 * sibling can pick up load irrespective of busy siblings. In this case,
3445 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3446 * portraying it as CPU_NOT_IDLE.
3447 */
3448 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3449 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3450 sd_idle = 1;
3451
3452 schedstat_inc(sd, lb_count[idle]);
3453
3454 redo:
3455 update_shares(sd);
3456 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3457 cpus, balance);
3458
3459 if (*balance == 0)
3460 goto out_balanced;
3461
3462 if (!group) {
3463 schedstat_inc(sd, lb_nobusyg[idle]);
3464 goto out_balanced;
3465 }
3466
3467 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3468 if (!busiest) {
3469 schedstat_inc(sd, lb_nobusyq[idle]);
3470 goto out_balanced;
3471 }
3472
3473 BUG_ON(busiest == this_rq);
3474
3475 schedstat_add(sd, lb_imbalance[idle], imbalance);
3476
3477 ld_moved = 0;
3478 if (busiest->nr_running > 1) {
3479 /*
3480 * Attempt to move tasks. If find_busiest_group has found
3481 * an imbalance but busiest->nr_running <= 1, the group is
3482 * still unbalanced. ld_moved simply stays zero, so it is
3483 * correctly treated as an imbalance.
3484 */
3485 local_irq_save(flags);
3486 double_rq_lock(this_rq, busiest);
3487 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3488 imbalance, sd, idle, &all_pinned);
3489 double_rq_unlock(this_rq, busiest);
3490 local_irq_restore(flags);
3491
3492 /*
3493 * some other cpu did the load balance for us.
3494 */
3495 if (ld_moved && this_cpu != smp_processor_id())
3496 resched_cpu(this_cpu);
3497
3498 /* All tasks on this runqueue were pinned by CPU affinity */
3499 if (unlikely(all_pinned)) {
3500 cpu_clear(cpu_of(busiest), *cpus);
3501 if (!cpus_empty(*cpus))
3502 goto redo;
3503 goto out_balanced;
3504 }
3505 }
3506
3507 if (!ld_moved) {
3508 schedstat_inc(sd, lb_failed[idle]);
3509 sd->nr_balance_failed++;
3510
3511 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3512
3513 spin_lock_irqsave(&busiest->lock, flags);
3514
3515 /* don't kick the migration_thread, if the curr
3516 * task on busiest cpu can't be moved to this_cpu
3517 */
3518 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3519 spin_unlock_irqrestore(&busiest->lock, flags);
3520 all_pinned = 1;
3521 goto out_one_pinned;
3522 }
3523
3524 if (!busiest->active_balance) {
3525 busiest->active_balance = 1;
3526 busiest->push_cpu = this_cpu;
3527 active_balance = 1;
3528 }
3529 spin_unlock_irqrestore(&busiest->lock, flags);
3530 if (active_balance)
3531 wake_up_process(busiest->migration_thread);
3532
3533 /*
3534 * We've kicked active balancing, reset the failure
3535 * counter.
3536 */
3537 sd->nr_balance_failed = sd->cache_nice_tries+1;
3538 }
3539 } else
3540 sd->nr_balance_failed = 0;
3541
3542 if (likely(!active_balance)) {
3543 /* We were unbalanced, so reset the balancing interval */
3544 sd->balance_interval = sd->min_interval;
3545 } else {
3546 /*
3547 * If we've begun active balancing, start to back off. This
3548 * case may not be covered by the all_pinned logic if there
3549 * is only 1 task on the busy runqueue (because we don't call
3550 * move_tasks).
3551 */
3552 if (sd->balance_interval < sd->max_interval)
3553 sd->balance_interval *= 2;
3554 }
3555
3556 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3557 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3558 ld_moved = -1;
3559
3560 goto out;
3561
3562 out_balanced:
3563 schedstat_inc(sd, lb_balanced[idle]);
3564
3565 sd->nr_balance_failed = 0;
3566
3567 out_one_pinned:
3568 /* tune up the balancing interval */
3569 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3570 (sd->balance_interval < sd->max_interval))
3571 sd->balance_interval *= 2;
3572
3573 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3575 ld_moved = -1;
3576 else
3577 ld_moved = 0;
3578 out:
3579 if (ld_moved)
3580 update_shares(sd);
3581 return ld_moved;
3582 }
3583
3584 /*
3585 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3586 * tasks if there is an imbalance.
3587 *
3588 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3589 * this_rq is locked.
3590 */
3591 static int
3592 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3593 cpumask_t *cpus)
3594 {
3595 struct sched_group *group;
3596 struct rq *busiest = NULL;
3597 unsigned long imbalance;
3598 int ld_moved = 0;
3599 int sd_idle = 0;
3600 int all_pinned = 0;
3601
3602 cpus_setall(*cpus);
3603
3604 /*
3605 * When power savings policy is enabled for the parent domain, idle
3606 * sibling can pick up load irrespective of busy siblings. In this case,
3607 * let the state of idle sibling percolate up as IDLE, instead of
3608 * portraying it as CPU_NOT_IDLE.
3609 */
3610 if (sd->flags & SD_SHARE_CPUPOWER &&
3611 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3612 sd_idle = 1;
3613
3614 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3615 redo:
3616 update_shares_locked(this_rq, sd);
3617 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3618 &sd_idle, cpus, NULL);
3619 if (!group) {
3620 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3621 goto out_balanced;
3622 }
3623
3624 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3625 if (!busiest) {
3626 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3627 goto out_balanced;
3628 }
3629
3630 BUG_ON(busiest == this_rq);
3631
3632 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3633
3634 ld_moved = 0;
3635 if (busiest->nr_running > 1) {
3636 /* Attempt to move tasks */
3637 double_lock_balance(this_rq, busiest);
3638 /* this_rq->clock is already updated */
3639 update_rq_clock(busiest);
3640 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3641 imbalance, sd, CPU_NEWLY_IDLE,
3642 &all_pinned);
3643 double_unlock_balance(this_rq, busiest);
3644
3645 if (unlikely(all_pinned)) {
3646 cpu_clear(cpu_of(busiest), *cpus);
3647 if (!cpus_empty(*cpus))
3648 goto redo;
3649 }
3650 }
3651
3652 if (!ld_moved) {
3653 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3654 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3655 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3656 return -1;
3657 } else
3658 sd->nr_balance_failed = 0;
3659
3660 update_shares_locked(this_rq, sd);
3661 return ld_moved;
3662
3663 out_balanced:
3664 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3665 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3666 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3667 return -1;
3668 sd->nr_balance_failed = 0;
3669
3670 return 0;
3671 }
3672
3673 /*
3674 * idle_balance is called by schedule() if this_cpu is about to become
3675 * idle. Attempts to pull tasks from other CPUs.
3676 */
3677 static void idle_balance(int this_cpu, struct rq *this_rq)
3678 {
3679 struct sched_domain *sd;
3680 int pulled_task = -1;
3681 unsigned long next_balance = jiffies + HZ;
3682 cpumask_t tmpmask;
3683
3684 for_each_domain(this_cpu, sd) {
3685 unsigned long interval;
3686
3687 if (!(sd->flags & SD_LOAD_BALANCE))
3688 continue;
3689
3690 if (sd->flags & SD_BALANCE_NEWIDLE)
3691 /* If we've pulled tasks over stop searching: */
3692 pulled_task = load_balance_newidle(this_cpu, this_rq,
3693 sd, &tmpmask);
3694
3695 interval = msecs_to_jiffies(sd->balance_interval);
3696 if (time_after(next_balance, sd->last_balance + interval))
3697 next_balance = sd->last_balance + interval;
3698 if (pulled_task)
3699 break;
3700 }
3701 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3702 /*
3703 * We are going idle. next_balance may be set based on
3704 * a busy processor. So reset next_balance.
3705 */
3706 this_rq->next_balance = next_balance;
3707 }
3708 }
3709
3710 /*
3711 * active_load_balance is run by migration threads. It pushes running tasks
3712 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3713 * running on each physical CPU where possible, and avoids physical /
3714 * logical imbalances.
3715 *
3716 * Called with busiest_rq locked.
3717 */
3718 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3719 {
3720 int target_cpu = busiest_rq->push_cpu;
3721 struct sched_domain *sd;
3722 struct rq *target_rq;
3723
3724 /* Is there any task to move? */
3725 if (busiest_rq->nr_running <= 1)
3726 return;
3727
3728 target_rq = cpu_rq(target_cpu);
3729
3730 /*
3731 * This condition is "impossible", if it occurs
3732 * we need to fix it. Originally reported by
3733 * Bjorn Helgaas on a 128-cpu setup.
3734 */
3735 BUG_ON(busiest_rq == target_rq);
3736
3737 /* move a task from busiest_rq to target_rq */
3738 double_lock_balance(busiest_rq, target_rq);
3739 update_rq_clock(busiest_rq);
3740 update_rq_clock(target_rq);
3741
3742 /* Search for an sd spanning us and the target CPU. */
3743 for_each_domain(target_cpu, sd) {
3744 if ((sd->flags & SD_LOAD_BALANCE) &&
3745 cpu_isset(busiest_cpu, sd->span))
3746 break;
3747 }
3748
3749 if (likely(sd)) {
3750 schedstat_inc(sd, alb_count);
3751
3752 if (move_one_task(target_rq, target_cpu, busiest_rq,
3753 sd, CPU_IDLE))
3754 schedstat_inc(sd, alb_pushed);
3755 else
3756 schedstat_inc(sd, alb_failed);
3757 }
3758 double_unlock_balance(busiest_rq, target_rq);
3759 }
3760
3761 #ifdef CONFIG_NO_HZ
3762 static struct {
3763 atomic_t load_balancer;
3764 cpumask_t cpu_mask;
3765 } nohz ____cacheline_aligned = {
3766 .load_balancer = ATOMIC_INIT(-1),
3767 .cpu_mask = CPU_MASK_NONE,
3768 };
3769
3770 /*
3771 * This routine will try to nominate the ilb (idle load balancing)
3772 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3773 * load balancing on behalf of all those cpus. If all the cpus in the system
3774 * go into this tickless mode, then there will be no ilb owner (as there is
3775 * no need for one) and all the cpus will sleep till the next wakeup event
3776 * arrives...
3777 *
3778 * For the ilb owner, tick is not stopped. And this tick will be used
3779 * for idle load balancing. ilb owner will still be part of
3780 * nohz.cpu_mask..
3781 *
3782 * While stopping the tick, this cpu will become the ilb owner if there
3783 * is no other owner. And will be the owner till that cpu becomes busy
3784 * or if all cpus in the system stop their ticks at which point
3785 * there is no need for ilb owner.
3786 *
3787 * When the ilb owner becomes busy, it nominates another owner, during the
3788 * next busy scheduler_tick()
3789 */
3790 int select_nohz_load_balancer(int stop_tick)
3791 {
3792 int cpu = smp_processor_id();
3793
3794 if (stop_tick) {
3795 cpu_set(cpu, nohz.cpu_mask);
3796 cpu_rq(cpu)->in_nohz_recently = 1;
3797
3798 /*
3799 * If we are going offline and still the leader, give up!
3800 */
3801 if (!cpu_active(cpu) &&
3802 atomic_read(&nohz.load_balancer) == cpu) {
3803 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3804 BUG();
3805 return 0;
3806 }
3807
3808 /* time for ilb owner also to sleep */
3809 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3810 if (atomic_read(&nohz.load_balancer) == cpu)
3811 atomic_set(&nohz.load_balancer, -1);
3812 return 0;
3813 }
3814
3815 if (atomic_read(&nohz.load_balancer) == -1) {
3816 /* make me the ilb owner */
3817 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3818 return 1;
3819 } else if (atomic_read(&nohz.load_balancer) == cpu)
3820 return 1;
3821 } else {
3822 if (!cpu_isset(cpu, nohz.cpu_mask))
3823 return 0;
3824
3825 cpu_clear(cpu, nohz.cpu_mask);
3826
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3829 BUG();
3830 }
3831 return 0;
3832 }
3833 #endif
3834
3835 static DEFINE_SPINLOCK(balancing);
3836
3837 /*
3838 * It checks each scheduling domain to see if it is due to be balanced,
3839 * and initiates a balancing operation if so.
3840 *
3841 * Balancing parameters are set up in arch_init_sched_domains.
3842 */
3843 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3844 {
3845 int balance = 1;
3846 struct rq *rq = cpu_rq(cpu);
3847 unsigned long interval;
3848 struct sched_domain *sd;
3849 /* Earliest time when we have to do rebalance again */
3850 unsigned long next_balance = jiffies + 60*HZ;
3851 int update_next_balance = 0;
3852 int need_serialize;
3853 cpumask_t tmp;
3854
3855 for_each_domain(cpu, sd) {
3856 if (!(sd->flags & SD_LOAD_BALANCE))
3857 continue;
3858
3859 interval = sd->balance_interval;
3860 if (idle != CPU_IDLE)
3861 interval *= sd->busy_factor;
3862
3863 /* scale ms to jiffies */
3864 interval = msecs_to_jiffies(interval);
3865 if (unlikely(!interval))
3866 interval = 1;
3867 if (interval > HZ*NR_CPUS/10)
3868 interval = HZ*NR_CPUS/10;
3869
3870 need_serialize = sd->flags & SD_SERIALIZE;
3871
3872 if (need_serialize) {
3873 if (!spin_trylock(&balancing))
3874 goto out;
3875 }
3876
3877 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3878 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3879 /*
3880 * We've pulled tasks over so either we're no
3881 * longer idle, or one of our SMT siblings is
3882 * not idle.
3883 */
3884 idle = CPU_NOT_IDLE;
3885 }
3886 sd->last_balance = jiffies;
3887 }
3888 if (need_serialize)
3889 spin_unlock(&balancing);
3890 out:
3891 if (time_after(next_balance, sd->last_balance + interval)) {
3892 next_balance = sd->last_balance + interval;
3893 update_next_balance = 1;
3894 }
3895
3896 /*
3897 * Stop the load balance at this level. There is another
3898 * CPU in our sched group which is doing load balancing more
3899 * actively.
3900 */
3901 if (!balance)
3902 break;
3903 }
3904
3905 /*
3906 * next_balance will be updated only when there is a need.
3907 * When the cpu is attached to null domain for ex, it will not be
3908 * updated.
3909 */
3910 if (likely(update_next_balance))
3911 rq->next_balance = next_balance;
3912 }
3913
3914 /*
3915 * run_rebalance_domains is triggered when needed from the scheduler tick.
3916 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3917 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3918 */
3919 static void run_rebalance_domains(struct softirq_action *h)
3920 {
3921 int this_cpu = smp_processor_id();
3922 struct rq *this_rq = cpu_rq(this_cpu);
3923 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3924 CPU_IDLE : CPU_NOT_IDLE;
3925
3926 rebalance_domains(this_cpu, idle);
3927
3928 #ifdef CONFIG_NO_HZ
3929 /*
3930 * If this cpu is the owner for idle load balancing, then do the
3931 * balancing on behalf of the other idle cpus whose ticks are
3932 * stopped.
3933 */
3934 if (this_rq->idle_at_tick &&
3935 atomic_read(&nohz.load_balancer) == this_cpu) {
3936 cpumask_t cpus = nohz.cpu_mask;
3937 struct rq *rq;
3938 int balance_cpu;
3939
3940 cpu_clear(this_cpu, cpus);
3941 for_each_cpu_mask_nr(balance_cpu, cpus) {
3942 /*
3943 * If this cpu gets work to do, stop the load balancing
3944 * work being done for other cpus. Next load
3945 * balancing owner will pick it up.
3946 */
3947 if (need_resched())
3948 break;
3949
3950 rebalance_domains(balance_cpu, CPU_IDLE);
3951
3952 rq = cpu_rq(balance_cpu);
3953 if (time_after(this_rq->next_balance, rq->next_balance))
3954 this_rq->next_balance = rq->next_balance;
3955 }
3956 }
3957 #endif
3958 }
3959
3960 /*
3961 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3962 *
3963 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3964 * idle load balancing owner or decide to stop the periodic load balancing,
3965 * if the whole system is idle.
3966 */
3967 static inline void trigger_load_balance(struct rq *rq, int cpu)
3968 {
3969 #ifdef CONFIG_NO_HZ
3970 /*
3971 * If we were in the nohz mode recently and busy at the current
3972 * scheduler tick, then check if we need to nominate new idle
3973 * load balancer.
3974 */
3975 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3976 rq->in_nohz_recently = 0;
3977
3978 if (atomic_read(&nohz.load_balancer) == cpu) {
3979 cpu_clear(cpu, nohz.cpu_mask);
3980 atomic_set(&nohz.load_balancer, -1);
3981 }
3982
3983 if (atomic_read(&nohz.load_balancer) == -1) {
3984 /*
3985 * simple selection for now: Nominate the
3986 * first cpu in the nohz list to be the next
3987 * ilb owner.
3988 *
3989 * TBD: Traverse the sched domains and nominate
3990 * the nearest cpu in the nohz.cpu_mask.
3991 */
3992 int ilb = first_cpu(nohz.cpu_mask);
3993
3994 if (ilb < nr_cpu_ids)
3995 resched_cpu(ilb);
3996 }
3997 }
3998
3999 /*
4000 * If this cpu is idle and doing idle load balancing for all the
4001 * cpus with ticks stopped, is it time for that to stop?
4002 */
4003 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4004 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4005 resched_cpu(cpu);
4006 return;
4007 }
4008
4009 /*
4010 * If this cpu is idle and the idle load balancing is done by
4011 * someone else, then no need raise the SCHED_SOFTIRQ
4012 */
4013 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4014 cpu_isset(cpu, nohz.cpu_mask))
4015 return;
4016 #endif
4017 if (time_after_eq(jiffies, rq->next_balance))
4018 raise_softirq(SCHED_SOFTIRQ);
4019 }
4020
4021 #else /* CONFIG_SMP */
4022
4023 /*
4024 * on UP we do not need to balance between CPUs:
4025 */
4026 static inline void idle_balance(int cpu, struct rq *rq)
4027 {
4028 }
4029
4030 #endif
4031
4032 DEFINE_PER_CPU(struct kernel_stat, kstat);
4033
4034 EXPORT_PER_CPU_SYMBOL(kstat);
4035
4036 /*
4037 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4038 * that have not yet been banked in case the task is currently running.
4039 */
4040 unsigned long long task_sched_runtime(struct task_struct *p)
4041 {
4042 unsigned long flags;
4043 u64 ns, delta_exec;
4044 struct rq *rq;
4045
4046 rq = task_rq_lock(p, &flags);
4047 ns = p->se.sum_exec_runtime;
4048 if (task_current(rq, p)) {
4049 update_rq_clock(rq);
4050 delta_exec = rq->clock - p->se.exec_start;
4051 if ((s64)delta_exec > 0)
4052 ns += delta_exec;
4053 }
4054 task_rq_unlock(rq, &flags);
4055
4056 return ns;
4057 }
4058
4059 /*
4060 * Account user cpu time to a process.
4061 * @p: the process that the cpu time gets accounted to
4062 * @cputime: the cpu time spent in user space since the last update
4063 */
4064 void account_user_time(struct task_struct *p, cputime_t cputime)
4065 {
4066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4067 cputime64_t tmp;
4068
4069 p->utime = cputime_add(p->utime, cputime);
4070
4071 /* Add user time to cpustat. */
4072 tmp = cputime_to_cputime64(cputime);
4073 if (TASK_NICE(p) > 0)
4074 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4075 else
4076 cpustat->user = cputime64_add(cpustat->user, tmp);
4077 /* Account for user time used */
4078 acct_update_integrals(p);
4079 }
4080
4081 /*
4082 * Account guest cpu time to a process.
4083 * @p: the process that the cpu time gets accounted to
4084 * @cputime: the cpu time spent in virtual machine since the last update
4085 */
4086 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4087 {
4088 cputime64_t tmp;
4089 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4090
4091 tmp = cputime_to_cputime64(cputime);
4092
4093 p->utime = cputime_add(p->utime, cputime);
4094 p->gtime = cputime_add(p->gtime, cputime);
4095
4096 cpustat->user = cputime64_add(cpustat->user, tmp);
4097 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4098 }
4099
4100 /*
4101 * Account scaled user cpu time to a process.
4102 * @p: the process that the cpu time gets accounted to
4103 * @cputime: the cpu time spent in user space since the last update
4104 */
4105 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4106 {
4107 p->utimescaled = cputime_add(p->utimescaled, cputime);
4108 }
4109
4110 /*
4111 * Account system cpu time to a process.
4112 * @p: the process that the cpu time gets accounted to
4113 * @hardirq_offset: the offset to subtract from hardirq_count()
4114 * @cputime: the cpu time spent in kernel space since the last update
4115 */
4116 void account_system_time(struct task_struct *p, int hardirq_offset,
4117 cputime_t cputime)
4118 {
4119 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4120 struct rq *rq = this_rq();
4121 cputime64_t tmp;
4122
4123 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4124 account_guest_time(p, cputime);
4125 return;
4126 }
4127
4128 p->stime = cputime_add(p->stime, cputime);
4129
4130 /* Add system time to cpustat. */
4131 tmp = cputime_to_cputime64(cputime);
4132 if (hardirq_count() - hardirq_offset)
4133 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4134 else if (softirq_count())
4135 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4136 else if (p != rq->idle)
4137 cpustat->system = cputime64_add(cpustat->system, tmp);
4138 else if (atomic_read(&rq->nr_iowait) > 0)
4139 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4140 else
4141 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4142 /* Account for system time used */
4143 acct_update_integrals(p);
4144 }
4145
4146 /*
4147 * Account scaled system cpu time to a process.
4148 * @p: the process that the cpu time gets accounted to
4149 * @hardirq_offset: the offset to subtract from hardirq_count()
4150 * @cputime: the cpu time spent in kernel space since the last update
4151 */
4152 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4153 {
4154 p->stimescaled = cputime_add(p->stimescaled, cputime);
4155 }
4156
4157 /*
4158 * Account for involuntary wait time.
