sched: remove precise CPU load calculations #2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 struct load_stat {
175 struct load_weight load;
176 };
177
178 /* CFS-related fields in a runqueue */
179 struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
185 s64 wait_runtime;
186 u64 sleeper_bonus;
187 unsigned long wait_runtime_overruns, wait_runtime_underruns;
188
189 struct rb_root tasks_timeline;
190 struct rb_node *rb_leftmost;
191 struct rb_node *rb_load_balance_curr;
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
195 */
196 struct sched_entity *curr;
197 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
198
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
202 *
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
205 */
206 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
207 #endif
208 };
209
210 /* Real-Time classes' related field in a runqueue: */
211 struct rt_rq {
212 struct rt_prio_array active;
213 int rt_load_balance_idx;
214 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
215 };
216
217 /*
218 * This is the main, per-CPU runqueue data structure.
219 *
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
223 */
224 struct rq {
225 spinlock_t lock; /* runqueue lock */
226
227 /*
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
230 */
231 unsigned long nr_running;
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234 unsigned char idle_at_tick;
235 #ifdef CONFIG_NO_HZ
236 unsigned char in_nohz_recently;
237 #endif
238 struct load_stat ls; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates;
240 u64 nr_switches;
241
242 struct cfs_rq cfs;
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
245 #endif
246 struct rt_rq rt;
247
248 /*
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
253 */
254 unsigned long nr_uninterruptible;
255
256 struct task_struct *curr, *idle;
257 unsigned long next_balance;
258 struct mm_struct *prev_mm;
259
260 u64 clock, prev_clock_raw;
261 s64 clock_max_delta;
262
263 unsigned int clock_warps, clock_overflows;
264 u64 idle_clock;
265 unsigned int clock_deep_idle_events;
266 u64 tick_timestamp;
267
268 atomic_t nr_iowait;
269
270 #ifdef CONFIG_SMP
271 struct sched_domain *sd;
272
273 /* For active balancing */
274 int active_balance;
275 int push_cpu;
276 int cpu; /* cpu of this runqueue */
277
278 struct task_struct *migration_thread;
279 struct list_head migration_queue;
280 #endif
281
282 #ifdef CONFIG_SCHEDSTATS
283 /* latency stats */
284 struct sched_info rq_sched_info;
285
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty;
288 unsigned long yld_act_empty;
289 unsigned long yld_both_empty;
290 unsigned long yld_cnt;
291
292 /* schedule() stats */
293 unsigned long sched_switch;
294 unsigned long sched_cnt;
295 unsigned long sched_goidle;
296
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt;
299 unsigned long ttwu_local;
300 #endif
301 struct lock_class_key rq_lock_key;
302 };
303
304 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
305 static DEFINE_MUTEX(sched_hotcpu_mutex);
306
307 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 {
309 rq->curr->sched_class->check_preempt_curr(rq, p);
310 }
311
312 static inline int cpu_of(struct rq *rq)
313 {
314 #ifdef CONFIG_SMP
315 return rq->cpu;
316 #else
317 return 0;
318 #endif
319 }
320
321 /*
322 * Update the per-runqueue clock, as finegrained as the platform can give
323 * us, but without assuming monotonicity, etc.:
324 */
325 static void __update_rq_clock(struct rq *rq)
326 {
327 u64 prev_raw = rq->prev_clock_raw;
328 u64 now = sched_clock();
329 s64 delta = now - prev_raw;
330 u64 clock = rq->clock;
331
332 #ifdef CONFIG_SCHED_DEBUG
333 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
334 #endif
335 /*
336 * Protect against sched_clock() occasionally going backwards:
337 */
338 if (unlikely(delta < 0)) {
339 clock++;
340 rq->clock_warps++;
341 } else {
342 /*
343 * Catch too large forward jumps too:
344 */
345 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
346 if (clock < rq->tick_timestamp + TICK_NSEC)
347 clock = rq->tick_timestamp + TICK_NSEC;
348 else
349 clock++;
350 rq->clock_overflows++;
351 } else {
352 if (unlikely(delta > rq->clock_max_delta))
353 rq->clock_max_delta = delta;
354 clock += delta;
355 }
356 }
357
358 rq->prev_clock_raw = now;
359 rq->clock = clock;
360 }
361
362 static void update_rq_clock(struct rq *rq)
363 {
364 if (likely(smp_processor_id() == cpu_of(rq)))
365 __update_rq_clock(rq);
366 }
367
368 /*
369 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
370 * See detach_destroy_domains: synchronize_sched for details.
371 *
372 * The domain tree of any CPU may only be accessed from within
373 * preempt-disabled sections.
374 */
375 #define for_each_domain(cpu, __sd) \
376 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
377
378 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
379 #define this_rq() (&__get_cpu_var(runqueues))
380 #define task_rq(p) cpu_rq(task_cpu(p))
381 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382
383 /*
384 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
385 * clock constructed from sched_clock():
386 */
387 unsigned long long cpu_clock(int cpu)
388 {
389 unsigned long long now;
390 unsigned long flags;
391 struct rq *rq;
392
393 local_irq_save(flags);
394 rq = cpu_rq(cpu);
395 update_rq_clock(rq);
396 now = rq->clock;
397 local_irq_restore(flags);
398
399 return now;
400 }
401
402 #ifdef CONFIG_FAIR_GROUP_SCHED
403 /* Change a task's ->cfs_rq if it moves across CPUs */
404 static inline void set_task_cfs_rq(struct task_struct *p)
405 {
406 p->se.cfs_rq = &task_rq(p)->cfs;
407 }
408 #else
409 static inline void set_task_cfs_rq(struct task_struct *p)
410 {
411 }
412 #endif
413
414 #ifndef prepare_arch_switch
415 # define prepare_arch_switch(next) do { } while (0)
416 #endif
417 #ifndef finish_arch_switch
418 # define finish_arch_switch(prev) do { } while (0)
419 #endif
420
421 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
422 static inline int task_running(struct rq *rq, struct task_struct *p)
423 {
424 return rq->curr == p;
425 }
426
427 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
428 {
429 }
430
431 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
432 {
433 #ifdef CONFIG_DEBUG_SPINLOCK
434 /* this is a valid case when another task releases the spinlock */
435 rq->lock.owner = current;
436 #endif
437 /*
438 * If we are tracking spinlock dependencies then we have to
439 * fix up the runqueue lock - which gets 'carried over' from
440 * prev into current:
441 */
442 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
443
444 spin_unlock_irq(&rq->lock);
445 }
446
447 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
448 static inline int task_running(struct rq *rq, struct task_struct *p)
449 {
450 #ifdef CONFIG_SMP
451 return p->oncpu;
452 #else
453 return rq->curr == p;
454 #endif
455 }
456
457 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
458 {
459 #ifdef CONFIG_SMP
460 /*
461 * We can optimise this out completely for !SMP, because the
462 * SMP rebalancing from interrupt is the only thing that cares
463 * here.
464 */
465 next->oncpu = 1;
466 #endif
467 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
468 spin_unlock_irq(&rq->lock);
469 #else
470 spin_unlock(&rq->lock);
471 #endif
472 }
473
474 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
475 {
476 #ifdef CONFIG_SMP
477 /*
478 * After ->oncpu is cleared, the task can be moved to a different CPU.
479 * We must ensure this doesn't happen until the switch is completely
480 * finished.
481 */
482 smp_wmb();
483 prev->oncpu = 0;
484 #endif
485 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
486 local_irq_enable();
487 #endif
488 }
489 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
490
491 /*
492 * __task_rq_lock - lock the runqueue a given task resides on.
493 * Must be called interrupts disabled.
494 */
495 static inline struct rq *__task_rq_lock(struct task_struct *p)
496 __acquires(rq->lock)
497 {
498 struct rq *rq;
499
500 repeat_lock_task:
501 rq = task_rq(p);
502 spin_lock(&rq->lock);
503 if (unlikely(rq != task_rq(p))) {
504 spin_unlock(&rq->lock);
505 goto repeat_lock_task;
506 }
507 return rq;
508 }
509
510 /*
511 * task_rq_lock - lock the runqueue a given task resides on and disable
512 * interrupts. Note the ordering: we can safely lookup the task_rq without
513 * explicitly disabling preemption.
514 */
515 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
516 __acquires(rq->lock)
517 {
518 struct rq *rq;
519
520 repeat_lock_task:
521 local_irq_save(*flags);
522 rq = task_rq(p);
523 spin_lock(&rq->lock);
524 if (unlikely(rq != task_rq(p))) {
525 spin_unlock_irqrestore(&rq->lock, *flags);
526 goto repeat_lock_task;
527 }
528 return rq;
529 }
530
531 static inline void __task_rq_unlock(struct rq *rq)
532 __releases(rq->lock)
533 {
534 spin_unlock(&rq->lock);
535 }
536
537 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
538 __releases(rq->lock)
539 {
540 spin_unlock_irqrestore(&rq->lock, *flags);
541 }
542
543 /*
544 * this_rq_lock - lock this runqueue and disable interrupts.
545 */
546 static inline struct rq *this_rq_lock(void)
547 __acquires(rq->lock)
548 {
549 struct rq *rq;
550
551 local_irq_disable();
552 rq = this_rq();
553 spin_lock(&rq->lock);
554
555 return rq;
556 }
557
558 /*
559 * We are going deep-idle (irqs are disabled):
560 */
561 void sched_clock_idle_sleep_event(void)
562 {
563 struct rq *rq = cpu_rq(smp_processor_id());
564
565 spin_lock(&rq->lock);
566 __update_rq_clock(rq);
567 spin_unlock(&rq->lock);
568 rq->clock_deep_idle_events++;
569 }
570 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
571
572 /*
573 * We just idled delta nanoseconds (called with irqs disabled):
574 */
575 void sched_clock_idle_wakeup_event(u64 delta_ns)
576 {
577 struct rq *rq = cpu_rq(smp_processor_id());
578 u64 now = sched_clock();
579
580 rq->idle_clock += delta_ns;
581 /*
582 * Override the previous timestamp and ignore all
583 * sched_clock() deltas that occured while we idled,
584 * and use the PM-provided delta_ns to advance the
585 * rq clock:
586 */
587 spin_lock(&rq->lock);
588 rq->prev_clock_raw = now;
589 rq->clock += delta_ns;
590 spin_unlock(&rq->lock);
591 }
592 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
593
594 /*
595 * resched_task - mark a task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601 #ifdef CONFIG_SMP
602
603 #ifndef tsk_is_polling
604 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
605 #endif
606
607 static void resched_task(struct task_struct *p)
608 {
609 int cpu;
610
611 assert_spin_locked(&task_rq(p)->lock);
612
613 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
614 return;
615
616 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
617
618 cpu = task_cpu(p);
619 if (cpu == smp_processor_id())
620 return;
621
622 /* NEED_RESCHED must be visible before we test polling */
623 smp_mb();
624 if (!tsk_is_polling(p))
625 smp_send_reschedule(cpu);
626 }
627
628 static void resched_cpu(int cpu)
629 {
630 struct rq *rq = cpu_rq(cpu);
631 unsigned long flags;
632
633 if (!spin_trylock_irqsave(&rq->lock, flags))
634 return;
635 resched_task(cpu_curr(cpu));
636 spin_unlock_irqrestore(&rq->lock, flags);
637 }
638 #else
639 static inline void resched_task(struct task_struct *p)
640 {
641 assert_spin_locked(&task_rq(p)->lock);
642 set_tsk_need_resched(p);
643 }
644 #endif
645
646 static u64 div64_likely32(u64 divident, unsigned long divisor)
647 {
648 #if BITS_PER_LONG == 32
649 if (likely(divident <= 0xffffffffULL))
650 return (u32)divident / divisor;
651 do_div(divident, divisor);
652
653 return divident;
654 #else
655 return divident / divisor;
656 #endif
657 }
658
659 #if BITS_PER_LONG == 32
660 # define WMULT_CONST (~0UL)
661 #else
662 # define WMULT_CONST (1UL << 32)
663 #endif
664
665 #define WMULT_SHIFT 32
666
667 /*
668 * Shift right and round:
669 */
670 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
671
672 static unsigned long
673 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
674 struct load_weight *lw)
675 {
676 u64 tmp;
677
678 if (unlikely(!lw->inv_weight))
679 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
680
681 tmp = (u64)delta_exec * weight;
682 /*
683 * Check whether we'd overflow the 64-bit multiplication:
684 */
685 if (unlikely(tmp > WMULT_CONST))
686 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
687 WMULT_SHIFT/2);
688 else
689 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
690
691 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
692 }
693
694 static inline unsigned long
695 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
696 {
697 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
698 }
699
700 static void update_load_add(struct load_weight *lw, unsigned long inc)
701 {
702 lw->weight += inc;
703 lw->inv_weight = 0;
704 }
705
706 static void update_load_sub(struct load_weight *lw, unsigned long dec)
707 {
708 lw->weight -= dec;
709 lw->inv_weight = 0;
710 }
711
712 /*
713 * To aid in avoiding the subversion of "niceness" due to uneven distribution
714 * of tasks with abnormal "nice" values across CPUs the contribution that
715 * each task makes to its run queue's load is weighted according to its
716 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
717 * scaled version of the new time slice allocation that they receive on time
718 * slice expiry etc.
719 */
720
721 #define WEIGHT_IDLEPRIO 2
722 #define WMULT_IDLEPRIO (1 << 31)
723
724 /*
725 * Nice levels are multiplicative, with a gentle 10% change for every
726 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
727 * nice 1, it will get ~10% less CPU time than another CPU-bound task
728 * that remained on nice 0.
729 *
730 * The "10% effect" is relative and cumulative: from _any_ nice level,
731 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
732 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
733 * If a task goes up by ~10% and another task goes down by ~10% then
734 * the relative distance between them is ~25%.)
735 */
736 static const int prio_to_weight[40] = {
737 /* -20 */ 88761, 71755, 56483, 46273, 36291,
738 /* -15 */ 29154, 23254, 18705, 14949, 11916,
739 /* -10 */ 9548, 7620, 6100, 4904, 3906,
740 /* -5 */ 3121, 2501, 1991, 1586, 1277,
741 /* 0 */ 1024, 820, 655, 526, 423,
742 /* 5 */ 335, 272, 215, 172, 137,
743 /* 10 */ 110, 87, 70, 56, 45,
744 /* 15 */ 36, 29, 23, 18, 15,
745 };
746
747 /*
748 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
749 *
750 * In cases where the weight does not change often, we can use the
751 * precalculated inverse to speed up arithmetics by turning divisions
752 * into multiplications:
753 */
754 static const u32 prio_to_wmult[40] = {
755 /* -20 */ 48388, 59856, 76040, 92818, 118348,
756 /* -15 */ 147320, 184698, 229616, 287308, 360437,
757 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
758 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
759 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
760 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
761 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
762 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
763 };
764
765 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
766
767 /*
768 * runqueue iterator, to support SMP load-balancing between different
769 * scheduling classes, without having to expose their internal data
770 * structures to the load-balancing proper:
771 */
772 struct rq_iterator {
773 void *arg;
774 struct task_struct *(*start)(void *);
775 struct task_struct *(*next)(void *);
776 };
777
778 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
779 unsigned long max_nr_move, unsigned long max_load_move,
780 struct sched_domain *sd, enum cpu_idle_type idle,
781 int *all_pinned, unsigned long *load_moved,
782 int *this_best_prio, struct rq_iterator *iterator);
783
784 #include "sched_stats.h"
785 #include "sched_rt.c"
786 #include "sched_fair.c"
787 #include "sched_idletask.c"
788 #ifdef CONFIG_SCHED_DEBUG
789 # include "sched_debug.c"
790 #endif
791
792 #define sched_class_highest (&rt_sched_class)
793
794 /*
795 * Update delta_exec, delta_fair fields for rq.
796 *
797 * delta_fair clock advances at a rate inversely proportional to
798 * total load (rq->ls.load.weight) on the runqueue, while
799 * delta_exec advances at the same rate as wall-clock (provided
800 * cpu is not idle).
801 *
802 * delta_exec / delta_fair is a measure of the (smoothened) load on this
803 * runqueue over any given interval. This (smoothened) load is used
804 * during load balance.
805 *
806 * This function is called /before/ updating rq->ls.load
807 * and when switching tasks.
808 */
809 static inline void inc_load(struct rq *rq, const struct task_struct *p)
810 {
811 update_load_add(&rq->ls.load, p->se.load.weight);
812 }
813
814 static inline void dec_load(struct rq *rq, const struct task_struct *p)
815 {
816 update_load_sub(&rq->ls.load, p->se.load.weight);
817 }
818
819 static void inc_nr_running(struct task_struct *p, struct rq *rq)
820 {
821 rq->nr_running++;
822 inc_load(rq, p);
823 }
824
825 static void dec_nr_running(struct task_struct *p, struct rq *rq)
826 {
827 rq->nr_running--;
828 dec_load(rq, p);
829 }
830
831 static void set_load_weight(struct task_struct *p)
832 {
833 p->se.wait_runtime = 0;
834
835 if (task_has_rt_policy(p)) {
836 p->se.load.weight = prio_to_weight[0] * 2;
837 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
838 return;
839 }
840
841 /*
842 * SCHED_IDLE tasks get minimal weight:
843 */
844 if (p->policy == SCHED_IDLE) {
845 p->se.load.weight = WEIGHT_IDLEPRIO;
846 p->se.load.inv_weight = WMULT_IDLEPRIO;
847 return;
848 }
849
850 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
851 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
852 }
853
854 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
855 {
856 sched_info_queued(p);
857 p->sched_class->enqueue_task(rq, p, wakeup);
858 p->se.on_rq = 1;
859 }
860
861 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
862 {
863 p->sched_class->dequeue_task(rq, p, sleep);
864 p->se.on_rq = 0;
865 }
866
867 /*
868 * __normal_prio - return the priority that is based on the static prio
869 */
870 static inline int __normal_prio(struct task_struct *p)
871 {
872 return p->static_prio;
873 }
874
875 /*
876 * Calculate the expected normal priority: i.e. priority
877 * without taking RT-inheritance into account. Might be
878 * boosted by interactivity modifiers. Changes upon fork,
879 * setprio syscalls, and whenever the interactivity
880 * estimator recalculates.
881 */
882 static inline int normal_prio(struct task_struct *p)
883 {
884 int prio;
885
886 if (task_has_rt_policy(p))
887 prio = MAX_RT_PRIO-1 - p->rt_priority;
888 else
889 prio = __normal_prio(p);
890 return prio;
891 }
892
893 /*
894 * Calculate the current priority, i.e. the priority
895 * taken into account by the scheduler. This value might
896 * be boosted by RT tasks, or might be boosted by
897 * interactivity modifiers. Will be RT if the task got
898 * RT-boosted. If not then it returns p->normal_prio.
899 */
900 static int effective_prio(struct task_struct *p)
901 {
902 p->normal_prio = normal_prio(p);
903 /*
904 * If we are RT tasks or we were boosted to RT priority,
905 * keep the priority unchanged. Otherwise, update priority
906 * to the normal priority:
907 */
908 if (!rt_prio(p->prio))
909 return p->normal_prio;
910 return p->prio;
911 }
912
913 /*
914 * activate_task - move a task to the runqueue.
915 */
916 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
917 {
918 if (p->state == TASK_UNINTERRUPTIBLE)
919 rq->nr_uninterruptible--;
920
921 enqueue_task(rq, p, wakeup);
922 inc_nr_running(p, rq);
923 }
924
925 /*
926 * activate_idle_task - move idle task to the _front_ of runqueue.
927 */
928 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
929 {
930 update_rq_clock(rq);
931
932 if (p->state == TASK_UNINTERRUPTIBLE)
933 rq->nr_uninterruptible--;
934
935 enqueue_task(rq, p, 0);
936 inc_nr_running(p, rq);
937 }
938
939 /*
940 * deactivate_task - remove a task from the runqueue.
941 */
942 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
943 {
944 if (p->state == TASK_UNINTERRUPTIBLE)
945 rq->nr_uninterruptible++;
946
947 dequeue_task(rq, p, sleep);
948 dec_nr_running(p, rq);
949 }
950
951 /**
952 * task_curr - is this task currently executing on a CPU?
953 * @p: the task in question.
954 */
955 inline int task_curr(const struct task_struct *p)
956 {
957 return cpu_curr(task_cpu(p)) == p;
958 }
959
960 /* Used instead of source_load when we know the type == 0 */
961 unsigned long weighted_cpuload(const int cpu)
962 {
963 return cpu_rq(cpu)->ls.load.weight;
964 }
965
966 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
967 {
968 #ifdef CONFIG_SMP
969 task_thread_info(p)->cpu = cpu;
970 set_task_cfs_rq(p);
971 #endif
972 }
973
974 #ifdef CONFIG_SMP
975
976 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977 {
978 int old_cpu = task_cpu(p);
979 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
980 u64 clock_offset, fair_clock_offset;
981
982 clock_offset = old_rq->clock - new_rq->clock;
983 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
984
985 if (p->se.wait_start_fair)
986 p->se.wait_start_fair -= fair_clock_offset;
987 if (p->se.sleep_start_fair)
988 p->se.sleep_start_fair -= fair_clock_offset;
989
990 #ifdef CONFIG_SCHEDSTATS
991 if (p->se.wait_start)
992 p->se.wait_start -= clock_offset;
993 if (p->se.sleep_start)
994 p->se.sleep_start -= clock_offset;
995 if (p->se.block_start)
996 p->se.block_start -= clock_offset;
997 #endif
998
999 __set_task_cpu(p, new_cpu);
1000 }
1001
1002 struct migration_req {
1003 struct list_head list;
1004
1005 struct task_struct *task;
1006 int dest_cpu;
1007
1008 struct completion done;
1009 };
1010
1011 /*
1012 * The task's runqueue lock must be held.
1013 * Returns true if you have to wait for migration thread.
1014 */
1015 static int
1016 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1017 {
1018 struct rq *rq = task_rq(p);
1019
1020 /*
1021 * If the task is not on a runqueue (and not running), then
1022 * it is sufficient to simply update the task's cpu field.
1023 */
1024 if (!p->se.on_rq && !task_running(rq, p)) {
1025 set_task_cpu(p, dest_cpu);
1026 return 0;
1027 }
1028
1029 init_completion(&req->done);
1030 req->task = p;
1031 req->dest_cpu = dest_cpu;
1032 list_add(&req->list, &rq->migration_queue);
1033
1034 return 1;
1035 }
1036
1037 /*
1038 * wait_task_inactive - wait for a thread to unschedule.
1039 *
1040 * The caller must ensure that the task *will* unschedule sometime soon,
1041 * else this function might spin for a *long* time. This function can't
1042 * be called with interrupts off, or it may introduce deadlock with
1043 * smp_call_function() if an IPI is sent by the same process we are
1044 * waiting to become inactive.
1045 */
1046 void wait_task_inactive(struct task_struct *p)
1047 {
1048 unsigned long flags;
1049 int running, on_rq;
1050 struct rq *rq;
1051
1052 repeat:
1053 /*
1054 * We do the initial early heuristics without holding
1055 * any task-queue locks at all. We'll only try to get
1056 * the runqueue lock when things look like they will
1057 * work out!
1058 */
1059 rq = task_rq(p);
1060
1061 /*
1062 * If the task is actively running on another CPU
1063 * still, just relax and busy-wait without holding
1064 * any locks.
1065 *
1066 * NOTE! Since we don't hold any locks, it's not
1067 * even sure that "rq" stays as the right runqueue!
1068 * But we don't care, since "task_running()" will
1069 * return false if the runqueue has changed and p
1070 * is actually now running somewhere else!
1071 */
1072 while (task_running(rq, p))
1073 cpu_relax();
1074
1075 /*
1076 * Ok, time to look more closely! We need the rq
1077 * lock now, to be *sure*. If we're wrong, we'll
1078 * just go back and repeat.
1079 */
1080 rq = task_rq_lock(p, &flags);
1081 running = task_running(rq, p);
1082 on_rq = p->se.on_rq;
1083 task_rq_unlock(rq, &flags);
1084
1085 /*
1086 * Was it really running after all now that we
1087 * checked with the proper locks actually held?
1088 *
1089 * Oops. Go back and try again..
1090 */
1091 if (unlikely(running)) {
1092 cpu_relax();
1093 goto repeat;
1094 }
1095
1096 /*
1097 * It's not enough that it's not actively running,
1098 * it must be off the runqueue _entirely_, and not
1099 * preempted!
