Merge branch 'flushing' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 unsigned int nr_spread_over;
329
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
341 int on_list;
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
344
345 #ifdef CONFIG_SMP
346 /*
347 * the part of load.weight contributed by tasks
348 */
349 unsigned long task_weight;
350
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
358
359 /*
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
365 */
366 u64 load_avg;
367 u64 load_period;
368 u64 load_stamp, load_last, load_unacc_exec_time;
369
370 unsigned long load_contribution;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494 u64 clock_task;
495
496 atomic_t nr_iowait;
497
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
501
502 unsigned long cpu_power;
503
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
513
514 unsigned long avg_load_per_task;
515
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
521
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
525
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
537
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
546
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
551
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560
561 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
562
563 static inline int cpu_of(struct rq *rq)
564 {
565 #ifdef CONFIG_SMP
566 return rq->cpu;
567 #else
568 return 0;
569 #endif
570 }
571
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
577 /*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
586
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
592
593 #ifdef CONFIG_CGROUP_SCHED
594
595 /*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603 static inline struct task_group *task_group(struct task_struct *p)
604 {
605 struct task_group *tg;
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
613 }
614
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617 {
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
622
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
627 }
628
629 #else /* CONFIG_CGROUP_SCHED */
630
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
633 {
634 return NULL;
635 }
636
637 #endif /* CONFIG_CGROUP_SCHED */
638
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
640
641 static void update_rq_clock(struct rq *rq)
642 {
643 s64 delta;
644
645 if (rq->skip_clock_update)
646 return;
647
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
665 *
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737 cmp = strstrip(buf);
738
739 if (strncmp(cmp, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
802 /*
803 * period over which we measure -rt task cpu usage in us.
804 * default: 1s
805 */
806 unsigned int sysctl_sched_rt_period = 1000000;
807
808 static __read_mostly int scheduler_running;
809
810 /*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814 int sysctl_sched_rt_runtime = 950000;
815
816 static inline u64 global_rt_period(void)
817 {
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819 }
820
821 static inline u64 global_rt_runtime(void)
822 {
823 if (sysctl_sched_rt_runtime < 0)
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827 }
828
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
831 #endif
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
834 #endif
835
836 static inline int task_current(struct rq *rq, struct task_struct *p)
837 {
838 return rq->curr == p;
839 }
840
841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
842 static inline int task_running(struct rq *rq, struct task_struct *p)
843 {
844 return task_current(rq, p);
845 }
846
847 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
848 {
849 }
850
851 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
852 {
853 #ifdef CONFIG_DEBUG_SPINLOCK
854 /* this is a valid case when another task releases the spinlock */
855 rq->lock.owner = current;
856 #endif
857 /*
858 * If we are tracking spinlock dependencies then we have to
859 * fix up the runqueue lock - which gets 'carried over' from
860 * prev into current:
861 */
862 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
863
864 raw_spin_unlock_irq(&rq->lock);
865 }
866
867 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
868 static inline int task_running(struct rq *rq, struct task_struct *p)
869 {
870 #ifdef CONFIG_SMP
871 return p->oncpu;
872 #else
873 return task_current(rq, p);
874 #endif
875 }
876
877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 {
879 #ifdef CONFIG_SMP
880 /*
881 * We can optimise this out completely for !SMP, because the
882 * SMP rebalancing from interrupt is the only thing that cares
883 * here.
884 */
885 next->oncpu = 1;
886 #endif
887 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888 raw_spin_unlock_irq(&rq->lock);
889 #else
890 raw_spin_unlock(&rq->lock);
891 #endif
892 }
893
894 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
895 {
896 #ifdef CONFIG_SMP
897 /*
898 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
900 * finished.
901 */
902 smp_wmb();
903 prev->oncpu = 0;
904 #endif
905 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 local_irq_enable();
907 #endif
908 }
909 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
910
911 /*
912 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
913 * against ttwu().
914 */
915 static inline int task_is_waking(struct task_struct *p)
916 {
917 return unlikely(p->state == TASK_WAKING);
918 }
919
920 /*
921 * __task_rq_lock - lock the runqueue a given task resides on.
922 * Must be called interrupts disabled.
923 */
924 static inline struct rq *__task_rq_lock(struct task_struct *p)
925 __acquires(rq->lock)
926 {
927 struct rq *rq;
928
929 for (;;) {
930 rq = task_rq(p);
931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p)))
933 return rq;
934 raw_spin_unlock(&rq->lock);
935 }
936 }
937
938 /*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
942 */
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 __acquires(rq->lock)
945 {
946 struct rq *rq;
947
948 for (;;) {
949 local_irq_save(*flags);
950 rq = task_rq(p);
951 raw_spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
954 raw_spin_unlock_irqrestore(&rq->lock, *flags);
955 }
956 }
957
958 static void __task_rq_unlock(struct rq *rq)
959 __releases(rq->lock)
960 {
961 raw_spin_unlock(&rq->lock);
962 }
963
964 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
965 __releases(rq->lock)
966 {
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969
970 /*
971 * this_rq_lock - lock this runqueue and disable interrupts.
972 */
973 static struct rq *this_rq_lock(void)
974 __acquires(rq->lock)
975 {
976 struct rq *rq;
977
978 local_irq_disable();
979 rq = this_rq();
980 raw_spin_lock(&rq->lock);
981
982 return rq;
983 }
984
985 #ifdef CONFIG_SCHED_HRTICK
986 /*
987 * Use HR-timers to deliver accurate preemption points.
988 *
989 * Its all a bit involved since we cannot program an hrt while holding the
990 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
991 * reschedule event.
992 *
993 * When we get rescheduled we reprogram the hrtick_timer outside of the
994 * rq->lock.
995 */
996
997 /*
998 * Use hrtick when:
999 * - enabled by features
1000 * - hrtimer is actually high res
1001 */
1002 static inline int hrtick_enabled(struct rq *rq)
1003 {
1004 if (!sched_feat(HRTICK))
1005 return 0;
1006 if (!cpu_active(cpu_of(rq)))
1007 return 0;
1008 return hrtimer_is_hres_active(&rq->hrtick_timer);
1009 }
1010
1011 static void hrtick_clear(struct rq *rq)
1012 {
1013 if (hrtimer_active(&rq->hrtick_timer))
1014 hrtimer_cancel(&rq->hrtick_timer);
1015 }
1016
1017 /*
1018 * High-resolution timer tick.
1019 * Runs from hardirq context with interrupts disabled.
1020 */
1021 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1022 {
1023 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1024
1025 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1026
1027 raw_spin_lock(&rq->lock);
1028 update_rq_clock(rq);
1029 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1030 raw_spin_unlock(&rq->lock);
1031
1032 return HRTIMER_NORESTART;
1033 }
1034
1035 #ifdef CONFIG_SMP
1036 /*
1037 * called from hardirq (IPI) context
1038 */
1039 static void __hrtick_start(void *arg)
1040 {
1041 struct rq *rq = arg;
1042
1043 raw_spin_lock(&rq->lock);
1044 hrtimer_restart(&rq->hrtick_timer);
1045 rq->hrtick_csd_pending = 0;
1046 raw_spin_unlock(&rq->lock);
1047 }
1048
1049 /*
1050 * Called to set the hrtick timer state.
1051 *
1052 * called with rq->lock held and irqs disabled
1053 */
1054 static void hrtick_start(struct rq *rq, u64 delay)
1055 {
1056 struct hrtimer *timer = &rq->hrtick_timer;
1057 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1058
1059 hrtimer_set_expires(timer, time);
1060
1061 if (rq == this_rq()) {
1062 hrtimer_restart(timer);
1063 } else if (!rq->hrtick_csd_pending) {
1064 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1065 rq->hrtick_csd_pending = 1;
1066 }
1067 }
1068
1069 static int
1070 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1071 {
1072 int cpu = (int)(long)hcpu;
1073
1074 switch (action) {
1075 case CPU_UP_CANCELED:
1076 case CPU_UP_CANCELED_FROZEN:
1077 case CPU_DOWN_PREPARE:
1078 case CPU_DOWN_PREPARE_FROZEN:
1079 case CPU_DEAD:
1080 case CPU_DEAD_FROZEN:
1081 hrtick_clear(cpu_rq(cpu));
1082 return NOTIFY_OK;
1083 }
1084
1085 return NOTIFY_DONE;
1086 }
1087
1088 static __init void init_hrtick(void)
1089 {
1090 hotcpu_notifier(hotplug_hrtick, 0);
1091 }
1092 #else
1093 /*
1094 * Called to set the hrtick timer state.
1095 *
1096 * called with rq->lock held and irqs disabled
1097 */
1098 static void hrtick_start(struct rq *rq, u64 delay)
1099 {
1100 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1101 HRTIMER_MODE_REL_PINNED, 0);
1102 }
1103
1104 static inline void init_hrtick(void)
1105 {
1106 }
1107 #endif /* CONFIG_SMP */
1108
1109 static void init_rq_hrtick(struct rq *rq)
1110 {
1111 #ifdef CONFIG_SMP
1112 rq->hrtick_csd_pending = 0;
1113
1114 rq->hrtick_csd.flags = 0;
1115 rq->hrtick_csd.func = __hrtick_start;
1116 rq->hrtick_csd.info = rq;
1117 #endif
1118
1119 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1120 rq->hrtick_timer.function = hrtick;
1121 }
1122 #else /* CONFIG_SCHED_HRTICK */
1123 static inline void hrtick_clear(struct rq *rq)
1124 {
1125 }
1126
1127 static inline void init_rq_hrtick(struct rq *rq)
1128 {
1129 }
1130
1131 static inline void init_hrtick(void)
1132 {
1133 }
1134 #endif /* CONFIG_SCHED_HRTICK */
1135
1136 /*
1137 * resched_task - mark a task 'to be rescheduled now'.
1138 *
1139 * On UP this means the setting of the need_resched flag, on SMP it
1140 * might also involve a cross-CPU call to trigger the scheduler on
1141 * the target CPU.
1142 */
1143 #ifdef CONFIG_SMP
1144
1145 #ifndef tsk_is_polling
1146 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1147 #endif
1148
1149 static void resched_task(struct task_struct *p)
1150 {
1151 int cpu;
1152
1153 assert_raw_spin_locked(&task_rq(p)->lock);
1154
1155 if (test_tsk_need_resched(p))
1156 return;
1157
1158 set_tsk_need_resched(p);
1159
1160 cpu = task_cpu(p);
1161 if (cpu == smp_processor_id())
1162 return;
1163
1164 /* NEED_RESCHED must be visible before we test polling */
1165 smp_mb();
1166 if (!tsk_is_polling(p))
1167 smp_send_reschedule(cpu);
1168 }
1169
1170 static void resched_cpu(int cpu)
1171 {
1172 struct rq *rq = cpu_rq(cpu);
1173 unsigned long flags;
1174
1175 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1176 return;
1177 resched_task(cpu_curr(cpu));
1178 raw_spin_unlock_irqrestore(&rq->lock, flags);
1179 }
1180
1181 #ifdef CONFIG_NO_HZ
1182 /*
1183 * In the semi idle case, use the nearest busy cpu for migrating timers
1184 * from an idle cpu. This is good for power-savings.
1185 *
1186 * We don't do similar optimization for completely idle system, as
1187 * selecting an idle cpu will add more delays to the timers than intended
1188 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1189 */
1190 int get_nohz_timer_target(void)
1191 {
1192 int cpu = smp_processor_id();
1193 int i;
1194 struct sched_domain *sd;
1195
1196 for_each_domain(cpu, sd) {
1197 for_each_cpu(i, sched_domain_span(sd))
1198 if (!idle_cpu(i))
1199 return i;
1200 }
1201 return cpu;
1202 }
1203 /*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213 void wake_up_idle_cpu(int cpu)
1214 {
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
1235 set_tsk_need_resched(rq->idle);
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241 }
1242
1243 #endif /* CONFIG_NO_HZ */
1244
1245 static u64 sched_avg_period(void)
1246 {
1247 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248 }
1249
1250 static void sched_avg_update(struct rq *rq)
1251 {
1252 s64 period = sched_avg_period();
1253
1254 while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 /*
1256 * Inline assembly required to prevent the compiler
1257 * optimising this loop into a divmod call.
1258 * See __iter_div_u64_rem() for another example of this.
1259 */
1260 asm("" : "+rm" (rq->age_stamp));
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264 }
1265
1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 {
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270 }
1271
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct *p)
1274 {
1275 assert_raw_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p);
1277 }
1278
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 }
1282
1283 static void sched_avg_update(struct rq *rq)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1344 {
1345 lw->weight = w;
1346 lw->inv_weight = 0;
1347 }
1348
1349 /*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1360
1361 /*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1372 */
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1382 };
1383
1384 /*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401
1402 /* Time spent by the tasks of the cpu accounting group executing in ... */
1403 enum cpuacct_stat_index {
1404 CPUACCT_STAT_USER, /* ... user mode */
1405 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1406
1407 CPUACCT_STAT_NSTATS,
1408 };
1409
1410 #ifdef CONFIG_CGROUP_CPUACCT
1411 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1412 static void cpuacct_update_stats(struct task_struct *tsk,
1413 enum cpuacct_stat_index idx, cputime_t val);
1414 #else
1415 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1416 static inline void cpuacct_update_stats(struct task_struct *tsk,
1417 enum cpuacct_stat_index idx, cputime_t val) {}
1418 #endif
1419
1420 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 {
1422 update_load_add(&rq->load, load);
1423 }
1424
1425 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 update_load_sub(&rq->load, load);
1428 }
1429
1430 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1431 typedef int (*tg_visitor)(struct task_group *, void *);
1432
1433 /*
1434 * Iterate the full tree, calling @down when first entering a node and @up when
1435 * leaving it for the final time.
1436 */
1437 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 {
1439 struct task_group *parent, *child;
1440 int ret;
1441
1442 rcu_read_lock();
1443 parent = &root_task_group;
1444 down:
1445 ret = (*down)(parent, data);
1446 if (ret)
1447 goto out_unlock;
1448 list_for_each_entry_rcu(child, &parent->children, siblings) {
1449 parent = child;
1450 goto down;
1451
1452 up:
1453 continue;
1454 }
1455 ret = (*up)(parent, data);
1456 if (ret)
1457 goto out_unlock;
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 out_unlock:
1464 rcu_read_unlock();
1465
1466 return ret;
1467 }
1468
1469 static int tg_nop(struct task_group *tg, void *data)
1470 {
1471 return 0;
1472 }
1473 #endif
1474
1475 #ifdef CONFIG_SMP
1476 /* Used instead of source_load when we know the type == 0 */
1477 static unsigned long weighted_cpuload(const int cpu)
1478 {
1479 return cpu_rq(cpu)->load.weight;
1480 }
1481
1482 /*
1483 * Return a low guess at the load of a migration-source cpu weighted
1484 * according to the scheduling class and "nice" value.
1485 *
1486 * We want to under-estimate the load of migration sources, to
1487 * balance conservatively.
1488 */
1489 static unsigned long source_load(int cpu, int type)
1490 {
1491 struct rq *rq = cpu_rq(cpu);
1492 unsigned long total = weighted_cpuload(cpu);
1493
1494 if (type == 0 || !sched_feat(LB_BIAS))
1495 return total;
1496
1497 return min(rq->cpu_load[type-1], total);
1498 }
1499
1500 /*
1501 * Return a high guess at the load of a migration-target cpu weighted
1502 * according to the scheduling class and "nice" value.
1503 */
1504 static unsigned long target_load(int cpu, int type)
1505 {
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return max(rq->cpu_load[type-1], total);
1513 }
1514
1515 static unsigned long power_of(int cpu)
1516 {
1517 return cpu_rq(cpu)->cpu_power;
1518 }
1519
1520 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1521
1522 static unsigned long cpu_avg_load_per_task(int cpu)
1523 {
1524 struct rq *rq = cpu_rq(cpu);
1525 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1526
1527 if (nr_running)
1528 rq->avg_load_per_task = rq->load.weight / nr_running;
1529 else
1530 rq->avg_load_per_task = 0;
1531
1532 return rq->avg_load_per_task;
1533 }
1534
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1536
1537 /*
1538 * Compute the cpu's hierarchical load factor for each task group.
1539 * This needs to be done in a top-down fashion because the load of a child
1540 * group is a fraction of its parents load.
1541 */
1542 static int tg_load_down(struct task_group *tg, void *data)
1543 {
1544 unsigned long load;
1545 long cpu = (long)data;
1546
1547 if (!tg->parent) {
1548 load = cpu_rq(cpu)->load.weight;
1549 } else {
1550 load = tg->parent->cfs_rq[cpu]->h_load;
1551 load *= tg->se[cpu]->load.weight;
1552 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1553 }
1554
1555 tg->cfs_rq[cpu]->h_load = load;
1556
1557 return 0;
1558 }
1559
1560 static void update_h_load(long cpu)
1561 {
1562 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1563 }
1564
1565 #endif
1566
1567 #ifdef CONFIG_PREEMPT
1568
1569 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1570
1571 /*
1572 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573 * way at the expense of forcing extra atomic operations in all
1574 * invocations. This assures that the double_lock is acquired using the
1575 * same underlying policy as the spinlock_t on this architecture, which
1576 * reduces latency compared to the unfair variant below. However, it
1577 * also adds more overhead and therefore may reduce throughput.
1578 */
1579 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1580 __releases(this_rq->lock)
1581 __acquires(busiest->lock)
1582 __acquires(this_rq->lock)
1583 {
1584 raw_spin_unlock(&this_rq->lock);
1585 double_rq_lock(this_rq, busiest);
1586
1587 return 1;
1588 }
1589
1590 #else
1591 /*
1592 * Unfair double_lock_balance: Optimizes throughput at the expense of
1593 * latency by eliminating extra atomic operations when the locks are
1594 * already in proper order on entry. This favors lower cpu-ids and will
1595 * grant the double lock to lower cpus over higher ids under contention,
1596 * regardless of entry order into the function.
1597 */
1598 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1599 __releases(this_rq->lock)
1600 __acquires(busiest->lock)
1601 __acquires(this_rq->lock)
1602 {
1603 int ret = 0;
1604
1605 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1606 if (busiest < this_rq) {
1607 raw_spin_unlock(&this_rq->lock);
1608 raw_spin_lock(&busiest->lock);
1609 raw_spin_lock_nested(&this_rq->lock,
1610 SINGLE_DEPTH_NESTING);
1611 ret = 1;
1612 } else
1613 raw_spin_lock_nested(&busiest->lock,
1614 SINGLE_DEPTH_NESTING);
1615 }
1616 return ret;
1617 }
1618
1619 #endif /* CONFIG_PREEMPT */
1620
1621 /*
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1623 */
1624 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1625 {
1626 if (unlikely(!irqs_disabled())) {
1627 /* printk() doesn't work good under rq->lock */
1628 raw_spin_unlock(&this_rq->lock);
1629 BUG_ON(1);
1630 }
1631
1632 return _double_lock_balance(this_rq, busiest);
1633 }
1634
1635 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 __releases(busiest->lock)
1637 {
1638 raw_spin_unlock(&busiest->lock);
1639 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1640 }
1641
1642 /*
1643 * double_rq_lock - safely lock two runqueues
1644 *
1645 * Note this does not disable interrupts like task_rq_lock,
1646 * you need to do so manually before calling.
1647 */
1648 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1649 __acquires(rq1->lock)
1650 __acquires(rq2->lock)
1651 {
1652 BUG_ON(!irqs_disabled());
1653 if (rq1 == rq2) {
1654 raw_spin_lock(&rq1->lock);
1655 __acquire(rq2->lock); /* Fake it out ;) */
1656 } else {
1657 if (rq1 < rq2) {
1658 raw_spin_lock(&rq1->lock);
1659 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1660 } else {
1661 raw_spin_lock(&rq2->lock);
1662 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1663 }
1664 }
1665 }
1666
1667 /*
1668 * double_rq_unlock - safely unlock two runqueues
1669 *
1670 * Note this does not restore interrupts like task_rq_unlock,
1671 * you need to do so manually after calling.