4159 * @p: the process from which the cpu time has been stolen
4160 * @steal: the cpu time spent in involuntary wait
4161 */
4162 void account_steal_time(struct task_struct *p, cputime_t steal)
4163 {
4164 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4165 cputime64_t tmp = cputime_to_cputime64(steal);
4166 struct rq *rq = this_rq();
4167
4168 if (p == rq->idle) {
4169 p->stime = cputime_add(p->stime, steal);
4170 if (atomic_read(&rq->nr_iowait) > 0)
4171 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4172 else
4173 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4174 } else
4175 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4176 }
4177
4178 /*
4179 * Use precise platform statistics if available:
4180 */
4181 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4182 cputime_t task_utime(struct task_struct *p)
4183 {
4184 return p->utime;
4185 }
4186
4187 cputime_t task_stime(struct task_struct *p)
4188 {
4189 return p->stime;
4190 }
4191 #else
4192 cputime_t task_utime(struct task_struct *p)
4193 {
4194 clock_t utime = cputime_to_clock_t(p->utime),
4195 total = utime + cputime_to_clock_t(p->stime);
4196 u64 temp;
4197
4198 /*
4199 * Use CFS's precise accounting:
4200 */
4201 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4202
4203 if (total) {
4204 temp *= utime;
4205 do_div(temp, total);
4206 }
4207 utime = (clock_t)temp;
4208
4209 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4210 return p->prev_utime;
4211 }
4212
4213 cputime_t task_stime(struct task_struct *p)
4214 {
4215 clock_t stime;
4216
4217 /*
4218 * Use CFS's precise accounting. (we subtract utime from
4219 * the total, to make sure the total observed by userspace
4220 * grows monotonically - apps rely on that):
4221 */
4222 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4223 cputime_to_clock_t(task_utime(p));
4224
4225 if (stime >= 0)
4226 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4227
4228 return p->prev_stime;
4229 }
4230 #endif
4231
4232 inline cputime_t task_gtime(struct task_struct *p)
4233 {
4234 return p->gtime;
4235 }
4236
4237 /*
4238 * This function gets called by the timer code, with HZ frequency.
4239 * We call it with interrupts disabled.
4240 *
4241 * It also gets called by the fork code, when changing the parent's
4242 * timeslices.
4243 */
4244 void scheduler_tick(void)
4245 {
4246 int cpu = smp_processor_id();
4247 struct rq *rq = cpu_rq(cpu);
4248 struct task_struct *curr = rq->curr;
4249
4250 sched_clock_tick();
4251
4252 spin_lock(&rq->lock);
4253 update_rq_clock(rq);
4254 update_cpu_load(rq);
4255 curr->sched_class->task_tick(rq, curr, 0);
4256 spin_unlock(&rq->lock);
4257
4258 #ifdef CONFIG_SMP
4259 rq->idle_at_tick = idle_cpu(cpu);
4260 trigger_load_balance(rq, cpu);
4261 #endif
4262 }
4263
4264 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4265 defined(CONFIG_PREEMPT_TRACER))
4266
4267 static inline unsigned long get_parent_ip(unsigned long addr)
4268 {
4269 if (in_lock_functions(addr)) {
4270 addr = CALLER_ADDR2;
4271 if (in_lock_functions(addr))
4272 addr = CALLER_ADDR3;
4273 }
4274 return addr;
4275 }
4276
4277 void __kprobes add_preempt_count(int val)
4278 {
4279 #ifdef CONFIG_DEBUG_PREEMPT
4280 /*
4281 * Underflow?
4282 */
4283 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4284 return;
4285 #endif
4286 preempt_count() += val;
4287 #ifdef CONFIG_DEBUG_PREEMPT
4288 /*
4289 * Spinlock count overflowing soon?
4290 */
4291 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4292 PREEMPT_MASK - 10);
4293 #endif
4294 if (preempt_count() == val)
4295 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4296 }
4297 EXPORT_SYMBOL(add_preempt_count);
4298
4299 void __kprobes sub_preempt_count(int val)
4300 {
4301 #ifdef CONFIG_DEBUG_PREEMPT
4302 /*
4303 * Underflow?
4304 */
4305 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4306 return;
4307 /*
4308 * Is the spinlock portion underflowing?
4309 */
4310 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4311 !(preempt_count() & PREEMPT_MASK)))
4312 return;
4313 #endif
4314
4315 if (preempt_count() == val)
4316 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4317 preempt_count() -= val;
4318 }
4319 EXPORT_SYMBOL(sub_preempt_count);
4320
4321 #endif
4322
4323 /*
4324 * Print scheduling while atomic bug:
4325 */
4326 static noinline void __schedule_bug(struct task_struct *prev)
4327 {
4328 struct pt_regs *regs = get_irq_regs();
4329
4330 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4331 prev->comm, prev->pid, preempt_count());
4332
4333 debug_show_held_locks(prev);
4334 print_modules();
4335 if (irqs_disabled())
4336 print_irqtrace_events(prev);
4337
4338 if (regs)
4339 show_regs(regs);
4340 else
4341 dump_stack();
4342 }
4343
4344 /*
4345 * Various schedule()-time debugging checks and statistics:
4346 */
4347 static inline void schedule_debug(struct task_struct *prev)
4348 {
4349 /*
4350 * Test if we are atomic. Since do_exit() needs to call into
4351 * schedule() atomically, we ignore that path for now.
4352 * Otherwise, whine if we are scheduling when we should not be.
4353 */
4354 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4355 __schedule_bug(prev);
4356
4357 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4358
4359 schedstat_inc(this_rq(), sched_count);
4360 #ifdef CONFIG_SCHEDSTATS
4361 if (unlikely(prev->lock_depth >= 0)) {
4362 schedstat_inc(this_rq(), bkl_count);
4363 schedstat_inc(prev, sched_info.bkl_count);
4364 }
4365 #endif
4366 }
4367
4368 /*
4369 * Pick up the highest-prio task:
4370 */
4371 static inline struct task_struct *
4372 pick_next_task(struct rq *rq, struct task_struct *prev)
4373 {
4374 const struct sched_class *class;
4375 struct task_struct *p;
4376
4377 /*
4378 * Optimization: we know that if all tasks are in
4379 * the fair class we can call that function directly:
4380 */
4381 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4382 p = fair_sched_class.pick_next_task(rq);
4383 if (likely(p))
4384 return p;
4385 }
4386
4387 class = sched_class_highest;
4388 for ( ; ; ) {
4389 p = class->pick_next_task(rq);
4390 if (p)
4391 return p;
4392 /*
4393 * Will never be NULL as the idle class always
4394 * returns a non-NULL p:
4395 */
4396 class = class->next;
4397 }
4398 }
4399
4400 /*
4401 * schedule() is the main scheduler function.
4402 */
4403 asmlinkage void __sched schedule(void)
4404 {
4405 struct task_struct *prev, *next;
4406 unsigned long *switch_count;
4407 struct rq *rq;
4408 int cpu;
4409
4410 need_resched:
4411 preempt_disable();
4412 cpu = smp_processor_id();
4413 rq = cpu_rq(cpu);
4414 rcu_qsctr_inc(cpu);
4415 prev = rq->curr;
4416 switch_count = &prev->nivcsw;
4417
4418 release_kernel_lock(prev);
4419 need_resched_nonpreemptible:
4420
4421 schedule_debug(prev);
4422
4423 if (sched_feat(HRTICK))
4424 hrtick_clear(rq);
4425
4426 /*
4427 * Do the rq-clock update outside the rq lock:
4428 */
4429 local_irq_disable();
4430 update_rq_clock(rq);
4431 spin_lock(&rq->lock);
4432 clear_tsk_need_resched(prev);
4433
4434 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4435 if (unlikely(signal_pending_state(prev->state, prev)))
4436 prev->state = TASK_RUNNING;
4437 else
4438 deactivate_task(rq, prev, 1);
4439 switch_count = &prev->nvcsw;
4440 }
4441
4442 #ifdef CONFIG_SMP
4443 if (prev->sched_class->pre_schedule)
4444 prev->sched_class->pre_schedule(rq, prev);
4445 #endif
4446
4447 if (unlikely(!rq->nr_running))
4448 idle_balance(cpu, rq);
4449
4450 prev->sched_class->put_prev_task(rq, prev);
4451 next = pick_next_task(rq, prev);
4452
4453 if (likely(prev != next)) {
4454 sched_info_switch(prev, next);
4455
4456 rq->nr_switches++;
4457 rq->curr = next;
4458 ++*switch_count;
4459
4460 context_switch(rq, prev, next); /* unlocks the rq */
4461 /*
4462 * the context switch might have flipped the stack from under
4463 * us, hence refresh the local variables.
4464 */
4465 cpu = smp_processor_id();
4466 rq = cpu_rq(cpu);
4467 } else
4468 spin_unlock_irq(&rq->lock);
4469
4470 if (unlikely(reacquire_kernel_lock(current) < 0))
4471 goto need_resched_nonpreemptible;
4472
4473 preempt_enable_no_resched();
4474 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4475 goto need_resched;
4476 }
4477 EXPORT_SYMBOL(schedule);
4478
4479 #ifdef CONFIG_PREEMPT
4480 /*
4481 * this is the entry point to schedule() from in-kernel preemption
4482 * off of preempt_enable. Kernel preemptions off return from interrupt
4483 * occur there and call schedule directly.
4484 */
4485 asmlinkage void __sched preempt_schedule(void)
4486 {
4487 struct thread_info *ti = current_thread_info();
4488
4489 /*
4490 * If there is a non-zero preempt_count or interrupts are disabled,
4491 * we do not want to preempt the current task. Just return..
4492 */
4493 if (likely(ti->preempt_count || irqs_disabled()))
4494 return;
4495
4496 do {
4497 add_preempt_count(PREEMPT_ACTIVE);
4498 schedule();
4499 sub_preempt_count(PREEMPT_ACTIVE);
4500
4501 /*
4502 * Check again in case we missed a preemption opportunity
4503 * between schedule and now.
4504 */
4505 barrier();
4506 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4507 }
4508 EXPORT_SYMBOL(preempt_schedule);
4509
4510 /*
4511 * this is the entry point to schedule() from kernel preemption
4512 * off of irq context.
4513 * Note, that this is called and return with irqs disabled. This will
4514 * protect us against recursive calling from irq.
4515 */
4516 asmlinkage void __sched preempt_schedule_irq(void)
4517 {
4518 struct thread_info *ti = current_thread_info();
4519
4520 /* Catch callers which need to be fixed */
4521 BUG_ON(ti->preempt_count || !irqs_disabled());
4522
4523 do {
4524 add_preempt_count(PREEMPT_ACTIVE);
4525 local_irq_enable();
4526 schedule();
4527 local_irq_disable();
4528 sub_preempt_count(PREEMPT_ACTIVE);
4529
4530 /*
4531 * Check again in case we missed a preemption opportunity
4532 * between schedule and now.
4533 */
4534 barrier();
4535 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4536 }
4537
4538 #endif /* CONFIG_PREEMPT */
4539
4540 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4541 void *key)
4542 {
4543 return try_to_wake_up(curr->private, mode, sync);
4544 }
4545 EXPORT_SYMBOL(default_wake_function);
4546
4547 /*
4548 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4549 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4550 * number) then we wake all the non-exclusive tasks and one exclusive task.
4551 *
4552 * There are circumstances in which we can try to wake a task which has already
4553 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4554 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4555 */
4556 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4557 int nr_exclusive, int sync, void *key)
4558 {
4559 wait_queue_t *curr, *next;
4560
4561 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4562 unsigned flags = curr->flags;
4563
4564 if (curr->func(curr, mode, sync, key) &&
4565 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4566 break;
4567 }
4568 }
4569
4570 /**
4571 * __wake_up - wake up threads blocked on a waitqueue.
4572 * @q: the waitqueue
4573 * @mode: which threads
4574 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4575 * @key: is directly passed to the wakeup function
4576 */
4577 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4578 int nr_exclusive, void *key)
4579 {
4580 unsigned long flags;
4581
4582 spin_lock_irqsave(&q->lock, flags);
4583 __wake_up_common(q, mode, nr_exclusive, 0, key);
4584 spin_unlock_irqrestore(&q->lock, flags);
4585 }
4586 EXPORT_SYMBOL(__wake_up);
4587
4588 /*
4589 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4590 */
4591 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4592 {
4593 __wake_up_common(q, mode, 1, 0, NULL);
4594 }
4595
4596 /**
4597 * __wake_up_sync - wake up threads blocked on a waitqueue.
4598 * @q: the waitqueue
4599 * @mode: which threads
4600 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4601 *
4602 * The sync wakeup differs that the waker knows that it will schedule
4603 * away soon, so while the target thread will be woken up, it will not
4604 * be migrated to another CPU - ie. the two threads are 'synchronized'
4605 * with each other. This can prevent needless bouncing between CPUs.
4606 *
4607 * On UP it can prevent extra preemption.
4608 */
4609 void
4610 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4611 {
4612 unsigned long flags;
4613 int sync = 1;
4614
4615 if (unlikely(!q))
4616 return;
4617
4618 if (unlikely(!nr_exclusive))
4619 sync = 0;
4620
4621 spin_lock_irqsave(&q->lock, flags);
4622 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4623 spin_unlock_irqrestore(&q->lock, flags);
4624 }
4625 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4626
4627 /**
4628 * complete: - signals a single thread waiting on this completion
4629 * @x: holds the state of this particular completion
4630 *
4631 * This will wake up a single thread waiting on this completion. Threads will be
4632 * awakened in the same order in which they were queued.
4633 *
4634 * See also complete_all(), wait_for_completion() and related routines.
4635 */
4636 void complete(struct completion *x)
4637 {
4638 unsigned long flags;
4639
4640 spin_lock_irqsave(&x->wait.lock, flags);
4641 x->done++;
4642 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4643 spin_unlock_irqrestore(&x->wait.lock, flags);
4644 }
4645 EXPORT_SYMBOL(complete);
4646
4647 /**
4648 * complete_all: - signals all threads waiting on this completion
4649 * @x: holds the state of this particular completion
4650 *
4651 * This will wake up all threads waiting on this particular completion event.
4652 */
4653 void complete_all(struct completion *x)
4654 {
4655 unsigned long flags;
4656
4657 spin_lock_irqsave(&x->wait.lock, flags);
4658 x->done += UINT_MAX/2;
4659 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4660 spin_unlock_irqrestore(&x->wait.lock, flags);
4661 }
4662 EXPORT_SYMBOL(complete_all);
4663
4664 static inline long __sched
4665 do_wait_for_common(struct completion *x, long timeout, int state)
4666 {
4667 if (!x->done) {
4668 DECLARE_WAITQUEUE(wait, current);
4669
4670 wait.flags |= WQ_FLAG_EXCLUSIVE;
4671 __add_wait_queue_tail(&x->wait, &wait);
4672 do {
4673 if (signal_pending_state(state, current)) {
4674 timeout = -ERESTARTSYS;
4675 break;
4676 }
4677 __set_current_state(state);
4678 spin_unlock_irq(&x->wait.lock);
4679 timeout = schedule_timeout(timeout);
4680 spin_lock_irq(&x->wait.lock);
4681 } while (!x->done && timeout);
4682 __remove_wait_queue(&x->wait, &wait);
4683 if (!x->done)
4684 return timeout;
4685 }
4686 x->done--;
4687 return timeout ?: 1;
4688 }
4689
4690 static long __sched
4691 wait_for_common(struct completion *x, long timeout, int state)
4692 {
4693 might_sleep();
4694
4695 spin_lock_irq(&x->wait.lock);
4696 timeout = do_wait_for_common(x, timeout, state);
4697 spin_unlock_irq(&x->wait.lock);
4698 return timeout;
4699 }
4700
4701 /**
4702 * wait_for_completion: - waits for completion of a task
4703 * @x: holds the state of this particular completion
4704 *
4705 * This waits to be signaled for completion of a specific task. It is NOT
4706 * interruptible and there is no timeout.
4707 *
4708 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4709 * and interrupt capability. Also see complete().
4710 */
4711 void __sched wait_for_completion(struct completion *x)
4712 {
4713 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4714 }
4715 EXPORT_SYMBOL(wait_for_completion);
4716
4717 /**
4718 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4719 * @x: holds the state of this particular completion
4720 * @timeout: timeout value in jiffies
4721 *
4722 * This waits for either a completion of a specific task to be signaled or for a
4723 * specified timeout to expire. The timeout is in jiffies. It is not
4724 * interruptible.
4725 */
4726 unsigned long __sched
4727 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4728 {
4729 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4730 }
4731 EXPORT_SYMBOL(wait_for_completion_timeout);
4732
4733 /**
4734 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4735 * @x: holds the state of this particular completion
4736 *
4737 * This waits for completion of a specific task to be signaled. It is
4738 * interruptible.
4739 */
4740 int __sched wait_for_completion_interruptible(struct completion *x)
4741 {
4742 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4743 if (t == -ERESTARTSYS)
4744 return t;
4745 return 0;
4746 }
4747 EXPORT_SYMBOL(wait_for_completion_interruptible);
4748
4749 /**
4750 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4751 * @x: holds the state of this particular completion
4752 * @timeout: timeout value in jiffies
4753 *
4754 * This waits for either a completion of a specific task to be signaled or for a
4755 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4756 */
4757 unsigned long __sched
4758 wait_for_completion_interruptible_timeout(struct completion *x,
4759 unsigned long timeout)
4760 {
4761 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4762 }
4763 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4764
4765 /**
4766 * wait_for_completion_killable: - waits for completion of a task (killable)
4767 * @x: holds the state of this particular completion
4768 *
4769 * This waits to be signaled for completion of a specific task. It can be
4770 * interrupted by a kill signal.
4771 */
4772 int __sched wait_for_completion_killable(struct completion *x)
4773 {
4774 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4775 if (t == -ERESTARTSYS)
4776 return t;
4777 return 0;
4778 }
4779 EXPORT_SYMBOL(wait_for_completion_killable);
4780
4781 /**
4782 * try_wait_for_completion - try to decrement a completion without blocking
4783 * @x: completion structure
4784 *
4785 * Returns: 0 if a decrement cannot be done without blocking
4786 * 1 if a decrement succeeded.
4787 *
4788 * If a completion is being used as a counting completion,
4789 * attempt to decrement the counter without blocking. This
4790 * enables us to avoid waiting if the resource the completion
4791 * is protecting is not available.
4792 */
4793 bool try_wait_for_completion(struct completion *x)
4794 {
4795 int ret = 1;
4796
4797 spin_lock_irq(&x->wait.lock);
4798 if (!x->done)
4799 ret = 0;
4800 else
4801 x->done--;
4802 spin_unlock_irq(&x->wait.lock);
4803 return ret;
4804 }
4805 EXPORT_SYMBOL(try_wait_for_completion);
4806
4807 /**
4808 * completion_done - Test to see if a completion has any waiters
4809 * @x: completion structure
4810 *
4811 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4812 * 1 if there are no waiters.
4813 *
4814 */
4815 bool completion_done(struct completion *x)
4816 {
4817 int ret = 1;
4818
4819 spin_lock_irq(&x->wait.lock);
4820 if (!x->done)
4821 ret = 0;
4822 spin_unlock_irq(&x->wait.lock);
4823 return ret;
4824 }
4825 EXPORT_SYMBOL(completion_done);
4826
4827 static long __sched
4828 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4829 {
4830 unsigned long flags;
4831 wait_queue_t wait;
4832
4833 init_waitqueue_entry(&wait, current);
4834
4835 __set_current_state(state);
4836
4837 spin_lock_irqsave(&q->lock, flags);
4838 __add_wait_queue(q, &wait);
4839 spin_unlock(&q->lock);
4840 timeout = schedule_timeout(timeout);
4841 spin_lock_irq(&q->lock);
4842 __remove_wait_queue(q, &wait);
4843 spin_unlock_irqrestore(&q->lock, flags);
4844
4845 return timeout;
4846 }
4847
4848 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4849 {
4850 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4851 }
4852 EXPORT_SYMBOL(interruptible_sleep_on);
4853
4854 long __sched
4855 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4856 {
4857 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4858 }
4859 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4860
4861 void __sched sleep_on(wait_queue_head_t *q)
4862 {
4863 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4864 }
4865 EXPORT_SYMBOL(sleep_on);
4866
4867 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4868 {
4869 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4870 }
4871 EXPORT_SYMBOL(sleep_on_timeout);
4872
4873 #ifdef CONFIG_RT_MUTEXES
4874
4875 /*
4876 * rt_mutex_setprio - set the current priority of a task
4877 * @p: task
4878 * @prio: prio value (kernel-internal form)
4879 *
4880 * This function changes the 'effective' priority of a task. It does
4881 * not touch ->normal_prio like __setscheduler().
4882 *
4883 * Used by the rt_mutex code to implement priority inheritance logic.
4884 */
4885 void rt_mutex_setprio(struct task_struct *p, int prio)
4886 {
4887 unsigned long flags;
4888 int oldprio, on_rq, running;
4889 struct rq *rq;
4890 const struct sched_class *prev_class = p->sched_class;
4891
4892 BUG_ON(prio < 0 || prio > MAX_PRIO);
4893
4894 rq = task_rq_lock(p, &flags);
4895 update_rq_clock(rq);
4896
4897 oldprio = p->prio;
4898 on_rq = p->se.on_rq;
4899 running = task_current(rq, p);
4900 if (on_rq)
4901 dequeue_task(rq, p, 0);
4902 if (running)
4903 p->sched_class->put_prev_task(rq, p);
4904
4905 if (rt_prio(prio))
4906 p->sched_class = &rt_sched_class;
4907 else
4908 p->sched_class = &fair_sched_class;
4909
4910 p->prio = prio;
4911
4912 if (running)
4913 p->sched_class->set_curr_task(rq);
4914 if (on_rq) {
4915 enqueue_task(rq, p, 0);
4916
4917 check_class_changed(rq, p, prev_class, oldprio, running);
4918 }
4919 task_rq_unlock(rq, &flags);
4920 }
4921
4922 #endif
4923
4924 void set_user_nice(struct task_struct *p, long nice)
4925 {
4926 int old_prio, delta, on_rq;
4927 unsigned long flags;
4928 struct rq *rq;
4929
4930 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4931 return;
4932 /*
4933 * We have to be careful, if called from sys_setpriority(),
4934 * the task might be in the middle of scheduling on another CPU.