1100 *
1101 * So if it wa still runnable (but just not actively
1102 * running right now), it's preempted, and we should
1103 * yield - it could be a while.
1104 */
1105 if (unlikely(on_rq)) {
1106 yield();
1107 goto repeat;
1108 }
1109
1110 /*
1111 * Ahh, all good. It wasn't running, and it wasn't
1112 * runnable, which means that it will never become
1113 * running in the future either. We're all done!
1114 */
1115 }
1116
1117 /***
1118 * kick_process - kick a running thread to enter/exit the kernel
1119 * @p: the to-be-kicked thread
1120 *
1121 * Cause a process which is running on another CPU to enter
1122 * kernel-mode, without any delay. (to get signals handled.)
1123 *
1124 * NOTE: this function doesnt have to take the runqueue lock,
1125 * because all it wants to ensure is that the remote task enters
1126 * the kernel. If the IPI races and the task has been migrated
1127 * to another CPU then no harm is done and the purpose has been
1128 * achieved as well.
1129 */
1130 void kick_process(struct task_struct *p)
1131 {
1132 int cpu;
1133
1134 preempt_disable();
1135 cpu = task_cpu(p);
1136 if ((cpu != smp_processor_id()) && task_curr(p))
1137 smp_send_reschedule(cpu);
1138 preempt_enable();
1139 }
1140
1141 /*
1142 * Return a low guess at the load of a migration-source cpu weighted
1143 * according to the scheduling class and "nice" value.
1144 *
1145 * We want to under-estimate the load of migration sources, to
1146 * balance conservatively.
1147 */
1148 static inline unsigned long source_load(int cpu, int type)
1149 {
1150 struct rq *rq = cpu_rq(cpu);
1151 unsigned long total = weighted_cpuload(cpu);
1152
1153 if (type == 0)
1154 return total;
1155
1156 return min(rq->cpu_load[type-1], total);
1157 }
1158
1159 /*
1160 * Return a high guess at the load of a migration-target cpu weighted
1161 * according to the scheduling class and "nice" value.
1162 */
1163 static inline unsigned long target_load(int cpu, int type)
1164 {
1165 struct rq *rq = cpu_rq(cpu);
1166 unsigned long total = weighted_cpuload(cpu);
1167
1168 if (type == 0)
1169 return total;
1170
1171 return max(rq->cpu_load[type-1], total);
1172 }
1173
1174 /*
1175 * Return the average load per task on the cpu's run queue
1176 */
1177 static inline unsigned long cpu_avg_load_per_task(int cpu)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long total = weighted_cpuload(cpu);
1181 unsigned long n = rq->nr_running;
1182
1183 return n ? total / n : SCHED_LOAD_SCALE;
1184 }
1185
1186 /*
1187 * find_idlest_group finds and returns the least busy CPU group within the
1188 * domain.
1189 */
1190 static struct sched_group *
1191 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1192 {
1193 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1194 unsigned long min_load = ULONG_MAX, this_load = 0;
1195 int load_idx = sd->forkexec_idx;
1196 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1197
1198 do {
1199 unsigned long load, avg_load;
1200 int local_group;
1201 int i;
1202
1203 /* Skip over this group if it has no CPUs allowed */
1204 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1205 goto nextgroup;
1206
1207 local_group = cpu_isset(this_cpu, group->cpumask);
1208
1209 /* Tally up the load of all CPUs in the group */
1210 avg_load = 0;
1211
1212 for_each_cpu_mask(i, group->cpumask) {
1213 /* Bias balancing toward cpus of our domain */
1214 if (local_group)
1215 load = source_load(i, load_idx);
1216 else
1217 load = target_load(i, load_idx);
1218
1219 avg_load += load;
1220 }
1221
1222 /* Adjust by relative CPU power of the group */
1223 avg_load = sg_div_cpu_power(group,
1224 avg_load * SCHED_LOAD_SCALE);
1225
1226 if (local_group) {
1227 this_load = avg_load;
1228 this = group;
1229 } else if (avg_load < min_load) {
1230 min_load = avg_load;
1231 idlest = group;
1232 }
1233 nextgroup:
1234 group = group->next;
1235 } while (group != sd->groups);
1236
1237 if (!idlest || 100*this_load < imbalance*min_load)
1238 return NULL;
1239 return idlest;
1240 }
1241
1242 /*
1243 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1244 */
1245 static int
1246 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1247 {
1248 cpumask_t tmp;
1249 unsigned long load, min_load = ULONG_MAX;
1250 int idlest = -1;
1251 int i;
1252
1253 /* Traverse only the allowed CPUs */
1254 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1255
1256 for_each_cpu_mask(i, tmp) {
1257 load = weighted_cpuload(i);
1258
1259 if (load < min_load || (load == min_load && i == this_cpu)) {
1260 min_load = load;
1261 idlest = i;
1262 }
1263 }
1264
1265 return idlest;
1266 }
1267
1268 /*
1269 * sched_balance_self: balance the current task (running on cpu) in domains
1270 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1271 * SD_BALANCE_EXEC.
1272 *
1273 * Balance, ie. select the least loaded group.
1274 *
1275 * Returns the target CPU number, or the same CPU if no balancing is needed.
1276 *
1277 * preempt must be disabled.
1278 */
1279 static int sched_balance_self(int cpu, int flag)
1280 {
1281 struct task_struct *t = current;
1282 struct sched_domain *tmp, *sd = NULL;
1283
1284 for_each_domain(cpu, tmp) {
1285 /*
1286 * If power savings logic is enabled for a domain, stop there.
1287 */
1288 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1289 break;
1290 if (tmp->flags & flag)
1291 sd = tmp;
1292 }
1293
1294 while (sd) {
1295 cpumask_t span;
1296 struct sched_group *group;
1297 int new_cpu, weight;
1298
1299 if (!(sd->flags & flag)) {
1300 sd = sd->child;
1301 continue;
1302 }
1303
1304 span = sd->span;
1305 group = find_idlest_group(sd, t, cpu);
1306 if (!group) {
1307 sd = sd->child;
1308 continue;
1309 }
1310
1311 new_cpu = find_idlest_cpu(group, t, cpu);
1312 if (new_cpu == -1 || new_cpu == cpu) {
1313 /* Now try balancing at a lower domain level of cpu */
1314 sd = sd->child;
1315 continue;
1316 }
1317
1318 /* Now try balancing at a lower domain level of new_cpu */
1319 cpu = new_cpu;
1320 sd = NULL;
1321 weight = cpus_weight(span);
1322 for_each_domain(cpu, tmp) {
1323 if (weight <= cpus_weight(tmp->span))
1324 break;
1325 if (tmp->flags & flag)
1326 sd = tmp;
1327 }
1328 /* while loop will break here if sd == NULL */
1329 }
1330
1331 return cpu;
1332 }
1333
1334 #endif /* CONFIG_SMP */
1335
1336 /*
1337 * wake_idle() will wake a task on an idle cpu if task->cpu is
1338 * not idle and an idle cpu is available. The span of cpus to
1339 * search starts with cpus closest then further out as needed,
1340 * so we always favor a closer, idle cpu.
1341 *
1342 * Returns the CPU we should wake onto.
1343 */
1344 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1345 static int wake_idle(int cpu, struct task_struct *p)
1346 {
1347 cpumask_t tmp;
1348 struct sched_domain *sd;
1349 int i;
1350
1351 /*
1352 * If it is idle, then it is the best cpu to run this task.
1353 *
1354 * This cpu is also the best, if it has more than one task already.
1355 * Siblings must be also busy(in most cases) as they didn't already
1356 * pickup the extra load from this cpu and hence we need not check
1357 * sibling runqueue info. This will avoid the checks and cache miss
1358 * penalities associated with that.
1359 */
1360 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1361 return cpu;
1362
1363 for_each_domain(cpu, sd) {
1364 if (sd->flags & SD_WAKE_IDLE) {
1365 cpus_and(tmp, sd->span, p->cpus_allowed);
1366 for_each_cpu_mask(i, tmp) {
1367 if (idle_cpu(i))
1368 return i;
1369 }
1370 } else {
1371 break;
1372 }
1373 }
1374 return cpu;
1375 }
1376 #else
1377 static inline int wake_idle(int cpu, struct task_struct *p)
1378 {
1379 return cpu;
1380 }
1381 #endif
1382
1383 /***
1384 * try_to_wake_up - wake up a thread
1385 * @p: the to-be-woken-up thread
1386 * @state: the mask of task states that can be woken
1387 * @sync: do a synchronous wakeup?
1388 *
1389 * Put it on the run-queue if it's not already there. The "current"
1390 * thread is always on the run-queue (except when the actual
1391 * re-schedule is in progress), and as such you're allowed to do
1392 * the simpler "current->state = TASK_RUNNING" to mark yourself
1393 * runnable without the overhead of this.
1394 *
1395 * returns failure only if the task is already active.
1396 */
1397 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1398 {
1399 int cpu, this_cpu, success = 0;
1400 unsigned long flags;
1401 long old_state;
1402 struct rq *rq;
1403 #ifdef CONFIG_SMP
1404 struct sched_domain *sd, *this_sd = NULL;
1405 unsigned long load, this_load;
1406 int new_cpu;
1407 #endif
1408
1409 rq = task_rq_lock(p, &flags);
1410 old_state = p->state;
1411 if (!(old_state & state))
1412 goto out;
1413
1414 if (p->se.on_rq)
1415 goto out_running;
1416
1417 cpu = task_cpu(p);
1418 this_cpu = smp_processor_id();
1419
1420 #ifdef CONFIG_SMP
1421 if (unlikely(task_running(rq, p)))
1422 goto out_activate;
1423
1424 new_cpu = cpu;
1425
1426 schedstat_inc(rq, ttwu_cnt);
1427 if (cpu == this_cpu) {
1428 schedstat_inc(rq, ttwu_local);
1429 goto out_set_cpu;
1430 }
1431
1432 for_each_domain(this_cpu, sd) {
1433 if (cpu_isset(cpu, sd->span)) {
1434 schedstat_inc(sd, ttwu_wake_remote);
1435 this_sd = sd;
1436 break;
1437 }
1438 }
1439
1440 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1441 goto out_set_cpu;
1442
1443 /*
1444 * Check for affine wakeup and passive balancing possibilities.
1445 */
1446 if (this_sd) {
1447 int idx = this_sd->wake_idx;
1448 unsigned int imbalance;
1449
1450 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1451
1452 load = source_load(cpu, idx);
1453 this_load = target_load(this_cpu, idx);
1454
1455 new_cpu = this_cpu; /* Wake to this CPU if we can */
1456
1457 if (this_sd->flags & SD_WAKE_AFFINE) {
1458 unsigned long tl = this_load;
1459 unsigned long tl_per_task;
1460
1461 tl_per_task = cpu_avg_load_per_task(this_cpu);
1462
1463 /*
1464 * If sync wakeup then subtract the (maximum possible)
1465 * effect of the currently running task from the load
1466 * of the current CPU:
1467 */
1468 if (sync)
1469 tl -= current->se.load.weight;
1470
1471 if ((tl <= load &&
1472 tl + target_load(cpu, idx) <= tl_per_task) ||
1473 100*(tl + p->se.load.weight) <= imbalance*load) {
1474 /*
1475 * This domain has SD_WAKE_AFFINE and
1476 * p is cache cold in this domain, and
1477 * there is no bad imbalance.
1478 */
1479 schedstat_inc(this_sd, ttwu_move_affine);
1480 goto out_set_cpu;
1481 }
1482 }
1483
1484 /*
1485 * Start passive balancing when half the imbalance_pct
1486 * limit is reached.
1487 */
1488 if (this_sd->flags & SD_WAKE_BALANCE) {
1489 if (imbalance*this_load <= 100*load) {
1490 schedstat_inc(this_sd, ttwu_move_balance);
1491 goto out_set_cpu;
1492 }
1493 }
1494 }
1495
1496 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1497 out_set_cpu:
1498 new_cpu = wake_idle(new_cpu, p);
1499 if (new_cpu != cpu) {
1500 set_task_cpu(p, new_cpu);
1501 task_rq_unlock(rq, &flags);
1502 /* might preempt at this point */
1503 rq = task_rq_lock(p, &flags);
1504 old_state = p->state;
1505 if (!(old_state & state))
1506 goto out;
1507 if (p->se.on_rq)
1508 goto out_running;
1509
1510 this_cpu = smp_processor_id();
1511 cpu = task_cpu(p);
1512 }
1513
1514 out_activate:
1515 #endif /* CONFIG_SMP */
1516 update_rq_clock(rq);
1517 activate_task(rq, p, 1);
1518 /*
1519 * Sync wakeups (i.e. those types of wakeups where the waker
1520 * has indicated that it will leave the CPU in short order)
1521 * don't trigger a preemption, if the woken up task will run on
1522 * this cpu. (in this case the 'I will reschedule' promise of
1523 * the waker guarantees that the freshly woken up task is going
1524 * to be considered on this CPU.)
1525 */
1526 if (!sync || cpu != this_cpu)
1527 check_preempt_curr(rq, p);
1528 success = 1;
1529
1530 out_running:
1531 p->state = TASK_RUNNING;
1532 out:
1533 task_rq_unlock(rq, &flags);
1534
1535 return success;
1536 }
1537
1538 int fastcall wake_up_process(struct task_struct *p)
1539 {
1540 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1541 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1542 }
1543 EXPORT_SYMBOL(wake_up_process);
1544
1545 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1546 {
1547 return try_to_wake_up(p, state, 0);
1548 }
1549
1550 /*
1551 * Perform scheduler related setup for a newly forked process p.
1552 * p is forked by current.
1553 *
1554 * __sched_fork() is basic setup used by init_idle() too:
1555 */
1556 static void __sched_fork(struct task_struct *p)
1557 {
1558 p->se.wait_start_fair = 0;
1559 p->se.exec_start = 0;
1560 p->se.sum_exec_runtime = 0;
1561 p->se.prev_sum_exec_runtime = 0;
1562 p->se.wait_runtime = 0;
1563 p->se.sleep_start_fair = 0;
1564
1565 #ifdef CONFIG_SCHEDSTATS
1566 p->se.wait_start = 0;
1567 p->se.sum_wait_runtime = 0;
1568 p->se.sum_sleep_runtime = 0;
1569 p->se.sleep_start = 0;
1570 p->se.block_start = 0;
1571 p->se.sleep_max = 0;
1572 p->se.block_max = 0;
1573 p->se.exec_max = 0;
1574 p->se.slice_max = 0;
1575 p->se.wait_max = 0;
1576 p->se.wait_runtime_overruns = 0;
1577 p->se.wait_runtime_underruns = 0;
1578 #endif
1579
1580 INIT_LIST_HEAD(&p->run_list);
1581 p->se.on_rq = 0;
1582
1583 #ifdef CONFIG_PREEMPT_NOTIFIERS
1584 INIT_HLIST_HEAD(&p->preempt_notifiers);
1585 #endif
1586
1587 /*
1588 * We mark the process as running here, but have not actually
1589 * inserted it onto the runqueue yet. This guarantees that
1590 * nobody will actually run it, and a signal or other external
1591 * event cannot wake it up and insert it on the runqueue either.
1592 */
1593 p->state = TASK_RUNNING;
1594 }
1595
1596 /*
1597 * fork()/clone()-time setup:
1598 */
1599 void sched_fork(struct task_struct *p, int clone_flags)
1600 {
1601 int cpu = get_cpu();
1602
1603 __sched_fork(p);
1604
1605 #ifdef CONFIG_SMP
1606 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1607 #endif
1608 __set_task_cpu(p, cpu);
1609
1610 /*
1611 * Make sure we do not leak PI boosting priority to the child:
1612 */
1613 p->prio = current->normal_prio;
1614
1615 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1616 if (likely(sched_info_on()))
1617 memset(&p->sched_info, 0, sizeof(p->sched_info));
1618 #endif
1619 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1620 p->oncpu = 0;
1621 #endif
1622 #ifdef CONFIG_PREEMPT
1623 /* Want to start with kernel preemption disabled. */
1624 task_thread_info(p)->preempt_count = 1;
1625 #endif
1626 put_cpu();
1627 }
1628
1629 /*
1630 * wake_up_new_task - wake up a newly created task for the first time.
1631 *
1632 * This function will do some initial scheduler statistics housekeeping
1633 * that must be done for every newly created context, then puts the task
1634 * on the runqueue and wakes it.
1635 */
1636 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1637 {
1638 unsigned long flags;
1639 struct rq *rq;
1640 int this_cpu;
1641
1642 rq = task_rq_lock(p, &flags);
1643 BUG_ON(p->state != TASK_RUNNING);
1644 this_cpu = smp_processor_id(); /* parent's CPU */
1645 update_rq_clock(rq);
1646
1647 p->prio = effective_prio(p);
1648
1649 if (rt_prio(p->prio))
1650 p->sched_class = &rt_sched_class;
1651 else
1652 p->sched_class = &fair_sched_class;
1653
1654 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1655 !current->se.on_rq) {
1656 activate_task(rq, p, 0);
1657 } else {
1658 /*
1659 * Let the scheduling class do new task startup
1660 * management (if any):
1661 */
1662 p->sched_class->task_new(rq, p);
1663 inc_nr_running(p, rq);
1664 }
1665 check_preempt_curr(rq, p);
1666 task_rq_unlock(rq, &flags);
1667 }
1668
1669 #ifdef CONFIG_PREEMPT_NOTIFIERS
1670
1671 /**
1672 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1673 * @notifier: notifier struct to register
1674 */
1675 void preempt_notifier_register(struct preempt_notifier *notifier)
1676 {
1677 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1678 }
1679 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1680
1681 /**
1682 * preempt_notifier_unregister - no longer interested in preemption notifications
1683 * @notifier: notifier struct to unregister
1684 *
1685 * This is safe to call from within a preemption notifier.
1686 */
1687 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1688 {
1689 hlist_del(&notifier->link);
1690 }
1691 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1692
1693 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1694 {
1695 struct preempt_notifier *notifier;
1696 struct hlist_node *node;
1697
1698 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1699 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1700 }
1701
1702 static void
1703 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1704 struct task_struct *next)
1705 {
1706 struct preempt_notifier *notifier;
1707 struct hlist_node *node;
1708
1709 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1710 notifier->ops->sched_out(notifier, next);
1711 }
1712
1713 #else
1714
1715 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1716 {
1717 }
1718
1719 static void
1720 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1721 struct task_struct *next)
1722 {
1723 }
1724
1725 #endif
1726
1727 /**
1728 * prepare_task_switch - prepare to switch tasks
1729 * @rq: the runqueue preparing to switch
1730 * @prev: the current task that is being switched out
1731 * @next: the task we are going to switch to.
1732 *
1733 * This is called with the rq lock held and interrupts off. It must
1734 * be paired with a subsequent finish_task_switch after the context
1735 * switch.
1736 *
1737 * prepare_task_switch sets up locking and calls architecture specific
1738 * hooks.
1739 */
1740 static inline void
1741 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1742 struct task_struct *next)
1743 {
1744 fire_sched_out_preempt_notifiers(prev, next);
1745 prepare_lock_switch(rq, next);
1746 prepare_arch_switch(next);
1747 }
1748
1749 /**
1750 * finish_task_switch - clean up after a task-switch
1751 * @rq: runqueue associated with task-switch
1752 * @prev: the thread we just switched away from.
1753 *
1754 * finish_task_switch must be called after the context switch, paired
1755 * with a prepare_task_switch call before the context switch.
1756 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1757 * and do any other architecture-specific cleanup actions.
1758 *
1759 * Note that we may have delayed dropping an mm in context_switch(). If
1760 * so, we finish that here outside of the runqueue lock. (Doing it
1761 * with the lock held can cause deadlocks; see schedule() for
1762 * details.)
1763 */
1764 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1765 __releases(rq->lock)
1766 {
1767 struct mm_struct *mm = rq->prev_mm;
1768 long prev_state;
1769
1770 rq->prev_mm = NULL;
1771
1772 /*
1773 * A task struct has one reference for the use as "current".
1774 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1775 * schedule one last time. The schedule call will never return, and
1776 * the scheduled task must drop that reference.
1777 * The test for TASK_DEAD must occur while the runqueue locks are
1778 * still held, otherwise prev could be scheduled on another cpu, die
1779 * there before we look at prev->state, and then the reference would
1780 * be dropped twice.
1781 * Manfred Spraul <manfred@colorfullife.com>
1782 */
1783 prev_state = prev->state;
1784 finish_arch_switch(prev);
1785 finish_lock_switch(rq, prev);
1786 fire_sched_in_preempt_notifiers(current);
1787 if (mm)
1788 mmdrop(mm);
1789 if (unlikely(prev_state == TASK_DEAD)) {
1790 /*
1791 * Remove function-return probe instances associated with this
1792 * task and put them back on the free list.
1793 */
1794 kprobe_flush_task(prev);
1795 put_task_struct(prev);
1796 }
1797 }
1798
1799 /**
1800 * schedule_tail - first thing a freshly forked thread must call.
1801 * @prev: the thread we just switched away from.
1802 */
1803 asmlinkage void schedule_tail(struct task_struct *prev)
1804 __releases(rq->lock)
1805 {
1806 struct rq *rq = this_rq();
1807
1808 finish_task_switch(rq, prev);
1809 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1810 /* In this case, finish_task_switch does not reenable preemption */
1811 preempt_enable();
1812 #endif
1813 if (current->set_child_tid)
1814 put_user(current->pid, current->set_child_tid);
1815 }
1816
1817 /*
1818 * context_switch - switch to the new MM and the new
1819 * thread's register state.
1820 */
1821 static inline void
1822 context_switch(struct rq *rq, struct task_struct *prev,
1823 struct task_struct *next)
1824 {
1825 struct mm_struct *mm, *oldmm;
1826
1827 prepare_task_switch(rq, prev, next);
1828 mm = next->mm;
1829 oldmm = prev->active_mm;
1830 /*
1831 * For paravirt, this is coupled with an exit in switch_to to
1832 * combine the page table reload and the switch backend into
1833 * one hypercall.
1834 */
1835 arch_enter_lazy_cpu_mode();
1836
1837 if (unlikely(!mm)) {
1838 next->active_mm = oldmm;
1839 atomic_inc(&oldmm->mm_count);
1840 enter_lazy_tlb(oldmm, next);
1841 } else
1842 switch_mm(oldmm, mm, next);
1843
1844 if (unlikely(!prev->mm)) {
1845 prev->active_mm = NULL;
1846 rq->prev_mm = oldmm;
1847 }
1848 /*
1849 * Since the runqueue lock will be released by the next
1850 * task (which is an invalid locking op but in the case
1851 * of the scheduler it's an obvious special-case), so we
1852 * do an early lockdep release here:
1853 */
1854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1856 #endif
1857
1858 /* Here we just switch the register state and the stack. */
1859 switch_to(prev, next, prev);
1860
1861 barrier();
1862 /*
1863 * this_rq must be evaluated again because prev may have moved
1864 * CPUs since it called schedule(), thus the 'rq' on its stack
1865 * frame will be invalid.
1866 */
1867 finish_task_switch(this_rq(), prev);
1868 }
1869
1870 /*
1871 * nr_running, nr_uninterruptible and nr_context_switches:
1872 *
1873 * externally visible scheduler statistics: current number of runnable
1874 * threads, current number of uninterruptible-sleeping threads, total
1875 * number of context switches performed since bootup.
1876 */
1877 unsigned long nr_running(void)
1878 {
1879 unsigned long i, sum = 0;
1880
1881 for_each_online_cpu(i)
1882 sum += cpu_rq(i)->nr_running;
1883
1884 return sum;
1885 }
1886
1887 unsigned long nr_uninterruptible(void)
1888 {
1889 unsigned long i, sum = 0;
1890
1891 for_each_possible_cpu(i)
1892 sum += cpu_rq(i)->nr_uninterruptible;
1893
1894 /*
1895 * Since we read the counters lockless, it might be slightly
1896 * inaccurate. Do not allow it to go below zero though:
1897 */
1898 if (unlikely((long)sum < 0))
1899 sum = 0;
1900
1901 return sum;
1902 }
1903
1904 unsigned long long nr_context_switches(void)
1905 {
1906 int i;
1907 unsigned long long sum = 0;
1908
1909 for_each_possible_cpu(i)
1910 sum += cpu_rq(i)->nr_switches;
1911
1912 return sum;
1913 }
1914
1915 unsigned long nr_iowait(void)
1916 {
1917 unsigned long i, sum = 0;
1918
1919 for_each_possible_cpu(i)
1920 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1921
1922 return sum;
1923 }
1924
1925 unsigned long nr_active(void)
1926 {
1927 unsigned long i, running = 0, uninterruptible = 0;
1928
1929 for_each_online_cpu(i) {
1930 running += cpu_rq(i)->nr_running;
1931 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1932 }
1933
1934 if (unlikely((long)uninterruptible < 0))
1935 uninterruptible = 0;
1936
1937 return running + uninterruptible;
1938 }
1939
1940 /*
1941 * Update rq->cpu_load[] statistics. This function is usually called every
1942 * scheduler tick (TICK_NSEC).