1672 */
1673 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1674 __releases(rq1->lock)
1675 __releases(rq2->lock)
1676 {
1677 raw_spin_unlock(&rq1->lock);
1678 if (rq1 != rq2)
1679 raw_spin_unlock(&rq2->lock);
1680 else
1681 __release(rq2->lock);
1682 }
1683
1684 #else /* CONFIG_SMP */
1685
1686 /*
1687 * double_rq_lock - safely lock two runqueues
1688 *
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1691 */
1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1693 __acquires(rq1->lock)
1694 __acquires(rq2->lock)
1695 {
1696 BUG_ON(!irqs_disabled());
1697 BUG_ON(rq1 != rq2);
1698 raw_spin_lock(&rq1->lock);
1699 __acquire(rq2->lock); /* Fake it out ;) */
1700 }
1701
1702 /*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711 {
1712 BUG_ON(rq1 != rq2);
1713 raw_spin_unlock(&rq1->lock);
1714 __release(rq2->lock);
1715 }
1716
1717 #endif
1718
1719 static void calc_load_account_idle(struct rq *this_rq);
1720 static void update_sysctl(void);
1721 static int get_update_sysctl_factor(void);
1722 static void update_cpu_load(struct rq *this_rq);
1723
1724 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1725 {
1726 set_task_rq(p, cpu);
1727 #ifdef CONFIG_SMP
1728 /*
1729 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 * successfuly executed on another CPU. We must ensure that updates of
1731 * per-task data have been completed by this moment.
1732 */
1733 smp_wmb();
1734 task_thread_info(p)->cpu = cpu;
1735 #endif
1736 }
1737
1738 static const struct sched_class rt_sched_class;
1739
1740 #define sched_class_highest (&stop_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1743
1744 #include "sched_stats.h"
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 /*
1759 * SCHED_IDLE tasks get minimal weight:
1760 */
1761 if (p->policy == SCHED_IDLE) {
1762 p->se.load.weight = WEIGHT_IDLEPRIO;
1763 p->se.load.inv_weight = WMULT_IDLEPRIO;
1764 return;
1765 }
1766
1767 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1768 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1769 }
1770
1771 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1772 {
1773 update_rq_clock(rq);
1774 sched_info_queued(p);
1775 p->sched_class->enqueue_task(rq, p, flags);
1776 p->se.on_rq = 1;
1777 }
1778
1779 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1780 {
1781 update_rq_clock(rq);
1782 sched_info_dequeued(p);
1783 p->sched_class->dequeue_task(rq, p, flags);
1784 p->se.on_rq = 0;
1785 }
1786
1787 /*
1788 * activate_task - move a task to the runqueue.
1789 */
1790 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1791 {
1792 if (task_contributes_to_load(p))
1793 rq->nr_uninterruptible--;
1794
1795 enqueue_task(rq, p, flags);
1796 inc_nr_running(rq);
1797 }
1798
1799 /*
1800 * deactivate_task - remove a task from the runqueue.
1801 */
1802 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1803 {
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible++;
1806
1807 dequeue_task(rq, p, flags);
1808 dec_nr_running(rq);
1809 }
1810
1811 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812
1813 /*
1814 * There are no locks covering percpu hardirq/softirq time.
1815 * They are only modified in account_system_vtime, on corresponding CPU
1816 * with interrupts disabled. So, writes are safe.
1817 * They are read and saved off onto struct rq in update_rq_clock().
1818 * This may result in other CPU reading this CPU's irq time and can
1819 * race with irq/account_system_vtime on this CPU. We would either get old
1820 * or new value with a side effect of accounting a slice of irq time to wrong
1821 * task when irq is in progress while we read rq->clock. That is a worthy
1822 * compromise in place of having locks on each irq in account_system_time.
1823 */
1824 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1825 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1826
1827 static DEFINE_PER_CPU(u64, irq_start_time);
1828 static int sched_clock_irqtime;
1829
1830 void enable_sched_clock_irqtime(void)
1831 {
1832 sched_clock_irqtime = 1;
1833 }
1834
1835 void disable_sched_clock_irqtime(void)
1836 {
1837 sched_clock_irqtime = 0;
1838 }
1839
1840 #ifndef CONFIG_64BIT
1841 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1842
1843 static inline void irq_time_write_begin(void)
1844 {
1845 __this_cpu_inc(irq_time_seq.sequence);
1846 smp_wmb();
1847 }
1848
1849 static inline void irq_time_write_end(void)
1850 {
1851 smp_wmb();
1852 __this_cpu_inc(irq_time_seq.sequence);
1853 }
1854
1855 static inline u64 irq_time_read(int cpu)
1856 {
1857 u64 irq_time;
1858 unsigned seq;
1859
1860 do {
1861 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1862 irq_time = per_cpu(cpu_softirq_time, cpu) +
1863 per_cpu(cpu_hardirq_time, cpu);
1864 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1865
1866 return irq_time;
1867 }
1868 #else /* CONFIG_64BIT */
1869 static inline void irq_time_write_begin(void)
1870 {
1871 }
1872
1873 static inline void irq_time_write_end(void)
1874 {
1875 }
1876
1877 static inline u64 irq_time_read(int cpu)
1878 {
1879 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1880 }
1881 #endif /* CONFIG_64BIT */
1882
1883 /*
1884 * Called before incrementing preempt_count on {soft,}irq_enter
1885 * and before decrementing preempt_count on {soft,}irq_exit.
1886 */
1887 void account_system_vtime(struct task_struct *curr)
1888 {
1889 unsigned long flags;
1890 s64 delta;
1891 int cpu;
1892
1893 if (!sched_clock_irqtime)
1894 return;
1895
1896 local_irq_save(flags);
1897
1898 cpu = smp_processor_id();
1899 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1900 __this_cpu_add(irq_start_time, delta);
1901
1902 irq_time_write_begin();
1903 /*
1904 * We do not account for softirq time from ksoftirqd here.
1905 * We want to continue accounting softirq time to ksoftirqd thread
1906 * in that case, so as not to confuse scheduler with a special task
1907 * that do not consume any time, but still wants to run.
1908 */
1909 if (hardirq_count())
1910 __this_cpu_add(cpu_hardirq_time, delta);
1911 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1912 __this_cpu_add(cpu_softirq_time, delta);
1913
1914 irq_time_write_end();
1915 local_irq_restore(flags);
1916 }
1917 EXPORT_SYMBOL_GPL(account_system_vtime);
1918
1919 static void update_rq_clock_task(struct rq *rq, s64 delta)
1920 {
1921 s64 irq_delta;
1922
1923 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1924
1925 /*
1926 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 * this case when a previous update_rq_clock() happened inside a
1928 * {soft,}irq region.
1929 *
1930 * When this happens, we stop ->clock_task and only update the
1931 * prev_irq_time stamp to account for the part that fit, so that a next
1932 * update will consume the rest. This ensures ->clock_task is
1933 * monotonic.
1934 *
1935 * It does however cause some slight miss-attribution of {soft,}irq
1936 * time, a more accurate solution would be to update the irq_time using
1937 * the current rq->clock timestamp, except that would require using
1938 * atomic ops.
1939 */
1940 if (irq_delta > delta)
1941 irq_delta = delta;
1942
1943 rq->prev_irq_time += irq_delta;
1944 delta -= irq_delta;
1945 rq->clock_task += delta;
1946
1947 if (irq_delta && sched_feat(NONIRQ_POWER))
1948 sched_rt_avg_update(rq, irq_delta);
1949 }
1950
1951 static int irqtime_account_hi_update(void)
1952 {
1953 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1954 unsigned long flags;
1955 u64 latest_ns;
1956 int ret = 0;
1957
1958 local_irq_save(flags);
1959 latest_ns = this_cpu_read(cpu_hardirq_time);
1960 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1961 ret = 1;
1962 local_irq_restore(flags);
1963 return ret;
1964 }
1965
1966 static int irqtime_account_si_update(void)
1967 {
1968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1969 unsigned long flags;
1970 u64 latest_ns;
1971 int ret = 0;
1972
1973 local_irq_save(flags);
1974 latest_ns = this_cpu_read(cpu_softirq_time);
1975 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1976 ret = 1;
1977 local_irq_restore(flags);
1978 return ret;
1979 }
1980
1981 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1982
1983 #define sched_clock_irqtime (0)
1984
1985 static void update_rq_clock_task(struct rq *rq, s64 delta)
1986 {
1987 rq->clock_task += delta;
1988 }
1989
1990 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1991
1992 #include "sched_idletask.c"
1993 #include "sched_fair.c"
1994 #include "sched_rt.c"
1995 #include "sched_autogroup.c"
1996 #include "sched_stoptask.c"
1997 #ifdef CONFIG_SCHED_DEBUG
1998 # include "sched_debug.c"
1999 #endif
2000
2001 void sched_set_stop_task(int cpu, struct task_struct *stop)
2002 {
2003 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2004 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2005
2006 if (stop) {
2007 /*
2008 * Make it appear like a SCHED_FIFO task, its something
2009 * userspace knows about and won't get confused about.
2010 *
2011 * Also, it will make PI more or less work without too
2012 * much confusion -- but then, stop work should not
2013 * rely on PI working anyway.
2014 */
2015 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2016
2017 stop->sched_class = &stop_sched_class;
2018 }
2019
2020 cpu_rq(cpu)->stop = stop;
2021
2022 if (old_stop) {
2023 /*
2024 * Reset it back to a normal scheduling class so that
2025 * it can die in pieces.
2026 */
2027 old_stop->sched_class = &rt_sched_class;
2028 }
2029 }
2030
2031 /*
2032 * __normal_prio - return the priority that is based on the static prio
2033 */
2034 static inline int __normal_prio(struct task_struct *p)
2035 {
2036 return p->static_prio;
2037 }
2038
2039 /*
2040 * Calculate the expected normal priority: i.e. priority
2041 * without taking RT-inheritance into account. Might be
2042 * boosted by interactivity modifiers. Changes upon fork,
2043 * setprio syscalls, and whenever the interactivity
2044 * estimator recalculates.
2045 */
2046 static inline int normal_prio(struct task_struct *p)
2047 {
2048 int prio;
2049
2050 if (task_has_rt_policy(p))
2051 prio = MAX_RT_PRIO-1 - p->rt_priority;
2052 else
2053 prio = __normal_prio(p);
2054 return prio;
2055 }
2056
2057 /*
2058 * Calculate the current priority, i.e. the priority
2059 * taken into account by the scheduler. This value might
2060 * be boosted by RT tasks, or might be boosted by
2061 * interactivity modifiers. Will be RT if the task got
2062 * RT-boosted. If not then it returns p->normal_prio.
2063 */
2064 static int effective_prio(struct task_struct *p)
2065 {
2066 p->normal_prio = normal_prio(p);
2067 /*
2068 * If we are RT tasks or we were boosted to RT priority,
2069 * keep the priority unchanged. Otherwise, update priority
2070 * to the normal priority:
2071 */
2072 if (!rt_prio(p->prio))
2073 return p->normal_prio;
2074 return p->prio;
2075 }
2076
2077 /**
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2080 */
2081 inline int task_curr(const struct task_struct *p)
2082 {
2083 return cpu_curr(task_cpu(p)) == p;
2084 }
2085
2086 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2087 const struct sched_class *prev_class,
2088 int oldprio)
2089 {
2090 if (prev_class != p->sched_class) {
2091 if (prev_class->switched_from)
2092 prev_class->switched_from(rq, p);
2093 p->sched_class->switched_to(rq, p);
2094 } else if (oldprio != p->prio)
2095 p->sched_class->prio_changed(rq, p, oldprio);
2096 }
2097
2098 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 const struct sched_class *class;
2101
2102 if (p->sched_class == rq->curr->sched_class) {
2103 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2104 } else {
2105 for_each_class(class) {
2106 if (class == rq->curr->sched_class)
2107 break;
2108 if (class == p->sched_class) {
2109 resched_task(rq->curr);
2110 break;
2111 }
2112 }
2113 }
2114
2115 /*
2116 * A queue event has occurred, and we're going to schedule. In
2117 * this case, we can save a useless back to back clock update.
2118 */
2119 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2120 rq->skip_clock_update = 1;
2121 }
2122
2123 #ifdef CONFIG_SMP
2124 /*
2125 * Is this task likely cache-hot:
2126 */
2127 static int
2128 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2129 {
2130 s64 delta;
2131
2132 if (p->sched_class != &fair_sched_class)
2133 return 0;
2134
2135 if (unlikely(p->policy == SCHED_IDLE))
2136 return 0;
2137
2138 /*
2139 * Buddy candidates are cache hot:
2140 */
2141 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2142 (&p->se == cfs_rq_of(&p->se)->next ||
2143 &p->se == cfs_rq_of(&p->se)->last))
2144 return 1;
2145
2146 if (sysctl_sched_migration_cost == -1)
2147 return 1;
2148 if (sysctl_sched_migration_cost == 0)
2149 return 0;
2150
2151 delta = now - p->se.exec_start;
2152
2153 return delta < (s64)sysctl_sched_migration_cost;
2154 }
2155
2156 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2157 {
2158 #ifdef CONFIG_SCHED_DEBUG
2159 /*
2160 * We should never call set_task_cpu() on a blocked task,
2161 * ttwu() will sort out the placement.
2162 */
2163 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2164 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2165 #endif
2166
2167 trace_sched_migrate_task(p, new_cpu);
2168
2169 if (task_cpu(p) != new_cpu) {
2170 p->se.nr_migrations++;
2171 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2172 }
2173
2174 __set_task_cpu(p, new_cpu);
2175 }
2176
2177 struct migration_arg {
2178 struct task_struct *task;
2179 int dest_cpu;
2180 };
2181
2182 static int migration_cpu_stop(void *data);
2183
2184 /*
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2187 */
2188 static bool migrate_task(struct task_struct *p, struct rq *rq)
2189 {
2190 /*
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2193 */
2194 return p->se.on_rq || task_running(rq, p);
2195 }
2196
2197 /*
2198 * wait_task_inactive - wait for a thread to unschedule.
2199 *
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2206 *
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2212 */
2213 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2214 {
2215 unsigned long flags;
2216 int running, on_rq;
2217 unsigned long ncsw;
2218 struct rq *rq;
2219
2220 for (;;) {
2221 /*
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2225 * work out!
2226 */
2227 rq = task_rq(p);
2228
2229 /*
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2232 * any locks.
2233 *
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2239 */
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2242 return 0;
2243 cpu_relax();
2244 }
2245
2246 /*
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2250 */
2251 rq = task_rq_lock(p, &flags);
2252 trace_sched_wait_task(p);
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
2255 ncsw = 0;
2256 if (!match_state || p->state == match_state)
2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258 task_rq_unlock(rq, &flags);
2259
2260 /*
2261 * If it changed from the expected state, bail out now.
2262 */
2263 if (unlikely(!ncsw))
2264 break;
2265
2266 /*
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2269 *
2270 * Oops. Go back and try again..
2271 */
2272 if (unlikely(running)) {
2273 cpu_relax();
2274 continue;
2275 }
2276
2277 /*
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2280 * preempted!
2281 *
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2285 */
2286 if (unlikely(on_rq)) {
2287 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2288
2289 set_current_state(TASK_UNINTERRUPTIBLE);
2290 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2291 continue;
2292 }
2293
2294 /*
2295 * Ahh, all good. It wasn't running, and it wasn't
2296 * runnable, which means that it will never become
2297 * running in the future either. We're all done!
2298 */
2299 break;
2300 }
2301
2302 return ncsw;
2303 }
2304
2305 /***
2306 * kick_process - kick a running thread to enter/exit the kernel
2307 * @p: the to-be-kicked thread
2308 *
2309 * Cause a process which is running on another CPU to enter
2310 * kernel-mode, without any delay. (to get signals handled.)
2311 *
2312 * NOTE: this function doesn't have to take the runqueue lock,
2313 * because all it wants to ensure is that the remote task enters
2314 * the kernel. If the IPI races and the task has been migrated
2315 * to another CPU then no harm is done and the purpose has been
2316 * achieved as well.
2317 */
2318 void kick_process(struct task_struct *p)
2319 {
2320 int cpu;
2321
2322 preempt_disable();
2323 cpu = task_cpu(p);
2324 if ((cpu != smp_processor_id()) && task_curr(p))
2325 smp_send_reschedule(cpu);
2326 preempt_enable();
2327 }
2328 EXPORT_SYMBOL_GPL(kick_process);
2329 #endif /* CONFIG_SMP */
2330
2331 #ifdef CONFIG_SMP
2332 /*
2333 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2334 */
2335 static int select_fallback_rq(int cpu, struct task_struct *p)
2336 {
2337 int dest_cpu;
2338 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2339
2340 /* Look for allowed, online CPU in same node. */
2341 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2342 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2343 return dest_cpu;
2344
2345 /* Any allowed, online CPU? */
2346 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2347 if (dest_cpu < nr_cpu_ids)
2348 return dest_cpu;
2349
2350 /* No more Mr. Nice Guy. */
2351 dest_cpu = cpuset_cpus_allowed_fallback(p);
2352 /*
2353 * Don't tell them about moving exiting tasks or
2354 * kernel threads (both mm NULL), since they never
2355 * leave kernel.
2356 */
2357 if (p->mm && printk_ratelimit()) {
2358 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2359 task_pid_nr(p), p->comm, cpu);
2360 }
2361
2362 return dest_cpu;
2363 }
2364
2365 /*
2366 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2367 */
2368 static inline
2369 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2370 {
2371 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2372
2373 /*
2374 * In order not to call set_task_cpu() on a blocking task we need
2375 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2376 * cpu.
2377 *
2378 * Since this is common to all placement strategies, this lives here.
2379 *
2380 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 * not worry about this generic constraint ]
2382 */
2383 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2384 !cpu_online(cpu)))
2385 cpu = select_fallback_rq(task_cpu(p), p);
2386
2387 return cpu;
2388 }
2389
2390 static void update_avg(u64 *avg, u64 sample)
2391 {
2392 s64 diff = sample - *avg;
2393 *avg += diff >> 3;
2394 }
2395 #endif
2396
2397 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2398 bool is_sync, bool is_migrate, bool is_local,
2399 unsigned long en_flags)
2400 {
2401 schedstat_inc(p, se.statistics.nr_wakeups);
2402 if (is_sync)
2403 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2404 if (is_migrate)
2405 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2406 if (is_local)
2407 schedstat_inc(p, se.statistics.nr_wakeups_local);
2408 else
2409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2410
2411 activate_task(rq, p, en_flags);
2412 }
2413
2414 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2415 int wake_flags, bool success)
2416 {
2417 trace_sched_wakeup(p, success);
2418 check_preempt_curr(rq, p, wake_flags);
2419
2420 p->state = TASK_RUNNING;
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_woken)
2423 p->sched_class->task_woken(rq, p);
2424
2425 if (unlikely(rq->idle_stamp)) {
2426 u64 delta = rq->clock - rq->idle_stamp;
2427 u64 max = 2*sysctl_sched_migration_cost;
2428
2429 if (delta > max)
2430 rq->avg_idle = max;
2431 else
2432 update_avg(&rq->avg_idle, delta);
2433 rq->idle_stamp = 0;
2434 }
2435 #endif
2436 /* if a worker is waking up, notify workqueue */
2437 if ((p->flags & PF_WQ_WORKER) && success)
2438 wq_worker_waking_up(p, cpu_of(rq));
2439 }
2440
2441 /**
2442 * try_to_wake_up - wake up a thread
2443 * @p: the thread to be awakened
2444 * @state: the mask of task states that can be woken
2445 * @wake_flags: wake modifier flags (WF_*)
2446 *
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2452 *
2453 * Returns %true if @p was woken up, %false if it was already running
2454 * or @state didn't match @p's state.
2455 */
2456 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2457 int wake_flags)
2458 {
2459 int cpu, orig_cpu, this_cpu, success = 0;
2460 unsigned long flags;
2461 unsigned long en_flags = ENQUEUE_WAKEUP;
2462 struct rq *rq;
2463
2464 this_cpu = get_cpu();
2465
2466 smp_wmb();
2467 rq = task_rq_lock(p, &flags);
2468 if (!(p->state & state))
2469 goto out;
2470
2471 if (p->se.on_rq)
2472 goto out_running;
2473
2474 cpu = task_cpu(p);
2475 orig_cpu = cpu;
2476
2477 #ifdef CONFIG_SMP
2478 if (unlikely(task_running(rq, p)))
2479 goto out_activate;
2480
2481 /*
2482 * In order to handle concurrent wakeups and release the rq->lock
2483 * we put the task in TASK_WAKING state.
2484 *
2485 * First fix up the nr_uninterruptible count:
2486 */
2487 if (task_contributes_to_load(p)) {
2488 if (likely(cpu_online(orig_cpu)))
2489 rq->nr_uninterruptible--;
2490 else
2491 this_rq()->nr_uninterruptible--;
2492 }
2493 p->state = TASK_WAKING;
2494
2495 if (p->sched_class->task_waking) {
2496 p->sched_class->task_waking(rq, p);
2497 en_flags |= ENQUEUE_WAKING;
2498 }
2499
2500 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2501 if (cpu != orig_cpu)
2502 set_task_cpu(p, cpu);
2503 __task_rq_unlock(rq);
2504
2505 rq = cpu_rq(cpu);
2506 raw_spin_lock(&rq->lock);
2507
2508 /*
2509 * We migrated the task without holding either rq->lock, however
2510 * since the task is not on the task list itself, nobody else
2511 * will try and migrate the task, hence the rq should match the
2512 * cpu we just moved it to.