4935 */
4936 rq = task_rq_lock(p, &flags);
4937 update_rq_clock(rq);
4938 /*
4939 * The RT priorities are set via sched_setscheduler(), but we still
4940 * allow the 'normal' nice value to be set - but as expected
4941 * it wont have any effect on scheduling until the task is
4942 * SCHED_FIFO/SCHED_RR:
4943 */
4944 if (task_has_rt_policy(p)) {
4945 p->static_prio = NICE_TO_PRIO(nice);
4946 goto out_unlock;
4947 }
4948 on_rq = p->se.on_rq;
4949 if (on_rq)
4950 dequeue_task(rq, p, 0);
4951
4952 p->static_prio = NICE_TO_PRIO(nice);
4953 set_load_weight(p);
4954 old_prio = p->prio;
4955 p->prio = effective_prio(p);
4956 delta = p->prio - old_prio;
4957
4958 if (on_rq) {
4959 enqueue_task(rq, p, 0);
4960 /*
4961 * If the task increased its priority or is running and
4962 * lowered its priority, then reschedule its CPU:
4963 */
4964 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4965 resched_task(rq->curr);
4966 }
4967 out_unlock:
4968 task_rq_unlock(rq, &flags);
4969 }
4970 EXPORT_SYMBOL(set_user_nice);
4971
4972 /*
4973 * can_nice - check if a task can reduce its nice value
4974 * @p: task
4975 * @nice: nice value
4976 */
4977 int can_nice(const struct task_struct *p, const int nice)
4978 {
4979 /* convert nice value [19,-20] to rlimit style value [1,40] */
4980 int nice_rlim = 20 - nice;
4981
4982 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4983 capable(CAP_SYS_NICE));
4984 }
4985
4986 #ifdef __ARCH_WANT_SYS_NICE
4987
4988 /*
4989 * sys_nice - change the priority of the current process.
4990 * @increment: priority increment
4991 *
4992 * sys_setpriority is a more generic, but much slower function that
4993 * does similar things.
4994 */
4995 asmlinkage long sys_nice(int increment)
4996 {
4997 long nice, retval;
4998
4999 /*
5000 * Setpriority might change our priority at the same moment.
5001 * We don't have to worry. Conceptually one call occurs first
5002 * and we have a single winner.
5003 */
5004 if (increment < -40)
5005 increment = -40;
5006 if (increment > 40)
5007 increment = 40;
5008
5009 nice = PRIO_TO_NICE(current->static_prio) + increment;
5010 if (nice < -20)
5011 nice = -20;
5012 if (nice > 19)
5013 nice = 19;
5014
5015 if (increment < 0 && !can_nice(current, nice))
5016 return -EPERM;
5017
5018 retval = security_task_setnice(current, nice);
5019 if (retval)
5020 return retval;
5021
5022 set_user_nice(current, nice);
5023 return 0;
5024 }
5025
5026 #endif
5027
5028 /**
5029 * task_prio - return the priority value of a given task.
5030 * @p: the task in question.
5031 *
5032 * This is the priority value as seen by users in /proc.
5033 * RT tasks are offset by -200. Normal tasks are centered
5034 * around 0, value goes from -16 to +15.
5035 */
5036 int task_prio(const struct task_struct *p)
5037 {
5038 return p->prio - MAX_RT_PRIO;
5039 }
5040
5041 /**
5042 * task_nice - return the nice value of a given task.
5043 * @p: the task in question.
5044 */
5045 int task_nice(const struct task_struct *p)
5046 {
5047 return TASK_NICE(p);
5048 }
5049 EXPORT_SYMBOL(task_nice);
5050
5051 /**
5052 * idle_cpu - is a given cpu idle currently?
5053 * @cpu: the processor in question.
5054 */
5055 int idle_cpu(int cpu)
5056 {
5057 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5058 }
5059
5060 /**
5061 * idle_task - return the idle task for a given cpu.
5062 * @cpu: the processor in question.
5063 */
5064 struct task_struct *idle_task(int cpu)
5065 {
5066 return cpu_rq(cpu)->idle;
5067 }
5068
5069 /**
5070 * find_process_by_pid - find a process with a matching PID value.
5071 * @pid: the pid in question.
5072 */
5073 static struct task_struct *find_process_by_pid(pid_t pid)
5074 {
5075 return pid ? find_task_by_vpid(pid) : current;
5076 }
5077
5078 /* Actually do priority change: must hold rq lock. */
5079 static void
5080 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5081 {
5082 BUG_ON(p->se.on_rq);
5083
5084 p->policy = policy;
5085 switch (p->policy) {
5086 case SCHED_NORMAL:
5087 case SCHED_BATCH:
5088 case SCHED_IDLE:
5089 p->sched_class = &fair_sched_class;
5090 break;
5091 case SCHED_FIFO:
5092 case SCHED_RR:
5093 p->sched_class = &rt_sched_class;
5094 break;
5095 }
5096
5097 p->rt_priority = prio;
5098 p->normal_prio = normal_prio(p);
5099 /* we are holding p->pi_lock already */
5100 p->prio = rt_mutex_getprio(p);
5101 set_load_weight(p);
5102 }
5103
5104 static int __sched_setscheduler(struct task_struct *p, int policy,
5105 struct sched_param *param, bool user)
5106 {
5107 int retval, oldprio, oldpolicy = -1, on_rq, running;
5108 unsigned long flags;
5109 const struct sched_class *prev_class = p->sched_class;
5110 struct rq *rq;
5111
5112 /* may grab non-irq protected spin_locks */
5113 BUG_ON(in_interrupt());
5114 recheck:
5115 /* double check policy once rq lock held */
5116 if (policy < 0)
5117 policy = oldpolicy = p->policy;
5118 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5119 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5120 policy != SCHED_IDLE)
5121 return -EINVAL;
5122 /*
5123 * Valid priorities for SCHED_FIFO and SCHED_RR are
5124 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5125 * SCHED_BATCH and SCHED_IDLE is 0.
5126 */
5127 if (param->sched_priority < 0 ||
5128 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5129 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5130 return -EINVAL;
5131 if (rt_policy(policy) != (param->sched_priority != 0))
5132 return -EINVAL;
5133
5134 /*
5135 * Allow unprivileged RT tasks to decrease priority:
5136 */
5137 if (user && !capable(CAP_SYS_NICE)) {
5138 if (rt_policy(policy)) {
5139 unsigned long rlim_rtprio;
5140
5141 if (!lock_task_sighand(p, &flags))
5142 return -ESRCH;
5143 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5144 unlock_task_sighand(p, &flags);
5145
5146 /* can't set/change the rt policy */
5147 if (policy != p->policy && !rlim_rtprio)
5148 return -EPERM;
5149
5150 /* can't increase priority */
5151 if (param->sched_priority > p->rt_priority &&
5152 param->sched_priority > rlim_rtprio)
5153 return -EPERM;
5154 }
5155 /*
5156 * Like positive nice levels, dont allow tasks to
5157 * move out of SCHED_IDLE either:
5158 */
5159 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5160 return -EPERM;
5161
5162 /* can't change other user's priorities */
5163 if ((current->euid != p->euid) &&
5164 (current->euid != p->uid))
5165 return -EPERM;
5166 }
5167
5168 if (user) {
5169 #ifdef CONFIG_RT_GROUP_SCHED
5170 /*
5171 * Do not allow realtime tasks into groups that have no runtime
5172 * assigned.
5173 */
5174 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5175 return -EPERM;
5176 #endif
5177
5178 retval = security_task_setscheduler(p, policy, param);
5179 if (retval)
5180 return retval;
5181 }
5182
5183 /*
5184 * make sure no PI-waiters arrive (or leave) while we are
5185 * changing the priority of the task:
5186 */
5187 spin_lock_irqsave(&p->pi_lock, flags);
5188 /*
5189 * To be able to change p->policy safely, the apropriate
5190 * runqueue lock must be held.
5191 */
5192 rq = __task_rq_lock(p);
5193 /* recheck policy now with rq lock held */
5194 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5195 policy = oldpolicy = -1;
5196 __task_rq_unlock(rq);
5197 spin_unlock_irqrestore(&p->pi_lock, flags);
5198 goto recheck;
5199 }
5200 update_rq_clock(rq);
5201 on_rq = p->se.on_rq;
5202 running = task_current(rq, p);
5203 if (on_rq)
5204 deactivate_task(rq, p, 0);
5205 if (running)
5206 p->sched_class->put_prev_task(rq, p);
5207
5208 oldprio = p->prio;
5209 __setscheduler(rq, p, policy, param->sched_priority);
5210
5211 if (running)
5212 p->sched_class->set_curr_task(rq);
5213 if (on_rq) {
5214 activate_task(rq, p, 0);
5215
5216 check_class_changed(rq, p, prev_class, oldprio, running);
5217 }
5218 __task_rq_unlock(rq);
5219 spin_unlock_irqrestore(&p->pi_lock, flags);
5220
5221 rt_mutex_adjust_pi(p);
5222
5223 return 0;
5224 }
5225
5226 /**
5227 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5228 * @p: the task in question.
5229 * @policy: new policy.
5230 * @param: structure containing the new RT priority.
5231 *
5232 * NOTE that the task may be already dead.
5233 */
5234 int sched_setscheduler(struct task_struct *p, int policy,
5235 struct sched_param *param)
5236 {
5237 return __sched_setscheduler(p, policy, param, true);
5238 }
5239 EXPORT_SYMBOL_GPL(sched_setscheduler);
5240
5241 /**
5242 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5243 * @p: the task in question.
5244 * @policy: new policy.
5245 * @param: structure containing the new RT priority.
5246 *
5247 * Just like sched_setscheduler, only don't bother checking if the
5248 * current context has permission. For example, this is needed in
5249 * stop_machine(): we create temporary high priority worker threads,
5250 * but our caller might not have that capability.
5251 */
5252 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5253 struct sched_param *param)
5254 {
5255 return __sched_setscheduler(p, policy, param, false);
5256 }
5257
5258 static int
5259 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5260 {
5261 struct sched_param lparam;
5262 struct task_struct *p;
5263 int retval;
5264
5265 if (!param || pid < 0)
5266 return -EINVAL;
5267 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5268 return -EFAULT;
5269
5270 rcu_read_lock();
5271 retval = -ESRCH;
5272 p = find_process_by_pid(pid);
5273 if (p != NULL)
5274 retval = sched_setscheduler(p, policy, &lparam);
5275 rcu_read_unlock();
5276
5277 return retval;
5278 }
5279
5280 /**
5281 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5282 * @pid: the pid in question.
5283 * @policy: new policy.
5284 * @param: structure containing the new RT priority.
5285 */
5286 asmlinkage long
5287 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5288 {
5289 /* negative values for policy are not valid */
5290 if (policy < 0)
5291 return -EINVAL;
5292
5293 return do_sched_setscheduler(pid, policy, param);
5294 }
5295
5296 /**
5297 * sys_sched_setparam - set/change the RT priority of a thread
5298 * @pid: the pid in question.
5299 * @param: structure containing the new RT priority.
5300 */
5301 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5302 {
5303 return do_sched_setscheduler(pid, -1, param);
5304 }
5305
5306 /**
5307 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5308 * @pid: the pid in question.
5309 */
5310 asmlinkage long sys_sched_getscheduler(pid_t pid)
5311 {
5312 struct task_struct *p;
5313 int retval;
5314
5315 if (pid < 0)
5316 return -EINVAL;
5317
5318 retval = -ESRCH;
5319 read_lock(&tasklist_lock);
5320 p = find_process_by_pid(pid);
5321 if (p) {
5322 retval = security_task_getscheduler(p);
5323 if (!retval)
5324 retval = p->policy;
5325 }
5326 read_unlock(&tasklist_lock);
5327 return retval;
5328 }
5329
5330 /**
5331 * sys_sched_getscheduler - get the RT priority of a thread
5332 * @pid: the pid in question.
5333 * @param: structure containing the RT priority.
5334 */
5335 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5336 {
5337 struct sched_param lp;
5338 struct task_struct *p;
5339 int retval;
5340
5341 if (!param || pid < 0)
5342 return -EINVAL;
5343
5344 read_lock(&tasklist_lock);
5345 p = find_process_by_pid(pid);
5346 retval = -ESRCH;
5347 if (!p)
5348 goto out_unlock;
5349
5350 retval = security_task_getscheduler(p);
5351 if (retval)
5352 goto out_unlock;
5353
5354 lp.sched_priority = p->rt_priority;
5355 read_unlock(&tasklist_lock);
5356
5357 /*
5358 * This one might sleep, we cannot do it with a spinlock held ...
5359 */
5360 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5361
5362 return retval;
5363
5364 out_unlock:
5365 read_unlock(&tasklist_lock);
5366 return retval;
5367 }
5368
5369 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5370 {
5371 cpumask_t cpus_allowed;
5372 cpumask_t new_mask = *in_mask;
5373 struct task_struct *p;
5374 int retval;
5375
5376 get_online_cpus();
5377 read_lock(&tasklist_lock);
5378
5379 p = find_process_by_pid(pid);
5380 if (!p) {
5381 read_unlock(&tasklist_lock);
5382 put_online_cpus();
5383 return -ESRCH;
5384 }
5385
5386 /*
5387 * It is not safe to call set_cpus_allowed with the
5388 * tasklist_lock held. We will bump the task_struct's
5389 * usage count and then drop tasklist_lock.
5390 */
5391 get_task_struct(p);
5392 read_unlock(&tasklist_lock);
5393
5394 retval = -EPERM;
5395 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5396 !capable(CAP_SYS_NICE))
5397 goto out_unlock;
5398
5399 retval = security_task_setscheduler(p, 0, NULL);
5400 if (retval)
5401 goto out_unlock;
5402
5403 cpuset_cpus_allowed(p, &cpus_allowed);
5404 cpus_and(new_mask, new_mask, cpus_allowed);
5405 again:
5406 retval = set_cpus_allowed_ptr(p, &new_mask);
5407
5408 if (!retval) {
5409 cpuset_cpus_allowed(p, &cpus_allowed);
5410 if (!cpus_subset(new_mask, cpus_allowed)) {
5411 /*
5412 * We must have raced with a concurrent cpuset
5413 * update. Just reset the cpus_allowed to the
5414 * cpuset's cpus_allowed
5415 */
5416 new_mask = cpus_allowed;
5417 goto again;
5418 }
5419 }
5420 out_unlock:
5421 put_task_struct(p);
5422 put_online_cpus();
5423 return retval;
5424 }
5425
5426 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5427 cpumask_t *new_mask)
5428 {
5429 if (len < sizeof(cpumask_t)) {
5430 memset(new_mask, 0, sizeof(cpumask_t));
5431 } else if (len > sizeof(cpumask_t)) {
5432 len = sizeof(cpumask_t);
5433 }
5434 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5435 }
5436
5437 /**
5438 * sys_sched_setaffinity - set the cpu affinity of a process
5439 * @pid: pid of the process
5440 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5441 * @user_mask_ptr: user-space pointer to the new cpu mask
5442 */
5443 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5444 unsigned long __user *user_mask_ptr)
5445 {
5446 cpumask_t new_mask;
5447 int retval;
5448
5449 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5450 if (retval)
5451 return retval;
5452
5453 return sched_setaffinity(pid, &new_mask);
5454 }
5455
5456 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5457 {
5458 struct task_struct *p;
5459 int retval;
5460
5461 get_online_cpus();
5462 read_lock(&tasklist_lock);
5463
5464 retval = -ESRCH;
5465 p = find_process_by_pid(pid);
5466 if (!p)
5467 goto out_unlock;
5468
5469 retval = security_task_getscheduler(p);
5470 if (retval)
5471 goto out_unlock;
5472
5473 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5474
5475 out_unlock:
5476 read_unlock(&tasklist_lock);
5477 put_online_cpus();
5478
5479 return retval;
5480 }
5481
5482 /**
5483 * sys_sched_getaffinity - get the cpu affinity of a process
5484 * @pid: pid of the process
5485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5487 */
5488 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5489 unsigned long __user *user_mask_ptr)
5490 {
5491 int ret;
5492 cpumask_t mask;
5493
5494 if (len < sizeof(cpumask_t))
5495 return -EINVAL;
5496
5497 ret = sched_getaffinity(pid, &mask);
5498 if (ret < 0)
5499 return ret;
5500
5501 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5502 return -EFAULT;
5503
5504 return sizeof(cpumask_t);
5505 }
5506
5507 /**
5508 * sys_sched_yield - yield the current processor to other threads.
5509 *
5510 * This function yields the current CPU to other tasks. If there are no
5511 * other threads running on this CPU then this function will return.
5512 */
5513 asmlinkage long sys_sched_yield(void)
5514 {
5515 struct rq *rq = this_rq_lock();
5516
5517 schedstat_inc(rq, yld_count);
5518 current->sched_class->yield_task(rq);
5519
5520 /*
5521 * Since we are going to call schedule() anyway, there's
5522 * no need to preempt or enable interrupts:
5523 */
5524 __release(rq->lock);
5525 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5526 _raw_spin_unlock(&rq->lock);
5527 preempt_enable_no_resched();
5528
5529 schedule();
5530
5531 return 0;
5532 }
5533
5534 static void __cond_resched(void)
5535 {
5536 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5537 __might_sleep(__FILE__, __LINE__);
5538 #endif
5539 /*
5540 * The BKS might be reacquired before we have dropped
5541 * PREEMPT_ACTIVE, which could trigger a second
5542 * cond_resched() call.
5543 */
5544 do {
5545 add_preempt_count(PREEMPT_ACTIVE);
5546 schedule();
5547 sub_preempt_count(PREEMPT_ACTIVE);
5548 } while (need_resched());
5549 }
5550
5551 int __sched _cond_resched(void)
5552 {
5553 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5554 system_state == SYSTEM_RUNNING) {
5555 __cond_resched();
5556 return 1;
5557 }
5558 return 0;
5559 }
5560 EXPORT_SYMBOL(_cond_resched);
5561
5562 /*
5563 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5564 * call schedule, and on return reacquire the lock.
5565 *
5566 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5567 * operations here to prevent schedule() from being called twice (once via
5568 * spin_unlock(), once by hand).
5569 */
5570 int cond_resched_lock(spinlock_t *lock)
5571 {
5572 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5573 int ret = 0;
5574
5575 if (spin_needbreak(lock) || resched) {
5576 spin_unlock(lock);
5577 if (resched && need_resched())
5578 __cond_resched();
5579 else
5580 cpu_relax();
5581 ret = 1;
5582 spin_lock(lock);
5583 }
5584 return ret;
5585 }
5586 EXPORT_SYMBOL(cond_resched_lock);
5587
5588 int __sched cond_resched_softirq(void)
5589 {
5590 BUG_ON(!in_softirq());
5591
5592 if (need_resched() && system_state == SYSTEM_RUNNING) {
5593 local_bh_enable();
5594 __cond_resched();
5595 local_bh_disable();
5596 return 1;
5597 }
5598 return 0;
5599 }
5600 EXPORT_SYMBOL(cond_resched_softirq);
5601
5602 /**
5603 * yield - yield the current processor to other threads.
5604 *
5605 * This is a shortcut for kernel-space yielding - it marks the
5606 * thread runnable and calls sys_sched_yield().
5607 */
5608 void __sched yield(void)
5609 {
5610 set_current_state(TASK_RUNNING);
5611 sys_sched_yield();
5612 }
5613 EXPORT_SYMBOL(yield);
5614
5615 /*
5616 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5617 * that process accounting knows that this is a task in IO wait state.
5618 *
5619 * But don't do that if it is a deliberate, throttling IO wait (this task
5620 * has set its backing_dev_info: the queue against which it should throttle)
5621 */
5622 void __sched io_schedule(void)
5623 {
5624 struct rq *rq = &__raw_get_cpu_var(runqueues);
5625
5626 delayacct_blkio_start();
5627 atomic_inc(&rq->nr_iowait);
5628 schedule();
5629 atomic_dec(&rq->nr_iowait);
5630 delayacct_blkio_end();
5631 }
5632 EXPORT_SYMBOL(io_schedule);
5633
5634 long __sched io_schedule_timeout(long timeout)
5635 {
5636 struct rq *rq = &__raw_get_cpu_var(runqueues);
5637 long ret;
5638
5639 delayacct_blkio_start();
5640 atomic_inc(&rq->nr_iowait);
5641 ret = schedule_timeout(timeout);
5642 atomic_dec(&rq->nr_iowait);
5643 delayacct_blkio_end();
5644 return ret;
5645 }
5646
5647 /**
5648 * sys_sched_get_priority_max - return maximum RT priority.
5649 * @policy: scheduling class.
5650 *
5651 * this syscall returns the maximum rt_priority that can be used
5652 * by a given scheduling class.
5653 */
5654 asmlinkage long sys_sched_get_priority_max(int policy)
5655 {
5656 int ret = -EINVAL;
5657
5658 switch (policy) {
5659 case SCHED_FIFO:
5660 case SCHED_RR:
5661 ret = MAX_USER_RT_PRIO-1;
5662 break;
5663 case SCHED_NORMAL:
5664 case SCHED_BATCH:
5665 case SCHED_IDLE:
5666 ret = 0;
5667 break;
5668 }
5669 return ret;
5670 }
5671
5672 /**
5673 * sys_sched_get_priority_min - return minimum RT priority.
5674 * @policy: scheduling class.
5675 *
5676 * this syscall returns the minimum rt_priority that can be used
5677 * by a given scheduling class.
5678 */
5679 asmlinkage long sys_sched_get_priority_min(int policy)
5680 {
5681 int ret = -EINVAL;
5682
5683 switch (policy) {
5684 case SCHED_FIFO:
5685 case SCHED_RR:
5686 ret = 1;
5687 break;
5688 case SCHED_NORMAL:
5689 case SCHED_BATCH:
5690 case SCHED_IDLE:
5691 ret = 0;
5692 }
5693 return ret;
5694 }
5695
5696 /**
5697 * sys_sched_rr_get_interval - return the default timeslice of a process.
5698 * @pid: pid of the process.
5699 * @interval: userspace pointer to the timeslice value.
