sched: Generalize sleep inside spinlock detection
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (policy == SCHED_FIFO || policy == SCHED_RR)
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last, *skip;
330
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
333 #endif
334
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
346 int on_list;
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
349
350 #ifdef CONFIG_SMP
351 /*
352 * the part of load.weight contributed by tasks
353 */
354 unsigned long task_weight;
355
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
363
364 /*
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
370 */
371 u64 load_avg;
372 u64 load_period;
373 u64 load_stamp, load_last, load_unacc_exec_time;
374
375 unsigned long load_contribution;
376 #endif
377 #endif
378 };
379
380 /* Real-Time classes' related field in a runqueue: */
381 struct rt_rq {
382 struct rt_prio_array active;
383 unsigned long rt_nr_running;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 struct {
386 int curr; /* highest queued rt task prio */
387 #ifdef CONFIG_SMP
388 int next; /* next highest */
389 #endif
390 } highest_prio;
391 #endif
392 #ifdef CONFIG_SMP
393 unsigned long rt_nr_migratory;
394 unsigned long rt_nr_total;
395 int overloaded;
396 struct plist_head pushable_tasks;
397 #endif
398 int rt_throttled;
399 u64 rt_time;
400 u64 rt_runtime;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock;
403
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted;
406
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
410 #endif
411 };
412
413 #ifdef CONFIG_SMP
414
415 /*
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
422 */
423 struct root_domain {
424 atomic_t refcount;
425 struct rcu_head rcu;
426 cpumask_var_t span;
427 cpumask_var_t online;
428
429 /*
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
433 cpumask_var_t rto_mask;
434 atomic_t rto_count;
435 struct cpupri cpupri;
436 };
437
438 /*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
442 static struct root_domain def_root_domain;
443
444 #endif /* CONFIG_SMP */
445
446 /*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
453 struct rq {
454 /* runqueue lock: */
455 raw_spinlock_t lock;
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464 unsigned long last_load_update_tick;
465 #ifdef CONFIG_NO_HZ
466 u64 nohz_stamp;
467 unsigned char nohz_balance_kick;
468 #endif
469 int skip_clock_update;
470
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
477 struct rt_rq rt;
478
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
482 #endif
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list;
485 #endif
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
495 struct task_struct *curr, *idle, *stop;
496 unsigned long next_balance;
497 struct mm_struct *prev_mm;
498
499 u64 clock;
500 u64 clock_task;
501
502 atomic_t nr_iowait;
503
504 #ifdef CONFIG_SMP
505 struct root_domain *rd;
506 struct sched_domain *sd;
507
508 unsigned long cpu_power;
509
510 unsigned char idle_at_tick;
511 /* For active balancing */
512 int post_schedule;
513 int active_balance;
514 int push_cpu;
515 struct cpu_stop_work active_balance_work;
516 /* cpu of this runqueue: */
517 int cpu;
518 int online;
519
520 unsigned long avg_load_per_task;
521
522 u64 rt_avg;
523 u64 age_stamp;
524 u64 idle_stamp;
525 u64 avg_idle;
526 #endif
527
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530 #endif
531
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
536 #ifdef CONFIG_SCHED_HRTICK
537 #ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540 #endif
541 struct hrtimer hrtick_timer;
542 #endif
543
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
549
550 /* sys_sched_yield() stats */
551 unsigned int yld_count;
552
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
557
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
561 #endif
562
563 #ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565 #endif
566 };
567
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
569
570
571 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
572
573 static inline int cpu_of(struct rq *rq)
574 {
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
580 }
581
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
587 /*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602
603 #ifdef CONFIG_CGROUP_SCHED
604
605 /*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613 static inline struct task_group *task_group(struct task_struct *p)
614 {
615 struct task_group *tg;
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619 lockdep_is_held(&p->pi_lock));
620 tg = container_of(css, struct task_group, css);
621
622 return autogroup_task_group(p, tg);
623 }
624
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627 {
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631 #endif
632
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636 #endif
637 }
638
639 #else /* CONFIG_CGROUP_SCHED */
640
641 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642 static inline struct task_group *task_group(struct task_struct *p)
643 {
644 return NULL;
645 }
646
647 #endif /* CONFIG_CGROUP_SCHED */
648
649 static void update_rq_clock_task(struct rq *rq, s64 delta);
650
651 static void update_rq_clock(struct rq *rq)
652 {
653 s64 delta;
654
655 if (rq->skip_clock_update > 0)
656 return;
657
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
661 }
662
663 /*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
668 #else
669 # define const_debug static const
670 #endif
671
672 /**
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
675 *
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
678 */
679 int runqueue_is_locked(int cpu)
680 {
681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
682 }
683
684 /*
685 * Debugging: various feature bits
686 */
687
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
690
691 enum {
692 #include "sched_features.h"
693 };
694
695 #undef SCHED_FEAT
696
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
699
700 const_debug unsigned int sysctl_sched_features =
701 #include "sched_features.h"
702 0;
703
704 #undef SCHED_FEAT
705
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
708 #name ,
709
710 static __read_mostly char *sched_feat_names[] = {
711 #include "sched_features.h"
712 NULL
713 };
714
715 #undef SCHED_FEAT
716
717 static int sched_feat_show(struct seq_file *m, void *v)
718 {
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
725 }
726 seq_puts(m, "\n");
727
728 return 0;
729 }
730
731 static ssize_t
732 sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
734 {
735 char buf[64];
736 char *cmp;
737 int neg = 0;
738 int i;
739
740 if (cnt > 63)
741 cnt = 63;
742
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
745
746 buf[cnt] = 0;
747 cmp = strstrip(buf);
748
749 if (strncmp(cmp, "NO_", 3) == 0) {
750 neg = 1;
751 cmp += 3;
752 }
753
754 for (i = 0; sched_feat_names[i]; i++) {
755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
767 *ppos += cnt;
768
769 return cnt;
770 }
771
772 static int sched_feat_open(struct inode *inode, struct file *filp)
773 {
774 return single_open(filp, sched_feat_show, NULL);
775 }
776
777 static const struct file_operations sched_feat_fops = {
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
783 };
784
785 static __init int sched_init_debug(void)
786 {
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791 }
792 late_initcall(sched_init_debug);
793
794 #endif
795
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
797
798 /*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802 const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
804 /*
805 * period over which we average the RT time consumption, measured
806 * in ms.
807 *
808 * default: 1s
809 */
810 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
811
812 /*
813 * period over which we measure -rt task cpu usage in us.
814 * default: 1s
815 */
816 unsigned int sysctl_sched_rt_period = 1000000;
817
818 static __read_mostly int scheduler_running;
819
820 /*
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
823 */
824 int sysctl_sched_rt_runtime = 950000;
825
826 static inline u64 global_rt_period(void)
827 {
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
829 }
830
831 static inline u64 global_rt_runtime(void)
832 {
833 if (sysctl_sched_rt_runtime < 0)
834 return RUNTIME_INF;
835
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
837 }
838
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
841 #endif
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
844 #endif
845
846 static inline int task_current(struct rq *rq, struct task_struct *p)
847 {
848 return rq->curr == p;
849 }
850
851 static inline int task_running(struct rq *rq, struct task_struct *p)
852 {
853 #ifdef CONFIG_SMP
854 return p->on_cpu;
855 #else
856 return task_current(rq, p);
857 #endif
858 }
859
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 {
863 #ifdef CONFIG_SMP
864 /*
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
868 */
869 next->on_cpu = 1;
870 #endif
871 }
872
873 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874 {
875 #ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883 #endif
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887 #endif
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
895 raw_spin_unlock_irq(&rq->lock);
896 }
897
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
907 next->on_cpu = 1;
908 #endif
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq->lock);
911 #else
912 raw_spin_unlock(&rq->lock);
913 #endif
914 }
915
916 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
917 {
918 #ifdef CONFIG_SMP
919 /*
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
925 prev->on_cpu = 0;
926 #endif
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
929 #endif
930 }
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
932
933 /*
934 * __task_rq_lock - lock the rq @p resides on.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 struct rq *rq;
940
941 lockdep_assert_held(&p->pi_lock);
942
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
954 */
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(p->pi_lock)
957 __acquires(rq->lock)
958 {
959 struct rq *rq;
960
961 for (;;) {
962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
969 }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
974 {
975 raw_spin_unlock(&rq->lock);
976 }
977
978 static inline void
979 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
980 __releases(rq->lock)
981 __releases(p->pi_lock)
982 {
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
985 }
986
987 /*
988 * this_rq_lock - lock this runqueue and disable interrupts.
989 */
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
992 {
993 struct rq *rq;
994
995 local_irq_disable();
996 rq = this_rq();
997 raw_spin_lock(&rq->lock);
998
999 return rq;
1000 }
1001
1002 #ifdef CONFIG_SCHED_HRTICK
1003 /*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
1013
1014 /*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019 static inline int hrtick_enabled(struct rq *rq)
1020 {
1021 if (!sched_feat(HRTICK))
1022 return 0;
1023 if (!cpu_active(cpu_of(rq)))
1024 return 0;
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026 }
1027
1028 static void hrtick_clear(struct rq *rq)
1029 {
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032 }
1033
1034 /*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039 {
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
1044 raw_spin_lock(&rq->lock);
1045 update_rq_clock(rq);
1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047 raw_spin_unlock(&rq->lock);
1048
1049 return HRTIMER_NORESTART;
1050 }
1051
1052 #ifdef CONFIG_SMP
1053 /*
1054 * called from hardirq (IPI) context
1055 */
1056 static void __hrtick_start(void *arg)
1057 {
1058 struct rq *rq = arg;
1059
1060 raw_spin_lock(&rq->lock);
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
1063 raw_spin_unlock(&rq->lock);
1064 }
1065
1066 /*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071 static void hrtick_start(struct rq *rq, u64 delay)
1072 {
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1075
1076 hrtimer_set_expires(timer, time);
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 rq->hrtick_csd_pending = 1;
1083 }
1084 }
1085
1086 static int
1087 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088 {
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
1098 hrtick_clear(cpu_rq(cpu));
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103 }
1104
1105 static __init void init_hrtick(void)
1106 {
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108 }
1109 #else
1110 /*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115 static void hrtick_start(struct rq *rq, u64 delay)
1116 {
1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118 HRTIMER_MODE_REL_PINNED, 0);
1119 }
1120
1121 static inline void init_hrtick(void)
1122 {
1123 }
1124 #endif /* CONFIG_SMP */
1125
1126 static void init_rq_hrtick(struct rq *rq)
1127 {
1128 #ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
1130
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134 #endif
1135
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
1138 }
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq *rq)
1141 {
1142 }
1143
1144 static inline void init_rq_hrtick(struct rq *rq)
1145 {
1146 }
1147
1148 static inline void init_hrtick(void)
1149 {
1150 }
1151 #endif /* CONFIG_SCHED_HRTICK */
1152
1153 /*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160 #ifdef CONFIG_SMP
1161
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 #endif
1165
1166 static void resched_task(struct task_struct *p)
1167 {
1168 int cpu;
1169
1170 assert_raw_spin_locked(&task_rq(p)->lock);
1171
1172 if (test_tsk_need_resched(p))
1173 return;
1174
1175 set_tsk_need_resched(p);
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185 }
1186
1187 static void resched_cpu(int cpu)
1188 {
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1193 return;
1194 resched_task(cpu_curr(cpu));
1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
1196 }
1197
1198 #ifdef CONFIG_NO_HZ
1199 /*
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1202 *
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1206 */
1207 int get_nohz_timer_target(void)
1208 {
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1212
1213 rcu_read_lock();
1214 for_each_domain(cpu, sd) {
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1219 }
1220 }
1221 }
1222 unlock:
1223 rcu_read_unlock();
1224 return cpu;
1225 }
1226 /*
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1235 */
1236 void wake_up_idle_cpu(int cpu)
1237 {
1238 struct rq *rq = cpu_rq(cpu);
1239
1240 if (cpu == smp_processor_id())
1241 return;
1242
1243 /*
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1249 */
1250 if (rq->curr != rq->idle)
1251 return;
1252
1253 /*
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1257 */
1258 set_tsk_need_resched(rq->idle);
1259
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1264 }
1265
1266 #endif /* CONFIG_NO_HZ */
1267
1268 static u64 sched_avg_period(void)
1269 {
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1271 }
1272
1273 static void sched_avg_update(struct rq *rq)
1274 {
1275 s64 period = sched_avg_period();
1276
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
1278 /*
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1282 */
1283 asm("" : "+rm" (rq->age_stamp));
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1286 }
1287 }
1288
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290 {
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1293 }
1294
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct *p)
1297 {
1298 assert_raw_spin_locked(&task_rq(p)->lock);
1299 set_tsk_need_resched(p);
1300 }
1301
1302 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303 {
1304 }
1305
1306 static void sched_avg_update(struct rq *rq)
1307 {
1308 }
1309 #endif /* CONFIG_SMP */
1310
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1313 #else
1314 # define WMULT_CONST (1UL << 32)
1315 #endif
1316
1317 #define WMULT_SHIFT 32
1318
1319 /*
1320 * Shift right and round:
1321 */
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1323
1324 /*
1325 * delta *= weight / lw
1326 */
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1330 {
1331 u64 tmp;
1332
1333 /*
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1337 */
1338 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1339 tmp = (u64)delta_exec * scale_load_down(weight);
1340 else
1341 tmp = (u64)delta_exec;
1342
1343 if (!lw->inv_weight) {
1344 unsigned long w = scale_load_down(lw->weight);
1345
1346 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1347 lw->inv_weight = 1;
1348 else if (unlikely(!w))
1349 lw->inv_weight = WMULT_CONST;
1350 else
1351 lw->inv_weight = WMULT_CONST / w;
1352 }
1353
1354 /*
1355 * Check whether we'd overflow the 64-bit multiplication:
1356 */
1357 if (unlikely(tmp > WMULT_CONST))
1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1359 WMULT_SHIFT/2);
1360 else
1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1362
1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 }
1365
1366 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1367 {
1368 lw->weight += inc;
1369 lw->inv_weight = 0;
1370 }
1371
1372 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1373 {
1374 lw->weight -= dec;
1375 lw->inv_weight = 0;
1376 }
1377
1378 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1379 {
1380 lw->weight = w;
1381 lw->inv_weight = 0;
1382 }
1383
1384 /*
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1391 */
1392
1393 #define WEIGHT_IDLEPRIO 3
1394 #define WMULT_IDLEPRIO 1431655765
1395
1396 /*
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1401 *
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1407 */
1408 static const int prio_to_weight[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1417 };
1418
1419 /*
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 *
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1425 */
1426 static const u32 prio_to_wmult[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1435 };
1436
1437 /* Time spent by the tasks of the cpu accounting group executing in ... */
1438 enum cpuacct_stat_index {
1439 CPUACCT_STAT_USER, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1441
1442 CPUACCT_STAT_NSTATS,
1443 };
1444
1445 #ifdef CONFIG_CGROUP_CPUACCT
1446 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1447 static void cpuacct_update_stats(struct task_struct *tsk,
1448 enum cpuacct_stat_index idx, cputime_t val);
1449 #else
1450 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451 static inline void cpuacct_update_stats(struct task_struct *tsk,
1452 enum cpuacct_stat_index idx, cputime_t val) {}
1453 #endif
1454
1455 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1456 {
1457 update_load_add(&rq->load, load);
1458 }
1459
1460 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1461 {
1462 update_load_sub(&rq->load, load);
1463 }
1464
1465 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1466 typedef int (*tg_visitor)(struct task_group *, void *);
1467
1468 /*
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1471 */
1472 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1473 {
1474 struct task_group *parent, *child;
1475 int ret;
1476
1477 rcu_read_lock();
1478 parent = &root_task_group;
1479 down:
1480 ret = (*down)(parent, data);
1481 if (ret)
1482 goto out_unlock;
1483 list_for_each_entry_rcu(child, &parent->children, siblings) {
1484 parent = child;
1485 goto down;
1486
1487 up:
1488 continue;
1489 }
1490 ret = (*up)(parent, data);
1491 if (ret)
1492 goto out_unlock;
1493
1494 child = parent;
1495 parent = parent->parent;
1496 if (parent)
1497 goto up;
1498 out_unlock:
1499 rcu_read_unlock();
1500
1501 return ret;
1502 }
1503
1504 static int tg_nop(struct task_group *tg, void *data)
1505 {
1506 return 0;
1507 }
1508 #endif
1509
1510 #ifdef CONFIG_SMP
1511 /* Used instead of source_load when we know the type == 0 */
1512 static unsigned long weighted_cpuload(const int cpu)
1513 {
1514 return cpu_rq(cpu)->load.weight;
1515 }
1516
1517 /*
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 *
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1523 */
1524 static unsigned long source_load(int cpu, int type)
1525 {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return min(rq->cpu_load[type-1], total);
1533 }
1534
1535 /*
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1538 */
1539 static unsigned long target_load(int cpu, int type)
1540 {
1541 struct rq *rq = cpu_rq(cpu);
1542 unsigned long total = weighted_cpuload(cpu);
1543
1544 if (type == 0 || !sched_feat(LB_BIAS))
1545 return total;
1546
1547 return max(rq->cpu_load[type-1], total);
1548 }
1549
1550 static unsigned long power_of(int cpu)
1551 {
1552 return cpu_rq(cpu)->cpu_power;
1553 }
1554
1555 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557 static unsigned long cpu_avg_load_per_task(int cpu)
1558 {
1559 struct rq *rq = cpu_rq(cpu);
1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
1564 else
1565 rq->avg_load_per_task = 0;
1566
1567 return rq->avg_load_per_task;
1568 }
1569
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1571
1572 /*
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1576 */
1577 static int tg_load_down(struct task_group *tg, void *data)
1578 {
1579 unsigned long load;
1580 long cpu = (long)data;
1581
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->se[cpu]->load.weight;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
1589
1590 tg->cfs_rq[cpu]->h_load = load;
1591
1592 return 0;
1593 }
1594
1595 static void update_h_load(long cpu)
1596 {
1597 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1598 }
1599
1600 #endif
1601
1602 #ifdef CONFIG_PREEMPT
1603
1604 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1605
1606 /*
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
1613 */
1614 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1615 __releases(this_rq->lock)
1616 __acquires(busiest->lock)
1617 __acquires(this_rq->lock)
1618 {
1619 raw_spin_unlock(&this_rq->lock);
1620 double_rq_lock(this_rq, busiest);
1621
1622 return 1;
1623 }
1624
1625 #else
1626 /*
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1632 */
1633 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1634 __releases(this_rq->lock)
1635 __acquires(busiest->lock)
1636 __acquires(this_rq->lock)
1637 {
1638 int ret = 0;
1639
1640 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1641 if (busiest < this_rq) {
1642 raw_spin_unlock(&this_rq->lock);
1643 raw_spin_lock(&busiest->lock);
1644 raw_spin_lock_nested(&this_rq->lock,
1645 SINGLE_DEPTH_NESTING);
1646 ret = 1;
1647 } else
1648 raw_spin_lock_nested(&busiest->lock,
1649 SINGLE_DEPTH_NESTING);
1650 }
1651 return ret;
1652 }
1653
1654 #endif /* CONFIG_PREEMPT */
1655
1656 /*
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1658 */
1659 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 {
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
1663 raw_spin_unlock(&this_rq->lock);
1664 BUG_ON(1);
1665 }
1666
1667 return _double_lock_balance(this_rq, busiest);
1668 }
1669
1670 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1671 __releases(busiest->lock)
1672 {
1673 raw_spin_unlock(&busiest->lock);
1674 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1675 }
1676
1677 /*
1678 * double_rq_lock - safely lock two runqueues
1679 *
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1682 */
1683 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1684 __acquires(rq1->lock)
1685 __acquires(rq2->lock)
1686 {
1687 BUG_ON(!irqs_disabled());
1688 if (rq1 == rq2) {
1689 raw_spin_lock(&rq1->lock);
1690 __acquire(rq2->lock); /* Fake it out ;) */
1691 } else {
1692 if (rq1 < rq2) {
1693 raw_spin_lock(&rq1->lock);
1694 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1695 } else {
1696 raw_spin_lock(&rq2->lock);
1697 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1698 }
1699 }
1700 }
1701
1702 /*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711 {
1712 raw_spin_unlock(&rq1->lock);
1713 if (rq1 != rq2)
1714 raw_spin_unlock(&rq2->lock);
1715 else
1716 __release(rq2->lock);
1717 }
1718
1719 #else /* CONFIG_SMP */
1720
1721 /*
1722 * double_rq_lock - safely lock two runqueues
1723 *
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1726 */
1727 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1728 __acquires(rq1->lock)
1729 __acquires(rq2->lock)
1730 {
1731 BUG_ON(!irqs_disabled());
1732 BUG_ON(rq1 != rq2);
1733 raw_spin_lock(&rq1->lock);
1734 __acquire(rq2->lock); /* Fake it out ;) */
1735 }
1736
1737 /*
1738 * double_rq_unlock - safely unlock two runqueues
1739 *
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1742 */
1743 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1744 __releases(rq1->lock)
1745 __releases(rq2->lock)
1746 {
1747 BUG_ON(rq1 != rq2);
1748 raw_spin_unlock(&rq1->lock);
1749 __release(rq2->lock);
1750 }
1751
1752 #endif
1753
1754 static void calc_load_account_idle(struct rq *this_rq);
1755 static void update_sysctl(void);
1756 static int get_update_sysctl_factor(void);
1757 static void update_cpu_load(struct rq *this_rq);
1758
1759 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1760 {
1761 set_task_rq(p, cpu);
1762 #ifdef CONFIG_SMP
1763 /*
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1767 */
1768 smp_wmb();
1769 task_thread_info(p)->cpu = cpu;
1770 #endif
1771 }
1772
1773 static const struct sched_class rt_sched_class;
1774
1775 #define sched_class_highest (&stop_sched_class)
1776 #define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
1778
1779 #include "sched_stats.h"
1780
1781 static void inc_nr_running(struct rq *rq)
1782 {
1783 rq->nr_running++;
1784 }
1785
1786 static void dec_nr_running(struct rq *rq)
1787 {
1788 rq->nr_running--;
1789 }
1790
1791 static void set_load_weight(struct task_struct *p)
1792 {
1793 int prio = p->static_prio - MAX_RT_PRIO;
1794 struct load_weight *load = &p->se.load;
1795
1796 /*
1797 * SCHED_IDLE tasks get minimal weight:
1798 */
1799 if (p->policy == SCHED_IDLE) {
1800 load->weight = scale_load(WEIGHT_IDLEPRIO);
1801 load->inv_weight = WMULT_IDLEPRIO;
1802 return;
1803 }
1804
1805 load->weight = scale_load(prio_to_weight[prio]);
1806 load->inv_weight = prio_to_wmult[prio];
1807 }
1808
1809 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1810 {
1811 update_rq_clock(rq);
1812 sched_info_queued(p);
1813 p->sched_class->enqueue_task(rq, p, flags);
1814 }
1815
1816 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1817 {
1818 update_rq_clock(rq);
1819 sched_info_dequeued(p);
1820 p->sched_class->dequeue_task(rq, p, flags);
1821 }
1822
1823 /*
1824 * activate_task - move a task to the runqueue.
1825 */
1826 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1827 {
1828 if (task_contributes_to_load(p))
1829 rq->nr_uninterruptible--;
1830
1831 enqueue_task(rq, p, flags);
1832 inc_nr_running(rq);
1833 }
1834
1835 /*
1836 * deactivate_task - remove a task from the runqueue.
1837 */
1838 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1839 {
1840 if (task_contributes_to_load(p))
1841 rq->nr_uninterruptible++;
1842
1843 dequeue_task(rq, p, flags);
1844 dec_nr_running(rq);
1845 }
1846
1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848
1849 /*
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
1859 */
1860 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1861 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1862
1863 static DEFINE_PER_CPU(u64, irq_start_time);
1864 static int sched_clock_irqtime;
1865
1866 void enable_sched_clock_irqtime(void)
1867 {
1868 sched_clock_irqtime = 1;
1869 }
1870
1871 void disable_sched_clock_irqtime(void)
1872 {
1873 sched_clock_irqtime = 0;
1874 }
1875
1876 #ifndef CONFIG_64BIT
1877 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1878
1879 static inline void irq_time_write_begin(void)
1880 {
1881 __this_cpu_inc(irq_time_seq.sequence);
1882 smp_wmb();
1883 }
1884
1885 static inline void irq_time_write_end(void)
1886 {
1887 smp_wmb();
1888 __this_cpu_inc(irq_time_seq.sequence);
1889 }
1890
1891 static inline u64 irq_time_read(int cpu)
1892 {
1893 u64 irq_time;
1894 unsigned seq;
1895
1896 do {
1897 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1898 irq_time = per_cpu(cpu_softirq_time, cpu) +
1899 per_cpu(cpu_hardirq_time, cpu);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1901
1902 return irq_time;
1903 }
1904 #else /* CONFIG_64BIT */
1905 static inline void irq_time_write_begin(void)
1906 {
1907 }
1908
1909 static inline void irq_time_write_end(void)
1910 {
1911 }
1912
1913 static inline u64 irq_time_read(int cpu)
1914 {
1915 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1916 }
1917 #endif /* CONFIG_64BIT */
1918
1919 /*
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1922 */
1923 void account_system_vtime(struct task_struct *curr)
1924 {
1925 unsigned long flags;
1926 s64 delta;
1927 int cpu;
1928
1929 if (!sched_clock_irqtime)
1930 return;
1931
1932 local_irq_save(flags);
1933
1934 cpu = smp_processor_id();
1935 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1936 __this_cpu_add(irq_start_time, delta);
1937
1938 irq_time_write_begin();
1939 /*
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1944 */
1945 if (hardirq_count())
1946 __this_cpu_add(cpu_hardirq_time, delta);
1947 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1948 __this_cpu_add(cpu_softirq_time, delta);
1949
1950 irq_time_write_end();
1951 local_irq_restore(flags);
1952 }
1953 EXPORT_SYMBOL_GPL(account_system_vtime);
1954
1955 static void update_rq_clock_task(struct rq *rq, s64 delta)
1956 {
1957 s64 irq_delta;
1958
1959 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1960
1961 /*
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1965 *
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1969 * monotonic.
1970 *
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1974 * atomic ops.