2513 */
2514 WARN_ON(task_cpu(p) != cpu);
2515 WARN_ON(p->state != TASK_WAKING);
2516
2517 #ifdef CONFIG_SCHEDSTATS
2518 schedstat_inc(rq, ttwu_count);
2519 if (cpu == this_cpu)
2520 schedstat_inc(rq, ttwu_local);
2521 else {
2522 struct sched_domain *sd;
2523 for_each_domain(this_cpu, sd) {
2524 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2525 schedstat_inc(sd, ttwu_wake_remote);
2526 break;
2527 }
2528 }
2529 }
2530 #endif /* CONFIG_SCHEDSTATS */
2531
2532 out_activate:
2533 #endif /* CONFIG_SMP */
2534 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2535 cpu == this_cpu, en_flags);
2536 success = 1;
2537 out_running:
2538 ttwu_post_activation(p, rq, wake_flags, success);
2539 out:
2540 task_rq_unlock(rq, &flags);
2541 put_cpu();
2542
2543 return success;
2544 }
2545
2546 /**
2547 * try_to_wake_up_local - try to wake up a local task with rq lock held
2548 * @p: the thread to be awakened
2549 *
2550 * Put @p on the run-queue if it's not already there. The caller must
2551 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552 * the current task. this_rq() stays locked over invocation.
2553 */
2554 static void try_to_wake_up_local(struct task_struct *p)
2555 {
2556 struct rq *rq = task_rq(p);
2557 bool success = false;
2558
2559 BUG_ON(rq != this_rq());
2560 BUG_ON(p == current);
2561 lockdep_assert_held(&rq->lock);
2562
2563 if (!(p->state & TASK_NORMAL))
2564 return;
2565
2566 if (!p->se.on_rq) {
2567 if (likely(!task_running(rq, p))) {
2568 schedstat_inc(rq, ttwu_count);
2569 schedstat_inc(rq, ttwu_local);
2570 }
2571 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2572 success = true;
2573 }
2574 ttwu_post_activation(p, rq, 0, success);
2575 }
2576
2577 /**
2578 * wake_up_process - Wake up a specific process
2579 * @p: The process to be woken up.
2580 *
2581 * Attempt to wake up the nominated process and move it to the set of runnable
2582 * processes. Returns 1 if the process was woken up, 0 if it was already
2583 * running.
2584 *
2585 * It may be assumed that this function implies a write memory barrier before
2586 * changing the task state if and only if any tasks are woken up.
2587 */
2588 int wake_up_process(struct task_struct *p)
2589 {
2590 return try_to_wake_up(p, TASK_ALL, 0);
2591 }
2592 EXPORT_SYMBOL(wake_up_process);
2593
2594 int wake_up_state(struct task_struct *p, unsigned int state)
2595 {
2596 return try_to_wake_up(p, state, 0);
2597 }
2598
2599 /*
2600 * Perform scheduler related setup for a newly forked process p.
2601 * p is forked by current.
2602 *
2603 * __sched_fork() is basic setup used by init_idle() too:
2604 */
2605 static void __sched_fork(struct task_struct *p)
2606 {
2607 p->se.exec_start = 0;
2608 p->se.sum_exec_runtime = 0;
2609 p->se.prev_sum_exec_runtime = 0;
2610 p->se.nr_migrations = 0;
2611 p->se.vruntime = 0;
2612
2613 #ifdef CONFIG_SCHEDSTATS
2614 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2615 #endif
2616
2617 INIT_LIST_HEAD(&p->rt.run_list);
2618 p->se.on_rq = 0;
2619 INIT_LIST_HEAD(&p->se.group_node);
2620
2621 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 INIT_HLIST_HEAD(&p->preempt_notifiers);
2623 #endif
2624 }
2625
2626 /*
2627 * fork()/clone()-time setup:
2628 */
2629 void sched_fork(struct task_struct *p, int clone_flags)
2630 {
2631 int cpu = get_cpu();
2632
2633 __sched_fork(p);
2634 /*
2635 * We mark the process as running here. This guarantees that
2636 * nobody will actually run it, and a signal or other external
2637 * event cannot wake it up and insert it on the runqueue either.
2638 */
2639 p->state = TASK_RUNNING;
2640
2641 /*
2642 * Revert to default priority/policy on fork if requested.
2643 */
2644 if (unlikely(p->sched_reset_on_fork)) {
2645 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2646 p->policy = SCHED_NORMAL;
2647 p->normal_prio = p->static_prio;
2648 }
2649
2650 if (PRIO_TO_NICE(p->static_prio) < 0) {
2651 p->static_prio = NICE_TO_PRIO(0);
2652 p->normal_prio = p->static_prio;
2653 set_load_weight(p);
2654 }
2655
2656 /*
2657 * We don't need the reset flag anymore after the fork. It has
2658 * fulfilled its duty:
2659 */
2660 p->sched_reset_on_fork = 0;
2661 }
2662
2663 /*
2664 * Make sure we do not leak PI boosting priority to the child.
2665 */
2666 p->prio = current->normal_prio;
2667
2668 if (!rt_prio(p->prio))
2669 p->sched_class = &fair_sched_class;
2670
2671 if (p->sched_class->task_fork)
2672 p->sched_class->task_fork(p);
2673
2674 /*
2675 * The child is not yet in the pid-hash so no cgroup attach races,
2676 * and the cgroup is pinned to this child due to cgroup_fork()
2677 * is ran before sched_fork().
2678 *
2679 * Silence PROVE_RCU.
2680 */
2681 rcu_read_lock();
2682 set_task_cpu(p, cpu);
2683 rcu_read_unlock();
2684
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p->sched_info, 0, sizeof(p->sched_info));
2688 #endif
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2690 p->oncpu = 0;
2691 #endif
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p)->preempt_count = 1;
2695 #endif
2696 #ifdef CONFIG_SMP
2697 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2698 #endif
2699
2700 put_cpu();
2701 }
2702
2703 /*
2704 * wake_up_new_task - wake up a newly created task for the first time.
2705 *
2706 * This function will do some initial scheduler statistics housekeeping
2707 * that must be done for every newly created context, then puts the task
2708 * on the runqueue and wakes it.
2709 */
2710 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2711 {
2712 unsigned long flags;
2713 struct rq *rq;
2714 int cpu __maybe_unused = get_cpu();
2715
2716 #ifdef CONFIG_SMP
2717 rq = task_rq_lock(p, &flags);
2718 p->state = TASK_WAKING;
2719
2720 /*
2721 * Fork balancing, do it here and not earlier because:
2722 * - cpus_allowed can change in the fork path
2723 * - any previously selected cpu might disappear through hotplug
2724 *
2725 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 * without people poking at ->cpus_allowed.
2727 */
2728 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2729 set_task_cpu(p, cpu);
2730
2731 p->state = TASK_RUNNING;
2732 task_rq_unlock(rq, &flags);
2733 #endif
2734
2735 rq = task_rq_lock(p, &flags);
2736 activate_task(rq, p, 0);
2737 trace_sched_wakeup_new(p, 1);
2738 check_preempt_curr(rq, p, WF_FORK);
2739 #ifdef CONFIG_SMP
2740 if (p->sched_class->task_woken)
2741 p->sched_class->task_woken(rq, p);
2742 #endif
2743 task_rq_unlock(rq, &flags);
2744 put_cpu();
2745 }
2746
2747 #ifdef CONFIG_PREEMPT_NOTIFIERS
2748
2749 /**
2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2751 * @notifier: notifier struct to register
2752 */
2753 void preempt_notifier_register(struct preempt_notifier *notifier)
2754 {
2755 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756 }
2757 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758
2759 /**
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
2761 * @notifier: notifier struct to unregister
2762 *
2763 * This is safe to call from within a preemption notifier.
2764 */
2765 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766 {
2767 hlist_del(&notifier->link);
2768 }
2769 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770
2771 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772 {
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778 }
2779
2780 static void
2781 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 struct task_struct *next)
2783 {
2784 struct preempt_notifier *notifier;
2785 struct hlist_node *node;
2786
2787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 notifier->ops->sched_out(notifier, next);
2789 }
2790
2791 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2792
2793 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794 {
2795 }
2796
2797 static void
2798 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800 {
2801 }
2802
2803 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2804
2805 /**
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
2808 * @prev: the current task that is being switched out
2809 * @next: the task we are going to switch to.
2810 *
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2813 * switch.
2814 *
2815 * prepare_task_switch sets up locking and calls architecture specific
2816 * hooks.
2817 */
2818 static inline void
2819 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 struct task_struct *next)
2821 {
2822 sched_info_switch(prev, next);
2823 perf_event_task_sched_out(prev, next);
2824 fire_sched_out_preempt_notifiers(prev, next);
2825 prepare_lock_switch(rq, next);
2826 prepare_arch_switch(next);
2827 trace_sched_switch(prev, next);
2828 }
2829
2830 /**
2831 * finish_task_switch - clean up after a task-switch
2832 * @rq: runqueue associated with task-switch
2833 * @prev: the thread we just switched away from.
2834 *
2835 * finish_task_switch must be called after the context switch, paired
2836 * with a prepare_task_switch call before the context switch.
2837 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838 * and do any other architecture-specific cleanup actions.
2839 *
2840 * Note that we may have delayed dropping an mm in context_switch(). If
2841 * so, we finish that here outside of the runqueue lock. (Doing it
2842 * with the lock held can cause deadlocks; see schedule() for
2843 * details.)
2844 */
2845 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2846 __releases(rq->lock)
2847 {
2848 struct mm_struct *mm = rq->prev_mm;
2849 long prev_state;
2850
2851 rq->prev_mm = NULL;
2852
2853 /*
2854 * A task struct has one reference for the use as "current".
2855 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2856 * schedule one last time. The schedule call will never return, and
2857 * the scheduled task must drop that reference.
2858 * The test for TASK_DEAD must occur while the runqueue locks are
2859 * still held, otherwise prev could be scheduled on another cpu, die
2860 * there before we look at prev->state, and then the reference would
2861 * be dropped twice.
2862 * Manfred Spraul <manfred@colorfullife.com>
2863 */
2864 prev_state = prev->state;
2865 finish_arch_switch(prev);
2866 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 local_irq_disable();
2868 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869 perf_event_task_sched_in(current);
2870 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2871 local_irq_enable();
2872 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873 finish_lock_switch(rq, prev);
2874
2875 fire_sched_in_preempt_notifiers(current);
2876 if (mm)
2877 mmdrop(mm);
2878 if (unlikely(prev_state == TASK_DEAD)) {
2879 /*
2880 * Remove function-return probe instances associated with this
2881 * task and put them back on the free list.
2882 */
2883 kprobe_flush_task(prev);
2884 put_task_struct(prev);
2885 }
2886 }
2887
2888 #ifdef CONFIG_SMP
2889
2890 /* assumes rq->lock is held */
2891 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2892 {
2893 if (prev->sched_class->pre_schedule)
2894 prev->sched_class->pre_schedule(rq, prev);
2895 }
2896
2897 /* rq->lock is NOT held, but preemption is disabled */
2898 static inline void post_schedule(struct rq *rq)
2899 {
2900 if (rq->post_schedule) {
2901 unsigned long flags;
2902
2903 raw_spin_lock_irqsave(&rq->lock, flags);
2904 if (rq->curr->sched_class->post_schedule)
2905 rq->curr->sched_class->post_schedule(rq);
2906 raw_spin_unlock_irqrestore(&rq->lock, flags);
2907
2908 rq->post_schedule = 0;
2909 }
2910 }
2911
2912 #else
2913
2914 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2915 {
2916 }
2917
2918 static inline void post_schedule(struct rq *rq)
2919 {
2920 }
2921
2922 #endif
2923
2924 /**
2925 * schedule_tail - first thing a freshly forked thread must call.
2926 * @prev: the thread we just switched away from.
2927 */
2928 asmlinkage void schedule_tail(struct task_struct *prev)
2929 __releases(rq->lock)
2930 {
2931 struct rq *rq = this_rq();
2932
2933 finish_task_switch(rq, prev);
2934
2935 /*
2936 * FIXME: do we need to worry about rq being invalidated by the
2937 * task_switch?
2938 */
2939 post_schedule(rq);
2940
2941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 /* In this case, finish_task_switch does not reenable preemption */
2943 preempt_enable();
2944 #endif
2945 if (current->set_child_tid)
2946 put_user(task_pid_vnr(current), current->set_child_tid);
2947 }
2948
2949 /*
2950 * context_switch - switch to the new MM and the new
2951 * thread's register state.
2952 */
2953 static inline void
2954 context_switch(struct rq *rq, struct task_struct *prev,
2955 struct task_struct *next)
2956 {
2957 struct mm_struct *mm, *oldmm;
2958
2959 prepare_task_switch(rq, prev, next);
2960
2961 mm = next->mm;
2962 oldmm = prev->active_mm;
2963 /*
2964 * For paravirt, this is coupled with an exit in switch_to to
2965 * combine the page table reload and the switch backend into
2966 * one hypercall.
2967 */
2968 arch_start_context_switch(prev);
2969
2970 if (!mm) {
2971 next->active_mm = oldmm;
2972 atomic_inc(&oldmm->mm_count);
2973 enter_lazy_tlb(oldmm, next);
2974 } else
2975 switch_mm(oldmm, mm, next);
2976
2977 if (!prev->mm) {
2978 prev->active_mm = NULL;
2979 rq->prev_mm = oldmm;
2980 }
2981 /*
2982 * Since the runqueue lock will be released by the next
2983 * task (which is an invalid locking op but in the case
2984 * of the scheduler it's an obvious special-case), so we
2985 * do an early lockdep release here:
2986 */
2987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2989 #endif
2990
2991 /* Here we just switch the register state and the stack. */
2992 switch_to(prev, next, prev);
2993
2994 barrier();
2995 /*
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
2999 */
3000 finish_task_switch(this_rq(), prev);
3001 }
3002
3003 /*
3004 * nr_running, nr_uninterruptible and nr_context_switches:
3005 *
3006 * externally visible scheduler statistics: current number of runnable
3007 * threads, current number of uninterruptible-sleeping threads, total
3008 * number of context switches performed since bootup.
3009 */
3010 unsigned long nr_running(void)
3011 {
3012 unsigned long i, sum = 0;
3013
3014 for_each_online_cpu(i)
3015 sum += cpu_rq(i)->nr_running;
3016
3017 return sum;
3018 }
3019
3020 unsigned long nr_uninterruptible(void)
3021 {
3022 unsigned long i, sum = 0;
3023
3024 for_each_possible_cpu(i)
3025 sum += cpu_rq(i)->nr_uninterruptible;
3026
3027 /*
3028 * Since we read the counters lockless, it might be slightly
3029 * inaccurate. Do not allow it to go below zero though:
3030 */
3031 if (unlikely((long)sum < 0))
3032 sum = 0;
3033
3034 return sum;
3035 }
3036
3037 unsigned long long nr_context_switches(void)
3038 {
3039 int i;
3040 unsigned long long sum = 0;
3041
3042 for_each_possible_cpu(i)
3043 sum += cpu_rq(i)->nr_switches;
3044
3045 return sum;
3046 }
3047
3048 unsigned long nr_iowait(void)
3049 {
3050 unsigned long i, sum = 0;
3051
3052 for_each_possible_cpu(i)
3053 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3054
3055 return sum;
3056 }
3057
3058 unsigned long nr_iowait_cpu(int cpu)
3059 {
3060 struct rq *this = cpu_rq(cpu);
3061 return atomic_read(&this->nr_iowait);
3062 }
3063
3064 unsigned long this_cpu_load(void)
3065 {
3066 struct rq *this = this_rq();
3067 return this->cpu_load[0];
3068 }
3069
3070
3071 /* Variables and functions for calc_load */
3072 static atomic_long_t calc_load_tasks;
3073 static unsigned long calc_load_update;
3074 unsigned long avenrun[3];
3075 EXPORT_SYMBOL(avenrun);
3076
3077 static long calc_load_fold_active(struct rq *this_rq)
3078 {
3079 long nr_active, delta = 0;
3080
3081 nr_active = this_rq->nr_running;
3082 nr_active += (long) this_rq->nr_uninterruptible;
3083
3084 if (nr_active != this_rq->calc_load_active) {
3085 delta = nr_active - this_rq->calc_load_active;
3086 this_rq->calc_load_active = nr_active;
3087 }
3088
3089 return delta;
3090 }
3091
3092 static unsigned long
3093 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3094 {
3095 load *= exp;
3096 load += active * (FIXED_1 - exp);
3097 load += 1UL << (FSHIFT - 1);
3098 return load >> FSHIFT;
3099 }
3100
3101 #ifdef CONFIG_NO_HZ
3102 /*
3103 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3104 *
3105 * When making the ILB scale, we should try to pull this in as well.
3106 */
3107 static atomic_long_t calc_load_tasks_idle;
3108
3109 static void calc_load_account_idle(struct rq *this_rq)
3110 {
3111 long delta;
3112
3113 delta = calc_load_fold_active(this_rq);
3114 if (delta)
3115 atomic_long_add(delta, &calc_load_tasks_idle);
3116 }
3117
3118 static long calc_load_fold_idle(void)
3119 {
3120 long delta = 0;
3121
3122 /*
3123 * Its got a race, we don't care...
3124 */
3125 if (atomic_long_read(&calc_load_tasks_idle))
3126 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3127
3128 return delta;
3129 }
3130
3131 /**
3132 * fixed_power_int - compute: x^n, in O(log n) time
3133 *
3134 * @x: base of the power
3135 * @frac_bits: fractional bits of @x
3136 * @n: power to raise @x to.
3137 *
3138 * By exploiting the relation between the definition of the natural power
3139 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141 * (where: n_i \elem {0, 1}, the binary vector representing n),
3142 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143 * of course trivially computable in O(log_2 n), the length of our binary
3144 * vector.
3145 */
3146 static unsigned long
3147 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3148 {
3149 unsigned long result = 1UL << frac_bits;
3150
3151 if (n) for (;;) {
3152 if (n & 1) {
3153 result *= x;
3154 result += 1UL << (frac_bits - 1);
3155 result >>= frac_bits;
3156 }
3157 n >>= 1;
3158 if (!n)
3159 break;
3160 x *= x;
3161 x += 1UL << (frac_bits - 1);
3162 x >>= frac_bits;
3163 }
3164
3165 return result;
3166 }
3167
3168 /*
3169 * a1 = a0 * e + a * (1 - e)
3170 *
3171 * a2 = a1 * e + a * (1 - e)
3172 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173 * = a0 * e^2 + a * (1 - e) * (1 + e)
3174 *
3175 * a3 = a2 * e + a * (1 - e)
3176 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3178 *
3179 * ...
3180 *
3181 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183 * = a0 * e^n + a * (1 - e^n)
3184 *
3185 * [1] application of the geometric series:
3186 *
3187 * n 1 - x^(n+1)
3188 * S_n := \Sum x^i = -------------
3189 * i=0 1 - x
3190 */
3191 static unsigned long
3192 calc_load_n(unsigned long load, unsigned long exp,
3193 unsigned long active, unsigned int n)
3194 {
3195
3196 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3197 }
3198
3199 /*
3200 * NO_HZ can leave us missing all per-cpu ticks calling
3201 * calc_load_account_active(), but since an idle CPU folds its delta into
3202 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203 * in the pending idle delta if our idle period crossed a load cycle boundary.
3204 *
3205 * Once we've updated the global active value, we need to apply the exponential
3206 * weights adjusted to the number of cycles missed.
3207 */
3208 static void calc_global_nohz(unsigned long ticks)
3209 {
3210 long delta, active, n;
3211
3212 if (time_before(jiffies, calc_load_update))
3213 return;
3214
3215 /*
3216 * If we crossed a calc_load_update boundary, make sure to fold
3217 * any pending idle changes, the respective CPUs might have
3218 * missed the tick driven calc_load_account_active() update
3219 * due to NO_HZ.
3220 */
3221 delta = calc_load_fold_idle();
3222 if (delta)
3223 atomic_long_add(delta, &calc_load_tasks);
3224
3225 /*
3226 * If we were idle for multiple load cycles, apply them.
3227 */
3228 if (ticks >= LOAD_FREQ) {
3229 n = ticks / LOAD_FREQ;
3230
3231 active = atomic_long_read(&calc_load_tasks);
3232 active = active > 0 ? active * FIXED_1 : 0;
3233
3234 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3235 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3236 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3237
3238 calc_load_update += n * LOAD_FREQ;
3239 }
3240
3241 /*
3242 * Its possible the remainder of the above division also crosses
3243 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 * which comes after this will take care of that.