5700 *
5701 * this syscall writes the default timeslice value of a given process
5702 * into the user-space timespec buffer. A value of '0' means infinity.
5703 */
5704 asmlinkage
5705 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5706 {
5707 struct task_struct *p;
5708 unsigned int time_slice;
5709 int retval;
5710 struct timespec t;
5711
5712 if (pid < 0)
5713 return -EINVAL;
5714
5715 retval = -ESRCH;
5716 read_lock(&tasklist_lock);
5717 p = find_process_by_pid(pid);
5718 if (!p)
5719 goto out_unlock;
5720
5721 retval = security_task_getscheduler(p);
5722 if (retval)
5723 goto out_unlock;
5724
5725 /*
5726 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5727 * tasks that are on an otherwise idle runqueue:
5728 */
5729 time_slice = 0;
5730 if (p->policy == SCHED_RR) {
5731 time_slice = DEF_TIMESLICE;
5732 } else if (p->policy != SCHED_FIFO) {
5733 struct sched_entity *se = &p->se;
5734 unsigned long flags;
5735 struct rq *rq;
5736
5737 rq = task_rq_lock(p, &flags);
5738 if (rq->cfs.load.weight)
5739 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5740 task_rq_unlock(rq, &flags);
5741 }
5742 read_unlock(&tasklist_lock);
5743 jiffies_to_timespec(time_slice, &t);
5744 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5745 return retval;
5746
5747 out_unlock:
5748 read_unlock(&tasklist_lock);
5749 return retval;
5750 }
5751
5752 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5753
5754 void sched_show_task(struct task_struct *p)
5755 {
5756 unsigned long free = 0;
5757 unsigned state;
5758
5759 state = p->state ? __ffs(p->state) + 1 : 0;
5760 printk(KERN_INFO "%-13.13s %c", p->comm,
5761 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5762 #if BITS_PER_LONG == 32
5763 if (state == TASK_RUNNING)
5764 printk(KERN_CONT " running ");
5765 else
5766 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5767 #else
5768 if (state == TASK_RUNNING)
5769 printk(KERN_CONT " running task ");
5770 else
5771 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5772 #endif
5773 #ifdef CONFIG_DEBUG_STACK_USAGE
5774 {
5775 unsigned long *n = end_of_stack(p);
5776 while (!*n)
5777 n++;
5778 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5779 }
5780 #endif
5781 printk(KERN_CONT "%5lu %5d %6d\n", free,
5782 task_pid_nr(p), task_pid_nr(p->real_parent));
5783
5784 show_stack(p, NULL);
5785 }
5786
5787 void show_state_filter(unsigned long state_filter)
5788 {
5789 struct task_struct *g, *p;
5790
5791 #if BITS_PER_LONG == 32
5792 printk(KERN_INFO
5793 " task PC stack pid father\n");
5794 #else
5795 printk(KERN_INFO
5796 " task PC stack pid father\n");
5797 #endif
5798 read_lock(&tasklist_lock);
5799 do_each_thread(g, p) {
5800 /*
5801 * reset the NMI-timeout, listing all files on a slow
5802 * console might take alot of time:
5803 */
5804 touch_nmi_watchdog();
5805 if (!state_filter || (p->state & state_filter))
5806 sched_show_task(p);
5807 } while_each_thread(g, p);
5808
5809 touch_all_softlockup_watchdogs();
5810
5811 #ifdef CONFIG_SCHED_DEBUG
5812 sysrq_sched_debug_show();
5813 #endif
5814 read_unlock(&tasklist_lock);
5815 /*
5816 * Only show locks if all tasks are dumped:
5817 */
5818 if (state_filter == -1)
5819 debug_show_all_locks();
5820 }
5821
5822 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5823 {
5824 idle->sched_class = &idle_sched_class;
5825 }
5826
5827 /**
5828 * init_idle - set up an idle thread for a given CPU
5829 * @idle: task in question
5830 * @cpu: cpu the idle task belongs to
5831 *
5832 * NOTE: this function does not set the idle thread's NEED_RESCHED
5833 * flag, to make booting more robust.
5834 */
5835 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5836 {
5837 struct rq *rq = cpu_rq(cpu);
5838 unsigned long flags;
5839
5840 __sched_fork(idle);
5841 idle->se.exec_start = sched_clock();
5842
5843 idle->prio = idle->normal_prio = MAX_PRIO;
5844 idle->cpus_allowed = cpumask_of_cpu(cpu);
5845 __set_task_cpu(idle, cpu);
5846
5847 spin_lock_irqsave(&rq->lock, flags);
5848 rq->curr = rq->idle = idle;
5849 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5850 idle->oncpu = 1;
5851 #endif
5852 spin_unlock_irqrestore(&rq->lock, flags);
5853
5854 /* Set the preempt count _outside_ the spinlocks! */
5855 #if defined(CONFIG_PREEMPT)
5856 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5857 #else
5858 task_thread_info(idle)->preempt_count = 0;
5859 #endif
5860 /*
5861 * The idle tasks have their own, simple scheduling class:
5862 */
5863 idle->sched_class = &idle_sched_class;
5864 }
5865
5866 /*
5867 * In a system that switches off the HZ timer nohz_cpu_mask
5868 * indicates which cpus entered this state. This is used
5869 * in the rcu update to wait only for active cpus. For system
5870 * which do not switch off the HZ timer nohz_cpu_mask should
5871 * always be CPU_MASK_NONE.
5872 */
5873 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5874
5875 /*
5876 * Increase the granularity value when there are more CPUs,
5877 * because with more CPUs the 'effective latency' as visible
5878 * to users decreases. But the relationship is not linear,
5879 * so pick a second-best guess by going with the log2 of the
5880 * number of CPUs.
5881 *
5882 * This idea comes from the SD scheduler of Con Kolivas:
5883 */
5884 static inline void sched_init_granularity(void)
5885 {
5886 unsigned int factor = 1 + ilog2(num_online_cpus());
5887 const unsigned long limit = 200000000;
5888
5889 sysctl_sched_min_granularity *= factor;
5890 if (sysctl_sched_min_granularity > limit)
5891 sysctl_sched_min_granularity = limit;
5892
5893 sysctl_sched_latency *= factor;
5894 if (sysctl_sched_latency > limit)
5895 sysctl_sched_latency = limit;
5896
5897 sysctl_sched_wakeup_granularity *= factor;
5898
5899 sysctl_sched_shares_ratelimit *= factor;
5900 }
5901
5902 #ifdef CONFIG_SMP
5903 /*
5904 * This is how migration works:
5905 *
5906 * 1) we queue a struct migration_req structure in the source CPU's
5907 * runqueue and wake up that CPU's migration thread.
5908 * 2) we down() the locked semaphore => thread blocks.
5909 * 3) migration thread wakes up (implicitly it forces the migrated
5910 * thread off the CPU)
5911 * 4) it gets the migration request and checks whether the migrated
5912 * task is still in the wrong runqueue.
5913 * 5) if it's in the wrong runqueue then the migration thread removes
5914 * it and puts it into the right queue.
5915 * 6) migration thread up()s the semaphore.
5916 * 7) we wake up and the migration is done.
5917 */
5918
5919 /*
5920 * Change a given task's CPU affinity. Migrate the thread to a
5921 * proper CPU and schedule it away if the CPU it's executing on
5922 * is removed from the allowed bitmask.
5923 *
5924 * NOTE: the caller must have a valid reference to the task, the
5925 * task must not exit() & deallocate itself prematurely. The
5926 * call is not atomic; no spinlocks may be held.
5927 */
5928 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5929 {
5930 struct migration_req req;
5931 unsigned long flags;
5932 struct rq *rq;
5933 int ret = 0;
5934
5935 rq = task_rq_lock(p, &flags);
5936 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5937 ret = -EINVAL;
5938 goto out;
5939 }
5940
5941 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5942 !cpus_equal(p->cpus_allowed, *new_mask))) {
5943 ret = -EINVAL;
5944 goto out;
5945 }
5946
5947 if (p->sched_class->set_cpus_allowed)
5948 p->sched_class->set_cpus_allowed(p, new_mask);
5949 else {
5950 p->cpus_allowed = *new_mask;
5951 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5952 }
5953
5954 /* Can the task run on the task's current CPU? If so, we're done */
5955 if (cpu_isset(task_cpu(p), *new_mask))
5956 goto out;
5957
5958 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5959 /* Need help from migration thread: drop lock and wait. */
5960 task_rq_unlock(rq, &flags);
5961 wake_up_process(rq->migration_thread);
5962 wait_for_completion(&req.done);
5963 tlb_migrate_finish(p->mm);
5964 return 0;
5965 }
5966 out:
5967 task_rq_unlock(rq, &flags);
5968
5969 return ret;
5970 }
5971 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5972
5973 /*
5974 * Move (not current) task off this cpu, onto dest cpu. We're doing
5975 * this because either it can't run here any more (set_cpus_allowed()
5976 * away from this CPU, or CPU going down), or because we're
5977 * attempting to rebalance this task on exec (sched_exec).
5978 *
5979 * So we race with normal scheduler movements, but that's OK, as long
5980 * as the task is no longer on this CPU.
5981 *
5982 * Returns non-zero if task was successfully migrated.
5983 */
5984 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5985 {
5986 struct rq *rq_dest, *rq_src;
5987 int ret = 0, on_rq;
5988
5989 if (unlikely(!cpu_active(dest_cpu)))
5990 return ret;
5991
5992 rq_src = cpu_rq(src_cpu);
5993 rq_dest = cpu_rq(dest_cpu);
5994
5995 double_rq_lock(rq_src, rq_dest);
5996 /* Already moved. */
5997 if (task_cpu(p) != src_cpu)
5998 goto done;
5999 /* Affinity changed (again). */
6000 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6001 goto fail;
6002
6003 on_rq = p->se.on_rq;
6004 if (on_rq)
6005 deactivate_task(rq_src, p, 0);
6006
6007 set_task_cpu(p, dest_cpu);
6008 if (on_rq) {
6009 activate_task(rq_dest, p, 0);
6010 check_preempt_curr(rq_dest, p, 0);
6011 }
6012 done:
6013 ret = 1;
6014 fail:
6015 double_rq_unlock(rq_src, rq_dest);
6016 return ret;
6017 }
6018
6019 /*
6020 * migration_thread - this is a highprio system thread that performs
6021 * thread migration by bumping thread off CPU then 'pushing' onto
6022 * another runqueue.
6023 */
6024 static int migration_thread(void *data)
6025 {
6026 int cpu = (long)data;
6027 struct rq *rq;
6028
6029 rq = cpu_rq(cpu);
6030 BUG_ON(rq->migration_thread != current);
6031
6032 set_current_state(TASK_INTERRUPTIBLE);
6033 while (!kthread_should_stop()) {
6034 struct migration_req *req;
6035 struct list_head *head;
6036
6037 spin_lock_irq(&rq->lock);
6038
6039 if (cpu_is_offline(cpu)) {
6040 spin_unlock_irq(&rq->lock);
6041 goto wait_to_die;
6042 }
6043
6044 if (rq->active_balance) {
6045 active_load_balance(rq, cpu);
6046 rq->active_balance = 0;
6047 }
6048
6049 head = &rq->migration_queue;
6050
6051 if (list_empty(head)) {
6052 spin_unlock_irq(&rq->lock);
6053 schedule();
6054 set_current_state(TASK_INTERRUPTIBLE);
6055 continue;
6056 }
6057 req = list_entry(head->next, struct migration_req, list);
6058 list_del_init(head->next);
6059
6060 spin_unlock(&rq->lock);
6061 __migrate_task(req->task, cpu, req->dest_cpu);
6062 local_irq_enable();
6063
6064 complete(&req->done);
6065 }
6066 __set_current_state(TASK_RUNNING);
6067 return 0;
6068
6069 wait_to_die:
6070 /* Wait for kthread_stop */
6071 set_current_state(TASK_INTERRUPTIBLE);
6072 while (!kthread_should_stop()) {
6073 schedule();
6074 set_current_state(TASK_INTERRUPTIBLE);
6075 }
6076 __set_current_state(TASK_RUNNING);
6077 return 0;
6078 }
6079
6080 #ifdef CONFIG_HOTPLUG_CPU
6081
6082 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6083 {
6084 int ret;
6085
6086 local_irq_disable();
6087 ret = __migrate_task(p, src_cpu, dest_cpu);
6088 local_irq_enable();
6089 return ret;
6090 }
6091
6092 /*
6093 * Figure out where task on dead CPU should go, use force if necessary.
6094 * NOTE: interrupts should be disabled by the caller
6095 */
6096 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6097 {
6098 unsigned long flags;
6099 cpumask_t mask;
6100 struct rq *rq;
6101 int dest_cpu;
6102
6103 do {
6104 /* On same node? */
6105 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6106 cpus_and(mask, mask, p->cpus_allowed);
6107 dest_cpu = any_online_cpu(mask);
6108
6109 /* On any allowed CPU? */
6110 if (dest_cpu >= nr_cpu_ids)
6111 dest_cpu = any_online_cpu(p->cpus_allowed);
6112
6113 /* No more Mr. Nice Guy. */
6114 if (dest_cpu >= nr_cpu_ids) {
6115 cpumask_t cpus_allowed;
6116
6117 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6118 /*
6119 * Try to stay on the same cpuset, where the
6120 * current cpuset may be a subset of all cpus.
6121 * The cpuset_cpus_allowed_locked() variant of
6122 * cpuset_cpus_allowed() will not block. It must be
6123 * called within calls to cpuset_lock/cpuset_unlock.
6124 */
6125 rq = task_rq_lock(p, &flags);
6126 p->cpus_allowed = cpus_allowed;
6127 dest_cpu = any_online_cpu(p->cpus_allowed);
6128 task_rq_unlock(rq, &flags);
6129
6130 /*
6131 * Don't tell them about moving exiting tasks or
6132 * kernel threads (both mm NULL), since they never
6133 * leave kernel.
6134 */
6135 if (p->mm && printk_ratelimit()) {
6136 printk(KERN_INFO "process %d (%s) no "
6137 "longer affine to cpu%d\n",
6138 task_pid_nr(p), p->comm, dead_cpu);
6139 }
6140 }
6141 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6142 }
6143
6144 /*
6145 * While a dead CPU has no uninterruptible tasks queued at this point,
6146 * it might still have a nonzero ->nr_uninterruptible counter, because
6147 * for performance reasons the counter is not stricly tracking tasks to
6148 * their home CPUs. So we just add the counter to another CPU's counter,
6149 * to keep the global sum constant after CPU-down:
6150 */
6151 static void migrate_nr_uninterruptible(struct rq *rq_src)
6152 {
6153 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6154 unsigned long flags;
6155
6156 local_irq_save(flags);
6157 double_rq_lock(rq_src, rq_dest);
6158 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6159 rq_src->nr_uninterruptible = 0;
6160 double_rq_unlock(rq_src, rq_dest);
6161 local_irq_restore(flags);
6162 }
6163
6164 /* Run through task list and migrate tasks from the dead cpu. */
6165 static void migrate_live_tasks(int src_cpu)
6166 {
6167 struct task_struct *p, *t;
6168
6169 read_lock(&tasklist_lock);
6170
6171 do_each_thread(t, p) {
6172 if (p == current)
6173 continue;
6174
6175 if (task_cpu(p) == src_cpu)
6176 move_task_off_dead_cpu(src_cpu, p);
6177 } while_each_thread(t, p);
6178
6179 read_unlock(&tasklist_lock);
6180 }
6181
6182 /*
6183 * Schedules idle task to be the next runnable task on current CPU.
6184 * It does so by boosting its priority to highest possible.
6185 * Used by CPU offline code.
6186 */
6187 void sched_idle_next(void)
6188 {
6189 int this_cpu = smp_processor_id();
6190 struct rq *rq = cpu_rq(this_cpu);
6191 struct task_struct *p = rq->idle;
6192 unsigned long flags;
6193
6194 /* cpu has to be offline */
6195 BUG_ON(cpu_online(this_cpu));
6196
6197 /*
6198 * Strictly not necessary since rest of the CPUs are stopped by now
6199 * and interrupts disabled on the current cpu.
6200 */
6201 spin_lock_irqsave(&rq->lock, flags);
6202
6203 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6204
6205 update_rq_clock(rq);
6206 activate_task(rq, p, 0);
6207
6208 spin_unlock_irqrestore(&rq->lock, flags);
6209 }
6210
6211 /*
6212 * Ensures that the idle task is using init_mm right before its cpu goes
6213 * offline.
6214 */
6215 void idle_task_exit(void)
6216 {
6217 struct mm_struct *mm = current->active_mm;
6218
6219 BUG_ON(cpu_online(smp_processor_id()));
6220
6221 if (mm != &init_mm)
6222 switch_mm(mm, &init_mm, current);
6223 mmdrop(mm);
6224 }
6225
6226 /* called under rq->lock with disabled interrupts */
6227 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6228 {
6229 struct rq *rq = cpu_rq(dead_cpu);
6230
6231 /* Must be exiting, otherwise would be on tasklist. */
6232 BUG_ON(!p->exit_state);
6233
6234 /* Cannot have done final schedule yet: would have vanished. */
6235 BUG_ON(p->state == TASK_DEAD);
6236
6237 get_task_struct(p);
6238
6239 /*
6240 * Drop lock around migration; if someone else moves it,
6241 * that's OK. No task can be added to this CPU, so iteration is
6242 * fine.
6243 */
6244 spin_unlock_irq(&rq->lock);
6245 move_task_off_dead_cpu(dead_cpu, p);
6246 spin_lock_irq(&rq->lock);
6247
6248 put_task_struct(p);
6249 }
6250
6251 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6252 static void migrate_dead_tasks(unsigned int dead_cpu)
6253 {
6254 struct rq *rq = cpu_rq(dead_cpu);
6255 struct task_struct *next;
6256
6257 for ( ; ; ) {
6258 if (!rq->nr_running)
6259 break;
6260 update_rq_clock(rq);
6261 next = pick_next_task(rq, rq->curr);
6262 if (!next)
6263 break;
6264 next->sched_class->put_prev_task(rq, next);
6265 migrate_dead(dead_cpu, next);
6266
6267 }
6268 }
6269 #endif /* CONFIG_HOTPLUG_CPU */
6270
6271 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6272
6273 static struct ctl_table sd_ctl_dir[] = {
6274 {
6275 .procname = "sched_domain",
6276 .mode = 0555,
6277 },
6278 {0, },
6279 };
6280
6281 static struct ctl_table sd_ctl_root[] = {
6282 {
6283 .ctl_name = CTL_KERN,
6284 .procname = "kernel",
6285 .mode = 0555,
6286 .child = sd_ctl_dir,
6287 },
6288 {0, },
6289 };
6290
6291 static struct ctl_table *sd_alloc_ctl_entry(int n)
6292 {
6293 struct ctl_table *entry =
6294 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6295
6296 return entry;
6297 }
6298
6299 static void sd_free_ctl_entry(struct ctl_table **tablep)
6300 {
6301 struct ctl_table *entry;
6302
6303 /*
6304 * In the intermediate directories, both the child directory and
6305 * procname are dynamically allocated and could fail but the mode
6306 * will always be set. In the lowest directory the names are
6307 * static strings and all have proc handlers.
6308 */
6309 for (entry = *tablep; entry->mode; entry++) {
6310 if (entry->child)
6311 sd_free_ctl_entry(&entry->child);
6312 if (entry->proc_handler == NULL)
6313 kfree(entry->procname);
6314 }
6315
6316 kfree(*tablep);
6317 *tablep = NULL;
6318 }
6319
6320 static void
6321 set_table_entry(struct ctl_table *entry,
6322 const char *procname, void *data, int maxlen,
6323 mode_t mode, proc_handler *proc_handler)
6324 {
6325 entry->procname = procname;
6326 entry->data = data;
6327 entry->maxlen = maxlen;
6328 entry->mode = mode;
6329 entry->proc_handler = proc_handler;
6330 }
6331
6332 static struct ctl_table *
6333 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6334 {
6335 struct ctl_table *table = sd_alloc_ctl_entry(12);
6336
6337 if (table == NULL)
6338 return NULL;
6339
6340 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6341 sizeof(long), 0644, proc_doulongvec_minmax);
6342 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6343 sizeof(long), 0644, proc_doulongvec_minmax);
6344 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6345 sizeof(int), 0644, proc_dointvec_minmax);
6346 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6347 sizeof(int), 0644, proc_dointvec_minmax);
6348 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6349 sizeof(int), 0644, proc_dointvec_minmax);
6350 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6351 sizeof(int), 0644, proc_dointvec_minmax);
6352 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6353 sizeof(int), 0644, proc_dointvec_minmax);
6354 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6355 sizeof(int), 0644, proc_dointvec_minmax);
6356 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6357 sizeof(int), 0644, proc_dointvec_minmax);
6358 set_table_entry(&table[9], "cache_nice_tries",
6359 &sd->cache_nice_tries,
6360 sizeof(int), 0644, proc_dointvec_minmax);
6361 set_table_entry(&table[10], "flags", &sd->flags,
6362 sizeof(int), 0644, proc_dointvec_minmax);
6363 /* &table[11] is terminator */
6364
6365 return table;
6366 }
6367
6368 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6369 {
6370 struct ctl_table *entry, *table;
6371 struct sched_domain *sd;
6372 int domain_num = 0, i;
6373 char buf[32];
6374
6375 for_each_domain(cpu, sd)
6376 domain_num++;
6377 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6378 if (table == NULL)
6379 return NULL;
6380
6381 i = 0;
6382 for_each_domain(cpu, sd) {
6383 snprintf(buf, 32, "domain%d", i);
6384 entry->procname = kstrdup(buf, GFP_KERNEL);
6385 entry->mode = 0555;
6386 entry->child = sd_alloc_ctl_domain_table(sd);
6387 entry++;
6388 i++;
6389 }
6390 return table;
6391 }
6392
6393 static struct ctl_table_header *sd_sysctl_header;
6394 static void register_sched_domain_sysctl(void)
6395 {
6396 int i, cpu_num = num_online_cpus();
6397 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6398 char buf[32];
6399
6400 WARN_ON(sd_ctl_dir[0].child);
6401 sd_ctl_dir[0].child = entry;
6402
6403 if (entry == NULL)
6404 return;
6405
6406 for_each_online_cpu(i) {
6407 snprintf(buf, 32, "cpu%d", i);
6408 entry->procname = kstrdup(buf, GFP_KERNEL);
6409 entry->mode = 0555;
6410 entry->child = sd_alloc_ctl_cpu_table(i);
6411 entry++;
6412 }
6413
6414 WARN_ON(sd_sysctl_header);
6415 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6416 }
6417
6418 /* may be called multiple times per register */
6419 static void unregister_sched_domain_sysctl(void)
6420 {
6421 if (sd_sysctl_header)
6422 unregister_sysctl_table(sd_sysctl_header);
6423 sd_sysctl_header = NULL;
6424 if (sd_ctl_dir[0].child)
6425 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6426 }
6427 #else
6428 static void register_sched_domain_sysctl(void)
6429 {
6430 }
6431 static void unregister_sched_domain_sysctl(void)
6432 {
6433 }
6434 #endif
6435
6436 static void set_rq_online(struct rq *rq)
6437 {
6438 if (!rq->online) {
6439 const struct sched_class *class;
6440
6441 cpu_set(rq->cpu, rq->rd->online);
6442 rq->online = 1;
6443
6444 for_each_class(class) {
6445 if (class->rq_online)
6446 class->rq_online(rq);
6447 }
6448 }
6449 }
6450
6451 static void set_rq_offline(struct rq *rq)
6452 {
6453 if (rq->online) {
6454 const struct sched_class *class;
6455
6456 for_each_class(class) {
6457 if (class->rq_offline)
6458 class->rq_offline(rq);
6459 }
6460
6461 cpu_clear(rq->cpu, rq->rd->online);
6462 rq->online = 0;
6463 }
6464 }
6465
6466 /*
6467 * migration_call - callback that gets triggered when a CPU is added.