1975 */
1976 if (irq_delta > delta)
1977 irq_delta = delta;
1978
1979 rq->prev_irq_time += irq_delta;
1980 delta -= irq_delta;
1981 rq->clock_task += delta;
1982
1983 if (irq_delta && sched_feat(NONIRQ_POWER))
1984 sched_rt_avg_update(rq, irq_delta);
1985 }
1986
1987 static int irqtime_account_hi_update(void)
1988 {
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1991 u64 latest_ns;
1992 int ret = 0;
1993
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_hardirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1997 ret = 1;
1998 local_irq_restore(flags);
1999 return ret;
2000 }
2001
2002 static int irqtime_account_si_update(void)
2003 {
2004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2005 unsigned long flags;
2006 u64 latest_ns;
2007 int ret = 0;
2008
2009 local_irq_save(flags);
2010 latest_ns = this_cpu_read(cpu_softirq_time);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2012 ret = 1;
2013 local_irq_restore(flags);
2014 return ret;
2015 }
2016
2017 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2018
2019 #define sched_clock_irqtime (0)
2020
2021 static void update_rq_clock_task(struct rq *rq, s64 delta)
2022 {
2023 rq->clock_task += delta;
2024 }
2025
2026 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2027
2028 #include "sched_idletask.c"
2029 #include "sched_fair.c"
2030 #include "sched_rt.c"
2031 #include "sched_autogroup.c"
2032 #include "sched_stoptask.c"
2033 #ifdef CONFIG_SCHED_DEBUG
2034 # include "sched_debug.c"
2035 #endif
2036
2037 void sched_set_stop_task(int cpu, struct task_struct *stop)
2038 {
2039 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2040 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2041
2042 if (stop) {
2043 /*
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2046 *
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2050 */
2051 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2052
2053 stop->sched_class = &stop_sched_class;
2054 }
2055
2056 cpu_rq(cpu)->stop = stop;
2057
2058 if (old_stop) {
2059 /*
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2062 */
2063 old_stop->sched_class = &rt_sched_class;
2064 }
2065 }
2066
2067 /*
2068 * __normal_prio - return the priority that is based on the static prio
2069 */
2070 static inline int __normal_prio(struct task_struct *p)
2071 {
2072 return p->static_prio;
2073 }
2074
2075 /*
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2081 */
2082 static inline int normal_prio(struct task_struct *p)
2083 {
2084 int prio;
2085
2086 if (task_has_rt_policy(p))
2087 prio = MAX_RT_PRIO-1 - p->rt_priority;
2088 else
2089 prio = __normal_prio(p);
2090 return prio;
2091 }
2092
2093 /*
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2099 */
2100 static int effective_prio(struct task_struct *p)
2101 {
2102 p->normal_prio = normal_prio(p);
2103 /*
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2107 */
2108 if (!rt_prio(p->prio))
2109 return p->normal_prio;
2110 return p->prio;
2111 }
2112
2113 /**
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2116 */
2117 inline int task_curr(const struct task_struct *p)
2118 {
2119 return cpu_curr(task_cpu(p)) == p;
2120 }
2121
2122 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2123 const struct sched_class *prev_class,
2124 int oldprio)
2125 {
2126 if (prev_class != p->sched_class) {
2127 if (prev_class->switched_from)
2128 prev_class->switched_from(rq, p);
2129 p->sched_class->switched_to(rq, p);
2130 } else if (oldprio != p->prio)
2131 p->sched_class->prio_changed(rq, p, oldprio);
2132 }
2133
2134 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2135 {
2136 const struct sched_class *class;
2137
2138 if (p->sched_class == rq->curr->sched_class) {
2139 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2140 } else {
2141 for_each_class(class) {
2142 if (class == rq->curr->sched_class)
2143 break;
2144 if (class == p->sched_class) {
2145 resched_task(rq->curr);
2146 break;
2147 }
2148 }
2149 }
2150
2151 /*
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2154 */
2155 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2156 rq->skip_clock_update = 1;
2157 }
2158
2159 #ifdef CONFIG_SMP
2160 /*
2161 * Is this task likely cache-hot:
2162 */
2163 static int
2164 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2165 {
2166 s64 delta;
2167
2168 if (p->sched_class != &fair_sched_class)
2169 return 0;
2170
2171 if (unlikely(p->policy == SCHED_IDLE))
2172 return 0;
2173
2174 /*
2175 * Buddy candidates are cache hot:
2176 */
2177 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2178 (&p->se == cfs_rq_of(&p->se)->next ||
2179 &p->se == cfs_rq_of(&p->se)->last))
2180 return 1;
2181
2182 if (sysctl_sched_migration_cost == -1)
2183 return 1;
2184 if (sysctl_sched_migration_cost == 0)
2185 return 0;
2186
2187 delta = now - p->se.exec_start;
2188
2189 return delta < (s64)sysctl_sched_migration_cost;
2190 }
2191
2192 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2193 {
2194 #ifdef CONFIG_SCHED_DEBUG
2195 /*
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2198 */
2199 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2200 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2201
2202 #ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2204 lockdep_is_held(&task_rq(p)->lock)));
2205 #endif
2206 #endif
2207
2208 trace_sched_migrate_task(p, new_cpu);
2209
2210 if (task_cpu(p) != new_cpu) {
2211 p->se.nr_migrations++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2213 }
2214
2215 __set_task_cpu(p, new_cpu);
2216 }
2217
2218 struct migration_arg {
2219 struct task_struct *task;
2220 int dest_cpu;
2221 };
2222
2223 static int migration_cpu_stop(void *data);
2224
2225 /*
2226 * wait_task_inactive - wait for a thread to unschedule.
2227 *
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2234 *
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2240 */
2241 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2242 {
2243 unsigned long flags;
2244 int running, on_rq;
2245 unsigned long ncsw;
2246 struct rq *rq;
2247
2248 for (;;) {
2249 /*
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2253 * work out!
2254 */
2255 rq = task_rq(p);
2256
2257 /*
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2260 * any locks.
2261 *
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2267 */
2268 while (task_running(rq, p)) {
2269 if (match_state && unlikely(p->state != match_state))
2270 return 0;
2271 cpu_relax();
2272 }
2273
2274 /*
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2278 */
2279 rq = task_rq_lock(p, &flags);
2280 trace_sched_wait_task(p);
2281 running = task_running(rq, p);
2282 on_rq = p->on_rq;
2283 ncsw = 0;
2284 if (!match_state || p->state == match_state)
2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286 task_rq_unlock(rq, p, &flags);
2287
2288 /*
2289 * If it changed from the expected state, bail out now.
2290 */
2291 if (unlikely(!ncsw))
2292 break;
2293
2294 /*
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2297 *
2298 * Oops. Go back and try again..
2299 */
2300 if (unlikely(running)) {
2301 cpu_relax();
2302 continue;
2303 }
2304
2305 /*
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2308 * preempted!
2309 *
2310 * So if it was still runnable (but just not actively
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2313 */
2314 if (unlikely(on_rq)) {
2315 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2316
2317 set_current_state(TASK_UNINTERRUPTIBLE);
2318 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2319 continue;
2320 }
2321
2322 /*
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2326 */
2327 break;
2328 }
2329
2330 return ncsw;
2331 }
2332
2333 /***
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2336 *
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2339 *
2340 * NOTE: this function doesn't have to take the runqueue lock,
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2344 * achieved as well.
2345 */
2346 void kick_process(struct task_struct *p)
2347 {
2348 int cpu;
2349
2350 preempt_disable();
2351 cpu = task_cpu(p);
2352 if ((cpu != smp_processor_id()) && task_curr(p))
2353 smp_send_reschedule(cpu);
2354 preempt_enable();
2355 }
2356 EXPORT_SYMBOL_GPL(kick_process);
2357 #endif /* CONFIG_SMP */
2358
2359 #ifdef CONFIG_SMP
2360 /*
2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2362 */
2363 static int select_fallback_rq(int cpu, struct task_struct *p)
2364 {
2365 int dest_cpu;
2366 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2367
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2370 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2371 return dest_cpu;
2372
2373 /* Any allowed, online CPU? */
2374 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2375 if (dest_cpu < nr_cpu_ids)
2376 return dest_cpu;
2377
2378 /* No more Mr. Nice Guy. */
2379 dest_cpu = cpuset_cpus_allowed_fallback(p);
2380 /*
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2383 * leave kernel.
2384 */
2385 if (p->mm && printk_ratelimit()) {
2386 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p), p->comm, cpu);
2388 }
2389
2390 return dest_cpu;
2391 }
2392
2393 /*
2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2395 */
2396 static inline
2397 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2398 {
2399 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2400
2401 /*
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2404 * cpu.
2405 *
2406 * Since this is common to all placement strategies, this lives here.
2407 *
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2410 */
2411 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2412 !cpu_online(cpu)))
2413 cpu = select_fallback_rq(task_cpu(p), p);
2414
2415 return cpu;
2416 }
2417
2418 static void update_avg(u64 *avg, u64 sample)
2419 {
2420 s64 diff = sample - *avg;
2421 *avg += diff >> 3;
2422 }
2423 #endif
2424
2425 static void
2426 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2427 {
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct rq *rq = this_rq();
2430
2431 #ifdef CONFIG_SMP
2432 int this_cpu = smp_processor_id();
2433
2434 if (cpu == this_cpu) {
2435 schedstat_inc(rq, ttwu_local);
2436 schedstat_inc(p, se.statistics.nr_wakeups_local);
2437 } else {
2438 struct sched_domain *sd;
2439
2440 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2441 rcu_read_lock();
2442 for_each_domain(this_cpu, sd) {
2443 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2444 schedstat_inc(sd, ttwu_wake_remote);
2445 break;
2446 }
2447 }
2448 rcu_read_unlock();
2449 }
2450
2451 if (wake_flags & WF_MIGRATED)
2452 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2453
2454 #endif /* CONFIG_SMP */
2455
2456 schedstat_inc(rq, ttwu_count);
2457 schedstat_inc(p, se.statistics.nr_wakeups);
2458
2459 if (wake_flags & WF_SYNC)
2460 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2461
2462 #endif /* CONFIG_SCHEDSTATS */
2463 }
2464
2465 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2466 {
2467 activate_task(rq, p, en_flags);
2468 p->on_rq = 1;
2469
2470 /* if a worker is waking up, notify workqueue */
2471 if (p->flags & PF_WQ_WORKER)
2472 wq_worker_waking_up(p, cpu_of(rq));
2473 }
2474
2475 /*
2476 * Mark the task runnable and perform wakeup-preemption.
2477 */
2478 static void
2479 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2480 {
2481 trace_sched_wakeup(p, true);
2482 check_preempt_curr(rq, p, wake_flags);
2483
2484 p->state = TASK_RUNNING;
2485 #ifdef CONFIG_SMP
2486 if (p->sched_class->task_woken)
2487 p->sched_class->task_woken(rq, p);
2488
2489 if (rq->idle_stamp) {
2490 u64 delta = rq->clock - rq->idle_stamp;
2491 u64 max = 2*sysctl_sched_migration_cost;
2492
2493 if (delta > max)
2494 rq->avg_idle = max;
2495 else
2496 update_avg(&rq->avg_idle, delta);
2497 rq->idle_stamp = 0;
2498 }
2499 #endif
2500 }
2501
2502 static void
2503 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2504 {
2505 #ifdef CONFIG_SMP
2506 if (p->sched_contributes_to_load)
2507 rq->nr_uninterruptible--;
2508 #endif
2509
2510 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2511 ttwu_do_wakeup(rq, p, wake_flags);
2512 }
2513
2514 /*
2515 * Called in case the task @p isn't fully descheduled from its runqueue,
2516 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2517 * since all we need to do is flip p->state to TASK_RUNNING, since
2518 * the task is still ->on_rq.
2519 */
2520 static int ttwu_remote(struct task_struct *p, int wake_flags)
2521 {
2522 struct rq *rq;
2523 int ret = 0;
2524
2525 rq = __task_rq_lock(p);
2526 if (p->on_rq) {
2527 ttwu_do_wakeup(rq, p, wake_flags);
2528 ret = 1;
2529 }
2530 __task_rq_unlock(rq);
2531
2532 return ret;
2533 }
2534
2535 #ifdef CONFIG_SMP
2536 static void sched_ttwu_pending(void)
2537 {
2538 struct rq *rq = this_rq();
2539 struct task_struct *list = xchg(&rq->wake_list, NULL);
2540
2541 if (!list)
2542 return;
2543
2544 raw_spin_lock(&rq->lock);
2545
2546 while (list) {
2547 struct task_struct *p = list;
2548 list = list->wake_entry;
2549 ttwu_do_activate(rq, p, 0);
2550 }
2551
2552 raw_spin_unlock(&rq->lock);
2553 }
2554
2555 void scheduler_ipi(void)
2556 {
2557 sched_ttwu_pending();
2558 }
2559
2560 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2561 {
2562 struct rq *rq = cpu_rq(cpu);
2563 struct task_struct *next = rq->wake_list;
2564
2565 for (;;) {
2566 struct task_struct *old = next;
2567
2568 p->wake_entry = next;
2569 next = cmpxchg(&rq->wake_list, old, p);
2570 if (next == old)
2571 break;
2572 }
2573
2574 if (!next)
2575 smp_send_reschedule(cpu);
2576 }
2577
2578 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2579 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2580 {
2581 struct rq *rq;
2582 int ret = 0;
2583
2584 rq = __task_rq_lock(p);
2585 if (p->on_cpu) {
2586 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2587 ttwu_do_wakeup(rq, p, wake_flags);
2588 ret = 1;
2589 }
2590 __task_rq_unlock(rq);
2591
2592 return ret;
2593
2594 }
2595 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2596 #endif /* CONFIG_SMP */
2597
2598 static void ttwu_queue(struct task_struct *p, int cpu)
2599 {
2600 struct rq *rq = cpu_rq(cpu);
2601
2602 #if defined(CONFIG_SMP)
2603 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2604 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2605 ttwu_queue_remote(p, cpu);
2606 return;
2607 }
2608 #endif
2609
2610 raw_spin_lock(&rq->lock);
2611 ttwu_do_activate(rq, p, 0);
2612 raw_spin_unlock(&rq->lock);
2613 }
2614
2615 /**
2616 * try_to_wake_up - wake up a thread
2617 * @p: the thread to be awakened
2618 * @state: the mask of task states that can be woken
2619 * @wake_flags: wake modifier flags (WF_*)
2620 *
2621 * Put it on the run-queue if it's not already there. The "current"
2622 * thread is always on the run-queue (except when the actual
2623 * re-schedule is in progress), and as such you're allowed to do
2624 * the simpler "current->state = TASK_RUNNING" to mark yourself
2625 * runnable without the overhead of this.
2626 *
2627 * Returns %true if @p was woken up, %false if it was already running
2628 * or @state didn't match @p's state.
2629 */
2630 static int
2631 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2632 {
2633 unsigned long flags;
2634 int cpu, success = 0;
2635
2636 smp_wmb();
2637 raw_spin_lock_irqsave(&p->pi_lock, flags);
2638 if (!(p->state & state))
2639 goto out;
2640
2641 success = 1; /* we're going to change ->state */
2642 cpu = task_cpu(p);
2643
2644 if (p->on_rq && ttwu_remote(p, wake_flags))
2645 goto stat;
2646
2647 #ifdef CONFIG_SMP
2648 /*
2649 * If the owning (remote) cpu is still in the middle of schedule() with
2650 * this task as prev, wait until its done referencing the task.
2651 */
2652 while (p->on_cpu) {
2653 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2654 /*
2655 * In case the architecture enables interrupts in
2656 * context_switch(), we cannot busy wait, since that
2657 * would lead to deadlocks when an interrupt hits and
2658 * tries to wake up @prev. So bail and do a complete
2659 * remote wakeup.
2660 */
2661 if (ttwu_activate_remote(p, wake_flags))
2662 goto stat;
2663 #else
2664 cpu_relax();
2665 #endif
2666 }
2667 /*
2668 * Pairs with the smp_wmb() in finish_lock_switch().
2669 */
2670 smp_rmb();
2671
2672 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2673 p->state = TASK_WAKING;
2674
2675 if (p->sched_class->task_waking)
2676 p->sched_class->task_waking(p);
2677
2678 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2679 if (task_cpu(p) != cpu) {
2680 wake_flags |= WF_MIGRATED;
2681 set_task_cpu(p, cpu);
2682 }
2683 #endif /* CONFIG_SMP */
2684
2685 ttwu_queue(p, cpu);
2686 stat:
2687 ttwu_stat(p, cpu, wake_flags);
2688 out:
2689 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2690
2691 return success;
2692 }
2693
2694 /**
2695 * try_to_wake_up_local - try to wake up a local task with rq lock held
2696 * @p: the thread to be awakened
2697 *
2698 * Put @p on the run-queue if it's not already there. The caller must
2699 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2700 * the current task.
2701 */
2702 static void try_to_wake_up_local(struct task_struct *p)
2703 {
2704 struct rq *rq = task_rq(p);
2705
2706 BUG_ON(rq != this_rq());
2707 BUG_ON(p == current);
2708 lockdep_assert_held(&rq->lock);
2709
2710 if (!raw_spin_trylock(&p->pi_lock)) {
2711 raw_spin_unlock(&rq->lock);
2712 raw_spin_lock(&p->pi_lock);
2713 raw_spin_lock(&rq->lock);
2714 }
2715
2716 if (!(p->state & TASK_NORMAL))
2717 goto out;
2718
2719 if (!p->on_rq)
2720 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2721
2722 ttwu_do_wakeup(rq, p, 0);
2723 ttwu_stat(p, smp_processor_id(), 0);
2724 out:
2725 raw_spin_unlock(&p->pi_lock);
2726 }
2727
2728 /**
2729 * wake_up_process - Wake up a specific process
2730 * @p: The process to be woken up.
2731 *
2732 * Attempt to wake up the nominated process and move it to the set of runnable
2733 * processes. Returns 1 if the process was woken up, 0 if it was already
2734 * running.
2735 *
2736 * It may be assumed that this function implies a write memory barrier before
2737 * changing the task state if and only if any tasks are woken up.
2738 */
2739 int wake_up_process(struct task_struct *p)
2740 {
2741 return try_to_wake_up(p, TASK_ALL, 0);
2742 }
2743 EXPORT_SYMBOL(wake_up_process);
2744
2745 int wake_up_state(struct task_struct *p, unsigned int state)
2746 {
2747 return try_to_wake_up(p, state, 0);
2748 }
2749
2750 /*
2751 * Perform scheduler related setup for a newly forked process p.
2752 * p is forked by current.
2753 *
2754 * __sched_fork() is basic setup used by init_idle() too:
2755 */
2756 static void __sched_fork(struct task_struct *p)
2757 {
2758 p->on_rq = 0;
2759
2760 p->se.on_rq = 0;
2761 p->se.exec_start = 0;
2762 p->se.sum_exec_runtime = 0;
2763 p->se.prev_sum_exec_runtime = 0;
2764 p->se.nr_migrations = 0;
2765 p->se.vruntime = 0;
2766 INIT_LIST_HEAD(&p->se.group_node);
2767
2768 #ifdef CONFIG_SCHEDSTATS
2769 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2770 #endif
2771
2772 INIT_LIST_HEAD(&p->rt.run_list);
2773
2774 #ifdef CONFIG_PREEMPT_NOTIFIERS
2775 INIT_HLIST_HEAD(&p->preempt_notifiers);
2776 #endif
2777 }
2778
2779 /*
2780 * fork()/clone()-time setup:
2781 */
2782 void sched_fork(struct task_struct *p)
2783 {
2784 unsigned long flags;
2785 int cpu = get_cpu();
2786
2787 __sched_fork(p);
2788 /*
2789 * We mark the process as running here. This guarantees that
2790 * nobody will actually run it, and a signal or other external
2791 * event cannot wake it up and insert it on the runqueue either.
2792 */
2793 p->state = TASK_RUNNING;
2794
2795 /*
2796 * Revert to default priority/policy on fork if requested.
2797 */
2798 if (unlikely(p->sched_reset_on_fork)) {
2799 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2800 p->policy = SCHED_NORMAL;
2801 p->normal_prio = p->static_prio;
2802 }
2803
2804 if (PRIO_TO_NICE(p->static_prio) < 0) {
2805 p->static_prio = NICE_TO_PRIO(0);
2806 p->normal_prio = p->static_prio;
2807 set_load_weight(p);
2808 }
2809
2810 /*
2811 * We don't need the reset flag anymore after the fork. It has
2812 * fulfilled its duty:
2813 */
2814 p->sched_reset_on_fork = 0;
2815 }
2816
2817 /*
2818 * Make sure we do not leak PI boosting priority to the child.
2819 */
2820 p->prio = current->normal_prio;
2821
2822 if (!rt_prio(p->prio))
2823 p->sched_class = &fair_sched_class;
2824
2825 if (p->sched_class->task_fork)
2826 p->sched_class->task_fork(p);
2827
2828 /*
2829 * The child is not yet in the pid-hash so no cgroup attach races,
2830 * and the cgroup is pinned to this child due to cgroup_fork()
2831 * is ran before sched_fork().
2832 *
2833 * Silence PROVE_RCU.
2834 */
2835 raw_spin_lock_irqsave(&p->pi_lock, flags);
2836 set_task_cpu(p, cpu);
2837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2838
2839 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2840 if (likely(sched_info_on()))
2841 memset(&p->sched_info, 0, sizeof(p->sched_info));
2842 #endif
2843 #if defined(CONFIG_SMP)
2844 p->on_cpu = 0;
2845 #endif
2846 #ifdef CONFIG_PREEMPT_COUNT
2847 /* Want to start with kernel preemption disabled. */
2848 task_thread_info(p)->preempt_count = 1;
2849 #endif
2850 #ifdef CONFIG_SMP
2851 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2852 #endif
2853
2854 put_cpu();
2855 }
2856
2857 /*
2858 * wake_up_new_task - wake up a newly created task for the first time.
2859 *
2860 * This function will do some initial scheduler statistics housekeeping
2861 * that must be done for every newly created context, then puts the task
2862 * on the runqueue and wakes it.
2863 */
2864 void wake_up_new_task(struct task_struct *p)
2865 {
2866 unsigned long flags;
2867 struct rq *rq;
2868
2869 raw_spin_lock_irqsave(&p->pi_lock, flags);
2870 #ifdef CONFIG_SMP
2871 /*
2872 * Fork balancing, do it here and not earlier because:
2873 * - cpus_allowed can change in the fork path
2874 * - any previously selected cpu might disappear through hotplug
2875 */
2876 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2877 #endif
2878
2879 rq = __task_rq_lock(p);
2880 activate_task(rq, p, 0);
2881 p->on_rq = 1;
2882 trace_sched_wakeup_new(p, true);
2883 check_preempt_curr(rq, p, WF_FORK);
2884 #ifdef CONFIG_SMP
2885 if (p->sched_class->task_woken)
2886 p->sched_class->task_woken(rq, p);
2887 #endif
2888 task_rq_unlock(rq, p, &flags);
2889 }
2890
2891 #ifdef CONFIG_PREEMPT_NOTIFIERS
2892
2893 /**
2894 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2895 * @notifier: notifier struct to register
2896 */
2897 void preempt_notifier_register(struct preempt_notifier *notifier)
2898 {
2899 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2900 }
2901 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2902
2903 /**
2904 * preempt_notifier_unregister - no longer interested in preemption notifications
2905 * @notifier: notifier struct to unregister
2906 *
2907 * This is safe to call from within a preemption notifier.
2908 */
2909 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2910 {
2911 hlist_del(&notifier->link);
2912 }
2913 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2914
2915 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2916 {
2917 struct preempt_notifier *notifier;
2918 struct hlist_node *node;
2919
2920 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2921 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2922 }
2923
2924 static void
2925 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2926 struct task_struct *next)
2927 {
2928 struct preempt_notifier *notifier;
2929 struct hlist_node *node;
2930
2931 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2932 notifier->ops->sched_out(notifier, next);
2933 }
2934
2935 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2936
2937 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2938 {
2939 }
2940
2941 static void
2942 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2943 struct task_struct *next)
2944 {
2945 }
2946
2947 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2948
2949 /**
2950 * prepare_task_switch - prepare to switch tasks
2951 * @rq: the runqueue preparing to switch
2952 * @prev: the current task that is being switched out
2953 * @next: the task we are going to switch to.
2954 *
2955 * This is called with the rq lock held and interrupts off. It must
2956 * be paired with a subsequent finish_task_switch after the context
2957 * switch.
2958 *
2959 * prepare_task_switch sets up locking and calls architecture specific
2960 * hooks.
2961 */
2962 static inline void
2963 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2964 struct task_struct *next)
2965 {
2966 sched_info_switch(prev, next);
2967 perf_event_task_sched_out(prev, next);
2968 fire_sched_out_preempt_notifiers(prev, next);
2969 prepare_lock_switch(rq, next);
2970 prepare_arch_switch(next);
2971 trace_sched_switch(prev, next);
2972 }
2973
2974 /**
2975 * finish_task_switch - clean up after a task-switch
2976 * @rq: runqueue associated with task-switch
2977 * @prev: the thread we just switched away from.
2978 *
2979 * finish_task_switch must be called after the context switch, paired
2980 * with a prepare_task_switch call before the context switch.
2981 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2982 * and do any other architecture-specific cleanup actions.
2983 *
2984 * Note that we may have delayed dropping an mm in context_switch(). If
2985 * so, we finish that here outside of the runqueue lock. (Doing it
2986 * with the lock held can cause deadlocks; see schedule() for
2987 * details.)
2988 */
2989 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2990 __releases(rq->lock)
2991 {
2992 struct mm_struct *mm = rq->prev_mm;
2993 long prev_state;
2994
2995 rq->prev_mm = NULL;
2996
2997 /*
2998 * A task struct has one reference for the use as "current".
2999 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3000 * schedule one last time. The schedule call will never return, and
3001 * the scheduled task must drop that reference.
3002 * The test for TASK_DEAD must occur while the runqueue locks are
3003 * still held, otherwise prev could be scheduled on another cpu, die
3004 * there before we look at prev->state, and then the reference would
3005 * be dropped twice.
3006 * Manfred Spraul <manfred@colorfullife.com>
3007 */
3008 prev_state = prev->state;
3009 finish_arch_switch(prev);
3010 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3011 local_irq_disable();
3012 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3013 perf_event_task_sched_in(current);
3014 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3015 local_irq_enable();
3016 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3017 finish_lock_switch(rq, prev);
3018
3019 fire_sched_in_preempt_notifiers(current);
3020 if (mm)
3021 mmdrop(mm);
3022 if (unlikely(prev_state == TASK_DEAD)) {
3023 /*
3024 * Remove function-return probe instances associated with this
3025 * task and put them back on the free list.
3026 */
3027 kprobe_flush_task(prev);
3028 put_task_struct(prev);
3029 }
3030 }
3031
3032 #ifdef CONFIG_SMP
3033
3034 /* assumes rq->lock is held */
3035 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3036 {
3037 if (prev->sched_class->pre_schedule)
3038 prev->sched_class->pre_schedule(rq, prev);
3039 }
3040
3041 /* rq->lock is NOT held, but preemption is disabled */
3042 static inline void post_schedule(struct rq *rq)
3043 {
3044 if (rq->post_schedule) {
3045 unsigned long flags;
3046
3047 raw_spin_lock_irqsave(&rq->lock, flags);
3048 if (rq->curr->sched_class->post_schedule)
3049 rq->curr->sched_class->post_schedule(rq);
3050 raw_spin_unlock_irqrestore(&rq->lock, flags);
3051
3052 rq->post_schedule = 0;
3053 }
3054 }
3055
3056 #else
3057
3058 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3059 {
3060 }
3061
3062 static inline void post_schedule(struct rq *rq)
3063 {
3064 }
3065
3066 #endif
3067
3068 /**
3069 * schedule_tail - first thing a freshly forked thread must call.
3070 * @prev: the thread we just switched away from.
3071 */
3072 asmlinkage void schedule_tail(struct task_struct *prev)
3073 __releases(rq->lock)
3074 {
3075 struct rq *rq = this_rq();
3076
3077 finish_task_switch(rq, prev);
3078
3079 /*
3080 * FIXME: do we need to worry about rq being invalidated by the
3081 * task_switch?
3082 */
3083 post_schedule(rq);
3084
3085 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3086 /* In this case, finish_task_switch does not reenable preemption */
3087 preempt_enable();
3088 #endif
3089 if (current->set_child_tid)
3090 put_user(task_pid_vnr(current), current->set_child_tid);
3091 }
3092
3093 /*
3094 * context_switch - switch to the new MM and the new
3095 * thread's register state.
3096 */
3097 static inline void
3098 context_switch(struct rq *rq, struct task_struct *prev,
3099 struct task_struct *next)
3100 {
3101 struct mm_struct *mm, *oldmm;
3102
3103 prepare_task_switch(rq, prev, next);
3104
3105 mm = next->mm;
3106 oldmm = prev->active_mm;
3107 /*
3108 * For paravirt, this is coupled with an exit in switch_to to
3109 * combine the page table reload and the switch backend into
3110 * one hypercall.
3111 */
3112 arch_start_context_switch(prev);
3113
3114 if (!mm) {
3115 next->active_mm = oldmm;
3116 atomic_inc(&oldmm->mm_count);
3117 enter_lazy_tlb(oldmm, next);
3118 } else
3119 switch_mm(oldmm, mm, next);
3120
3121 if (!prev->mm) {
3122 prev->active_mm = NULL;
3123 rq->prev_mm = oldmm;
3124 }
3125 /*
3126 * Since the runqueue lock will be released by the next
3127 * task (which is an invalid locking op but in the case
3128 * of the scheduler it's an obvious special-case), so we
3129 * do an early lockdep release here:
3130 */
3131 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3132 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3133 #endif
3134
3135 /* Here we just switch the register state and the stack. */
3136 switch_to(prev, next, prev);
3137
3138 barrier();
3139 /*
3140 * this_rq must be evaluated again because prev may have moved
3141 * CPUs since it called schedule(), thus the 'rq' on its stack
3142 * frame will be invalid.
3143 */
3144 finish_task_switch(this_rq(), prev);
3145 }
3146
3147 /*
3148 * nr_running, nr_uninterruptible and nr_context_switches:
3149 *
3150 * externally visible scheduler statistics: current number of runnable
3151 * threads, current number of uninterruptible-sleeping threads, total
3152 * number of context switches performed since bootup.