1943 */
1944 static void update_cpu_load(struct rq *this_rq)
1945 {
1946 unsigned long this_load = this_rq->ls.load.weight;
1947 int i, scale;
1948
1949 this_rq->nr_load_updates++;
1950
1951 /* Update our load: */
1952 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1953 unsigned long old_load, new_load;
1954
1955 /* scale is effectively 1 << i now, and >> i divides by scale */
1956
1957 old_load = this_rq->cpu_load[i];
1958 new_load = this_load;
1959 /*
1960 * Round up the averaging division if load is increasing. This
1961 * prevents us from getting stuck on 9 if the load is 10, for
1962 * example.
1963 */
1964 if (new_load > old_load)
1965 new_load += scale-1;
1966 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1967 }
1968 }
1969
1970 #ifdef CONFIG_SMP
1971
1972 /*
1973 * double_rq_lock - safely lock two runqueues
1974 *
1975 * Note this does not disable interrupts like task_rq_lock,
1976 * you need to do so manually before calling.
1977 */
1978 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1979 __acquires(rq1->lock)
1980 __acquires(rq2->lock)
1981 {
1982 BUG_ON(!irqs_disabled());
1983 if (rq1 == rq2) {
1984 spin_lock(&rq1->lock);
1985 __acquire(rq2->lock); /* Fake it out ;) */
1986 } else {
1987 if (rq1 < rq2) {
1988 spin_lock(&rq1->lock);
1989 spin_lock(&rq2->lock);
1990 } else {
1991 spin_lock(&rq2->lock);
1992 spin_lock(&rq1->lock);
1993 }
1994 }
1995 update_rq_clock(rq1);
1996 update_rq_clock(rq2);
1997 }
1998
1999 /*
2000 * double_rq_unlock - safely unlock two runqueues
2001 *
2002 * Note this does not restore interrupts like task_rq_unlock,
2003 * you need to do so manually after calling.
2004 */
2005 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2006 __releases(rq1->lock)
2007 __releases(rq2->lock)
2008 {
2009 spin_unlock(&rq1->lock);
2010 if (rq1 != rq2)
2011 spin_unlock(&rq2->lock);
2012 else
2013 __release(rq2->lock);
2014 }
2015
2016 /*
2017 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2018 */
2019 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2020 __releases(this_rq->lock)
2021 __acquires(busiest->lock)
2022 __acquires(this_rq->lock)
2023 {
2024 if (unlikely(!irqs_disabled())) {
2025 /* printk() doesn't work good under rq->lock */
2026 spin_unlock(&this_rq->lock);
2027 BUG_ON(1);
2028 }
2029 if (unlikely(!spin_trylock(&busiest->lock))) {
2030 if (busiest < this_rq) {
2031 spin_unlock(&this_rq->lock);
2032 spin_lock(&busiest->lock);
2033 spin_lock(&this_rq->lock);
2034 } else
2035 spin_lock(&busiest->lock);
2036 }
2037 }
2038
2039 /*
2040 * If dest_cpu is allowed for this process, migrate the task to it.
2041 * This is accomplished by forcing the cpu_allowed mask to only
2042 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2043 * the cpu_allowed mask is restored.
2044 */
2045 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2046 {
2047 struct migration_req req;
2048 unsigned long flags;
2049 struct rq *rq;
2050
2051 rq = task_rq_lock(p, &flags);
2052 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2053 || unlikely(cpu_is_offline(dest_cpu)))
2054 goto out;
2055
2056 /* force the process onto the specified CPU */
2057 if (migrate_task(p, dest_cpu, &req)) {
2058 /* Need to wait for migration thread (might exit: take ref). */
2059 struct task_struct *mt = rq->migration_thread;
2060
2061 get_task_struct(mt);
2062 task_rq_unlock(rq, &flags);
2063 wake_up_process(mt);
2064 put_task_struct(mt);
2065 wait_for_completion(&req.done);
2066
2067 return;
2068 }
2069 out:
2070 task_rq_unlock(rq, &flags);
2071 }
2072
2073 /*
2074 * sched_exec - execve() is a valuable balancing opportunity, because at
2075 * this point the task has the smallest effective memory and cache footprint.
2076 */
2077 void sched_exec(void)
2078 {
2079 int new_cpu, this_cpu = get_cpu();
2080 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2081 put_cpu();
2082 if (new_cpu != this_cpu)
2083 sched_migrate_task(current, new_cpu);
2084 }
2085
2086 /*
2087 * pull_task - move a task from a remote runqueue to the local runqueue.
2088 * Both runqueues must be locked.
2089 */
2090 static void pull_task(struct rq *src_rq, struct task_struct *p,
2091 struct rq *this_rq, int this_cpu)
2092 {
2093 deactivate_task(src_rq, p, 0);
2094 set_task_cpu(p, this_cpu);
2095 activate_task(this_rq, p, 0);
2096 /*
2097 * Note that idle threads have a prio of MAX_PRIO, for this test
2098 * to be always true for them.
2099 */
2100 check_preempt_curr(this_rq, p);
2101 }
2102
2103 /*
2104 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2105 */
2106 static
2107 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2108 struct sched_domain *sd, enum cpu_idle_type idle,
2109 int *all_pinned)
2110 {
2111 /*
2112 * We do not migrate tasks that are:
2113 * 1) running (obviously), or
2114 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2115 * 3) are cache-hot on their current CPU.
2116 */
2117 if (!cpu_isset(this_cpu, p->cpus_allowed))
2118 return 0;
2119 *all_pinned = 0;
2120
2121 if (task_running(rq, p))
2122 return 0;
2123
2124 return 1;
2125 }
2126
2127 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2128 unsigned long max_nr_move, unsigned long max_load_move,
2129 struct sched_domain *sd, enum cpu_idle_type idle,
2130 int *all_pinned, unsigned long *load_moved,
2131 int *this_best_prio, struct rq_iterator *iterator)
2132 {
2133 int pulled = 0, pinned = 0, skip_for_load;
2134 struct task_struct *p;
2135 long rem_load_move = max_load_move;
2136
2137 if (max_nr_move == 0 || max_load_move == 0)
2138 goto out;
2139
2140 pinned = 1;
2141
2142 /*
2143 * Start the load-balancing iterator:
2144 */
2145 p = iterator->start(iterator->arg);
2146 next:
2147 if (!p)
2148 goto out;
2149 /*
2150 * To help distribute high priority tasks accross CPUs we don't
2151 * skip a task if it will be the highest priority task (i.e. smallest
2152 * prio value) on its new queue regardless of its load weight
2153 */
2154 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2155 SCHED_LOAD_SCALE_FUZZ;
2156 if ((skip_for_load && p->prio >= *this_best_prio) ||
2157 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2158 p = iterator->next(iterator->arg);
2159 goto next;
2160 }
2161
2162 pull_task(busiest, p, this_rq, this_cpu);
2163 pulled++;
2164 rem_load_move -= p->se.load.weight;
2165
2166 /*
2167 * We only want to steal up to the prescribed number of tasks
2168 * and the prescribed amount of weighted load.
2169 */
2170 if (pulled < max_nr_move && rem_load_move > 0) {
2171 if (p->prio < *this_best_prio)
2172 *this_best_prio = p->prio;
2173 p = iterator->next(iterator->arg);
2174 goto next;
2175 }
2176 out:
2177 /*
2178 * Right now, this is the only place pull_task() is called,
2179 * so we can safely collect pull_task() stats here rather than
2180 * inside pull_task().
2181 */
2182 schedstat_add(sd, lb_gained[idle], pulled);
2183
2184 if (all_pinned)
2185 *all_pinned = pinned;
2186 *load_moved = max_load_move - rem_load_move;
2187 return pulled;
2188 }
2189
2190 /*
2191 * move_tasks tries to move up to max_load_move weighted load from busiest to
2192 * this_rq, as part of a balancing operation within domain "sd".
2193 * Returns 1 if successful and 0 otherwise.
2194 *
2195 * Called with both runqueues locked.
2196 */
2197 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2198 unsigned long max_load_move,
2199 struct sched_domain *sd, enum cpu_idle_type idle,
2200 int *all_pinned)
2201 {
2202 struct sched_class *class = sched_class_highest;
2203 unsigned long total_load_moved = 0;
2204 int this_best_prio = this_rq->curr->prio;
2205
2206 do {
2207 total_load_moved +=
2208 class->load_balance(this_rq, this_cpu, busiest,
2209 ULONG_MAX, max_load_move - total_load_moved,
2210 sd, idle, all_pinned, &this_best_prio);
2211 class = class->next;
2212 } while (class && max_load_move > total_load_moved);
2213
2214 return total_load_moved > 0;
2215 }
2216
2217 /*
2218 * move_one_task tries to move exactly one task from busiest to this_rq, as
2219 * part of active balancing operations within "domain".
2220 * Returns 1 if successful and 0 otherwise.
2221 *
2222 * Called with both runqueues locked.
2223 */
2224 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2225 struct sched_domain *sd, enum cpu_idle_type idle)
2226 {
2227 struct sched_class *class;
2228 int this_best_prio = MAX_PRIO;
2229
2230 for (class = sched_class_highest; class; class = class->next)
2231 if (class->load_balance(this_rq, this_cpu, busiest,
2232 1, ULONG_MAX, sd, idle, NULL,
2233 &this_best_prio))
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /*
2240 * find_busiest_group finds and returns the busiest CPU group within the
2241 * domain. It calculates and returns the amount of weighted load which
2242 * should be moved to restore balance via the imbalance parameter.
2243 */
2244 static struct sched_group *
2245 find_busiest_group(struct sched_domain *sd, int this_cpu,
2246 unsigned long *imbalance, enum cpu_idle_type idle,
2247 int *sd_idle, cpumask_t *cpus, int *balance)
2248 {
2249 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2250 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2251 unsigned long max_pull;
2252 unsigned long busiest_load_per_task, busiest_nr_running;
2253 unsigned long this_load_per_task, this_nr_running;
2254 int load_idx;
2255 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2256 int power_savings_balance = 1;
2257 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2258 unsigned long min_nr_running = ULONG_MAX;
2259 struct sched_group *group_min = NULL, *group_leader = NULL;
2260 #endif
2261
2262 max_load = this_load = total_load = total_pwr = 0;
2263 busiest_load_per_task = busiest_nr_running = 0;
2264 this_load_per_task = this_nr_running = 0;
2265 if (idle == CPU_NOT_IDLE)
2266 load_idx = sd->busy_idx;
2267 else if (idle == CPU_NEWLY_IDLE)
2268 load_idx = sd->newidle_idx;
2269 else
2270 load_idx = sd->idle_idx;
2271
2272 do {
2273 unsigned long load, group_capacity;
2274 int local_group;
2275 int i;
2276 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2277 unsigned long sum_nr_running, sum_weighted_load;
2278
2279 local_group = cpu_isset(this_cpu, group->cpumask);
2280
2281 if (local_group)
2282 balance_cpu = first_cpu(group->cpumask);
2283
2284 /* Tally up the load of all CPUs in the group */
2285 sum_weighted_load = sum_nr_running = avg_load = 0;
2286
2287 for_each_cpu_mask(i, group->cpumask) {
2288 struct rq *rq;
2289
2290 if (!cpu_isset(i, *cpus))
2291 continue;
2292
2293 rq = cpu_rq(i);
2294
2295 if (*sd_idle && rq->nr_running)
2296 *sd_idle = 0;
2297
2298 /* Bias balancing toward cpus of our domain */
2299 if (local_group) {
2300 if (idle_cpu(i) && !first_idle_cpu) {
2301 first_idle_cpu = 1;
2302 balance_cpu = i;
2303 }
2304
2305 load = target_load(i, load_idx);
2306 } else
2307 load = source_load(i, load_idx);
2308
2309 avg_load += load;
2310 sum_nr_running += rq->nr_running;
2311 sum_weighted_load += weighted_cpuload(i);
2312 }
2313
2314 /*
2315 * First idle cpu or the first cpu(busiest) in this sched group
2316 * is eligible for doing load balancing at this and above
2317 * domains. In the newly idle case, we will allow all the cpu's
2318 * to do the newly idle load balance.
2319 */
2320 if (idle != CPU_NEWLY_IDLE && local_group &&
2321 balance_cpu != this_cpu && balance) {
2322 *balance = 0;
2323 goto ret;
2324 }
2325
2326 total_load += avg_load;
2327 total_pwr += group->__cpu_power;
2328
2329 /* Adjust by relative CPU power of the group */
2330 avg_load = sg_div_cpu_power(group,
2331 avg_load * SCHED_LOAD_SCALE);
2332
2333 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2334
2335 if (local_group) {
2336 this_load = avg_load;
2337 this = group;
2338 this_nr_running = sum_nr_running;
2339 this_load_per_task = sum_weighted_load;
2340 } else if (avg_load > max_load &&
2341 sum_nr_running > group_capacity) {
2342 max_load = avg_load;
2343 busiest = group;
2344 busiest_nr_running = sum_nr_running;
2345 busiest_load_per_task = sum_weighted_load;
2346 }
2347
2348 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2349 /*
2350 * Busy processors will not participate in power savings
2351 * balance.
2352 */
2353 if (idle == CPU_NOT_IDLE ||
2354 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2355 goto group_next;
2356
2357 /*
2358 * If the local group is idle or completely loaded
2359 * no need to do power savings balance at this domain
2360 */
2361 if (local_group && (this_nr_running >= group_capacity ||
2362 !this_nr_running))
2363 power_savings_balance = 0;
2364
2365 /*
2366 * If a group is already running at full capacity or idle,
2367 * don't include that group in power savings calculations
2368 */
2369 if (!power_savings_balance || sum_nr_running >= group_capacity
2370 || !sum_nr_running)
2371 goto group_next;
2372
2373 /*
2374 * Calculate the group which has the least non-idle load.
2375 * This is the group from where we need to pick up the load
2376 * for saving power
2377 */
2378 if ((sum_nr_running < min_nr_running) ||
2379 (sum_nr_running == min_nr_running &&
2380 first_cpu(group->cpumask) <
2381 first_cpu(group_min->cpumask))) {
2382 group_min = group;
2383 min_nr_running = sum_nr_running;
2384 min_load_per_task = sum_weighted_load /
2385 sum_nr_running;
2386 }
2387
2388 /*
2389 * Calculate the group which is almost near its
2390 * capacity but still has some space to pick up some load
2391 * from other group and save more power
2392 */
2393 if (sum_nr_running <= group_capacity - 1) {
2394 if (sum_nr_running > leader_nr_running ||
2395 (sum_nr_running == leader_nr_running &&
2396 first_cpu(group->cpumask) >
2397 first_cpu(group_leader->cpumask))) {
2398 group_leader = group;
2399 leader_nr_running = sum_nr_running;
2400 }
2401 }
2402 group_next:
2403 #endif
2404 group = group->next;
2405 } while (group != sd->groups);
2406
2407 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2408 goto out_balanced;
2409
2410 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2411
2412 if (this_load >= avg_load ||
2413 100*max_load <= sd->imbalance_pct*this_load)
2414 goto out_balanced;
2415
2416 busiest_load_per_task /= busiest_nr_running;
2417 /*
2418 * We're trying to get all the cpus to the average_load, so we don't
2419 * want to push ourselves above the average load, nor do we wish to
2420 * reduce the max loaded cpu below the average load, as either of these
2421 * actions would just result in more rebalancing later, and ping-pong
2422 * tasks around. Thus we look for the minimum possible imbalance.
2423 * Negative imbalances (*we* are more loaded than anyone else) will
2424 * be counted as no imbalance for these purposes -- we can't fix that
2425 * by pulling tasks to us. Be careful of negative numbers as they'll
2426 * appear as very large values with unsigned longs.
2427 */
2428 if (max_load <= busiest_load_per_task)
2429 goto out_balanced;
2430
2431 /*
2432 * In the presence of smp nice balancing, certain scenarios can have
2433 * max load less than avg load(as we skip the groups at or below
2434 * its cpu_power, while calculating max_load..)
2435 */
2436 if (max_load < avg_load) {
2437 *imbalance = 0;
2438 goto small_imbalance;
2439 }
2440
2441 /* Don't want to pull so many tasks that a group would go idle */
2442 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2443
2444 /* How much load to actually move to equalise the imbalance */
2445 *imbalance = min(max_pull * busiest->__cpu_power,
2446 (avg_load - this_load) * this->__cpu_power)
2447 / SCHED_LOAD_SCALE;
2448
2449 /*
2450 * if *imbalance is less than the average load per runnable task
2451 * there is no gaurantee that any tasks will be moved so we'll have
2452 * a think about bumping its value to force at least one task to be
2453 * moved
2454 */
2455 if (*imbalance < busiest_load_per_task) {
2456 unsigned long tmp, pwr_now, pwr_move;
2457 unsigned int imbn;
2458
2459 small_imbalance:
2460 pwr_move = pwr_now = 0;
2461 imbn = 2;
2462 if (this_nr_running) {
2463 this_load_per_task /= this_nr_running;
2464 if (busiest_load_per_task > this_load_per_task)
2465 imbn = 1;
2466 } else
2467 this_load_per_task = SCHED_LOAD_SCALE;
2468
2469 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2470 busiest_load_per_task * imbn) {
2471 *imbalance = busiest_load_per_task;
2472 return busiest;
2473 }
2474
2475 /*
2476 * OK, we don't have enough imbalance to justify moving tasks,
2477 * however we may be able to increase total CPU power used by
2478 * moving them.
2479 */
2480
2481 pwr_now += busiest->__cpu_power *
2482 min(busiest_load_per_task, max_load);
2483 pwr_now += this->__cpu_power *
2484 min(this_load_per_task, this_load);
2485 pwr_now /= SCHED_LOAD_SCALE;
2486
2487 /* Amount of load we'd subtract */
2488 tmp = sg_div_cpu_power(busiest,
2489 busiest_load_per_task * SCHED_LOAD_SCALE);
2490 if (max_load > tmp)
2491 pwr_move += busiest->__cpu_power *
2492 min(busiest_load_per_task, max_load - tmp);
2493
2494 /* Amount of load we'd add */
2495 if (max_load * busiest->__cpu_power <
2496 busiest_load_per_task * SCHED_LOAD_SCALE)
2497 tmp = sg_div_cpu_power(this,
2498 max_load * busiest->__cpu_power);
2499 else
2500 tmp = sg_div_cpu_power(this,
2501 busiest_load_per_task * SCHED_LOAD_SCALE);
2502 pwr_move += this->__cpu_power *
2503 min(this_load_per_task, this_load + tmp);
2504 pwr_move /= SCHED_LOAD_SCALE;
2505
2506 /* Move if we gain throughput */
2507 if (pwr_move > pwr_now)
2508 *imbalance = busiest_load_per_task;
2509 }
2510
2511 return busiest;
2512
2513 out_balanced:
2514 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2515 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2516 goto ret;
2517
2518 if (this == group_leader && group_leader != group_min) {
2519 *imbalance = min_load_per_task;
2520 return group_min;
2521 }
2522 #endif
2523 ret:
2524 *imbalance = 0;
2525 return NULL;
2526 }
2527
2528 /*
2529 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2530 */
2531 static struct rq *
2532 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2533 unsigned long imbalance, cpumask_t *cpus)
2534 {
2535 struct rq *busiest = NULL, *rq;
2536 unsigned long max_load = 0;
2537 int i;
2538
2539 for_each_cpu_mask(i, group->cpumask) {
2540 unsigned long wl;
2541
2542 if (!cpu_isset(i, *cpus))
2543 continue;
2544
2545 rq = cpu_rq(i);
2546 wl = weighted_cpuload(i);
2547
2548 if (rq->nr_running == 1 && wl > imbalance)
2549 continue;
2550
2551 if (wl > max_load) {
2552 max_load = wl;
2553 busiest = rq;
2554 }
2555 }
2556
2557 return busiest;
2558 }
2559
2560 /*
2561 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2562 * so long as it is large enough.
2563 */
2564 #define MAX_PINNED_INTERVAL 512
2565
2566 /*
2567 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2568 * tasks if there is an imbalance.
2569 */
2570 static int load_balance(int this_cpu, struct rq *this_rq,
2571 struct sched_domain *sd, enum cpu_idle_type idle,
2572 int *balance)
2573 {
2574 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2575 struct sched_group *group;
2576 unsigned long imbalance;
2577 struct rq *busiest;
2578 cpumask_t cpus = CPU_MASK_ALL;
2579 unsigned long flags;
2580
2581 /*
2582 * When power savings policy is enabled for the parent domain, idle
2583 * sibling can pick up load irrespective of busy siblings. In this case,
2584 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2585 * portraying it as CPU_NOT_IDLE.
2586 */
2587 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2588 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2589 sd_idle = 1;
2590
2591 schedstat_inc(sd, lb_cnt[idle]);
2592
2593 redo:
2594 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2595 &cpus, balance);
2596
2597 if (*balance == 0)
2598 goto out_balanced;
2599
2600 if (!group) {
2601 schedstat_inc(sd, lb_nobusyg[idle]);
2602 goto out_balanced;
2603 }
2604
2605 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2606 if (!busiest) {
2607 schedstat_inc(sd, lb_nobusyq[idle]);
2608 goto out_balanced;
2609 }
2610
2611 BUG_ON(busiest == this_rq);
2612
2613 schedstat_add(sd, lb_imbalance[idle], imbalance);
2614
2615 ld_moved = 0;
2616 if (busiest->nr_running > 1) {
2617 /*
2618 * Attempt to move tasks. If find_busiest_group has found
2619 * an imbalance but busiest->nr_running <= 1, the group is
2620 * still unbalanced. ld_moved simply stays zero, so it is
2621 * correctly treated as an imbalance.
2622 */
2623 local_irq_save(flags);
2624 double_rq_lock(this_rq, busiest);
2625 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2626 imbalance, sd, idle, &all_pinned);
2627 double_rq_unlock(this_rq, busiest);
2628 local_irq_restore(flags);
2629
2630 /*
2631 * some other cpu did the load balance for us.
2632 */
2633 if (ld_moved && this_cpu != smp_processor_id())
2634 resched_cpu(this_cpu);
2635
2636 /* All tasks on this runqueue were pinned by CPU affinity */
2637 if (unlikely(all_pinned)) {
2638 cpu_clear(cpu_of(busiest), cpus);
2639 if (!cpus_empty(cpus))
2640 goto redo;
2641 goto out_balanced;
2642 }
2643 }
2644
2645 if (!ld_moved) {
2646 schedstat_inc(sd, lb_failed[idle]);
2647 sd->nr_balance_failed++;
2648
2649 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2650
2651 spin_lock_irqsave(&busiest->lock, flags);
2652
2653 /* don't kick the migration_thread, if the curr
2654 * task on busiest cpu can't be moved to this_cpu
2655 */
2656 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2657 spin_unlock_irqrestore(&busiest->lock, flags);
2658 all_pinned = 1;
2659 goto out_one_pinned;
2660 }
2661
2662 if (!busiest->active_balance) {
2663 busiest->active_balance = 1;
2664 busiest->push_cpu = this_cpu;
2665 active_balance = 1;
2666 }
2667 spin_unlock_irqrestore(&busiest->lock, flags);
2668 if (active_balance)
2669 wake_up_process(busiest->migration_thread);
2670
2671 /*
2672 * We've kicked active balancing, reset the failure
2673 * counter.
2674 */
2675 sd->nr_balance_failed = sd->cache_nice_tries+1;
2676 }
2677 } else
2678 sd->nr_balance_failed = 0;
2679
2680 if (likely(!active_balance)) {
2681 /* We were unbalanced, so reset the balancing interval */
2682 sd->balance_interval = sd->min_interval;
2683 } else {
2684 /*
2685 * If we've begun active balancing, start to back off. This
2686 * case may not be covered by the all_pinned logic if there
2687 * is only 1 task on the busy runqueue (because we don't call
2688 * move_tasks).