6468 * Here we can start up the necessary migration thread for the new CPU.
6469 */
6470 static int __cpuinit
6471 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6472 {
6473 struct task_struct *p;
6474 int cpu = (long)hcpu;
6475 unsigned long flags;
6476 struct rq *rq;
6477
6478 switch (action) {
6479
6480 case CPU_UP_PREPARE:
6481 case CPU_UP_PREPARE_FROZEN:
6482 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6483 if (IS_ERR(p))
6484 return NOTIFY_BAD;
6485 kthread_bind(p, cpu);
6486 /* Must be high prio: stop_machine expects to yield to it. */
6487 rq = task_rq_lock(p, &flags);
6488 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6489 task_rq_unlock(rq, &flags);
6490 cpu_rq(cpu)->migration_thread = p;
6491 break;
6492
6493 case CPU_ONLINE:
6494 case CPU_ONLINE_FROZEN:
6495 /* Strictly unnecessary, as first user will wake it. */
6496 wake_up_process(cpu_rq(cpu)->migration_thread);
6497
6498 /* Update our root-domain */
6499 rq = cpu_rq(cpu);
6500 spin_lock_irqsave(&rq->lock, flags);
6501 if (rq->rd) {
6502 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6503
6504 set_rq_online(rq);
6505 }
6506 spin_unlock_irqrestore(&rq->lock, flags);
6507 break;
6508
6509 #ifdef CONFIG_HOTPLUG_CPU
6510 case CPU_UP_CANCELED:
6511 case CPU_UP_CANCELED_FROZEN:
6512 if (!cpu_rq(cpu)->migration_thread)
6513 break;
6514 /* Unbind it from offline cpu so it can run. Fall thru. */
6515 kthread_bind(cpu_rq(cpu)->migration_thread,
6516 any_online_cpu(cpu_online_map));
6517 kthread_stop(cpu_rq(cpu)->migration_thread);
6518 cpu_rq(cpu)->migration_thread = NULL;
6519 break;
6520
6521 case CPU_DEAD:
6522 case CPU_DEAD_FROZEN:
6523 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6524 migrate_live_tasks(cpu);
6525 rq = cpu_rq(cpu);
6526 kthread_stop(rq->migration_thread);
6527 rq->migration_thread = NULL;
6528 /* Idle task back to normal (off runqueue, low prio) */
6529 spin_lock_irq(&rq->lock);
6530 update_rq_clock(rq);
6531 deactivate_task(rq, rq->idle, 0);
6532 rq->idle->static_prio = MAX_PRIO;
6533 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6534 rq->idle->sched_class = &idle_sched_class;
6535 migrate_dead_tasks(cpu);
6536 spin_unlock_irq(&rq->lock);
6537 cpuset_unlock();
6538 migrate_nr_uninterruptible(rq);
6539 BUG_ON(rq->nr_running != 0);
6540
6541 /*
6542 * No need to migrate the tasks: it was best-effort if
6543 * they didn't take sched_hotcpu_mutex. Just wake up
6544 * the requestors.
6545 */
6546 spin_lock_irq(&rq->lock);
6547 while (!list_empty(&rq->migration_queue)) {
6548 struct migration_req *req;
6549
6550 req = list_entry(rq->migration_queue.next,
6551 struct migration_req, list);
6552 list_del_init(&req->list);
6553 complete(&req->done);
6554 }
6555 spin_unlock_irq(&rq->lock);
6556 break;
6557
6558 case CPU_DYING:
6559 case CPU_DYING_FROZEN:
6560 /* Update our root-domain */
6561 rq = cpu_rq(cpu);
6562 spin_lock_irqsave(&rq->lock, flags);
6563 if (rq->rd) {
6564 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6565 set_rq_offline(rq);
6566 }
6567 spin_unlock_irqrestore(&rq->lock, flags);
6568 break;
6569 #endif
6570 }
6571 return NOTIFY_OK;
6572 }
6573
6574 /* Register at highest priority so that task migration (migrate_all_tasks)
6575 * happens before everything else.
6576 */
6577 static struct notifier_block __cpuinitdata migration_notifier = {
6578 .notifier_call = migration_call,
6579 .priority = 10
6580 };
6581
6582 static int __init migration_init(void)
6583 {
6584 void *cpu = (void *)(long)smp_processor_id();
6585 int err;
6586
6587 /* Start one for the boot CPU: */
6588 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6589 BUG_ON(err == NOTIFY_BAD);
6590 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6591 register_cpu_notifier(&migration_notifier);
6592
6593 return err;
6594 }
6595 early_initcall(migration_init);
6596 #endif
6597
6598 #ifdef CONFIG_SMP
6599
6600 #ifdef CONFIG_SCHED_DEBUG
6601
6602 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6603 {
6604 switch (lvl) {
6605 case SD_LV_NONE:
6606 return "NONE";
6607 case SD_LV_SIBLING:
6608 return "SIBLING";
6609 case SD_LV_MC:
6610 return "MC";
6611 case SD_LV_CPU:
6612 return "CPU";
6613 case SD_LV_NODE:
6614 return "NODE";
6615 case SD_LV_ALLNODES:
6616 return "ALLNODES";
6617 case SD_LV_MAX:
6618 return "MAX";
6619
6620 }
6621 return "MAX";
6622 }
6623
6624 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6625 cpumask_t *groupmask)
6626 {
6627 struct sched_group *group = sd->groups;
6628 char str[256];
6629
6630 cpulist_scnprintf(str, sizeof(str), sd->span);
6631 cpus_clear(*groupmask);
6632
6633 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6634
6635 if (!(sd->flags & SD_LOAD_BALANCE)) {
6636 printk("does not load-balance\n");
6637 if (sd->parent)
6638 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6639 " has parent");
6640 return -1;
6641 }
6642
6643 printk(KERN_CONT "span %s level %s\n",
6644 str, sd_level_to_string(sd->level));
6645
6646 if (!cpu_isset(cpu, sd->span)) {
6647 printk(KERN_ERR "ERROR: domain->span does not contain "
6648 "CPU%d\n", cpu);
6649 }
6650 if (!cpu_isset(cpu, group->cpumask)) {
6651 printk(KERN_ERR "ERROR: domain->groups does not contain"
6652 " CPU%d\n", cpu);
6653 }
6654
6655 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6656 do {
6657 if (!group) {
6658 printk("\n");
6659 printk(KERN_ERR "ERROR: group is NULL\n");
6660 break;
6661 }
6662
6663 if (!group->__cpu_power) {
6664 printk(KERN_CONT "\n");
6665 printk(KERN_ERR "ERROR: domain->cpu_power not "
6666 "set\n");
6667 break;
6668 }
6669
6670 if (!cpus_weight(group->cpumask)) {
6671 printk(KERN_CONT "\n");
6672 printk(KERN_ERR "ERROR: empty group\n");
6673 break;
6674 }
6675
6676 if (cpus_intersects(*groupmask, group->cpumask)) {
6677 printk(KERN_CONT "\n");
6678 printk(KERN_ERR "ERROR: repeated CPUs\n");
6679 break;
6680 }
6681
6682 cpus_or(*groupmask, *groupmask, group->cpumask);
6683
6684 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6685 printk(KERN_CONT " %s", str);
6686
6687 group = group->next;
6688 } while (group != sd->groups);
6689 printk(KERN_CONT "\n");
6690
6691 if (!cpus_equal(sd->span, *groupmask))
6692 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6693
6694 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6695 printk(KERN_ERR "ERROR: parent span is not a superset "
6696 "of domain->span\n");
6697 return 0;
6698 }
6699
6700 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6701 {
6702 cpumask_t *groupmask;
6703 int level = 0;
6704
6705 if (!sd) {
6706 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6707 return;
6708 }
6709
6710 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6711
6712 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6713 if (!groupmask) {
6714 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6715 return;
6716 }
6717
6718 for (;;) {
6719 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6720 break;
6721 level++;
6722 sd = sd->parent;
6723 if (!sd)
6724 break;
6725 }
6726 kfree(groupmask);
6727 }
6728 #else /* !CONFIG_SCHED_DEBUG */
6729 # define sched_domain_debug(sd, cpu) do { } while (0)
6730 #endif /* CONFIG_SCHED_DEBUG */
6731
6732 static int sd_degenerate(struct sched_domain *sd)
6733 {
6734 if (cpus_weight(sd->span) == 1)
6735 return 1;
6736
6737 /* Following flags need at least 2 groups */
6738 if (sd->flags & (SD_LOAD_BALANCE |
6739 SD_BALANCE_NEWIDLE |
6740 SD_BALANCE_FORK |
6741 SD_BALANCE_EXEC |
6742 SD_SHARE_CPUPOWER |
6743 SD_SHARE_PKG_RESOURCES)) {
6744 if (sd->groups != sd->groups->next)
6745 return 0;
6746 }
6747
6748 /* Following flags don't use groups */
6749 if (sd->flags & (SD_WAKE_IDLE |
6750 SD_WAKE_AFFINE |
6751 SD_WAKE_BALANCE))
6752 return 0;
6753
6754 return 1;
6755 }
6756
6757 static int
6758 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6759 {
6760 unsigned long cflags = sd->flags, pflags = parent->flags;
6761
6762 if (sd_degenerate(parent))
6763 return 1;
6764
6765 if (!cpus_equal(sd->span, parent->span))
6766 return 0;
6767
6768 /* Does parent contain flags not in child? */
6769 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6770 if (cflags & SD_WAKE_AFFINE)
6771 pflags &= ~SD_WAKE_BALANCE;
6772 /* Flags needing groups don't count if only 1 group in parent */
6773 if (parent->groups == parent->groups->next) {
6774 pflags &= ~(SD_LOAD_BALANCE |
6775 SD_BALANCE_NEWIDLE |
6776 SD_BALANCE_FORK |
6777 SD_BALANCE_EXEC |
6778 SD_SHARE_CPUPOWER |
6779 SD_SHARE_PKG_RESOURCES);
6780 }
6781 if (~cflags & pflags)
6782 return 0;
6783
6784 return 1;
6785 }
6786
6787 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6788 {
6789 unsigned long flags;
6790
6791 spin_lock_irqsave(&rq->lock, flags);
6792
6793 if (rq->rd) {
6794 struct root_domain *old_rd = rq->rd;
6795
6796 if (cpu_isset(rq->cpu, old_rd->online))
6797 set_rq_offline(rq);
6798
6799 cpu_clear(rq->cpu, old_rd->span);
6800
6801 if (atomic_dec_and_test(&old_rd->refcount))
6802 kfree(old_rd);
6803 }
6804
6805 atomic_inc(&rd->refcount);
6806 rq->rd = rd;
6807
6808 cpu_set(rq->cpu, rd->span);
6809 if (cpu_isset(rq->cpu, cpu_online_map))
6810 set_rq_online(rq);
6811
6812 spin_unlock_irqrestore(&rq->lock, flags);
6813 }
6814
6815 static void init_rootdomain(struct root_domain *rd)
6816 {
6817 memset(rd, 0, sizeof(*rd));
6818
6819 cpus_clear(rd->span);
6820 cpus_clear(rd->online);
6821
6822 cpupri_init(&rd->cpupri);
6823 }
6824
6825 static void init_defrootdomain(void)
6826 {
6827 init_rootdomain(&def_root_domain);
6828 atomic_set(&def_root_domain.refcount, 1);
6829 }
6830
6831 static struct root_domain *alloc_rootdomain(void)
6832 {
6833 struct root_domain *rd;
6834
6835 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6836 if (!rd)
6837 return NULL;
6838
6839 init_rootdomain(rd);
6840
6841 return rd;
6842 }
6843
6844 /*
6845 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6846 * hold the hotplug lock.
6847 */
6848 static void
6849 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6850 {
6851 struct rq *rq = cpu_rq(cpu);
6852 struct sched_domain *tmp;
6853
6854 /* Remove the sched domains which do not contribute to scheduling. */
6855 for (tmp = sd; tmp; tmp = tmp->parent) {
6856 struct sched_domain *parent = tmp->parent;
6857 if (!parent)
6858 break;
6859 if (sd_parent_degenerate(tmp, parent)) {
6860 tmp->parent = parent->parent;
6861 if (parent->parent)
6862 parent->parent->child = tmp;
6863 }
6864 }
6865
6866 if (sd && sd_degenerate(sd)) {
6867 sd = sd->parent;
6868 if (sd)
6869 sd->child = NULL;
6870 }
6871
6872 sched_domain_debug(sd, cpu);
6873
6874 rq_attach_root(rq, rd);
6875 rcu_assign_pointer(rq->sd, sd);
6876 }
6877
6878 /* cpus with isolated domains */
6879 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6880
6881 /* Setup the mask of cpus configured for isolated domains */
6882 static int __init isolated_cpu_setup(char *str)
6883 {
6884 static int __initdata ints[NR_CPUS];
6885 int i;
6886
6887 str = get_options(str, ARRAY_SIZE(ints), ints);
6888 cpus_clear(cpu_isolated_map);
6889 for (i = 1; i <= ints[0]; i++)
6890 if (ints[i] < NR_CPUS)
6891 cpu_set(ints[i], cpu_isolated_map);
6892 return 1;
6893 }
6894
6895 __setup("isolcpus=", isolated_cpu_setup);
6896
6897 /*
6898 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6899 * to a function which identifies what group(along with sched group) a CPU
6900 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6901 * (due to the fact that we keep track of groups covered with a cpumask_t).
6902 *
6903 * init_sched_build_groups will build a circular linked list of the groups
6904 * covered by the given span, and will set each group's ->cpumask correctly,
6905 * and ->cpu_power to 0.
6906 */
6907 static void
6908 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6909 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6910 struct sched_group **sg,
6911 cpumask_t *tmpmask),
6912 cpumask_t *covered, cpumask_t *tmpmask)
6913 {
6914 struct sched_group *first = NULL, *last = NULL;
6915 int i;
6916
6917 cpus_clear(*covered);
6918
6919 for_each_cpu_mask_nr(i, *span) {
6920 struct sched_group *sg;
6921 int group = group_fn(i, cpu_map, &sg, tmpmask);
6922 int j;
6923
6924 if (cpu_isset(i, *covered))
6925 continue;
6926
6927 cpus_clear(sg->cpumask);
6928 sg->__cpu_power = 0;
6929
6930 for_each_cpu_mask_nr(j, *span) {
6931 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6932 continue;
6933
6934 cpu_set(j, *covered);
6935 cpu_set(j, sg->cpumask);
6936 }
6937 if (!first)
6938 first = sg;
6939 if (last)
6940 last->next = sg;
6941 last = sg;
6942 }
6943 last->next = first;
6944 }
6945
6946 #define SD_NODES_PER_DOMAIN 16
6947
6948 #ifdef CONFIG_NUMA
6949
6950 /**
6951 * find_next_best_node - find the next node to include in a sched_domain
6952 * @node: node whose sched_domain we're building
6953 * @used_nodes: nodes already in the sched_domain
6954 *
6955 * Find the next node to include in a given scheduling domain. Simply
6956 * finds the closest node not already in the @used_nodes map.
6957 *
6958 * Should use nodemask_t.
6959 */
6960 static int find_next_best_node(int node, nodemask_t *used_nodes)
6961 {
6962 int i, n, val, min_val, best_node = 0;
6963
6964 min_val = INT_MAX;
6965
6966 for (i = 0; i < nr_node_ids; i++) {
6967 /* Start at @node */
6968 n = (node + i) % nr_node_ids;
6969
6970 if (!nr_cpus_node(n))
6971 continue;
6972
6973 /* Skip already used nodes */
6974 if (node_isset(n, *used_nodes))
6975 continue;
6976
6977 /* Simple min distance search */
6978 val = node_distance(node, n);
6979
6980 if (val < min_val) {
6981 min_val = val;
6982 best_node = n;
6983 }
6984 }
6985
6986 node_set(best_node, *used_nodes);
6987 return best_node;
6988 }
6989
6990 /**
6991 * sched_domain_node_span - get a cpumask for a node's sched_domain
6992 * @node: node whose cpumask we're constructing
6993 * @span: resulting cpumask
6994 *
6995 * Given a node, construct a good cpumask for its sched_domain to span. It
6996 * should be one that prevents unnecessary balancing, but also spreads tasks
6997 * out optimally.
6998 */
6999 static void sched_domain_node_span(int node, cpumask_t *span)
7000 {
7001 nodemask_t used_nodes;
7002 node_to_cpumask_ptr(nodemask, node);
7003 int i;
7004
7005 cpus_clear(*span);
7006 nodes_clear(used_nodes);
7007
7008 cpus_or(*span, *span, *nodemask);
7009 node_set(node, used_nodes);
7010
7011 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7012 int next_node = find_next_best_node(node, &used_nodes);
7013
7014 node_to_cpumask_ptr_next(nodemask, next_node);
7015 cpus_or(*span, *span, *nodemask);
7016 }
7017 }
7018 #endif /* CONFIG_NUMA */
7019
7020 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7021
7022 /*
7023 * SMT sched-domains:
7024 */
7025 #ifdef CONFIG_SCHED_SMT
7026 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7027 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7028
7029 static int
7030 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7031 cpumask_t *unused)
7032 {
7033 if (sg)
7034 *sg = &per_cpu(sched_group_cpus, cpu);
7035 return cpu;
7036 }
7037 #endif /* CONFIG_SCHED_SMT */
7038
7039 /*
7040 * multi-core sched-domains:
7041 */
7042 #ifdef CONFIG_SCHED_MC
7043 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7044 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7045 #endif /* CONFIG_SCHED_MC */
7046
7047 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7048 static int
7049 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7050 cpumask_t *mask)
7051 {
7052 int group;
7053
7054 *mask = per_cpu(cpu_sibling_map, cpu);
7055 cpus_and(*mask, *mask, *cpu_map);
7056 group = first_cpu(*mask);
7057 if (sg)
7058 *sg = &per_cpu(sched_group_core, group);
7059 return group;
7060 }
7061 #elif defined(CONFIG_SCHED_MC)
7062 static int
7063 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7064 cpumask_t *unused)
7065 {
7066 if (sg)
7067 *sg = &per_cpu(sched_group_core, cpu);
7068 return cpu;
7069 }
7070 #endif
7071
7072 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7073 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7074
7075 static int
7076 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7077 cpumask_t *mask)
7078 {
7079 int group;
7080 #ifdef CONFIG_SCHED_MC
7081 *mask = cpu_coregroup_map(cpu);
7082 cpus_and(*mask, *mask, *cpu_map);
7083 group = first_cpu(*mask);
7084 #elif defined(CONFIG_SCHED_SMT)
7085 *mask = per_cpu(cpu_sibling_map, cpu);
7086 cpus_and(*mask, *mask, *cpu_map);
7087 group = first_cpu(*mask);
7088 #else
7089 group = cpu;
7090 #endif
7091 if (sg)
7092 *sg = &per_cpu(sched_group_phys, group);
7093 return group;
7094 }
7095
7096 #ifdef CONFIG_NUMA
7097 /*
7098 * The init_sched_build_groups can't handle what we want to do with node
7099 * groups, so roll our own. Now each node has its own list of groups which
7100 * gets dynamically allocated.
7101 */
7102 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7103 static struct sched_group ***sched_group_nodes_bycpu;
7104
7105 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7106 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7107
7108 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7109 struct sched_group **sg, cpumask_t *nodemask)
7110 {
7111 int group;
7112
7113 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7114 cpus_and(*nodemask, *nodemask, *cpu_map);
7115 group = first_cpu(*nodemask);
7116
7117 if (sg)
7118 *sg = &per_cpu(sched_group_allnodes, group);
7119 return group;
7120 }
7121
7122 static void init_numa_sched_groups_power(struct sched_group *group_head)
7123 {
7124 struct sched_group *sg = group_head;
7125 int j;
7126
7127 if (!sg)
7128 return;
7129 do {
7130 for_each_cpu_mask_nr(j, sg->cpumask) {
7131 struct sched_domain *sd;
7132
7133 sd = &per_cpu(phys_domains, j);
7134 if (j != first_cpu(sd->groups->cpumask)) {
7135 /*
7136 * Only add "power" once for each
7137 * physical package.