3153 */
3154 unsigned long nr_running(void)
3155 {
3156 unsigned long i, sum = 0;
3157
3158 for_each_online_cpu(i)
3159 sum += cpu_rq(i)->nr_running;
3160
3161 return sum;
3162 }
3163
3164 unsigned long nr_uninterruptible(void)
3165 {
3166 unsigned long i, sum = 0;
3167
3168 for_each_possible_cpu(i)
3169 sum += cpu_rq(i)->nr_uninterruptible;
3170
3171 /*
3172 * Since we read the counters lockless, it might be slightly
3173 * inaccurate. Do not allow it to go below zero though:
3174 */
3175 if (unlikely((long)sum < 0))
3176 sum = 0;
3177
3178 return sum;
3179 }
3180
3181 unsigned long long nr_context_switches(void)
3182 {
3183 int i;
3184 unsigned long long sum = 0;
3185
3186 for_each_possible_cpu(i)
3187 sum += cpu_rq(i)->nr_switches;
3188
3189 return sum;
3190 }
3191
3192 unsigned long nr_iowait(void)
3193 {
3194 unsigned long i, sum = 0;
3195
3196 for_each_possible_cpu(i)
3197 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3198
3199 return sum;
3200 }
3201
3202 unsigned long nr_iowait_cpu(int cpu)
3203 {
3204 struct rq *this = cpu_rq(cpu);
3205 return atomic_read(&this->nr_iowait);
3206 }
3207
3208 unsigned long this_cpu_load(void)
3209 {
3210 struct rq *this = this_rq();
3211 return this->cpu_load[0];
3212 }
3213
3214
3215 /* Variables and functions for calc_load */
3216 static atomic_long_t calc_load_tasks;
3217 static unsigned long calc_load_update;
3218 unsigned long avenrun[3];
3219 EXPORT_SYMBOL(avenrun);
3220
3221 static long calc_load_fold_active(struct rq *this_rq)
3222 {
3223 long nr_active, delta = 0;
3224
3225 nr_active = this_rq->nr_running;
3226 nr_active += (long) this_rq->nr_uninterruptible;
3227
3228 if (nr_active != this_rq->calc_load_active) {
3229 delta = nr_active - this_rq->calc_load_active;
3230 this_rq->calc_load_active = nr_active;
3231 }
3232
3233 return delta;
3234 }
3235
3236 static unsigned long
3237 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3238 {
3239 load *= exp;
3240 load += active * (FIXED_1 - exp);
3241 load += 1UL << (FSHIFT - 1);
3242 return load >> FSHIFT;
3243 }
3244
3245 #ifdef CONFIG_NO_HZ
3246 /*
3247 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3248 *
3249 * When making the ILB scale, we should try to pull this in as well.
3250 */
3251 static atomic_long_t calc_load_tasks_idle;
3252
3253 static void calc_load_account_idle(struct rq *this_rq)
3254 {
3255 long delta;
3256
3257 delta = calc_load_fold_active(this_rq);
3258 if (delta)
3259 atomic_long_add(delta, &calc_load_tasks_idle);
3260 }
3261
3262 static long calc_load_fold_idle(void)
3263 {
3264 long delta = 0;
3265
3266 /*
3267 * Its got a race, we don't care...
3268 */
3269 if (atomic_long_read(&calc_load_tasks_idle))
3270 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3271
3272 return delta;
3273 }
3274
3275 /**
3276 * fixed_power_int - compute: x^n, in O(log n) time
3277 *
3278 * @x: base of the power
3279 * @frac_bits: fractional bits of @x
3280 * @n: power to raise @x to.
3281 *
3282 * By exploiting the relation between the definition of the natural power
3283 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3284 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3285 * (where: n_i \elem {0, 1}, the binary vector representing n),
3286 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3287 * of course trivially computable in O(log_2 n), the length of our binary
3288 * vector.
3289 */
3290 static unsigned long
3291 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3292 {
3293 unsigned long result = 1UL << frac_bits;
3294
3295 if (n) for (;;) {
3296 if (n & 1) {
3297 result *= x;
3298 result += 1UL << (frac_bits - 1);
3299 result >>= frac_bits;
3300 }
3301 n >>= 1;
3302 if (!n)
3303 break;
3304 x *= x;
3305 x += 1UL << (frac_bits - 1);
3306 x >>= frac_bits;
3307 }
3308
3309 return result;
3310 }
3311
3312 /*
3313 * a1 = a0 * e + a * (1 - e)
3314 *
3315 * a2 = a1 * e + a * (1 - e)
3316 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3317 * = a0 * e^2 + a * (1 - e) * (1 + e)
3318 *
3319 * a3 = a2 * e + a * (1 - e)
3320 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3321 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3322 *
3323 * ...
3324 *
3325 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3326 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3327 * = a0 * e^n + a * (1 - e^n)
3328 *
3329 * [1] application of the geometric series:
3330 *
3331 * n 1 - x^(n+1)
3332 * S_n := \Sum x^i = -------------
3333 * i=0 1 - x
3334 */
3335 static unsigned long
3336 calc_load_n(unsigned long load, unsigned long exp,
3337 unsigned long active, unsigned int n)
3338 {
3339
3340 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3341 }
3342
3343 /*
3344 * NO_HZ can leave us missing all per-cpu ticks calling
3345 * calc_load_account_active(), but since an idle CPU folds its delta into
3346 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3347 * in the pending idle delta if our idle period crossed a load cycle boundary.
3348 *
3349 * Once we've updated the global active value, we need to apply the exponential
3350 * weights adjusted to the number of cycles missed.
3351 */
3352 static void calc_global_nohz(unsigned long ticks)
3353 {
3354 long delta, active, n;
3355
3356 if (time_before(jiffies, calc_load_update))
3357 return;
3358
3359 /*
3360 * If we crossed a calc_load_update boundary, make sure to fold
3361 * any pending idle changes, the respective CPUs might have
3362 * missed the tick driven calc_load_account_active() update
3363 * due to NO_HZ.
3364 */
3365 delta = calc_load_fold_idle();
3366 if (delta)
3367 atomic_long_add(delta, &calc_load_tasks);
3368
3369 /*
3370 * If we were idle for multiple load cycles, apply them.
3371 */
3372 if (ticks >= LOAD_FREQ) {
3373 n = ticks / LOAD_FREQ;
3374
3375 active = atomic_long_read(&calc_load_tasks);
3376 active = active > 0 ? active * FIXED_1 : 0;
3377
3378 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3379 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3380 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3381
3382 calc_load_update += n * LOAD_FREQ;
3383 }
3384
3385 /*
3386 * Its possible the remainder of the above division also crosses
3387 * a LOAD_FREQ period, the regular check in calc_global_load()
3388 * which comes after this will take care of that.
3389 *
3390 * Consider us being 11 ticks before a cycle completion, and us
3391 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3392 * age us 4 cycles, and the test in calc_global_load() will
3393 * pick up the final one.
3394 */
3395 }
3396 #else
3397 static void calc_load_account_idle(struct rq *this_rq)
3398 {
3399 }
3400
3401 static inline long calc_load_fold_idle(void)
3402 {
3403 return 0;
3404 }
3405
3406 static void calc_global_nohz(unsigned long ticks)
3407 {
3408 }
3409 #endif
3410
3411 /**
3412 * get_avenrun - get the load average array
3413 * @loads: pointer to dest load array
3414 * @offset: offset to add
3415 * @shift: shift count to shift the result left
3416 *
3417 * These values are estimates at best, so no need for locking.
3418 */
3419 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3420 {
3421 loads[0] = (avenrun[0] + offset) << shift;
3422 loads[1] = (avenrun[1] + offset) << shift;
3423 loads[2] = (avenrun[2] + offset) << shift;
3424 }
3425
3426 /*
3427 * calc_load - update the avenrun load estimates 10 ticks after the
3428 * CPUs have updated calc_load_tasks.
3429 */
3430 void calc_global_load(unsigned long ticks)
3431 {
3432 long active;
3433
3434 calc_global_nohz(ticks);
3435
3436 if (time_before(jiffies, calc_load_update + 10))
3437 return;
3438
3439 active = atomic_long_read(&calc_load_tasks);
3440 active = active > 0 ? active * FIXED_1 : 0;
3441
3442 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3443 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3444 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3445
3446 calc_load_update += LOAD_FREQ;
3447 }
3448
3449 /*
3450 * Called from update_cpu_load() to periodically update this CPU's
3451 * active count.
3452 */
3453 static void calc_load_account_active(struct rq *this_rq)
3454 {
3455 long delta;
3456
3457 if (time_before(jiffies, this_rq->calc_load_update))
3458 return;
3459
3460 delta = calc_load_fold_active(this_rq);
3461 delta += calc_load_fold_idle();
3462 if (delta)
3463 atomic_long_add(delta, &calc_load_tasks);
3464
3465 this_rq->calc_load_update += LOAD_FREQ;
3466 }
3467
3468 /*
3469 * The exact cpuload at various idx values, calculated at every tick would be
3470 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3471 *
3472 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3473 * on nth tick when cpu may be busy, then we have:
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3476 *
3477 * decay_load_missed() below does efficient calculation of
3478 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3479 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3480 *
3481 * The calculation is approximated on a 128 point scale.
3482 * degrade_zero_ticks is the number of ticks after which load at any
3483 * particular idx is approximated to be zero.
3484 * degrade_factor is a precomputed table, a row for each load idx.
3485 * Each column corresponds to degradation factor for a power of two ticks,
3486 * based on 128 point scale.
3487 * Example:
3488 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3489 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3490 *
3491 * With this power of 2 load factors, we can degrade the load n times
3492 * by looking at 1 bits in n and doing as many mult/shift instead of
3493 * n mult/shifts needed by the exact degradation.
3494 */
3495 #define DEGRADE_SHIFT 7
3496 static const unsigned char
3497 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3498 static const unsigned char
3499 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3500 {0, 0, 0, 0, 0, 0, 0, 0},
3501 {64, 32, 8, 0, 0, 0, 0, 0},
3502 {96, 72, 40, 12, 1, 0, 0},
3503 {112, 98, 75, 43, 15, 1, 0},
3504 {120, 112, 98, 76, 45, 16, 2} };
3505
3506 /*
3507 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3508 * would be when CPU is idle and so we just decay the old load without
3509 * adding any new load.
3510 */
3511 static unsigned long
3512 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3513 {
3514 int j = 0;
3515
3516 if (!missed_updates)
3517 return load;
3518
3519 if (missed_updates >= degrade_zero_ticks[idx])
3520 return 0;
3521
3522 if (idx == 1)
3523 return load >> missed_updates;
3524
3525 while (missed_updates) {
3526 if (missed_updates % 2)
3527 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3528
3529 missed_updates >>= 1;
3530 j++;
3531 }
3532 return load;
3533 }
3534
3535 /*
3536 * Update rq->cpu_load[] statistics. This function is usually called every
3537 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3538 * every tick. We fix it up based on jiffies.
3539 */
3540 static void update_cpu_load(struct rq *this_rq)
3541 {
3542 unsigned long this_load = this_rq->load.weight;
3543 unsigned long curr_jiffies = jiffies;
3544 unsigned long pending_updates;
3545 int i, scale;
3546
3547 this_rq->nr_load_updates++;
3548
3549 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3550 if (curr_jiffies == this_rq->last_load_update_tick)
3551 return;
3552
3553 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3554 this_rq->last_load_update_tick = curr_jiffies;
3555
3556 /* Update our load: */
3557 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3558 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3559 unsigned long old_load, new_load;
3560
3561 /* scale is effectively 1 << i now, and >> i divides by scale */
3562
3563 old_load = this_rq->cpu_load[i];
3564 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3565 new_load = this_load;
3566 /*
3567 * Round up the averaging division if load is increasing. This
3568 * prevents us from getting stuck on 9 if the load is 10, for
3569 * example.
3570 */
3571 if (new_load > old_load)
3572 new_load += scale - 1;
3573
3574 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3575 }
3576
3577 sched_avg_update(this_rq);
3578 }
3579
3580 static void update_cpu_load_active(struct rq *this_rq)
3581 {
3582 update_cpu_load(this_rq);
3583
3584 calc_load_account_active(this_rq);
3585 }
3586
3587 #ifdef CONFIG_SMP
3588
3589 /*
3590 * sched_exec - execve() is a valuable balancing opportunity, because at
3591 * this point the task has the smallest effective memory and cache footprint.
3592 */
3593 void sched_exec(void)
3594 {
3595 struct task_struct *p = current;
3596 unsigned long flags;
3597 int dest_cpu;
3598
3599 raw_spin_lock_irqsave(&p->pi_lock, flags);
3600 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3601 if (dest_cpu == smp_processor_id())
3602 goto unlock;
3603
3604 if (likely(cpu_active(dest_cpu))) {
3605 struct migration_arg arg = { p, dest_cpu };
3606
3607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3608 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3609 return;
3610 }
3611 unlock:
3612 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3613 }
3614
3615 #endif
3616
3617 DEFINE_PER_CPU(struct kernel_stat, kstat);
3618
3619 EXPORT_PER_CPU_SYMBOL(kstat);
3620
3621 /*
3622 * Return any ns on the sched_clock that have not yet been accounted in
3623 * @p in case that task is currently running.
3624 *
3625 * Called with task_rq_lock() held on @rq.
3626 */
3627 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3628 {
3629 u64 ns = 0;
3630
3631 if (task_current(rq, p)) {
3632 update_rq_clock(rq);
3633 ns = rq->clock_task - p->se.exec_start;
3634 if ((s64)ns < 0)
3635 ns = 0;
3636 }
3637
3638 return ns;
3639 }
3640
3641 unsigned long long task_delta_exec(struct task_struct *p)
3642 {
3643 unsigned long flags;
3644 struct rq *rq;
3645 u64 ns = 0;
3646
3647 rq = task_rq_lock(p, &flags);
3648 ns = do_task_delta_exec(p, rq);
3649 task_rq_unlock(rq, p, &flags);
3650
3651 return ns;
3652 }
3653
3654 /*
3655 * Return accounted runtime for the task.
3656 * In case the task is currently running, return the runtime plus current's
3657 * pending runtime that have not been accounted yet.
3658 */
3659 unsigned long long task_sched_runtime(struct task_struct *p)
3660 {
3661 unsigned long flags;
3662 struct rq *rq;
3663 u64 ns = 0;
3664
3665 rq = task_rq_lock(p, &flags);
3666 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3667 task_rq_unlock(rq, p, &flags);
3668
3669 return ns;
3670 }
3671
3672 /*
3673 * Return sum_exec_runtime for the thread group.
3674 * In case the task is currently running, return the sum plus current's
3675 * pending runtime that have not been accounted yet.
3676 *
3677 * Note that the thread group might have other running tasks as well,
3678 * so the return value not includes other pending runtime that other
3679 * running tasks might have.
3680 */
3681 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3682 {
3683 struct task_cputime totals;
3684 unsigned long flags;
3685 struct rq *rq;
3686 u64 ns;
3687
3688 rq = task_rq_lock(p, &flags);
3689 thread_group_cputime(p, &totals);
3690 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3691 task_rq_unlock(rq, p, &flags);
3692
3693 return ns;
3694 }
3695
3696 /*
3697 * Account user cpu time to a process.
3698 * @p: the process that the cpu time gets accounted to
3699 * @cputime: the cpu time spent in user space since the last update
3700 * @cputime_scaled: cputime scaled by cpu frequency
3701 */
3702 void account_user_time(struct task_struct *p, cputime_t cputime,
3703 cputime_t cputime_scaled)
3704 {
3705 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3706 cputime64_t tmp;
3707
3708 /* Add user time to process. */
3709 p->utime = cputime_add(p->utime, cputime);
3710 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3711 account_group_user_time(p, cputime);
3712
3713 /* Add user time to cpustat. */
3714 tmp = cputime_to_cputime64(cputime);
3715 if (TASK_NICE(p) > 0)
3716 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3717 else
3718 cpustat->user = cputime64_add(cpustat->user, tmp);
3719
3720 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3721 /* Account for user time used */
3722 acct_update_integrals(p);
3723 }
3724
3725 /*
3726 * Account guest cpu time to a process.
3727 * @p: the process that the cpu time gets accounted to
3728 * @cputime: the cpu time spent in virtual machine since the last update
3729 * @cputime_scaled: cputime scaled by cpu frequency
3730 */
3731 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3732 cputime_t cputime_scaled)
3733 {
3734 cputime64_t tmp;
3735 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3736
3737 tmp = cputime_to_cputime64(cputime);
3738
3739 /* Add guest time to process. */
3740 p->utime = cputime_add(p->utime, cputime);
3741 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3742 account_group_user_time(p, cputime);
3743 p->gtime = cputime_add(p->gtime, cputime);
3744
3745 /* Add guest time to cpustat. */
3746 if (TASK_NICE(p) > 0) {
3747 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3748 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3749 } else {
3750 cpustat->user = cputime64_add(cpustat->user, tmp);
3751 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3752 }
3753 }
3754
3755 /*
3756 * Account system cpu time to a process and desired cpustat field
3757 * @p: the process that the cpu time gets accounted to
3758 * @cputime: the cpu time spent in kernel space since the last update
3759 * @cputime_scaled: cputime scaled by cpu frequency
3760 * @target_cputime64: pointer to cpustat field that has to be updated
3761 */
3762 static inline
3763 void __account_system_time(struct task_struct *p, cputime_t cputime,
3764 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3765 {
3766 cputime64_t tmp = cputime_to_cputime64(cputime);
3767
3768 /* Add system time to process. */
3769 p->stime = cputime_add(p->stime, cputime);
3770 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3771 account_group_system_time(p, cputime);
3772
3773 /* Add system time to cpustat. */
3774 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3775 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3776
3777 /* Account for system time used */
3778 acct_update_integrals(p);
3779 }
3780
3781 /*
3782 * Account system cpu time to a process.
3783 * @p: the process that the cpu time gets accounted to
3784 * @hardirq_offset: the offset to subtract from hardirq_count()
3785 * @cputime: the cpu time spent in kernel space since the last update
3786 * @cputime_scaled: cputime scaled by cpu frequency
3787 */
3788 void account_system_time(struct task_struct *p, int hardirq_offset,
3789 cputime_t cputime, cputime_t cputime_scaled)
3790 {
3791 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3792 cputime64_t *target_cputime64;
3793
3794 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3795 account_guest_time(p, cputime, cputime_scaled);
3796 return;
3797 }
3798
3799 if (hardirq_count() - hardirq_offset)
3800 target_cputime64 = &cpustat->irq;
3801 else if (in_serving_softirq())
3802 target_cputime64 = &cpustat->softirq;
3803 else
3804 target_cputime64 = &cpustat->system;
3805
3806 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3807 }
3808
3809 /*
3810 * Account for involuntary wait time.
3811 * @cputime: the cpu time spent in involuntary wait
3812 */
3813 void account_steal_time(cputime_t cputime)
3814 {
3815 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3816 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3817
3818 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3819 }
3820
3821 /*
3822 * Account for idle time.
3823 * @cputime: the cpu time spent in idle wait
3824 */
3825 void account_idle_time(cputime_t cputime)
3826 {
3827 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3828 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3829 struct rq *rq = this_rq();
3830
3831 if (atomic_read(&rq->nr_iowait) > 0)
3832 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3833 else
3834 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3835 }
3836
3837 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3838
3839 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3840 /*
3841 * Account a tick to a process and cpustat
3842 * @p: the process that the cpu time gets accounted to
3843 * @user_tick: is the tick from userspace
3844 * @rq: the pointer to rq
3845 *
3846 * Tick demultiplexing follows the order
3847 * - pending hardirq update
3848 * - pending softirq update
3849 * - user_time
3850 * - idle_time
3851 * - system time
3852 * - check for guest_time
3853 * - else account as system_time
3854 *
3855 * Check for hardirq is done both for system and user time as there is
3856 * no timer going off while we are on hardirq and hence we may never get an
3857 * opportunity to update it solely in system time.
3858 * p->stime and friends are only updated on system time and not on irq
3859 * softirq as those do not count in task exec_runtime any more.
3860 */
3861 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3862 struct rq *rq)
3863 {
3864 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3865 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3866 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3867
3868 if (irqtime_account_hi_update()) {
3869 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3870 } else if (irqtime_account_si_update()) {
3871 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3872 } else if (this_cpu_ksoftirqd() == p) {
3873 /*
3874 * ksoftirqd time do not get accounted in cpu_softirq_time.
3875 * So, we have to handle it separately here.
3876 * Also, p->stime needs to be updated for ksoftirqd.
3877 */
3878 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3879 &cpustat->softirq);
3880 } else if (user_tick) {
3881 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3882 } else if (p == rq->idle) {
3883 account_idle_time(cputime_one_jiffy);
3884 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3885 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3886 } else {
3887 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3888 &cpustat->system);
3889 }
3890 }
3891
3892 static void irqtime_account_idle_ticks(int ticks)
3893 {
3894 int i;
3895 struct rq *rq = this_rq();
3896
3897 for (i = 0; i < ticks; i++)
3898 irqtime_account_process_tick(current, 0, rq);
3899 }
3900 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3901 static void irqtime_account_idle_ticks(int ticks) {}
3902 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3903 struct rq *rq) {}
3904 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3905
3906 /*
3907 * Account a single tick of cpu time.
3908 * @p: the process that the cpu time gets accounted to
3909 * @user_tick: indicates if the tick is a user or a system tick
3910 */
3911 void account_process_tick(struct task_struct *p, int user_tick)
3912 {
3913 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3914 struct rq *rq = this_rq();
3915
3916 if (sched_clock_irqtime) {
3917 irqtime_account_process_tick(p, user_tick, rq);
3918 return;
3919 }
3920
3921 if (user_tick)
3922 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3923 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3924 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3925 one_jiffy_scaled);
3926 else
3927 account_idle_time(cputime_one_jiffy);
3928 }
3929
3930 /*
3931 * Account multiple ticks of steal time.
3932 * @p: the process from which the cpu time has been stolen
3933 * @ticks: number of stolen ticks
3934 */
3935 void account_steal_ticks(unsigned long ticks)
3936 {
3937 account_steal_time(jiffies_to_cputime(ticks));
3938 }
3939
3940 /*
3941 * Account multiple ticks of idle time.
3942 * @ticks: number of stolen ticks
3943 */
3944 void account_idle_ticks(unsigned long ticks)
3945 {
3946
3947 if (sched_clock_irqtime) {
3948 irqtime_account_idle_ticks(ticks);
3949 return;
3950 }
3951
3952 account_idle_time(jiffies_to_cputime(ticks));
3953 }
3954
3955 #endif
3956
3957 /*
3958 * Use precise platform statistics if available:
3959 */
3960 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3961 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3962 {
3963 *ut = p->utime;
3964 *st = p->stime;
3965 }
3966
3967 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3968 {
3969 struct task_cputime cputime;
3970
3971 thread_group_cputime(p, &cputime);
3972
3973 *ut = cputime.utime;
3974 *st = cputime.stime;
3975 }
3976 #else
3977
3978 #ifndef nsecs_to_cputime
3979 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3980 #endif
3981
3982 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3983 {
3984 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3985
3986 /*
3987 * Use CFS's precise accounting:
3988 */
3989 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3990
3991 if (total) {
3992 u64 temp = rtime;
3993
3994 temp *= utime;
3995 do_div(temp, total);
3996 utime = (cputime_t)temp;
3997 } else
3998 utime = rtime;
3999
4000 /*
4001 * Compare with previous values, to keep monotonicity:
4002 */
4003 p->prev_utime = max(p->prev_utime, utime);
4004 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4005
4006 *ut = p->prev_utime;
4007 *st = p->prev_stime;
4008 }
4009
4010 /*
4011 * Must be called with siglock held.
4012 */
4013 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4014 {
4015 struct signal_struct *sig = p->signal;
4016 struct task_cputime cputime;
4017 cputime_t rtime, utime, total;
4018
4019 thread_group_cputime(p, &cputime);
4020
4021 total = cputime_add(cputime.utime, cputime.stime);
4022 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4023
4024 if (total) {
4025 u64 temp = rtime;
4026
4027 temp *= cputime.utime;
4028 do_div(temp, total);
4029 utime = (cputime_t)temp;
4030 } else
4031 utime = rtime;
4032
4033 sig->prev_utime = max(sig->prev_utime, utime);
4034 sig->prev_stime = max(sig->prev_stime,
4035 cputime_sub(rtime, sig->prev_utime));
4036
4037 *ut = sig->prev_utime;
4038 *st = sig->prev_stime;
4039 }
4040 #endif
4041
4042 /*
4043 * This function gets called by the timer code, with HZ frequency.
4044 * We call it with interrupts disabled.
4045 */
4046 void scheduler_tick(void)
4047 {
4048 int cpu = smp_processor_id();
4049 struct rq *rq = cpu_rq(cpu);
4050 struct task_struct *curr = rq->curr;
4051
4052 sched_clock_tick();
4053
4054 raw_spin_lock(&rq->lock);
4055 update_rq_clock(rq);
4056 update_cpu_load_active(rq);
4057 curr->sched_class->task_tick(rq, curr, 0);
4058 raw_spin_unlock(&rq->lock);
4059
4060 perf_event_task_tick();
4061
4062 #ifdef CONFIG_SMP
4063 rq->idle_at_tick = idle_cpu(cpu);
4064 trigger_load_balance(rq, cpu);
4065 #endif
4066 }
4067
4068 notrace unsigned long get_parent_ip(unsigned long addr)
4069 {
4070 if (in_lock_functions(addr)) {
4071 addr = CALLER_ADDR2;
4072 if (in_lock_functions(addr))
4073 addr = CALLER_ADDR3;
4074 }
4075 return addr;
4076 }
4077
4078 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4079 defined(CONFIG_PREEMPT_TRACER))
4080
4081 void __kprobes add_preempt_count(int val)
4082 {
4083 #ifdef CONFIG_DEBUG_PREEMPT
4084 /*
4085 * Underflow?
4086 */
4087 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4088 return;
4089 #endif
4090 preempt_count() += val;
4091 #ifdef CONFIG_DEBUG_PREEMPT
4092 /*
4093 * Spinlock count overflowing soon?
4094 */
4095 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4096 PREEMPT_MASK - 10);
4097 #endif
4098 if (preempt_count() == val)
4099 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4100 }
4101 EXPORT_SYMBOL(add_preempt_count);
4102
4103 void __kprobes sub_preempt_count(int val)
4104 {
4105 #ifdef CONFIG_DEBUG_PREEMPT
4106 /*
4107 * Underflow?
4108 */
4109 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4110 return;
4111 /*
4112 * Is the spinlock portion underflowing?
4113 */
4114 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4115 !(preempt_count() & PREEMPT_MASK)))
4116 return;
4117 #endif
4118
4119 if (preempt_count() == val)
4120 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4121 preempt_count() -= val;
4122 }
4123 EXPORT_SYMBOL(sub_preempt_count);
4124
4125 #endif
4126
4127 /*
4128 * Print scheduling while atomic bug:
4129 */
4130 static noinline void __schedule_bug(struct task_struct *prev)
4131 {
4132 struct pt_regs *regs = get_irq_regs();
4133
4134 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4135 prev->comm, prev->pid, preempt_count());
4136
4137 debug_show_held_locks(prev);
4138 print_modules();
4139 if (irqs_disabled())
4140 print_irqtrace_events(prev);
4141
4142 if (regs)
4143 show_regs(regs);
4144 else
4145 dump_stack();
4146 }
4147
4148 /*
4149 * Various schedule()-time debugging checks and statistics:
4150 */
4151 static inline void schedule_debug(struct task_struct *prev)
4152 {
4153 /*
4154 * Test if we are atomic. Since do_exit() needs to call into
4155 * schedule() atomically, we ignore that path for now.
4156 * Otherwise, whine if we are scheduling when we should not be.
4157 */
4158 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4159 __schedule_bug(prev);
4160
4161 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4162
4163 schedstat_inc(this_rq(), sched_count);
4164 }
4165
4166 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4167 {
4168 if (prev->on_rq || rq->skip_clock_update < 0)
4169 update_rq_clock(rq);
4170 prev->sched_class->put_prev_task(rq, prev);
4171 }
4172
4173 /*
4174 * Pick up the highest-prio task:
4175 */
4176 static inline struct task_struct *
4177 pick_next_task(struct rq *rq)
4178 {
4179 const struct sched_class *class;
4180 struct task_struct *p;
4181
4182 /*
4183 * Optimization: we know that if all tasks are in
4184 * the fair class we can call that function directly:
4185 */
4186 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4187 p = fair_sched_class.pick_next_task(rq);
4188 if (likely(p))
4189 return p;
4190 }
4191
4192 for_each_class(class) {
4193 p = class->pick_next_task(rq);
4194 if (p)
4195 return p;
4196 }
4197
4198 BUG(); /* the idle class will always have a runnable task */
4199 }
4200
4201 /*
4202 * schedule() is the main scheduler function.