3245 *
3246 * Consider us being 11 ticks before a cycle completion, and us
3247 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 * age us 4 cycles, and the test in calc_global_load() will
3249 * pick up the final one.
3250 */
3251 }
3252 #else
3253 static void calc_load_account_idle(struct rq *this_rq)
3254 {
3255 }
3256
3257 static inline long calc_load_fold_idle(void)
3258 {
3259 return 0;
3260 }
3261
3262 static void calc_global_nohz(unsigned long ticks)
3263 {
3264 }
3265 #endif
3266
3267 /**
3268 * get_avenrun - get the load average array
3269 * @loads: pointer to dest load array
3270 * @offset: offset to add
3271 * @shift: shift count to shift the result left
3272 *
3273 * These values are estimates at best, so no need for locking.
3274 */
3275 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3276 {
3277 loads[0] = (avenrun[0] + offset) << shift;
3278 loads[1] = (avenrun[1] + offset) << shift;
3279 loads[2] = (avenrun[2] + offset) << shift;
3280 }
3281
3282 /*
3283 * calc_load - update the avenrun load estimates 10 ticks after the
3284 * CPUs have updated calc_load_tasks.
3285 */
3286 void calc_global_load(unsigned long ticks)
3287 {
3288 long active;
3289
3290 calc_global_nohz(ticks);
3291
3292 if (time_before(jiffies, calc_load_update + 10))
3293 return;
3294
3295 active = atomic_long_read(&calc_load_tasks);
3296 active = active > 0 ? active * FIXED_1 : 0;
3297
3298 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3299 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3300 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3301
3302 calc_load_update += LOAD_FREQ;
3303 }
3304
3305 /*
3306 * Called from update_cpu_load() to periodically update this CPU's
3307 * active count.
3308 */
3309 static void calc_load_account_active(struct rq *this_rq)
3310 {
3311 long delta;
3312
3313 if (time_before(jiffies, this_rq->calc_load_update))
3314 return;
3315
3316 delta = calc_load_fold_active(this_rq);
3317 delta += calc_load_fold_idle();
3318 if (delta)
3319 atomic_long_add(delta, &calc_load_tasks);
3320
3321 this_rq->calc_load_update += LOAD_FREQ;
3322 }
3323
3324 /*
3325 * The exact cpuload at various idx values, calculated at every tick would be
3326 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3327 *
3328 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329 * on nth tick when cpu may be busy, then we have:
3330 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3332 *
3333 * decay_load_missed() below does efficient calculation of
3334 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3336 *
3337 * The calculation is approximated on a 128 point scale.
3338 * degrade_zero_ticks is the number of ticks after which load at any
3339 * particular idx is approximated to be zero.
3340 * degrade_factor is a precomputed table, a row for each load idx.
3341 * Each column corresponds to degradation factor for a power of two ticks,
3342 * based on 128 point scale.
3343 * Example:
3344 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3346 *
3347 * With this power of 2 load factors, we can degrade the load n times
3348 * by looking at 1 bits in n and doing as many mult/shift instead of
3349 * n mult/shifts needed by the exact degradation.
3350 */
3351 #define DEGRADE_SHIFT 7
3352 static const unsigned char
3353 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3354 static const unsigned char
3355 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3356 {0, 0, 0, 0, 0, 0, 0, 0},
3357 {64, 32, 8, 0, 0, 0, 0, 0},
3358 {96, 72, 40, 12, 1, 0, 0},
3359 {112, 98, 75, 43, 15, 1, 0},
3360 {120, 112, 98, 76, 45, 16, 2} };
3361
3362 /*
3363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364 * would be when CPU is idle and so we just decay the old load without
3365 * adding any new load.
3366 */
3367 static unsigned long
3368 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3369 {
3370 int j = 0;
3371
3372 if (!missed_updates)
3373 return load;
3374
3375 if (missed_updates >= degrade_zero_ticks[idx])
3376 return 0;
3377
3378 if (idx == 1)
3379 return load >> missed_updates;
3380
3381 while (missed_updates) {
3382 if (missed_updates % 2)
3383 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3384
3385 missed_updates >>= 1;
3386 j++;
3387 }
3388 return load;
3389 }
3390
3391 /*
3392 * Update rq->cpu_load[] statistics. This function is usually called every
3393 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394 * every tick. We fix it up based on jiffies.
3395 */
3396 static void update_cpu_load(struct rq *this_rq)
3397 {
3398 unsigned long this_load = this_rq->load.weight;
3399 unsigned long curr_jiffies = jiffies;
3400 unsigned long pending_updates;
3401 int i, scale;
3402
3403 this_rq->nr_load_updates++;
3404
3405 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 if (curr_jiffies == this_rq->last_load_update_tick)
3407 return;
3408
3409 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3410 this_rq->last_load_update_tick = curr_jiffies;
3411
3412 /* Update our load: */
3413 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3414 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3415 unsigned long old_load, new_load;
3416
3417 /* scale is effectively 1 << i now, and >> i divides by scale */
3418
3419 old_load = this_rq->cpu_load[i];
3420 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3421 new_load = this_load;
3422 /*
3423 * Round up the averaging division if load is increasing. This
3424 * prevents us from getting stuck on 9 if the load is 10, for
3425 * example.
3426 */
3427 if (new_load > old_load)
3428 new_load += scale - 1;
3429
3430 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3431 }
3432
3433 sched_avg_update(this_rq);
3434 }
3435
3436 static void update_cpu_load_active(struct rq *this_rq)
3437 {
3438 update_cpu_load(this_rq);
3439
3440 calc_load_account_active(this_rq);
3441 }
3442
3443 #ifdef CONFIG_SMP
3444
3445 /*
3446 * sched_exec - execve() is a valuable balancing opportunity, because at
3447 * this point the task has the smallest effective memory and cache footprint.
3448 */
3449 void sched_exec(void)
3450 {
3451 struct task_struct *p = current;
3452 unsigned long flags;
3453 struct rq *rq;
3454 int dest_cpu;
3455
3456 rq = task_rq_lock(p, &flags);
3457 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3458 if (dest_cpu == smp_processor_id())
3459 goto unlock;
3460
3461 /*
3462 * select_task_rq() can race against ->cpus_allowed
3463 */
3464 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3465 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3466 struct migration_arg arg = { p, dest_cpu };
3467
3468 task_rq_unlock(rq, &flags);
3469 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3470 return;
3471 }
3472 unlock:
3473 task_rq_unlock(rq, &flags);
3474 }
3475
3476 #endif
3477
3478 DEFINE_PER_CPU(struct kernel_stat, kstat);
3479
3480 EXPORT_PER_CPU_SYMBOL(kstat);
3481
3482 /*
3483 * Return any ns on the sched_clock that have not yet been accounted in
3484 * @p in case that task is currently running.
3485 *
3486 * Called with task_rq_lock() held on @rq.
3487 */
3488 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3489 {
3490 u64 ns = 0;
3491
3492 if (task_current(rq, p)) {
3493 update_rq_clock(rq);
3494 ns = rq->clock_task - p->se.exec_start;
3495 if ((s64)ns < 0)
3496 ns = 0;
3497 }
3498
3499 return ns;
3500 }
3501
3502 unsigned long long task_delta_exec(struct task_struct *p)
3503 {
3504 unsigned long flags;
3505 struct rq *rq;
3506 u64 ns = 0;
3507
3508 rq = task_rq_lock(p, &flags);
3509 ns = do_task_delta_exec(p, rq);
3510 task_rq_unlock(rq, &flags);
3511
3512 return ns;
3513 }
3514
3515 /*
3516 * Return accounted runtime for the task.
3517 * In case the task is currently running, return the runtime plus current's
3518 * pending runtime that have not been accounted yet.
3519 */
3520 unsigned long long task_sched_runtime(struct task_struct *p)
3521 {
3522 unsigned long flags;
3523 struct rq *rq;
3524 u64 ns = 0;
3525
3526 rq = task_rq_lock(p, &flags);
3527 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3528 task_rq_unlock(rq, &flags);
3529
3530 return ns;
3531 }
3532
3533 /*
3534 * Return sum_exec_runtime for the thread group.
3535 * In case the task is currently running, return the sum plus current's
3536 * pending runtime that have not been accounted yet.
3537 *
3538 * Note that the thread group might have other running tasks as well,
3539 * so the return value not includes other pending runtime that other
3540 * running tasks might have.
3541 */
3542 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3543 {
3544 struct task_cputime totals;
3545 unsigned long flags;
3546 struct rq *rq;
3547 u64 ns;
3548
3549 rq = task_rq_lock(p, &flags);
3550 thread_group_cputime(p, &totals);
3551 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3552 task_rq_unlock(rq, &flags);
3553
3554 return ns;
3555 }
3556
3557 /*
3558 * Account user cpu time to a process.
3559 * @p: the process that the cpu time gets accounted to
3560 * @cputime: the cpu time spent in user space since the last update
3561 * @cputime_scaled: cputime scaled by cpu frequency
3562 */
3563 void account_user_time(struct task_struct *p, cputime_t cputime,
3564 cputime_t cputime_scaled)
3565 {
3566 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3567 cputime64_t tmp;
3568
3569 /* Add user time to process. */
3570 p->utime = cputime_add(p->utime, cputime);
3571 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3572 account_group_user_time(p, cputime);
3573
3574 /* Add user time to cpustat. */
3575 tmp = cputime_to_cputime64(cputime);
3576 if (TASK_NICE(p) > 0)
3577 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3578 else
3579 cpustat->user = cputime64_add(cpustat->user, tmp);
3580
3581 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3582 /* Account for user time used */
3583 acct_update_integrals(p);
3584 }
3585
3586 /*
3587 * Account guest cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in virtual machine since the last update
3590 * @cputime_scaled: cputime scaled by cpu frequency
3591 */
3592 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3593 cputime_t cputime_scaled)
3594 {
3595 cputime64_t tmp;
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597
3598 tmp = cputime_to_cputime64(cputime);
3599
3600 /* Add guest time to process. */
3601 p->utime = cputime_add(p->utime, cputime);
3602 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3603 account_group_user_time(p, cputime);
3604 p->gtime = cputime_add(p->gtime, cputime);
3605
3606 /* Add guest time to cpustat. */
3607 if (TASK_NICE(p) > 0) {
3608 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3610 } else {
3611 cpustat->user = cputime64_add(cpustat->user, tmp);
3612 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3613 }
3614 }
3615
3616 /*
3617 * Account system cpu time to a process and desired cpustat field
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in kernel space since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3621 * @target_cputime64: pointer to cpustat field that has to be updated
3622 */
3623 static inline
3624 void __account_system_time(struct task_struct *p, cputime_t cputime,
3625 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3626 {
3627 cputime64_t tmp = cputime_to_cputime64(cputime);
3628
3629 /* Add system time to process. */
3630 p->stime = cputime_add(p->stime, cputime);
3631 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3632 account_group_system_time(p, cputime);
3633
3634 /* Add system time to cpustat. */
3635 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3636 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3637
3638 /* Account for system time used */
3639 acct_update_integrals(p);
3640 }
3641
3642 /*
3643 * Account system cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @hardirq_offset: the offset to subtract from hardirq_count()
3646 * @cputime: the cpu time spent in kernel space since the last update
3647 * @cputime_scaled: cputime scaled by cpu frequency
3648 */
3649 void account_system_time(struct task_struct *p, int hardirq_offset,
3650 cputime_t cputime, cputime_t cputime_scaled)
3651 {
3652 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3653 cputime64_t *target_cputime64;
3654
3655 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3656 account_guest_time(p, cputime, cputime_scaled);
3657 return;
3658 }
3659
3660 if (hardirq_count() - hardirq_offset)
3661 target_cputime64 = &cpustat->irq;
3662 else if (in_serving_softirq())
3663 target_cputime64 = &cpustat->softirq;
3664 else
3665 target_cputime64 = &cpustat->system;
3666
3667 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3668 }
3669
3670 /*
3671 * Account for involuntary wait time.
3672 * @cputime: the cpu time spent in involuntary wait
3673 */
3674 void account_steal_time(cputime_t cputime)
3675 {
3676 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3677 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3678
3679 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3680 }
3681
3682 /*
3683 * Account for idle time.
3684 * @cputime: the cpu time spent in idle wait
3685 */
3686 void account_idle_time(cputime_t cputime)
3687 {
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690 struct rq *rq = this_rq();
3691
3692 if (atomic_read(&rq->nr_iowait) > 0)
3693 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3694 else
3695 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3696 }
3697
3698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3699
3700 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3701 /*
3702 * Account a tick to a process and cpustat
3703 * @p: the process that the cpu time gets accounted to
3704 * @user_tick: is the tick from userspace
3705 * @rq: the pointer to rq
3706 *
3707 * Tick demultiplexing follows the order
3708 * - pending hardirq update
3709 * - pending softirq update
3710 * - user_time
3711 * - idle_time
3712 * - system time
3713 * - check for guest_time
3714 * - else account as system_time
3715 *
3716 * Check for hardirq is done both for system and user time as there is
3717 * no timer going off while we are on hardirq and hence we may never get an
3718 * opportunity to update it solely in system time.
3719 * p->stime and friends are only updated on system time and not on irq
3720 * softirq as those do not count in task exec_runtime any more.
3721 */
3722 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3723 struct rq *rq)
3724 {
3725 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3726 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3727 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3728
3729 if (irqtime_account_hi_update()) {
3730 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3731 } else if (irqtime_account_si_update()) {
3732 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3733 } else if (this_cpu_ksoftirqd() == p) {
3734 /*
3735 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 * So, we have to handle it separately here.
3737 * Also, p->stime needs to be updated for ksoftirqd.
3738 */
3739 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3740 &cpustat->softirq);
3741 } else if (user_tick) {
3742 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3743 } else if (p == rq->idle) {
3744 account_idle_time(cputime_one_jiffy);
3745 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3746 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3747 } else {
3748 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3749 &cpustat->system);
3750 }
3751 }
3752
3753 static void irqtime_account_idle_ticks(int ticks)
3754 {
3755 int i;
3756 struct rq *rq = this_rq();
3757
3758 for (i = 0; i < ticks; i++)
3759 irqtime_account_process_tick(current, 0, rq);
3760 }
3761 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3762 static void irqtime_account_idle_ticks(int ticks) {}
3763 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3764 struct rq *rq) {}
3765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3766
3767 /*
3768 * Account a single tick of cpu time.
3769 * @p: the process that the cpu time gets accounted to
3770 * @user_tick: indicates if the tick is a user or a system tick
3771 */
3772 void account_process_tick(struct task_struct *p, int user_tick)
3773 {
3774 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3775 struct rq *rq = this_rq();
3776
3777 if (sched_clock_irqtime) {
3778 irqtime_account_process_tick(p, user_tick, rq);
3779 return;
3780 }
3781
3782 if (user_tick)
3783 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3784 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3785 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3786 one_jiffy_scaled);
3787 else
3788 account_idle_time(cputime_one_jiffy);
3789 }
3790
3791 /*
3792 * Account multiple ticks of steal time.
3793 * @p: the process from which the cpu time has been stolen
3794 * @ticks: number of stolen ticks
3795 */
3796 void account_steal_ticks(unsigned long ticks)
3797 {
3798 account_steal_time(jiffies_to_cputime(ticks));
3799 }
3800
3801 /*
3802 * Account multiple ticks of idle time.
3803 * @ticks: number of stolen ticks
3804 */
3805 void account_idle_ticks(unsigned long ticks)
3806 {
3807
3808 if (sched_clock_irqtime) {
3809 irqtime_account_idle_ticks(ticks);
3810 return;
3811 }
3812
3813 account_idle_time(jiffies_to_cputime(ticks));
3814 }
3815
3816 #endif
3817
3818 /*
3819 * Use precise platform statistics if available:
3820 */
3821 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3822 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3823 {
3824 *ut = p->utime;
3825 *st = p->stime;
3826 }
3827
3828 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3829 {
3830 struct task_cputime cputime;
3831
3832 thread_group_cputime(p, &cputime);
3833
3834 *ut = cputime.utime;
3835 *st = cputime.stime;
3836 }
3837 #else
3838
3839 #ifndef nsecs_to_cputime
3840 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3841 #endif
3842
3843 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3844 {
3845 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3846
3847 /*
3848 * Use CFS's precise accounting:
3849 */
3850 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3851
3852 if (total) {
3853 u64 temp = rtime;
3854
3855 temp *= utime;
3856 do_div(temp, total);
3857 utime = (cputime_t)temp;
3858 } else
3859 utime = rtime;
3860
3861 /*
3862 * Compare with previous values, to keep monotonicity:
3863 */
3864 p->prev_utime = max(p->prev_utime, utime);
3865 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3866
3867 *ut = p->prev_utime;
3868 *st = p->prev_stime;
3869 }
3870
3871 /*
3872 * Must be called with siglock held.
3873 */
3874 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3875 {
3876 struct signal_struct *sig = p->signal;
3877 struct task_cputime cputime;
3878 cputime_t rtime, utime, total;
3879
3880 thread_group_cputime(p, &cputime);
3881
3882 total = cputime_add(cputime.utime, cputime.stime);
3883 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3884
3885 if (total) {
3886 u64 temp = rtime;
3887
3888 temp *= cputime.utime;
3889 do_div(temp, total);
3890 utime = (cputime_t)temp;
3891 } else
3892 utime = rtime;
3893
3894 sig->prev_utime = max(sig->prev_utime, utime);
3895 sig->prev_stime = max(sig->prev_stime,
3896 cputime_sub(rtime, sig->prev_utime));
3897
3898 *ut = sig->prev_utime;
3899 *st = sig->prev_stime;
3900 }
3901 #endif
3902
3903 /*
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3906 *
3907 * It also gets called by the fork code, when changing the parent's
3908 * timeslices.
3909 */
3910 void scheduler_tick(void)
3911 {
3912 int cpu = smp_processor_id();
3913 struct rq *rq = cpu_rq(cpu);
3914 struct task_struct *curr = rq->curr;
3915
3916 sched_clock_tick();
3917
3918 raw_spin_lock(&rq->lock);
3919 update_rq_clock(rq);
3920 update_cpu_load_active(rq);
3921 curr->sched_class->task_tick(rq, curr, 0);
3922 raw_spin_unlock(&rq->lock);
3923
3924 perf_event_task_tick();
3925
3926 #ifdef CONFIG_SMP
3927 rq->idle_at_tick = idle_cpu(cpu);
3928 trigger_load_balance(rq, cpu);
3929 #endif
3930 }
3931
3932 notrace unsigned long get_parent_ip(unsigned long addr)
3933 {
3934 if (in_lock_functions(addr)) {
3935 addr = CALLER_ADDR2;
3936 if (in_lock_functions(addr))
3937 addr = CALLER_ADDR3;
3938 }
3939 return addr;
3940 }
3941
3942 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 defined(CONFIG_PREEMPT_TRACER))
3944
3945 void __kprobes add_preempt_count(int val)
3946 {
3947 #ifdef CONFIG_DEBUG_PREEMPT
3948 /*
3949 * Underflow?
3950 */
3951 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3952 return;
3953 #endif
3954 preempt_count() += val;
3955 #ifdef CONFIG_DEBUG_PREEMPT
3956 /*
3957 * Spinlock count overflowing soon?
3958 */
3959 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3960 PREEMPT_MASK - 10);
3961 #endif
3962 if (preempt_count() == val)
3963 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3964 }
3965 EXPORT_SYMBOL(add_preempt_count);
3966
3967 void __kprobes sub_preempt_count(int val)
3968 {
3969 #ifdef CONFIG_DEBUG_PREEMPT
3970 /*
3971 * Underflow?
3972 */
3973 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3974 return;
3975 /*
3976 * Is the spinlock portion underflowing?
3977 */
3978 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3979 !(preempt_count() & PREEMPT_MASK)))
3980 return;
3981 #endif
3982
3983 if (preempt_count() == val)
3984 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3985 preempt_count() -= val;
3986 }
3987 EXPORT_SYMBOL(sub_preempt_count);
3988
3989 #endif
3990
3991 /*
3992 * Print scheduling while atomic bug:
3993 */
3994 static noinline void __schedule_bug(struct task_struct *prev)
3995 {
3996 struct pt_regs *regs = get_irq_regs();
3997
3998 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 prev->comm, prev->pid, preempt_count());
4000
4001 debug_show_held_locks(prev);
4002 print_modules();
4003 if (irqs_disabled())
4004 print_irqtrace_events(prev);
4005
4006 if (regs)
4007 show_regs(regs);
4008 else
4009 dump_stack();
4010 }
4011
4012 /*
4013 * Various schedule()-time debugging checks and statistics:
4014 */
4015 static inline void schedule_debug(struct task_struct *prev)
4016 {
4017 /*
4018 * Test if we are atomic. Since do_exit() needs to call into
4019 * schedule() atomically, we ignore that path for now.