7138 */
7139 continue;
7140 }
7141
7142 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7143 }
7144 sg = sg->next;
7145 } while (sg != group_head);
7146 }
7147 #endif /* CONFIG_NUMA */
7148
7149 #ifdef CONFIG_NUMA
7150 /* Free memory allocated for various sched_group structures */
7151 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7152 {
7153 int cpu, i;
7154
7155 for_each_cpu_mask_nr(cpu, *cpu_map) {
7156 struct sched_group **sched_group_nodes
7157 = sched_group_nodes_bycpu[cpu];
7158
7159 if (!sched_group_nodes)
7160 continue;
7161
7162 for (i = 0; i < nr_node_ids; i++) {
7163 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7164
7165 *nodemask = node_to_cpumask(i);
7166 cpus_and(*nodemask, *nodemask, *cpu_map);
7167 if (cpus_empty(*nodemask))
7168 continue;
7169
7170 if (sg == NULL)
7171 continue;
7172 sg = sg->next;
7173 next_sg:
7174 oldsg = sg;
7175 sg = sg->next;
7176 kfree(oldsg);
7177 if (oldsg != sched_group_nodes[i])
7178 goto next_sg;
7179 }
7180 kfree(sched_group_nodes);
7181 sched_group_nodes_bycpu[cpu] = NULL;
7182 }
7183 }
7184 #else /* !CONFIG_NUMA */
7185 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7186 {
7187 }
7188 #endif /* CONFIG_NUMA */
7189
7190 /*
7191 * Initialize sched groups cpu_power.
7192 *
7193 * cpu_power indicates the capacity of sched group, which is used while
7194 * distributing the load between different sched groups in a sched domain.
7195 * Typically cpu_power for all the groups in a sched domain will be same unless
7196 * there are asymmetries in the topology. If there are asymmetries, group
7197 * having more cpu_power will pickup more load compared to the group having
7198 * less cpu_power.
7199 *
7200 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7201 * the maximum number of tasks a group can handle in the presence of other idle
7202 * or lightly loaded groups in the same sched domain.
7203 */
7204 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7205 {
7206 struct sched_domain *child;
7207 struct sched_group *group;
7208
7209 WARN_ON(!sd || !sd->groups);
7210
7211 if (cpu != first_cpu(sd->groups->cpumask))
7212 return;
7213
7214 child = sd->child;
7215
7216 sd->groups->__cpu_power = 0;
7217
7218 /*
7219 * For perf policy, if the groups in child domain share resources
7220 * (for example cores sharing some portions of the cache hierarchy
7221 * or SMT), then set this domain groups cpu_power such that each group
7222 * can handle only one task, when there are other idle groups in the
7223 * same sched domain.
7224 */
7225 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7226 (child->flags &
7227 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7228 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7229 return;
7230 }
7231
7232 /*
7233 * add cpu_power of each child group to this groups cpu_power
7234 */
7235 group = child->groups;
7236 do {
7237 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7238 group = group->next;
7239 } while (group != child->groups);
7240 }
7241
7242 /*
7243 * Initializers for schedule domains
7244 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7245 */
7246
7247 #define SD_INIT(sd, type) sd_init_##type(sd)
7248 #define SD_INIT_FUNC(type) \
7249 static noinline void sd_init_##type(struct sched_domain *sd) \
7250 { \
7251 memset(sd, 0, sizeof(*sd)); \
7252 *sd = SD_##type##_INIT; \
7253 sd->level = SD_LV_##type; \
7254 }
7255
7256 SD_INIT_FUNC(CPU)
7257 #ifdef CONFIG_NUMA
7258 SD_INIT_FUNC(ALLNODES)
7259 SD_INIT_FUNC(NODE)
7260 #endif
7261 #ifdef CONFIG_SCHED_SMT
7262 SD_INIT_FUNC(SIBLING)
7263 #endif
7264 #ifdef CONFIG_SCHED_MC
7265 SD_INIT_FUNC(MC)
7266 #endif
7267
7268 /*
7269 * To minimize stack usage kmalloc room for cpumasks and share the
7270 * space as the usage in build_sched_domains() dictates. Used only
7271 * if the amount of space is significant.
7272 */
7273 struct allmasks {
7274 cpumask_t tmpmask; /* make this one first */
7275 union {
7276 cpumask_t nodemask;
7277 cpumask_t this_sibling_map;
7278 cpumask_t this_core_map;
7279 };
7280 cpumask_t send_covered;
7281
7282 #ifdef CONFIG_NUMA
7283 cpumask_t domainspan;
7284 cpumask_t covered;
7285 cpumask_t notcovered;
7286 #endif
7287 };
7288
7289 #if NR_CPUS > 128
7290 #define SCHED_CPUMASK_ALLOC 1
7291 #define SCHED_CPUMASK_FREE(v) kfree(v)
7292 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7293 #else
7294 #define SCHED_CPUMASK_ALLOC 0
7295 #define SCHED_CPUMASK_FREE(v)
7296 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7297 #endif
7298
7299 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7300 ((unsigned long)(a) + offsetof(struct allmasks, v))
7301
7302 static int default_relax_domain_level = -1;
7303
7304 static int __init setup_relax_domain_level(char *str)
7305 {
7306 unsigned long val;
7307
7308 val = simple_strtoul(str, NULL, 0);
7309 if (val < SD_LV_MAX)
7310 default_relax_domain_level = val;
7311
7312 return 1;
7313 }
7314 __setup("relax_domain_level=", setup_relax_domain_level);
7315
7316 static void set_domain_attribute(struct sched_domain *sd,
7317 struct sched_domain_attr *attr)
7318 {
7319 int request;
7320
7321 if (!attr || attr->relax_domain_level < 0) {
7322 if (default_relax_domain_level < 0)
7323 return;
7324 else
7325 request = default_relax_domain_level;
7326 } else
7327 request = attr->relax_domain_level;
7328 if (request < sd->level) {
7329 /* turn off idle balance on this domain */
7330 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7331 } else {
7332 /* turn on idle balance on this domain */
7333 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7334 }
7335 }
7336
7337 /*
7338 * Build sched domains for a given set of cpus and attach the sched domains
7339 * to the individual cpus
7340 */
7341 static int __build_sched_domains(const cpumask_t *cpu_map,
7342 struct sched_domain_attr *attr)
7343 {
7344 int i;
7345 struct root_domain *rd;
7346 SCHED_CPUMASK_DECLARE(allmasks);
7347 cpumask_t *tmpmask;
7348 #ifdef CONFIG_NUMA
7349 struct sched_group **sched_group_nodes = NULL;
7350 int sd_allnodes = 0;
7351
7352 /*
7353 * Allocate the per-node list of sched groups
7354 */
7355 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7356 GFP_KERNEL);
7357 if (!sched_group_nodes) {
7358 printk(KERN_WARNING "Can not alloc sched group node list\n");
7359 return -ENOMEM;
7360 }
7361 #endif
7362
7363 rd = alloc_rootdomain();
7364 if (!rd) {
7365 printk(KERN_WARNING "Cannot alloc root domain\n");
7366 #ifdef CONFIG_NUMA
7367 kfree(sched_group_nodes);
7368 #endif
7369 return -ENOMEM;
7370 }
7371
7372 #if SCHED_CPUMASK_ALLOC
7373 /* get space for all scratch cpumask variables */
7374 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7375 if (!allmasks) {
7376 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7377 kfree(rd);
7378 #ifdef CONFIG_NUMA
7379 kfree(sched_group_nodes);
7380 #endif
7381 return -ENOMEM;
7382 }
7383 #endif
7384 tmpmask = (cpumask_t *)allmasks;
7385
7386
7387 #ifdef CONFIG_NUMA
7388 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7389 #endif
7390
7391 /*
7392 * Set up domains for cpus specified by the cpu_map.
7393 */
7394 for_each_cpu_mask_nr(i, *cpu_map) {
7395 struct sched_domain *sd = NULL, *p;
7396 SCHED_CPUMASK_VAR(nodemask, allmasks);
7397
7398 *nodemask = node_to_cpumask(cpu_to_node(i));
7399 cpus_and(*nodemask, *nodemask, *cpu_map);
7400
7401 #ifdef CONFIG_NUMA
7402 if (cpus_weight(*cpu_map) >
7403 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7404 sd = &per_cpu(allnodes_domains, i);
7405 SD_INIT(sd, ALLNODES);
7406 set_domain_attribute(sd, attr);
7407 sd->span = *cpu_map;
7408 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7409 p = sd;
7410 sd_allnodes = 1;
7411 } else
7412 p = NULL;
7413
7414 sd = &per_cpu(node_domains, i);
7415 SD_INIT(sd, NODE);
7416 set_domain_attribute(sd, attr);
7417 sched_domain_node_span(cpu_to_node(i), &sd->span);
7418 sd->parent = p;
7419 if (p)
7420 p->child = sd;
7421 cpus_and(sd->span, sd->span, *cpu_map);
7422 #endif
7423
7424 p = sd;
7425 sd = &per_cpu(phys_domains, i);
7426 SD_INIT(sd, CPU);
7427 set_domain_attribute(sd, attr);
7428 sd->span = *nodemask;
7429 sd->parent = p;
7430 if (p)
7431 p->child = sd;
7432 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7433
7434 #ifdef CONFIG_SCHED_MC
7435 p = sd;
7436 sd = &per_cpu(core_domains, i);
7437 SD_INIT(sd, MC);
7438 set_domain_attribute(sd, attr);
7439 sd->span = cpu_coregroup_map(i);
7440 cpus_and(sd->span, sd->span, *cpu_map);
7441 sd->parent = p;
7442 p->child = sd;
7443 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7444 #endif
7445
7446 #ifdef CONFIG_SCHED_SMT
7447 p = sd;
7448 sd = &per_cpu(cpu_domains, i);
7449 SD_INIT(sd, SIBLING);
7450 set_domain_attribute(sd, attr);
7451 sd->span = per_cpu(cpu_sibling_map, i);
7452 cpus_and(sd->span, sd->span, *cpu_map);
7453 sd->parent = p;
7454 p->child = sd;
7455 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7456 #endif
7457 }
7458
7459 #ifdef CONFIG_SCHED_SMT
7460 /* Set up CPU (sibling) groups */
7461 for_each_cpu_mask_nr(i, *cpu_map) {
7462 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7463 SCHED_CPUMASK_VAR(send_covered, allmasks);
7464
7465 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7466 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7467 if (i != first_cpu(*this_sibling_map))
7468 continue;
7469
7470 init_sched_build_groups(this_sibling_map, cpu_map,
7471 &cpu_to_cpu_group,
7472 send_covered, tmpmask);
7473 }
7474 #endif
7475
7476 #ifdef CONFIG_SCHED_MC
7477 /* Set up multi-core groups */
7478 for_each_cpu_mask_nr(i, *cpu_map) {
7479 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7480 SCHED_CPUMASK_VAR(send_covered, allmasks);
7481
7482 *this_core_map = cpu_coregroup_map(i);
7483 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7484 if (i != first_cpu(*this_core_map))
7485 continue;
7486
7487 init_sched_build_groups(this_core_map, cpu_map,
7488 &cpu_to_core_group,
7489 send_covered, tmpmask);
7490 }
7491 #endif
7492
7493 /* Set up physical groups */
7494 for (i = 0; i < nr_node_ids; i++) {
7495 SCHED_CPUMASK_VAR(nodemask, allmasks);
7496 SCHED_CPUMASK_VAR(send_covered, allmasks);
7497
7498 *nodemask = node_to_cpumask(i);
7499 cpus_and(*nodemask, *nodemask, *cpu_map);
7500 if (cpus_empty(*nodemask))
7501 continue;
7502
7503 init_sched_build_groups(nodemask, cpu_map,
7504 &cpu_to_phys_group,
7505 send_covered, tmpmask);
7506 }
7507
7508 #ifdef CONFIG_NUMA
7509 /* Set up node groups */
7510 if (sd_allnodes) {
7511 SCHED_CPUMASK_VAR(send_covered, allmasks);
7512
7513 init_sched_build_groups(cpu_map, cpu_map,
7514 &cpu_to_allnodes_group,
7515 send_covered, tmpmask);
7516 }
7517
7518 for (i = 0; i < nr_node_ids; i++) {
7519 /* Set up node groups */
7520 struct sched_group *sg, *prev;
7521 SCHED_CPUMASK_VAR(nodemask, allmasks);
7522 SCHED_CPUMASK_VAR(domainspan, allmasks);
7523 SCHED_CPUMASK_VAR(covered, allmasks);
7524 int j;
7525
7526 *nodemask = node_to_cpumask(i);
7527 cpus_clear(*covered);
7528
7529 cpus_and(*nodemask, *nodemask, *cpu_map);
7530 if (cpus_empty(*nodemask)) {
7531 sched_group_nodes[i] = NULL;
7532 continue;
7533 }
7534
7535 sched_domain_node_span(i, domainspan);
7536 cpus_and(*domainspan, *domainspan, *cpu_map);
7537
7538 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7539 if (!sg) {
7540 printk(KERN_WARNING "Can not alloc domain group for "
7541 "node %d\n", i);
7542 goto error;
7543 }
7544 sched_group_nodes[i] = sg;
7545 for_each_cpu_mask_nr(j, *nodemask) {
7546 struct sched_domain *sd;
7547
7548 sd = &per_cpu(node_domains, j);
7549 sd->groups = sg;
7550 }
7551 sg->__cpu_power = 0;
7552 sg->cpumask = *nodemask;
7553 sg->next = sg;
7554 cpus_or(*covered, *covered, *nodemask);
7555 prev = sg;
7556
7557 for (j = 0; j < nr_node_ids; j++) {
7558 SCHED_CPUMASK_VAR(notcovered, allmasks);
7559 int n = (i + j) % nr_node_ids;
7560 node_to_cpumask_ptr(pnodemask, n);
7561
7562 cpus_complement(*notcovered, *covered);
7563 cpus_and(*tmpmask, *notcovered, *cpu_map);
7564 cpus_and(*tmpmask, *tmpmask, *domainspan);
7565 if (cpus_empty(*tmpmask))
7566 break;
7567
7568 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7569 if (cpus_empty(*tmpmask))
7570 continue;
7571
7572 sg = kmalloc_node(sizeof(struct sched_group),
7573 GFP_KERNEL, i);
7574 if (!sg) {
7575 printk(KERN_WARNING
7576 "Can not alloc domain group for node %d\n", j);
7577 goto error;
7578 }
7579 sg->__cpu_power = 0;
7580 sg->cpumask = *tmpmask;
7581 sg->next = prev->next;
7582 cpus_or(*covered, *covered, *tmpmask);
7583 prev->next = sg;
7584 prev = sg;
7585 }
7586 }
7587 #endif
7588
7589 /* Calculate CPU power for physical packages and nodes */
7590 #ifdef CONFIG_SCHED_SMT
7591 for_each_cpu_mask_nr(i, *cpu_map) {
7592 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7593
7594 init_sched_groups_power(i, sd);
7595 }
7596 #endif
7597 #ifdef CONFIG_SCHED_MC
7598 for_each_cpu_mask_nr(i, *cpu_map) {
7599 struct sched_domain *sd = &per_cpu(core_domains, i);
7600
7601 init_sched_groups_power(i, sd);
7602 }
7603 #endif
7604
7605 for_each_cpu_mask_nr(i, *cpu_map) {
7606 struct sched_domain *sd = &per_cpu(phys_domains, i);
7607
7608 init_sched_groups_power(i, sd);
7609 }
7610
7611 #ifdef CONFIG_NUMA
7612 for (i = 0; i < nr_node_ids; i++)
7613 init_numa_sched_groups_power(sched_group_nodes[i]);
7614
7615 if (sd_allnodes) {
7616 struct sched_group *sg;
7617
7618 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7619 tmpmask);
7620 init_numa_sched_groups_power(sg);
7621 }
7622 #endif
7623
7624 /* Attach the domains */
7625 for_each_cpu_mask_nr(i, *cpu_map) {
7626 struct sched_domain *sd;
7627 #ifdef CONFIG_SCHED_SMT
7628 sd = &per_cpu(cpu_domains, i);
7629 #elif defined(CONFIG_SCHED_MC)
7630 sd = &per_cpu(core_domains, i);
7631 #else
7632 sd = &per_cpu(phys_domains, i);
7633 #endif
7634 cpu_attach_domain(sd, rd, i);
7635 }
7636
7637 SCHED_CPUMASK_FREE((void *)allmasks);
7638 return 0;
7639
7640 #ifdef CONFIG_NUMA
7641 error:
7642 free_sched_groups(cpu_map, tmpmask);
7643 SCHED_CPUMASK_FREE((void *)allmasks);
7644 return -ENOMEM;
7645 #endif
7646 }
7647
7648 static int build_sched_domains(const cpumask_t *cpu_map)
7649 {
7650 return __build_sched_domains(cpu_map, NULL);
7651 }
7652
7653 static cpumask_t *doms_cur; /* current sched domains */
7654 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7655 static struct sched_domain_attr *dattr_cur;
7656 /* attribues of custom domains in 'doms_cur' */
7657
7658 /*
7659 * Special case: If a kmalloc of a doms_cur partition (array of
7660 * cpumask_t) fails, then fallback to a single sched domain,
7661 * as determined by the single cpumask_t fallback_doms.
7662 */
7663 static cpumask_t fallback_doms;
7664
7665 void __attribute__((weak)) arch_update_cpu_topology(void)
7666 {
7667 }
7668
7669 /*
7670 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7671 * For now this just excludes isolated cpus, but could be used to
7672 * exclude other special cases in the future.
7673 */
7674 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7675 {
7676 int err;
7677
7678 arch_update_cpu_topology();
7679 ndoms_cur = 1;
7680 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7681 if (!doms_cur)
7682 doms_cur = &fallback_doms;
7683 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7684 dattr_cur = NULL;
7685 err = build_sched_domains(doms_cur);
7686 register_sched_domain_sysctl();
7687
7688 return err;
7689 }
7690
7691 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7692 cpumask_t *tmpmask)
7693 {
7694 free_sched_groups(cpu_map, tmpmask);
7695 }
7696
7697 /*
7698 * Detach sched domains from a group of cpus specified in cpu_map
7699 * These cpus will now be attached to the NULL domain
7700 */
7701 static void detach_destroy_domains(const cpumask_t *cpu_map)
7702 {
7703 cpumask_t tmpmask;
7704 int i;
7705
7706 unregister_sched_domain_sysctl();
7707
7708 for_each_cpu_mask_nr(i, *cpu_map)
7709 cpu_attach_domain(NULL, &def_root_domain, i);
7710 synchronize_sched();
7711 arch_destroy_sched_domains(cpu_map, &tmpmask);
7712 }
7713
7714 /* handle null as "default" */
7715 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7716 struct sched_domain_attr *new, int idx_new)
7717 {
7718 struct sched_domain_attr tmp;
7719
7720 /* fast path */
7721 if (!new && !cur)
7722 return 1;
7723
7724 tmp = SD_ATTR_INIT;
7725 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7726 new ? (new + idx_new) : &tmp,
7727 sizeof(struct sched_domain_attr));
7728 }
7729
7730 /*
7731 * Partition sched domains as specified by the 'ndoms_new'
7732 * cpumasks in the array doms_new[] of cpumasks. This compares
7733 * doms_new[] to the current sched domain partitioning, doms_cur[].
7734 * It destroys each deleted domain and builds each new domain.
7735 *
7736 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7737 * The masks don't intersect (don't overlap.) We should setup one
7738 * sched domain for each mask. CPUs not in any of the cpumasks will
7739 * not be load balanced. If the same cpumask appears both in the
7740 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7741 * it as it is.
7742 *
7743 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7744 * ownership of it and will kfree it when done with it. If the caller
7745 * failed the kmalloc call, then it can pass in doms_new == NULL,
7746 * and partition_sched_domains() will fallback to the single partition
7747 * 'fallback_doms', it also forces the domains to be rebuilt.
7748 *
7749 * If doms_new==NULL it will be replaced with cpu_online_map.
7750 * ndoms_new==0 is a special case for destroying existing domains.
7751 * It will not create the default domain.
7752 *
7753 * Call with hotplug lock held
7754 */
7755 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7756 struct sched_domain_attr *dattr_new)
7757 {
7758 int i, j, n;
7759
7760 mutex_lock(&sched_domains_mutex);
7761
7762 /* always unregister in case we don't destroy any domains */
7763 unregister_sched_domain_sysctl();
7764
7765 n = doms_new ? ndoms_new : 0;
7766
7767 /* Destroy deleted domains */
7768 for (i = 0; i < ndoms_cur; i++) {
7769 for (j = 0; j < n; j++) {
7770 if (cpus_equal(doms_cur[i], doms_new[j])
7771 && dattrs_equal(dattr_cur, i, dattr_new, j))
7772 goto match1;
7773 }
7774 /* no match - a current sched domain not in new doms_new[] */
7775 detach_destroy_domains(doms_cur + i);
7776 match1:
7777 ;
7778 }
7779
7780 if (doms_new == NULL) {
7781 ndoms_cur = 0;
7782 doms_new = &fallback_doms;
7783 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7784 dattr_new = NULL;
7785 }
7786
7787 /* Build new domains */
7788 for (i = 0; i < ndoms_new; i++) {
7789 for (j = 0; j < ndoms_cur; j++) {
7790 if (cpus_equal(doms_new[i], doms_cur[j])
7791 && dattrs_equal(dattr_new, i, dattr_cur, j))
7792 goto match2;
7793 }
7794 /* no match - add a new doms_new */
7795 __build_sched_domains(doms_new + i,
7796 dattr_new ? dattr_new + i : NULL);
7797 match2:
7798 ;
7799 }
7800
7801 /* Remember the new sched domains */
7802 if (doms_cur != &fallback_doms)
7803 kfree(doms_cur);
7804 kfree(dattr_cur); /* kfree(NULL) is safe */
7805 doms_cur = doms_new;
7806 dattr_cur = dattr_new;
7807 ndoms_cur = ndoms_new;
7808
7809 register_sched_domain_sysctl();
7810
7811 mutex_unlock(&sched_domains_mutex);
7812 }
7813
7814 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7815 int arch_reinit_sched_domains(void)
7816 {
7817 get_online_cpus();
7818
7819 /* Destroy domains first to force the rebuild */
7820 partition_sched_domains(0, NULL, NULL);
7821
7822 rebuild_sched_domains();
7823 put_online_cpus();
7824
7825 return 0;
7826 }
7827
7828 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7829 {
7830 int ret;
7831
7832 if (buf[0] != '0' && buf[0] != '1')
7833 return -EINVAL;
7834
7835 if (smt)
7836 sched_smt_power_savings = (buf[0] == '1');
7837 else
7838 sched_mc_power_savings = (buf[0] == '1');
7839
7840 ret = arch_reinit_sched_domains();
7841
7842 return ret ? ret : count;
7843 }
7844
7845 #ifdef CONFIG_SCHED_MC
7846 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7847 char *page)
7848 {
7849 return sprintf(page, "%u\n", sched_mc_power_savings);
7850 }
7851 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7852 const char *buf, size_t count)
7853 {
7854 return sched_power_savings_store(buf, count, 0);
7855 }
7856 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7857 sched_mc_power_savings_show,
7858 sched_mc_power_savings_store);
7859 #endif
7860
7861 #ifdef CONFIG_SCHED_SMT
7862 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7863 char *page)
7864 {
7865 return sprintf(page, "%u\n", sched_smt_power_savings);
7866 }
7867 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7868 const char *buf, size_t count)
7869 {
7870 return sched_power_savings_store(buf, count, 1);
7871 }
7872 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7873 sched_smt_power_savings_show,
7874 sched_smt_power_savings_store);
7875 #endif
7876
7877 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7878 {
7879 int err = 0;
7880
7881 #ifdef CONFIG_SCHED_SMT
7882 if (smt_capable())
7883 err = sysfs_create_file(&cls->kset.kobj,
7884 &attr_sched_smt_power_savings.attr);
7885 #endif
7886 #ifdef CONFIG_SCHED_MC
7887 if (!err && mc_capable())
7888 err = sysfs_create_file(&cls->kset.kobj,
7889 &attr_sched_mc_power_savings.attr);
7890 #endif
7891 return err;
7892 }
7893 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7894
7895 #ifndef CONFIG_CPUSETS
7896 /*
7897 * Add online and remove offline CPUs from the scheduler domains.