4203 */
4204 asmlinkage void __sched schedule(void)
4205 {
4206 struct task_struct *prev, *next;
4207 unsigned long *switch_count;
4208 struct rq *rq;
4209 int cpu;
4210
4211 need_resched:
4212 preempt_disable();
4213 cpu = smp_processor_id();
4214 rq = cpu_rq(cpu);
4215 rcu_note_context_switch(cpu);
4216 prev = rq->curr;
4217
4218 schedule_debug(prev);
4219
4220 if (sched_feat(HRTICK))
4221 hrtick_clear(rq);
4222
4223 raw_spin_lock_irq(&rq->lock);
4224
4225 switch_count = &prev->nivcsw;
4226 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4227 if (unlikely(signal_pending_state(prev->state, prev))) {
4228 prev->state = TASK_RUNNING;
4229 } else {
4230 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4231 prev->on_rq = 0;
4232
4233 /*
4234 * If a worker went to sleep, notify and ask workqueue
4235 * whether it wants to wake up a task to maintain
4236 * concurrency.
4237 */
4238 if (prev->flags & PF_WQ_WORKER) {
4239 struct task_struct *to_wakeup;
4240
4241 to_wakeup = wq_worker_sleeping(prev, cpu);
4242 if (to_wakeup)
4243 try_to_wake_up_local(to_wakeup);
4244 }
4245
4246 /*
4247 * If we are going to sleep and we have plugged IO
4248 * queued, make sure to submit it to avoid deadlocks.
4249 */
4250 if (blk_needs_flush_plug(prev)) {
4251 raw_spin_unlock(&rq->lock);
4252 blk_schedule_flush_plug(prev);
4253 raw_spin_lock(&rq->lock);
4254 }
4255 }
4256 switch_count = &prev->nvcsw;
4257 }
4258
4259 pre_schedule(rq, prev);
4260
4261 if (unlikely(!rq->nr_running))
4262 idle_balance(cpu, rq);
4263
4264 put_prev_task(rq, prev);
4265 next = pick_next_task(rq);
4266 clear_tsk_need_resched(prev);
4267 rq->skip_clock_update = 0;
4268
4269 if (likely(prev != next)) {
4270 rq->nr_switches++;
4271 rq->curr = next;
4272 ++*switch_count;
4273
4274 context_switch(rq, prev, next); /* unlocks the rq */
4275 /*
4276 * The context switch have flipped the stack from under us
4277 * and restored the local variables which were saved when
4278 * this task called schedule() in the past. prev == current
4279 * is still correct, but it can be moved to another cpu/rq.
4280 */
4281 cpu = smp_processor_id();
4282 rq = cpu_rq(cpu);
4283 } else
4284 raw_spin_unlock_irq(&rq->lock);
4285
4286 post_schedule(rq);
4287
4288 preempt_enable_no_resched();
4289 if (need_resched())
4290 goto need_resched;
4291 }
4292 EXPORT_SYMBOL(schedule);
4293
4294 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4295
4296 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4297 {
4298 bool ret = false;
4299
4300 rcu_read_lock();
4301 if (lock->owner != owner)
4302 goto fail;
4303
4304 /*
4305 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4306 * lock->owner still matches owner, if that fails, owner might
4307 * point to free()d memory, if it still matches, the rcu_read_lock()
4308 * ensures the memory stays valid.
4309 */
4310 barrier();
4311
4312 ret = owner->on_cpu;
4313 fail:
4314 rcu_read_unlock();
4315
4316 return ret;
4317 }
4318
4319 /*
4320 * Look out! "owner" is an entirely speculative pointer
4321 * access and not reliable.
4322 */
4323 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4324 {
4325 if (!sched_feat(OWNER_SPIN))
4326 return 0;
4327
4328 while (owner_running(lock, owner)) {
4329 if (need_resched())
4330 return 0;
4331
4332 arch_mutex_cpu_relax();
4333 }
4334
4335 /*
4336 * If the owner changed to another task there is likely
4337 * heavy contention, stop spinning.
4338 */
4339 if (lock->owner)
4340 return 0;
4341
4342 return 1;
4343 }
4344 #endif
4345
4346 #ifdef CONFIG_PREEMPT
4347 /*
4348 * this is the entry point to schedule() from in-kernel preemption
4349 * off of preempt_enable. Kernel preemptions off return from interrupt
4350 * occur there and call schedule directly.
4351 */
4352 asmlinkage void __sched notrace preempt_schedule(void)
4353 {
4354 struct thread_info *ti = current_thread_info();
4355
4356 /*
4357 * If there is a non-zero preempt_count or interrupts are disabled,
4358 * we do not want to preempt the current task. Just return..
4359 */
4360 if (likely(ti->preempt_count || irqs_disabled()))
4361 return;
4362
4363 do {
4364 add_preempt_count_notrace(PREEMPT_ACTIVE);
4365 schedule();
4366 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4367
4368 /*
4369 * Check again in case we missed a preemption opportunity
4370 * between schedule and now.
4371 */
4372 barrier();
4373 } while (need_resched());
4374 }
4375 EXPORT_SYMBOL(preempt_schedule);
4376
4377 /*
4378 * this is the entry point to schedule() from kernel preemption
4379 * off of irq context.
4380 * Note, that this is called and return with irqs disabled. This will
4381 * protect us against recursive calling from irq.
4382 */
4383 asmlinkage void __sched preempt_schedule_irq(void)
4384 {
4385 struct thread_info *ti = current_thread_info();
4386
4387 /* Catch callers which need to be fixed */
4388 BUG_ON(ti->preempt_count || !irqs_disabled());
4389
4390 do {
4391 add_preempt_count(PREEMPT_ACTIVE);
4392 local_irq_enable();
4393 schedule();
4394 local_irq_disable();
4395 sub_preempt_count(PREEMPT_ACTIVE);
4396
4397 /*
4398 * Check again in case we missed a preemption opportunity
4399 * between schedule and now.
4400 */
4401 barrier();
4402 } while (need_resched());
4403 }
4404
4405 #endif /* CONFIG_PREEMPT */
4406
4407 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4408 void *key)
4409 {
4410 return try_to_wake_up(curr->private, mode, wake_flags);
4411 }
4412 EXPORT_SYMBOL(default_wake_function);
4413
4414 /*
4415 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4416 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4417 * number) then we wake all the non-exclusive tasks and one exclusive task.
4418 *
4419 * There are circumstances in which we can try to wake a task which has already
4420 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4421 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4422 */
4423 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4424 int nr_exclusive, int wake_flags, void *key)
4425 {
4426 wait_queue_t *curr, *next;
4427
4428 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4429 unsigned flags = curr->flags;
4430
4431 if (curr->func(curr, mode, wake_flags, key) &&
4432 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4433 break;
4434 }
4435 }
4436
4437 /**
4438 * __wake_up - wake up threads blocked on a waitqueue.
4439 * @q: the waitqueue
4440 * @mode: which threads
4441 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4442 * @key: is directly passed to the wakeup function
4443 *
4444 * It may be assumed that this function implies a write memory barrier before
4445 * changing the task state if and only if any tasks are woken up.
4446 */
4447 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4448 int nr_exclusive, void *key)
4449 {
4450 unsigned long flags;
4451
4452 spin_lock_irqsave(&q->lock, flags);
4453 __wake_up_common(q, mode, nr_exclusive, 0, key);
4454 spin_unlock_irqrestore(&q->lock, flags);
4455 }
4456 EXPORT_SYMBOL(__wake_up);
4457
4458 /*
4459 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4460 */
4461 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4462 {
4463 __wake_up_common(q, mode, 1, 0, NULL);
4464 }
4465 EXPORT_SYMBOL_GPL(__wake_up_locked);
4466
4467 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4468 {
4469 __wake_up_common(q, mode, 1, 0, key);
4470 }
4471 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4472
4473 /**
4474 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4475 * @q: the waitqueue
4476 * @mode: which threads
4477 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4478 * @key: opaque value to be passed to wakeup targets
4479 *
4480 * The sync wakeup differs that the waker knows that it will schedule
4481 * away soon, so while the target thread will be woken up, it will not
4482 * be migrated to another CPU - ie. the two threads are 'synchronized'
4483 * with each other. This can prevent needless bouncing between CPUs.
4484 *
4485 * On UP it can prevent extra preemption.
4486 *
4487 * It may be assumed that this function implies a write memory barrier before
4488 * changing the task state if and only if any tasks are woken up.
4489 */
4490 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4491 int nr_exclusive, void *key)
4492 {
4493 unsigned long flags;
4494 int wake_flags = WF_SYNC;
4495
4496 if (unlikely(!q))
4497 return;
4498
4499 if (unlikely(!nr_exclusive))
4500 wake_flags = 0;
4501
4502 spin_lock_irqsave(&q->lock, flags);
4503 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4504 spin_unlock_irqrestore(&q->lock, flags);
4505 }
4506 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4507
4508 /*
4509 * __wake_up_sync - see __wake_up_sync_key()
4510 */
4511 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4512 {
4513 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4514 }
4515 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4516
4517 /**
4518 * complete: - signals a single thread waiting on this completion
4519 * @x: holds the state of this particular completion
4520 *
4521 * This will wake up a single thread waiting on this completion. Threads will be
4522 * awakened in the same order in which they were queued.
4523 *
4524 * See also complete_all(), wait_for_completion() and related routines.
4525 *
4526 * It may be assumed that this function implies a write memory barrier before
4527 * changing the task state if and only if any tasks are woken up.
4528 */
4529 void complete(struct completion *x)
4530 {
4531 unsigned long flags;
4532
4533 spin_lock_irqsave(&x->wait.lock, flags);
4534 x->done++;
4535 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4536 spin_unlock_irqrestore(&x->wait.lock, flags);
4537 }
4538 EXPORT_SYMBOL(complete);
4539
4540 /**
4541 * complete_all: - signals all threads waiting on this completion
4542 * @x: holds the state of this particular completion
4543 *
4544 * This will wake up all threads waiting on this particular completion event.
4545 *
4546 * It may be assumed that this function implies a write memory barrier before
4547 * changing the task state if and only if any tasks are woken up.
4548 */
4549 void complete_all(struct completion *x)
4550 {
4551 unsigned long flags;
4552
4553 spin_lock_irqsave(&x->wait.lock, flags);
4554 x->done += UINT_MAX/2;
4555 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4556 spin_unlock_irqrestore(&x->wait.lock, flags);
4557 }
4558 EXPORT_SYMBOL(complete_all);
4559
4560 static inline long __sched
4561 do_wait_for_common(struct completion *x, long timeout, int state)
4562 {
4563 if (!x->done) {
4564 DECLARE_WAITQUEUE(wait, current);
4565
4566 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4567 do {
4568 if (signal_pending_state(state, current)) {
4569 timeout = -ERESTARTSYS;
4570 break;
4571 }
4572 __set_current_state(state);
4573 spin_unlock_irq(&x->wait.lock);
4574 timeout = schedule_timeout(timeout);
4575 spin_lock_irq(&x->wait.lock);
4576 } while (!x->done && timeout);
4577 __remove_wait_queue(&x->wait, &wait);
4578 if (!x->done)
4579 return timeout;
4580 }
4581 x->done--;
4582 return timeout ?: 1;
4583 }
4584
4585 static long __sched
4586 wait_for_common(struct completion *x, long timeout, int state)
4587 {
4588 might_sleep();
4589
4590 spin_lock_irq(&x->wait.lock);
4591 timeout = do_wait_for_common(x, timeout, state);
4592 spin_unlock_irq(&x->wait.lock);
4593 return timeout;
4594 }
4595
4596 /**
4597 * wait_for_completion: - waits for completion of a task
4598 * @x: holds the state of this particular completion
4599 *
4600 * This waits to be signaled for completion of a specific task. It is NOT
4601 * interruptible and there is no timeout.
4602 *
4603 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4604 * and interrupt capability. Also see complete().
4605 */
4606 void __sched wait_for_completion(struct completion *x)
4607 {
4608 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4609 }
4610 EXPORT_SYMBOL(wait_for_completion);
4611
4612 /**
4613 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4614 * @x: holds the state of this particular completion
4615 * @timeout: timeout value in jiffies
4616 *
4617 * This waits for either a completion of a specific task to be signaled or for a
4618 * specified timeout to expire. The timeout is in jiffies. It is not
4619 * interruptible.
4620 */
4621 unsigned long __sched
4622 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4623 {
4624 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4625 }
4626 EXPORT_SYMBOL(wait_for_completion_timeout);
4627
4628 /**
4629 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4630 * @x: holds the state of this particular completion
4631 *
4632 * This waits for completion of a specific task to be signaled. It is
4633 * interruptible.
4634 */
4635 int __sched wait_for_completion_interruptible(struct completion *x)
4636 {
4637 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4638 if (t == -ERESTARTSYS)
4639 return t;
4640 return 0;
4641 }
4642 EXPORT_SYMBOL(wait_for_completion_interruptible);
4643
4644 /**
4645 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4646 * @x: holds the state of this particular completion
4647 * @timeout: timeout value in jiffies
4648 *
4649 * This waits for either a completion of a specific task to be signaled or for a
4650 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4651 */
4652 long __sched
4653 wait_for_completion_interruptible_timeout(struct completion *x,
4654 unsigned long timeout)
4655 {
4656 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4657 }
4658 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4659
4660 /**
4661 * wait_for_completion_killable: - waits for completion of a task (killable)
4662 * @x: holds the state of this particular completion
4663 *
4664 * This waits to be signaled for completion of a specific task. It can be
4665 * interrupted by a kill signal.
4666 */
4667 int __sched wait_for_completion_killable(struct completion *x)
4668 {
4669 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4670 if (t == -ERESTARTSYS)
4671 return t;
4672 return 0;
4673 }
4674 EXPORT_SYMBOL(wait_for_completion_killable);
4675
4676 /**
4677 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4678 * @x: holds the state of this particular completion
4679 * @timeout: timeout value in jiffies
4680 *
4681 * This waits for either a completion of a specific task to be
4682 * signaled or for a specified timeout to expire. It can be
4683 * interrupted by a kill signal. The timeout is in jiffies.
4684 */
4685 long __sched
4686 wait_for_completion_killable_timeout(struct completion *x,
4687 unsigned long timeout)
4688 {
4689 return wait_for_common(x, timeout, TASK_KILLABLE);
4690 }
4691 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4692
4693 /**
4694 * try_wait_for_completion - try to decrement a completion without blocking
4695 * @x: completion structure
4696 *
4697 * Returns: 0 if a decrement cannot be done without blocking
4698 * 1 if a decrement succeeded.
4699 *
4700 * If a completion is being used as a counting completion,
4701 * attempt to decrement the counter without blocking. This
4702 * enables us to avoid waiting if the resource the completion
4703 * is protecting is not available.
4704 */
4705 bool try_wait_for_completion(struct completion *x)
4706 {
4707 unsigned long flags;
4708 int ret = 1;
4709
4710 spin_lock_irqsave(&x->wait.lock, flags);
4711 if (!x->done)
4712 ret = 0;
4713 else
4714 x->done--;
4715 spin_unlock_irqrestore(&x->wait.lock, flags);
4716 return ret;
4717 }
4718 EXPORT_SYMBOL(try_wait_for_completion);
4719
4720 /**
4721 * completion_done - Test to see if a completion has any waiters
4722 * @x: completion structure
4723 *
4724 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4725 * 1 if there are no waiters.
4726 *
4727 */
4728 bool completion_done(struct completion *x)
4729 {
4730 unsigned long flags;
4731 int ret = 1;
4732
4733 spin_lock_irqsave(&x->wait.lock, flags);
4734 if (!x->done)
4735 ret = 0;
4736 spin_unlock_irqrestore(&x->wait.lock, flags);
4737 return ret;
4738 }
4739 EXPORT_SYMBOL(completion_done);
4740
4741 static long __sched
4742 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4743 {
4744 unsigned long flags;
4745 wait_queue_t wait;
4746
4747 init_waitqueue_entry(&wait, current);
4748
4749 __set_current_state(state);
4750
4751 spin_lock_irqsave(&q->lock, flags);
4752 __add_wait_queue(q, &wait);
4753 spin_unlock(&q->lock);
4754 timeout = schedule_timeout(timeout);
4755 spin_lock_irq(&q->lock);
4756 __remove_wait_queue(q, &wait);
4757 spin_unlock_irqrestore(&q->lock, flags);
4758
4759 return timeout;
4760 }
4761
4762 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4763 {
4764 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4765 }
4766 EXPORT_SYMBOL(interruptible_sleep_on);
4767
4768 long __sched
4769 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4770 {
4771 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4772 }
4773 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4774
4775 void __sched sleep_on(wait_queue_head_t *q)
4776 {
4777 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4778 }
4779 EXPORT_SYMBOL(sleep_on);
4780
4781 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4782 {
4783 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4784 }
4785 EXPORT_SYMBOL(sleep_on_timeout);
4786
4787 #ifdef CONFIG_RT_MUTEXES
4788
4789 /*
4790 * rt_mutex_setprio - set the current priority of a task
4791 * @p: task
4792 * @prio: prio value (kernel-internal form)
4793 *
4794 * This function changes the 'effective' priority of a task. It does
4795 * not touch ->normal_prio like __setscheduler().
4796 *
4797 * Used by the rt_mutex code to implement priority inheritance logic.
4798 */
4799 void rt_mutex_setprio(struct task_struct *p, int prio)
4800 {
4801 int oldprio, on_rq, running;
4802 struct rq *rq;
4803 const struct sched_class *prev_class;
4804
4805 BUG_ON(prio < 0 || prio > MAX_PRIO);
4806
4807 rq = __task_rq_lock(p);
4808
4809 trace_sched_pi_setprio(p, prio);
4810 oldprio = p->prio;
4811 prev_class = p->sched_class;
4812 on_rq = p->on_rq;
4813 running = task_current(rq, p);
4814 if (on_rq)
4815 dequeue_task(rq, p, 0);
4816 if (running)
4817 p->sched_class->put_prev_task(rq, p);
4818
4819 if (rt_prio(prio))
4820 p->sched_class = &rt_sched_class;
4821 else
4822 p->sched_class = &fair_sched_class;
4823
4824 p->prio = prio;
4825
4826 if (running)
4827 p->sched_class->set_curr_task(rq);
4828 if (on_rq)
4829 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4830
4831 check_class_changed(rq, p, prev_class, oldprio);
4832 __task_rq_unlock(rq);
4833 }
4834
4835 #endif
4836
4837 void set_user_nice(struct task_struct *p, long nice)
4838 {
4839 int old_prio, delta, on_rq;
4840 unsigned long flags;
4841 struct rq *rq;
4842
4843 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4844 return;
4845 /*
4846 * We have to be careful, if called from sys_setpriority(),
4847 * the task might be in the middle of scheduling on another CPU.
4848 */
4849 rq = task_rq_lock(p, &flags);
4850 /*
4851 * The RT priorities are set via sched_setscheduler(), but we still
4852 * allow the 'normal' nice value to be set - but as expected
4853 * it wont have any effect on scheduling until the task is
4854 * SCHED_FIFO/SCHED_RR:
4855 */
4856 if (task_has_rt_policy(p)) {
4857 p->static_prio = NICE_TO_PRIO(nice);
4858 goto out_unlock;
4859 }
4860 on_rq = p->on_rq;
4861 if (on_rq)
4862 dequeue_task(rq, p, 0);
4863
4864 p->static_prio = NICE_TO_PRIO(nice);
4865 set_load_weight(p);
4866 old_prio = p->prio;
4867 p->prio = effective_prio(p);
4868 delta = p->prio - old_prio;
4869
4870 if (on_rq) {
4871 enqueue_task(rq, p, 0);
4872 /*
4873 * If the task increased its priority or is running and
4874 * lowered its priority, then reschedule its CPU:
4875 */
4876 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4877 resched_task(rq->curr);
4878 }
4879 out_unlock:
4880 task_rq_unlock(rq, p, &flags);
4881 }
4882 EXPORT_SYMBOL(set_user_nice);
4883
4884 /*
4885 * can_nice - check if a task can reduce its nice value
4886 * @p: task
4887 * @nice: nice value
4888 */
4889 int can_nice(const struct task_struct *p, const int nice)
4890 {
4891 /* convert nice value [19,-20] to rlimit style value [1,40] */
4892 int nice_rlim = 20 - nice;
4893
4894 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4895 capable(CAP_SYS_NICE));
4896 }
4897
4898 #ifdef __ARCH_WANT_SYS_NICE
4899
4900 /*
4901 * sys_nice - change the priority of the current process.
4902 * @increment: priority increment
4903 *
4904 * sys_setpriority is a more generic, but much slower function that
4905 * does similar things.
4906 */
4907 SYSCALL_DEFINE1(nice, int, increment)
4908 {
4909 long nice, retval;
4910
4911 /*
4912 * Setpriority might change our priority at the same moment.
4913 * We don't have to worry. Conceptually one call occurs first
4914 * and we have a single winner.
4915 */
4916 if (increment < -40)
4917 increment = -40;
4918 if (increment > 40)
4919 increment = 40;
4920
4921 nice = TASK_NICE(current) + increment;
4922 if (nice < -20)
4923 nice = -20;
4924 if (nice > 19)
4925 nice = 19;
4926
4927 if (increment < 0 && !can_nice(current, nice))
4928 return -EPERM;
4929
4930 retval = security_task_setnice(current, nice);
4931 if (retval)
4932 return retval;
4933
4934 set_user_nice(current, nice);
4935 return 0;
4936 }
4937
4938 #endif
4939
4940 /**
4941 * task_prio - return the priority value of a given task.
4942 * @p: the task in question.
4943 *
4944 * This is the priority value as seen by users in /proc.
4945 * RT tasks are offset by -200. Normal tasks are centered
4946 * around 0, value goes from -16 to +15.
4947 */
4948 int task_prio(const struct task_struct *p)
4949 {
4950 return p->prio - MAX_RT_PRIO;
4951 }
4952
4953 /**
4954 * task_nice - return the nice value of a given task.
4955 * @p: the task in question.
4956 */
4957 int task_nice(const struct task_struct *p)
4958 {
4959 return TASK_NICE(p);
4960 }
4961 EXPORT_SYMBOL(task_nice);
4962
4963 /**
4964 * idle_cpu - is a given cpu idle currently?
4965 * @cpu: the processor in question.
4966 */
4967 int idle_cpu(int cpu)
4968 {
4969 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4970 }
4971
4972 /**
4973 * idle_task - return the idle task for a given cpu.
4974 * @cpu: the processor in question.
4975 */
4976 struct task_struct *idle_task(int cpu)
4977 {
4978 return cpu_rq(cpu)->idle;
4979 }
4980
4981 /**
4982 * find_process_by_pid - find a process with a matching PID value.
4983 * @pid: the pid in question.
4984 */
4985 static struct task_struct *find_process_by_pid(pid_t pid)
4986 {
4987 return pid ? find_task_by_vpid(pid) : current;
4988 }
4989
4990 /* Actually do priority change: must hold rq lock. */
4991 static void
4992 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4993 {
4994 p->policy = policy;
4995 p->rt_priority = prio;
4996 p->normal_prio = normal_prio(p);
4997 /* we are holding p->pi_lock already */
4998 p->prio = rt_mutex_getprio(p);
4999 if (rt_prio(p->prio))
5000 p->sched_class = &rt_sched_class;
5001 else
5002 p->sched_class = &fair_sched_class;
5003 set_load_weight(p);
5004 }
5005
5006 /*
5007 * check the target process has a UID that matches the current process's
5008 */
5009 static bool check_same_owner(struct task_struct *p)
5010 {
5011 const struct cred *cred = current_cred(), *pcred;
5012 bool match;
5013
5014 rcu_read_lock();
5015 pcred = __task_cred(p);
5016 if (cred->user->user_ns == pcred->user->user_ns)
5017 match = (cred->euid == pcred->euid ||
5018 cred->euid == pcred->uid);
5019 else
5020 match = false;
5021 rcu_read_unlock();
5022 return match;
5023 }
5024
5025 static int __sched_setscheduler(struct task_struct *p, int policy,
5026 const struct sched_param *param, bool user)
5027 {
5028 int retval, oldprio, oldpolicy = -1, on_rq, running;
5029 unsigned long flags;
5030 const struct sched_class *prev_class;
5031 struct rq *rq;
5032 int reset_on_fork;
5033
5034 /* may grab non-irq protected spin_locks */
5035 BUG_ON(in_interrupt());
5036 recheck:
5037 /* double check policy once rq lock held */
5038 if (policy < 0) {
5039 reset_on_fork = p->sched_reset_on_fork;
5040 policy = oldpolicy = p->policy;
5041 } else {
5042 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5043 policy &= ~SCHED_RESET_ON_FORK;
5044
5045 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5046 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5047 policy != SCHED_IDLE)
5048 return -EINVAL;
5049 }
5050
5051 /*
5052 * Valid priorities for SCHED_FIFO and SCHED_RR are
5053 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5054 * SCHED_BATCH and SCHED_IDLE is 0.
5055 */
5056 if (param->sched_priority < 0 ||
5057 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5058 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5059 return -EINVAL;
5060 if (rt_policy(policy) != (param->sched_priority != 0))
5061 return -EINVAL;
5062
5063 /*
5064 * Allow unprivileged RT tasks to decrease priority:
5065 */
5066 if (user && !capable(CAP_SYS_NICE)) {
5067 if (rt_policy(policy)) {
5068 unsigned long rlim_rtprio =
5069 task_rlimit(p, RLIMIT_RTPRIO);
5070
5071 /* can't set/change the rt policy */
5072 if (policy != p->policy && !rlim_rtprio)
5073 return -EPERM;
5074
5075 /* can't increase priority */
5076 if (param->sched_priority > p->rt_priority &&
5077 param->sched_priority > rlim_rtprio)
5078 return -EPERM;
5079 }
5080
5081 /*
5082 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5083 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5084 */
5085 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5086 if (!can_nice(p, TASK_NICE(p)))
5087 return -EPERM;
5088 }
5089
5090 /* can't change other user's priorities */
5091 if (!check_same_owner(p))
5092 return -EPERM;
5093
5094 /* Normal users shall not reset the sched_reset_on_fork flag */
5095 if (p->sched_reset_on_fork && !reset_on_fork)
5096 return -EPERM;
5097 }
5098
5099 if (user) {
5100 retval = security_task_setscheduler(p);
5101 if (retval)
5102 return retval;
5103 }
5104
5105 /*
5106 * make sure no PI-waiters arrive (or leave) while we are
5107 * changing the priority of the task:
5108 *
5109 * To be able to change p->policy safely, the appropriate
5110 * runqueue lock must be held.
5111 */
5112 rq = task_rq_lock(p, &flags);
5113
5114 /*
5115 * Changing the policy of the stop threads its a very bad idea
5116 */
5117 if (p == rq->stop) {
5118 task_rq_unlock(rq, p, &flags);
5119 return -EINVAL;
5120 }
5121
5122 /*
5123 * If not changing anything there's no need to proceed further:
5124 */
5125 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5126 param->sched_priority == p->rt_priority))) {
5127
5128 __task_rq_unlock(rq);
5129 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5130 return 0;
5131 }
5132
5133 #ifdef CONFIG_RT_GROUP_SCHED
5134 if (user) {
5135 /*
5136 * Do not allow realtime tasks into groups that have no runtime
5137 * assigned.
5138 */
5139 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5140 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5141 !task_group_is_autogroup(task_group(p))) {
5142 task_rq_unlock(rq, p, &flags);
5143 return -EPERM;
5144 }
5145 }
5146 #endif
5147
5148 /* recheck policy now with rq lock held */
5149 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5150 policy = oldpolicy = -1;
5151 task_rq_unlock(rq, p, &flags);
5152 goto recheck;
5153 }
5154 on_rq = p->on_rq;
5155 running = task_current(rq, p);
5156 if (on_rq)
5157 deactivate_task(rq, p, 0);
5158 if (running)
5159 p->sched_class->put_prev_task(rq, p);
5160
5161 p->sched_reset_on_fork = reset_on_fork;
5162
5163 oldprio = p->prio;
5164 prev_class = p->sched_class;
5165 __setscheduler(rq, p, policy, param->sched_priority);
5166
5167 if (running)
5168 p->sched_class->set_curr_task(rq);
5169 if (on_rq)
5170 activate_task(rq, p, 0);
5171
5172 check_class_changed(rq, p, prev_class, oldprio);
5173 task_rq_unlock(rq, p, &flags);
5174
5175 rt_mutex_adjust_pi(p);
5176
5177 return 0;
5178 }
5179
5180 /**
5181 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5182 * @p: the task in question.
5183 * @policy: new policy.
5184 * @param: structure containing the new RT priority.
5185 *
5186 * NOTE that the task may be already dead.
5187 */
5188 int sched_setscheduler(struct task_struct *p, int policy,
5189 const struct sched_param *param)
5190 {
5191 return __sched_setscheduler(p, policy, param, true);
5192 }
5193 EXPORT_SYMBOL_GPL(sched_setscheduler);
5194
5195 /**
5196 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5197 * @p: the task in question.
5198 * @policy: new policy.
5199 * @param: structure containing the new RT priority.