2689 */
2690 if (sd->balance_interval < sd->max_interval)
2691 sd->balance_interval *= 2;
2692 }
2693
2694 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2695 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2696 return -1;
2697 return ld_moved;
2698
2699 out_balanced:
2700 schedstat_inc(sd, lb_balanced[idle]);
2701
2702 sd->nr_balance_failed = 0;
2703
2704 out_one_pinned:
2705 /* tune up the balancing interval */
2706 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2707 (sd->balance_interval < sd->max_interval))
2708 sd->balance_interval *= 2;
2709
2710 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2711 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2712 return -1;
2713 return 0;
2714 }
2715
2716 /*
2717 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2718 * tasks if there is an imbalance.
2719 *
2720 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2721 * this_rq is locked.
2722 */
2723 static int
2724 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2725 {
2726 struct sched_group *group;
2727 struct rq *busiest = NULL;
2728 unsigned long imbalance;
2729 int ld_moved = 0;
2730 int sd_idle = 0;
2731 int all_pinned = 0;
2732 cpumask_t cpus = CPU_MASK_ALL;
2733
2734 /*
2735 * When power savings policy is enabled for the parent domain, idle
2736 * sibling can pick up load irrespective of busy siblings. In this case,
2737 * let the state of idle sibling percolate up as IDLE, instead of
2738 * portraying it as CPU_NOT_IDLE.
2739 */
2740 if (sd->flags & SD_SHARE_CPUPOWER &&
2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2742 sd_idle = 1;
2743
2744 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2745 redo:
2746 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2747 &sd_idle, &cpus, NULL);
2748 if (!group) {
2749 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2750 goto out_balanced;
2751 }
2752
2753 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2754 &cpus);
2755 if (!busiest) {
2756 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2757 goto out_balanced;
2758 }
2759
2760 BUG_ON(busiest == this_rq);
2761
2762 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2763
2764 ld_moved = 0;
2765 if (busiest->nr_running > 1) {
2766 /* Attempt to move tasks */
2767 double_lock_balance(this_rq, busiest);
2768 /* this_rq->clock is already updated */
2769 update_rq_clock(busiest);
2770 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2771 imbalance, sd, CPU_NEWLY_IDLE,
2772 &all_pinned);
2773 spin_unlock(&busiest->lock);
2774
2775 if (unlikely(all_pinned)) {
2776 cpu_clear(cpu_of(busiest), cpus);
2777 if (!cpus_empty(cpus))
2778 goto redo;
2779 }
2780 }
2781
2782 if (!ld_moved) {
2783 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2784 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2785 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2786 return -1;
2787 } else
2788 sd->nr_balance_failed = 0;
2789
2790 return ld_moved;
2791
2792 out_balanced:
2793 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2794 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2795 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2796 return -1;
2797 sd->nr_balance_failed = 0;
2798
2799 return 0;
2800 }
2801
2802 /*
2803 * idle_balance is called by schedule() if this_cpu is about to become
2804 * idle. Attempts to pull tasks from other CPUs.
2805 */
2806 static void idle_balance(int this_cpu, struct rq *this_rq)
2807 {
2808 struct sched_domain *sd;
2809 int pulled_task = -1;
2810 unsigned long next_balance = jiffies + HZ;
2811
2812 for_each_domain(this_cpu, sd) {
2813 unsigned long interval;
2814
2815 if (!(sd->flags & SD_LOAD_BALANCE))
2816 continue;
2817
2818 if (sd->flags & SD_BALANCE_NEWIDLE)
2819 /* If we've pulled tasks over stop searching: */
2820 pulled_task = load_balance_newidle(this_cpu,
2821 this_rq, sd);
2822
2823 interval = msecs_to_jiffies(sd->balance_interval);
2824 if (time_after(next_balance, sd->last_balance + interval))
2825 next_balance = sd->last_balance + interval;
2826 if (pulled_task)
2827 break;
2828 }
2829 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2830 /*
2831 * We are going idle. next_balance may be set based on
2832 * a busy processor. So reset next_balance.
2833 */
2834 this_rq->next_balance = next_balance;
2835 }
2836 }
2837
2838 /*
2839 * active_load_balance is run by migration threads. It pushes running tasks
2840 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2841 * running on each physical CPU where possible, and avoids physical /
2842 * logical imbalances.
2843 *
2844 * Called with busiest_rq locked.
2845 */
2846 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2847 {
2848 int target_cpu = busiest_rq->push_cpu;
2849 struct sched_domain *sd;
2850 struct rq *target_rq;
2851
2852 /* Is there any task to move? */
2853 if (busiest_rq->nr_running <= 1)
2854 return;
2855
2856 target_rq = cpu_rq(target_cpu);
2857
2858 /*
2859 * This condition is "impossible", if it occurs
2860 * we need to fix it. Originally reported by
2861 * Bjorn Helgaas on a 128-cpu setup.
2862 */
2863 BUG_ON(busiest_rq == target_rq);
2864
2865 /* move a task from busiest_rq to target_rq */
2866 double_lock_balance(busiest_rq, target_rq);
2867 update_rq_clock(busiest_rq);
2868 update_rq_clock(target_rq);
2869
2870 /* Search for an sd spanning us and the target CPU. */
2871 for_each_domain(target_cpu, sd) {
2872 if ((sd->flags & SD_LOAD_BALANCE) &&
2873 cpu_isset(busiest_cpu, sd->span))
2874 break;
2875 }
2876
2877 if (likely(sd)) {
2878 schedstat_inc(sd, alb_cnt);
2879
2880 if (move_one_task(target_rq, target_cpu, busiest_rq,
2881 sd, CPU_IDLE))
2882 schedstat_inc(sd, alb_pushed);
2883 else
2884 schedstat_inc(sd, alb_failed);
2885 }
2886 spin_unlock(&target_rq->lock);
2887 }
2888
2889 #ifdef CONFIG_NO_HZ
2890 static struct {
2891 atomic_t load_balancer;
2892 cpumask_t cpu_mask;
2893 } nohz ____cacheline_aligned = {
2894 .load_balancer = ATOMIC_INIT(-1),
2895 .cpu_mask = CPU_MASK_NONE,
2896 };
2897
2898 /*
2899 * This routine will try to nominate the ilb (idle load balancing)
2900 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2901 * load balancing on behalf of all those cpus. If all the cpus in the system
2902 * go into this tickless mode, then there will be no ilb owner (as there is
2903 * no need for one) and all the cpus will sleep till the next wakeup event
2904 * arrives...
2905 *
2906 * For the ilb owner, tick is not stopped. And this tick will be used
2907 * for idle load balancing. ilb owner will still be part of
2908 * nohz.cpu_mask..
2909 *
2910 * While stopping the tick, this cpu will become the ilb owner if there
2911 * is no other owner. And will be the owner till that cpu becomes busy
2912 * or if all cpus in the system stop their ticks at which point
2913 * there is no need for ilb owner.
2914 *
2915 * When the ilb owner becomes busy, it nominates another owner, during the
2916 * next busy scheduler_tick()
2917 */
2918 int select_nohz_load_balancer(int stop_tick)
2919 {
2920 int cpu = smp_processor_id();
2921
2922 if (stop_tick) {
2923 cpu_set(cpu, nohz.cpu_mask);
2924 cpu_rq(cpu)->in_nohz_recently = 1;
2925
2926 /*
2927 * If we are going offline and still the leader, give up!
2928 */
2929 if (cpu_is_offline(cpu) &&
2930 atomic_read(&nohz.load_balancer) == cpu) {
2931 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2932 BUG();
2933 return 0;
2934 }
2935
2936 /* time for ilb owner also to sleep */
2937 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2938 if (atomic_read(&nohz.load_balancer) == cpu)
2939 atomic_set(&nohz.load_balancer, -1);
2940 return 0;
2941 }
2942
2943 if (atomic_read(&nohz.load_balancer) == -1) {
2944 /* make me the ilb owner */
2945 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2946 return 1;
2947 } else if (atomic_read(&nohz.load_balancer) == cpu)
2948 return 1;
2949 } else {
2950 if (!cpu_isset(cpu, nohz.cpu_mask))
2951 return 0;
2952
2953 cpu_clear(cpu, nohz.cpu_mask);
2954
2955 if (atomic_read(&nohz.load_balancer) == cpu)
2956 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2957 BUG();
2958 }
2959 return 0;
2960 }
2961 #endif
2962
2963 static DEFINE_SPINLOCK(balancing);
2964
2965 /*
2966 * It checks each scheduling domain to see if it is due to be balanced,
2967 * and initiates a balancing operation if so.
2968 *
2969 * Balancing parameters are set up in arch_init_sched_domains.
2970 */
2971 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2972 {
2973 int balance = 1;
2974 struct rq *rq = cpu_rq(cpu);
2975 unsigned long interval;
2976 struct sched_domain *sd;
2977 /* Earliest time when we have to do rebalance again */
2978 unsigned long next_balance = jiffies + 60*HZ;
2979 int update_next_balance = 0;
2980
2981 for_each_domain(cpu, sd) {
2982 if (!(sd->flags & SD_LOAD_BALANCE))
2983 continue;
2984
2985 interval = sd->balance_interval;
2986 if (idle != CPU_IDLE)
2987 interval *= sd->busy_factor;
2988
2989 /* scale ms to jiffies */
2990 interval = msecs_to_jiffies(interval);
2991 if (unlikely(!interval))
2992 interval = 1;
2993 if (interval > HZ*NR_CPUS/10)
2994 interval = HZ*NR_CPUS/10;
2995
2996
2997 if (sd->flags & SD_SERIALIZE) {
2998 if (!spin_trylock(&balancing))
2999 goto out;
3000 }
3001
3002 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3003 if (load_balance(cpu, rq, sd, idle, &balance)) {
3004 /*
3005 * We've pulled tasks over so either we're no
3006 * longer idle, or one of our SMT siblings is
3007 * not idle.
3008 */
3009 idle = CPU_NOT_IDLE;
3010 }
3011 sd->last_balance = jiffies;
3012 }
3013 if (sd->flags & SD_SERIALIZE)
3014 spin_unlock(&balancing);
3015 out:
3016 if (time_after(next_balance, sd->last_balance + interval)) {
3017 next_balance = sd->last_balance + interval;
3018 update_next_balance = 1;
3019 }
3020
3021 /*
3022 * Stop the load balance at this level. There is another
3023 * CPU in our sched group which is doing load balancing more
3024 * actively.
3025 */
3026 if (!balance)
3027 break;
3028 }
3029
3030 /*
3031 * next_balance will be updated only when there is a need.
3032 * When the cpu is attached to null domain for ex, it will not be
3033 * updated.
3034 */
3035 if (likely(update_next_balance))
3036 rq->next_balance = next_balance;
3037 }
3038
3039 /*
3040 * run_rebalance_domains is triggered when needed from the scheduler tick.
3041 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3042 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3043 */
3044 static void run_rebalance_domains(struct softirq_action *h)
3045 {
3046 int this_cpu = smp_processor_id();
3047 struct rq *this_rq = cpu_rq(this_cpu);
3048 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3049 CPU_IDLE : CPU_NOT_IDLE;
3050
3051 rebalance_domains(this_cpu, idle);
3052
3053 #ifdef CONFIG_NO_HZ
3054 /*
3055 * If this cpu is the owner for idle load balancing, then do the
3056 * balancing on behalf of the other idle cpus whose ticks are
3057 * stopped.
3058 */
3059 if (this_rq->idle_at_tick &&
3060 atomic_read(&nohz.load_balancer) == this_cpu) {
3061 cpumask_t cpus = nohz.cpu_mask;
3062 struct rq *rq;
3063 int balance_cpu;
3064
3065 cpu_clear(this_cpu, cpus);
3066 for_each_cpu_mask(balance_cpu, cpus) {
3067 /*
3068 * If this cpu gets work to do, stop the load balancing
3069 * work being done for other cpus. Next load
3070 * balancing owner will pick it up.
3071 */
3072 if (need_resched())
3073 break;
3074
3075 rebalance_domains(balance_cpu, CPU_IDLE);
3076
3077 rq = cpu_rq(balance_cpu);
3078 if (time_after(this_rq->next_balance, rq->next_balance))
3079 this_rq->next_balance = rq->next_balance;
3080 }
3081 }
3082 #endif
3083 }
3084
3085 /*
3086 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3087 *
3088 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3089 * idle load balancing owner or decide to stop the periodic load balancing,
3090 * if the whole system is idle.
3091 */
3092 static inline void trigger_load_balance(struct rq *rq, int cpu)
3093 {
3094 #ifdef CONFIG_NO_HZ
3095 /*
3096 * If we were in the nohz mode recently and busy at the current
3097 * scheduler tick, then check if we need to nominate new idle
3098 * load balancer.
3099 */
3100 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3101 rq->in_nohz_recently = 0;
3102
3103 if (atomic_read(&nohz.load_balancer) == cpu) {
3104 cpu_clear(cpu, nohz.cpu_mask);
3105 atomic_set(&nohz.load_balancer, -1);
3106 }
3107
3108 if (atomic_read(&nohz.load_balancer) == -1) {
3109 /*
3110 * simple selection for now: Nominate the
3111 * first cpu in the nohz list to be the next
3112 * ilb owner.
3113 *
3114 * TBD: Traverse the sched domains and nominate
3115 * the nearest cpu in the nohz.cpu_mask.
3116 */
3117 int ilb = first_cpu(nohz.cpu_mask);
3118
3119 if (ilb != NR_CPUS)
3120 resched_cpu(ilb);
3121 }
3122 }
3123
3124 /*
3125 * If this cpu is idle and doing idle load balancing for all the
3126 * cpus with ticks stopped, is it time for that to stop?
3127 */
3128 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3129 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3130 resched_cpu(cpu);
3131 return;
3132 }
3133
3134 /*
3135 * If this cpu is idle and the idle load balancing is done by
3136 * someone else, then no need raise the SCHED_SOFTIRQ
3137 */
3138 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3139 cpu_isset(cpu, nohz.cpu_mask))
3140 return;
3141 #endif
3142 if (time_after_eq(jiffies, rq->next_balance))
3143 raise_softirq(SCHED_SOFTIRQ);
3144 }
3145
3146 #else /* CONFIG_SMP */
3147
3148 /*
3149 * on UP we do not need to balance between CPUs:
3150 */
3151 static inline void idle_balance(int cpu, struct rq *rq)
3152 {
3153 }
3154
3155 /* Avoid "used but not defined" warning on UP */
3156 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3157 unsigned long max_nr_move, unsigned long max_load_move,
3158 struct sched_domain *sd, enum cpu_idle_type idle,
3159 int *all_pinned, unsigned long *load_moved,
3160 int *this_best_prio, struct rq_iterator *iterator)
3161 {
3162 *load_moved = 0;
3163
3164 return 0;
3165 }
3166
3167 #endif
3168
3169 DEFINE_PER_CPU(struct kernel_stat, kstat);
3170
3171 EXPORT_PER_CPU_SYMBOL(kstat);
3172
3173 /*
3174 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3175 * that have not yet been banked in case the task is currently running.
3176 */
3177 unsigned long long task_sched_runtime(struct task_struct *p)
3178 {
3179 unsigned long flags;
3180 u64 ns, delta_exec;
3181 struct rq *rq;
3182
3183 rq = task_rq_lock(p, &flags);
3184 ns = p->se.sum_exec_runtime;
3185 if (rq->curr == p) {
3186 update_rq_clock(rq);
3187 delta_exec = rq->clock - p->se.exec_start;
3188 if ((s64)delta_exec > 0)
3189 ns += delta_exec;
3190 }
3191 task_rq_unlock(rq, &flags);
3192
3193 return ns;
3194 }
3195
3196 /*
3197 * Account user cpu time to a process.
3198 * @p: the process that the cpu time gets accounted to
3199 * @hardirq_offset: the offset to subtract from hardirq_count()
3200 * @cputime: the cpu time spent in user space since the last update
3201 */
3202 void account_user_time(struct task_struct *p, cputime_t cputime)
3203 {
3204 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3205 cputime64_t tmp;
3206
3207 p->utime = cputime_add(p->utime, cputime);
3208
3209 /* Add user time to cpustat. */
3210 tmp = cputime_to_cputime64(cputime);
3211 if (TASK_NICE(p) > 0)
3212 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3213 else
3214 cpustat->user = cputime64_add(cpustat->user, tmp);
3215 }
3216
3217 /*
3218 * Account system cpu time to a process.
3219 * @p: the process that the cpu time gets accounted to
3220 * @hardirq_offset: the offset to subtract from hardirq_count()
3221 * @cputime: the cpu time spent in kernel space since the last update
3222 */
3223 void account_system_time(struct task_struct *p, int hardirq_offset,
3224 cputime_t cputime)
3225 {
3226 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3227 struct rq *rq = this_rq();
3228 cputime64_t tmp;
3229
3230 p->stime = cputime_add(p->stime, cputime);
3231
3232 /* Add system time to cpustat. */
3233 tmp = cputime_to_cputime64(cputime);
3234 if (hardirq_count() - hardirq_offset)
3235 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3236 else if (softirq_count())
3237 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3238 else if (p != rq->idle)
3239 cpustat->system = cputime64_add(cpustat->system, tmp);
3240 else if (atomic_read(&rq->nr_iowait) > 0)
3241 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3242 else
3243 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3244 /* Account for system time used */
3245 acct_update_integrals(p);
3246 }
3247
3248 /*
3249 * Account for involuntary wait time.
3250 * @p: the process from which the cpu time has been stolen
3251 * @steal: the cpu time spent in involuntary wait
3252 */
3253 void account_steal_time(struct task_struct *p, cputime_t steal)
3254 {
3255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3256 cputime64_t tmp = cputime_to_cputime64(steal);
3257 struct rq *rq = this_rq();
3258
3259 if (p == rq->idle) {
3260 p->stime = cputime_add(p->stime, steal);
3261 if (atomic_read(&rq->nr_iowait) > 0)
3262 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3263 else
3264 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3265 } else
3266 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3267 }
3268
3269 /*
3270 * This function gets called by the timer code, with HZ frequency.
3271 * We call it with interrupts disabled.
3272 *
3273 * It also gets called by the fork code, when changing the parent's
3274 * timeslices.
3275 */
3276 void scheduler_tick(void)
3277 {
3278 int cpu = smp_processor_id();
3279 struct rq *rq = cpu_rq(cpu);
3280 struct task_struct *curr = rq->curr;
3281 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3282
3283 spin_lock(&rq->lock);
3284 __update_rq_clock(rq);
3285 /*
3286 * Let rq->clock advance by at least TICK_NSEC:
3287 */
3288 if (unlikely(rq->clock < next_tick))
3289 rq->clock = next_tick;
3290 rq->tick_timestamp = rq->clock;
3291 update_cpu_load(rq);
3292 if (curr != rq->idle) /* FIXME: needed? */
3293 curr->sched_class->task_tick(rq, curr);
3294 spin_unlock(&rq->lock);
3295
3296 #ifdef CONFIG_SMP
3297 rq->idle_at_tick = idle_cpu(cpu);
3298 trigger_load_balance(rq, cpu);
3299 #endif
3300 }
3301
3302 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3303
3304 void fastcall add_preempt_count(int val)
3305 {
3306 /*
3307 * Underflow?
3308 */
3309 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3310 return;
3311 preempt_count() += val;
3312 /*
3313 * Spinlock count overflowing soon?
3314 */
3315 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3316 PREEMPT_MASK - 10);
3317 }
3318 EXPORT_SYMBOL(add_preempt_count);
3319
3320 void fastcall sub_preempt_count(int val)
3321 {
3322 /*
3323 * Underflow?
3324 */
3325 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3326 return;
3327 /*
3328 * Is the spinlock portion underflowing?
3329 */
3330 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3331 !(preempt_count() & PREEMPT_MASK)))
3332 return;
3333
3334 preempt_count() -= val;
3335 }
3336 EXPORT_SYMBOL(sub_preempt_count);
3337
3338 #endif
3339
3340 /*
3341 * Print scheduling while atomic bug:
3342 */
3343 static noinline void __schedule_bug(struct task_struct *prev)
3344 {
3345 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3346 prev->comm, preempt_count(), prev->pid);
3347 debug_show_held_locks(prev);
3348 if (irqs_disabled())
3349 print_irqtrace_events(prev);
3350 dump_stack();
3351 }
3352
3353 /*
3354 * Various schedule()-time debugging checks and statistics:
3355 */
3356 static inline void schedule_debug(struct task_struct *prev)
3357 {
3358 /*
3359 * Test if we are atomic. Since do_exit() needs to call into
3360 * schedule() atomically, we ignore that path for now.
3361 * Otherwise, whine if we are scheduling when we should not be.
3362 */
3363 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3364 __schedule_bug(prev);
3365
3366 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3367
3368 schedstat_inc(this_rq(), sched_cnt);
3369 }
3370
3371 /*
3372 * Pick up the highest-prio task:
3373 */
3374 static inline struct task_struct *
3375 pick_next_task(struct rq *rq, struct task_struct *prev)
3376 {
3377 struct sched_class *class;
3378 struct task_struct *p;
3379
3380 /*
3381 * Optimization: we know that if all tasks are in
3382 * the fair class we can call that function directly:
3383 */
3384 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3385 p = fair_sched_class.pick_next_task(rq);
3386 if (likely(p))
3387 return p;
3388 }
3389
3390 class = sched_class_highest;
3391 for ( ; ; ) {
3392 p = class->pick_next_task(rq);
3393 if (p)
3394 return p;
3395 /*
3396 * Will never be NULL as the idle class always
3397 * returns a non-NULL p:
3398 */
3399 class = class->next;
3400 }
3401 }
3402
3403 /*
3404 * schedule() is the main scheduler function.
3405 */
3406 asmlinkage void __sched schedule(void)
3407 {
3408 struct task_struct *prev, *next;
3409 long *switch_count;
3410 struct rq *rq;
3411 int cpu;
3412
3413 need_resched:
3414 preempt_disable();
3415 cpu = smp_processor_id();
3416 rq = cpu_rq(cpu);
3417 rcu_qsctr_inc(cpu);
3418 prev = rq->curr;
3419 switch_count = &prev->nivcsw;
3420
3421 release_kernel_lock(prev);
3422 need_resched_nonpreemptible:
3423
3424 schedule_debug(prev);
3425
3426 spin_lock_irq(&rq->lock);
3427 clear_tsk_need_resched(prev);
3428 __update_rq_clock(rq);
3429
3430 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3431 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3432 unlikely(signal_pending(prev)))) {
3433 prev->state = TASK_RUNNING;
3434 } else {
3435 deactivate_task(rq, prev, 1);
3436 }
3437 switch_count = &prev->nvcsw;
3438 }
3439
3440 if (unlikely(!rq->nr_running))
3441 idle_balance(cpu, rq);
3442
3443 prev->sched_class->put_prev_task(rq, prev);
3444 next = pick_next_task(rq, prev);
3445
3446 sched_info_switch(prev, next);
3447
3448 if (likely(prev != next)) {
3449 rq->nr_switches++;
3450 rq->curr = next;
3451 ++*switch_count;
3452
3453 context_switch(rq, prev, next); /* unlocks the rq */
3454 } else
3455 spin_unlock_irq(&rq->lock);
3456
3457 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3458 cpu = smp_processor_id();
3459 rq = cpu_rq(cpu);
3460 goto need_resched_nonpreemptible;
3461 }
3462 preempt_enable_no_resched();
3463 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3464 goto need_resched;
3465 }
3466 EXPORT_SYMBOL(schedule);
3467
3468 #ifdef CONFIG_PREEMPT
3469 /*
3470 * this is the entry point to schedule() from in-kernel preemption
3471 * off of preempt_enable. Kernel preemptions off return from interrupt
3472 * occur there and call schedule directly.
3473 */
3474 asmlinkage void __sched preempt_schedule(void)
3475 {
3476 struct thread_info *ti = current_thread_info();
3477 #ifdef CONFIG_PREEMPT_BKL
3478 struct task_struct *task = current;
3479 int saved_lock_depth;
3480 #endif
3481 /*
3482 * If there is a non-zero preempt_count or interrupts are disabled,
3483 * we do not want to preempt the current task. Just return..