7898 * When cpusets are enabled they take over this function.
7899 */
7900 static int update_sched_domains(struct notifier_block *nfb,
7901 unsigned long action, void *hcpu)
7902 {
7903 switch (action) {
7904 case CPU_ONLINE:
7905 case CPU_ONLINE_FROZEN:
7906 case CPU_DEAD:
7907 case CPU_DEAD_FROZEN:
7908 partition_sched_domains(1, NULL, NULL);
7909 return NOTIFY_OK;
7910
7911 default:
7912 return NOTIFY_DONE;
7913 }
7914 }
7915 #endif
7916
7917 static int update_runtime(struct notifier_block *nfb,
7918 unsigned long action, void *hcpu)
7919 {
7920 int cpu = (int)(long)hcpu;
7921
7922 switch (action) {
7923 case CPU_DOWN_PREPARE:
7924 case CPU_DOWN_PREPARE_FROZEN:
7925 disable_runtime(cpu_rq(cpu));
7926 return NOTIFY_OK;
7927
7928 case CPU_DOWN_FAILED:
7929 case CPU_DOWN_FAILED_FROZEN:
7930 case CPU_ONLINE:
7931 case CPU_ONLINE_FROZEN:
7932 enable_runtime(cpu_rq(cpu));
7933 return NOTIFY_OK;
7934
7935 default:
7936 return NOTIFY_DONE;
7937 }
7938 }
7939
7940 void __init sched_init_smp(void)
7941 {
7942 cpumask_t non_isolated_cpus;
7943
7944 #if defined(CONFIG_NUMA)
7945 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7946 GFP_KERNEL);
7947 BUG_ON(sched_group_nodes_bycpu == NULL);
7948 #endif
7949 get_online_cpus();
7950 mutex_lock(&sched_domains_mutex);
7951 arch_init_sched_domains(&cpu_online_map);
7952 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7953 if (cpus_empty(non_isolated_cpus))
7954 cpu_set(smp_processor_id(), non_isolated_cpus);
7955 mutex_unlock(&sched_domains_mutex);
7956 put_online_cpus();
7957
7958 #ifndef CONFIG_CPUSETS
7959 /* XXX: Theoretical race here - CPU may be hotplugged now */
7960 hotcpu_notifier(update_sched_domains, 0);
7961 #endif
7962
7963 /* RT runtime code needs to handle some hotplug events */
7964 hotcpu_notifier(update_runtime, 0);
7965
7966 init_hrtick();
7967
7968 /* Move init over to a non-isolated CPU */
7969 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7970 BUG();
7971 sched_init_granularity();
7972 }
7973 #else
7974 void __init sched_init_smp(void)
7975 {
7976 sched_init_granularity();
7977 }
7978 #endif /* CONFIG_SMP */
7979
7980 int in_sched_functions(unsigned long addr)
7981 {
7982 return in_lock_functions(addr) ||
7983 (addr >= (unsigned long)__sched_text_start
7984 && addr < (unsigned long)__sched_text_end);
7985 }
7986
7987 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7988 {
7989 cfs_rq->tasks_timeline = RB_ROOT;
7990 INIT_LIST_HEAD(&cfs_rq->tasks);
7991 #ifdef CONFIG_FAIR_GROUP_SCHED
7992 cfs_rq->rq = rq;
7993 #endif
7994 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7995 }
7996
7997 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7998 {
7999 struct rt_prio_array *array;
8000 int i;
8001
8002 array = &rt_rq->active;
8003 for (i = 0; i < MAX_RT_PRIO; i++) {
8004 INIT_LIST_HEAD(array->queue + i);
8005 __clear_bit(i, array->bitmap);
8006 }
8007 /* delimiter for bitsearch: */
8008 __set_bit(MAX_RT_PRIO, array->bitmap);
8009
8010 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8011 rt_rq->highest_prio = MAX_RT_PRIO;
8012 #endif
8013 #ifdef CONFIG_SMP
8014 rt_rq->rt_nr_migratory = 0;
8015 rt_rq->overloaded = 0;
8016 #endif
8017
8018 rt_rq->rt_time = 0;
8019 rt_rq->rt_throttled = 0;
8020 rt_rq->rt_runtime = 0;
8021 spin_lock_init(&rt_rq->rt_runtime_lock);
8022
8023 #ifdef CONFIG_RT_GROUP_SCHED
8024 rt_rq->rt_nr_boosted = 0;
8025 rt_rq->rq = rq;
8026 #endif
8027 }
8028
8029 #ifdef CONFIG_FAIR_GROUP_SCHED
8030 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8031 struct sched_entity *se, int cpu, int add,
8032 struct sched_entity *parent)
8033 {
8034 struct rq *rq = cpu_rq(cpu);
8035 tg->cfs_rq[cpu] = cfs_rq;
8036 init_cfs_rq(cfs_rq, rq);
8037 cfs_rq->tg = tg;
8038 if (add)
8039 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8040
8041 tg->se[cpu] = se;
8042 /* se could be NULL for init_task_group */
8043 if (!se)
8044 return;
8045
8046 if (!parent)
8047 se->cfs_rq = &rq->cfs;
8048 else
8049 se->cfs_rq = parent->my_q;
8050
8051 se->my_q = cfs_rq;
8052 se->load.weight = tg->shares;
8053 se->load.inv_weight = 0;
8054 se->parent = parent;
8055 }
8056 #endif
8057
8058 #ifdef CONFIG_RT_GROUP_SCHED
8059 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8060 struct sched_rt_entity *rt_se, int cpu, int add,
8061 struct sched_rt_entity *parent)
8062 {
8063 struct rq *rq = cpu_rq(cpu);
8064
8065 tg->rt_rq[cpu] = rt_rq;
8066 init_rt_rq(rt_rq, rq);
8067 rt_rq->tg = tg;
8068 rt_rq->rt_se = rt_se;
8069 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8070 if (add)
8071 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8072
8073 tg->rt_se[cpu] = rt_se;
8074 if (!rt_se)
8075 return;
8076
8077 if (!parent)
8078 rt_se->rt_rq = &rq->rt;
8079 else
8080 rt_se->rt_rq = parent->my_q;
8081
8082 rt_se->my_q = rt_rq;
8083 rt_se->parent = parent;
8084 INIT_LIST_HEAD(&rt_se->run_list);
8085 }
8086 #endif
8087
8088 void __init sched_init(void)
8089 {
8090 int i, j;
8091 unsigned long alloc_size = 0, ptr;
8092
8093 #ifdef CONFIG_FAIR_GROUP_SCHED
8094 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8095 #endif
8096 #ifdef CONFIG_RT_GROUP_SCHED
8097 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8098 #endif
8099 #ifdef CONFIG_USER_SCHED
8100 alloc_size *= 2;
8101 #endif
8102 /*
8103 * As sched_init() is called before page_alloc is setup,
8104 * we use alloc_bootmem().
8105 */
8106 if (alloc_size) {
8107 ptr = (unsigned long)alloc_bootmem(alloc_size);
8108
8109 #ifdef CONFIG_FAIR_GROUP_SCHED
8110 init_task_group.se = (struct sched_entity **)ptr;
8111 ptr += nr_cpu_ids * sizeof(void **);
8112
8113 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8114 ptr += nr_cpu_ids * sizeof(void **);
8115
8116 #ifdef CONFIG_USER_SCHED
8117 root_task_group.se = (struct sched_entity **)ptr;
8118 ptr += nr_cpu_ids * sizeof(void **);
8119
8120 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8121 ptr += nr_cpu_ids * sizeof(void **);
8122 #endif /* CONFIG_USER_SCHED */
8123 #endif /* CONFIG_FAIR_GROUP_SCHED */
8124 #ifdef CONFIG_RT_GROUP_SCHED
8125 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8126 ptr += nr_cpu_ids * sizeof(void **);
8127
8128 init_task_group.rt_rq = (struct rt_rq **)ptr;
8129 ptr += nr_cpu_ids * sizeof(void **);
8130
8131 #ifdef CONFIG_USER_SCHED
8132 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8134
8135 root_task_group.rt_rq = (struct rt_rq **)ptr;
8136 ptr += nr_cpu_ids * sizeof(void **);
8137 #endif /* CONFIG_USER_SCHED */
8138 #endif /* CONFIG_RT_GROUP_SCHED */
8139 }
8140
8141 #ifdef CONFIG_SMP
8142 init_defrootdomain();
8143 #endif
8144
8145 init_rt_bandwidth(&def_rt_bandwidth,
8146 global_rt_period(), global_rt_runtime());
8147
8148 #ifdef CONFIG_RT_GROUP_SCHED
8149 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8150 global_rt_period(), global_rt_runtime());
8151 #ifdef CONFIG_USER_SCHED
8152 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8153 global_rt_period(), RUNTIME_INF);
8154 #endif /* CONFIG_USER_SCHED */
8155 #endif /* CONFIG_RT_GROUP_SCHED */
8156
8157 #ifdef CONFIG_GROUP_SCHED
8158 list_add(&init_task_group.list, &task_groups);
8159 INIT_LIST_HEAD(&init_task_group.children);
8160
8161 #ifdef CONFIG_USER_SCHED
8162 INIT_LIST_HEAD(&root_task_group.children);
8163 init_task_group.parent = &root_task_group;
8164 list_add(&init_task_group.siblings, &root_task_group.children);
8165 #endif /* CONFIG_USER_SCHED */
8166 #endif /* CONFIG_GROUP_SCHED */
8167
8168 for_each_possible_cpu(i) {
8169 struct rq *rq;
8170
8171 rq = cpu_rq(i);
8172 spin_lock_init(&rq->lock);
8173 rq->nr_running = 0;
8174 init_cfs_rq(&rq->cfs, rq);
8175 init_rt_rq(&rq->rt, rq);
8176 #ifdef CONFIG_FAIR_GROUP_SCHED
8177 init_task_group.shares = init_task_group_load;
8178 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8179 #ifdef CONFIG_CGROUP_SCHED
8180 /*
8181 * How much cpu bandwidth does init_task_group get?
8182 *
8183 * In case of task-groups formed thr' the cgroup filesystem, it
8184 * gets 100% of the cpu resources in the system. This overall
8185 * system cpu resource is divided among the tasks of
8186 * init_task_group and its child task-groups in a fair manner,
8187 * based on each entity's (task or task-group's) weight
8188 * (se->load.weight).
8189 *
8190 * In other words, if init_task_group has 10 tasks of weight
8191 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8192 * then A0's share of the cpu resource is:
8193 *
8194 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8195 *
8196 * We achieve this by letting init_task_group's tasks sit
8197 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8198 */
8199 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8200 #elif defined CONFIG_USER_SCHED
8201 root_task_group.shares = NICE_0_LOAD;
8202 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8203 /*
8204 * In case of task-groups formed thr' the user id of tasks,
8205 * init_task_group represents tasks belonging to root user.
8206 * Hence it forms a sibling of all subsequent groups formed.
8207 * In this case, init_task_group gets only a fraction of overall
8208 * system cpu resource, based on the weight assigned to root
8209 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8210 * by letting tasks of init_task_group sit in a separate cfs_rq
8211 * (init_cfs_rq) and having one entity represent this group of
8212 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8213 */
8214 init_tg_cfs_entry(&init_task_group,
8215 &per_cpu(init_cfs_rq, i),
8216 &per_cpu(init_sched_entity, i), i, 1,
8217 root_task_group.se[i]);
8218
8219 #endif
8220 #endif /* CONFIG_FAIR_GROUP_SCHED */
8221
8222 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8223 #ifdef CONFIG_RT_GROUP_SCHED
8224 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8225 #ifdef CONFIG_CGROUP_SCHED
8226 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8227 #elif defined CONFIG_USER_SCHED
8228 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8229 init_tg_rt_entry(&init_task_group,
8230 &per_cpu(init_rt_rq, i),
8231 &per_cpu(init_sched_rt_entity, i), i, 1,
8232 root_task_group.rt_se[i]);
8233 #endif
8234 #endif
8235
8236 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8237 rq->cpu_load[j] = 0;
8238 #ifdef CONFIG_SMP
8239 rq->sd = NULL;
8240 rq->rd = NULL;
8241 rq->active_balance = 0;
8242 rq->next_balance = jiffies;
8243 rq->push_cpu = 0;
8244 rq->cpu = i;
8245 rq->online = 0;
8246 rq->migration_thread = NULL;
8247 INIT_LIST_HEAD(&rq->migration_queue);
8248 rq_attach_root(rq, &def_root_domain);
8249 #endif
8250 init_rq_hrtick(rq);
8251 atomic_set(&rq->nr_iowait, 0);
8252 }
8253
8254 set_load_weight(&init_task);
8255
8256 #ifdef CONFIG_PREEMPT_NOTIFIERS
8257 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8258 #endif
8259
8260 #ifdef CONFIG_SMP
8261 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8262 #endif
8263
8264 #ifdef CONFIG_RT_MUTEXES
8265 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8266 #endif
8267
8268 /*
8269 * The boot idle thread does lazy MMU switching as well:
8270 */
8271 atomic_inc(&init_mm.mm_count);
8272 enter_lazy_tlb(&init_mm, current);
8273
8274 /*
8275 * Make us the idle thread. Technically, schedule() should not be
8276 * called from this thread, however somewhere below it might be,
8277 * but because we are the idle thread, we just pick up running again
8278 * when this runqueue becomes "idle".
8279 */
8280 init_idle(current, smp_processor_id());
8281 /*
8282 * During early bootup we pretend to be a normal task:
8283 */
8284 current->sched_class = &fair_sched_class;
8285
8286 scheduler_running = 1;
8287 }
8288
8289 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8290 void __might_sleep(char *file, int line)
8291 {
8292 #ifdef in_atomic
8293 static unsigned long prev_jiffy; /* ratelimiting */
8294
8295 if ((!in_atomic() && !irqs_disabled()) ||
8296 system_state != SYSTEM_RUNNING || oops_in_progress)
8297 return;
8298 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8299 return;
8300 prev_jiffy = jiffies;
8301
8302 printk(KERN_ERR
8303 "BUG: sleeping function called from invalid context at %s:%d\n",
8304 file, line);
8305 printk(KERN_ERR
8306 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8307 in_atomic(), irqs_disabled(),
8308 current->pid, current->comm);
8309
8310 debug_show_held_locks(current);
8311 if (irqs_disabled())
8312 print_irqtrace_events(current);
8313 dump_stack();
8314 #endif
8315 }
8316 EXPORT_SYMBOL(__might_sleep);
8317 #endif
8318
8319 #ifdef CONFIG_MAGIC_SYSRQ
8320 static void normalize_task(struct rq *rq, struct task_struct *p)
8321 {
8322 int on_rq;
8323
8324 update_rq_clock(rq);
8325 on_rq = p->se.on_rq;
8326 if (on_rq)
8327 deactivate_task(rq, p, 0);
8328 __setscheduler(rq, p, SCHED_NORMAL, 0);
8329 if (on_rq) {
8330 activate_task(rq, p, 0);
8331 resched_task(rq->curr);
8332 }
8333 }
8334
8335 void normalize_rt_tasks(void)
8336 {
8337 struct task_struct *g, *p;
8338 unsigned long flags;
8339 struct rq *rq;
8340
8341 read_lock_irqsave(&tasklist_lock, flags);
8342 do_each_thread(g, p) {
8343 /*
8344 * Only normalize user tasks:
8345 */
8346 if (!p->mm)
8347 continue;
8348
8349 p->se.exec_start = 0;
8350 #ifdef CONFIG_SCHEDSTATS
8351 p->se.wait_start = 0;
8352 p->se.sleep_start = 0;
8353 p->se.block_start = 0;
8354 #endif
8355
8356 if (!rt_task(p)) {
8357 /*
8358 * Renice negative nice level userspace
8359 * tasks back to 0:
8360 */
8361 if (TASK_NICE(p) < 0 && p->mm)
8362 set_user_nice(p, 0);
8363 continue;
8364 }
8365
8366 spin_lock(&p->pi_lock);
8367 rq = __task_rq_lock(p);
8368
8369 normalize_task(rq, p);
8370
8371 __task_rq_unlock(rq);
8372 spin_unlock(&p->pi_lock);
8373 } while_each_thread(g, p);
8374
8375 read_unlock_irqrestore(&tasklist_lock, flags);
8376 }
8377
8378 #endif /* CONFIG_MAGIC_SYSRQ */
8379
8380 #ifdef CONFIG_IA64
8381 /*
8382 * These functions are only useful for the IA64 MCA handling.
8383 *
8384 * They can only be called when the whole system has been
8385 * stopped - every CPU needs to be quiescent, and no scheduling
8386 * activity can take place. Using them for anything else would
8387 * be a serious bug, and as a result, they aren't even visible
8388 * under any other configuration.
8389 */
8390
8391 /**
8392 * curr_task - return the current task for a given cpu.
8393 * @cpu: the processor in question.
8394 *
8395 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8396 */
8397 struct task_struct *curr_task(int cpu)
8398 {
8399 return cpu_curr(cpu);
8400 }
8401
8402 /**
8403 * set_curr_task - set the current task for a given cpu.
8404 * @cpu: the processor in question.
8405 * @p: the task pointer to set.
8406 *
8407 * Description: This function must only be used when non-maskable interrupts
8408 * are serviced on a separate stack. It allows the architecture to switch the
8409 * notion of the current task on a cpu in a non-blocking manner. This function
8410 * must be called with all CPU's synchronized, and interrupts disabled, the
8411 * and caller must save the original value of the current task (see
8412 * curr_task() above) and restore that value before reenabling interrupts and
8413 * re-starting the system.