5200 *
5201 * Just like sched_setscheduler, only don't bother checking if the
5202 * current context has permission. For example, this is needed in
5203 * stop_machine(): we create temporary high priority worker threads,
5204 * but our caller might not have that capability.
5205 */
5206 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5207 const struct sched_param *param)
5208 {
5209 return __sched_setscheduler(p, policy, param, false);
5210 }
5211
5212 static int
5213 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5214 {
5215 struct sched_param lparam;
5216 struct task_struct *p;
5217 int retval;
5218
5219 if (!param || pid < 0)
5220 return -EINVAL;
5221 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5222 return -EFAULT;
5223
5224 rcu_read_lock();
5225 retval = -ESRCH;
5226 p = find_process_by_pid(pid);
5227 if (p != NULL)
5228 retval = sched_setscheduler(p, policy, &lparam);
5229 rcu_read_unlock();
5230
5231 return retval;
5232 }
5233
5234 /**
5235 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5236 * @pid: the pid in question.
5237 * @policy: new policy.
5238 * @param: structure containing the new RT priority.
5239 */
5240 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5241 struct sched_param __user *, param)
5242 {
5243 /* negative values for policy are not valid */
5244 if (policy < 0)
5245 return -EINVAL;
5246
5247 return do_sched_setscheduler(pid, policy, param);
5248 }
5249
5250 /**
5251 * sys_sched_setparam - set/change the RT priority of a thread
5252 * @pid: the pid in question.
5253 * @param: structure containing the new RT priority.
5254 */
5255 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5256 {
5257 return do_sched_setscheduler(pid, -1, param);
5258 }
5259
5260 /**
5261 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5262 * @pid: the pid in question.
5263 */
5264 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5265 {
5266 struct task_struct *p;
5267 int retval;
5268
5269 if (pid < 0)
5270 return -EINVAL;
5271
5272 retval = -ESRCH;
5273 rcu_read_lock();
5274 p = find_process_by_pid(pid);
5275 if (p) {
5276 retval = security_task_getscheduler(p);
5277 if (!retval)
5278 retval = p->policy
5279 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5280 }
5281 rcu_read_unlock();
5282 return retval;
5283 }
5284
5285 /**
5286 * sys_sched_getparam - get the RT priority of a thread
5287 * @pid: the pid in question.
5288 * @param: structure containing the RT priority.
5289 */
5290 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5291 {
5292 struct sched_param lp;
5293 struct task_struct *p;
5294 int retval;
5295
5296 if (!param || pid < 0)
5297 return -EINVAL;
5298
5299 rcu_read_lock();
5300 p = find_process_by_pid(pid);
5301 retval = -ESRCH;
5302 if (!p)
5303 goto out_unlock;
5304
5305 retval = security_task_getscheduler(p);
5306 if (retval)
5307 goto out_unlock;
5308
5309 lp.sched_priority = p->rt_priority;
5310 rcu_read_unlock();
5311
5312 /*
5313 * This one might sleep, we cannot do it with a spinlock held ...
5314 */
5315 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5316
5317 return retval;
5318
5319 out_unlock:
5320 rcu_read_unlock();
5321 return retval;
5322 }
5323
5324 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5325 {
5326 cpumask_var_t cpus_allowed, new_mask;
5327 struct task_struct *p;
5328 int retval;
5329
5330 get_online_cpus();
5331 rcu_read_lock();
5332
5333 p = find_process_by_pid(pid);
5334 if (!p) {
5335 rcu_read_unlock();
5336 put_online_cpus();
5337 return -ESRCH;
5338 }
5339
5340 /* Prevent p going away */
5341 get_task_struct(p);
5342 rcu_read_unlock();
5343
5344 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5345 retval = -ENOMEM;
5346 goto out_put_task;
5347 }
5348 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5349 retval = -ENOMEM;
5350 goto out_free_cpus_allowed;
5351 }
5352 retval = -EPERM;
5353 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5354 goto out_unlock;
5355
5356 retval = security_task_setscheduler(p);
5357 if (retval)
5358 goto out_unlock;
5359
5360 cpuset_cpus_allowed(p, cpus_allowed);
5361 cpumask_and(new_mask, in_mask, cpus_allowed);
5362 again:
5363 retval = set_cpus_allowed_ptr(p, new_mask);
5364
5365 if (!retval) {
5366 cpuset_cpus_allowed(p, cpus_allowed);
5367 if (!cpumask_subset(new_mask, cpus_allowed)) {
5368 /*
5369 * We must have raced with a concurrent cpuset
5370 * update. Just reset the cpus_allowed to the
5371 * cpuset's cpus_allowed
5372 */
5373 cpumask_copy(new_mask, cpus_allowed);
5374 goto again;
5375 }
5376 }
5377 out_unlock:
5378 free_cpumask_var(new_mask);
5379 out_free_cpus_allowed:
5380 free_cpumask_var(cpus_allowed);
5381 out_put_task:
5382 put_task_struct(p);
5383 put_online_cpus();
5384 return retval;
5385 }
5386
5387 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5388 struct cpumask *new_mask)
5389 {
5390 if (len < cpumask_size())
5391 cpumask_clear(new_mask);
5392 else if (len > cpumask_size())
5393 len = cpumask_size();
5394
5395 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5396 }
5397
5398 /**
5399 * sys_sched_setaffinity - set the cpu affinity of a process
5400 * @pid: pid of the process
5401 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5402 * @user_mask_ptr: user-space pointer to the new cpu mask
5403 */
5404 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5405 unsigned long __user *, user_mask_ptr)
5406 {
5407 cpumask_var_t new_mask;
5408 int retval;
5409
5410 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5411 return -ENOMEM;
5412
5413 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5414 if (retval == 0)
5415 retval = sched_setaffinity(pid, new_mask);
5416 free_cpumask_var(new_mask);
5417 return retval;
5418 }
5419
5420 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5421 {
5422 struct task_struct *p;
5423 unsigned long flags;
5424 int retval;
5425
5426 get_online_cpus();
5427 rcu_read_lock();
5428
5429 retval = -ESRCH;
5430 p = find_process_by_pid(pid);
5431 if (!p)
5432 goto out_unlock;
5433
5434 retval = security_task_getscheduler(p);
5435 if (retval)
5436 goto out_unlock;
5437
5438 raw_spin_lock_irqsave(&p->pi_lock, flags);
5439 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5440 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5441
5442 out_unlock:
5443 rcu_read_unlock();
5444 put_online_cpus();
5445
5446 return retval;
5447 }
5448
5449 /**
5450 * sys_sched_getaffinity - get the cpu affinity of a process
5451 * @pid: pid of the process
5452 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5453 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5454 */
5455 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5456 unsigned long __user *, user_mask_ptr)
5457 {
5458 int ret;
5459 cpumask_var_t mask;
5460
5461 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5462 return -EINVAL;
5463 if (len & (sizeof(unsigned long)-1))
5464 return -EINVAL;
5465
5466 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5467 return -ENOMEM;
5468
5469 ret = sched_getaffinity(pid, mask);
5470 if (ret == 0) {
5471 size_t retlen = min_t(size_t, len, cpumask_size());
5472
5473 if (copy_to_user(user_mask_ptr, mask, retlen))
5474 ret = -EFAULT;
5475 else
5476 ret = retlen;
5477 }
5478 free_cpumask_var(mask);
5479
5480 return ret;
5481 }
5482
5483 /**
5484 * sys_sched_yield - yield the current processor to other threads.
5485 *
5486 * This function yields the current CPU to other tasks. If there are no
5487 * other threads running on this CPU then this function will return.
5488 */
5489 SYSCALL_DEFINE0(sched_yield)
5490 {
5491 struct rq *rq = this_rq_lock();
5492
5493 schedstat_inc(rq, yld_count);
5494 current->sched_class->yield_task(rq);
5495
5496 /*
5497 * Since we are going to call schedule() anyway, there's
5498 * no need to preempt or enable interrupts:
5499 */
5500 __release(rq->lock);
5501 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5502 do_raw_spin_unlock(&rq->lock);
5503 preempt_enable_no_resched();
5504
5505 schedule();
5506
5507 return 0;
5508 }
5509
5510 static inline int should_resched(void)
5511 {
5512 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5513 }
5514
5515 static void __cond_resched(void)
5516 {
5517 add_preempt_count(PREEMPT_ACTIVE);
5518 schedule();
5519 sub_preempt_count(PREEMPT_ACTIVE);
5520 }
5521
5522 int __sched _cond_resched(void)
5523 {
5524 if (should_resched()) {
5525 __cond_resched();
5526 return 1;
5527 }
5528 return 0;
5529 }
5530 EXPORT_SYMBOL(_cond_resched);
5531
5532 /*
5533 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5534 * call schedule, and on return reacquire the lock.
5535 *
5536 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5537 * operations here to prevent schedule() from being called twice (once via
5538 * spin_unlock(), once by hand).
5539 */
5540 int __cond_resched_lock(spinlock_t *lock)
5541 {
5542 int resched = should_resched();
5543 int ret = 0;
5544
5545 lockdep_assert_held(lock);
5546
5547 if (spin_needbreak(lock) || resched) {
5548 spin_unlock(lock);
5549 if (resched)
5550 __cond_resched();
5551 else
5552 cpu_relax();
5553 ret = 1;
5554 spin_lock(lock);
5555 }
5556 return ret;
5557 }
5558 EXPORT_SYMBOL(__cond_resched_lock);
5559
5560 int __sched __cond_resched_softirq(void)
5561 {
5562 BUG_ON(!in_softirq());
5563
5564 if (should_resched()) {
5565 local_bh_enable();
5566 __cond_resched();
5567 local_bh_disable();
5568 return 1;
5569 }
5570 return 0;
5571 }
5572 EXPORT_SYMBOL(__cond_resched_softirq);
5573
5574 /**
5575 * yield - yield the current processor to other threads.
5576 *
5577 * This is a shortcut for kernel-space yielding - it marks the
5578 * thread runnable and calls sys_sched_yield().
5579 */
5580 void __sched yield(void)
5581 {
5582 set_current_state(TASK_RUNNING);
5583 sys_sched_yield();
5584 }
5585 EXPORT_SYMBOL(yield);
5586
5587 /**
5588 * yield_to - yield the current processor to another thread in
5589 * your thread group, or accelerate that thread toward the
5590 * processor it's on.
5591 * @p: target task
5592 * @preempt: whether task preemption is allowed or not
5593 *
5594 * It's the caller's job to ensure that the target task struct
5595 * can't go away on us before we can do any checks.
5596 *
5597 * Returns true if we indeed boosted the target task.
5598 */
5599 bool __sched yield_to(struct task_struct *p, bool preempt)
5600 {
5601 struct task_struct *curr = current;
5602 struct rq *rq, *p_rq;
5603 unsigned long flags;
5604 bool yielded = 0;
5605
5606 local_irq_save(flags);
5607 rq = this_rq();
5608
5609 again:
5610 p_rq = task_rq(p);
5611 double_rq_lock(rq, p_rq);
5612 while (task_rq(p) != p_rq) {
5613 double_rq_unlock(rq, p_rq);
5614 goto again;
5615 }
5616
5617 if (!curr->sched_class->yield_to_task)
5618 goto out;
5619
5620 if (curr->sched_class != p->sched_class)
5621 goto out;
5622
5623 if (task_running(p_rq, p) || p->state)
5624 goto out;
5625
5626 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5627 if (yielded) {
5628 schedstat_inc(rq, yld_count);
5629 /*
5630 * Make p's CPU reschedule; pick_next_entity takes care of
5631 * fairness.
5632 */
5633 if (preempt && rq != p_rq)
5634 resched_task(p_rq->curr);
5635 }
5636
5637 out:
5638 double_rq_unlock(rq, p_rq);
5639 local_irq_restore(flags);
5640
5641 if (yielded)
5642 schedule();
5643
5644 return yielded;
5645 }
5646 EXPORT_SYMBOL_GPL(yield_to);
5647
5648 /*
5649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5650 * that process accounting knows that this is a task in IO wait state.
5651 */
5652 void __sched io_schedule(void)
5653 {
5654 struct rq *rq = raw_rq();
5655
5656 delayacct_blkio_start();
5657 atomic_inc(&rq->nr_iowait);
5658 blk_flush_plug(current);
5659 current->in_iowait = 1;
5660 schedule();
5661 current->in_iowait = 0;
5662 atomic_dec(&rq->nr_iowait);
5663 delayacct_blkio_end();
5664 }
5665 EXPORT_SYMBOL(io_schedule);
5666
5667 long __sched io_schedule_timeout(long timeout)
5668 {
5669 struct rq *rq = raw_rq();
5670 long ret;
5671
5672 delayacct_blkio_start();
5673 atomic_inc(&rq->nr_iowait);
5674 blk_flush_plug(current);
5675 current->in_iowait = 1;
5676 ret = schedule_timeout(timeout);
5677 current->in_iowait = 0;
5678 atomic_dec(&rq->nr_iowait);
5679 delayacct_blkio_end();
5680 return ret;
5681 }
5682
5683 /**
5684 * sys_sched_get_priority_max - return maximum RT priority.
5685 * @policy: scheduling class.
5686 *
5687 * this syscall returns the maximum rt_priority that can be used
5688 * by a given scheduling class.
5689 */
5690 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5691 {
5692 int ret = -EINVAL;
5693
5694 switch (policy) {
5695 case SCHED_FIFO:
5696 case SCHED_RR:
5697 ret = MAX_USER_RT_PRIO-1;
5698 break;
5699 case SCHED_NORMAL:
5700 case SCHED_BATCH:
5701 case SCHED_IDLE:
5702 ret = 0;
5703 break;
5704 }
5705 return ret;
5706 }
5707
5708 /**
5709 * sys_sched_get_priority_min - return minimum RT priority.
5710 * @policy: scheduling class.
5711 *
5712 * this syscall returns the minimum rt_priority that can be used
5713 * by a given scheduling class.
5714 */
5715 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5716 {
5717 int ret = -EINVAL;
5718
5719 switch (policy) {
5720 case SCHED_FIFO:
5721 case SCHED_RR:
5722 ret = 1;
5723 break;
5724 case SCHED_NORMAL:
5725 case SCHED_BATCH:
5726 case SCHED_IDLE:
5727 ret = 0;
5728 }
5729 return ret;
5730 }
5731
5732 /**
5733 * sys_sched_rr_get_interval - return the default timeslice of a process.
5734 * @pid: pid of the process.
5735 * @interval: userspace pointer to the timeslice value.
5736 *
5737 * this syscall writes the default timeslice value of a given process
5738 * into the user-space timespec buffer. A value of '0' means infinity.
5739 */
5740 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5741 struct timespec __user *, interval)
5742 {
5743 struct task_struct *p;
5744 unsigned int time_slice;
5745 unsigned long flags;
5746 struct rq *rq;
5747 int retval;
5748 struct timespec t;
5749
5750 if (pid < 0)
5751 return -EINVAL;
5752
5753 retval = -ESRCH;
5754 rcu_read_lock();
5755 p = find_process_by_pid(pid);
5756 if (!p)
5757 goto out_unlock;
5758
5759 retval = security_task_getscheduler(p);
5760 if (retval)
5761 goto out_unlock;
5762
5763 rq = task_rq_lock(p, &flags);
5764 time_slice = p->sched_class->get_rr_interval(rq, p);
5765 task_rq_unlock(rq, p, &flags);
5766
5767 rcu_read_unlock();
5768 jiffies_to_timespec(time_slice, &t);
5769 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5770 return retval;
5771
5772 out_unlock:
5773 rcu_read_unlock();
5774 return retval;
5775 }
5776
5777 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5778
5779 void sched_show_task(struct task_struct *p)
5780 {
5781 unsigned long free = 0;
5782 unsigned state;
5783
5784 state = p->state ? __ffs(p->state) + 1 : 0;
5785 printk(KERN_INFO "%-15.15s %c", p->comm,
5786 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5787 #if BITS_PER_LONG == 32
5788 if (state == TASK_RUNNING)
5789 printk(KERN_CONT " running ");
5790 else
5791 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5792 #else
5793 if (state == TASK_RUNNING)
5794 printk(KERN_CONT " running task ");
5795 else
5796 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5797 #endif
5798 #ifdef CONFIG_DEBUG_STACK_USAGE
5799 free = stack_not_used(p);
5800 #endif
5801 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5802 task_pid_nr(p), task_pid_nr(p->real_parent),
5803 (unsigned long)task_thread_info(p)->flags);
5804
5805 show_stack(p, NULL);
5806 }
5807
5808 void show_state_filter(unsigned long state_filter)
5809 {
5810 struct task_struct *g, *p;
5811
5812 #if BITS_PER_LONG == 32
5813 printk(KERN_INFO
5814 " task PC stack pid father\n");
5815 #else
5816 printk(KERN_INFO
5817 " task PC stack pid father\n");
5818 #endif
5819 read_lock(&tasklist_lock);
5820 do_each_thread(g, p) {
5821 /*
5822 * reset the NMI-timeout, listing all files on a slow
5823 * console might take a lot of time:
5824 */
5825 touch_nmi_watchdog();
5826 if (!state_filter || (p->state & state_filter))
5827 sched_show_task(p);
5828 } while_each_thread(g, p);
5829
5830 touch_all_softlockup_watchdogs();
5831
5832 #ifdef CONFIG_SCHED_DEBUG
5833 sysrq_sched_debug_show();
5834 #endif
5835 read_unlock(&tasklist_lock);
5836 /*
5837 * Only show locks if all tasks are dumped:
5838 */
5839 if (!state_filter)
5840 debug_show_all_locks();
5841 }
5842
5843 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5844 {
5845 idle->sched_class = &idle_sched_class;
5846 }
5847
5848 /**
5849 * init_idle - set up an idle thread for a given CPU
5850 * @idle: task in question
5851 * @cpu: cpu the idle task belongs to
5852 *
5853 * NOTE: this function does not set the idle thread's NEED_RESCHED
5854 * flag, to make booting more robust.
5855 */
5856 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5857 {
5858 struct rq *rq = cpu_rq(cpu);
5859 unsigned long flags;
5860
5861 raw_spin_lock_irqsave(&rq->lock, flags);
5862
5863 __sched_fork(idle);
5864 idle->state = TASK_RUNNING;
5865 idle->se.exec_start = sched_clock();
5866
5867 do_set_cpus_allowed(idle, cpumask_of(cpu));
5868 /*
5869 * We're having a chicken and egg problem, even though we are
5870 * holding rq->lock, the cpu isn't yet set to this cpu so the
5871 * lockdep check in task_group() will fail.
5872 *
5873 * Similar case to sched_fork(). / Alternatively we could
5874 * use task_rq_lock() here and obtain the other rq->lock.
5875 *
5876 * Silence PROVE_RCU
5877 */
5878 rcu_read_lock();
5879 __set_task_cpu(idle, cpu);
5880 rcu_read_unlock();
5881
5882 rq->curr = rq->idle = idle;
5883 #if defined(CONFIG_SMP)
5884 idle->on_cpu = 1;
5885 #endif
5886 raw_spin_unlock_irqrestore(&rq->lock, flags);
5887
5888 /* Set the preempt count _outside_ the spinlocks! */
5889 task_thread_info(idle)->preempt_count = 0;
5890
5891 /*
5892 * The idle tasks have their own, simple scheduling class:
5893 */
5894 idle->sched_class = &idle_sched_class;
5895 ftrace_graph_init_idle_task(idle, cpu);
5896 }
5897
5898 /*
5899 * In a system that switches off the HZ timer nohz_cpu_mask
5900 * indicates which cpus entered this state. This is used
5901 * in the rcu update to wait only for active cpus. For system
5902 * which do not switch off the HZ timer nohz_cpu_mask should
5903 * always be CPU_BITS_NONE.
5904 */
5905 cpumask_var_t nohz_cpu_mask;
5906
5907 /*
5908 * Increase the granularity value when there are more CPUs,
5909 * because with more CPUs the 'effective latency' as visible
5910 * to users decreases. But the relationship is not linear,
5911 * so pick a second-best guess by going with the log2 of the
5912 * number of CPUs.
5913 *
5914 * This idea comes from the SD scheduler of Con Kolivas:
5915 */
5916 static int get_update_sysctl_factor(void)
5917 {
5918 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5919 unsigned int factor;
5920
5921 switch (sysctl_sched_tunable_scaling) {
5922 case SCHED_TUNABLESCALING_NONE:
5923 factor = 1;
5924 break;
5925 case SCHED_TUNABLESCALING_LINEAR:
5926 factor = cpus;
5927 break;
5928 case SCHED_TUNABLESCALING_LOG:
5929 default:
5930 factor = 1 + ilog2(cpus);
5931 break;
5932 }
5933
5934 return factor;
5935 }
5936
5937 static void update_sysctl(void)
5938 {
5939 unsigned int factor = get_update_sysctl_factor();
5940
5941 #define SET_SYSCTL(name) \
5942 (sysctl_##name = (factor) * normalized_sysctl_##name)
5943 SET_SYSCTL(sched_min_granularity);
5944 SET_SYSCTL(sched_latency);
5945 SET_SYSCTL(sched_wakeup_granularity);
5946 #undef SET_SYSCTL
5947 }
5948
5949 static inline void sched_init_granularity(void)
5950 {
5951 update_sysctl();
5952 }
5953
5954 #ifdef CONFIG_SMP
5955 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5956 {
5957 if (p->sched_class && p->sched_class->set_cpus_allowed)
5958 p->sched_class->set_cpus_allowed(p, new_mask);
5959 else {
5960 cpumask_copy(&p->cpus_allowed, new_mask);
5961 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5962 }
5963 }
5964
5965 /*
5966 * This is how migration works:
5967 *
5968 * 1) we invoke migration_cpu_stop() on the target CPU using
5969 * stop_one_cpu().
5970 * 2) stopper starts to run (implicitly forcing the migrated thread
5971 * off the CPU)
5972 * 3) it checks whether the migrated task is still in the wrong runqueue.
5973 * 4) if it's in the wrong runqueue then the migration thread removes
5974 * it and puts it into the right queue.
5975 * 5) stopper completes and stop_one_cpu() returns and the migration
5976 * is done.
5977 */
5978
5979 /*
5980 * Change a given task's CPU affinity. Migrate the thread to a
5981 * proper CPU and schedule it away if the CPU it's executing on
5982 * is removed from the allowed bitmask.
5983 *
5984 * NOTE: the caller must have a valid reference to the task, the
5985 * task must not exit() & deallocate itself prematurely. The
5986 * call is not atomic; no spinlocks may be held.
5987 */
5988 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5989 {
5990 unsigned long flags;
5991 struct rq *rq;
5992 unsigned int dest_cpu;
5993 int ret = 0;
5994
5995 rq = task_rq_lock(p, &flags);
5996
5997 if (cpumask_equal(&p->cpus_allowed, new_mask))
5998 goto out;
5999
6000 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6001 ret = -EINVAL;
6002 goto out;
6003 }
6004
6005 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6006 ret = -EINVAL;
6007 goto out;
6008 }
6009
6010 do_set_cpus_allowed(p, new_mask);
6011
6012 /* Can the task run on the task's current CPU? If so, we're done */
6013 if (cpumask_test_cpu(task_cpu(p), new_mask))
6014 goto out;
6015
6016 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6017 if (p->on_rq) {
6018 struct migration_arg arg = { p, dest_cpu };
6019 /* Need help from migration thread: drop lock and wait. */
6020 task_rq_unlock(rq, p, &flags);
6021 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6022 tlb_migrate_finish(p->mm);
6023 return 0;
6024 }
6025 out:
6026 task_rq_unlock(rq, p, &flags);
6027
6028 return ret;
6029 }
6030 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6031
6032 /*
6033 * Move (not current) task off this cpu, onto dest cpu. We're doing
6034 * this because either it can't run here any more (set_cpus_allowed()
6035 * away from this CPU, or CPU going down), or because we're
6036 * attempting to rebalance this task on exec (sched_exec).
6037 *
6038 * So we race with normal scheduler movements, but that's OK, as long
6039 * as the task is no longer on this CPU.
6040 *
6041 * Returns non-zero if task was successfully migrated.
6042 */
6043 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6044 {
6045 struct rq *rq_dest, *rq_src;
6046 int ret = 0;
6047
6048 if (unlikely(!cpu_active(dest_cpu)))
6049 return ret;
6050
6051 rq_src = cpu_rq(src_cpu);
6052 rq_dest = cpu_rq(dest_cpu);
6053
6054 raw_spin_lock(&p->pi_lock);
6055 double_rq_lock(rq_src, rq_dest);
6056 /* Already moved. */
6057 if (task_cpu(p) != src_cpu)
6058 goto done;
6059 /* Affinity changed (again). */
6060 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6061 goto fail;
6062
6063 /*
6064 * If we're not on a rq, the next wake-up will ensure we're
6065 * placed properly.
6066 */
6067 if (p->on_rq) {
6068 deactivate_task(rq_src, p, 0);
6069 set_task_cpu(p, dest_cpu);
6070 activate_task(rq_dest, p, 0);
6071 check_preempt_curr(rq_dest, p, 0);
6072 }
6073 done:
6074 ret = 1;
6075 fail:
6076 double_rq_unlock(rq_src, rq_dest);
6077 raw_spin_unlock(&p->pi_lock);
6078 return ret;
6079 }
6080
6081 /*
6082 * migration_cpu_stop - this will be executed by a highprio stopper thread
6083 * and performs thread migration by bumping thread off CPU then
6084 * 'pushing' onto another runqueue.
6085 */
6086 static int migration_cpu_stop(void *data)
6087 {
6088 struct migration_arg *arg = data;
6089
6090 /*
6091 * The original target cpu might have gone down and we might
6092 * be on another cpu but it doesn't matter.
6093 */
6094 local_irq_disable();
6095 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6096 local_irq_enable();
6097 return 0;
6098 }
6099
6100 #ifdef CONFIG_HOTPLUG_CPU
6101
6102 /*
6103 * Ensures that the idle task is using init_mm right before its cpu goes
6104 * offline.
6105 */
6106 void idle_task_exit(void)
6107 {
6108 struct mm_struct *mm = current->active_mm;
6109
6110 BUG_ON(cpu_online(smp_processor_id()));
6111
6112 if (mm != &init_mm)
6113 switch_mm(mm, &init_mm, current);
6114 mmdrop(mm);
6115 }
6116
6117 /*
6118 * While a dead CPU has no uninterruptible tasks queued at this point,
6119 * it might still have a nonzero ->nr_uninterruptible counter, because
6120 * for performance reasons the counter is not stricly tracking tasks to
6121 * their home CPUs. So we just add the counter to another CPU's counter,
6122 * to keep the global sum constant after CPU-down:
6123 */
6124 static void migrate_nr_uninterruptible(struct rq *rq_src)
6125 {
6126 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6127
6128 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6129 rq_src->nr_uninterruptible = 0;
6130 }
6131
6132 /*
6133 * remove the tasks which were accounted by rq from calc_load_tasks.
6134 */
6135 static void calc_global_load_remove(struct rq *rq)
6136 {
6137 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6138 rq->calc_load_active = 0;
6139 }
6140
6141 /*
6142 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6143 * try_to_wake_up()->select_task_rq().
6144 *
6145 * Called with rq->lock held even though we'er in stop_machine() and
6146 * there's no concurrency possible, we hold the required locks anyway
6147 * because of lock validation efforts.
6148 */
6149 static void migrate_tasks(unsigned int dead_cpu)
6150 {
6151 struct rq *rq = cpu_rq(dead_cpu);
6152 struct task_struct *next, *stop = rq->stop;
6153 int dest_cpu;
6154
6155 /*
6156 * Fudge the rq selection such that the below task selection loop
6157 * doesn't get stuck on the currently eligible stop task.
6158 *
6159 * We're currently inside stop_machine() and the rq is either stuck
6160 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6161 * either way we should never end up calling schedule() until we're
6162 * done here.
6163 */
6164 rq->stop = NULL;
6165
6166 for ( ; ; ) {
6167 /*
6168 * There's this thread running, bail when that's the only
6169 * remaining thread.