3484 */
3485 if (likely(ti->preempt_count || irqs_disabled()))
3486 return;
3487
3488 need_resched:
3489 add_preempt_count(PREEMPT_ACTIVE);
3490 /*
3491 * We keep the big kernel semaphore locked, but we
3492 * clear ->lock_depth so that schedule() doesnt
3493 * auto-release the semaphore:
3494 */
3495 #ifdef CONFIG_PREEMPT_BKL
3496 saved_lock_depth = task->lock_depth;
3497 task->lock_depth = -1;
3498 #endif
3499 schedule();
3500 #ifdef CONFIG_PREEMPT_BKL
3501 task->lock_depth = saved_lock_depth;
3502 #endif
3503 sub_preempt_count(PREEMPT_ACTIVE);
3504
3505 /* we could miss a preemption opportunity between schedule and now */
3506 barrier();
3507 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3508 goto need_resched;
3509 }
3510 EXPORT_SYMBOL(preempt_schedule);
3511
3512 /*
3513 * this is the entry point to schedule() from kernel preemption
3514 * off of irq context.
3515 * Note, that this is called and return with irqs disabled. This will
3516 * protect us against recursive calling from irq.
3517 */
3518 asmlinkage void __sched preempt_schedule_irq(void)
3519 {
3520 struct thread_info *ti = current_thread_info();
3521 #ifdef CONFIG_PREEMPT_BKL
3522 struct task_struct *task = current;
3523 int saved_lock_depth;
3524 #endif
3525 /* Catch callers which need to be fixed */
3526 BUG_ON(ti->preempt_count || !irqs_disabled());
3527
3528 need_resched:
3529 add_preempt_count(PREEMPT_ACTIVE);
3530 /*
3531 * We keep the big kernel semaphore locked, but we
3532 * clear ->lock_depth so that schedule() doesnt
3533 * auto-release the semaphore:
3534 */
3535 #ifdef CONFIG_PREEMPT_BKL
3536 saved_lock_depth = task->lock_depth;
3537 task->lock_depth = -1;
3538 #endif
3539 local_irq_enable();
3540 schedule();
3541 local_irq_disable();
3542 #ifdef CONFIG_PREEMPT_BKL
3543 task->lock_depth = saved_lock_depth;
3544 #endif
3545 sub_preempt_count(PREEMPT_ACTIVE);
3546
3547 /* we could miss a preemption opportunity between schedule and now */
3548 barrier();
3549 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3550 goto need_resched;
3551 }
3552
3553 #endif /* CONFIG_PREEMPT */
3554
3555 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3556 void *key)
3557 {
3558 return try_to_wake_up(curr->private, mode, sync);
3559 }
3560 EXPORT_SYMBOL(default_wake_function);
3561
3562 /*
3563 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3564 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3565 * number) then we wake all the non-exclusive tasks and one exclusive task.
3566 *
3567 * There are circumstances in which we can try to wake a task which has already
3568 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3569 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3570 */
3571 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3572 int nr_exclusive, int sync, void *key)
3573 {
3574 wait_queue_t *curr, *next;
3575
3576 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3577 unsigned flags = curr->flags;
3578
3579 if (curr->func(curr, mode, sync, key) &&
3580 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3581 break;
3582 }
3583 }
3584
3585 /**
3586 * __wake_up - wake up threads blocked on a waitqueue.
3587 * @q: the waitqueue
3588 * @mode: which threads
3589 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3590 * @key: is directly passed to the wakeup function
3591 */
3592 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3593 int nr_exclusive, void *key)
3594 {
3595 unsigned long flags;
3596
3597 spin_lock_irqsave(&q->lock, flags);
3598 __wake_up_common(q, mode, nr_exclusive, 0, key);
3599 spin_unlock_irqrestore(&q->lock, flags);
3600 }
3601 EXPORT_SYMBOL(__wake_up);
3602
3603 /*
3604 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3605 */
3606 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3607 {
3608 __wake_up_common(q, mode, 1, 0, NULL);
3609 }
3610
3611 /**
3612 * __wake_up_sync - wake up threads blocked on a waitqueue.
3613 * @q: the waitqueue
3614 * @mode: which threads
3615 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3616 *
3617 * The sync wakeup differs that the waker knows that it will schedule
3618 * away soon, so while the target thread will be woken up, it will not
3619 * be migrated to another CPU - ie. the two threads are 'synchronized'
3620 * with each other. This can prevent needless bouncing between CPUs.
3621 *
3622 * On UP it can prevent extra preemption.
3623 */
3624 void fastcall
3625 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3626 {
3627 unsigned long flags;
3628 int sync = 1;
3629
3630 if (unlikely(!q))
3631 return;
3632
3633 if (unlikely(!nr_exclusive))
3634 sync = 0;
3635
3636 spin_lock_irqsave(&q->lock, flags);
3637 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3638 spin_unlock_irqrestore(&q->lock, flags);
3639 }
3640 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3641
3642 void fastcall complete(struct completion *x)
3643 {
3644 unsigned long flags;
3645
3646 spin_lock_irqsave(&x->wait.lock, flags);
3647 x->done++;
3648 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3649 1, 0, NULL);
3650 spin_unlock_irqrestore(&x->wait.lock, flags);
3651 }
3652 EXPORT_SYMBOL(complete);
3653
3654 void fastcall complete_all(struct completion *x)
3655 {
3656 unsigned long flags;
3657
3658 spin_lock_irqsave(&x->wait.lock, flags);
3659 x->done += UINT_MAX/2;
3660 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3661 0, 0, NULL);
3662 spin_unlock_irqrestore(&x->wait.lock, flags);
3663 }
3664 EXPORT_SYMBOL(complete_all);
3665
3666 void fastcall __sched wait_for_completion(struct completion *x)
3667 {
3668 might_sleep();
3669
3670 spin_lock_irq(&x->wait.lock);
3671 if (!x->done) {
3672 DECLARE_WAITQUEUE(wait, current);
3673
3674 wait.flags |= WQ_FLAG_EXCLUSIVE;
3675 __add_wait_queue_tail(&x->wait, &wait);
3676 do {
3677 __set_current_state(TASK_UNINTERRUPTIBLE);
3678 spin_unlock_irq(&x->wait.lock);
3679 schedule();
3680 spin_lock_irq(&x->wait.lock);
3681 } while (!x->done);
3682 __remove_wait_queue(&x->wait, &wait);
3683 }
3684 x->done--;
3685 spin_unlock_irq(&x->wait.lock);
3686 }
3687 EXPORT_SYMBOL(wait_for_completion);
3688
3689 unsigned long fastcall __sched
3690 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3691 {
3692 might_sleep();
3693
3694 spin_lock_irq(&x->wait.lock);
3695 if (!x->done) {
3696 DECLARE_WAITQUEUE(wait, current);
3697
3698 wait.flags |= WQ_FLAG_EXCLUSIVE;
3699 __add_wait_queue_tail(&x->wait, &wait);
3700 do {
3701 __set_current_state(TASK_UNINTERRUPTIBLE);
3702 spin_unlock_irq(&x->wait.lock);
3703 timeout = schedule_timeout(timeout);
3704 spin_lock_irq(&x->wait.lock);
3705 if (!timeout) {
3706 __remove_wait_queue(&x->wait, &wait);
3707 goto out;
3708 }
3709 } while (!x->done);
3710 __remove_wait_queue(&x->wait, &wait);
3711 }
3712 x->done--;
3713 out:
3714 spin_unlock_irq(&x->wait.lock);
3715 return timeout;
3716 }
3717 EXPORT_SYMBOL(wait_for_completion_timeout);
3718
3719 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3720 {
3721 int ret = 0;
3722
3723 might_sleep();
3724
3725 spin_lock_irq(&x->wait.lock);
3726 if (!x->done) {
3727 DECLARE_WAITQUEUE(wait, current);
3728
3729 wait.flags |= WQ_FLAG_EXCLUSIVE;
3730 __add_wait_queue_tail(&x->wait, &wait);
3731 do {
3732 if (signal_pending(current)) {
3733 ret = -ERESTARTSYS;
3734 __remove_wait_queue(&x->wait, &wait);
3735 goto out;
3736 }
3737 __set_current_state(TASK_INTERRUPTIBLE);
3738 spin_unlock_irq(&x->wait.lock);
3739 schedule();
3740 spin_lock_irq(&x->wait.lock);
3741 } while (!x->done);
3742 __remove_wait_queue(&x->wait, &wait);
3743 }
3744 x->done--;
3745 out:
3746 spin_unlock_irq(&x->wait.lock);
3747
3748 return ret;
3749 }
3750 EXPORT_SYMBOL(wait_for_completion_interruptible);
3751
3752 unsigned long fastcall __sched
3753 wait_for_completion_interruptible_timeout(struct completion *x,
3754 unsigned long timeout)
3755 {
3756 might_sleep();
3757
3758 spin_lock_irq(&x->wait.lock);
3759 if (!x->done) {
3760 DECLARE_WAITQUEUE(wait, current);
3761
3762 wait.flags |= WQ_FLAG_EXCLUSIVE;
3763 __add_wait_queue_tail(&x->wait, &wait);
3764 do {
3765 if (signal_pending(current)) {
3766 timeout = -ERESTARTSYS;
3767 __remove_wait_queue(&x->wait, &wait);
3768 goto out;
3769 }
3770 __set_current_state(TASK_INTERRUPTIBLE);
3771 spin_unlock_irq(&x->wait.lock);
3772 timeout = schedule_timeout(timeout);
3773 spin_lock_irq(&x->wait.lock);
3774 if (!timeout) {
3775 __remove_wait_queue(&x->wait, &wait);
3776 goto out;
3777 }
3778 } while (!x->done);
3779 __remove_wait_queue(&x->wait, &wait);
3780 }
3781 x->done--;
3782 out:
3783 spin_unlock_irq(&x->wait.lock);
3784 return timeout;
3785 }
3786 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3787
3788 static inline void
3789 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3790 {
3791 spin_lock_irqsave(&q->lock, *flags);
3792 __add_wait_queue(q, wait);
3793 spin_unlock(&q->lock);
3794 }
3795
3796 static inline void
3797 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3798 {
3799 spin_lock_irq(&q->lock);
3800 __remove_wait_queue(q, wait);
3801 spin_unlock_irqrestore(&q->lock, *flags);
3802 }
3803
3804 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3805 {
3806 unsigned long flags;
3807 wait_queue_t wait;
3808
3809 init_waitqueue_entry(&wait, current);
3810
3811 current->state = TASK_INTERRUPTIBLE;
3812
3813 sleep_on_head(q, &wait, &flags);
3814 schedule();
3815 sleep_on_tail(q, &wait, &flags);
3816 }
3817 EXPORT_SYMBOL(interruptible_sleep_on);
3818
3819 long __sched
3820 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3821 {
3822 unsigned long flags;
3823 wait_queue_t wait;
3824
3825 init_waitqueue_entry(&wait, current);
3826
3827 current->state = TASK_INTERRUPTIBLE;
3828
3829 sleep_on_head(q, &wait, &flags);
3830 timeout = schedule_timeout(timeout);
3831 sleep_on_tail(q, &wait, &flags);
3832
3833 return timeout;
3834 }
3835 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3836
3837 void __sched sleep_on(wait_queue_head_t *q)
3838 {
3839 unsigned long flags;
3840 wait_queue_t wait;
3841
3842 init_waitqueue_entry(&wait, current);
3843
3844 current->state = TASK_UNINTERRUPTIBLE;
3845
3846 sleep_on_head(q, &wait, &flags);
3847 schedule();
3848 sleep_on_tail(q, &wait, &flags);
3849 }
3850 EXPORT_SYMBOL(sleep_on);
3851
3852 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3853 {
3854 unsigned long flags;
3855 wait_queue_t wait;
3856
3857 init_waitqueue_entry(&wait, current);
3858
3859 current->state = TASK_UNINTERRUPTIBLE;
3860
3861 sleep_on_head(q, &wait, &flags);
3862 timeout = schedule_timeout(timeout);
3863 sleep_on_tail(q, &wait, &flags);
3864
3865 return timeout;
3866 }
3867 EXPORT_SYMBOL(sleep_on_timeout);
3868
3869 #ifdef CONFIG_RT_MUTEXES
3870
3871 /*
3872 * rt_mutex_setprio - set the current priority of a task
3873 * @p: task
3874 * @prio: prio value (kernel-internal form)
3875 *
3876 * This function changes the 'effective' priority of a task. It does
3877 * not touch ->normal_prio like __setscheduler().
3878 *
3879 * Used by the rt_mutex code to implement priority inheritance logic.
3880 */
3881 void rt_mutex_setprio(struct task_struct *p, int prio)
3882 {
3883 unsigned long flags;
3884 int oldprio, on_rq;
3885 struct rq *rq;
3886
3887 BUG_ON(prio < 0 || prio > MAX_PRIO);
3888
3889 rq = task_rq_lock(p, &flags);
3890 update_rq_clock(rq);
3891
3892 oldprio = p->prio;
3893 on_rq = p->se.on_rq;
3894 if (on_rq)
3895 dequeue_task(rq, p, 0);
3896
3897 if (rt_prio(prio))
3898 p->sched_class = &rt_sched_class;
3899 else
3900 p->sched_class = &fair_sched_class;
3901
3902 p->prio = prio;
3903
3904 if (on_rq) {
3905 enqueue_task(rq, p, 0);
3906 /*
3907 * Reschedule if we are currently running on this runqueue and
3908 * our priority decreased, or if we are not currently running on
3909 * this runqueue and our priority is higher than the current's
3910 */
3911 if (task_running(rq, p)) {
3912 if (p->prio > oldprio)
3913 resched_task(rq->curr);
3914 } else {
3915 check_preempt_curr(rq, p);
3916 }
3917 }
3918 task_rq_unlock(rq, &flags);
3919 }
3920
3921 #endif
3922
3923 void set_user_nice(struct task_struct *p, long nice)
3924 {
3925 int old_prio, delta, on_rq;
3926 unsigned long flags;
3927 struct rq *rq;
3928
3929 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3930 return;
3931 /*
3932 * We have to be careful, if called from sys_setpriority(),
3933 * the task might be in the middle of scheduling on another CPU.
3934 */
3935 rq = task_rq_lock(p, &flags);
3936 update_rq_clock(rq);
3937 /*
3938 * The RT priorities are set via sched_setscheduler(), but we still
3939 * allow the 'normal' nice value to be set - but as expected
3940 * it wont have any effect on scheduling until the task is
3941 * SCHED_FIFO/SCHED_RR:
3942 */
3943 if (task_has_rt_policy(p)) {
3944 p->static_prio = NICE_TO_PRIO(nice);
3945 goto out_unlock;
3946 }
3947 on_rq = p->se.on_rq;
3948 if (on_rq) {
3949 dequeue_task(rq, p, 0);
3950 dec_load(rq, p);
3951 }
3952
3953 p->static_prio = NICE_TO_PRIO(nice);
3954 set_load_weight(p);
3955 old_prio = p->prio;
3956 p->prio = effective_prio(p);
3957 delta = p->prio - old_prio;
3958
3959 if (on_rq) {
3960 enqueue_task(rq, p, 0);
3961 inc_load(rq, p);
3962 /*
3963 * If the task increased its priority or is running and
3964 * lowered its priority, then reschedule its CPU:
3965 */
3966 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3967 resched_task(rq->curr);
3968 }
3969 out_unlock:
3970 task_rq_unlock(rq, &flags);
3971 }
3972 EXPORT_SYMBOL(set_user_nice);
3973
3974 /*
3975 * can_nice - check if a task can reduce its nice value
3976 * @p: task
3977 * @nice: nice value
3978 */
3979 int can_nice(const struct task_struct *p, const int nice)
3980 {
3981 /* convert nice value [19,-20] to rlimit style value [1,40] */
3982 int nice_rlim = 20 - nice;
3983
3984 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3985 capable(CAP_SYS_NICE));
3986 }
3987
3988 #ifdef __ARCH_WANT_SYS_NICE
3989
3990 /*
3991 * sys_nice - change the priority of the current process.
3992 * @increment: priority increment
3993 *
3994 * sys_setpriority is a more generic, but much slower function that
3995 * does similar things.
3996 */
3997 asmlinkage long sys_nice(int increment)
3998 {
3999 long nice, retval;
4000
4001 /*
4002 * Setpriority might change our priority at the same moment.
4003 * We don't have to worry. Conceptually one call occurs first
4004 * and we have a single winner.
4005 */
4006 if (increment < -40)
4007 increment = -40;
4008 if (increment > 40)
4009 increment = 40;
4010
4011 nice = PRIO_TO_NICE(current->static_prio) + increment;
4012 if (nice < -20)
4013 nice = -20;
4014 if (nice > 19)
4015 nice = 19;
4016
4017 if (increment < 0 && !can_nice(current, nice))
4018 return -EPERM;
4019
4020 retval = security_task_setnice(current, nice);
4021 if (retval)
4022 return retval;
4023
4024 set_user_nice(current, nice);
4025 return 0;
4026 }
4027
4028 #endif
4029
4030 /**
4031 * task_prio - return the priority value of a given task.
4032 * @p: the task in question.
4033 *
4034 * This is the priority value as seen by users in /proc.
4035 * RT tasks are offset by -200. Normal tasks are centered
4036 * around 0, value goes from -16 to +15.
4037 */
4038 int task_prio(const struct task_struct *p)
4039 {
4040 return p->prio - MAX_RT_PRIO;
4041 }
4042
4043 /**
4044 * task_nice - return the nice value of a given task.
4045 * @p: the task in question.
4046 */
4047 int task_nice(const struct task_struct *p)
4048 {
4049 return TASK_NICE(p);
4050 }
4051 EXPORT_SYMBOL_GPL(task_nice);
4052
4053 /**
4054 * idle_cpu - is a given cpu idle currently?
4055 * @cpu: the processor in question.
4056 */
4057 int idle_cpu(int cpu)
4058 {
4059 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4060 }
4061
4062 /**
4063 * idle_task - return the idle task for a given cpu.
4064 * @cpu: the processor in question.
4065 */
4066 struct task_struct *idle_task(int cpu)
4067 {
4068 return cpu_rq(cpu)->idle;
4069 }
4070
4071 /**
4072 * find_process_by_pid - find a process with a matching PID value.
4073 * @pid: the pid in question.
4074 */
4075 static inline struct task_struct *find_process_by_pid(pid_t pid)
4076 {
4077 return pid ? find_task_by_pid(pid) : current;
4078 }
4079
4080 /* Actually do priority change: must hold rq lock. */
4081 static void
4082 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4083 {
4084 BUG_ON(p->se.on_rq);
4085
4086 p->policy = policy;
4087 switch (p->policy) {
4088 case SCHED_NORMAL:
4089 case SCHED_BATCH:
4090 case SCHED_IDLE:
4091 p->sched_class = &fair_sched_class;
4092 break;
4093 case SCHED_FIFO:
4094 case SCHED_RR:
4095 p->sched_class = &rt_sched_class;
4096 break;
4097 }
4098
4099 p->rt_priority = prio;
4100 p->normal_prio = normal_prio(p);
4101 /* we are holding p->pi_lock already */
4102 p->prio = rt_mutex_getprio(p);
4103 set_load_weight(p);
4104 }
4105
4106 /**
4107 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4108 * @p: the task in question.
4109 * @policy: new policy.
4110 * @param: structure containing the new RT priority.
4111 *
4112 * NOTE that the task may be already dead.
4113 */
4114 int sched_setscheduler(struct task_struct *p, int policy,
4115 struct sched_param *param)
4116 {
4117 int retval, oldprio, oldpolicy = -1, on_rq;
4118 unsigned long flags;
4119 struct rq *rq;
4120
4121 /* may grab non-irq protected spin_locks */
4122 BUG_ON(in_interrupt());
4123 recheck:
4124 /* double check policy once rq lock held */
4125 if (policy < 0)
4126 policy = oldpolicy = p->policy;
4127 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4128 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4129 policy != SCHED_IDLE)
4130 return -EINVAL;
4131 /*
4132 * Valid priorities for SCHED_FIFO and SCHED_RR are
4133 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4134 * SCHED_BATCH and SCHED_IDLE is 0.
4135 */
4136 if (param->sched_priority < 0 ||
4137 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4138 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4139 return -EINVAL;
4140 if (rt_policy(policy) != (param->sched_priority != 0))
4141 return -EINVAL;
4142
4143 /*
4144 * Allow unprivileged RT tasks to decrease priority:
4145 */
4146 if (!capable(CAP_SYS_NICE)) {
4147 if (rt_policy(policy)) {
4148 unsigned long rlim_rtprio;
4149
4150 if (!lock_task_sighand(p, &flags))
4151 return -ESRCH;
4152 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4153 unlock_task_sighand(p, &flags);
4154
4155 /* can't set/change the rt policy */
4156 if (policy != p->policy && !rlim_rtprio)
4157 return -EPERM;
4158
4159 /* can't increase priority */
4160 if (param->sched_priority > p->rt_priority &&
4161 param->sched_priority > rlim_rtprio)
4162 return -EPERM;
4163 }
4164 /*
4165 * Like positive nice levels, dont allow tasks to
4166 * move out of SCHED_IDLE either:
4167 */
4168 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4169 return -EPERM;
4170
4171 /* can't change other user's priorities */
4172 if ((current->euid != p->euid) &&
4173 (current->euid != p->uid))
4174 return -EPERM;
4175 }
4176
4177 retval = security_task_setscheduler(p, policy, param);
4178 if (retval)
4179 return retval;
4180 /*
4181 * make sure no PI-waiters arrive (or leave) while we are
4182 * changing the priority of the task:
4183 */
4184 spin_lock_irqsave(&p->pi_lock, flags);
4185 /*
4186 * To be able to change p->policy safely, the apropriate
4187 * runqueue lock must be held.
4188 */
4189 rq = __task_rq_lock(p);
4190 /* recheck policy now with rq lock held */
4191 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4192 policy = oldpolicy = -1;
4193 __task_rq_unlock(rq);
4194 spin_unlock_irqrestore(&p->pi_lock, flags);
4195 goto recheck;
4196 }
4197 update_rq_clock(rq);
4198 on_rq = p->se.on_rq;
4199 if (on_rq)
4200 deactivate_task(rq, p, 0);
4201 oldprio = p->prio;
4202 __setscheduler(rq, p, policy, param->sched_priority);
4203 if (on_rq) {
4204 activate_task(rq, p, 0);
4205 /*
4206 * Reschedule if we are currently running on this runqueue and
4207 * our priority decreased, or if we are not currently running on
4208 * this runqueue and our priority is higher than the current's
4209 */
4210 if (task_running(rq, p)) {
4211 if (p->prio > oldprio)
4212 resched_task(rq->curr);
4213 } else {
4214 check_preempt_curr(rq, p);
4215 }
4216 }
4217 __task_rq_unlock(rq);
4218 spin_unlock_irqrestore(&p->pi_lock, flags);
4219
4220 rt_mutex_adjust_pi(p);
4221
4222 return 0;
4223 }
4224 EXPORT_SYMBOL_GPL(sched_setscheduler);
4225
4226 static int
4227 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4228 {
4229 struct sched_param lparam;
4230 struct task_struct *p;
4231 int retval;
4232
4233 if (!param || pid < 0)
4234 return -EINVAL;
4235 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4236 return -EFAULT;
4237
4238 rcu_read_lock();
4239 retval = -ESRCH;
4240 p = find_process_by_pid(pid);
4241 if (p != NULL)
4242 retval = sched_setscheduler(p, policy, &lparam);
4243 rcu_read_unlock();
4244
4245 return retval;
4246 }
4247
4248 /**
4249 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4250 * @pid: the pid in question.
4251 * @policy: new policy.
4252 * @param: structure containing the new RT priority.
4253 */
4254 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4255 struct sched_param __user *param)
4256 {
4257 /* negative values for policy are not valid */
4258 if (policy < 0)
4259 return -EINVAL;
4260
4261 return do_sched_setscheduler(pid, policy, param);
4262 }
4263
4264 /**
4265 * sys_sched_setparam - set/change the RT priority of a thread
4266 * @pid: the pid in question.
4267 * @param: structure containing the new RT priority.
4268 */
4269 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4270 {
4271 return do_sched_setscheduler(pid, -1, param);
4272 }
4273
4274 /**
4275 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4276 * @pid: the pid in question.
4277 */
4278 asmlinkage long sys_sched_getscheduler(pid_t pid)
4279 {
4280 struct task_struct *p;
4281 int retval = -EINVAL;
4282
4283 if (pid < 0)
4284 goto out_nounlock;
4285
4286 retval = -ESRCH;
4287 read_lock(&tasklist_lock);
4288 p = find_process_by_pid(pid);
4289 if (p) {
4290 retval = security_task_getscheduler(p);
4291 if (!retval)
4292 retval = p->policy;
4293 }
4294 read_unlock(&tasklist_lock);
4295
4296 out_nounlock:
4297 return retval;
4298 }
4299
4300 /**
4301 * sys_sched_getscheduler - get the RT priority of a thread
4302 * @pid: the pid in question.