4020 * Otherwise, whine if we are scheduling when we should not be.
4021 */
4022 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4023 __schedule_bug(prev);
4024
4025 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4026
4027 schedstat_inc(this_rq(), sched_count);
4028 #ifdef CONFIG_SCHEDSTATS
4029 if (unlikely(prev->lock_depth >= 0)) {
4030 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4031 schedstat_inc(prev, sched_info.bkl_count);
4032 }
4033 #endif
4034 }
4035
4036 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4037 {
4038 if (prev->se.on_rq)
4039 update_rq_clock(rq);
4040 prev->sched_class->put_prev_task(rq, prev);
4041 }
4042
4043 /*
4044 * Pick up the highest-prio task:
4045 */
4046 static inline struct task_struct *
4047 pick_next_task(struct rq *rq)
4048 {
4049 const struct sched_class *class;
4050 struct task_struct *p;
4051
4052 /*
4053 * Optimization: we know that if all tasks are in
4054 * the fair class we can call that function directly:
4055 */
4056 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4057 p = fair_sched_class.pick_next_task(rq);
4058 if (likely(p))
4059 return p;
4060 }
4061
4062 for_each_class(class) {
4063 p = class->pick_next_task(rq);
4064 if (p)
4065 return p;
4066 }
4067
4068 BUG(); /* the idle class will always have a runnable task */
4069 }
4070
4071 /*
4072 * schedule() is the main scheduler function.
4073 */
4074 asmlinkage void __sched schedule(void)
4075 {
4076 struct task_struct *prev, *next;
4077 unsigned long *switch_count;
4078 struct rq *rq;
4079 int cpu;
4080
4081 need_resched:
4082 preempt_disable();
4083 cpu = smp_processor_id();
4084 rq = cpu_rq(cpu);
4085 rcu_note_context_switch(cpu);
4086 prev = rq->curr;
4087
4088 schedule_debug(prev);
4089
4090 if (sched_feat(HRTICK))
4091 hrtick_clear(rq);
4092
4093 raw_spin_lock_irq(&rq->lock);
4094
4095 switch_count = &prev->nivcsw;
4096 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4097 if (unlikely(signal_pending_state(prev->state, prev))) {
4098 prev->state = TASK_RUNNING;
4099 } else {
4100 /*
4101 * If a worker is going to sleep, notify and
4102 * ask workqueue whether it wants to wake up a
4103 * task to maintain concurrency. If so, wake
4104 * up the task.
4105 */
4106 if (prev->flags & PF_WQ_WORKER) {
4107 struct task_struct *to_wakeup;
4108
4109 to_wakeup = wq_worker_sleeping(prev, cpu);
4110 if (to_wakeup)
4111 try_to_wake_up_local(to_wakeup);
4112 }
4113 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4114
4115 /*
4116 * If we are going to sleep and we have plugged IO queued, make
4117 * sure to submit it to avoid deadlocks.
4118 */
4119 if (blk_needs_flush_plug(prev)) {
4120 raw_spin_unlock(&rq->lock);
4121 blk_flush_plug(prev);
4122 raw_spin_lock(&rq->lock);
4123 }
4124 }
4125 switch_count = &prev->nvcsw;
4126 }
4127
4128 pre_schedule(rq, prev);
4129
4130 if (unlikely(!rq->nr_running))
4131 idle_balance(cpu, rq);
4132
4133 put_prev_task(rq, prev);
4134 next = pick_next_task(rq);
4135 clear_tsk_need_resched(prev);
4136 rq->skip_clock_update = 0;
4137
4138 if (likely(prev != next)) {
4139 rq->nr_switches++;
4140 rq->curr = next;
4141 ++*switch_count;
4142
4143 context_switch(rq, prev, next); /* unlocks the rq */
4144 /*
4145 * The context switch have flipped the stack from under us
4146 * and restored the local variables which were saved when
4147 * this task called schedule() in the past. prev == current
4148 * is still correct, but it can be moved to another cpu/rq.
4149 */
4150 cpu = smp_processor_id();
4151 rq = cpu_rq(cpu);
4152 } else
4153 raw_spin_unlock_irq(&rq->lock);
4154
4155 post_schedule(rq);
4156
4157 preempt_enable_no_resched();
4158 if (need_resched())
4159 goto need_resched;
4160 }
4161 EXPORT_SYMBOL(schedule);
4162
4163 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4164 /*
4165 * Look out! "owner" is an entirely speculative pointer
4166 * access and not reliable.
4167 */
4168 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4169 {
4170 unsigned int cpu;
4171 struct rq *rq;
4172
4173 if (!sched_feat(OWNER_SPIN))
4174 return 0;
4175
4176 #ifdef CONFIG_DEBUG_PAGEALLOC
4177 /*
4178 * Need to access the cpu field knowing that
4179 * DEBUG_PAGEALLOC could have unmapped it if
4180 * the mutex owner just released it and exited.
4181 */
4182 if (probe_kernel_address(&owner->cpu, cpu))
4183 return 0;
4184 #else
4185 cpu = owner->cpu;
4186 #endif
4187
4188 /*
4189 * Even if the access succeeded (likely case),
4190 * the cpu field may no longer be valid.
4191 */
4192 if (cpu >= nr_cpumask_bits)
4193 return 0;
4194
4195 /*
4196 * We need to validate that we can do a
4197 * get_cpu() and that we have the percpu area.
4198 */
4199 if (!cpu_online(cpu))
4200 return 0;
4201
4202 rq = cpu_rq(cpu);
4203
4204 for (;;) {
4205 /*
4206 * Owner changed, break to re-assess state.
4207 */
4208 if (lock->owner != owner) {
4209 /*
4210 * If the lock has switched to a different owner,
4211 * we likely have heavy contention. Return 0 to quit
4212 * optimistic spinning and not contend further:
4213 */
4214 if (lock->owner)
4215 return 0;
4216 break;
4217 }
4218
4219 /*
4220 * Is that owner really running on that cpu?
4221 */
4222 if (task_thread_info(rq->curr) != owner || need_resched())
4223 return 0;
4224
4225 arch_mutex_cpu_relax();
4226 }
4227
4228 return 1;
4229 }
4230 #endif
4231
4232 #ifdef CONFIG_PREEMPT
4233 /*
4234 * this is the entry point to schedule() from in-kernel preemption
4235 * off of preempt_enable. Kernel preemptions off return from interrupt
4236 * occur there and call schedule directly.
4237 */
4238 asmlinkage void __sched notrace preempt_schedule(void)
4239 {
4240 struct thread_info *ti = current_thread_info();
4241
4242 /*
4243 * If there is a non-zero preempt_count or interrupts are disabled,
4244 * we do not want to preempt the current task. Just return..
4245 */
4246 if (likely(ti->preempt_count || irqs_disabled()))
4247 return;
4248
4249 do {
4250 add_preempt_count_notrace(PREEMPT_ACTIVE);
4251 schedule();
4252 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4253
4254 /*
4255 * Check again in case we missed a preemption opportunity
4256 * between schedule and now.
4257 */
4258 barrier();
4259 } while (need_resched());
4260 }
4261 EXPORT_SYMBOL(preempt_schedule);
4262
4263 /*
4264 * this is the entry point to schedule() from kernel preemption
4265 * off of irq context.
4266 * Note, that this is called and return with irqs disabled. This will
4267 * protect us against recursive calling from irq.
4268 */
4269 asmlinkage void __sched preempt_schedule_irq(void)
4270 {
4271 struct thread_info *ti = current_thread_info();
4272
4273 /* Catch callers which need to be fixed */
4274 BUG_ON(ti->preempt_count || !irqs_disabled());
4275
4276 do {
4277 add_preempt_count(PREEMPT_ACTIVE);
4278 local_irq_enable();
4279 schedule();
4280 local_irq_disable();
4281 sub_preempt_count(PREEMPT_ACTIVE);
4282
4283 /*
4284 * Check again in case we missed a preemption opportunity
4285 * between schedule and now.
4286 */
4287 barrier();
4288 } while (need_resched());
4289 }
4290
4291 #endif /* CONFIG_PREEMPT */
4292
4293 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4294 void *key)
4295 {
4296 return try_to_wake_up(curr->private, mode, wake_flags);
4297 }
4298 EXPORT_SYMBOL(default_wake_function);
4299
4300 /*
4301 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4302 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4303 * number) then we wake all the non-exclusive tasks and one exclusive task.
4304 *
4305 * There are circumstances in which we can try to wake a task which has already
4306 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4307 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4308 */
4309 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4310 int nr_exclusive, int wake_flags, void *key)
4311 {
4312 wait_queue_t *curr, *next;
4313
4314 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4315 unsigned flags = curr->flags;
4316
4317 if (curr->func(curr, mode, wake_flags, key) &&
4318 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4319 break;
4320 }
4321 }
4322
4323 /**
4324 * __wake_up - wake up threads blocked on a waitqueue.
4325 * @q: the waitqueue
4326 * @mode: which threads
4327 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4328 * @key: is directly passed to the wakeup function
4329 *
4330 * It may be assumed that this function implies a write memory barrier before
4331 * changing the task state if and only if any tasks are woken up.
4332 */
4333 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4334 int nr_exclusive, void *key)
4335 {
4336 unsigned long flags;
4337
4338 spin_lock_irqsave(&q->lock, flags);
4339 __wake_up_common(q, mode, nr_exclusive, 0, key);
4340 spin_unlock_irqrestore(&q->lock, flags);
4341 }
4342 EXPORT_SYMBOL(__wake_up);
4343
4344 /*
4345 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4346 */
4347 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4348 {
4349 __wake_up_common(q, mode, 1, 0, NULL);
4350 }
4351 EXPORT_SYMBOL_GPL(__wake_up_locked);
4352
4353 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4354 {
4355 __wake_up_common(q, mode, 1, 0, key);
4356 }
4357 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4358
4359 /**
4360 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4361 * @q: the waitqueue
4362 * @mode: which threads
4363 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4364 * @key: opaque value to be passed to wakeup targets
4365 *
4366 * The sync wakeup differs that the waker knows that it will schedule
4367 * away soon, so while the target thread will be woken up, it will not
4368 * be migrated to another CPU - ie. the two threads are 'synchronized'
4369 * with each other. This can prevent needless bouncing between CPUs.
4370 *
4371 * On UP it can prevent extra preemption.
4372 *
4373 * It may be assumed that this function implies a write memory barrier before
4374 * changing the task state if and only if any tasks are woken up.
4375 */
4376 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4377 int nr_exclusive, void *key)
4378 {
4379 unsigned long flags;
4380 int wake_flags = WF_SYNC;
4381
4382 if (unlikely(!q))
4383 return;
4384
4385 if (unlikely(!nr_exclusive))
4386 wake_flags = 0;
4387
4388 spin_lock_irqsave(&q->lock, flags);
4389 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4390 spin_unlock_irqrestore(&q->lock, flags);
4391 }
4392 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4393
4394 /*
4395 * __wake_up_sync - see __wake_up_sync_key()
4396 */
4397 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4398 {
4399 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4400 }
4401 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4402
4403 /**
4404 * complete: - signals a single thread waiting on this completion
4405 * @x: holds the state of this particular completion
4406 *
4407 * This will wake up a single thread waiting on this completion. Threads will be
4408 * awakened in the same order in which they were queued.
4409 *
4410 * See also complete_all(), wait_for_completion() and related routines.
4411 *
4412 * It may be assumed that this function implies a write memory barrier before
4413 * changing the task state if and only if any tasks are woken up.
4414 */
4415 void complete(struct completion *x)
4416 {
4417 unsigned long flags;
4418
4419 spin_lock_irqsave(&x->wait.lock, flags);
4420 x->done++;
4421 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4422 spin_unlock_irqrestore(&x->wait.lock, flags);
4423 }
4424 EXPORT_SYMBOL(complete);
4425
4426 /**
4427 * complete_all: - signals all threads waiting on this completion
4428 * @x: holds the state of this particular completion
4429 *
4430 * This will wake up all threads waiting on this particular completion event.
4431 *
4432 * It may be assumed that this function implies a write memory barrier before
4433 * changing the task state if and only if any tasks are woken up.
4434 */
4435 void complete_all(struct completion *x)
4436 {
4437 unsigned long flags;
4438
4439 spin_lock_irqsave(&x->wait.lock, flags);
4440 x->done += UINT_MAX/2;
4441 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4442 spin_unlock_irqrestore(&x->wait.lock, flags);
4443 }
4444 EXPORT_SYMBOL(complete_all);
4445
4446 static inline long __sched
4447 do_wait_for_common(struct completion *x, long timeout, int state)
4448 {
4449 if (!x->done) {
4450 DECLARE_WAITQUEUE(wait, current);
4451
4452 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4453 do {
4454 if (signal_pending_state(state, current)) {
4455 timeout = -ERESTARTSYS;
4456 break;
4457 }
4458 __set_current_state(state);
4459 spin_unlock_irq(&x->wait.lock);
4460 timeout = schedule_timeout(timeout);
4461 spin_lock_irq(&x->wait.lock);
4462 } while (!x->done && timeout);
4463 __remove_wait_queue(&x->wait, &wait);
4464 if (!x->done)
4465 return timeout;
4466 }
4467 x->done--;
4468 return timeout ?: 1;
4469 }
4470
4471 static long __sched
4472 wait_for_common(struct completion *x, long timeout, int state)
4473 {
4474 might_sleep();
4475
4476 spin_lock_irq(&x->wait.lock);
4477 timeout = do_wait_for_common(x, timeout, state);
4478 spin_unlock_irq(&x->wait.lock);
4479 return timeout;
4480 }
4481
4482 /**
4483 * wait_for_completion: - waits for completion of a task
4484 * @x: holds the state of this particular completion
4485 *
4486 * This waits to be signaled for completion of a specific task. It is NOT
4487 * interruptible and there is no timeout.
4488 *
4489 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4490 * and interrupt capability. Also see complete().
4491 */
4492 void __sched wait_for_completion(struct completion *x)
4493 {
4494 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4495 }
4496 EXPORT_SYMBOL(wait_for_completion);
4497
4498 /**
4499 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4500 * @x: holds the state of this particular completion
4501 * @timeout: timeout value in jiffies
4502 *
4503 * This waits for either a completion of a specific task to be signaled or for a
4504 * specified timeout to expire. The timeout is in jiffies. It is not
4505 * interruptible.
4506 */
4507 unsigned long __sched
4508 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4509 {
4510 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4511 }
4512 EXPORT_SYMBOL(wait_for_completion_timeout);
4513
4514 /**
4515 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4516 * @x: holds the state of this particular completion
4517 *
4518 * This waits for completion of a specific task to be signaled. It is
4519 * interruptible.
4520 */
4521 int __sched wait_for_completion_interruptible(struct completion *x)
4522 {
4523 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4524 if (t == -ERESTARTSYS)
4525 return t;
4526 return 0;
4527 }
4528 EXPORT_SYMBOL(wait_for_completion_interruptible);
4529
4530 /**
4531 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4532 * @x: holds the state of this particular completion
4533 * @timeout: timeout value in jiffies
4534 *
4535 * This waits for either a completion of a specific task to be signaled or for a
4536 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4537 */
4538 long __sched
4539 wait_for_completion_interruptible_timeout(struct completion *x,
4540 unsigned long timeout)
4541 {
4542 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4543 }
4544 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4545
4546 /**
4547 * wait_for_completion_killable: - waits for completion of a task (killable)
4548 * @x: holds the state of this particular completion
4549 *
4550 * This waits to be signaled for completion of a specific task. It can be
4551 * interrupted by a kill signal.
4552 */
4553 int __sched wait_for_completion_killable(struct completion *x)
4554 {
4555 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4556 if (t == -ERESTARTSYS)
4557 return t;
4558 return 0;
4559 }
4560 EXPORT_SYMBOL(wait_for_completion_killable);
4561
4562 /**
4563 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4564 * @x: holds the state of this particular completion
4565 * @timeout: timeout value in jiffies
4566 *
4567 * This waits for either a completion of a specific task to be
4568 * signaled or for a specified timeout to expire. It can be
4569 * interrupted by a kill signal. The timeout is in jiffies.
4570 */
4571 long __sched
4572 wait_for_completion_killable_timeout(struct completion *x,
4573 unsigned long timeout)
4574 {
4575 return wait_for_common(x, timeout, TASK_KILLABLE);
4576 }
4577 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4578
4579 /**
4580 * try_wait_for_completion - try to decrement a completion without blocking
4581 * @x: completion structure
4582 *
4583 * Returns: 0 if a decrement cannot be done without blocking
4584 * 1 if a decrement succeeded.
4585 *
4586 * If a completion is being used as a counting completion,
4587 * attempt to decrement the counter without blocking. This
4588 * enables us to avoid waiting if the resource the completion
4589 * is protecting is not available.
4590 */
4591 bool try_wait_for_completion(struct completion *x)
4592 {
4593 unsigned long flags;
4594 int ret = 1;
4595
4596 spin_lock_irqsave(&x->wait.lock, flags);
4597 if (!x->done)
4598 ret = 0;
4599 else
4600 x->done--;
4601 spin_unlock_irqrestore(&x->wait.lock, flags);
4602 return ret;
4603 }
4604 EXPORT_SYMBOL(try_wait_for_completion);
4605
4606 /**
4607 * completion_done - Test to see if a completion has any waiters
4608 * @x: completion structure
4609 *
4610 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4611 * 1 if there are no waiters.
4612 *
4613 */
4614 bool completion_done(struct completion *x)
4615 {
4616 unsigned long flags;
4617 int ret = 1;
4618
4619 spin_lock_irqsave(&x->wait.lock, flags);
4620 if (!x->done)
4621 ret = 0;
4622 spin_unlock_irqrestore(&x->wait.lock, flags);
4623 return ret;
4624 }
4625 EXPORT_SYMBOL(completion_done);
4626
4627 static long __sched
4628 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4629 {
4630 unsigned long flags;
4631 wait_queue_t wait;
4632
4633 init_waitqueue_entry(&wait, current);
4634
4635 __set_current_state(state);
4636
4637 spin_lock_irqsave(&q->lock, flags);
4638 __add_wait_queue(q, &wait);
4639 spin_unlock(&q->lock);
4640 timeout = schedule_timeout(timeout);
4641 spin_lock_irq(&q->lock);
4642 __remove_wait_queue(q, &wait);
4643 spin_unlock_irqrestore(&q->lock, flags);
4644
4645 return timeout;
4646 }
4647
4648 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4649 {
4650 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4651 }
4652 EXPORT_SYMBOL(interruptible_sleep_on);
4653
4654 long __sched
4655 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4656 {
4657 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4658 }
4659 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4660
4661 void __sched sleep_on(wait_queue_head_t *q)
4662 {
4663 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4664 }
4665 EXPORT_SYMBOL(sleep_on);
4666
4667 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4668 {
4669 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4670 }
4671 EXPORT_SYMBOL(sleep_on_timeout);
4672
4673 #ifdef CONFIG_RT_MUTEXES
4674
4675 /*
4676 * rt_mutex_setprio - set the current priority of a task
4677 * @p: task
4678 * @prio: prio value (kernel-internal form)
4679 *
4680 * This function changes the 'effective' priority of a task. It does
4681 * not touch ->normal_prio like __setscheduler().
4682 *
4683 * Used by the rt_mutex code to implement priority inheritance logic.
4684 */
4685 void rt_mutex_setprio(struct task_struct *p, int prio)
4686 {
4687 unsigned long flags;
4688 int oldprio, on_rq, running;
4689 struct rq *rq;
4690 const struct sched_class *prev_class;
4691
4692 BUG_ON(prio < 0 || prio > MAX_PRIO);
4693
4694 rq = task_rq_lock(p, &flags);
4695
4696 trace_sched_pi_setprio(p, prio);
4697 oldprio = p->prio;
4698 prev_class = p->sched_class;
4699 on_rq = p->se.on_rq;
4700 running = task_current(rq, p);
4701 if (on_rq)
4702 dequeue_task(rq, p, 0);
4703 if (running)
4704 p->sched_class->put_prev_task(rq, p);
4705
4706 if (rt_prio(prio))
4707 p->sched_class = &rt_sched_class;
4708 else
4709 p->sched_class = &fair_sched_class;
4710
4711 p->prio = prio;
4712
4713 if (running)
4714 p->sched_class->set_curr_task(rq);
4715 if (on_rq)
4716 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4717
4718 check_class_changed(rq, p, prev_class, oldprio);
4719 task_rq_unlock(rq, &flags);
4720 }
4721
4722 #endif
4723
4724 void set_user_nice(struct task_struct *p, long nice)
4725 {
4726 int old_prio, delta, on_rq;
4727 unsigned long flags;
4728 struct rq *rq;
4729
4730 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4731 return;
4732 /*
4733 * We have to be careful, if called from sys_setpriority(),
4734 * the task might be in the middle of scheduling on another CPU.