6170 */
6171 if (rq->nr_running == 1)
6172 break;
6173
6174 next = pick_next_task(rq);
6175 BUG_ON(!next);
6176 next->sched_class->put_prev_task(rq, next);
6177
6178 /* Find suitable destination for @next, with force if needed. */
6179 dest_cpu = select_fallback_rq(dead_cpu, next);
6180 raw_spin_unlock(&rq->lock);
6181
6182 __migrate_task(next, dead_cpu, dest_cpu);
6183
6184 raw_spin_lock(&rq->lock);
6185 }
6186
6187 rq->stop = stop;
6188 }
6189
6190 #endif /* CONFIG_HOTPLUG_CPU */
6191
6192 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6193
6194 static struct ctl_table sd_ctl_dir[] = {
6195 {
6196 .procname = "sched_domain",
6197 .mode = 0555,
6198 },
6199 {}
6200 };
6201
6202 static struct ctl_table sd_ctl_root[] = {
6203 {
6204 .procname = "kernel",
6205 .mode = 0555,
6206 .child = sd_ctl_dir,
6207 },
6208 {}
6209 };
6210
6211 static struct ctl_table *sd_alloc_ctl_entry(int n)
6212 {
6213 struct ctl_table *entry =
6214 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6215
6216 return entry;
6217 }
6218
6219 static void sd_free_ctl_entry(struct ctl_table **tablep)
6220 {
6221 struct ctl_table *entry;
6222
6223 /*
6224 * In the intermediate directories, both the child directory and
6225 * procname are dynamically allocated and could fail but the mode
6226 * will always be set. In the lowest directory the names are
6227 * static strings and all have proc handlers.
6228 */
6229 for (entry = *tablep; entry->mode; entry++) {
6230 if (entry->child)
6231 sd_free_ctl_entry(&entry->child);
6232 if (entry->proc_handler == NULL)
6233 kfree(entry->procname);
6234 }
6235
6236 kfree(*tablep);
6237 *tablep = NULL;
6238 }
6239
6240 static void
6241 set_table_entry(struct ctl_table *entry,
6242 const char *procname, void *data, int maxlen,
6243 mode_t mode, proc_handler *proc_handler)
6244 {
6245 entry->procname = procname;
6246 entry->data = data;
6247 entry->maxlen = maxlen;
6248 entry->mode = mode;
6249 entry->proc_handler = proc_handler;
6250 }
6251
6252 static struct ctl_table *
6253 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6254 {
6255 struct ctl_table *table = sd_alloc_ctl_entry(13);
6256
6257 if (table == NULL)
6258 return NULL;
6259
6260 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6261 sizeof(long), 0644, proc_doulongvec_minmax);
6262 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6263 sizeof(long), 0644, proc_doulongvec_minmax);
6264 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6265 sizeof(int), 0644, proc_dointvec_minmax);
6266 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6267 sizeof(int), 0644, proc_dointvec_minmax);
6268 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6269 sizeof(int), 0644, proc_dointvec_minmax);
6270 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6271 sizeof(int), 0644, proc_dointvec_minmax);
6272 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6273 sizeof(int), 0644, proc_dointvec_minmax);
6274 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6275 sizeof(int), 0644, proc_dointvec_minmax);
6276 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6277 sizeof(int), 0644, proc_dointvec_minmax);
6278 set_table_entry(&table[9], "cache_nice_tries",
6279 &sd->cache_nice_tries,
6280 sizeof(int), 0644, proc_dointvec_minmax);
6281 set_table_entry(&table[10], "flags", &sd->flags,
6282 sizeof(int), 0644, proc_dointvec_minmax);
6283 set_table_entry(&table[11], "name", sd->name,
6284 CORENAME_MAX_SIZE, 0444, proc_dostring);
6285 /* &table[12] is terminator */
6286
6287 return table;
6288 }
6289
6290 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6291 {
6292 struct ctl_table *entry, *table;
6293 struct sched_domain *sd;
6294 int domain_num = 0, i;
6295 char buf[32];
6296
6297 for_each_domain(cpu, sd)
6298 domain_num++;
6299 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6300 if (table == NULL)
6301 return NULL;
6302
6303 i = 0;
6304 for_each_domain(cpu, sd) {
6305 snprintf(buf, 32, "domain%d", i);
6306 entry->procname = kstrdup(buf, GFP_KERNEL);
6307 entry->mode = 0555;
6308 entry->child = sd_alloc_ctl_domain_table(sd);
6309 entry++;
6310 i++;
6311 }
6312 return table;
6313 }
6314
6315 static struct ctl_table_header *sd_sysctl_header;
6316 static void register_sched_domain_sysctl(void)
6317 {
6318 int i, cpu_num = num_possible_cpus();
6319 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6320 char buf[32];
6321
6322 WARN_ON(sd_ctl_dir[0].child);
6323 sd_ctl_dir[0].child = entry;
6324
6325 if (entry == NULL)
6326 return;
6327
6328 for_each_possible_cpu(i) {
6329 snprintf(buf, 32, "cpu%d", i);
6330 entry->procname = kstrdup(buf, GFP_KERNEL);
6331 entry->mode = 0555;
6332 entry->child = sd_alloc_ctl_cpu_table(i);
6333 entry++;
6334 }
6335
6336 WARN_ON(sd_sysctl_header);
6337 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6338 }
6339
6340 /* may be called multiple times per register */
6341 static void unregister_sched_domain_sysctl(void)
6342 {
6343 if (sd_sysctl_header)
6344 unregister_sysctl_table(sd_sysctl_header);
6345 sd_sysctl_header = NULL;
6346 if (sd_ctl_dir[0].child)
6347 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6348 }
6349 #else
6350 static void register_sched_domain_sysctl(void)
6351 {
6352 }
6353 static void unregister_sched_domain_sysctl(void)
6354 {
6355 }
6356 #endif
6357
6358 static void set_rq_online(struct rq *rq)
6359 {
6360 if (!rq->online) {
6361 const struct sched_class *class;
6362
6363 cpumask_set_cpu(rq->cpu, rq->rd->online);
6364 rq->online = 1;
6365
6366 for_each_class(class) {
6367 if (class->rq_online)
6368 class->rq_online(rq);
6369 }
6370 }
6371 }
6372
6373 static void set_rq_offline(struct rq *rq)
6374 {
6375 if (rq->online) {
6376 const struct sched_class *class;
6377
6378 for_each_class(class) {
6379 if (class->rq_offline)
6380 class->rq_offline(rq);
6381 }
6382
6383 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6384 rq->online = 0;
6385 }
6386 }
6387
6388 /*
6389 * migration_call - callback that gets triggered when a CPU is added.
6390 * Here we can start up the necessary migration thread for the new CPU.
6391 */
6392 static int __cpuinit
6393 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6394 {
6395 int cpu = (long)hcpu;
6396 unsigned long flags;
6397 struct rq *rq = cpu_rq(cpu);
6398
6399 switch (action & ~CPU_TASKS_FROZEN) {
6400
6401 case CPU_UP_PREPARE:
6402 rq->calc_load_update = calc_load_update;
6403 break;
6404
6405 case CPU_ONLINE:
6406 /* Update our root-domain */
6407 raw_spin_lock_irqsave(&rq->lock, flags);
6408 if (rq->rd) {
6409 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6410
6411 set_rq_online(rq);
6412 }
6413 raw_spin_unlock_irqrestore(&rq->lock, flags);
6414 break;
6415
6416 #ifdef CONFIG_HOTPLUG_CPU
6417 case CPU_DYING:
6418 sched_ttwu_pending();
6419 /* Update our root-domain */
6420 raw_spin_lock_irqsave(&rq->lock, flags);
6421 if (rq->rd) {
6422 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6423 set_rq_offline(rq);
6424 }
6425 migrate_tasks(cpu);
6426 BUG_ON(rq->nr_running != 1); /* the migration thread */
6427 raw_spin_unlock_irqrestore(&rq->lock, flags);
6428
6429 migrate_nr_uninterruptible(rq);
6430 calc_global_load_remove(rq);
6431 break;
6432 #endif
6433 }
6434
6435 update_max_interval();
6436
6437 return NOTIFY_OK;
6438 }
6439
6440 /*
6441 * Register at high priority so that task migration (migrate_all_tasks)
6442 * happens before everything else. This has to be lower priority than
6443 * the notifier in the perf_event subsystem, though.
6444 */
6445 static struct notifier_block __cpuinitdata migration_notifier = {
6446 .notifier_call = migration_call,
6447 .priority = CPU_PRI_MIGRATION,
6448 };
6449
6450 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6451 unsigned long action, void *hcpu)
6452 {
6453 switch (action & ~CPU_TASKS_FROZEN) {
6454 case CPU_ONLINE:
6455 case CPU_DOWN_FAILED:
6456 set_cpu_active((long)hcpu, true);
6457 return NOTIFY_OK;
6458 default:
6459 return NOTIFY_DONE;
6460 }
6461 }
6462
6463 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6464 unsigned long action, void *hcpu)
6465 {
6466 switch (action & ~CPU_TASKS_FROZEN) {
6467 case CPU_DOWN_PREPARE:
6468 set_cpu_active((long)hcpu, false);
6469 return NOTIFY_OK;
6470 default:
6471 return NOTIFY_DONE;
6472 }
6473 }
6474
6475 static int __init migration_init(void)
6476 {
6477 void *cpu = (void *)(long)smp_processor_id();
6478 int err;
6479
6480 /* Initialize migration for the boot CPU */
6481 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6482 BUG_ON(err == NOTIFY_BAD);
6483 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6484 register_cpu_notifier(&migration_notifier);
6485
6486 /* Register cpu active notifiers */
6487 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6488 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6489
6490 return 0;
6491 }
6492 early_initcall(migration_init);
6493 #endif
6494
6495 #ifdef CONFIG_SMP
6496
6497 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6498
6499 #ifdef CONFIG_SCHED_DEBUG
6500
6501 static __read_mostly int sched_domain_debug_enabled;
6502
6503 static int __init sched_domain_debug_setup(char *str)
6504 {
6505 sched_domain_debug_enabled = 1;
6506
6507 return 0;
6508 }
6509 early_param("sched_debug", sched_domain_debug_setup);
6510
6511 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6512 struct cpumask *groupmask)
6513 {
6514 struct sched_group *group = sd->groups;
6515 char str[256];
6516
6517 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6518 cpumask_clear(groupmask);
6519
6520 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6521
6522 if (!(sd->flags & SD_LOAD_BALANCE)) {
6523 printk("does not load-balance\n");
6524 if (sd->parent)
6525 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6526 " has parent");
6527 return -1;
6528 }
6529
6530 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6531
6532 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6533 printk(KERN_ERR "ERROR: domain->span does not contain "
6534 "CPU%d\n", cpu);
6535 }
6536 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6537 printk(KERN_ERR "ERROR: domain->groups does not contain"
6538 " CPU%d\n", cpu);
6539 }
6540
6541 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6542 do {
6543 if (!group) {
6544 printk("\n");
6545 printk(KERN_ERR "ERROR: group is NULL\n");
6546 break;
6547 }
6548
6549 if (!group->cpu_power) {
6550 printk(KERN_CONT "\n");
6551 printk(KERN_ERR "ERROR: domain->cpu_power not "
6552 "set\n");
6553 break;
6554 }
6555
6556 if (!cpumask_weight(sched_group_cpus(group))) {
6557 printk(KERN_CONT "\n");
6558 printk(KERN_ERR "ERROR: empty group\n");
6559 break;
6560 }
6561
6562 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6563 printk(KERN_CONT "\n");
6564 printk(KERN_ERR "ERROR: repeated CPUs\n");
6565 break;
6566 }
6567
6568 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6569
6570 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6571
6572 printk(KERN_CONT " %s", str);
6573 if (group->cpu_power != SCHED_POWER_SCALE) {
6574 printk(KERN_CONT " (cpu_power = %d)",
6575 group->cpu_power);
6576 }
6577
6578 group = group->next;
6579 } while (group != sd->groups);
6580 printk(KERN_CONT "\n");
6581
6582 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6583 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6584
6585 if (sd->parent &&
6586 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6587 printk(KERN_ERR "ERROR: parent span is not a superset "
6588 "of domain->span\n");
6589 return 0;
6590 }
6591
6592 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6593 {
6594 int level = 0;
6595
6596 if (!sched_domain_debug_enabled)
6597 return;
6598
6599 if (!sd) {
6600 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6601 return;
6602 }
6603
6604 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6605
6606 for (;;) {
6607 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6608 break;
6609 level++;
6610 sd = sd->parent;
6611 if (!sd)
6612 break;
6613 }
6614 }
6615 #else /* !CONFIG_SCHED_DEBUG */
6616 # define sched_domain_debug(sd, cpu) do { } while (0)
6617 #endif /* CONFIG_SCHED_DEBUG */
6618
6619 static int sd_degenerate(struct sched_domain *sd)
6620 {
6621 if (cpumask_weight(sched_domain_span(sd)) == 1)
6622 return 1;
6623
6624 /* Following flags need at least 2 groups */
6625 if (sd->flags & (SD_LOAD_BALANCE |
6626 SD_BALANCE_NEWIDLE |
6627 SD_BALANCE_FORK |
6628 SD_BALANCE_EXEC |
6629 SD_SHARE_CPUPOWER |
6630 SD_SHARE_PKG_RESOURCES)) {
6631 if (sd->groups != sd->groups->next)
6632 return 0;
6633 }
6634
6635 /* Following flags don't use groups */
6636 if (sd->flags & (SD_WAKE_AFFINE))
6637 return 0;
6638
6639 return 1;
6640 }
6641
6642 static int
6643 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6644 {
6645 unsigned long cflags = sd->flags, pflags = parent->flags;
6646
6647 if (sd_degenerate(parent))
6648 return 1;
6649
6650 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6651 return 0;
6652
6653 /* Flags needing groups don't count if only 1 group in parent */
6654 if (parent->groups == parent->groups->next) {
6655 pflags &= ~(SD_LOAD_BALANCE |
6656 SD_BALANCE_NEWIDLE |
6657 SD_BALANCE_FORK |
6658 SD_BALANCE_EXEC |
6659 SD_SHARE_CPUPOWER |
6660 SD_SHARE_PKG_RESOURCES);
6661 if (nr_node_ids == 1)
6662 pflags &= ~SD_SERIALIZE;
6663 }
6664 if (~cflags & pflags)
6665 return 0;
6666
6667 return 1;
6668 }
6669
6670 static void free_rootdomain(struct rcu_head *rcu)
6671 {
6672 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6673
6674 cpupri_cleanup(&rd->cpupri);
6675 free_cpumask_var(rd->rto_mask);
6676 free_cpumask_var(rd->online);
6677 free_cpumask_var(rd->span);
6678 kfree(rd);
6679 }
6680
6681 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6682 {
6683 struct root_domain *old_rd = NULL;
6684 unsigned long flags;
6685
6686 raw_spin_lock_irqsave(&rq->lock, flags);
6687
6688 if (rq->rd) {
6689 old_rd = rq->rd;
6690
6691 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6692 set_rq_offline(rq);
6693
6694 cpumask_clear_cpu(rq->cpu, old_rd->span);
6695
6696 /*
6697 * If we dont want to free the old_rt yet then
6698 * set old_rd to NULL to skip the freeing later
6699 * in this function:
6700 */
6701 if (!atomic_dec_and_test(&old_rd->refcount))
6702 old_rd = NULL;
6703 }
6704
6705 atomic_inc(&rd->refcount);
6706 rq->rd = rd;
6707
6708 cpumask_set_cpu(rq->cpu, rd->span);
6709 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6710 set_rq_online(rq);
6711
6712 raw_spin_unlock_irqrestore(&rq->lock, flags);
6713
6714 if (old_rd)
6715 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6716 }
6717
6718 static int init_rootdomain(struct root_domain *rd)
6719 {
6720 memset(rd, 0, sizeof(*rd));
6721
6722 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6723 goto out;
6724 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6725 goto free_span;
6726 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6727 goto free_online;
6728
6729 if (cpupri_init(&rd->cpupri) != 0)
6730 goto free_rto_mask;
6731 return 0;
6732
6733 free_rto_mask:
6734 free_cpumask_var(rd->rto_mask);
6735 free_online:
6736 free_cpumask_var(rd->online);
6737 free_span:
6738 free_cpumask_var(rd->span);
6739 out:
6740 return -ENOMEM;
6741 }
6742
6743 static void init_defrootdomain(void)
6744 {
6745 init_rootdomain(&def_root_domain);
6746
6747 atomic_set(&def_root_domain.refcount, 1);
6748 }
6749
6750 static struct root_domain *alloc_rootdomain(void)
6751 {
6752 struct root_domain *rd;
6753
6754 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6755 if (!rd)
6756 return NULL;
6757
6758 if (init_rootdomain(rd) != 0) {
6759 kfree(rd);
6760 return NULL;
6761 }
6762
6763 return rd;
6764 }
6765
6766 static void free_sched_domain(struct rcu_head *rcu)
6767 {
6768 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6769 if (atomic_dec_and_test(&sd->groups->ref))
6770 kfree(sd->groups);
6771 kfree(sd);
6772 }
6773
6774 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6775 {
6776 call_rcu(&sd->rcu, free_sched_domain);
6777 }
6778
6779 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6780 {
6781 for (; sd; sd = sd->parent)
6782 destroy_sched_domain(sd, cpu);
6783 }
6784
6785 /*
6786 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6787 * hold the hotplug lock.
6788 */
6789 static void
6790 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6791 {
6792 struct rq *rq = cpu_rq(cpu);
6793 struct sched_domain *tmp;
6794
6795 /* Remove the sched domains which do not contribute to scheduling. */
6796 for (tmp = sd; tmp; ) {
6797 struct sched_domain *parent = tmp->parent;
6798 if (!parent)
6799 break;
6800
6801 if (sd_parent_degenerate(tmp, parent)) {
6802 tmp->parent = parent->parent;
6803 if (parent->parent)
6804 parent->parent->child = tmp;
6805 destroy_sched_domain(parent, cpu);
6806 } else
6807 tmp = tmp->parent;
6808 }
6809
6810 if (sd && sd_degenerate(sd)) {
6811 tmp = sd;
6812 sd = sd->parent;
6813 destroy_sched_domain(tmp, cpu);
6814 if (sd)
6815 sd->child = NULL;
6816 }
6817
6818 sched_domain_debug(sd, cpu);
6819
6820 rq_attach_root(rq, rd);
6821 tmp = rq->sd;
6822 rcu_assign_pointer(rq->sd, sd);
6823 destroy_sched_domains(tmp, cpu);
6824 }
6825
6826 /* cpus with isolated domains */
6827 static cpumask_var_t cpu_isolated_map;
6828
6829 /* Setup the mask of cpus configured for isolated domains */
6830 static int __init isolated_cpu_setup(char *str)
6831 {
6832 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6833 cpulist_parse(str, cpu_isolated_map);
6834 return 1;
6835 }
6836
6837 __setup("isolcpus=", isolated_cpu_setup);
6838
6839 #define SD_NODES_PER_DOMAIN 16
6840
6841 #ifdef CONFIG_NUMA
6842
6843 /**
6844 * find_next_best_node - find the next node to include in a sched_domain
6845 * @node: node whose sched_domain we're building
6846 * @used_nodes: nodes already in the sched_domain
6847 *
6848 * Find the next node to include in a given scheduling domain. Simply
6849 * finds the closest node not already in the @used_nodes map.
6850 *
6851 * Should use nodemask_t.
6852 */
6853 static int find_next_best_node(int node, nodemask_t *used_nodes)
6854 {
6855 int i, n, val, min_val, best_node = -1;
6856
6857 min_val = INT_MAX;
6858
6859 for (i = 0; i < nr_node_ids; i++) {
6860 /* Start at @node */
6861 n = (node + i) % nr_node_ids;
6862
6863 if (!nr_cpus_node(n))
6864 continue;
6865
6866 /* Skip already used nodes */
6867 if (node_isset(n, *used_nodes))
6868 continue;
6869
6870 /* Simple min distance search */
6871 val = node_distance(node, n);
6872
6873 if (val < min_val) {
6874 min_val = val;
6875 best_node = n;
6876 }
6877 }
6878
6879 if (best_node != -1)
6880 node_set(best_node, *used_nodes);
6881 return best_node;
6882 }
6883
6884 /**
6885 * sched_domain_node_span - get a cpumask for a node's sched_domain
6886 * @node: node whose cpumask we're constructing
6887 * @span: resulting cpumask
6888 *
6889 * Given a node, construct a good cpumask for its sched_domain to span. It
6890 * should be one that prevents unnecessary balancing, but also spreads tasks
6891 * out optimally.
6892 */
6893 static void sched_domain_node_span(int node, struct cpumask *span)
6894 {
6895 nodemask_t used_nodes;
6896 int i;
6897
6898 cpumask_clear(span);
6899 nodes_clear(used_nodes);
6900
6901 cpumask_or(span, span, cpumask_of_node(node));
6902 node_set(node, used_nodes);
6903
6904 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6905 int next_node = find_next_best_node(node, &used_nodes);
6906 if (next_node < 0)
6907 break;
6908 cpumask_or(span, span, cpumask_of_node(next_node));
6909 }
6910 }
6911
6912 static const struct cpumask *cpu_node_mask(int cpu)
6913 {
6914 lockdep_assert_held(&sched_domains_mutex);
6915
6916 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6917
6918 return sched_domains_tmpmask;
6919 }
6920
6921 static const struct cpumask *cpu_allnodes_mask(int cpu)
6922 {
6923 return cpu_possible_mask;
6924 }
6925 #endif /* CONFIG_NUMA */
6926
6927 static const struct cpumask *cpu_cpu_mask(int cpu)
6928 {
6929 return cpumask_of_node(cpu_to_node(cpu));
6930 }
6931
6932 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6933
6934 struct sd_data {
6935 struct sched_domain **__percpu sd;
6936 struct sched_group **__percpu sg;
6937 };
6938
6939 struct s_data {
6940 struct sched_domain ** __percpu sd;
6941 struct root_domain *rd;
6942 };
6943
6944 enum s_alloc {
6945 sa_rootdomain,
6946 sa_sd,
6947 sa_sd_storage,
6948 sa_none,
6949 };
6950
6951 struct sched_domain_topology_level;
6952
6953 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6954 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6955
6956 struct sched_domain_topology_level {
6957 sched_domain_init_f init;
6958 sched_domain_mask_f mask;
6959 struct sd_data data;
6960 };
6961
6962 /*
6963 * Assumes the sched_domain tree is fully constructed
6964 */
6965 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6966 {
6967 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6968 struct sched_domain *child = sd->child;
6969
6970 if (child)
6971 cpu = cpumask_first(sched_domain_span(child));
6972
6973 if (sg)
6974 *sg = *per_cpu_ptr(sdd->sg, cpu);
6975
6976 return cpu;
6977 }
6978
6979 /*
6980 * build_sched_groups takes the cpumask we wish to span, and a pointer
6981 * to a function which identifies what group(along with sched group) a CPU
6982 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6983 * (due to the fact that we keep track of groups covered with a struct cpumask).
6984 *
6985 * build_sched_groups will build a circular linked list of the groups
6986 * covered by the given span, and will set each group's ->cpumask correctly,
6987 * and ->cpu_power to 0.
6988 */
6989 static void
6990 build_sched_groups(struct sched_domain *sd)
6991 {
6992 struct sched_group *first = NULL, *last = NULL;
6993 struct sd_data *sdd = sd->private;
6994 const struct cpumask *span = sched_domain_span(sd);
6995 struct cpumask *covered;
6996 int i;
6997
6998 lockdep_assert_held(&sched_domains_mutex);
6999 covered = sched_domains_tmpmask;
7000
7001 cpumask_clear(covered);
7002
7003 for_each_cpu(i, span) {
7004 struct sched_group *sg;
7005 int group = get_group(i, sdd, &sg);
7006 int j;
7007
7008 if (cpumask_test_cpu(i, covered))
7009 continue;
7010
7011 cpumask_clear(sched_group_cpus(sg));
7012 sg->cpu_power = 0;
7013
7014 for_each_cpu(j, span) {
7015 if (get_group(j, sdd, NULL) != group)
7016 continue;
7017
7018 cpumask_set_cpu(j, covered);
7019 cpumask_set_cpu(j, sched_group_cpus(sg));
7020 }
7021
7022 if (!first)
7023 first = sg;
7024 if (last)
7025 last->next = sg;
7026 last = sg;
7027 }
7028 last->next = first;
7029 }
7030
7031 /*
7032 * Initialize sched groups cpu_power.
7033 *
7034 * cpu_power indicates the capacity of sched group, which is used while
7035 * distributing the load between different sched groups in a sched domain.
7036 * Typically cpu_power for all the groups in a sched domain will be same unless
7037 * there are asymmetries in the topology. If there are asymmetries, group
7038 * having more cpu_power will pickup more load compared to the group having
7039 * less cpu_power.
7040 */
7041 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7042 {
7043 WARN_ON(!sd || !sd->groups);
7044
7045 if (cpu != group_first_cpu(sd->groups))
7046 return;
7047
7048 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7049
7050 update_group_power(sd, cpu);
7051 }
7052
7053 /*
7054 * Initializers for schedule domains
7055 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7056 */
7057
7058 #ifdef CONFIG_SCHED_DEBUG
7059 # define SD_INIT_NAME(sd, type) sd->name = #type
7060 #else
7061 # define SD_INIT_NAME(sd, type) do { } while (0)
7062 #endif
7063
7064 #define SD_INIT_FUNC(type) \
7065 static noinline struct sched_domain * \
7066 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7067 { \
7068 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7069 *sd = SD_##type##_INIT; \
7070 SD_INIT_NAME(sd, type); \
7071 sd->private = &tl->data; \
7072 return sd; \
7073 }
7074
7075 SD_INIT_FUNC(CPU)
7076 #ifdef CONFIG_NUMA
7077 SD_INIT_FUNC(ALLNODES)
7078 SD_INIT_FUNC(NODE)
7079 #endif
7080 #ifdef CONFIG_SCHED_SMT
7081 SD_INIT_FUNC(SIBLING)
7082 #endif
7083 #ifdef CONFIG_SCHED_MC
7084 SD_INIT_FUNC(MC)
7085 #endif
7086 #ifdef CONFIG_SCHED_BOOK
7087 SD_INIT_FUNC(BOOK)
7088 #endif
7089
7090 static int default_relax_domain_level = -1;
7091 int sched_domain_level_max;
7092
7093 static int __init setup_relax_domain_level(char *str)
7094 {
7095 unsigned long val;
7096
7097 val = simple_strtoul(str, NULL, 0);
7098 if (val < sched_domain_level_max)
7099 default_relax_domain_level = val;
7100
7101 return 1;
7102 }
7103 __setup("relax_domain_level=", setup_relax_domain_level);
7104
7105 static void set_domain_attribute(struct sched_domain *sd,
7106 struct sched_domain_attr *attr)
7107 {
7108 int request;
7109
7110 if (!attr || attr->relax_domain_level < 0) {
7111 if (default_relax_domain_level < 0)
7112 return;
7113 else
7114 request = default_relax_domain_level;
7115 } else
7116 request = attr->relax_domain_level;
7117 if (request < sd->level) {
7118 /* turn off idle balance on this domain */
7119 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7120 } else {
7121 /* turn on idle balance on this domain */
7122 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7123 }
7124 }
7125
7126 static void __sdt_free(const struct cpumask *cpu_map);
7127 static int __sdt_alloc(const struct cpumask *cpu_map);
7128
7129 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7130 const struct cpumask *cpu_map)
7131 {
7132 switch (what) {
7133 case sa_rootdomain:
7134 if (!atomic_read(&d->rd->refcount))
7135 free_rootdomain(&d->rd->rcu); /* fall through */
7136 case sa_sd:
7137 free_percpu(d->sd); /* fall through */
7138 case sa_sd_storage:
7139 __sdt_free(cpu_map); /* fall through */
7140 case sa_none:
7141 break;
7142 }
7143 }
7144
7145 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7146 const struct cpumask *cpu_map)
7147 {
7148 memset(d, 0, sizeof(*d));
7149
7150 if (__sdt_alloc(cpu_map))
7151 return sa_sd_storage;
7152 d->sd = alloc_percpu(struct sched_domain *);
7153 if (!d->sd)
7154 return sa_sd_storage;
7155 d->rd = alloc_rootdomain();
7156 if (!d->rd)
7157 return sa_sd;
7158 return sa_rootdomain;
7159 }
7160
7161 /*
7162 * NULL the sd_data elements we've used to build the sched_domain and
7163 * sched_group structure so that the subsequent __free_domain_allocs()
7164 * will not free the data we're using.
7165 */
7166 static void claim_allocations(int cpu, struct sched_domain *sd)
7167 {
7168 struct sd_data *sdd = sd->private;
7169 struct sched_group *sg = sd->groups;
7170
7171 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7172 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7173
7174 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7175 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7176 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7177 }
7178 }
7179
7180 #ifdef CONFIG_SCHED_SMT
7181 static const struct cpumask *cpu_smt_mask(int cpu)
7182 {
7183 return topology_thread_cpumask(cpu);
7184 }
7185 #endif
7186
7187 /*
7188 * Topology list, bottom-up.