4303 * @param: structure containing the RT priority.
4304 */
4305 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4306 {
4307 struct sched_param lp;
4308 struct task_struct *p;
4309 int retval = -EINVAL;
4310
4311 if (!param || pid < 0)
4312 goto out_nounlock;
4313
4314 read_lock(&tasklist_lock);
4315 p = find_process_by_pid(pid);
4316 retval = -ESRCH;
4317 if (!p)
4318 goto out_unlock;
4319
4320 retval = security_task_getscheduler(p);
4321 if (retval)
4322 goto out_unlock;
4323
4324 lp.sched_priority = p->rt_priority;
4325 read_unlock(&tasklist_lock);
4326
4327 /*
4328 * This one might sleep, we cannot do it with a spinlock held ...
4329 */
4330 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4331
4332 out_nounlock:
4333 return retval;
4334
4335 out_unlock:
4336 read_unlock(&tasklist_lock);
4337 return retval;
4338 }
4339
4340 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4341 {
4342 cpumask_t cpus_allowed;
4343 struct task_struct *p;
4344 int retval;
4345
4346 mutex_lock(&sched_hotcpu_mutex);
4347 read_lock(&tasklist_lock);
4348
4349 p = find_process_by_pid(pid);
4350 if (!p) {
4351 read_unlock(&tasklist_lock);
4352 mutex_unlock(&sched_hotcpu_mutex);
4353 return -ESRCH;
4354 }
4355
4356 /*
4357 * It is not safe to call set_cpus_allowed with the
4358 * tasklist_lock held. We will bump the task_struct's
4359 * usage count and then drop tasklist_lock.
4360 */
4361 get_task_struct(p);
4362 read_unlock(&tasklist_lock);
4363
4364 retval = -EPERM;
4365 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4366 !capable(CAP_SYS_NICE))
4367 goto out_unlock;
4368
4369 retval = security_task_setscheduler(p, 0, NULL);
4370 if (retval)
4371 goto out_unlock;
4372
4373 cpus_allowed = cpuset_cpus_allowed(p);
4374 cpus_and(new_mask, new_mask, cpus_allowed);
4375 retval = set_cpus_allowed(p, new_mask);
4376
4377 out_unlock:
4378 put_task_struct(p);
4379 mutex_unlock(&sched_hotcpu_mutex);
4380 return retval;
4381 }
4382
4383 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4384 cpumask_t *new_mask)
4385 {
4386 if (len < sizeof(cpumask_t)) {
4387 memset(new_mask, 0, sizeof(cpumask_t));
4388 } else if (len > sizeof(cpumask_t)) {
4389 len = sizeof(cpumask_t);
4390 }
4391 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4392 }
4393
4394 /**
4395 * sys_sched_setaffinity - set the cpu affinity of a process
4396 * @pid: pid of the process
4397 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4398 * @user_mask_ptr: user-space pointer to the new cpu mask
4399 */
4400 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4401 unsigned long __user *user_mask_ptr)
4402 {
4403 cpumask_t new_mask;
4404 int retval;
4405
4406 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4407 if (retval)
4408 return retval;
4409
4410 return sched_setaffinity(pid, new_mask);
4411 }
4412
4413 /*
4414 * Represents all cpu's present in the system
4415 * In systems capable of hotplug, this map could dynamically grow
4416 * as new cpu's are detected in the system via any platform specific
4417 * method, such as ACPI for e.g.
4418 */
4419
4420 cpumask_t cpu_present_map __read_mostly;
4421 EXPORT_SYMBOL(cpu_present_map);
4422
4423 #ifndef CONFIG_SMP
4424 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4425 EXPORT_SYMBOL(cpu_online_map);
4426
4427 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4428 EXPORT_SYMBOL(cpu_possible_map);
4429 #endif
4430
4431 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4432 {
4433 struct task_struct *p;
4434 int retval;
4435
4436 mutex_lock(&sched_hotcpu_mutex);
4437 read_lock(&tasklist_lock);
4438
4439 retval = -ESRCH;
4440 p = find_process_by_pid(pid);
4441 if (!p)
4442 goto out_unlock;
4443
4444 retval = security_task_getscheduler(p);
4445 if (retval)
4446 goto out_unlock;
4447
4448 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4449
4450 out_unlock:
4451 read_unlock(&tasklist_lock);
4452 mutex_unlock(&sched_hotcpu_mutex);
4453
4454 return retval;
4455 }
4456
4457 /**
4458 * sys_sched_getaffinity - get the cpu affinity of a process
4459 * @pid: pid of the process
4460 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4461 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4462 */
4463 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4464 unsigned long __user *user_mask_ptr)
4465 {
4466 int ret;
4467 cpumask_t mask;
4468
4469 if (len < sizeof(cpumask_t))
4470 return -EINVAL;
4471
4472 ret = sched_getaffinity(pid, &mask);
4473 if (ret < 0)
4474 return ret;
4475
4476 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4477 return -EFAULT;
4478
4479 return sizeof(cpumask_t);
4480 }
4481
4482 /**
4483 * sys_sched_yield - yield the current processor to other threads.
4484 *
4485 * This function yields the current CPU to other tasks. If there are no
4486 * other threads running on this CPU then this function will return.
4487 */
4488 asmlinkage long sys_sched_yield(void)
4489 {
4490 struct rq *rq = this_rq_lock();
4491
4492 schedstat_inc(rq, yld_cnt);
4493 current->sched_class->yield_task(rq, current);
4494
4495 /*
4496 * Since we are going to call schedule() anyway, there's
4497 * no need to preempt or enable interrupts:
4498 */
4499 __release(rq->lock);
4500 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4501 _raw_spin_unlock(&rq->lock);
4502 preempt_enable_no_resched();
4503
4504 schedule();
4505
4506 return 0;
4507 }
4508
4509 static void __cond_resched(void)
4510 {
4511 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4512 __might_sleep(__FILE__, __LINE__);
4513 #endif
4514 /*
4515 * The BKS might be reacquired before we have dropped
4516 * PREEMPT_ACTIVE, which could trigger a second
4517 * cond_resched() call.
4518 */
4519 do {
4520 add_preempt_count(PREEMPT_ACTIVE);
4521 schedule();
4522 sub_preempt_count(PREEMPT_ACTIVE);
4523 } while (need_resched());
4524 }
4525
4526 int __sched cond_resched(void)
4527 {
4528 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4529 system_state == SYSTEM_RUNNING) {
4530 __cond_resched();
4531 return 1;
4532 }
4533 return 0;
4534 }
4535 EXPORT_SYMBOL(cond_resched);
4536
4537 /*
4538 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4539 * call schedule, and on return reacquire the lock.
4540 *
4541 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4542 * operations here to prevent schedule() from being called twice (once via
4543 * spin_unlock(), once by hand).
4544 */
4545 int cond_resched_lock(spinlock_t *lock)
4546 {
4547 int ret = 0;
4548
4549 if (need_lockbreak(lock)) {
4550 spin_unlock(lock);
4551 cpu_relax();
4552 ret = 1;
4553 spin_lock(lock);
4554 }
4555 if (need_resched() && system_state == SYSTEM_RUNNING) {
4556 spin_release(&lock->dep_map, 1, _THIS_IP_);
4557 _raw_spin_unlock(lock);
4558 preempt_enable_no_resched();
4559 __cond_resched();
4560 ret = 1;
4561 spin_lock(lock);
4562 }
4563 return ret;
4564 }
4565 EXPORT_SYMBOL(cond_resched_lock);
4566
4567 int __sched cond_resched_softirq(void)
4568 {
4569 BUG_ON(!in_softirq());
4570
4571 if (need_resched() && system_state == SYSTEM_RUNNING) {
4572 local_bh_enable();
4573 __cond_resched();
4574 local_bh_disable();
4575 return 1;
4576 }
4577 return 0;
4578 }
4579 EXPORT_SYMBOL(cond_resched_softirq);
4580
4581 /**
4582 * yield - yield the current processor to other threads.
4583 *
4584 * This is a shortcut for kernel-space yielding - it marks the
4585 * thread runnable and calls sys_sched_yield().
4586 */
4587 void __sched yield(void)
4588 {
4589 set_current_state(TASK_RUNNING);
4590 sys_sched_yield();
4591 }
4592 EXPORT_SYMBOL(yield);
4593
4594 /*
4595 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4596 * that process accounting knows that this is a task in IO wait state.
4597 *
4598 * But don't do that if it is a deliberate, throttling IO wait (this task
4599 * has set its backing_dev_info: the queue against which it should throttle)
4600 */
4601 void __sched io_schedule(void)
4602 {
4603 struct rq *rq = &__raw_get_cpu_var(runqueues);
4604
4605 delayacct_blkio_start();
4606 atomic_inc(&rq->nr_iowait);
4607 schedule();
4608 atomic_dec(&rq->nr_iowait);
4609 delayacct_blkio_end();
4610 }
4611 EXPORT_SYMBOL(io_schedule);
4612
4613 long __sched io_schedule_timeout(long timeout)
4614 {
4615 struct rq *rq = &__raw_get_cpu_var(runqueues);
4616 long ret;
4617
4618 delayacct_blkio_start();
4619 atomic_inc(&rq->nr_iowait);
4620 ret = schedule_timeout(timeout);
4621 atomic_dec(&rq->nr_iowait);
4622 delayacct_blkio_end();
4623 return ret;
4624 }
4625
4626 /**
4627 * sys_sched_get_priority_max - return maximum RT priority.
4628 * @policy: scheduling class.
4629 *
4630 * this syscall returns the maximum rt_priority that can be used
4631 * by a given scheduling class.
4632 */
4633 asmlinkage long sys_sched_get_priority_max(int policy)
4634 {
4635 int ret = -EINVAL;
4636
4637 switch (policy) {
4638 case SCHED_FIFO:
4639 case SCHED_RR:
4640 ret = MAX_USER_RT_PRIO-1;
4641 break;
4642 case SCHED_NORMAL:
4643 case SCHED_BATCH:
4644 case SCHED_IDLE:
4645 ret = 0;
4646 break;
4647 }
4648 return ret;
4649 }
4650
4651 /**
4652 * sys_sched_get_priority_min - return minimum RT priority.
4653 * @policy: scheduling class.
4654 *
4655 * this syscall returns the minimum rt_priority that can be used
4656 * by a given scheduling class.
4657 */
4658 asmlinkage long sys_sched_get_priority_min(int policy)
4659 {
4660 int ret = -EINVAL;
4661
4662 switch (policy) {
4663 case SCHED_FIFO:
4664 case SCHED_RR:
4665 ret = 1;
4666 break;
4667 case SCHED_NORMAL:
4668 case SCHED_BATCH:
4669 case SCHED_IDLE:
4670 ret = 0;
4671 }
4672 return ret;
4673 }
4674
4675 /**
4676 * sys_sched_rr_get_interval - return the default timeslice of a process.
4677 * @pid: pid of the process.
4678 * @interval: userspace pointer to the timeslice value.
4679 *
4680 * this syscall writes the default timeslice value of a given process
4681 * into the user-space timespec buffer. A value of '0' means infinity.
4682 */
4683 asmlinkage
4684 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4685 {
4686 struct task_struct *p;
4687 int retval = -EINVAL;
4688 struct timespec t;
4689
4690 if (pid < 0)
4691 goto out_nounlock;
4692
4693 retval = -ESRCH;
4694 read_lock(&tasklist_lock);
4695 p = find_process_by_pid(pid);
4696 if (!p)
4697 goto out_unlock;
4698
4699 retval = security_task_getscheduler(p);
4700 if (retval)
4701 goto out_unlock;
4702
4703 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4704 0 : static_prio_timeslice(p->static_prio), &t);
4705 read_unlock(&tasklist_lock);
4706 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4707 out_nounlock:
4708 return retval;
4709 out_unlock:
4710 read_unlock(&tasklist_lock);
4711 return retval;
4712 }
4713
4714 static const char stat_nam[] = "RSDTtZX";
4715
4716 static void show_task(struct task_struct *p)
4717 {
4718 unsigned long free = 0;
4719 unsigned state;
4720
4721 state = p->state ? __ffs(p->state) + 1 : 0;
4722 printk("%-13.13s %c", p->comm,
4723 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4724 #if BITS_PER_LONG == 32
4725 if (state == TASK_RUNNING)
4726 printk(" running ");
4727 else
4728 printk(" %08lx ", thread_saved_pc(p));
4729 #else
4730 if (state == TASK_RUNNING)
4731 printk(" running task ");
4732 else
4733 printk(" %016lx ", thread_saved_pc(p));
4734 #endif
4735 #ifdef CONFIG_DEBUG_STACK_USAGE
4736 {
4737 unsigned long *n = end_of_stack(p);
4738 while (!*n)
4739 n++;
4740 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4741 }
4742 #endif
4743 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4744
4745 if (state != TASK_RUNNING)
4746 show_stack(p, NULL);
4747 }
4748
4749 void show_state_filter(unsigned long state_filter)
4750 {
4751 struct task_struct *g, *p;
4752
4753 #if BITS_PER_LONG == 32
4754 printk(KERN_INFO
4755 " task PC stack pid father\n");
4756 #else
4757 printk(KERN_INFO
4758 " task PC stack pid father\n");
4759 #endif
4760 read_lock(&tasklist_lock);
4761 do_each_thread(g, p) {
4762 /*
4763 * reset the NMI-timeout, listing all files on a slow
4764 * console might take alot of time:
4765 */
4766 touch_nmi_watchdog();
4767 if (!state_filter || (p->state & state_filter))
4768 show_task(p);
4769 } while_each_thread(g, p);
4770
4771 touch_all_softlockup_watchdogs();
4772
4773 #ifdef CONFIG_SCHED_DEBUG
4774 sysrq_sched_debug_show();
4775 #endif
4776 read_unlock(&tasklist_lock);
4777 /*
4778 * Only show locks if all tasks are dumped:
4779 */
4780 if (state_filter == -1)
4781 debug_show_all_locks();
4782 }
4783
4784 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4785 {
4786 idle->sched_class = &idle_sched_class;
4787 }
4788
4789 /**
4790 * init_idle - set up an idle thread for a given CPU
4791 * @idle: task in question
4792 * @cpu: cpu the idle task belongs to
4793 *
4794 * NOTE: this function does not set the idle thread's NEED_RESCHED
4795 * flag, to make booting more robust.
4796 */
4797 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4798 {
4799 struct rq *rq = cpu_rq(cpu);
4800 unsigned long flags;
4801
4802 __sched_fork(idle);
4803 idle->se.exec_start = sched_clock();
4804
4805 idle->prio = idle->normal_prio = MAX_PRIO;
4806 idle->cpus_allowed = cpumask_of_cpu(cpu);
4807 __set_task_cpu(idle, cpu);
4808
4809 spin_lock_irqsave(&rq->lock, flags);
4810 rq->curr = rq->idle = idle;
4811 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4812 idle->oncpu = 1;
4813 #endif
4814 spin_unlock_irqrestore(&rq->lock, flags);
4815
4816 /* Set the preempt count _outside_ the spinlocks! */
4817 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4818 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4819 #else
4820 task_thread_info(idle)->preempt_count = 0;
4821 #endif
4822 /*
4823 * The idle tasks have their own, simple scheduling class:
4824 */
4825 idle->sched_class = &idle_sched_class;
4826 }
4827
4828 /*
4829 * In a system that switches off the HZ timer nohz_cpu_mask
4830 * indicates which cpus entered this state. This is used
4831 * in the rcu update to wait only for active cpus. For system
4832 * which do not switch off the HZ timer nohz_cpu_mask should
4833 * always be CPU_MASK_NONE.
4834 */
4835 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4836
4837 #ifdef CONFIG_SMP
4838 /*
4839 * This is how migration works:
4840 *
4841 * 1) we queue a struct migration_req structure in the source CPU's
4842 * runqueue and wake up that CPU's migration thread.
4843 * 2) we down() the locked semaphore => thread blocks.
4844 * 3) migration thread wakes up (implicitly it forces the migrated
4845 * thread off the CPU)
4846 * 4) it gets the migration request and checks whether the migrated
4847 * task is still in the wrong runqueue.
4848 * 5) if it's in the wrong runqueue then the migration thread removes
4849 * it and puts it into the right queue.
4850 * 6) migration thread up()s the semaphore.
4851 * 7) we wake up and the migration is done.
4852 */
4853
4854 /*
4855 * Change a given task's CPU affinity. Migrate the thread to a
4856 * proper CPU and schedule it away if the CPU it's executing on
4857 * is removed from the allowed bitmask.
4858 *
4859 * NOTE: the caller must have a valid reference to the task, the
4860 * task must not exit() & deallocate itself prematurely. The
4861 * call is not atomic; no spinlocks may be held.
4862 */
4863 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4864 {
4865 struct migration_req req;
4866 unsigned long flags;
4867 struct rq *rq;
4868 int ret = 0;
4869
4870 rq = task_rq_lock(p, &flags);
4871 if (!cpus_intersects(new_mask, cpu_online_map)) {
4872 ret = -EINVAL;
4873 goto out;
4874 }
4875
4876 p->cpus_allowed = new_mask;
4877 /* Can the task run on the task's current CPU? If so, we're done */
4878 if (cpu_isset(task_cpu(p), new_mask))
4879 goto out;
4880
4881 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4882 /* Need help from migration thread: drop lock and wait. */
4883 task_rq_unlock(rq, &flags);
4884 wake_up_process(rq->migration_thread);
4885 wait_for_completion(&req.done);
4886 tlb_migrate_finish(p->mm);
4887 return 0;
4888 }
4889 out:
4890 task_rq_unlock(rq, &flags);
4891
4892 return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4895
4896 /*
4897 * Move (not current) task off this cpu, onto dest cpu. We're doing
4898 * this because either it can't run here any more (set_cpus_allowed()
4899 * away from this CPU, or CPU going down), or because we're
4900 * attempting to rebalance this task on exec (sched_exec).
4901 *
4902 * So we race with normal scheduler movements, but that's OK, as long
4903 * as the task is no longer on this CPU.
4904 *
4905 * Returns non-zero if task was successfully migrated.
4906 */
4907 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4908 {
4909 struct rq *rq_dest, *rq_src;
4910 int ret = 0, on_rq;
4911
4912 if (unlikely(cpu_is_offline(dest_cpu)))
4913 return ret;
4914
4915 rq_src = cpu_rq(src_cpu);
4916 rq_dest = cpu_rq(dest_cpu);
4917
4918 double_rq_lock(rq_src, rq_dest);
4919 /* Already moved. */
4920 if (task_cpu(p) != src_cpu)
4921 goto out;
4922 /* Affinity changed (again). */
4923 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4924 goto out;
4925
4926 on_rq = p->se.on_rq;
4927 if (on_rq)
4928 deactivate_task(rq_src, p, 0);
4929
4930 set_task_cpu(p, dest_cpu);
4931 if (on_rq) {
4932 activate_task(rq_dest, p, 0);
4933 check_preempt_curr(rq_dest, p);
4934 }
4935 ret = 1;
4936 out:
4937 double_rq_unlock(rq_src, rq_dest);
4938 return ret;
4939 }
4940
4941 /*
4942 * migration_thread - this is a highprio system thread that performs
4943 * thread migration by bumping thread off CPU then 'pushing' onto
4944 * another runqueue.
4945 */
4946 static int migration_thread(void *data)
4947 {
4948 int cpu = (long)data;
4949 struct rq *rq;
4950
4951 rq = cpu_rq(cpu);
4952 BUG_ON(rq->migration_thread != current);
4953
4954 set_current_state(TASK_INTERRUPTIBLE);
4955 while (!kthread_should_stop()) {
4956 struct migration_req *req;
4957 struct list_head *head;
4958
4959 spin_lock_irq(&rq->lock);
4960
4961 if (cpu_is_offline(cpu)) {
4962 spin_unlock_irq(&rq->lock);
4963 goto wait_to_die;
4964 }
4965
4966 if (rq->active_balance) {
4967 active_load_balance(rq, cpu);
4968 rq->active_balance = 0;
4969 }
4970
4971 head = &rq->migration_queue;
4972
4973 if (list_empty(head)) {
4974 spin_unlock_irq(&rq->lock);
4975 schedule();
4976 set_current_state(TASK_INTERRUPTIBLE);
4977 continue;
4978 }
4979 req = list_entry(head->next, struct migration_req, list);
4980 list_del_init(head->next);
4981
4982 spin_unlock(&rq->lock);
4983 __migrate_task(req->task, cpu, req->dest_cpu);
4984 local_irq_enable();
4985
4986 complete(&req->done);
4987 }
4988 __set_current_state(TASK_RUNNING);
4989 return 0;
4990
4991 wait_to_die:
4992 /* Wait for kthread_stop */
4993 set_current_state(TASK_INTERRUPTIBLE);
4994 while (!kthread_should_stop()) {
4995 schedule();
4996 set_current_state(TASK_INTERRUPTIBLE);
4997 }
4998 __set_current_state(TASK_RUNNING);
4999 return 0;
5000 }
5001
5002 #ifdef CONFIG_HOTPLUG_CPU
5003 /*
5004 * Figure out where task on dead CPU should go, use force if neccessary.
5005 * NOTE: interrupts should be disabled by the caller
5006 */
5007 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5008 {
5009 unsigned long flags;
5010 cpumask_t mask;
5011 struct rq *rq;
5012 int dest_cpu;
5013
5014 restart:
5015 /* On same node? */
5016 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5017 cpus_and(mask, mask, p->cpus_allowed);
5018 dest_cpu = any_online_cpu(mask);
5019
5020 /* On any allowed CPU? */
5021 if (dest_cpu == NR_CPUS)
5022 dest_cpu = any_online_cpu(p->cpus_allowed);
5023
5024 /* No more Mr. Nice Guy. */
5025 if (dest_cpu == NR_CPUS) {
5026 rq = task_rq_lock(p, &flags);
5027 cpus_setall(p->cpus_allowed);
5028 dest_cpu = any_online_cpu(p->cpus_allowed);
5029 task_rq_unlock(rq, &flags);
5030
5031 /*
5032 * Don't tell them about moving exiting tasks or
5033 * kernel threads (both mm NULL), since they never
5034 * leave kernel.
5035 */
5036 if (p->mm && printk_ratelimit())
5037 printk(KERN_INFO "process %d (%s) no "
5038 "longer affine to cpu%d\n",
5039 p->pid, p->comm, dead_cpu);
5040 }
5041 if (!__migrate_task(p, dead_cpu, dest_cpu))
5042 goto restart;
5043 }
5044
5045 /*
5046 * While a dead CPU has no uninterruptible tasks queued at this point,
5047 * it might still have a nonzero ->nr_uninterruptible counter, because
5048 * for performance reasons the counter is not stricly tracking tasks to
5049 * their home CPUs. So we just add the counter to another CPU's counter,
5050 * to keep the global sum constant after CPU-down:
5051 */
5052 static void migrate_nr_uninterruptible(struct rq *rq_src)
5053 {
5054 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5055 unsigned long flags;
5056
5057 local_irq_save(flags);
5058 double_rq_lock(rq_src, rq_dest);
5059 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5060 rq_src->nr_uninterruptible = 0;
5061 double_rq_unlock(rq_src, rq_dest);
5062 local_irq_restore(flags);
5063 }
5064
5065 /* Run through task list and migrate tasks from the dead cpu. */
5066 static void migrate_live_tasks(int src_cpu)
5067 {
5068 struct task_struct *p, *t;
5069
5070 write_lock_irq(&tasklist_lock);
5071
5072 do_each_thread(t, p) {
5073 if (p == current)
5074 continue;
5075
5076 if (task_cpu(p) == src_cpu)
5077 move_task_off_dead_cpu(src_cpu, p);
5078 } while_each_thread(t, p);
5079
5080 write_unlock_irq(&tasklist_lock);
5081 }
5082
5083 /*
5084 * Schedules idle task to be the next runnable task on current CPU.
5085 * It does so by boosting its priority to highest possible and adding it to
5086 * the _front_ of the runqueue. Used by CPU offline code.