8414 *
8415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8416 */
8417 void set_curr_task(int cpu, struct task_struct *p)
8418 {
8419 cpu_curr(cpu) = p;
8420 }
8421
8422 #endif
8423
8424 #ifdef CONFIG_FAIR_GROUP_SCHED
8425 static void free_fair_sched_group(struct task_group *tg)
8426 {
8427 int i;
8428
8429 for_each_possible_cpu(i) {
8430 if (tg->cfs_rq)
8431 kfree(tg->cfs_rq[i]);
8432 if (tg->se)
8433 kfree(tg->se[i]);
8434 }
8435
8436 kfree(tg->cfs_rq);
8437 kfree(tg->se);
8438 }
8439
8440 static
8441 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8442 {
8443 struct cfs_rq *cfs_rq;
8444 struct sched_entity *se, *parent_se;
8445 struct rq *rq;
8446 int i;
8447
8448 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8449 if (!tg->cfs_rq)
8450 goto err;
8451 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8452 if (!tg->se)
8453 goto err;
8454
8455 tg->shares = NICE_0_LOAD;
8456
8457 for_each_possible_cpu(i) {
8458 rq = cpu_rq(i);
8459
8460 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8461 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8462 if (!cfs_rq)
8463 goto err;
8464
8465 se = kmalloc_node(sizeof(struct sched_entity),
8466 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8467 if (!se)
8468 goto err;
8469
8470 parent_se = parent ? parent->se[i] : NULL;
8471 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8472 }
8473
8474 return 1;
8475
8476 err:
8477 return 0;
8478 }
8479
8480 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8481 {
8482 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8483 &cpu_rq(cpu)->leaf_cfs_rq_list);
8484 }
8485
8486 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8487 {
8488 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8489 }
8490 #else /* !CONFG_FAIR_GROUP_SCHED */
8491 static inline void free_fair_sched_group(struct task_group *tg)
8492 {
8493 }
8494
8495 static inline
8496 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8497 {
8498 return 1;
8499 }
8500
8501 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8502 {
8503 }
8504
8505 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8506 {
8507 }
8508 #endif /* CONFIG_FAIR_GROUP_SCHED */
8509
8510 #ifdef CONFIG_RT_GROUP_SCHED
8511 static void free_rt_sched_group(struct task_group *tg)
8512 {
8513 int i;
8514
8515 destroy_rt_bandwidth(&tg->rt_bandwidth);
8516
8517 for_each_possible_cpu(i) {
8518 if (tg->rt_rq)
8519 kfree(tg->rt_rq[i]);
8520 if (tg->rt_se)
8521 kfree(tg->rt_se[i]);
8522 }
8523
8524 kfree(tg->rt_rq);
8525 kfree(tg->rt_se);
8526 }
8527
8528 static
8529 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8530 {
8531 struct rt_rq *rt_rq;
8532 struct sched_rt_entity *rt_se, *parent_se;
8533 struct rq *rq;
8534 int i;
8535
8536 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8537 if (!tg->rt_rq)
8538 goto err;
8539 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8540 if (!tg->rt_se)
8541 goto err;
8542
8543 init_rt_bandwidth(&tg->rt_bandwidth,
8544 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8545
8546 for_each_possible_cpu(i) {
8547 rq = cpu_rq(i);
8548
8549 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8550 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8551 if (!rt_rq)
8552 goto err;
8553
8554 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8555 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8556 if (!rt_se)
8557 goto err;
8558
8559 parent_se = parent ? parent->rt_se[i] : NULL;
8560 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8561 }
8562
8563 return 1;
8564
8565 err:
8566 return 0;
8567 }
8568
8569 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8570 {
8571 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8572 &cpu_rq(cpu)->leaf_rt_rq_list);
8573 }
8574
8575 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8576 {
8577 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8578 }
8579 #else /* !CONFIG_RT_GROUP_SCHED */
8580 static inline void free_rt_sched_group(struct task_group *tg)
8581 {
8582 }
8583
8584 static inline
8585 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8586 {
8587 return 1;
8588 }
8589
8590 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8591 {
8592 }
8593
8594 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8595 {
8596 }
8597 #endif /* CONFIG_RT_GROUP_SCHED */
8598
8599 #ifdef CONFIG_GROUP_SCHED
8600 static void free_sched_group(struct task_group *tg)
8601 {
8602 free_fair_sched_group(tg);
8603 free_rt_sched_group(tg);
8604 kfree(tg);
8605 }
8606
8607 /* allocate runqueue etc for a new task group */
8608 struct task_group *sched_create_group(struct task_group *parent)
8609 {
8610 struct task_group *tg;
8611 unsigned long flags;
8612 int i;
8613
8614 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8615 if (!tg)
8616 return ERR_PTR(-ENOMEM);
8617
8618 if (!alloc_fair_sched_group(tg, parent))
8619 goto err;
8620
8621 if (!alloc_rt_sched_group(tg, parent))
8622 goto err;
8623
8624 spin_lock_irqsave(&task_group_lock, flags);
8625 for_each_possible_cpu(i) {
8626 register_fair_sched_group(tg, i);
8627 register_rt_sched_group(tg, i);
8628 }
8629 list_add_rcu(&tg->list, &task_groups);
8630
8631 WARN_ON(!parent); /* root should already exist */
8632
8633 tg->parent = parent;
8634 INIT_LIST_HEAD(&tg->children);
8635 list_add_rcu(&tg->siblings, &parent->children);
8636 spin_unlock_irqrestore(&task_group_lock, flags);
8637
8638 return tg;
8639
8640 err:
8641 free_sched_group(tg);
8642 return ERR_PTR(-ENOMEM);
8643 }
8644
8645 /* rcu callback to free various structures associated with a task group */
8646 static void free_sched_group_rcu(struct rcu_head *rhp)
8647 {
8648 /* now it should be safe to free those cfs_rqs */
8649 free_sched_group(container_of(rhp, struct task_group, rcu));
8650 }
8651
8652 /* Destroy runqueue etc associated with a task group */
8653 void sched_destroy_group(struct task_group *tg)
8654 {
8655 unsigned long flags;
8656 int i;
8657
8658 spin_lock_irqsave(&task_group_lock, flags);
8659 for_each_possible_cpu(i) {
8660 unregister_fair_sched_group(tg, i);
8661 unregister_rt_sched_group(tg, i);
8662 }
8663 list_del_rcu(&tg->list);
8664 list_del_rcu(&tg->siblings);
8665 spin_unlock_irqrestore(&task_group_lock, flags);
8666
8667 /* wait for possible concurrent references to cfs_rqs complete */
8668 call_rcu(&tg->rcu, free_sched_group_rcu);
8669 }
8670
8671 /* change task's runqueue when it moves between groups.
8672 * The caller of this function should have put the task in its new group
8673 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8674 * reflect its new group.
8675 */
8676 void sched_move_task(struct task_struct *tsk)
8677 {
8678 int on_rq, running;
8679 unsigned long flags;
8680 struct rq *rq;
8681
8682 rq = task_rq_lock(tsk, &flags);
8683
8684 update_rq_clock(rq);
8685
8686 running = task_current(rq, tsk);
8687 on_rq = tsk->se.on_rq;
8688
8689 if (on_rq)
8690 dequeue_task(rq, tsk, 0);
8691 if (unlikely(running))
8692 tsk->sched_class->put_prev_task(rq, tsk);
8693
8694 set_task_rq(tsk, task_cpu(tsk));
8695
8696 #ifdef CONFIG_FAIR_GROUP_SCHED
8697 if (tsk->sched_class->moved_group)
8698 tsk->sched_class->moved_group(tsk);
8699 #endif
8700
8701 if (unlikely(running))
8702 tsk->sched_class->set_curr_task(rq);
8703 if (on_rq)
8704 enqueue_task(rq, tsk, 0);
8705
8706 task_rq_unlock(rq, &flags);
8707 }
8708 #endif /* CONFIG_GROUP_SCHED */
8709
8710 #ifdef CONFIG_FAIR_GROUP_SCHED
8711 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8712 {
8713 struct cfs_rq *cfs_rq = se->cfs_rq;
8714 int on_rq;
8715
8716 on_rq = se->on_rq;
8717 if (on_rq)
8718 dequeue_entity(cfs_rq, se, 0);
8719
8720 se->load.weight = shares;
8721 se->load.inv_weight = 0;
8722
8723 if (on_rq)
8724 enqueue_entity(cfs_rq, se, 0);
8725 }
8726
8727 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8728 {
8729 struct cfs_rq *cfs_rq = se->cfs_rq;
8730 struct rq *rq = cfs_rq->rq;
8731 unsigned long flags;
8732
8733 spin_lock_irqsave(&rq->lock, flags);
8734 __set_se_shares(se, shares);
8735 spin_unlock_irqrestore(&rq->lock, flags);
8736 }
8737
8738 static DEFINE_MUTEX(shares_mutex);
8739
8740 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8741 {
8742 int i;
8743 unsigned long flags;
8744
8745 /*
8746 * We can't change the weight of the root cgroup.
8747 */
8748 if (!tg->se[0])
8749 return -EINVAL;
8750
8751 if (shares < MIN_SHARES)
8752 shares = MIN_SHARES;
8753 else if (shares > MAX_SHARES)
8754 shares = MAX_SHARES;
8755
8756 mutex_lock(&shares_mutex);
8757 if (tg->shares == shares)
8758 goto done;
8759
8760 spin_lock_irqsave(&task_group_lock, flags);
8761 for_each_possible_cpu(i)
8762 unregister_fair_sched_group(tg, i);
8763 list_del_rcu(&tg->siblings);
8764 spin_unlock_irqrestore(&task_group_lock, flags);
8765
8766 /* wait for any ongoing reference to this group to finish */
8767 synchronize_sched();
8768
8769 /*
8770 * Now we are free to modify the group's share on each cpu
8771 * w/o tripping rebalance_share or load_balance_fair.
8772 */
8773 tg->shares = shares;
8774 for_each_possible_cpu(i) {
8775 /*
8776 * force a rebalance
8777 */
8778 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8779 set_se_shares(tg->se[i], shares);
8780 }
8781
8782 /*
8783 * Enable load balance activity on this group, by inserting it back on
8784 * each cpu's rq->leaf_cfs_rq_list.
8785 */
8786 spin_lock_irqsave(&task_group_lock, flags);
8787 for_each_possible_cpu(i)
8788 register_fair_sched_group(tg, i);
8789 list_add_rcu(&tg->siblings, &tg->parent->children);
8790 spin_unlock_irqrestore(&task_group_lock, flags);
8791 done:
8792 mutex_unlock(&shares_mutex);
8793 return 0;
8794 }
8795
8796 unsigned long sched_group_shares(struct task_group *tg)
8797 {
8798 return tg->shares;
8799 }
8800 #endif
8801
8802 #ifdef CONFIG_RT_GROUP_SCHED
8803 /*
8804 * Ensure that the real time constraints are schedulable.
8805 */
8806 static DEFINE_MUTEX(rt_constraints_mutex);
8807
8808 static unsigned long to_ratio(u64 period, u64 runtime)
8809 {
8810 if (runtime == RUNTIME_INF)
8811 return 1ULL << 16;
8812
8813 return div64_u64(runtime << 16, period);
8814 }
8815
8816 #ifdef CONFIG_CGROUP_SCHED
8817 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8818 {
8819 struct task_group *tgi, *parent = tg->parent;
8820 unsigned long total = 0;
8821
8822 if (!parent) {
8823 if (global_rt_period() < period)
8824 return 0;
8825
8826 return to_ratio(period, runtime) <
8827 to_ratio(global_rt_period(), global_rt_runtime());
8828 }
8829
8830 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8831 return 0;
8832
8833 rcu_read_lock();
8834 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8835 if (tgi == tg)
8836 continue;
8837
8838 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8839 tgi->rt_bandwidth.rt_runtime);
8840 }
8841 rcu_read_unlock();
8842
8843 return total + to_ratio(period, runtime) <=
8844 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8845 parent->rt_bandwidth.rt_runtime);
8846 }
8847 #elif defined CONFIG_USER_SCHED
8848 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8849 {
8850 struct task_group *tgi;
8851 unsigned long total = 0;
8852 unsigned long global_ratio =
8853 to_ratio(global_rt_period(), global_rt_runtime());
8854
8855 rcu_read_lock();
8856 list_for_each_entry_rcu(tgi, &task_groups, list) {
8857 if (tgi == tg)
8858 continue;
8859
8860 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8861 tgi->rt_bandwidth.rt_runtime);
8862 }
8863 rcu_read_unlock();
8864
8865 return total + to_ratio(period, runtime) < global_ratio;
8866 }
8867 #endif
8868
8869 /* Must be called with tasklist_lock held */
8870 static inline int tg_has_rt_tasks(struct task_group *tg)
8871 {
8872 struct task_struct *g, *p;
8873 do_each_thread(g, p) {
8874 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8875 return 1;
8876 } while_each_thread(g, p);
8877 return 0;
8878 }
8879
8880 static int tg_set_bandwidth(struct task_group *tg,
8881 u64 rt_period, u64 rt_runtime)
8882 {
8883 int i, err = 0;
8884
8885 mutex_lock(&rt_constraints_mutex);
8886 read_lock(&tasklist_lock);
8887 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8888 err = -EBUSY;
8889 goto unlock;
8890 }
8891 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8892 err = -EINVAL;
8893 goto unlock;
8894 }
8895
8896 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8897 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8898 tg->rt_bandwidth.rt_runtime = rt_runtime;
8899
8900 for_each_possible_cpu(i) {
8901 struct rt_rq *rt_rq = tg->rt_rq[i];
8902
8903 spin_lock(&rt_rq->rt_runtime_lock);
8904 rt_rq->rt_runtime = rt_runtime;
8905 spin_unlock(&rt_rq->rt_runtime_lock);
8906 }
8907 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8908 unlock:
8909 read_unlock(&tasklist_lock);
8910 mutex_unlock(&rt_constraints_mutex);
8911
8912 return err;
8913 }
8914
8915 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8916 {
8917 u64 rt_runtime, rt_period;
8918
8919 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8920 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8921 if (rt_runtime_us < 0)
8922 rt_runtime = RUNTIME_INF;
8923
8924 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8925 }
8926
8927 long sched_group_rt_runtime(struct task_group *tg)
8928 {
8929 u64 rt_runtime_us;
8930
8931 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8932 return -1;
8933
8934 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8935 do_div(rt_runtime_us, NSEC_PER_USEC);
8936 return rt_runtime_us;
8937 }
8938
8939 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8940 {
8941 u64 rt_runtime, rt_period;
8942
8943 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8944 rt_runtime = tg->rt_bandwidth.rt_runtime;
8945
8946 if (rt_period == 0)
8947 return -EINVAL;
8948
8949 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8950 }
8951
8952 long sched_group_rt_period(struct task_group *tg)
8953 {
8954 u64 rt_period_us;
8955
8956 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8957 do_div(rt_period_us, NSEC_PER_USEC);
8958 return rt_period_us;
8959 }
8960
8961 static int sched_rt_global_constraints(void)
8962 {
8963 struct task_group *tg = &root_task_group;
8964 u64 rt_runtime, rt_period;
8965 int ret = 0;
8966
8967 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8968 rt_runtime = tg->rt_bandwidth.rt_runtime;
8969
8970 mutex_lock(&rt_constraints_mutex);
8971 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8972 ret = -EINVAL;
8973 mutex_unlock(&rt_constraints_mutex);
8974
8975 return ret;
8976 }
8977 #else /* !CONFIG_RT_GROUP_SCHED */
8978 static int sched_rt_global_constraints(void)
8979 {
8980 unsigned long flags;
8981 int i;
8982
8983 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8984 for_each_possible_cpu(i) {
8985 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8986
8987 spin_lock(&rt_rq->rt_runtime_lock);
8988 rt_rq->rt_runtime = global_rt_runtime();
8989 spin_unlock(&rt_rq->rt_runtime_lock);
8990 }
8991 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8992
8993 return 0;
8994 }
8995 #endif /* CONFIG_RT_GROUP_SCHED */
8996
8997 int sched_rt_handler(struct ctl_table *table, int write,
8998 struct file *filp, void __user *buffer, size_t *lenp,
8999 loff_t *ppos)
9000 {
9001 int ret;
9002 int old_period, old_runtime;
9003 static DEFINE_MUTEX(mutex);
9004
9005 mutex_lock(&mutex);
9006 old_period = sysctl_sched_rt_period;
9007 old_runtime = sysctl_sched_rt_runtime;
9008
9009 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9010
9011 if (!ret && write) {
9012 ret = sched_rt_global_constraints();
9013 if (ret) {
9014 sysctl_sched_rt_period = old_period;
9015 sysctl_sched_rt_runtime = old_runtime;
9016 } else {
9017 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9018 def_rt_bandwidth.rt_period =
9019 ns_to_ktime(global_rt_period());
9020 }
9021 }
9022 mutex_unlock(&mutex);
9023
9024 return ret;
9025 }
9026
9027 #ifdef CONFIG_CGROUP_SCHED
9028
9029 /* return corresponding task_group object of a cgroup */
9030 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9031 {
9032 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9033 struct task_group, css);
9034 }
9035
9036 static struct cgroup_subsys_state *
9037 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9038 {
9039 struct task_group *tg, *parent;
9040
9041 if (!cgrp->parent) {
9042 /* This is early initialization for the top cgroup */
9043 init_task_group.css.cgroup = cgrp;
9044 return &init_task_group.css;
9045 }
9046
9047 parent = cgroup_tg(cgrp->parent);
9048 tg = sched_create_group(parent);
9049 if (IS_ERR(tg))
9050 return ERR_PTR(-ENOMEM);
9051
9052 /* Bind the cgroup to task_group object we just created */
9053 tg->css.cgroup = cgrp;
9054
9055 return &tg->css;
9056 }
9057
9058 static void
9059 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9060 {
9061 struct task_group *tg = cgroup_tg(cgrp);
9062
9063 sched_destroy_group(tg);
9064 }
9065
9066 static int
9067 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9068 struct task_struct *tsk)
9069 {
9070 #ifdef CONFIG_RT_GROUP_SCHED
9071 /* Don't accept realtime tasks when there is no way for them to run */
9072 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9073 return -EINVAL;
9074 #else
9075 /* We don't support RT-tasks being in separate groups */
9076 if (tsk->sched_class != &fair_sched_class)
9077 return -EINVAL;
9078 #endif
9079
9080 return 0;
9081 }
9082
9083 static void
9084 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9085 struct cgroup *old_cont, struct task_struct *tsk)
9086 {
9087 sched_move_task(tsk);
9088 }
9089
9090 #ifdef CONFIG_FAIR_GROUP_SCHED
9091 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9092 u64 shareval)
9093 {
9094 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9095 }
9096
9097 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9098 {
9099 struct task_group *tg = cgroup_tg(cgrp);
9100
9101 return (u64) tg->shares;
9102 }
9103 #endif /* CONFIG_FAIR_GROUP_SCHED */
9104
9105 #ifdef CONFIG_RT_GROUP_SCHED
9106 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9107 s64 val)
9108 {
9109 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9110 }
9111
9112 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9113 {
9114 return sched_group_rt_runtime(cgroup_tg(cgrp));
9115 }
9116
9117 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9118 u64 rt_period_us)
9119 {
9120 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9121 }
9122
9123 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9124 {
9125 return sched_group_rt_period(cgroup_tg(cgrp));
9126 }
9127 #endif /* CONFIG_RT_GROUP_SCHED */
9128
9129 static struct cftype cpu_files[] = {
9130 #ifdef CONFIG_FAIR_GROUP_SCHED
9131 {
9132 .name = "shares",
9133 .read_u64 = cpu_shares_read_u64,
9134 .write_u64 = cpu_shares_write_u64,
9135 },
9136 #endif
9137 #ifdef CONFIG_RT_GROUP_SCHED
9138 {
9139 .name = "rt_runtime_us",
9140 .read_s64 = cpu_rt_runtime_read,
9141 .write_s64 = cpu_rt_runtime_write,
9142 },
9143 {
9144 .name = "rt_period_us",
9145 .read_u64 = cpu_rt_period_read_uint,
9146 .write_u64 = cpu_rt_period_write_uint,
9147 },
9148 #endif
9149 };
9150
9151 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9152 {
9153 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9154 }
9155
9156 struct cgroup_subsys cpu_cgroup_subsys = {
9157 .name = "cpu",
9158 .create = cpu_cgroup_create,
9159 .destroy = cpu_cgroup_destroy,
9160 .can_attach = cpu_cgroup_can_attach,
9161 .attach = cpu_cgroup_attach,
9162 .populate = cpu_cgroup_populate,
9163 .subsys_id = cpu_cgroup_subsys_id,
9164 .early_init = 1,
9165 };
9166
9167 #endif /* CONFIG_CGROUP_SCHED */
9168
9169 #ifdef CONFIG_CGROUP_CPUACCT
9170
9171 /*
9172 * CPU accounting code for task groups.
9173 *
9174 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9175 * (balbir@in.ibm.com).
9176 */
9177
9178 /* track cpu usage of a group of tasks */
9179 struct cpuacct {
9180 struct cgroup_subsys_state css;
9181 /* cpuusage holds pointer to a u64-type object on every cpu */
9182 u64 *cpuusage;
9183 };
9184
9185 struct cgroup_subsys cpuacct_subsys;
9186
9187 /* return cpu accounting group corresponding to this container */
9188 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9189 {
9190 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9191 struct cpuacct, css);
9192 }
9193
9194 /* return cpu accounting group to which this task belongs */
9195 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9196 {
9197 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9198 struct cpuacct, css);
9199 }
9200
9201 /* create a new cpu accounting group */
9202 static struct cgroup_subsys_state *cpuacct_create(
9203 struct cgroup_subsys *ss, struct cgroup *cgrp)
9204 {
9205 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9206
9207 if (!ca)
9208 return ERR_PTR(-ENOMEM);
9209
9210 ca->cpuusage = alloc_percpu(u64);
9211 if (!ca->cpuusage) {
9212 kfree(ca);
9213 return ERR_PTR(-ENOMEM);
9214 }
9215
9216 return &ca->css;
9217 }
9218
9219 /* destroy an existing cpu accounting group */
9220 static void
9221 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9222 {
9223 struct cpuacct *ca = cgroup_ca(cgrp);
9224
9225 free_percpu(ca->cpuusage);
9226 kfree(ca);
9227 }
9228
9229 /* return total cpu usage (in nanoseconds) of a group */
9230 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9231 {
9232 struct cpuacct *ca = cgroup_ca(cgrp);
9233 u64 totalcpuusage = 0;
9234 int i;
9235
9236 for_each_possible_cpu(i) {
9237 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9238
9239 /*
9240 * Take rq->lock to make 64-bit addition safe on 32-bit
9241 * platforms.
9242 */
9243 spin_lock_irq(&cpu_rq(i)->lock);
9244 totalcpuusage += *cpuusage;
9245 spin_unlock_irq(&cpu_rq(i)->lock);
9246 }
9247
9248 return totalcpuusage;
9249 }
9250
9251 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9252 u64 reset)
9253 {
9254 struct cpuacct *ca = cgroup_ca(cgrp);
9255 int err = 0;
9256 int i;
9257
9258 if (reset) {
9259 err = -EINVAL;
9260 goto out;
9261 }
9262
9263 for_each_possible_cpu(i) {
9264 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9265
9266 spin_lock_irq(&cpu_rq(i)->lock);
9267 *cpuusage = 0;
9268 spin_unlock_irq(&cpu_rq(i)->lock);
9269 }
9270 out:
9271 return err;
9272 }
9273
9274 static struct cftype files[] = {
9275 {
9276 .name = "usage",
9277 .read_u64 = cpuusage_read,
9278 .write_u64 = cpuusage_write,
9279 },
9280 };
9281
9282 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9283 {
9284 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9285 }
9286
9287 /*
9288 * charge this task's execution time to its accounting group.
9289 *
9290 * called with rq->lock held.
9291 */
9292 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9293 {
9294 struct cpuacct *ca;
9295
9296 if (!cpuacct_subsys.active)
9297 return;
9298
9299 ca = task_ca(tsk);
9300 if (ca) {
9301 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9302
9303 *cpuusage += cputime;
9304 }
9305 }
9306
9307 struct cgroup_subsys cpuacct_subsys = {
9308 .name = "cpuacct",
9309 .create = cpuacct_create,
9310 .destroy = cpuacct_destroy,
9311 .populate = cpuacct_populate,
9312 .subsys_id = cpuacct_subsys_id,
9313 };
9314 #endif /* CONFIG_CGROUP_CPUACCT */