7189 */
7190 static struct sched_domain_topology_level default_topology[] = {
7191 #ifdef CONFIG_SCHED_SMT
7192 { sd_init_SIBLING, cpu_smt_mask, },
7193 #endif
7194 #ifdef CONFIG_SCHED_MC
7195 { sd_init_MC, cpu_coregroup_mask, },
7196 #endif
7197 #ifdef CONFIG_SCHED_BOOK
7198 { sd_init_BOOK, cpu_book_mask, },
7199 #endif
7200 { sd_init_CPU, cpu_cpu_mask, },
7201 #ifdef CONFIG_NUMA
7202 { sd_init_NODE, cpu_node_mask, },
7203 { sd_init_ALLNODES, cpu_allnodes_mask, },
7204 #endif
7205 { NULL, },
7206 };
7207
7208 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7209
7210 static int __sdt_alloc(const struct cpumask *cpu_map)
7211 {
7212 struct sched_domain_topology_level *tl;
7213 int j;
7214
7215 for (tl = sched_domain_topology; tl->init; tl++) {
7216 struct sd_data *sdd = &tl->data;
7217
7218 sdd->sd = alloc_percpu(struct sched_domain *);
7219 if (!sdd->sd)
7220 return -ENOMEM;
7221
7222 sdd->sg = alloc_percpu(struct sched_group *);
7223 if (!sdd->sg)
7224 return -ENOMEM;
7225
7226 for_each_cpu(j, cpu_map) {
7227 struct sched_domain *sd;
7228 struct sched_group *sg;
7229
7230 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7231 GFP_KERNEL, cpu_to_node(j));
7232 if (!sd)
7233 return -ENOMEM;
7234
7235 *per_cpu_ptr(sdd->sd, j) = sd;
7236
7237 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7238 GFP_KERNEL, cpu_to_node(j));
7239 if (!sg)
7240 return -ENOMEM;
7241
7242 *per_cpu_ptr(sdd->sg, j) = sg;
7243 }
7244 }
7245
7246 return 0;
7247 }
7248
7249 static void __sdt_free(const struct cpumask *cpu_map)
7250 {
7251 struct sched_domain_topology_level *tl;
7252 int j;
7253
7254 for (tl = sched_domain_topology; tl->init; tl++) {
7255 struct sd_data *sdd = &tl->data;
7256
7257 for_each_cpu(j, cpu_map) {
7258 kfree(*per_cpu_ptr(sdd->sd, j));
7259 kfree(*per_cpu_ptr(sdd->sg, j));
7260 }
7261 free_percpu(sdd->sd);
7262 free_percpu(sdd->sg);
7263 }
7264 }
7265
7266 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7267 struct s_data *d, const struct cpumask *cpu_map,
7268 struct sched_domain_attr *attr, struct sched_domain *child,
7269 int cpu)
7270 {
7271 struct sched_domain *sd = tl->init(tl, cpu);
7272 if (!sd)
7273 return child;
7274
7275 set_domain_attribute(sd, attr);
7276 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7277 if (child) {
7278 sd->level = child->level + 1;
7279 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7280 child->parent = sd;
7281 }
7282 sd->child = child;
7283
7284 return sd;
7285 }
7286
7287 /*
7288 * Build sched domains for a given set of cpus and attach the sched domains
7289 * to the individual cpus
7290 */
7291 static int build_sched_domains(const struct cpumask *cpu_map,
7292 struct sched_domain_attr *attr)
7293 {
7294 enum s_alloc alloc_state = sa_none;
7295 struct sched_domain *sd;
7296 struct s_data d;
7297 int i, ret = -ENOMEM;
7298
7299 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7300 if (alloc_state != sa_rootdomain)
7301 goto error;
7302
7303 /* Set up domains for cpus specified by the cpu_map. */
7304 for_each_cpu(i, cpu_map) {
7305 struct sched_domain_topology_level *tl;
7306
7307 sd = NULL;
7308 for (tl = sched_domain_topology; tl->init; tl++)
7309 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7310
7311 while (sd->child)
7312 sd = sd->child;
7313
7314 *per_cpu_ptr(d.sd, i) = sd;
7315 }
7316
7317 /* Build the groups for the domains */
7318 for_each_cpu(i, cpu_map) {
7319 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7320 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7321 get_group(i, sd->private, &sd->groups);
7322 atomic_inc(&sd->groups->ref);
7323
7324 if (i != cpumask_first(sched_domain_span(sd)))
7325 continue;
7326
7327 build_sched_groups(sd);
7328 }
7329 }
7330
7331 /* Calculate CPU power for physical packages and nodes */
7332 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7333 if (!cpumask_test_cpu(i, cpu_map))
7334 continue;
7335
7336 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7337 claim_allocations(i, sd);
7338 init_sched_groups_power(i, sd);
7339 }
7340 }
7341
7342 /* Attach the domains */
7343 rcu_read_lock();
7344 for_each_cpu(i, cpu_map) {
7345 sd = *per_cpu_ptr(d.sd, i);
7346 cpu_attach_domain(sd, d.rd, i);
7347 }
7348 rcu_read_unlock();
7349
7350 ret = 0;
7351 error:
7352 __free_domain_allocs(&d, alloc_state, cpu_map);
7353 return ret;
7354 }
7355
7356 static cpumask_var_t *doms_cur; /* current sched domains */
7357 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7358 static struct sched_domain_attr *dattr_cur;
7359 /* attribues of custom domains in 'doms_cur' */
7360
7361 /*
7362 * Special case: If a kmalloc of a doms_cur partition (array of
7363 * cpumask) fails, then fallback to a single sched domain,
7364 * as determined by the single cpumask fallback_doms.
7365 */
7366 static cpumask_var_t fallback_doms;
7367
7368 /*
7369 * arch_update_cpu_topology lets virtualized architectures update the
7370 * cpu core maps. It is supposed to return 1 if the topology changed
7371 * or 0 if it stayed the same.
7372 */
7373 int __attribute__((weak)) arch_update_cpu_topology(void)
7374 {
7375 return 0;
7376 }
7377
7378 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7379 {
7380 int i;
7381 cpumask_var_t *doms;
7382
7383 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7384 if (!doms)
7385 return NULL;
7386 for (i = 0; i < ndoms; i++) {
7387 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7388 free_sched_domains(doms, i);
7389 return NULL;
7390 }
7391 }
7392 return doms;
7393 }
7394
7395 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7396 {
7397 unsigned int i;
7398 for (i = 0; i < ndoms; i++)
7399 free_cpumask_var(doms[i]);
7400 kfree(doms);
7401 }
7402
7403 /*
7404 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7405 * For now this just excludes isolated cpus, but could be used to
7406 * exclude other special cases in the future.
7407 */
7408 static int init_sched_domains(const struct cpumask *cpu_map)
7409 {
7410 int err;
7411
7412 arch_update_cpu_topology();
7413 ndoms_cur = 1;
7414 doms_cur = alloc_sched_domains(ndoms_cur);
7415 if (!doms_cur)
7416 doms_cur = &fallback_doms;
7417 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7418 dattr_cur = NULL;
7419 err = build_sched_domains(doms_cur[0], NULL);
7420 register_sched_domain_sysctl();
7421
7422 return err;
7423 }
7424
7425 /*
7426 * Detach sched domains from a group of cpus specified in cpu_map
7427 * These cpus will now be attached to the NULL domain
7428 */
7429 static void detach_destroy_domains(const struct cpumask *cpu_map)
7430 {
7431 int i;
7432
7433 rcu_read_lock();
7434 for_each_cpu(i, cpu_map)
7435 cpu_attach_domain(NULL, &def_root_domain, i);
7436 rcu_read_unlock();
7437 }
7438
7439 /* handle null as "default" */
7440 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7441 struct sched_domain_attr *new, int idx_new)
7442 {
7443 struct sched_domain_attr tmp;
7444
7445 /* fast path */
7446 if (!new && !cur)
7447 return 1;
7448
7449 tmp = SD_ATTR_INIT;
7450 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7451 new ? (new + idx_new) : &tmp,
7452 sizeof(struct sched_domain_attr));
7453 }
7454
7455 /*
7456 * Partition sched domains as specified by the 'ndoms_new'
7457 * cpumasks in the array doms_new[] of cpumasks. This compares
7458 * doms_new[] to the current sched domain partitioning, doms_cur[].
7459 * It destroys each deleted domain and builds each new domain.
7460 *
7461 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7462 * The masks don't intersect (don't overlap.) We should setup one
7463 * sched domain for each mask. CPUs not in any of the cpumasks will
7464 * not be load balanced. If the same cpumask appears both in the
7465 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7466 * it as it is.
7467 *
7468 * The passed in 'doms_new' should be allocated using
7469 * alloc_sched_domains. This routine takes ownership of it and will
7470 * free_sched_domains it when done with it. If the caller failed the
7471 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7472 * and partition_sched_domains() will fallback to the single partition
7473 * 'fallback_doms', it also forces the domains to be rebuilt.
7474 *
7475 * If doms_new == NULL it will be replaced with cpu_online_mask.
7476 * ndoms_new == 0 is a special case for destroying existing domains,
7477 * and it will not create the default domain.
7478 *
7479 * Call with hotplug lock held
7480 */
7481 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7482 struct sched_domain_attr *dattr_new)
7483 {
7484 int i, j, n;
7485 int new_topology;
7486
7487 mutex_lock(&sched_domains_mutex);
7488
7489 /* always unregister in case we don't destroy any domains */
7490 unregister_sched_domain_sysctl();
7491
7492 /* Let architecture update cpu core mappings. */
7493 new_topology = arch_update_cpu_topology();
7494
7495 n = doms_new ? ndoms_new : 0;
7496
7497 /* Destroy deleted domains */
7498 for (i = 0; i < ndoms_cur; i++) {
7499 for (j = 0; j < n && !new_topology; j++) {
7500 if (cpumask_equal(doms_cur[i], doms_new[j])
7501 && dattrs_equal(dattr_cur, i, dattr_new, j))
7502 goto match1;
7503 }
7504 /* no match - a current sched domain not in new doms_new[] */
7505 detach_destroy_domains(doms_cur[i]);
7506 match1:
7507 ;
7508 }
7509
7510 if (doms_new == NULL) {
7511 ndoms_cur = 0;
7512 doms_new = &fallback_doms;
7513 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7514 WARN_ON_ONCE(dattr_new);
7515 }
7516
7517 /* Build new domains */
7518 for (i = 0; i < ndoms_new; i++) {
7519 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7520 if (cpumask_equal(doms_new[i], doms_cur[j])
7521 && dattrs_equal(dattr_new, i, dattr_cur, j))
7522 goto match2;
7523 }
7524 /* no match - add a new doms_new */
7525 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7526 match2:
7527 ;
7528 }
7529
7530 /* Remember the new sched domains */
7531 if (doms_cur != &fallback_doms)
7532 free_sched_domains(doms_cur, ndoms_cur);
7533 kfree(dattr_cur); /* kfree(NULL) is safe */
7534 doms_cur = doms_new;
7535 dattr_cur = dattr_new;
7536 ndoms_cur = ndoms_new;
7537
7538 register_sched_domain_sysctl();
7539
7540 mutex_unlock(&sched_domains_mutex);
7541 }
7542
7543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7544 static void reinit_sched_domains(void)
7545 {
7546 get_online_cpus();
7547
7548 /* Destroy domains first to force the rebuild */
7549 partition_sched_domains(0, NULL, NULL);
7550
7551 rebuild_sched_domains();
7552 put_online_cpus();
7553 }
7554
7555 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7556 {
7557 unsigned int level = 0;
7558
7559 if (sscanf(buf, "%u", &level) != 1)
7560 return -EINVAL;
7561
7562 /*
7563 * level is always be positive so don't check for
7564 * level < POWERSAVINGS_BALANCE_NONE which is 0
7565 * What happens on 0 or 1 byte write,
7566 * need to check for count as well?
7567 */
7568
7569 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7570 return -EINVAL;
7571
7572 if (smt)
7573 sched_smt_power_savings = level;
7574 else
7575 sched_mc_power_savings = level;
7576
7577 reinit_sched_domains();
7578
7579 return count;
7580 }
7581
7582 #ifdef CONFIG_SCHED_MC
7583 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7584 struct sysdev_class_attribute *attr,
7585 char *page)
7586 {
7587 return sprintf(page, "%u\n", sched_mc_power_savings);
7588 }
7589 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7590 struct sysdev_class_attribute *attr,
7591 const char *buf, size_t count)
7592 {
7593 return sched_power_savings_store(buf, count, 0);
7594 }
7595 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7596 sched_mc_power_savings_show,
7597 sched_mc_power_savings_store);
7598 #endif
7599
7600 #ifdef CONFIG_SCHED_SMT
7601 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7602 struct sysdev_class_attribute *attr,
7603 char *page)
7604 {
7605 return sprintf(page, "%u\n", sched_smt_power_savings);
7606 }
7607 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7608 struct sysdev_class_attribute *attr,
7609 const char *buf, size_t count)
7610 {
7611 return sched_power_savings_store(buf, count, 1);
7612 }
7613 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7614 sched_smt_power_savings_show,
7615 sched_smt_power_savings_store);
7616 #endif
7617
7618 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7619 {
7620 int err = 0;
7621
7622 #ifdef CONFIG_SCHED_SMT
7623 if (smt_capable())
7624 err = sysfs_create_file(&cls->kset.kobj,
7625 &attr_sched_smt_power_savings.attr);
7626 #endif
7627 #ifdef CONFIG_SCHED_MC
7628 if (!err && mc_capable())
7629 err = sysfs_create_file(&cls->kset.kobj,
7630 &attr_sched_mc_power_savings.attr);
7631 #endif
7632 return err;
7633 }
7634 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7635
7636 /*
7637 * Update cpusets according to cpu_active mask. If cpusets are
7638 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7639 * around partition_sched_domains().
7640 */
7641 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7642 void *hcpu)
7643 {
7644 switch (action & ~CPU_TASKS_FROZEN) {
7645 case CPU_ONLINE:
7646 case CPU_DOWN_FAILED:
7647 cpuset_update_active_cpus();
7648 return NOTIFY_OK;
7649 default:
7650 return NOTIFY_DONE;
7651 }
7652 }
7653
7654 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7655 void *hcpu)
7656 {
7657 switch (action & ~CPU_TASKS_FROZEN) {
7658 case CPU_DOWN_PREPARE:
7659 cpuset_update_active_cpus();
7660 return NOTIFY_OK;
7661 default:
7662 return NOTIFY_DONE;
7663 }
7664 }
7665
7666 static int update_runtime(struct notifier_block *nfb,
7667 unsigned long action, void *hcpu)
7668 {
7669 int cpu = (int)(long)hcpu;
7670
7671 switch (action) {
7672 case CPU_DOWN_PREPARE:
7673 case CPU_DOWN_PREPARE_FROZEN:
7674 disable_runtime(cpu_rq(cpu));
7675 return NOTIFY_OK;
7676
7677 case CPU_DOWN_FAILED:
7678 case CPU_DOWN_FAILED_FROZEN:
7679 case CPU_ONLINE:
7680 case CPU_ONLINE_FROZEN:
7681 enable_runtime(cpu_rq(cpu));
7682 return NOTIFY_OK;
7683
7684 default:
7685 return NOTIFY_DONE;
7686 }
7687 }
7688
7689 void __init sched_init_smp(void)
7690 {
7691 cpumask_var_t non_isolated_cpus;
7692
7693 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7694 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7695
7696 get_online_cpus();
7697 mutex_lock(&sched_domains_mutex);
7698 init_sched_domains(cpu_active_mask);
7699 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7700 if (cpumask_empty(non_isolated_cpus))
7701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7702 mutex_unlock(&sched_domains_mutex);
7703 put_online_cpus();
7704
7705 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7706 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7707
7708 /* RT runtime code needs to handle some hotplug events */
7709 hotcpu_notifier(update_runtime, 0);
7710
7711 init_hrtick();
7712
7713 /* Move init over to a non-isolated CPU */
7714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7715 BUG();
7716 sched_init_granularity();
7717 free_cpumask_var(non_isolated_cpus);
7718
7719 init_sched_rt_class();
7720 }
7721 #else
7722 void __init sched_init_smp(void)
7723 {
7724 sched_init_granularity();
7725 }
7726 #endif /* CONFIG_SMP */
7727
7728 const_debug unsigned int sysctl_timer_migration = 1;
7729
7730 int in_sched_functions(unsigned long addr)
7731 {
7732 return in_lock_functions(addr) ||
7733 (addr >= (unsigned long)__sched_text_start
7734 && addr < (unsigned long)__sched_text_end);
7735 }
7736
7737 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7738 {
7739 cfs_rq->tasks_timeline = RB_ROOT;
7740 INIT_LIST_HEAD(&cfs_rq->tasks);
7741 #ifdef CONFIG_FAIR_GROUP_SCHED
7742 cfs_rq->rq = rq;
7743 /* allow initial update_cfs_load() to truncate */
7744 #ifdef CONFIG_SMP
7745 cfs_rq->load_stamp = 1;
7746 #endif
7747 #endif
7748 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7749 }
7750
7751 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7752 {
7753 struct rt_prio_array *array;
7754 int i;
7755
7756 array = &rt_rq->active;
7757 for (i = 0; i < MAX_RT_PRIO; i++) {
7758 INIT_LIST_HEAD(array->queue + i);
7759 __clear_bit(i, array->bitmap);
7760 }
7761 /* delimiter for bitsearch: */
7762 __set_bit(MAX_RT_PRIO, array->bitmap);
7763
7764 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7765 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7766 #ifdef CONFIG_SMP
7767 rt_rq->highest_prio.next = MAX_RT_PRIO;
7768 #endif
7769 #endif
7770 #ifdef CONFIG_SMP
7771 rt_rq->rt_nr_migratory = 0;
7772 rt_rq->overloaded = 0;
7773 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7774 #endif
7775
7776 rt_rq->rt_time = 0;
7777 rt_rq->rt_throttled = 0;
7778 rt_rq->rt_runtime = 0;
7779 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7780
7781 #ifdef CONFIG_RT_GROUP_SCHED
7782 rt_rq->rt_nr_boosted = 0;
7783 rt_rq->rq = rq;
7784 #endif
7785 }
7786
7787 #ifdef CONFIG_FAIR_GROUP_SCHED
7788 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7789 struct sched_entity *se, int cpu,
7790 struct sched_entity *parent)
7791 {
7792 struct rq *rq = cpu_rq(cpu);
7793 tg->cfs_rq[cpu] = cfs_rq;
7794 init_cfs_rq(cfs_rq, rq);
7795 cfs_rq->tg = tg;
7796
7797 tg->se[cpu] = se;
7798 /* se could be NULL for root_task_group */
7799 if (!se)
7800 return;
7801
7802 if (!parent)
7803 se->cfs_rq = &rq->cfs;
7804 else
7805 se->cfs_rq = parent->my_q;
7806
7807 se->my_q = cfs_rq;
7808 update_load_set(&se->load, 0);
7809 se->parent = parent;
7810 }
7811 #endif
7812
7813 #ifdef CONFIG_RT_GROUP_SCHED
7814 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7815 struct sched_rt_entity *rt_se, int cpu,
7816 struct sched_rt_entity *parent)
7817 {
7818 struct rq *rq = cpu_rq(cpu);
7819
7820 tg->rt_rq[cpu] = rt_rq;
7821 init_rt_rq(rt_rq, rq);
7822 rt_rq->tg = tg;
7823 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7824
7825 tg->rt_se[cpu] = rt_se;
7826 if (!rt_se)
7827 return;
7828
7829 if (!parent)
7830 rt_se->rt_rq = &rq->rt;
7831 else
7832 rt_se->rt_rq = parent->my_q;
7833
7834 rt_se->my_q = rt_rq;
7835 rt_se->parent = parent;
7836 INIT_LIST_HEAD(&rt_se->run_list);
7837 }
7838 #endif
7839
7840 void __init sched_init(void)
7841 {
7842 int i, j;
7843 unsigned long alloc_size = 0, ptr;
7844
7845 #ifdef CONFIG_FAIR_GROUP_SCHED
7846 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7847 #endif
7848 #ifdef CONFIG_RT_GROUP_SCHED
7849 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7850 #endif
7851 #ifdef CONFIG_CPUMASK_OFFSTACK
7852 alloc_size += num_possible_cpus() * cpumask_size();
7853 #endif
7854 if (alloc_size) {
7855 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7856
7857 #ifdef CONFIG_FAIR_GROUP_SCHED
7858 root_task_group.se = (struct sched_entity **)ptr;
7859 ptr += nr_cpu_ids * sizeof(void **);
7860
7861 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7862 ptr += nr_cpu_ids * sizeof(void **);
7863
7864 #endif /* CONFIG_FAIR_GROUP_SCHED */
7865 #ifdef CONFIG_RT_GROUP_SCHED
7866 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7867 ptr += nr_cpu_ids * sizeof(void **);
7868
7869 root_task_group.rt_rq = (struct rt_rq **)ptr;
7870 ptr += nr_cpu_ids * sizeof(void **);
7871
7872 #endif /* CONFIG_RT_GROUP_SCHED */
7873 #ifdef CONFIG_CPUMASK_OFFSTACK
7874 for_each_possible_cpu(i) {
7875 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7876 ptr += cpumask_size();
7877 }
7878 #endif /* CONFIG_CPUMASK_OFFSTACK */
7879 }
7880
7881 #ifdef CONFIG_SMP
7882 init_defrootdomain();
7883 #endif
7884
7885 init_rt_bandwidth(&def_rt_bandwidth,
7886 global_rt_period(), global_rt_runtime());
7887
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7890 global_rt_period(), global_rt_runtime());
7891 #endif /* CONFIG_RT_GROUP_SCHED */
7892
7893 #ifdef CONFIG_CGROUP_SCHED
7894 list_add(&root_task_group.list, &task_groups);
7895 INIT_LIST_HEAD(&root_task_group.children);
7896 autogroup_init(&init_task);
7897 #endif /* CONFIG_CGROUP_SCHED */
7898
7899 for_each_possible_cpu(i) {
7900 struct rq *rq;
7901
7902 rq = cpu_rq(i);
7903 raw_spin_lock_init(&rq->lock);
7904 rq->nr_running = 0;
7905 rq->calc_load_active = 0;
7906 rq->calc_load_update = jiffies + LOAD_FREQ;
7907 init_cfs_rq(&rq->cfs, rq);
7908 init_rt_rq(&rq->rt, rq);
7909 #ifdef CONFIG_FAIR_GROUP_SCHED
7910 root_task_group.shares = root_task_group_load;
7911 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7912 /*
7913 * How much cpu bandwidth does root_task_group get?
7914 *
7915 * In case of task-groups formed thr' the cgroup filesystem, it
7916 * gets 100% of the cpu resources in the system. This overall
7917 * system cpu resource is divided among the tasks of
7918 * root_task_group and its child task-groups in a fair manner,
7919 * based on each entity's (task or task-group's) weight
7920 * (se->load.weight).
7921 *
7922 * In other words, if root_task_group has 10 tasks of weight
7923 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7924 * then A0's share of the cpu resource is:
7925 *
7926 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7927 *
7928 * We achieve this by letting root_task_group's tasks sit
7929 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7930 */
7931 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7932 #endif /* CONFIG_FAIR_GROUP_SCHED */
7933
7934 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7935 #ifdef CONFIG_RT_GROUP_SCHED
7936 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7937 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7938 #endif
7939
7940 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7941 rq->cpu_load[j] = 0;
7942
7943 rq->last_load_update_tick = jiffies;
7944
7945 #ifdef CONFIG_SMP
7946 rq->sd = NULL;
7947 rq->rd = NULL;
7948 rq->cpu_power = SCHED_POWER_SCALE;
7949 rq->post_schedule = 0;
7950 rq->active_balance = 0;
7951 rq->next_balance = jiffies;
7952 rq->push_cpu = 0;
7953 rq->cpu = i;
7954 rq->online = 0;
7955 rq->idle_stamp = 0;
7956 rq->avg_idle = 2*sysctl_sched_migration_cost;
7957 rq_attach_root(rq, &def_root_domain);
7958 #ifdef CONFIG_NO_HZ
7959 rq->nohz_balance_kick = 0;
7960 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7961 #endif
7962 #endif
7963 init_rq_hrtick(rq);
7964 atomic_set(&rq->nr_iowait, 0);
7965 }
7966
7967 set_load_weight(&init_task);
7968
7969 #ifdef CONFIG_PREEMPT_NOTIFIERS
7970 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7971 #endif
7972
7973 #ifdef CONFIG_SMP
7974 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7975 #endif
7976
7977 #ifdef CONFIG_RT_MUTEXES
7978 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7979 #endif
7980
7981 /*
7982 * The boot idle thread does lazy MMU switching as well:
7983 */
7984 atomic_inc(&init_mm.mm_count);
7985 enter_lazy_tlb(&init_mm, current);
7986
7987 /*
7988 * Make us the idle thread. Technically, schedule() should not be
7989 * called from this thread, however somewhere below it might be,
7990 * but because we are the idle thread, we just pick up running again
7991 * when this runqueue becomes "idle".
7992 */
7993 init_idle(current, smp_processor_id());
7994
7995 calc_load_update = jiffies + LOAD_FREQ;
7996
7997 /*
7998 * During early bootup we pretend to be a normal task:
7999 */
8000 current->sched_class = &fair_sched_class;
8001
8002 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8003 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8004 #ifdef CONFIG_SMP
8005 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8006 #ifdef CONFIG_NO_HZ
8007 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8008 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8009 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8010 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8011 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8012 #endif
8013 /* May be allocated at isolcpus cmdline parse time */
8014 if (cpu_isolated_map == NULL)
8015 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8016 #endif /* SMP */
8017
8018 scheduler_running = 1;
8019 }
8020
8021 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8022 static inline int preempt_count_equals(int preempt_offset)
8023 {
8024 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8025
8026 return (nested == preempt_offset);
8027 }
8028
8029 void __might_sleep(const char *file, int line, int preempt_offset)
8030 {
8031 static unsigned long prev_jiffy; /* ratelimiting */
8032
8033 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8034 system_state != SYSTEM_RUNNING || oops_in_progress)
8035 return;
8036 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8037 return;
8038 prev_jiffy = jiffies;
8039
8040 printk(KERN_ERR
8041 "BUG: sleeping function called from invalid context at %s:%d\n",
8042 file, line);
8043 printk(KERN_ERR
8044 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8045 in_atomic(), irqs_disabled(),
8046 current->pid, current->comm);
8047
8048 debug_show_held_locks(current);
8049 if (irqs_disabled())
8050 print_irqtrace_events(current);
8051 dump_stack();
8052 }
8053 EXPORT_SYMBOL(__might_sleep);
8054 #endif
8055
8056 #ifdef CONFIG_MAGIC_SYSRQ
8057 static void normalize_task(struct rq *rq, struct task_struct *p)
8058 {
8059 const struct sched_class *prev_class = p->sched_class;
8060 int old_prio = p->prio;
8061 int on_rq;
8062
8063 on_rq = p->on_rq;
8064 if (on_rq)
8065 deactivate_task(rq, p, 0);
8066 __setscheduler(rq, p, SCHED_NORMAL, 0);
8067 if (on_rq) {
8068 activate_task(rq, p, 0);
8069 resched_task(rq->curr);
8070 }
8071
8072 check_class_changed(rq, p, prev_class, old_prio);
8073 }
8074
8075 void normalize_rt_tasks(void)
8076 {
8077 struct task_struct *g, *p;
8078 unsigned long flags;
8079 struct rq *rq;
8080
8081 read_lock_irqsave(&tasklist_lock, flags);
8082 do_each_thread(g, p) {
8083 /*
8084 * Only normalize user tasks:
8085 */
8086 if (!p->mm)
8087 continue;
8088
8089 p->se.exec_start = 0;
8090 #ifdef CONFIG_SCHEDSTATS
8091 p->se.statistics.wait_start = 0;
8092 p->se.statistics.sleep_start = 0;
8093 p->se.statistics.block_start = 0;
8094 #endif
8095
8096 if (!rt_task(p)) {
8097 /*
8098 * Renice negative nice level userspace
8099 * tasks back to 0:
8100 */
8101 if (TASK_NICE(p) < 0 && p->mm)
8102 set_user_nice(p, 0);
8103 continue;
8104 }
8105
8106 raw_spin_lock(&p->pi_lock);
8107 rq = __task_rq_lock(p);
8108
8109 normalize_task(rq, p);
8110
8111 __task_rq_unlock(rq);
8112 raw_spin_unlock(&p->pi_lock);
8113 } while_each_thread(g, p);
8114
8115 read_unlock_irqrestore(&tasklist_lock, flags);
8116 }
8117
8118 #endif /* CONFIG_MAGIC_SYSRQ */
8119
8120 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8121 /*
8122 * These functions are only useful for the IA64 MCA handling, or kdb.