5087 */
5088 void sched_idle_next(void)
5089 {
5090 int this_cpu = smp_processor_id();
5091 struct rq *rq = cpu_rq(this_cpu);
5092 struct task_struct *p = rq->idle;
5093 unsigned long flags;
5094
5095 /* cpu has to be offline */
5096 BUG_ON(cpu_online(this_cpu));
5097
5098 /*
5099 * Strictly not necessary since rest of the CPUs are stopped by now
5100 * and interrupts disabled on the current cpu.
5101 */
5102 spin_lock_irqsave(&rq->lock, flags);
5103
5104 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5105
5106 /* Add idle task to the _front_ of its priority queue: */
5107 activate_idle_task(p, rq);
5108
5109 spin_unlock_irqrestore(&rq->lock, flags);
5110 }
5111
5112 /*
5113 * Ensures that the idle task is using init_mm right before its cpu goes
5114 * offline.
5115 */
5116 void idle_task_exit(void)
5117 {
5118 struct mm_struct *mm = current->active_mm;
5119
5120 BUG_ON(cpu_online(smp_processor_id()));
5121
5122 if (mm != &init_mm)
5123 switch_mm(mm, &init_mm, current);
5124 mmdrop(mm);
5125 }
5126
5127 /* called under rq->lock with disabled interrupts */
5128 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5129 {
5130 struct rq *rq = cpu_rq(dead_cpu);
5131
5132 /* Must be exiting, otherwise would be on tasklist. */
5133 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5134
5135 /* Cannot have done final schedule yet: would have vanished. */
5136 BUG_ON(p->state == TASK_DEAD);
5137
5138 get_task_struct(p);
5139
5140 /*
5141 * Drop lock around migration; if someone else moves it,
5142 * that's OK. No task can be added to this CPU, so iteration is
5143 * fine.
5144 * NOTE: interrupts should be left disabled --dev@
5145 */
5146 spin_unlock(&rq->lock);
5147 move_task_off_dead_cpu(dead_cpu, p);
5148 spin_lock(&rq->lock);
5149
5150 put_task_struct(p);
5151 }
5152
5153 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5154 static void migrate_dead_tasks(unsigned int dead_cpu)
5155 {
5156 struct rq *rq = cpu_rq(dead_cpu);
5157 struct task_struct *next;
5158
5159 for ( ; ; ) {
5160 if (!rq->nr_running)
5161 break;
5162 update_rq_clock(rq);
5163 next = pick_next_task(rq, rq->curr);
5164 if (!next)
5165 break;
5166 migrate_dead(dead_cpu, next);
5167
5168 }
5169 }
5170 #endif /* CONFIG_HOTPLUG_CPU */
5171
5172 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5173
5174 static struct ctl_table sd_ctl_dir[] = {
5175 {
5176 .procname = "sched_domain",
5177 .mode = 0555,
5178 },
5179 {0,},
5180 };
5181
5182 static struct ctl_table sd_ctl_root[] = {
5183 {
5184 .ctl_name = CTL_KERN,
5185 .procname = "kernel",
5186 .mode = 0555,
5187 .child = sd_ctl_dir,
5188 },
5189 {0,},
5190 };
5191
5192 static struct ctl_table *sd_alloc_ctl_entry(int n)
5193 {
5194 struct ctl_table *entry =
5195 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5196
5197 BUG_ON(!entry);
5198 memset(entry, 0, n * sizeof(struct ctl_table));
5199
5200 return entry;
5201 }
5202
5203 static void
5204 set_table_entry(struct ctl_table *entry,
5205 const char *procname, void *data, int maxlen,
5206 mode_t mode, proc_handler *proc_handler)
5207 {
5208 entry->procname = procname;
5209 entry->data = data;
5210 entry->maxlen = maxlen;
5211 entry->mode = mode;
5212 entry->proc_handler = proc_handler;
5213 }
5214
5215 static struct ctl_table *
5216 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5217 {
5218 struct ctl_table *table = sd_alloc_ctl_entry(14);
5219
5220 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5221 sizeof(long), 0644, proc_doulongvec_minmax);
5222 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5223 sizeof(long), 0644, proc_doulongvec_minmax);
5224 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5225 sizeof(int), 0644, proc_dointvec_minmax);
5226 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5227 sizeof(int), 0644, proc_dointvec_minmax);
5228 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5229 sizeof(int), 0644, proc_dointvec_minmax);
5230 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5231 sizeof(int), 0644, proc_dointvec_minmax);
5232 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5233 sizeof(int), 0644, proc_dointvec_minmax);
5234 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5235 sizeof(int), 0644, proc_dointvec_minmax);
5236 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5237 sizeof(int), 0644, proc_dointvec_minmax);
5238 set_table_entry(&table[10], "cache_nice_tries",
5239 &sd->cache_nice_tries,
5240 sizeof(int), 0644, proc_dointvec_minmax);
5241 set_table_entry(&table[12], "flags", &sd->flags,
5242 sizeof(int), 0644, proc_dointvec_minmax);
5243
5244 return table;
5245 }
5246
5247 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5248 {
5249 struct ctl_table *entry, *table;
5250 struct sched_domain *sd;
5251 int domain_num = 0, i;
5252 char buf[32];
5253
5254 for_each_domain(cpu, sd)
5255 domain_num++;
5256 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5257
5258 i = 0;
5259 for_each_domain(cpu, sd) {
5260 snprintf(buf, 32, "domain%d", i);
5261 entry->procname = kstrdup(buf, GFP_KERNEL);
5262 entry->mode = 0555;
5263 entry->child = sd_alloc_ctl_domain_table(sd);
5264 entry++;
5265 i++;
5266 }
5267 return table;
5268 }
5269
5270 static struct ctl_table_header *sd_sysctl_header;
5271 static void init_sched_domain_sysctl(void)
5272 {
5273 int i, cpu_num = num_online_cpus();
5274 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5275 char buf[32];
5276
5277 sd_ctl_dir[0].child = entry;
5278
5279 for (i = 0; i < cpu_num; i++, entry++) {
5280 snprintf(buf, 32, "cpu%d", i);
5281 entry->procname = kstrdup(buf, GFP_KERNEL);
5282 entry->mode = 0555;
5283 entry->child = sd_alloc_ctl_cpu_table(i);
5284 }
5285 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5286 }
5287 #else
5288 static void init_sched_domain_sysctl(void)
5289 {
5290 }
5291 #endif
5292
5293 /*
5294 * migration_call - callback that gets triggered when a CPU is added.
5295 * Here we can start up the necessary migration thread for the new CPU.
5296 */
5297 static int __cpuinit
5298 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5299 {
5300 struct task_struct *p;
5301 int cpu = (long)hcpu;
5302 unsigned long flags;
5303 struct rq *rq;
5304
5305 switch (action) {
5306 case CPU_LOCK_ACQUIRE:
5307 mutex_lock(&sched_hotcpu_mutex);
5308 break;
5309
5310 case CPU_UP_PREPARE:
5311 case CPU_UP_PREPARE_FROZEN:
5312 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5313 if (IS_ERR(p))
5314 return NOTIFY_BAD;
5315 kthread_bind(p, cpu);
5316 /* Must be high prio: stop_machine expects to yield to it. */
5317 rq = task_rq_lock(p, &flags);
5318 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5319 task_rq_unlock(rq, &flags);
5320 cpu_rq(cpu)->migration_thread = p;
5321 break;
5322
5323 case CPU_ONLINE:
5324 case CPU_ONLINE_FROZEN:
5325 /* Strictly unneccessary, as first user will wake it. */
5326 wake_up_process(cpu_rq(cpu)->migration_thread);
5327 break;
5328
5329 #ifdef CONFIG_HOTPLUG_CPU
5330 case CPU_UP_CANCELED:
5331 case CPU_UP_CANCELED_FROZEN:
5332 if (!cpu_rq(cpu)->migration_thread)
5333 break;
5334 /* Unbind it from offline cpu so it can run. Fall thru. */
5335 kthread_bind(cpu_rq(cpu)->migration_thread,
5336 any_online_cpu(cpu_online_map));
5337 kthread_stop(cpu_rq(cpu)->migration_thread);
5338 cpu_rq(cpu)->migration_thread = NULL;
5339 break;
5340
5341 case CPU_DEAD:
5342 case CPU_DEAD_FROZEN:
5343 migrate_live_tasks(cpu);
5344 rq = cpu_rq(cpu);
5345 kthread_stop(rq->migration_thread);
5346 rq->migration_thread = NULL;
5347 /* Idle task back to normal (off runqueue, low prio) */
5348 rq = task_rq_lock(rq->idle, &flags);
5349 update_rq_clock(rq);
5350 deactivate_task(rq, rq->idle, 0);
5351 rq->idle->static_prio = MAX_PRIO;
5352 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5353 rq->idle->sched_class = &idle_sched_class;
5354 migrate_dead_tasks(cpu);
5355 task_rq_unlock(rq, &flags);
5356 migrate_nr_uninterruptible(rq);
5357 BUG_ON(rq->nr_running != 0);
5358
5359 /* No need to migrate the tasks: it was best-effort if
5360 * they didn't take sched_hotcpu_mutex. Just wake up
5361 * the requestors. */
5362 spin_lock_irq(&rq->lock);
5363 while (!list_empty(&rq->migration_queue)) {
5364 struct migration_req *req;
5365
5366 req = list_entry(rq->migration_queue.next,
5367 struct migration_req, list);
5368 list_del_init(&req->list);
5369 complete(&req->done);
5370 }
5371 spin_unlock_irq(&rq->lock);
5372 break;
5373 #endif
5374 case CPU_LOCK_RELEASE:
5375 mutex_unlock(&sched_hotcpu_mutex);
5376 break;
5377 }
5378 return NOTIFY_OK;
5379 }
5380
5381 /* Register at highest priority so that task migration (migrate_all_tasks)
5382 * happens before everything else.
5383 */
5384 static struct notifier_block __cpuinitdata migration_notifier = {
5385 .notifier_call = migration_call,
5386 .priority = 10
5387 };
5388
5389 int __init migration_init(void)
5390 {
5391 void *cpu = (void *)(long)smp_processor_id();
5392 int err;
5393
5394 /* Start one for the boot CPU: */
5395 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5396 BUG_ON(err == NOTIFY_BAD);
5397 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5398 register_cpu_notifier(&migration_notifier);
5399
5400 return 0;
5401 }
5402 #endif
5403
5404 #ifdef CONFIG_SMP
5405
5406 /* Number of possible processor ids */
5407 int nr_cpu_ids __read_mostly = NR_CPUS;
5408 EXPORT_SYMBOL(nr_cpu_ids);
5409
5410 #undef SCHED_DOMAIN_DEBUG
5411 #ifdef SCHED_DOMAIN_DEBUG
5412 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5413 {
5414 int level = 0;
5415
5416 if (!sd) {
5417 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5418 return;
5419 }
5420
5421 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5422
5423 do {
5424 int i;
5425 char str[NR_CPUS];
5426 struct sched_group *group = sd->groups;
5427 cpumask_t groupmask;
5428
5429 cpumask_scnprintf(str, NR_CPUS, sd->span);
5430 cpus_clear(groupmask);
5431
5432 printk(KERN_DEBUG);
5433 for (i = 0; i < level + 1; i++)
5434 printk(" ");
5435 printk("domain %d: ", level);
5436
5437 if (!(sd->flags & SD_LOAD_BALANCE)) {
5438 printk("does not load-balance\n");
5439 if (sd->parent)
5440 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5441 " has parent");
5442 break;
5443 }
5444
5445 printk("span %s\n", str);
5446
5447 if (!cpu_isset(cpu, sd->span))
5448 printk(KERN_ERR "ERROR: domain->span does not contain "
5449 "CPU%d\n", cpu);
5450 if (!cpu_isset(cpu, group->cpumask))
5451 printk(KERN_ERR "ERROR: domain->groups does not contain"
5452 " CPU%d\n", cpu);
5453
5454 printk(KERN_DEBUG);
5455 for (i = 0; i < level + 2; i++)
5456 printk(" ");
5457 printk("groups:");
5458 do {
5459 if (!group) {
5460 printk("\n");
5461 printk(KERN_ERR "ERROR: group is NULL\n");
5462 break;
5463 }
5464
5465 if (!group->__cpu_power) {
5466 printk("\n");
5467 printk(KERN_ERR "ERROR: domain->cpu_power not "
5468 "set\n");
5469 }
5470
5471 if (!cpus_weight(group->cpumask)) {
5472 printk("\n");
5473 printk(KERN_ERR "ERROR: empty group\n");
5474 }
5475
5476 if (cpus_intersects(groupmask, group->cpumask)) {
5477 printk("\n");
5478 printk(KERN_ERR "ERROR: repeated CPUs\n");
5479 }
5480
5481 cpus_or(groupmask, groupmask, group->cpumask);
5482
5483 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5484 printk(" %s", str);
5485
5486 group = group->next;
5487 } while (group != sd->groups);
5488 printk("\n");
5489
5490 if (!cpus_equal(sd->span, groupmask))
5491 printk(KERN_ERR "ERROR: groups don't span "
5492 "domain->span\n");
5493
5494 level++;
5495 sd = sd->parent;
5496 if (!sd)
5497 continue;
5498
5499 if (!cpus_subset(groupmask, sd->span))
5500 printk(KERN_ERR "ERROR: parent span is not a superset "
5501 "of domain->span\n");
5502
5503 } while (sd);
5504 }
5505 #else
5506 # define sched_domain_debug(sd, cpu) do { } while (0)
5507 #endif
5508
5509 static int sd_degenerate(struct sched_domain *sd)
5510 {
5511 if (cpus_weight(sd->span) == 1)
5512 return 1;
5513
5514 /* Following flags need at least 2 groups */
5515 if (sd->flags & (SD_LOAD_BALANCE |
5516 SD_BALANCE_NEWIDLE |
5517 SD_BALANCE_FORK |
5518 SD_BALANCE_EXEC |
5519 SD_SHARE_CPUPOWER |
5520 SD_SHARE_PKG_RESOURCES)) {
5521 if (sd->groups != sd->groups->next)
5522 return 0;
5523 }
5524
5525 /* Following flags don't use groups */
5526 if (sd->flags & (SD_WAKE_IDLE |
5527 SD_WAKE_AFFINE |
5528 SD_WAKE_BALANCE))
5529 return 0;
5530
5531 return 1;
5532 }
5533
5534 static int
5535 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5536 {
5537 unsigned long cflags = sd->flags, pflags = parent->flags;
5538
5539 if (sd_degenerate(parent))
5540 return 1;
5541
5542 if (!cpus_equal(sd->span, parent->span))
5543 return 0;
5544
5545 /* Does parent contain flags not in child? */
5546 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5547 if (cflags & SD_WAKE_AFFINE)
5548 pflags &= ~SD_WAKE_BALANCE;
5549 /* Flags needing groups don't count if only 1 group in parent */
5550 if (parent->groups == parent->groups->next) {
5551 pflags &= ~(SD_LOAD_BALANCE |
5552 SD_BALANCE_NEWIDLE |
5553 SD_BALANCE_FORK |
5554 SD_BALANCE_EXEC |
5555 SD_SHARE_CPUPOWER |
5556 SD_SHARE_PKG_RESOURCES);
5557 }
5558 if (~cflags & pflags)
5559 return 0;
5560
5561 return 1;
5562 }
5563
5564 /*
5565 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5566 * hold the hotplug lock.
5567 */
5568 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5569 {
5570 struct rq *rq = cpu_rq(cpu);
5571 struct sched_domain *tmp;
5572
5573 /* Remove the sched domains which do not contribute to scheduling. */
5574 for (tmp = sd; tmp; tmp = tmp->parent) {
5575 struct sched_domain *parent = tmp->parent;
5576 if (!parent)
5577 break;
5578 if (sd_parent_degenerate(tmp, parent)) {
5579 tmp->parent = parent->parent;
5580 if (parent->parent)
5581 parent->parent->child = tmp;
5582 }
5583 }
5584
5585 if (sd && sd_degenerate(sd)) {
5586 sd = sd->parent;
5587 if (sd)
5588 sd->child = NULL;
5589 }
5590
5591 sched_domain_debug(sd, cpu);
5592
5593 rcu_assign_pointer(rq->sd, sd);
5594 }
5595
5596 /* cpus with isolated domains */
5597 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5598
5599 /* Setup the mask of cpus configured for isolated domains */
5600 static int __init isolated_cpu_setup(char *str)
5601 {
5602 int ints[NR_CPUS], i;
5603
5604 str = get_options(str, ARRAY_SIZE(ints), ints);
5605 cpus_clear(cpu_isolated_map);
5606 for (i = 1; i <= ints[0]; i++)
5607 if (ints[i] < NR_CPUS)
5608 cpu_set(ints[i], cpu_isolated_map);
5609 return 1;
5610 }
5611
5612 __setup ("isolcpus=", isolated_cpu_setup);
5613
5614 /*
5615 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5616 * to a function which identifies what group(along with sched group) a CPU
5617 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5618 * (due to the fact that we keep track of groups covered with a cpumask_t).
5619 *
5620 * init_sched_build_groups will build a circular linked list of the groups
5621 * covered by the given span, and will set each group's ->cpumask correctly,
5622 * and ->cpu_power to 0.
5623 */
5624 static void
5625 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5626 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5627 struct sched_group **sg))
5628 {
5629 struct sched_group *first = NULL, *last = NULL;
5630 cpumask_t covered = CPU_MASK_NONE;
5631 int i;
5632
5633 for_each_cpu_mask(i, span) {
5634 struct sched_group *sg;
5635 int group = group_fn(i, cpu_map, &sg);
5636 int j;
5637
5638 if (cpu_isset(i, covered))
5639 continue;
5640
5641 sg->cpumask = CPU_MASK_NONE;
5642 sg->__cpu_power = 0;
5643
5644 for_each_cpu_mask(j, span) {
5645 if (group_fn(j, cpu_map, NULL) != group)
5646 continue;
5647
5648 cpu_set(j, covered);
5649 cpu_set(j, sg->cpumask);
5650 }
5651 if (!first)
5652 first = sg;
5653 if (last)
5654 last->next = sg;
5655 last = sg;
5656 }
5657 last->next = first;
5658 }
5659
5660 #define SD_NODES_PER_DOMAIN 16
5661
5662 #ifdef CONFIG_NUMA
5663
5664 /**
5665 * find_next_best_node - find the next node to include in a sched_domain
5666 * @node: node whose sched_domain we're building
5667 * @used_nodes: nodes already in the sched_domain
5668 *
5669 * Find the next node to include in a given scheduling domain. Simply
5670 * finds the closest node not already in the @used_nodes map.
5671 *
5672 * Should use nodemask_t.
5673 */
5674 static int find_next_best_node(int node, unsigned long *used_nodes)
5675 {
5676 int i, n, val, min_val, best_node = 0;
5677
5678 min_val = INT_MAX;
5679
5680 for (i = 0; i < MAX_NUMNODES; i++) {
5681 /* Start at @node */
5682 n = (node + i) % MAX_NUMNODES;
5683
5684 if (!nr_cpus_node(n))
5685 continue;
5686
5687 /* Skip already used nodes */
5688 if (test_bit(n, used_nodes))
5689 continue;
5690
5691 /* Simple min distance search */
5692 val = node_distance(node, n);
5693
5694 if (val < min_val) {
5695 min_val = val;
5696 best_node = n;
5697 }
5698 }
5699
5700 set_bit(best_node, used_nodes);
5701 return best_node;
5702 }
5703
5704 /**
5705 * sched_domain_node_span - get a cpumask for a node's sched_domain
5706 * @node: node whose cpumask we're constructing
5707 * @size: number of nodes to include in this span
5708 *
5709 * Given a node, construct a good cpumask for its sched_domain to span. It
5710 * should be one that prevents unnecessary balancing, but also spreads tasks
5711 * out optimally.
5712 */
5713 static cpumask_t sched_domain_node_span(int node)
5714 {
5715 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5716 cpumask_t span, nodemask;
5717 int i;
5718
5719 cpus_clear(span);
5720 bitmap_zero(used_nodes, MAX_NUMNODES);
5721
5722 nodemask = node_to_cpumask(node);
5723 cpus_or(span, span, nodemask);
5724 set_bit(node, used_nodes);
5725
5726 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5727 int next_node = find_next_best_node(node, used_nodes);
5728
5729 nodemask = node_to_cpumask(next_node);
5730 cpus_or(span, span, nodemask);
5731 }
5732
5733 return span;
5734 }
5735 #endif
5736
5737 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5738
5739 /*
5740 * SMT sched-domains:
5741 */
5742 #ifdef CONFIG_SCHED_SMT
5743 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5744 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5745
5746 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5747 struct sched_group **sg)
5748 {
5749 if (sg)
5750 *sg = &per_cpu(sched_group_cpus, cpu);
5751 return cpu;
5752 }
5753 #endif
5754
5755 /*
5756 * multi-core sched-domains:
5757 */
5758 #ifdef CONFIG_SCHED_MC
5759 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5760 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5761 #endif
5762
5763 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5764 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5765 struct sched_group **sg)
5766 {
5767 int group;
5768 cpumask_t mask = cpu_sibling_map[cpu];
5769 cpus_and(mask, mask, *cpu_map);
5770 group = first_cpu(mask);
5771 if (sg)
5772 *sg = &per_cpu(sched_group_core, group);
5773 return group;
5774 }
5775 #elif defined(CONFIG_SCHED_MC)
5776 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5777 struct sched_group **sg)
5778 {
5779 if (sg)
5780 *sg = &per_cpu(sched_group_core, cpu);
5781 return cpu;
5782 }
5783 #endif
5784
5785 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5786 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5787
5788 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5789 struct sched_group **sg)
5790 {
5791 int group;
5792 #ifdef CONFIG_SCHED_MC
5793 cpumask_t mask = cpu_coregroup_map(cpu);
5794 cpus_and(mask, mask, *cpu_map);
5795 group = first_cpu(mask);
5796 #elif defined(CONFIG_SCHED_SMT)
5797 cpumask_t mask = cpu_sibling_map[cpu];
5798 cpus_and(mask, mask, *cpu_map);
5799 group = first_cpu(mask);
5800 #else
5801 group = cpu;
5802 #endif
5803 if (sg)
5804 *sg = &per_cpu(sched_group_phys, group);
5805 return group;
5806 }
5807
5808 #ifdef CONFIG_NUMA
5809 /*
5810 * The init_sched_build_groups can't handle what we want to do with node
5811 * groups, so roll our own. Now each node has its own list of groups which
5812 * gets dynamically allocated.
5813 */
5814 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5815 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5816
5817 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5818 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5819
5820 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5821 struct sched_group **sg)
5822 {
5823 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5824 int group;
5825
5826 cpus_and(nodemask, nodemask, *cpu_map);
5827 group = first_cpu(nodemask);
5828
5829 if (sg)
5830 *sg = &per_cpu(sched_group_allnodes, group);
5831 return group;
5832 }
5833
5834 static void init_numa_sched_groups_power(struct sched_group *group_head)
5835 {
5836 struct sched_group *sg = group_head;
5837 int j;
5838
5839 if (!sg)
5840 return;
5841 next_sg:
5842 for_each_cpu_mask(j, sg->cpumask) {
5843 struct sched_domain *sd;
5844
5845 sd = &per_cpu(phys_domains, j);
5846 if (j != first_cpu(sd->groups->cpumask)) {
5847 /*
5848 * Only add "power" once for each
5849 * physical package.
5850 */
5851 continue;
5852 }
5853
5854 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5855 }
5856 sg = sg->next;
5857 if (sg != group_head)
5858 goto next_sg;
5859 }
5860 #endif
5861
5862 #ifdef CONFIG_NUMA
5863 /* Free memory allocated for various sched_group structures */
5864 static void free_sched_groups(const cpumask_t *cpu_map)
5865 {
5866 int cpu, i;
5867
5868 for_each_cpu_mask(cpu, *cpu_map) {
5869 struct sched_group **sched_group_nodes
5870 = sched_group_nodes_bycpu[cpu];
5871
5872 if (!sched_group_nodes)
5873 continue;
5874
5875 for (i = 0; i < MAX_NUMNODES; i++) {
5876 cpumask_t nodemask = node_to_cpumask(i);
5877 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5878
5879 cpus_and(nodemask, nodemask, *cpu_map);
5880 if (cpus_empty(nodemask))
5881 continue;
5882
5883 if (sg == NULL)
5884 continue;
5885 sg = sg->next;
5886 next_sg:
5887 oldsg = sg;
5888 sg = sg->next;
5889 kfree(oldsg);
5890 if (oldsg != sched_group_nodes[i])
5891 goto next_sg;
5892 }
5893 kfree(sched_group_nodes);
5894 sched_group_nodes_bycpu[cpu] = NULL;
5895 }
5896 }
5897 #else
5898 static void free_sched_groups(const cpumask_t *cpu_map)
5899 {
5900 }
5901 #endif
5902
5903 /*
5904 * Initialize sched groups cpu_power.