4735 */
4736 rq = task_rq_lock(p, &flags);
4737 /*
4738 * The RT priorities are set via sched_setscheduler(), but we still
4739 * allow the 'normal' nice value to be set - but as expected
4740 * it wont have any effect on scheduling until the task is
4741 * SCHED_FIFO/SCHED_RR:
4742 */
4743 if (task_has_rt_policy(p)) {
4744 p->static_prio = NICE_TO_PRIO(nice);
4745 goto out_unlock;
4746 }
4747 on_rq = p->se.on_rq;
4748 if (on_rq)
4749 dequeue_task(rq, p, 0);
4750
4751 p->static_prio = NICE_TO_PRIO(nice);
4752 set_load_weight(p);
4753 old_prio = p->prio;
4754 p->prio = effective_prio(p);
4755 delta = p->prio - old_prio;
4756
4757 if (on_rq) {
4758 enqueue_task(rq, p, 0);
4759 /*
4760 * If the task increased its priority or is running and
4761 * lowered its priority, then reschedule its CPU:
4762 */
4763 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4764 resched_task(rq->curr);
4765 }
4766 out_unlock:
4767 task_rq_unlock(rq, &flags);
4768 }
4769 EXPORT_SYMBOL(set_user_nice);
4770
4771 /*
4772 * can_nice - check if a task can reduce its nice value
4773 * @p: task
4774 * @nice: nice value
4775 */
4776 int can_nice(const struct task_struct *p, const int nice)
4777 {
4778 /* convert nice value [19,-20] to rlimit style value [1,40] */
4779 int nice_rlim = 20 - nice;
4780
4781 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4782 capable(CAP_SYS_NICE));
4783 }
4784
4785 #ifdef __ARCH_WANT_SYS_NICE
4786
4787 /*
4788 * sys_nice - change the priority of the current process.
4789 * @increment: priority increment
4790 *
4791 * sys_setpriority is a more generic, but much slower function that
4792 * does similar things.
4793 */
4794 SYSCALL_DEFINE1(nice, int, increment)
4795 {
4796 long nice, retval;
4797
4798 /*
4799 * Setpriority might change our priority at the same moment.
4800 * We don't have to worry. Conceptually one call occurs first
4801 * and we have a single winner.
4802 */
4803 if (increment < -40)
4804 increment = -40;
4805 if (increment > 40)
4806 increment = 40;
4807
4808 nice = TASK_NICE(current) + increment;
4809 if (nice < -20)
4810 nice = -20;
4811 if (nice > 19)
4812 nice = 19;
4813
4814 if (increment < 0 && !can_nice(current, nice))
4815 return -EPERM;
4816
4817 retval = security_task_setnice(current, nice);
4818 if (retval)
4819 return retval;
4820
4821 set_user_nice(current, nice);
4822 return 0;
4823 }
4824
4825 #endif
4826
4827 /**
4828 * task_prio - return the priority value of a given task.
4829 * @p: the task in question.
4830 *
4831 * This is the priority value as seen by users in /proc.
4832 * RT tasks are offset by -200. Normal tasks are centered
4833 * around 0, value goes from -16 to +15.
4834 */
4835 int task_prio(const struct task_struct *p)
4836 {
4837 return p->prio - MAX_RT_PRIO;
4838 }
4839
4840 /**
4841 * task_nice - return the nice value of a given task.
4842 * @p: the task in question.
4843 */
4844 int task_nice(const struct task_struct *p)
4845 {
4846 return TASK_NICE(p);
4847 }
4848 EXPORT_SYMBOL(task_nice);
4849
4850 /**
4851 * idle_cpu - is a given cpu idle currently?
4852 * @cpu: the processor in question.
4853 */
4854 int idle_cpu(int cpu)
4855 {
4856 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4857 }
4858
4859 /**
4860 * idle_task - return the idle task for a given cpu.
4861 * @cpu: the processor in question.
4862 */
4863 struct task_struct *idle_task(int cpu)
4864 {
4865 return cpu_rq(cpu)->idle;
4866 }
4867
4868 /**
4869 * find_process_by_pid - find a process with a matching PID value.
4870 * @pid: the pid in question.
4871 */
4872 static struct task_struct *find_process_by_pid(pid_t pid)
4873 {
4874 return pid ? find_task_by_vpid(pid) : current;
4875 }
4876
4877 /* Actually do priority change: must hold rq lock. */
4878 static void
4879 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4880 {
4881 BUG_ON(p->se.on_rq);
4882
4883 p->policy = policy;
4884 p->rt_priority = prio;
4885 p->normal_prio = normal_prio(p);
4886 /* we are holding p->pi_lock already */
4887 p->prio = rt_mutex_getprio(p);
4888 if (rt_prio(p->prio))
4889 p->sched_class = &rt_sched_class;
4890 else
4891 p->sched_class = &fair_sched_class;
4892 set_load_weight(p);
4893 }
4894
4895 /*
4896 * check the target process has a UID that matches the current process's
4897 */
4898 static bool check_same_owner(struct task_struct *p)
4899 {
4900 const struct cred *cred = current_cred(), *pcred;
4901 bool match;
4902
4903 rcu_read_lock();
4904 pcred = __task_cred(p);
4905 if (cred->user->user_ns == pcred->user->user_ns)
4906 match = (cred->euid == pcred->euid ||
4907 cred->euid == pcred->uid);
4908 else
4909 match = false;
4910 rcu_read_unlock();
4911 return match;
4912 }
4913
4914 static int __sched_setscheduler(struct task_struct *p, int policy,
4915 const struct sched_param *param, bool user)
4916 {
4917 int retval, oldprio, oldpolicy = -1, on_rq, running;
4918 unsigned long flags;
4919 const struct sched_class *prev_class;
4920 struct rq *rq;
4921 int reset_on_fork;
4922
4923 /* may grab non-irq protected spin_locks */
4924 BUG_ON(in_interrupt());
4925 recheck:
4926 /* double check policy once rq lock held */
4927 if (policy < 0) {
4928 reset_on_fork = p->sched_reset_on_fork;
4929 policy = oldpolicy = p->policy;
4930 } else {
4931 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4932 policy &= ~SCHED_RESET_ON_FORK;
4933
4934 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4935 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4936 policy != SCHED_IDLE)
4937 return -EINVAL;
4938 }
4939
4940 /*
4941 * Valid priorities for SCHED_FIFO and SCHED_RR are
4942 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4943 * SCHED_BATCH and SCHED_IDLE is 0.
4944 */
4945 if (param->sched_priority < 0 ||
4946 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4947 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4948 return -EINVAL;
4949 if (rt_policy(policy) != (param->sched_priority != 0))
4950 return -EINVAL;
4951
4952 /*
4953 * Allow unprivileged RT tasks to decrease priority:
4954 */
4955 if (user && !capable(CAP_SYS_NICE)) {
4956 if (rt_policy(policy)) {
4957 unsigned long rlim_rtprio =
4958 task_rlimit(p, RLIMIT_RTPRIO);
4959
4960 /* can't set/change the rt policy */
4961 if (policy != p->policy && !rlim_rtprio)
4962 return -EPERM;
4963
4964 /* can't increase priority */
4965 if (param->sched_priority > p->rt_priority &&
4966 param->sched_priority > rlim_rtprio)
4967 return -EPERM;
4968 }
4969
4970 /*
4971 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4972 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4973 */
4974 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4975 if (!can_nice(p, TASK_NICE(p)))
4976 return -EPERM;
4977 }
4978
4979 /* can't change other user's priorities */
4980 if (!check_same_owner(p))
4981 return -EPERM;
4982
4983 /* Normal users shall not reset the sched_reset_on_fork flag */
4984 if (p->sched_reset_on_fork && !reset_on_fork)
4985 return -EPERM;
4986 }
4987
4988 if (user) {
4989 retval = security_task_setscheduler(p);
4990 if (retval)
4991 return retval;
4992 }
4993
4994 /*
4995 * make sure no PI-waiters arrive (or leave) while we are
4996 * changing the priority of the task:
4997 */
4998 raw_spin_lock_irqsave(&p->pi_lock, flags);
4999 /*
5000 * To be able to change p->policy safely, the appropriate
5001 * runqueue lock must be held.
5002 */
5003 rq = __task_rq_lock(p);
5004
5005 /*
5006 * Changing the policy of the stop threads its a very bad idea
5007 */
5008 if (p == rq->stop) {
5009 __task_rq_unlock(rq);
5010 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5011 return -EINVAL;
5012 }
5013
5014 /*
5015 * If not changing anything there's no need to proceed further:
5016 */
5017 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5018 param->sched_priority == p->rt_priority))) {
5019
5020 __task_rq_unlock(rq);
5021 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5022 return 0;
5023 }
5024
5025 #ifdef CONFIG_RT_GROUP_SCHED
5026 if (user) {
5027 /*
5028 * Do not allow realtime tasks into groups that have no runtime
5029 * assigned.
5030 */
5031 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5032 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5033 !task_group_is_autogroup(task_group(p))) {
5034 __task_rq_unlock(rq);
5035 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5036 return -EPERM;
5037 }
5038 }
5039 #endif
5040
5041 /* recheck policy now with rq lock held */
5042 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5043 policy = oldpolicy = -1;
5044 __task_rq_unlock(rq);
5045 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5046 goto recheck;
5047 }
5048 on_rq = p->se.on_rq;
5049 running = task_current(rq, p);
5050 if (on_rq)
5051 deactivate_task(rq, p, 0);
5052 if (running)
5053 p->sched_class->put_prev_task(rq, p);
5054
5055 p->sched_reset_on_fork = reset_on_fork;
5056
5057 oldprio = p->prio;
5058 prev_class = p->sched_class;
5059 __setscheduler(rq, p, policy, param->sched_priority);
5060
5061 if (running)
5062 p->sched_class->set_curr_task(rq);
5063 if (on_rq)
5064 activate_task(rq, p, 0);
5065
5066 check_class_changed(rq, p, prev_class, oldprio);
5067 __task_rq_unlock(rq);
5068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5069
5070 rt_mutex_adjust_pi(p);
5071
5072 return 0;
5073 }
5074
5075 /**
5076 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5077 * @p: the task in question.
5078 * @policy: new policy.
5079 * @param: structure containing the new RT priority.
5080 *
5081 * NOTE that the task may be already dead.
5082 */
5083 int sched_setscheduler(struct task_struct *p, int policy,
5084 const struct sched_param *param)
5085 {
5086 return __sched_setscheduler(p, policy, param, true);
5087 }
5088 EXPORT_SYMBOL_GPL(sched_setscheduler);
5089
5090 /**
5091 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5092 * @p: the task in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5095 *
5096 * Just like sched_setscheduler, only don't bother checking if the
5097 * current context has permission. For example, this is needed in
5098 * stop_machine(): we create temporary high priority worker threads,
5099 * but our caller might not have that capability.
5100 */
5101 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5102 const struct sched_param *param)
5103 {
5104 return __sched_setscheduler(p, policy, param, false);
5105 }
5106
5107 static int
5108 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5109 {
5110 struct sched_param lparam;
5111 struct task_struct *p;
5112 int retval;
5113
5114 if (!param || pid < 0)
5115 return -EINVAL;
5116 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5117 return -EFAULT;
5118
5119 rcu_read_lock();
5120 retval = -ESRCH;
5121 p = find_process_by_pid(pid);
5122 if (p != NULL)
5123 retval = sched_setscheduler(p, policy, &lparam);
5124 rcu_read_unlock();
5125
5126 return retval;
5127 }
5128
5129 /**
5130 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5131 * @pid: the pid in question.
5132 * @policy: new policy.
5133 * @param: structure containing the new RT priority.
5134 */
5135 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5136 struct sched_param __user *, param)
5137 {
5138 /* negative values for policy are not valid */
5139 if (policy < 0)
5140 return -EINVAL;
5141
5142 return do_sched_setscheduler(pid, policy, param);
5143 }
5144
5145 /**
5146 * sys_sched_setparam - set/change the RT priority of a thread
5147 * @pid: the pid in question.
5148 * @param: structure containing the new RT priority.
5149 */
5150 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5151 {
5152 return do_sched_setscheduler(pid, -1, param);
5153 }
5154
5155 /**
5156 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5157 * @pid: the pid in question.
5158 */
5159 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5160 {
5161 struct task_struct *p;
5162 int retval;
5163
5164 if (pid < 0)
5165 return -EINVAL;
5166
5167 retval = -ESRCH;
5168 rcu_read_lock();
5169 p = find_process_by_pid(pid);
5170 if (p) {
5171 retval = security_task_getscheduler(p);
5172 if (!retval)
5173 retval = p->policy
5174 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5175 }
5176 rcu_read_unlock();
5177 return retval;
5178 }
5179
5180 /**
5181 * sys_sched_getparam - get the RT priority of a thread
5182 * @pid: the pid in question.
5183 * @param: structure containing the RT priority.
5184 */
5185 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5186 {
5187 struct sched_param lp;
5188 struct task_struct *p;
5189 int retval;
5190
5191 if (!param || pid < 0)
5192 return -EINVAL;
5193
5194 rcu_read_lock();
5195 p = find_process_by_pid(pid);
5196 retval = -ESRCH;
5197 if (!p)
5198 goto out_unlock;
5199
5200 retval = security_task_getscheduler(p);
5201 if (retval)
5202 goto out_unlock;
5203
5204 lp.sched_priority = p->rt_priority;
5205 rcu_read_unlock();
5206
5207 /*
5208 * This one might sleep, we cannot do it with a spinlock held ...
5209 */
5210 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5211
5212 return retval;
5213
5214 out_unlock:
5215 rcu_read_unlock();
5216 return retval;
5217 }
5218
5219 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5220 {
5221 cpumask_var_t cpus_allowed, new_mask;
5222 struct task_struct *p;
5223 int retval;
5224
5225 get_online_cpus();
5226 rcu_read_lock();
5227
5228 p = find_process_by_pid(pid);
5229 if (!p) {
5230 rcu_read_unlock();
5231 put_online_cpus();
5232 return -ESRCH;
5233 }
5234
5235 /* Prevent p going away */
5236 get_task_struct(p);
5237 rcu_read_unlock();
5238
5239 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5240 retval = -ENOMEM;
5241 goto out_put_task;
5242 }
5243 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5244 retval = -ENOMEM;
5245 goto out_free_cpus_allowed;
5246 }
5247 retval = -EPERM;
5248 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5249 goto out_unlock;
5250
5251 retval = security_task_setscheduler(p);
5252 if (retval)
5253 goto out_unlock;
5254
5255 cpuset_cpus_allowed(p, cpus_allowed);
5256 cpumask_and(new_mask, in_mask, cpus_allowed);
5257 again:
5258 retval = set_cpus_allowed_ptr(p, new_mask);
5259
5260 if (!retval) {
5261 cpuset_cpus_allowed(p, cpus_allowed);
5262 if (!cpumask_subset(new_mask, cpus_allowed)) {
5263 /*
5264 * We must have raced with a concurrent cpuset
5265 * update. Just reset the cpus_allowed to the
5266 * cpuset's cpus_allowed
5267 */
5268 cpumask_copy(new_mask, cpus_allowed);
5269 goto again;
5270 }
5271 }
5272 out_unlock:
5273 free_cpumask_var(new_mask);
5274 out_free_cpus_allowed:
5275 free_cpumask_var(cpus_allowed);
5276 out_put_task:
5277 put_task_struct(p);
5278 put_online_cpus();
5279 return retval;
5280 }
5281
5282 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5283 struct cpumask *new_mask)
5284 {
5285 if (len < cpumask_size())
5286 cpumask_clear(new_mask);
5287 else if (len > cpumask_size())
5288 len = cpumask_size();
5289
5290 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5291 }
5292
5293 /**
5294 * sys_sched_setaffinity - set the cpu affinity of a process
5295 * @pid: pid of the process
5296 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5297 * @user_mask_ptr: user-space pointer to the new cpu mask
5298 */
5299 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5300 unsigned long __user *, user_mask_ptr)
5301 {
5302 cpumask_var_t new_mask;
5303 int retval;
5304
5305 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5306 return -ENOMEM;
5307
5308 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5309 if (retval == 0)
5310 retval = sched_setaffinity(pid, new_mask);
5311 free_cpumask_var(new_mask);
5312 return retval;
5313 }
5314
5315 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5316 {
5317 struct task_struct *p;
5318 unsigned long flags;
5319 struct rq *rq;
5320 int retval;
5321
5322 get_online_cpus();
5323 rcu_read_lock();
5324
5325 retval = -ESRCH;
5326 p = find_process_by_pid(pid);
5327 if (!p)
5328 goto out_unlock;
5329
5330 retval = security_task_getscheduler(p);
5331 if (retval)
5332 goto out_unlock;
5333
5334 rq = task_rq_lock(p, &flags);
5335 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5336 task_rq_unlock(rq, &flags);
5337
5338 out_unlock:
5339 rcu_read_unlock();
5340 put_online_cpus();
5341
5342 return retval;
5343 }
5344
5345 /**
5346 * sys_sched_getaffinity - get the cpu affinity of a process
5347 * @pid: pid of the process
5348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5349 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5350 */
5351 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5352 unsigned long __user *, user_mask_ptr)
5353 {
5354 int ret;
5355 cpumask_var_t mask;
5356
5357 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5358 return -EINVAL;
5359 if (len & (sizeof(unsigned long)-1))
5360 return -EINVAL;
5361
5362 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5363 return -ENOMEM;
5364
5365 ret = sched_getaffinity(pid, mask);
5366 if (ret == 0) {
5367 size_t retlen = min_t(size_t, len, cpumask_size());
5368
5369 if (copy_to_user(user_mask_ptr, mask, retlen))
5370 ret = -EFAULT;
5371 else
5372 ret = retlen;
5373 }
5374 free_cpumask_var(mask);
5375
5376 return ret;
5377 }
5378
5379 /**
5380 * sys_sched_yield - yield the current processor to other threads.
5381 *
5382 * This function yields the current CPU to other tasks. If there are no
5383 * other threads running on this CPU then this function will return.
5384 */
5385 SYSCALL_DEFINE0(sched_yield)
5386 {
5387 struct rq *rq = this_rq_lock();
5388
5389 schedstat_inc(rq, yld_count);
5390 current->sched_class->yield_task(rq);
5391
5392 /*
5393 * Since we are going to call schedule() anyway, there's
5394 * no need to preempt or enable interrupts:
5395 */
5396 __release(rq->lock);
5397 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5398 do_raw_spin_unlock(&rq->lock);
5399 preempt_enable_no_resched();
5400
5401 schedule();
5402
5403 return 0;
5404 }
5405
5406 static inline int should_resched(void)
5407 {
5408 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5409 }
5410
5411 static void __cond_resched(void)
5412 {
5413 add_preempt_count(PREEMPT_ACTIVE);
5414 schedule();
5415 sub_preempt_count(PREEMPT_ACTIVE);
5416 }
5417
5418 int __sched _cond_resched(void)
5419 {
5420 if (should_resched()) {
5421 __cond_resched();
5422 return 1;
5423 }
5424 return 0;
5425 }
5426 EXPORT_SYMBOL(_cond_resched);
5427
5428 /*
5429 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5430 * call schedule, and on return reacquire the lock.
5431 *
5432 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5433 * operations here to prevent schedule() from being called twice (once via
5434 * spin_unlock(), once by hand).
5435 */
5436 int __cond_resched_lock(spinlock_t *lock)
5437 {
5438 int resched = should_resched();
5439 int ret = 0;
5440
5441 lockdep_assert_held(lock);
5442
5443 if (spin_needbreak(lock) || resched) {
5444 spin_unlock(lock);
5445 if (resched)
5446 __cond_resched();
5447 else
5448 cpu_relax();
5449 ret = 1;
5450 spin_lock(lock);
5451 }
5452 return ret;
5453 }
5454 EXPORT_SYMBOL(__cond_resched_lock);
5455
5456 int __sched __cond_resched_softirq(void)
5457 {
5458 BUG_ON(!in_softirq());
5459
5460 if (should_resched()) {
5461 local_bh_enable();
5462 __cond_resched();
5463 local_bh_disable();
5464 return 1;
5465 }
5466 return 0;
5467 }
5468 EXPORT_SYMBOL(__cond_resched_softirq);
5469
5470 /**
5471 * yield - yield the current processor to other threads.
5472 *
5473 * This is a shortcut for kernel-space yielding - it marks the
5474 * thread runnable and calls sys_sched_yield().