8123 *
8124 * They can only be called when the whole system has been
8125 * stopped - every CPU needs to be quiescent, and no scheduling
8126 * activity can take place. Using them for anything else would
8127 * be a serious bug, and as a result, they aren't even visible
8128 * under any other configuration.
8129 */
8130
8131 /**
8132 * curr_task - return the current task for a given cpu.
8133 * @cpu: the processor in question.
8134 *
8135 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8136 */
8137 struct task_struct *curr_task(int cpu)
8138 {
8139 return cpu_curr(cpu);
8140 }
8141
8142 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8143
8144 #ifdef CONFIG_IA64
8145 /**
8146 * set_curr_task - set the current task for a given cpu.
8147 * @cpu: the processor in question.
8148 * @p: the task pointer to set.
8149 *
8150 * Description: This function must only be used when non-maskable interrupts
8151 * are serviced on a separate stack. It allows the architecture to switch the
8152 * notion of the current task on a cpu in a non-blocking manner. This function
8153 * must be called with all CPU's synchronized, and interrupts disabled, the
8154 * and caller must save the original value of the current task (see
8155 * curr_task() above) and restore that value before reenabling interrupts and
8156 * re-starting the system.
8157 *
8158 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8159 */
8160 void set_curr_task(int cpu, struct task_struct *p)
8161 {
8162 cpu_curr(cpu) = p;
8163 }
8164
8165 #endif
8166
8167 #ifdef CONFIG_FAIR_GROUP_SCHED
8168 static void free_fair_sched_group(struct task_group *tg)
8169 {
8170 int i;
8171
8172 for_each_possible_cpu(i) {
8173 if (tg->cfs_rq)
8174 kfree(tg->cfs_rq[i]);
8175 if (tg->se)
8176 kfree(tg->se[i]);
8177 }
8178
8179 kfree(tg->cfs_rq);
8180 kfree(tg->se);
8181 }
8182
8183 static
8184 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8185 {
8186 struct cfs_rq *cfs_rq;
8187 struct sched_entity *se;
8188 int i;
8189
8190 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8191 if (!tg->cfs_rq)
8192 goto err;
8193 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8194 if (!tg->se)
8195 goto err;
8196
8197 tg->shares = NICE_0_LOAD;
8198
8199 for_each_possible_cpu(i) {
8200 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8201 GFP_KERNEL, cpu_to_node(i));
8202 if (!cfs_rq)
8203 goto err;
8204
8205 se = kzalloc_node(sizeof(struct sched_entity),
8206 GFP_KERNEL, cpu_to_node(i));
8207 if (!se)
8208 goto err_free_rq;
8209
8210 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8211 }
8212
8213 return 1;
8214
8215 err_free_rq:
8216 kfree(cfs_rq);
8217 err:
8218 return 0;
8219 }
8220
8221 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8222 {
8223 struct rq *rq = cpu_rq(cpu);
8224 unsigned long flags;
8225
8226 /*
8227 * Only empty task groups can be destroyed; so we can speculatively
8228 * check on_list without danger of it being re-added.
8229 */
8230 if (!tg->cfs_rq[cpu]->on_list)
8231 return;
8232
8233 raw_spin_lock_irqsave(&rq->lock, flags);
8234 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8235 raw_spin_unlock_irqrestore(&rq->lock, flags);
8236 }
8237 #else /* !CONFG_FAIR_GROUP_SCHED */
8238 static inline void free_fair_sched_group(struct task_group *tg)
8239 {
8240 }
8241
8242 static inline
8243 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8244 {
8245 return 1;
8246 }
8247
8248 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8249 {
8250 }
8251 #endif /* CONFIG_FAIR_GROUP_SCHED */
8252
8253 #ifdef CONFIG_RT_GROUP_SCHED
8254 static void free_rt_sched_group(struct task_group *tg)
8255 {
8256 int i;
8257
8258 destroy_rt_bandwidth(&tg->rt_bandwidth);
8259
8260 for_each_possible_cpu(i) {
8261 if (tg->rt_rq)
8262 kfree(tg->rt_rq[i]);
8263 if (tg->rt_se)
8264 kfree(tg->rt_se[i]);
8265 }
8266
8267 kfree(tg->rt_rq);
8268 kfree(tg->rt_se);
8269 }
8270
8271 static
8272 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8273 {
8274 struct rt_rq *rt_rq;
8275 struct sched_rt_entity *rt_se;
8276 int i;
8277
8278 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8279 if (!tg->rt_rq)
8280 goto err;
8281 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8282 if (!tg->rt_se)
8283 goto err;
8284
8285 init_rt_bandwidth(&tg->rt_bandwidth,
8286 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8287
8288 for_each_possible_cpu(i) {
8289 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8290 GFP_KERNEL, cpu_to_node(i));
8291 if (!rt_rq)
8292 goto err;
8293
8294 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8295 GFP_KERNEL, cpu_to_node(i));
8296 if (!rt_se)
8297 goto err_free_rq;
8298
8299 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8300 }
8301
8302 return 1;
8303
8304 err_free_rq:
8305 kfree(rt_rq);
8306 err:
8307 return 0;
8308 }
8309 #else /* !CONFIG_RT_GROUP_SCHED */
8310 static inline void free_rt_sched_group(struct task_group *tg)
8311 {
8312 }
8313
8314 static inline
8315 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8316 {
8317 return 1;
8318 }
8319 #endif /* CONFIG_RT_GROUP_SCHED */
8320
8321 #ifdef CONFIG_CGROUP_SCHED
8322 static void free_sched_group(struct task_group *tg)
8323 {
8324 free_fair_sched_group(tg);
8325 free_rt_sched_group(tg);
8326 autogroup_free(tg);
8327 kfree(tg);
8328 }
8329
8330 /* allocate runqueue etc for a new task group */
8331 struct task_group *sched_create_group(struct task_group *parent)
8332 {
8333 struct task_group *tg;
8334 unsigned long flags;
8335
8336 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8337 if (!tg)
8338 return ERR_PTR(-ENOMEM);
8339
8340 if (!alloc_fair_sched_group(tg, parent))
8341 goto err;
8342
8343 if (!alloc_rt_sched_group(tg, parent))
8344 goto err;
8345
8346 spin_lock_irqsave(&task_group_lock, flags);
8347 list_add_rcu(&tg->list, &task_groups);
8348
8349 WARN_ON(!parent); /* root should already exist */
8350
8351 tg->parent = parent;
8352 INIT_LIST_HEAD(&tg->children);
8353 list_add_rcu(&tg->siblings, &parent->children);
8354 spin_unlock_irqrestore(&task_group_lock, flags);
8355
8356 return tg;
8357
8358 err:
8359 free_sched_group(tg);
8360 return ERR_PTR(-ENOMEM);
8361 }
8362
8363 /* rcu callback to free various structures associated with a task group */
8364 static void free_sched_group_rcu(struct rcu_head *rhp)
8365 {
8366 /* now it should be safe to free those cfs_rqs */
8367 free_sched_group(container_of(rhp, struct task_group, rcu));
8368 }
8369
8370 /* Destroy runqueue etc associated with a task group */
8371 void sched_destroy_group(struct task_group *tg)
8372 {
8373 unsigned long flags;
8374 int i;
8375
8376 /* end participation in shares distribution */
8377 for_each_possible_cpu(i)
8378 unregister_fair_sched_group(tg, i);
8379
8380 spin_lock_irqsave(&task_group_lock, flags);
8381 list_del_rcu(&tg->list);
8382 list_del_rcu(&tg->siblings);
8383 spin_unlock_irqrestore(&task_group_lock, flags);
8384
8385 /* wait for possible concurrent references to cfs_rqs complete */
8386 call_rcu(&tg->rcu, free_sched_group_rcu);
8387 }
8388
8389 /* change task's runqueue when it moves between groups.
8390 * The caller of this function should have put the task in its new group
8391 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8392 * reflect its new group.
8393 */
8394 void sched_move_task(struct task_struct *tsk)
8395 {
8396 int on_rq, running;
8397 unsigned long flags;
8398 struct rq *rq;
8399
8400 rq = task_rq_lock(tsk, &flags);
8401
8402 running = task_current(rq, tsk);
8403 on_rq = tsk->on_rq;
8404
8405 if (on_rq)
8406 dequeue_task(rq, tsk, 0);
8407 if (unlikely(running))
8408 tsk->sched_class->put_prev_task(rq, tsk);
8409
8410 #ifdef CONFIG_FAIR_GROUP_SCHED
8411 if (tsk->sched_class->task_move_group)
8412 tsk->sched_class->task_move_group(tsk, on_rq);
8413 else
8414 #endif
8415 set_task_rq(tsk, task_cpu(tsk));
8416
8417 if (unlikely(running))
8418 tsk->sched_class->set_curr_task(rq);
8419 if (on_rq)
8420 enqueue_task(rq, tsk, 0);
8421
8422 task_rq_unlock(rq, tsk, &flags);
8423 }
8424 #endif /* CONFIG_CGROUP_SCHED */
8425
8426 #ifdef CONFIG_FAIR_GROUP_SCHED
8427 static DEFINE_MUTEX(shares_mutex);
8428
8429 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8430 {
8431 int i;
8432 unsigned long flags;
8433
8434 /*
8435 * We can't change the weight of the root cgroup.
8436 */
8437 if (!tg->se[0])
8438 return -EINVAL;
8439
8440 if (shares < MIN_SHARES)
8441 shares = MIN_SHARES;
8442 else if (shares > MAX_SHARES)
8443 shares = MAX_SHARES;
8444
8445 mutex_lock(&shares_mutex);
8446 if (tg->shares == shares)
8447 goto done;
8448
8449 tg->shares = shares;
8450 for_each_possible_cpu(i) {
8451 struct rq *rq = cpu_rq(i);
8452 struct sched_entity *se;
8453
8454 se = tg->se[i];
8455 /* Propagate contribution to hierarchy */
8456 raw_spin_lock_irqsave(&rq->lock, flags);
8457 for_each_sched_entity(se)
8458 update_cfs_shares(group_cfs_rq(se));
8459 raw_spin_unlock_irqrestore(&rq->lock, flags);
8460 }
8461
8462 done:
8463 mutex_unlock(&shares_mutex);
8464 return 0;
8465 }
8466
8467 unsigned long sched_group_shares(struct task_group *tg)
8468 {
8469 return tg->shares;
8470 }
8471 #endif
8472
8473 #ifdef CONFIG_RT_GROUP_SCHED
8474 /*
8475 * Ensure that the real time constraints are schedulable.
8476 */
8477 static DEFINE_MUTEX(rt_constraints_mutex);
8478
8479 static unsigned long to_ratio(u64 period, u64 runtime)
8480 {
8481 if (runtime == RUNTIME_INF)
8482 return 1ULL << 20;
8483
8484 return div64_u64(runtime << 20, period);
8485 }
8486
8487 /* Must be called with tasklist_lock held */
8488 static inline int tg_has_rt_tasks(struct task_group *tg)
8489 {
8490 struct task_struct *g, *p;
8491
8492 do_each_thread(g, p) {
8493 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8494 return 1;
8495 } while_each_thread(g, p);
8496
8497 return 0;
8498 }
8499
8500 struct rt_schedulable_data {
8501 struct task_group *tg;
8502 u64 rt_period;
8503 u64 rt_runtime;
8504 };
8505
8506 static int tg_schedulable(struct task_group *tg, void *data)
8507 {
8508 struct rt_schedulable_data *d = data;
8509 struct task_group *child;
8510 unsigned long total, sum = 0;
8511 u64 period, runtime;
8512
8513 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8514 runtime = tg->rt_bandwidth.rt_runtime;
8515
8516 if (tg == d->tg) {
8517 period = d->rt_period;
8518 runtime = d->rt_runtime;
8519 }
8520
8521 /*
8522 * Cannot have more runtime than the period.
8523 */
8524 if (runtime > period && runtime != RUNTIME_INF)
8525 return -EINVAL;
8526
8527 /*
8528 * Ensure we don't starve existing RT tasks.
8529 */
8530 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8531 return -EBUSY;
8532
8533 total = to_ratio(period, runtime);
8534
8535 /*
8536 * Nobody can have more than the global setting allows.
8537 */
8538 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8539 return -EINVAL;
8540
8541 /*
8542 * The sum of our children's runtime should not exceed our own.
8543 */
8544 list_for_each_entry_rcu(child, &tg->children, siblings) {
8545 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8546 runtime = child->rt_bandwidth.rt_runtime;
8547
8548 if (child == d->tg) {
8549 period = d->rt_period;
8550 runtime = d->rt_runtime;
8551 }
8552
8553 sum += to_ratio(period, runtime);
8554 }
8555
8556 if (sum > total)
8557 return -EINVAL;
8558
8559 return 0;
8560 }
8561
8562 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8563 {
8564 struct rt_schedulable_data data = {
8565 .tg = tg,
8566 .rt_period = period,
8567 .rt_runtime = runtime,
8568 };
8569
8570 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8571 }
8572
8573 static int tg_set_bandwidth(struct task_group *tg,
8574 u64 rt_period, u64 rt_runtime)
8575 {
8576 int i, err = 0;
8577
8578 mutex_lock(&rt_constraints_mutex);
8579 read_lock(&tasklist_lock);
8580 err = __rt_schedulable(tg, rt_period, rt_runtime);
8581 if (err)
8582 goto unlock;
8583
8584 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8585 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8586 tg->rt_bandwidth.rt_runtime = rt_runtime;
8587
8588 for_each_possible_cpu(i) {
8589 struct rt_rq *rt_rq = tg->rt_rq[i];
8590
8591 raw_spin_lock(&rt_rq->rt_runtime_lock);
8592 rt_rq->rt_runtime = rt_runtime;
8593 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8594 }
8595 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8596 unlock:
8597 read_unlock(&tasklist_lock);
8598 mutex_unlock(&rt_constraints_mutex);
8599
8600 return err;
8601 }
8602
8603 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8604 {
8605 u64 rt_runtime, rt_period;
8606
8607 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8608 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8609 if (rt_runtime_us < 0)
8610 rt_runtime = RUNTIME_INF;
8611
8612 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8613 }
8614
8615 long sched_group_rt_runtime(struct task_group *tg)
8616 {
8617 u64 rt_runtime_us;
8618
8619 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8620 return -1;
8621
8622 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8623 do_div(rt_runtime_us, NSEC_PER_USEC);
8624 return rt_runtime_us;
8625 }
8626
8627 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8628 {
8629 u64 rt_runtime, rt_period;
8630
8631 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8632 rt_runtime = tg->rt_bandwidth.rt_runtime;
8633
8634 if (rt_period == 0)
8635 return -EINVAL;
8636
8637 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8638 }
8639
8640 long sched_group_rt_period(struct task_group *tg)
8641 {
8642 u64 rt_period_us;
8643
8644 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8645 do_div(rt_period_us, NSEC_PER_USEC);
8646 return rt_period_us;
8647 }
8648
8649 static int sched_rt_global_constraints(void)
8650 {
8651 u64 runtime, period;
8652 int ret = 0;
8653
8654 if (sysctl_sched_rt_period <= 0)
8655 return -EINVAL;
8656
8657 runtime = global_rt_runtime();
8658 period = global_rt_period();
8659
8660 /*
8661 * Sanity check on the sysctl variables.
8662 */
8663 if (runtime > period && runtime != RUNTIME_INF)
8664 return -EINVAL;
8665
8666 mutex_lock(&rt_constraints_mutex);
8667 read_lock(&tasklist_lock);
8668 ret = __rt_schedulable(NULL, 0, 0);
8669 read_unlock(&tasklist_lock);
8670 mutex_unlock(&rt_constraints_mutex);
8671
8672 return ret;
8673 }
8674
8675 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8676 {
8677 /* Don't accept realtime tasks when there is no way for them to run */
8678 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8679 return 0;
8680
8681 return 1;
8682 }
8683
8684 #else /* !CONFIG_RT_GROUP_SCHED */
8685 static int sched_rt_global_constraints(void)
8686 {
8687 unsigned long flags;
8688 int i;
8689
8690 if (sysctl_sched_rt_period <= 0)
8691 return -EINVAL;
8692
8693 /*
8694 * There's always some RT tasks in the root group
8695 * -- migration, kstopmachine etc..
8696 */
8697 if (sysctl_sched_rt_runtime == 0)
8698 return -EBUSY;
8699
8700 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8701 for_each_possible_cpu(i) {
8702 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8703
8704 raw_spin_lock(&rt_rq->rt_runtime_lock);
8705 rt_rq->rt_runtime = global_rt_runtime();
8706 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8707 }
8708 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8709
8710 return 0;
8711 }
8712 #endif /* CONFIG_RT_GROUP_SCHED */
8713
8714 int sched_rt_handler(struct ctl_table *table, int write,
8715 void __user *buffer, size_t *lenp,
8716 loff_t *ppos)
8717 {
8718 int ret;
8719 int old_period, old_runtime;
8720 static DEFINE_MUTEX(mutex);
8721
8722 mutex_lock(&mutex);
8723 old_period = sysctl_sched_rt_period;
8724 old_runtime = sysctl_sched_rt_runtime;
8725
8726 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8727
8728 if (!ret && write) {
8729 ret = sched_rt_global_constraints();
8730 if (ret) {
8731 sysctl_sched_rt_period = old_period;
8732 sysctl_sched_rt_runtime = old_runtime;
8733 } else {
8734 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8735 def_rt_bandwidth.rt_period =
8736 ns_to_ktime(global_rt_period());
8737 }
8738 }
8739 mutex_unlock(&mutex);
8740
8741 return ret;
8742 }
8743
8744 #ifdef CONFIG_CGROUP_SCHED
8745
8746 /* return corresponding task_group object of a cgroup */
8747 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8748 {
8749 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8750 struct task_group, css);
8751 }
8752
8753 static struct cgroup_subsys_state *
8754 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8755 {
8756 struct task_group *tg, *parent;
8757
8758 if (!cgrp->parent) {
8759 /* This is early initialization for the top cgroup */
8760 return &root_task_group.css;
8761 }
8762
8763 parent = cgroup_tg(cgrp->parent);
8764 tg = sched_create_group(parent);
8765 if (IS_ERR(tg))
8766 return ERR_PTR(-ENOMEM);
8767
8768 return &tg->css;
8769 }
8770
8771 static void
8772 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8773 {
8774 struct task_group *tg = cgroup_tg(cgrp);
8775
8776 sched_destroy_group(tg);
8777 }
8778
8779 static int
8780 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8781 {
8782 #ifdef CONFIG_RT_GROUP_SCHED
8783 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8784 return -EINVAL;
8785 #else
8786 /* We don't support RT-tasks being in separate groups */
8787 if (tsk->sched_class != &fair_sched_class)
8788 return -EINVAL;
8789 #endif
8790 return 0;
8791 }
8792
8793 static void
8794 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8795 {
8796 sched_move_task(tsk);
8797 }
8798
8799 static void
8800 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8801 struct cgroup *old_cgrp, struct task_struct *task)
8802 {
8803 /*
8804 * cgroup_exit() is called in the copy_process() failure path.
8805 * Ignore this case since the task hasn't ran yet, this avoids
8806 * trying to poke a half freed task state from generic code.
8807 */
8808 if (!(task->flags & PF_EXITING))
8809 return;
8810
8811 sched_move_task(task);
8812 }
8813
8814 #ifdef CONFIG_FAIR_GROUP_SCHED
8815 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8816 u64 shareval)
8817 {
8818 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8819 }
8820
8821 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8822 {
8823 struct task_group *tg = cgroup_tg(cgrp);
8824
8825 return (u64) scale_load_down(tg->shares);
8826 }
8827 #endif /* CONFIG_FAIR_GROUP_SCHED */
8828
8829 #ifdef CONFIG_RT_GROUP_SCHED
8830 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8831 s64 val)
8832 {
8833 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8834 }
8835
8836 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8837 {
8838 return sched_group_rt_runtime(cgroup_tg(cgrp));
8839 }
8840
8841 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8842 u64 rt_period_us)
8843 {
8844 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8845 }
8846
8847 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8848 {
8849 return sched_group_rt_period(cgroup_tg(cgrp));
8850 }
8851 #endif /* CONFIG_RT_GROUP_SCHED */
8852
8853 static struct cftype cpu_files[] = {
8854 #ifdef CONFIG_FAIR_GROUP_SCHED
8855 {
8856 .name = "shares",
8857 .read_u64 = cpu_shares_read_u64,
8858 .write_u64 = cpu_shares_write_u64,
8859 },
8860 #endif
8861 #ifdef CONFIG_RT_GROUP_SCHED
8862 {
8863 .name = "rt_runtime_us",
8864 .read_s64 = cpu_rt_runtime_read,
8865 .write_s64 = cpu_rt_runtime_write,
8866 },
8867 {
8868 .name = "rt_period_us",
8869 .read_u64 = cpu_rt_period_read_uint,
8870 .write_u64 = cpu_rt_period_write_uint,
8871 },
8872 #endif
8873 };
8874
8875 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8876 {
8877 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8878 }
8879
8880 struct cgroup_subsys cpu_cgroup_subsys = {
8881 .name = "cpu",
8882 .create = cpu_cgroup_create,
8883 .destroy = cpu_cgroup_destroy,
8884 .can_attach_task = cpu_cgroup_can_attach_task,
8885 .attach_task = cpu_cgroup_attach_task,
8886 .exit = cpu_cgroup_exit,
8887 .populate = cpu_cgroup_populate,
8888 .subsys_id = cpu_cgroup_subsys_id,
8889 .early_init = 1,
8890 };
8891
8892 #endif /* CONFIG_CGROUP_SCHED */
8893
8894 #ifdef CONFIG_CGROUP_CPUACCT
8895
8896 /*
8897 * CPU accounting code for task groups.
8898 *
8899 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8900 * (balbir@in.ibm.com).
8901 */
8902
8903 /* track cpu usage of a group of tasks and its child groups */
8904 struct cpuacct {
8905 struct cgroup_subsys_state css;
8906 /* cpuusage holds pointer to a u64-type object on every cpu */
8907 u64 __percpu *cpuusage;
8908 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8909 struct cpuacct *parent;
8910 };
8911
8912 struct cgroup_subsys cpuacct_subsys;
8913
8914 /* return cpu accounting group corresponding to this container */
8915 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8916 {
8917 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8918 struct cpuacct, css);
8919 }
8920
8921 /* return cpu accounting group to which this task belongs */
8922 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8923 {
8924 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8925 struct cpuacct, css);
8926 }
8927
8928 /* create a new cpu accounting group */
8929 static struct cgroup_subsys_state *cpuacct_create(
8930 struct cgroup_subsys *ss, struct cgroup *cgrp)
8931 {
8932 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8933 int i;
8934
8935 if (!ca)
8936 goto out;
8937
8938 ca->cpuusage = alloc_percpu(u64);
8939 if (!ca->cpuusage)
8940 goto out_free_ca;
8941
8942 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8943 if (percpu_counter_init(&ca->cpustat[i], 0))
8944 goto out_free_counters;
8945
8946 if (cgrp->parent)
8947 ca->parent = cgroup_ca(cgrp->parent);
8948
8949 return &ca->css;
8950
8951 out_free_counters:
8952 while (--i >= 0)
8953 percpu_counter_destroy(&ca->cpustat[i]);
8954 free_percpu(ca->cpuusage);
8955 out_free_ca:
8956 kfree(ca);
8957 out:
8958 return ERR_PTR(-ENOMEM);
8959 }
8960
8961 /* destroy an existing cpu accounting group */
8962 static void
8963 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8964 {
8965 struct cpuacct *ca = cgroup_ca(cgrp);
8966 int i;
8967
8968 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8969 percpu_counter_destroy(&ca->cpustat[i]);
8970 free_percpu(ca->cpuusage);
8971 kfree(ca);
8972 }
8973
8974 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8975 {
8976 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8977 u64 data;
8978
8979 #ifndef CONFIG_64BIT
8980 /*
8981 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8982 */
8983 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8984 data = *cpuusage;
8985 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8986 #else
8987 data = *cpuusage;
8988 #endif
8989
8990 return data;
8991 }
8992
8993 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8994 {
8995 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8996
8997 #ifndef CONFIG_64BIT
8998 /*
8999 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9000 */
9001 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9002 *cpuusage = val;
9003 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9004 #else
9005 *cpuusage = val;
9006 #endif
9007 }
9008
9009 /* return total cpu usage (in nanoseconds) of a group */
9010 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9011 {
9012 struct cpuacct *ca = cgroup_ca(cgrp);
9013 u64 totalcpuusage = 0;
9014 int i;
9015
9016 for_each_present_cpu(i)
9017 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9018
9019 return totalcpuusage;
9020 }
9021
9022 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9023 u64 reset)
9024 {
9025 struct cpuacct *ca = cgroup_ca(cgrp);
9026 int err = 0;
9027 int i;
9028
9029 if (reset) {
9030 err = -EINVAL;
9031 goto out;
9032 }
9033
9034 for_each_present_cpu(i)
9035 cpuacct_cpuusage_write(ca, i, 0);
9036
9037 out:
9038 return err;
9039 }
9040
9041 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9042 struct seq_file *m)
9043 {
9044 struct cpuacct *ca = cgroup_ca(cgroup);
9045 u64 percpu;
9046 int i;
9047
9048 for_each_present_cpu(i) {
9049 percpu = cpuacct_cpuusage_read(ca, i);
9050 seq_printf(m, "%llu ", (unsigned long long) percpu);
9051 }
9052 seq_printf(m, "\n");
9053 return 0;
9054 }
9055
9056 static const char *cpuacct_stat_desc[] = {
9057 [CPUACCT_STAT_USER] = "user",
9058 [CPUACCT_STAT_SYSTEM] = "system",
9059 };
9060
9061 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9062 struct cgroup_map_cb *cb)
9063 {
9064 struct cpuacct *ca = cgroup_ca(cgrp);
9065 int i;
9066
9067 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9068 s64 val = percpu_counter_read(&ca->cpustat[i]);
9069 val = cputime64_to_clock_t(val);
9070 cb->fill(cb, cpuacct_stat_desc[i], val);
9071 }
9072 return 0;
9073 }
9074
9075 static struct cftype files[] = {
9076 {
9077 .name = "usage",
9078 .read_u64 = cpuusage_read,
9079 .write_u64 = cpuusage_write,
9080 },
9081 {
9082 .name = "usage_percpu",
9083 .read_seq_string = cpuacct_percpu_seq_read,
9084 },
9085 {
9086 .name = "stat",
9087 .read_map = cpuacct_stats_show,
9088 },
9089 };
9090
9091 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9092 {
9093 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9094 }
9095
9096 /*
9097 * charge this task's execution time to its accounting group.
9098 *
9099 * called with rq->lock held.
9100 */
9101 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9102 {
9103 struct cpuacct *ca;
9104 int cpu;
9105
9106 if (unlikely(!cpuacct_subsys.active))
9107 return;
9108
9109 cpu = task_cpu(tsk);
9110
9111 rcu_read_lock();
9112
9113 ca = task_ca(tsk);
9114
9115 for (; ca; ca = ca->parent) {
9116 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9117 *cpuusage += cputime;
9118 }
9119
9120 rcu_read_unlock();
9121 }
9122
9123 /*
9124 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9125 * in cputime_t units. As a result, cpuacct_update_stats calls
9126 * percpu_counter_add with values large enough to always overflow the
9127 * per cpu batch limit causing bad SMP scalability.
9128 *
9129 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9130 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9131 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9132 */
9133 #ifdef CONFIG_SMP
9134 #define CPUACCT_BATCH \
9135 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9136 #else
9137 #define CPUACCT_BATCH 0
9138 #endif
9139
9140 /*
9141 * Charge the system/user time to the task's accounting group.
9142 */
9143 static void cpuacct_update_stats(struct task_struct *tsk,
9144 enum cpuacct_stat_index idx, cputime_t val)
9145 {
9146 struct cpuacct *ca;
9147 int batch = CPUACCT_BATCH;
9148
9149 if (unlikely(!cpuacct_subsys.active))
9150 return;
9151
9152 rcu_read_lock();
9153 ca = task_ca(tsk);
9154
9155 do {
9156 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9157 ca = ca->parent;
9158 } while (ca);
9159 rcu_read_unlock();
9160 }
9161
9162 struct cgroup_subsys cpuacct_subsys = {
9163 .name = "cpuacct",
9164 .create = cpuacct_create,
9165 .destroy = cpuacct_destroy,
9166 .populate = cpuacct_populate,
9167 .subsys_id = cpuacct_subsys_id,
9168 };
9169 #endif /* CONFIG_CGROUP_CPUACCT */
9170