5905 *
5906 * cpu_power indicates the capacity of sched group, which is used while
5907 * distributing the load between different sched groups in a sched domain.
5908 * Typically cpu_power for all the groups in a sched domain will be same unless
5909 * there are asymmetries in the topology. If there are asymmetries, group
5910 * having more cpu_power will pickup more load compared to the group having
5911 * less cpu_power.
5912 *
5913 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5914 * the maximum number of tasks a group can handle in the presence of other idle
5915 * or lightly loaded groups in the same sched domain.
5916 */
5917 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5918 {
5919 struct sched_domain *child;
5920 struct sched_group *group;
5921
5922 WARN_ON(!sd || !sd->groups);
5923
5924 if (cpu != first_cpu(sd->groups->cpumask))
5925 return;
5926
5927 child = sd->child;
5928
5929 sd->groups->__cpu_power = 0;
5930
5931 /*
5932 * For perf policy, if the groups in child domain share resources
5933 * (for example cores sharing some portions of the cache hierarchy
5934 * or SMT), then set this domain groups cpu_power such that each group
5935 * can handle only one task, when there are other idle groups in the
5936 * same sched domain.
5937 */
5938 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5939 (child->flags &
5940 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5941 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5942 return;
5943 }
5944
5945 /*
5946 * add cpu_power of each child group to this groups cpu_power
5947 */
5948 group = child->groups;
5949 do {
5950 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5951 group = group->next;
5952 } while (group != child->groups);
5953 }
5954
5955 /*
5956 * Build sched domains for a given set of cpus and attach the sched domains
5957 * to the individual cpus
5958 */
5959 static int build_sched_domains(const cpumask_t *cpu_map)
5960 {
5961 int i;
5962 #ifdef CONFIG_NUMA
5963 struct sched_group **sched_group_nodes = NULL;
5964 int sd_allnodes = 0;
5965
5966 /*
5967 * Allocate the per-node list of sched groups
5968 */
5969 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5970 GFP_KERNEL);
5971 if (!sched_group_nodes) {
5972 printk(KERN_WARNING "Can not alloc sched group node list\n");
5973 return -ENOMEM;
5974 }
5975 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5976 #endif
5977
5978 /*
5979 * Set up domains for cpus specified by the cpu_map.
5980 */
5981 for_each_cpu_mask(i, *cpu_map) {
5982 struct sched_domain *sd = NULL, *p;
5983 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5984
5985 cpus_and(nodemask, nodemask, *cpu_map);
5986
5987 #ifdef CONFIG_NUMA
5988 if (cpus_weight(*cpu_map) >
5989 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5990 sd = &per_cpu(allnodes_domains, i);
5991 *sd = SD_ALLNODES_INIT;
5992 sd->span = *cpu_map;
5993 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5994 p = sd;
5995 sd_allnodes = 1;
5996 } else
5997 p = NULL;
5998
5999 sd = &per_cpu(node_domains, i);
6000 *sd = SD_NODE_INIT;
6001 sd->span = sched_domain_node_span(cpu_to_node(i));
6002 sd->parent = p;
6003 if (p)
6004 p->child = sd;
6005 cpus_and(sd->span, sd->span, *cpu_map);
6006 #endif
6007
6008 p = sd;
6009 sd = &per_cpu(phys_domains, i);
6010 *sd = SD_CPU_INIT;
6011 sd->span = nodemask;
6012 sd->parent = p;
6013 if (p)
6014 p->child = sd;
6015 cpu_to_phys_group(i, cpu_map, &sd->groups);
6016
6017 #ifdef CONFIG_SCHED_MC
6018 p = sd;
6019 sd = &per_cpu(core_domains, i);
6020 *sd = SD_MC_INIT;
6021 sd->span = cpu_coregroup_map(i);
6022 cpus_and(sd->span, sd->span, *cpu_map);
6023 sd->parent = p;
6024 p->child = sd;
6025 cpu_to_core_group(i, cpu_map, &sd->groups);
6026 #endif
6027
6028 #ifdef CONFIG_SCHED_SMT
6029 p = sd;
6030 sd = &per_cpu(cpu_domains, i);
6031 *sd = SD_SIBLING_INIT;
6032 sd->span = cpu_sibling_map[i];
6033 cpus_and(sd->span, sd->span, *cpu_map);
6034 sd->parent = p;
6035 p->child = sd;
6036 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6037 #endif
6038 }
6039
6040 #ifdef CONFIG_SCHED_SMT
6041 /* Set up CPU (sibling) groups */
6042 for_each_cpu_mask(i, *cpu_map) {
6043 cpumask_t this_sibling_map = cpu_sibling_map[i];
6044 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6045 if (i != first_cpu(this_sibling_map))
6046 continue;
6047
6048 init_sched_build_groups(this_sibling_map, cpu_map,
6049 &cpu_to_cpu_group);
6050 }
6051 #endif
6052
6053 #ifdef CONFIG_SCHED_MC
6054 /* Set up multi-core groups */
6055 for_each_cpu_mask(i, *cpu_map) {
6056 cpumask_t this_core_map = cpu_coregroup_map(i);
6057 cpus_and(this_core_map, this_core_map, *cpu_map);
6058 if (i != first_cpu(this_core_map))
6059 continue;
6060 init_sched_build_groups(this_core_map, cpu_map,
6061 &cpu_to_core_group);
6062 }
6063 #endif
6064
6065 /* Set up physical groups */
6066 for (i = 0; i < MAX_NUMNODES; i++) {
6067 cpumask_t nodemask = node_to_cpumask(i);
6068
6069 cpus_and(nodemask, nodemask, *cpu_map);
6070 if (cpus_empty(nodemask))
6071 continue;
6072
6073 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6074 }
6075
6076 #ifdef CONFIG_NUMA
6077 /* Set up node groups */
6078 if (sd_allnodes)
6079 init_sched_build_groups(*cpu_map, cpu_map,
6080 &cpu_to_allnodes_group);
6081
6082 for (i = 0; i < MAX_NUMNODES; i++) {
6083 /* Set up node groups */
6084 struct sched_group *sg, *prev;
6085 cpumask_t nodemask = node_to_cpumask(i);
6086 cpumask_t domainspan;
6087 cpumask_t covered = CPU_MASK_NONE;
6088 int j;
6089
6090 cpus_and(nodemask, nodemask, *cpu_map);
6091 if (cpus_empty(nodemask)) {
6092 sched_group_nodes[i] = NULL;
6093 continue;
6094 }
6095
6096 domainspan = sched_domain_node_span(i);
6097 cpus_and(domainspan, domainspan, *cpu_map);
6098
6099 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6100 if (!sg) {
6101 printk(KERN_WARNING "Can not alloc domain group for "
6102 "node %d\n", i);
6103 goto error;
6104 }
6105 sched_group_nodes[i] = sg;
6106 for_each_cpu_mask(j, nodemask) {
6107 struct sched_domain *sd;
6108
6109 sd = &per_cpu(node_domains, j);
6110 sd->groups = sg;
6111 }
6112 sg->__cpu_power = 0;
6113 sg->cpumask = nodemask;
6114 sg->next = sg;
6115 cpus_or(covered, covered, nodemask);
6116 prev = sg;
6117
6118 for (j = 0; j < MAX_NUMNODES; j++) {
6119 cpumask_t tmp, notcovered;
6120 int n = (i + j) % MAX_NUMNODES;
6121
6122 cpus_complement(notcovered, covered);
6123 cpus_and(tmp, notcovered, *cpu_map);
6124 cpus_and(tmp, tmp, domainspan);
6125 if (cpus_empty(tmp))
6126 break;
6127
6128 nodemask = node_to_cpumask(n);
6129 cpus_and(tmp, tmp, nodemask);
6130 if (cpus_empty(tmp))
6131 continue;
6132
6133 sg = kmalloc_node(sizeof(struct sched_group),
6134 GFP_KERNEL, i);
6135 if (!sg) {
6136 printk(KERN_WARNING
6137 "Can not alloc domain group for node %d\n", j);
6138 goto error;
6139 }
6140 sg->__cpu_power = 0;
6141 sg->cpumask = tmp;
6142 sg->next = prev->next;
6143 cpus_or(covered, covered, tmp);
6144 prev->next = sg;
6145 prev = sg;
6146 }
6147 }
6148 #endif
6149
6150 /* Calculate CPU power for physical packages and nodes */
6151 #ifdef CONFIG_SCHED_SMT
6152 for_each_cpu_mask(i, *cpu_map) {
6153 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6154
6155 init_sched_groups_power(i, sd);
6156 }
6157 #endif
6158 #ifdef CONFIG_SCHED_MC
6159 for_each_cpu_mask(i, *cpu_map) {
6160 struct sched_domain *sd = &per_cpu(core_domains, i);
6161
6162 init_sched_groups_power(i, sd);
6163 }
6164 #endif
6165
6166 for_each_cpu_mask(i, *cpu_map) {
6167 struct sched_domain *sd = &per_cpu(phys_domains, i);
6168
6169 init_sched_groups_power(i, sd);
6170 }
6171
6172 #ifdef CONFIG_NUMA
6173 for (i = 0; i < MAX_NUMNODES; i++)
6174 init_numa_sched_groups_power(sched_group_nodes[i]);
6175
6176 if (sd_allnodes) {
6177 struct sched_group *sg;
6178
6179 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6180 init_numa_sched_groups_power(sg);
6181 }
6182 #endif
6183
6184 /* Attach the domains */
6185 for_each_cpu_mask(i, *cpu_map) {
6186 struct sched_domain *sd;
6187 #ifdef CONFIG_SCHED_SMT
6188 sd = &per_cpu(cpu_domains, i);
6189 #elif defined(CONFIG_SCHED_MC)
6190 sd = &per_cpu(core_domains, i);
6191 #else
6192 sd = &per_cpu(phys_domains, i);
6193 #endif
6194 cpu_attach_domain(sd, i);
6195 }
6196
6197 return 0;
6198
6199 #ifdef CONFIG_NUMA
6200 error:
6201 free_sched_groups(cpu_map);
6202 return -ENOMEM;
6203 #endif
6204 }
6205 /*
6206 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6207 */
6208 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6209 {
6210 cpumask_t cpu_default_map;
6211 int err;
6212
6213 /*
6214 * Setup mask for cpus without special case scheduling requirements.
6215 * For now this just excludes isolated cpus, but could be used to
6216 * exclude other special cases in the future.
6217 */
6218 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6219
6220 err = build_sched_domains(&cpu_default_map);
6221
6222 return err;
6223 }
6224
6225 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6226 {
6227 free_sched_groups(cpu_map);
6228 }
6229
6230 /*
6231 * Detach sched domains from a group of cpus specified in cpu_map
6232 * These cpus will now be attached to the NULL domain
6233 */
6234 static void detach_destroy_domains(const cpumask_t *cpu_map)
6235 {
6236 int i;
6237
6238 for_each_cpu_mask(i, *cpu_map)
6239 cpu_attach_domain(NULL, i);
6240 synchronize_sched();
6241 arch_destroy_sched_domains(cpu_map);
6242 }
6243
6244 /*
6245 * Partition sched domains as specified by the cpumasks below.
6246 * This attaches all cpus from the cpumasks to the NULL domain,
6247 * waits for a RCU quiescent period, recalculates sched
6248 * domain information and then attaches them back to the
6249 * correct sched domains
6250 * Call with hotplug lock held
6251 */
6252 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6253 {
6254 cpumask_t change_map;
6255 int err = 0;
6256
6257 cpus_and(*partition1, *partition1, cpu_online_map);
6258 cpus_and(*partition2, *partition2, cpu_online_map);
6259 cpus_or(change_map, *partition1, *partition2);
6260
6261 /* Detach sched domains from all of the affected cpus */
6262 detach_destroy_domains(&change_map);
6263 if (!cpus_empty(*partition1))
6264 err = build_sched_domains(partition1);
6265 if (!err && !cpus_empty(*partition2))
6266 err = build_sched_domains(partition2);
6267
6268 return err;
6269 }
6270
6271 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6272 static int arch_reinit_sched_domains(void)
6273 {
6274 int err;
6275
6276 mutex_lock(&sched_hotcpu_mutex);
6277 detach_destroy_domains(&cpu_online_map);
6278 err = arch_init_sched_domains(&cpu_online_map);
6279 mutex_unlock(&sched_hotcpu_mutex);
6280
6281 return err;
6282 }
6283
6284 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6285 {
6286 int ret;
6287
6288 if (buf[0] != '0' && buf[0] != '1')
6289 return -EINVAL;
6290
6291 if (smt)
6292 sched_smt_power_savings = (buf[0] == '1');
6293 else
6294 sched_mc_power_savings = (buf[0] == '1');
6295
6296 ret = arch_reinit_sched_domains();
6297
6298 return ret ? ret : count;
6299 }
6300
6301 #ifdef CONFIG_SCHED_MC
6302 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6303 {
6304 return sprintf(page, "%u\n", sched_mc_power_savings);
6305 }
6306 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6307 const char *buf, size_t count)
6308 {
6309 return sched_power_savings_store(buf, count, 0);
6310 }
6311 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6312 sched_mc_power_savings_store);
6313 #endif
6314
6315 #ifdef CONFIG_SCHED_SMT
6316 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6317 {
6318 return sprintf(page, "%u\n", sched_smt_power_savings);
6319 }
6320 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6321 const char *buf, size_t count)
6322 {
6323 return sched_power_savings_store(buf, count, 1);
6324 }
6325 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6326 sched_smt_power_savings_store);
6327 #endif
6328
6329 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6330 {
6331 int err = 0;
6332
6333 #ifdef CONFIG_SCHED_SMT
6334 if (smt_capable())
6335 err = sysfs_create_file(&cls->kset.kobj,
6336 &attr_sched_smt_power_savings.attr);
6337 #endif
6338 #ifdef CONFIG_SCHED_MC
6339 if (!err && mc_capable())
6340 err = sysfs_create_file(&cls->kset.kobj,
6341 &attr_sched_mc_power_savings.attr);
6342 #endif
6343 return err;
6344 }
6345 #endif
6346
6347 /*
6348 * Force a reinitialization of the sched domains hierarchy. The domains
6349 * and groups cannot be updated in place without racing with the balancing
6350 * code, so we temporarily attach all running cpus to the NULL domain
6351 * which will prevent rebalancing while the sched domains are recalculated.
6352 */
6353 static int update_sched_domains(struct notifier_block *nfb,
6354 unsigned long action, void *hcpu)
6355 {
6356 switch (action) {
6357 case CPU_UP_PREPARE:
6358 case CPU_UP_PREPARE_FROZEN:
6359 case CPU_DOWN_PREPARE:
6360 case CPU_DOWN_PREPARE_FROZEN:
6361 detach_destroy_domains(&cpu_online_map);
6362 return NOTIFY_OK;
6363
6364 case CPU_UP_CANCELED:
6365 case CPU_UP_CANCELED_FROZEN:
6366 case CPU_DOWN_FAILED:
6367 case CPU_DOWN_FAILED_FROZEN:
6368 case CPU_ONLINE:
6369 case CPU_ONLINE_FROZEN:
6370 case CPU_DEAD:
6371 case CPU_DEAD_FROZEN:
6372 /*
6373 * Fall through and re-initialise the domains.
6374 */
6375 break;
6376 default:
6377 return NOTIFY_DONE;
6378 }
6379
6380 /* The hotplug lock is already held by cpu_up/cpu_down */
6381 arch_init_sched_domains(&cpu_online_map);
6382
6383 return NOTIFY_OK;
6384 }
6385
6386 void __init sched_init_smp(void)
6387 {
6388 cpumask_t non_isolated_cpus;
6389
6390 mutex_lock(&sched_hotcpu_mutex);
6391 arch_init_sched_domains(&cpu_online_map);
6392 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6393 if (cpus_empty(non_isolated_cpus))
6394 cpu_set(smp_processor_id(), non_isolated_cpus);
6395 mutex_unlock(&sched_hotcpu_mutex);
6396 /* XXX: Theoretical race here - CPU may be hotplugged now */
6397 hotcpu_notifier(update_sched_domains, 0);
6398
6399 init_sched_domain_sysctl();
6400
6401 /* Move init over to a non-isolated CPU */
6402 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6403 BUG();
6404 }
6405 #else
6406 void __init sched_init_smp(void)
6407 {
6408 }
6409 #endif /* CONFIG_SMP */
6410
6411 int in_sched_functions(unsigned long addr)
6412 {
6413 /* Linker adds these: start and end of __sched functions */
6414 extern char __sched_text_start[], __sched_text_end[];
6415
6416 return in_lock_functions(addr) ||
6417 (addr >= (unsigned long)__sched_text_start
6418 && addr < (unsigned long)__sched_text_end);
6419 }
6420
6421 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6422 {
6423 cfs_rq->tasks_timeline = RB_ROOT;
6424 cfs_rq->fair_clock = 1;
6425 #ifdef CONFIG_FAIR_GROUP_SCHED
6426 cfs_rq->rq = rq;
6427 #endif
6428 }
6429
6430 void __init sched_init(void)
6431 {
6432 int highest_cpu = 0;
6433 int i, j;
6434
6435 /*
6436 * Link up the scheduling class hierarchy:
6437 */
6438 rt_sched_class.next = &fair_sched_class;
6439 fair_sched_class.next = &idle_sched_class;
6440 idle_sched_class.next = NULL;
6441
6442 for_each_possible_cpu(i) {
6443 struct rt_prio_array *array;
6444 struct rq *rq;
6445
6446 rq = cpu_rq(i);
6447 spin_lock_init(&rq->lock);
6448 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6449 rq->nr_running = 0;
6450 rq->clock = 1;
6451 init_cfs_rq(&rq->cfs, rq);
6452 #ifdef CONFIG_FAIR_GROUP_SCHED
6453 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6454 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6455 #endif
6456
6457 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6458 rq->cpu_load[j] = 0;
6459 #ifdef CONFIG_SMP
6460 rq->sd = NULL;
6461 rq->active_balance = 0;
6462 rq->next_balance = jiffies;
6463 rq->push_cpu = 0;
6464 rq->cpu = i;
6465 rq->migration_thread = NULL;
6466 INIT_LIST_HEAD(&rq->migration_queue);
6467 #endif
6468 atomic_set(&rq->nr_iowait, 0);
6469
6470 array = &rq->rt.active;
6471 for (j = 0; j < MAX_RT_PRIO; j++) {
6472 INIT_LIST_HEAD(array->queue + j);
6473 __clear_bit(j, array->bitmap);
6474 }
6475 highest_cpu = i;
6476 /* delimiter for bitsearch: */
6477 __set_bit(MAX_RT_PRIO, array->bitmap);
6478 }
6479
6480 set_load_weight(&init_task);
6481
6482 #ifdef CONFIG_PREEMPT_NOTIFIERS
6483 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6484 #endif
6485
6486 #ifdef CONFIG_SMP
6487 nr_cpu_ids = highest_cpu + 1;
6488 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6489 #endif
6490
6491 #ifdef CONFIG_RT_MUTEXES
6492 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6493 #endif
6494
6495 /*
6496 * The boot idle thread does lazy MMU switching as well:
6497 */
6498 atomic_inc(&init_mm.mm_count);
6499 enter_lazy_tlb(&init_mm, current);
6500
6501 /*
6502 * Make us the idle thread. Technically, schedule() should not be
6503 * called from this thread, however somewhere below it might be,
6504 * but because we are the idle thread, we just pick up running again
6505 * when this runqueue becomes "idle".
6506 */
6507 init_idle(current, smp_processor_id());
6508 /*
6509 * During early bootup we pretend to be a normal task:
6510 */
6511 current->sched_class = &fair_sched_class;
6512 }
6513
6514 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6515 void __might_sleep(char *file, int line)
6516 {
6517 #ifdef in_atomic
6518 static unsigned long prev_jiffy; /* ratelimiting */
6519
6520 if ((in_atomic() || irqs_disabled()) &&
6521 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6522 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6523 return;
6524 prev_jiffy = jiffies;
6525 printk(KERN_ERR "BUG: sleeping function called from invalid"
6526 " context at %s:%d\n", file, line);
6527 printk("in_atomic():%d, irqs_disabled():%d\n",
6528 in_atomic(), irqs_disabled());
6529 debug_show_held_locks(current);
6530 if (irqs_disabled())
6531 print_irqtrace_events(current);
6532 dump_stack();
6533 }
6534 #endif
6535 }
6536 EXPORT_SYMBOL(__might_sleep);
6537 #endif
6538
6539 #ifdef CONFIG_MAGIC_SYSRQ
6540 void normalize_rt_tasks(void)
6541 {
6542 struct task_struct *g, *p;
6543 unsigned long flags;
6544 struct rq *rq;
6545 int on_rq;
6546
6547 read_lock_irq(&tasklist_lock);
6548 do_each_thread(g, p) {
6549 p->se.fair_key = 0;
6550 p->se.wait_runtime = 0;
6551 p->se.exec_start = 0;
6552 p->se.wait_start_fair = 0;
6553 p->se.sleep_start_fair = 0;
6554 #ifdef CONFIG_SCHEDSTATS
6555 p->se.wait_start = 0;
6556 p->se.sleep_start = 0;
6557 p->se.block_start = 0;
6558 #endif
6559 task_rq(p)->cfs.fair_clock = 0;
6560 task_rq(p)->clock = 0;
6561
6562 if (!rt_task(p)) {
6563 /*
6564 * Renice negative nice level userspace
6565 * tasks back to 0:
6566 */
6567 if (TASK_NICE(p) < 0 && p->mm)
6568 set_user_nice(p, 0);
6569 continue;
6570 }
6571
6572 spin_lock_irqsave(&p->pi_lock, flags);
6573 rq = __task_rq_lock(p);
6574 #ifdef CONFIG_SMP
6575 /*
6576 * Do not touch the migration thread:
6577 */
6578 if (p == rq->migration_thread)
6579 goto out_unlock;
6580 #endif
6581
6582 update_rq_clock(rq);
6583 on_rq = p->se.on_rq;
6584 if (on_rq)
6585 deactivate_task(rq, p, 0);
6586 __setscheduler(rq, p, SCHED_NORMAL, 0);
6587 if (on_rq) {
6588 activate_task(rq, p, 0);
6589 resched_task(rq->curr);
6590 }
6591 #ifdef CONFIG_SMP
6592 out_unlock:
6593 #endif
6594 __task_rq_unlock(rq);
6595 spin_unlock_irqrestore(&p->pi_lock, flags);
6596 } while_each_thread(g, p);
6597
6598 read_unlock_irq(&tasklist_lock);
6599 }
6600
6601 #endif /* CONFIG_MAGIC_SYSRQ */
6602
6603 #ifdef CONFIG_IA64
6604 /*
6605 * These functions are only useful for the IA64 MCA handling.
6606 *
6607 * They can only be called when the whole system has been
6608 * stopped - every CPU needs to be quiescent, and no scheduling
6609 * activity can take place. Using them for anything else would
6610 * be a serious bug, and as a result, they aren't even visible
6611 * under any other configuration.
6612 */
6613
6614 /**
6615 * curr_task - return the current task for a given cpu.
6616 * @cpu: the processor in question.
6617 *
6618 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6619 */
6620 struct task_struct *curr_task(int cpu)
6621 {
6622 return cpu_curr(cpu);
6623 }
6624
6625 /**
6626 * set_curr_task - set the current task for a given cpu.
6627 * @cpu: the processor in question.
6628 * @p: the task pointer to set.
6629 *
6630 * Description: This function must only be used when non-maskable interrupts
6631 * are serviced on a separate stack. It allows the architecture to switch the
6632 * notion of the current task on a cpu in a non-blocking manner. This function
6633 * must be called with all CPU's synchronized, and interrupts disabled, the
6634 * and caller must save the original value of the current task (see
6635 * curr_task() above) and restore that value before reenabling interrupts and
6636 * re-starting the system.
6637 *
6638 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6639 */
6640 void set_curr_task(int cpu, struct task_struct *p)
6641 {
6642 cpu_curr(cpu) = p;
6643 }
6644
6645 #endif