5475 */
5476 void __sched yield(void)
5477 {
5478 set_current_state(TASK_RUNNING);
5479 sys_sched_yield();
5480 }
5481 EXPORT_SYMBOL(yield);
5482
5483 /**
5484 * yield_to - yield the current processor to another thread in
5485 * your thread group, or accelerate that thread toward the
5486 * processor it's on.
5487 * @p: target task
5488 * @preempt: whether task preemption is allowed or not
5489 *
5490 * It's the caller's job to ensure that the target task struct
5491 * can't go away on us before we can do any checks.
5492 *
5493 * Returns true if we indeed boosted the target task.
5494 */
5495 bool __sched yield_to(struct task_struct *p, bool preempt)
5496 {
5497 struct task_struct *curr = current;
5498 struct rq *rq, *p_rq;
5499 unsigned long flags;
5500 bool yielded = 0;
5501
5502 local_irq_save(flags);
5503 rq = this_rq();
5504
5505 again:
5506 p_rq = task_rq(p);
5507 double_rq_lock(rq, p_rq);
5508 while (task_rq(p) != p_rq) {
5509 double_rq_unlock(rq, p_rq);
5510 goto again;
5511 }
5512
5513 if (!curr->sched_class->yield_to_task)
5514 goto out;
5515
5516 if (curr->sched_class != p->sched_class)
5517 goto out;
5518
5519 if (task_running(p_rq, p) || p->state)
5520 goto out;
5521
5522 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5523 if (yielded) {
5524 schedstat_inc(rq, yld_count);
5525 /*
5526 * Make p's CPU reschedule; pick_next_entity takes care of
5527 * fairness.
5528 */
5529 if (preempt && rq != p_rq)
5530 resched_task(p_rq->curr);
5531 }
5532
5533 out:
5534 double_rq_unlock(rq, p_rq);
5535 local_irq_restore(flags);
5536
5537 if (yielded)
5538 schedule();
5539
5540 return yielded;
5541 }
5542 EXPORT_SYMBOL_GPL(yield_to);
5543
5544 /*
5545 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5546 * that process accounting knows that this is a task in IO wait state.
5547 */
5548 void __sched io_schedule(void)
5549 {
5550 struct rq *rq = raw_rq();
5551
5552 delayacct_blkio_start();
5553 atomic_inc(&rq->nr_iowait);
5554 blk_flush_plug(current);
5555 current->in_iowait = 1;
5556 schedule();
5557 current->in_iowait = 0;
5558 atomic_dec(&rq->nr_iowait);
5559 delayacct_blkio_end();
5560 }
5561 EXPORT_SYMBOL(io_schedule);
5562
5563 long __sched io_schedule_timeout(long timeout)
5564 {
5565 struct rq *rq = raw_rq();
5566 long ret;
5567
5568 delayacct_blkio_start();
5569 atomic_inc(&rq->nr_iowait);
5570 blk_flush_plug(current);
5571 current->in_iowait = 1;
5572 ret = schedule_timeout(timeout);
5573 current->in_iowait = 0;
5574 atomic_dec(&rq->nr_iowait);
5575 delayacct_blkio_end();
5576 return ret;
5577 }
5578
5579 /**
5580 * sys_sched_get_priority_max - return maximum RT priority.
5581 * @policy: scheduling class.
5582 *
5583 * this syscall returns the maximum rt_priority that can be used
5584 * by a given scheduling class.
5585 */
5586 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5587 {
5588 int ret = -EINVAL;
5589
5590 switch (policy) {
5591 case SCHED_FIFO:
5592 case SCHED_RR:
5593 ret = MAX_USER_RT_PRIO-1;
5594 break;
5595 case SCHED_NORMAL:
5596 case SCHED_BATCH:
5597 case SCHED_IDLE:
5598 ret = 0;
5599 break;
5600 }
5601 return ret;
5602 }
5603
5604 /**
5605 * sys_sched_get_priority_min - return minimum RT priority.
5606 * @policy: scheduling class.
5607 *
5608 * this syscall returns the minimum rt_priority that can be used
5609 * by a given scheduling class.
5610 */
5611 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5612 {
5613 int ret = -EINVAL;
5614
5615 switch (policy) {
5616 case SCHED_FIFO:
5617 case SCHED_RR:
5618 ret = 1;
5619 break;
5620 case SCHED_NORMAL:
5621 case SCHED_BATCH:
5622 case SCHED_IDLE:
5623 ret = 0;
5624 }
5625 return ret;
5626 }
5627
5628 /**
5629 * sys_sched_rr_get_interval - return the default timeslice of a process.
5630 * @pid: pid of the process.
5631 * @interval: userspace pointer to the timeslice value.
5632 *
5633 * this syscall writes the default timeslice value of a given process
5634 * into the user-space timespec buffer. A value of '0' means infinity.
5635 */
5636 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5637 struct timespec __user *, interval)
5638 {
5639 struct task_struct *p;
5640 unsigned int time_slice;
5641 unsigned long flags;
5642 struct rq *rq;
5643 int retval;
5644 struct timespec t;
5645
5646 if (pid < 0)
5647 return -EINVAL;
5648
5649 retval = -ESRCH;
5650 rcu_read_lock();
5651 p = find_process_by_pid(pid);
5652 if (!p)
5653 goto out_unlock;
5654
5655 retval = security_task_getscheduler(p);
5656 if (retval)
5657 goto out_unlock;
5658
5659 rq = task_rq_lock(p, &flags);
5660 time_slice = p->sched_class->get_rr_interval(rq, p);
5661 task_rq_unlock(rq, &flags);
5662
5663 rcu_read_unlock();
5664 jiffies_to_timespec(time_slice, &t);
5665 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5666 return retval;
5667
5668 out_unlock:
5669 rcu_read_unlock();
5670 return retval;
5671 }
5672
5673 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5674
5675 void sched_show_task(struct task_struct *p)
5676 {
5677 unsigned long free = 0;
5678 unsigned state;
5679
5680 state = p->state ? __ffs(p->state) + 1 : 0;
5681 printk(KERN_INFO "%-15.15s %c", p->comm,
5682 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5683 #if BITS_PER_LONG == 32
5684 if (state == TASK_RUNNING)
5685 printk(KERN_CONT " running ");
5686 else
5687 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5688 #else
5689 if (state == TASK_RUNNING)
5690 printk(KERN_CONT " running task ");
5691 else
5692 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5693 #endif
5694 #ifdef CONFIG_DEBUG_STACK_USAGE
5695 free = stack_not_used(p);
5696 #endif
5697 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5698 task_pid_nr(p), task_pid_nr(p->real_parent),
5699 (unsigned long)task_thread_info(p)->flags);
5700
5701 show_stack(p, NULL);
5702 }
5703
5704 void show_state_filter(unsigned long state_filter)
5705 {
5706 struct task_struct *g, *p;
5707
5708 #if BITS_PER_LONG == 32
5709 printk(KERN_INFO
5710 " task PC stack pid father\n");
5711 #else
5712 printk(KERN_INFO
5713 " task PC stack pid father\n");
5714 #endif
5715 read_lock(&tasklist_lock);
5716 do_each_thread(g, p) {
5717 /*
5718 * reset the NMI-timeout, listing all files on a slow
5719 * console might take a lot of time:
5720 */
5721 touch_nmi_watchdog();
5722 if (!state_filter || (p->state & state_filter))
5723 sched_show_task(p);
5724 } while_each_thread(g, p);
5725
5726 touch_all_softlockup_watchdogs();
5727
5728 #ifdef CONFIG_SCHED_DEBUG
5729 sysrq_sched_debug_show();
5730 #endif
5731 read_unlock(&tasklist_lock);
5732 /*
5733 * Only show locks if all tasks are dumped:
5734 */
5735 if (!state_filter)
5736 debug_show_all_locks();
5737 }
5738
5739 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5740 {
5741 idle->sched_class = &idle_sched_class;
5742 }
5743
5744 /**
5745 * init_idle - set up an idle thread for a given CPU
5746 * @idle: task in question
5747 * @cpu: cpu the idle task belongs to
5748 *
5749 * NOTE: this function does not set the idle thread's NEED_RESCHED
5750 * flag, to make booting more robust.
5751 */
5752 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5753 {
5754 struct rq *rq = cpu_rq(cpu);
5755 unsigned long flags;
5756
5757 raw_spin_lock_irqsave(&rq->lock, flags);
5758
5759 __sched_fork(idle);
5760 idle->state = TASK_RUNNING;
5761 idle->se.exec_start = sched_clock();
5762
5763 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5764 /*
5765 * We're having a chicken and egg problem, even though we are
5766 * holding rq->lock, the cpu isn't yet set to this cpu so the
5767 * lockdep check in task_group() will fail.
5768 *
5769 * Similar case to sched_fork(). / Alternatively we could
5770 * use task_rq_lock() here and obtain the other rq->lock.
5771 *
5772 * Silence PROVE_RCU
5773 */
5774 rcu_read_lock();
5775 __set_task_cpu(idle, cpu);
5776 rcu_read_unlock();
5777
5778 rq->curr = rq->idle = idle;
5779 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5780 idle->oncpu = 1;
5781 #endif
5782 raw_spin_unlock_irqrestore(&rq->lock, flags);
5783
5784 /* Set the preempt count _outside_ the spinlocks! */
5785 #if defined(CONFIG_PREEMPT)
5786 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5787 #else
5788 task_thread_info(idle)->preempt_count = 0;
5789 #endif
5790 /*
5791 * The idle tasks have their own, simple scheduling class:
5792 */
5793 idle->sched_class = &idle_sched_class;
5794 ftrace_graph_init_idle_task(idle, cpu);
5795 }
5796
5797 /*
5798 * In a system that switches off the HZ timer nohz_cpu_mask
5799 * indicates which cpus entered this state. This is used
5800 * in the rcu update to wait only for active cpus. For system
5801 * which do not switch off the HZ timer nohz_cpu_mask should
5802 * always be CPU_BITS_NONE.
5803 */
5804 cpumask_var_t nohz_cpu_mask;
5805
5806 /*
5807 * Increase the granularity value when there are more CPUs,
5808 * because with more CPUs the 'effective latency' as visible
5809 * to users decreases. But the relationship is not linear,
5810 * so pick a second-best guess by going with the log2 of the
5811 * number of CPUs.
5812 *
5813 * This idea comes from the SD scheduler of Con Kolivas:
5814 */
5815 static int get_update_sysctl_factor(void)
5816 {
5817 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5818 unsigned int factor;
5819
5820 switch (sysctl_sched_tunable_scaling) {
5821 case SCHED_TUNABLESCALING_NONE:
5822 factor = 1;
5823 break;
5824 case SCHED_TUNABLESCALING_LINEAR:
5825 factor = cpus;
5826 break;
5827 case SCHED_TUNABLESCALING_LOG:
5828 default:
5829 factor = 1 + ilog2(cpus);
5830 break;
5831 }
5832
5833 return factor;
5834 }
5835
5836 static void update_sysctl(void)
5837 {
5838 unsigned int factor = get_update_sysctl_factor();
5839
5840 #define SET_SYSCTL(name) \
5841 (sysctl_##name = (factor) * normalized_sysctl_##name)
5842 SET_SYSCTL(sched_min_granularity);
5843 SET_SYSCTL(sched_latency);
5844 SET_SYSCTL(sched_wakeup_granularity);
5845 #undef SET_SYSCTL
5846 }
5847
5848 static inline void sched_init_granularity(void)
5849 {
5850 update_sysctl();
5851 }
5852
5853 #ifdef CONFIG_SMP
5854 /*
5855 * This is how migration works:
5856 *
5857 * 1) we invoke migration_cpu_stop() on the target CPU using
5858 * stop_one_cpu().
5859 * 2) stopper starts to run (implicitly forcing the migrated thread
5860 * off the CPU)
5861 * 3) it checks whether the migrated task is still in the wrong runqueue.
5862 * 4) if it's in the wrong runqueue then the migration thread removes
5863 * it and puts it into the right queue.
5864 * 5) stopper completes and stop_one_cpu() returns and the migration
5865 * is done.
5866 */
5867
5868 /*
5869 * Change a given task's CPU affinity. Migrate the thread to a
5870 * proper CPU and schedule it away if the CPU it's executing on
5871 * is removed from the allowed bitmask.
5872 *
5873 * NOTE: the caller must have a valid reference to the task, the
5874 * task must not exit() & deallocate itself prematurely. The
5875 * call is not atomic; no spinlocks may be held.
5876 */
5877 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5878 {
5879 unsigned long flags;
5880 struct rq *rq;
5881 unsigned int dest_cpu;
5882 int ret = 0;
5883
5884 /*
5885 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5886 * drop the rq->lock and still rely on ->cpus_allowed.
5887 */
5888 again:
5889 while (task_is_waking(p))
5890 cpu_relax();
5891 rq = task_rq_lock(p, &flags);
5892 if (task_is_waking(p)) {
5893 task_rq_unlock(rq, &flags);
5894 goto again;
5895 }
5896
5897 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5898 ret = -EINVAL;
5899 goto out;
5900 }
5901
5902 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5903 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5904 ret = -EINVAL;
5905 goto out;
5906 }
5907
5908 if (p->sched_class->set_cpus_allowed)
5909 p->sched_class->set_cpus_allowed(p, new_mask);
5910 else {
5911 cpumask_copy(&p->cpus_allowed, new_mask);
5912 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5913 }
5914
5915 /* Can the task run on the task's current CPU? If so, we're done */
5916 if (cpumask_test_cpu(task_cpu(p), new_mask))
5917 goto out;
5918
5919 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5920 if (migrate_task(p, rq)) {
5921 struct migration_arg arg = { p, dest_cpu };
5922 /* Need help from migration thread: drop lock and wait. */
5923 task_rq_unlock(rq, &flags);
5924 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5925 tlb_migrate_finish(p->mm);
5926 return 0;
5927 }
5928 out:
5929 task_rq_unlock(rq, &flags);
5930
5931 return ret;
5932 }
5933 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5934
5935 /*
5936 * Move (not current) task off this cpu, onto dest cpu. We're doing
5937 * this because either it can't run here any more (set_cpus_allowed()
5938 * away from this CPU, or CPU going down), or because we're
5939 * attempting to rebalance this task on exec (sched_exec).
5940 *
5941 * So we race with normal scheduler movements, but that's OK, as long
5942 * as the task is no longer on this CPU.
5943 *
5944 * Returns non-zero if task was successfully migrated.
5945 */
5946 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5947 {
5948 struct rq *rq_dest, *rq_src;
5949 int ret = 0;
5950
5951 if (unlikely(!cpu_active(dest_cpu)))
5952 return ret;
5953
5954 rq_src = cpu_rq(src_cpu);
5955 rq_dest = cpu_rq(dest_cpu);
5956
5957 double_rq_lock(rq_src, rq_dest);
5958 /* Already moved. */
5959 if (task_cpu(p) != src_cpu)
5960 goto done;
5961 /* Affinity changed (again). */
5962 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5963 goto fail;
5964
5965 /*
5966 * If we're not on a rq, the next wake-up will ensure we're
5967 * placed properly.
5968 */
5969 if (p->se.on_rq) {
5970 deactivate_task(rq_src, p, 0);
5971 set_task_cpu(p, dest_cpu);
5972 activate_task(rq_dest, p, 0);
5973 check_preempt_curr(rq_dest, p, 0);
5974 }
5975 done:
5976 ret = 1;
5977 fail:
5978 double_rq_unlock(rq_src, rq_dest);
5979 return ret;
5980 }
5981
5982 /*
5983 * migration_cpu_stop - this will be executed by a highprio stopper thread
5984 * and performs thread migration by bumping thread off CPU then
5985 * 'pushing' onto another runqueue.
5986 */
5987 static int migration_cpu_stop(void *data)
5988 {
5989 struct migration_arg *arg = data;
5990
5991 /*
5992 * The original target cpu might have gone down and we might
5993 * be on another cpu but it doesn't matter.
5994 */
5995 local_irq_disable();
5996 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5997 local_irq_enable();
5998 return 0;
5999 }
6000
6001 #ifdef CONFIG_HOTPLUG_CPU
6002
6003 /*
6004 * Ensures that the idle task is using init_mm right before its cpu goes
6005 * offline.
6006 */
6007 void idle_task_exit(void)
6008 {
6009 struct mm_struct *mm = current->active_mm;
6010
6011 BUG_ON(cpu_online(smp_processor_id()));
6012
6013 if (mm != &init_mm)
6014 switch_mm(mm, &init_mm, current);
6015 mmdrop(mm);
6016 }
6017
6018 /*
6019 * While a dead CPU has no uninterruptible tasks queued at this point,
6020 * it might still have a nonzero ->nr_uninterruptible counter, because
6021 * for performance reasons the counter is not stricly tracking tasks to
6022 * their home CPUs. So we just add the counter to another CPU's counter,
6023 * to keep the global sum constant after CPU-down:
6024 */
6025 static void migrate_nr_uninterruptible(struct rq *rq_src)
6026 {
6027 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6028
6029 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6030 rq_src->nr_uninterruptible = 0;
6031 }
6032
6033 /*
6034 * remove the tasks which were accounted by rq from calc_load_tasks.
6035 */
6036 static void calc_global_load_remove(struct rq *rq)
6037 {
6038 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6039 rq->calc_load_active = 0;
6040 }
6041
6042 /*
6043 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6044 * try_to_wake_up()->select_task_rq().
6045 *
6046 * Called with rq->lock held even though we'er in stop_machine() and
6047 * there's no concurrency possible, we hold the required locks anyway
6048 * because of lock validation efforts.
6049 */
6050 static void migrate_tasks(unsigned int dead_cpu)
6051 {
6052 struct rq *rq = cpu_rq(dead_cpu);
6053 struct task_struct *next, *stop = rq->stop;
6054 int dest_cpu;
6055
6056 /*
6057 * Fudge the rq selection such that the below task selection loop
6058 * doesn't get stuck on the currently eligible stop task.
6059 *
6060 * We're currently inside stop_machine() and the rq is either stuck
6061 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6062 * either way we should never end up calling schedule() until we're
6063 * done here.
6064 */
6065 rq->stop = NULL;
6066
6067 for ( ; ; ) {
6068 /*
6069 * There's this thread running, bail when that's the only
6070 * remaining thread.
6071 */
6072 if (rq->nr_running == 1)
6073 break;
6074
6075 next = pick_next_task(rq);
6076 BUG_ON(!next);
6077 next->sched_class->put_prev_task(rq, next);
6078
6079 /* Find suitable destination for @next, with force if needed. */
6080 dest_cpu = select_fallback_rq(dead_cpu, next);
6081 raw_spin_unlock(&rq->lock);
6082
6083 __migrate_task(next, dead_cpu, dest_cpu);
6084
6085 raw_spin_lock(&rq->lock);
6086 }
6087
6088 rq->stop = stop;
6089 }
6090
6091 #endif /* CONFIG_HOTPLUG_CPU */
6092
6093 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6094
6095 static struct ctl_table sd_ctl_dir[] = {
6096 {
6097 .procname = "sched_domain",
6098 .mode = 0555,
6099 },
6100 {}
6101 };
6102
6103 static struct ctl_table sd_ctl_root[] = {
6104 {
6105 .procname = "kernel",
6106 .mode = 0555,
6107 .child = sd_ctl_dir,
6108 },
6109 {}
6110 };
6111
6112 static struct ctl_table *sd_alloc_ctl_entry(int n)
6113 {
6114 struct ctl_table *entry =
6115 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6116
6117 return entry;
6118 }
6119
6120 static void sd_free_ctl_entry(struct ctl_table **tablep)
6121 {
6122 struct ctl_table *entry;
6123
6124 /*
6125 * In the intermediate directories, both the child directory and
6126 * procname are dynamically allocated and could fail but the mode
6127 * will always be set. In the lowest directory the names are
6128 * static strings and all have proc handlers.
6129 */
6130 for (entry = *tablep; entry->mode; entry++) {
6131 if (entry->child)
6132 sd_free_ctl_entry(&entry->child);
6133 if (entry->proc_handler == NULL)
6134 kfree(entry->procname);
6135 }
6136
6137 kfree(*tablep);
6138 *tablep = NULL;
6139 }
6140
6141 static void
6142 set_table_entry(struct ctl_table *entry,
6143 const char *procname, void *data, int maxlen,
6144 mode_t mode, proc_handler *proc_handler)
6145 {
6146 entry->procname = procname;
6147 entry->data = data;
6148 entry->maxlen = maxlen;
6149 entry->mode = mode;
6150 entry->proc_handler = proc_handler;
6151 }
6152
6153 static struct ctl_table *
6154 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6155 {
6156 struct ctl_table *table = sd_alloc_ctl_entry(13);
6157
6158 if (table == NULL)
6159 return NULL;
6160
6161 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6162 sizeof(long), 0644, proc_doulongvec_minmax);
6163 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6164 sizeof(long), 0644, proc_doulongvec_minmax);
6165 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6166 sizeof(int), 0644, proc_dointvec_minmax);
6167 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6168 sizeof(int), 0644, proc_dointvec_minmax);
6169 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6170 sizeof(int), 0644, proc_dointvec_minmax);
6171 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6172 sizeof(int), 0644, proc_dointvec_minmax);
6173 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6174 sizeof(int), 0644, proc_dointvec_minmax);
6175 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6176 sizeof(int), 0644, proc_dointvec_minmax);
6177 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6178 sizeof(int), 0644, proc_dointvec_minmax);
6179 set_table_entry(&table[9], "cache_nice_tries",
6180 &sd->cache_nice_tries,
6181 sizeof(int), 0644, proc_dointvec_minmax);
6182 set_table_entry(&table[10], "flags", &sd->flags,
6183 sizeof(int), 0644, proc_dointvec_minmax);
6184 set_table_entry(&table[11], "name", sd->name,
6185 CORENAME_MAX_SIZE, 0444, proc_dostring);
6186 /* &table[12] is terminator */
6187
6188 return table;
6189 }
6190
6191 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6192 {
6193 struct ctl_table *entry, *table;
6194 struct sched_domain *sd;
6195 int domain_num = 0, i;
6196 char buf[32];
6197
6198 for_each_domain(cpu, sd)
6199 domain_num++;
6200 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6201 if (table == NULL)
6202 return NULL;
6203
6204 i = 0;
6205 for_each_domain(cpu, sd) {
6206 snprintf(buf, 32, "domain%d", i);
6207 entry->procname = kstrdup(buf, GFP_KERNEL);
6208 entry->mode = 0555;
6209 entry->child = sd_alloc_ctl_domain_table(sd);
6210 entry++;
6211 i++;
6212 }
6213 return table;
6214 }
6215
6216 static struct ctl_table_header *sd_sysctl_header;
6217 static void register_sched_domain_sysctl(void)
6218 {
6219 int i, cpu_num = num_possible_cpus();
6220 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6221 char buf[32];
6222
6223 WARN_ON(sd_ctl_dir[0].child);
6224 sd_ctl_dir[0].child = entry;
6225
6226 if (entry == NULL)
6227 return;
6228
6229 for_each_possible_cpu(i) {
6230 snprintf(buf, 32, "cpu%d", i);
6231 entry->procname = kstrdup(buf, GFP_KERNEL);
6232 entry->mode = 0555;
6233 entry->child = sd_alloc_ctl_cpu_table(i);
6234 entry++;
6235 }
6236
6237 WARN_ON(sd_sysctl_header);
6238 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6239 }
6240
6241 /* may be called multiple times per register */
6242 static void unregister_sched_domain_sysctl(void)
6243 {
6244 if (sd_sysctl_header)
6245 unregister_sysctl_table(sd_sysctl_header);
6246 sd_sysctl_header = NULL;
6247 if (sd_ctl_dir[0].child)
6248 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6249 }
6250 #else
6251 static void register_sched_domain_sysctl(void)
6252 {
6253 }
6254 static void unregister_sched_domain_sysctl(void)
6255 {
6256 }
6257 #endif
6258
6259 static void set_rq_online(struct rq *rq)
6260 {
6261 if (!rq->online) {
6262 const struct sched_class *class;
6263
6264 cpumask_set_cpu(rq->cpu, rq->rd->online);
6265 rq->online = 1;
6266
6267 for_each_class(class) {
6268 if (class->rq_online)
6269 class->rq_online(rq);
6270 }
6271 }
6272 }
6273
6274 static void set_rq_offline(struct rq *rq)
6275 {
6276 if (rq->online) {
6277 const struct sched_class *class;
6278
6279 for_each_class(class) {
6280 if (class->rq_offline)
6281 class->rq_offline(rq);
6282 }
6283
6284 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6285 rq->online = 0;
6286 }
6287 }
6288
6289 /*
6290 * migration_call - callback that gets triggered when a CPU is added.
6291 * Here we can start up the necessary migration thread for the new CPU.
6292 */
6293 static int __cpuinit
6294 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6295 {
6296 int cpu = (long)hcpu;
6297 unsigned long flags;
6298 struct rq *rq = cpu_rq(cpu);
6299
6300 switch (action & ~CPU_TASKS_FROZEN) {
6301
6302 case CPU_UP_PREPARE:
6303 rq->calc_load_update = calc_load_update;
6304 break;
6305
6306 case CPU_ONLINE:
6307 /* Update our root-domain */
6308 raw_spin_lock_irqsave(&rq->lock, flags);
6309 if (rq->rd) {
6310 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6311
6312 set_rq_online(rq);
6313 }
6314 raw_spin_unlock_irqrestore(&rq->lock, flags);
6315 break;
6316
6317 #ifdef CONFIG_HOTPLUG_CPU
6318 case CPU_DYING:
6319 /* Update our root-domain */
6320 raw_spin_lock_irqsave(&rq->lock, flags);
6321 if (rq->rd) {
6322 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6323 set_rq_offline(rq);
6324 }
6325 migrate_tasks(cpu);
6326 BUG_ON(rq->nr_running != 1); /* the migration thread */
6327 raw_spin_unlock_irqrestore(&rq->lock, flags);
6328
6329 migrate_nr_uninterruptible(rq);
6330 calc_global_load_remove(rq);
6331 break;
6332 #endif
6333 }
6334
6335 update_max_interval();
6336
6337 return NOTIFY_OK;
6338 }
6339
6340 /*
6341 * Register at high priority so that task migration (migrate_all_tasks)
6342 * happens before everything else. This has to be lower priority than
6343 * the notifier in the perf_event subsystem, though.
6344 */
6345 static struct notifier_block __cpuinitdata migration_notifier = {
6346 .notifier_call = migration_call,
6347 .priority = CPU_PRI_MIGRATION,
6348 };
6349
6350 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6351 unsigned long action, void *hcpu)
6352 {
6353 switch (action & ~CPU_TASKS_FROZEN) {
6354 case CPU_ONLINE:
6355 case CPU_DOWN_FAILED:
6356 set_cpu_active((long)hcpu, true);
6357 return NOTIFY_OK;
6358 default:
6359 return NOTIFY_DONE;
6360 }
6361 }
6362
6363 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6364 unsigned long action, void *hcpu)
6365 {
6366 switch (action & ~CPU_TASKS_FROZEN) {
6367 case CPU_DOWN_PREPARE:
6368 set_cpu_active((long)hcpu, false);
6369 return NOTIFY_OK;
6370 default:
6371 return NOTIFY_DONE;
6372 }
6373 }
6374
6375 static int __init migration_init(void)
6376 {
6377 void *cpu = (void *)(long)smp_processor_id();
6378 int err;
6379
6380 /* Initialize migration for the boot CPU */
6381 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6382 BUG_ON(err == NOTIFY_BAD);
6383 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6384 register_cpu_notifier(&migration_notifier);
6385
6386 /* Register cpu active notifiers */
6387 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6388 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6389
6390 return 0;
6391 }
6392 early_initcall(migration_init);
6393 #endif
6394
6395 #ifdef CONFIG_SMP
6396
6397 #ifdef CONFIG_SCHED_DEBUG
6398
6399 static __read_mostly int sched_domain_debug_enabled;
6400
6401 static int __init sched_domain_debug_setup(char *str)
6402 {
6403 sched_domain_debug_enabled = 1;
6404
6405 return 0;
6406 }
6407 early_param("sched_debug", sched_domain_debug_setup);
6408
6409 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6410 struct cpumask *groupmask)
6411 {
6412 struct sched_group *group = sd->groups;
6413 char str[256];
6414
6415 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6416 cpumask_clear(groupmask);
6417
6418 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6419
6420 if (!(sd->flags & SD_LOAD_BALANCE)) {
6421 printk("does not load-balance\n");
6422 if (sd->parent)
6423 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6424 " has parent");
6425 return -1;
6426 }
6427
6428 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6429
6430 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6431 printk(KERN_ERR "ERROR: domain->span does not contain "
6432 "CPU%d\n", cpu);
6433 }
6434 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6435 printk(KERN_ERR "ERROR: domain->groups does not contain"
6436 " CPU%d\n", cpu);
6437 }
6438
6439 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6440 do {
6441 if (!group) {
6442 printk("\n");
6443 printk(KERN_ERR "ERROR: group is NULL\n");
6444 break;
6445 }
6446
6447 if (!group->cpu_power) {
6448 printk(KERN_CONT "\n");
6449 printk(KERN_ERR "ERROR: domain->cpu_power not "
6450 "set\n");
6451 break;
6452 }
6453
6454 if (!cpumask_weight(sched_group_cpus(group))) {
6455 printk(KERN_CONT "\n");
6456 printk(KERN_ERR "ERROR: empty group\n");
6457 break;
6458 }
6459
6460 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6461 printk(KERN_CONT "\n");
6462 printk(KERN_ERR "ERROR: repeated CPUs\n");
6463 break;
6464 }
6465
6466 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6467
6468 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6469
6470 printk(KERN_CONT " %s", str);
6471 if (group->cpu_power != SCHED_LOAD_SCALE) {
6472 printk(KERN_CONT " (cpu_power = %d)",
6473 group->cpu_power);
6474 }
6475
6476 group = group->next;
6477 } while (group != sd->groups);
6478 printk(KERN_CONT "\n");
6479
6480 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6481 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6482
6483 if (sd->parent &&
6484 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6485 printk(KERN_ERR "ERROR: parent span is not a superset "
6486 "of domain->span\n");
6487 return 0;
6488 }
6489
6490 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6491 {
6492 cpumask_var_t groupmask;
6493 int level = 0;
6494
6495 if (!sched_domain_debug_enabled)
6496 return;
6497
6498 if (!sd) {
6499 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6500 return;
6501 }
6502
6503 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6504
6505 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6506 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6507 return;
6508 }
6509
6510 for (;;) {
6511 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6512 break;
6513 level++;
6514 sd = sd->parent;
6515 if (!sd)
6516 break;
6517 }
6518 free_cpumask_var(groupmask);
6519 }
6520 #else /* !CONFIG_SCHED_DEBUG */
6521 # define sched_domain_debug(sd, cpu) do { } while (0)
6522 #endif /* CONFIG_SCHED_DEBUG */
6523
6524 static int sd_degenerate(struct sched_domain *sd)
6525 {
6526 if (cpumask_weight(sched_domain_span(sd)) == 1)
6527 return 1;
6528
6529 /* Following flags need at least 2 groups */
6530 if (sd->flags & (SD_LOAD_BALANCE |
6531 SD_BALANCE_NEWIDLE |
6532 SD_BALANCE_FORK |
6533 SD_BALANCE_EXEC |
6534 SD_SHARE_CPUPOWER |
6535 SD_SHARE_PKG_RESOURCES)) {
6536 if (sd->groups != sd->groups->next)
6537 return 0;
6538 }
6539
6540 /* Following flags don't use groups */
6541 if (sd->flags & (SD_WAKE_AFFINE))
6542 return 0;
6543
6544 return 1;
6545 }
6546
6547 static int
6548 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6549 {
6550 unsigned long cflags = sd->flags, pflags = parent->flags;
6551
6552 if (sd_degenerate(parent))
6553 return 1;
6554
6555 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6556 return 0;
6557
6558 /* Flags needing groups don't count if only 1 group in parent */
6559 if (parent->groups == parent->groups->next) {
6560 pflags &= ~(SD_LOAD_BALANCE |
6561 SD_BALANCE_NEWIDLE |
6562 SD_BALANCE_FORK |
6563 SD_BALANCE_EXEC |
6564 SD_SHARE_CPUPOWER |
6565 SD_SHARE_PKG_RESOURCES);
6566 if (nr_node_ids == 1)
6567 pflags &= ~SD_SERIALIZE;
6568 }
6569 if (~cflags & pflags)
6570 return 0;
6571
6572 return 1;
6573 }
6574
6575 static void free_rootdomain(struct root_domain *rd)
6576 {
6577 synchronize_sched();
6578
6579 cpupri_cleanup(&rd->cpupri);
6580
6581 free_cpumask_var(rd->rto_mask);
6582 free_cpumask_var(rd->online);
6583 free_cpumask_var(rd->span);
6584 kfree(rd);
6585 }
6586
6587 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6588 {
6589 struct root_domain *old_rd = NULL;
6590 unsigned long flags;
6591
6592 raw_spin_lock_irqsave(&rq->lock, flags);
6593
6594 if (rq->rd) {
6595 old_rd = rq->rd;
6596
6597 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6598 set_rq_offline(rq);
6599
6600 cpumask_clear_cpu(rq->cpu, old_rd->span);
6601
6602 /*
6603 * If we dont want to free the old_rt yet then
6604 * set old_rd to NULL to skip the freeing later
6605 * in this function:
6606 */
6607 if (!atomic_dec_and_test(&old_rd->refcount))
6608 old_rd = NULL;
6609 }
6610
6611 atomic_inc(&rd->refcount);
6612 rq->rd = rd;
6613
6614 cpumask_set_cpu(rq->cpu, rd->span);
6615 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6616 set_rq_online(rq);
6617
6618 raw_spin_unlock_irqrestore(&rq->lock, flags);
6619
6620 if (old_rd)
6621 free_rootdomain(old_rd);
6622 }
6623
6624 static int init_rootdomain(struct root_domain *rd)
6625 {
6626 memset(rd, 0, sizeof(*rd));
6627
6628 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6629 goto out;
6630 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6631 goto free_span;
6632 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6633 goto free_online;
6634
6635 if (cpupri_init(&rd->cpupri) != 0)
6636 goto free_rto_mask;
6637 return 0;
6638
6639 free_rto_mask:
6640 free_cpumask_var(rd->rto_mask);
6641 free_online:
6642 free_cpumask_var(rd->online);
6643 free_span:
6644 free_cpumask_var(rd->span);
6645 out:
6646 return -ENOMEM;
6647 }
6648
6649 static void init_defrootdomain(void)
6650 {
6651 init_rootdomain(&def_root_domain);
6652
6653 atomic_set(&def_root_domain.refcount, 1);
6654 }
6655
6656 static struct root_domain *alloc_rootdomain(void)
6657 {
6658 struct root_domain *rd;
6659
6660 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6661 if (!rd)
6662 return NULL;
6663
6664 if (init_rootdomain(rd) != 0) {
6665 kfree(rd);
6666 return NULL;
6667 }
6668
6669 return rd;
6670 }
6671
6672 /*
6673 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6674 * hold the hotplug lock.
6675 */
6676 static void
6677 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6678 {
6679 struct rq *rq = cpu_rq(cpu);
6680 struct sched_domain *tmp;
6681
6682 for (tmp = sd; tmp; tmp = tmp->parent)
6683 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6684
6685 /* Remove the sched domains which do not contribute to scheduling. */
6686 for (tmp = sd; tmp; ) {
6687 struct sched_domain *parent = tmp->parent;
6688 if (!parent)
6689 break;
6690
6691 if (sd_parent_degenerate(tmp, parent)) {
6692 tmp->parent = parent->parent;
6693 if (parent->parent)
6694 parent->parent->child = tmp;
6695 } else
6696 tmp = tmp->parent;
6697 }
6698
6699 if (sd && sd_degenerate(sd)) {
6700 sd = sd->parent;
6701 if (sd)
6702 sd->child = NULL;
6703 }
6704
6705 sched_domain_debug(sd, cpu);
6706
6707 rq_attach_root(rq, rd);
6708 rcu_assign_pointer(rq->sd, sd);
6709 }
6710
6711 /* cpus with isolated domains */
6712 static cpumask_var_t cpu_isolated_map;
6713
6714 /* Setup the mask of cpus configured for isolated domains */
6715 static int __init isolated_cpu_setup(char *str)
6716 {
6717 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6718 cpulist_parse(str, cpu_isolated_map);
6719 return 1;
6720 }
6721
6722 __setup("isolcpus=", isolated_cpu_setup);
6723
6724 /*
6725 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6726 * to a function which identifies what group(along with sched group) a CPU
6727 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6728 * (due to the fact that we keep track of groups covered with a struct cpumask).
6729 *
6730 * init_sched_build_groups will build a circular linked list of the groups
6731 * covered by the given span, and will set each group's ->cpumask correctly,
6732 * and ->cpu_power to 0.
6733 */
6734 static void
6735 init_sched_build_groups(const struct cpumask *span,
6736 const struct cpumask *cpu_map,
6737 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6738 struct sched_group **sg,
6739 struct cpumask *tmpmask),
6740 struct cpumask *covered, struct cpumask *tmpmask)
6741 {
6742 struct sched_group *first = NULL, *last = NULL;
6743 int i;
6744
6745 cpumask_clear(covered);
6746
6747 for_each_cpu(i, span) {
6748 struct sched_group *sg;
6749 int group = group_fn(i, cpu_map, &sg, tmpmask);
6750 int j;
6751
6752 if (cpumask_test_cpu(i, covered))
6753 continue;
6754
6755 cpumask_clear(sched_group_cpus(sg));
6756 sg->cpu_power = 0;
6757
6758 for_each_cpu(j, span) {
6759 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6760 continue;
6761
6762 cpumask_set_cpu(j, covered);
6763 cpumask_set_cpu(j, sched_group_cpus(sg));
6764 }
6765 if (!first)
6766 first = sg;
6767 if (last)
6768 last->next = sg;
6769 last = sg;
6770 }
6771 last->next = first;
6772 }
6773
6774 #define SD_NODES_PER_DOMAIN 16
6775
6776 #ifdef CONFIG_NUMA
6777
6778 /**
6779 * find_next_best_node - find the next node to include in a sched_domain
6780 * @node: node whose sched_domain we're building
6781 * @used_nodes: nodes already in the sched_domain
6782 *
6783 * Find the next node to include in a given scheduling domain. Simply
6784 * finds the closest node not already in the @used_nodes map.
6785 *
6786 * Should use nodemask_t.
6787 */
6788 static int find_next_best_node(int node, nodemask_t *used_nodes)
6789 {
6790 int i, n, val, min_val, best_node = 0;
6791
6792 min_val = INT_MAX;
6793
6794 for (i = 0; i < nr_node_ids; i++) {
6795 /* Start at @node */
6796 n = (node + i) % nr_node_ids;
6797
6798 if (!nr_cpus_node(n))
6799 continue;
6800
6801 /* Skip already used nodes */
6802 if (node_isset(n, *used_nodes))
6803 continue;
6804
6805 /* Simple min distance search */
6806 val = node_distance(node, n);
6807
6808 if (val < min_val) {
6809 min_val = val;
6810 best_node = n;
6811 }
6812 }
6813
6814 node_set(best_node, *used_nodes);
6815 return best_node;
6816 }
6817
6818 /**
6819 * sched_domain_node_span - get a cpumask for a node's sched_domain
6820 * @node: node whose cpumask we're constructing
6821 * @span: resulting cpumask
6822 *
6823 * Given a node, construct a good cpumask for its sched_domain to span. It
6824 * should be one that prevents unnecessary balancing, but also spreads tasks
6825 * out optimally.
6826 */
6827 static void sched_domain_node_span(int node, struct cpumask *span)
6828 {
6829 nodemask_t used_nodes;
6830 int i;
6831
6832 cpumask_clear(span);
6833 nodes_clear(used_nodes);
6834
6835 cpumask_or(span, span, cpumask_of_node(node));
6836 node_set(node, used_nodes);
6837
6838 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6839 int next_node = find_next_best_node(node, &used_nodes);
6840
6841 cpumask_or(span, span, cpumask_of_node(next_node));
6842 }
6843 }
6844 #endif /* CONFIG_NUMA */
6845
6846 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6847
6848 /*
6849 * The cpus mask in sched_group and sched_domain hangs off the end.
6850 *
6851 * ( See the the comments in include/linux/sched.h:struct sched_group
6852 * and struct sched_domain. )
6853 */
6854 struct static_sched_group {
6855 struct sched_group sg;
6856 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6857 };
6858
6859 struct static_sched_domain {
6860 struct sched_domain sd;
6861 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6862 };
6863
6864 struct s_data {
6865 #ifdef CONFIG_NUMA
6866 int sd_allnodes;
6867 cpumask_var_t domainspan;
6868 cpumask_var_t covered;
6869 cpumask_var_t notcovered;
6870 #endif
6871 cpumask_var_t nodemask;
6872 cpumask_var_t this_sibling_map;
6873 cpumask_var_t this_core_map;
6874 cpumask_var_t this_book_map;
6875 cpumask_var_t send_covered;
6876 cpumask_var_t tmpmask;
6877 struct sched_group **sched_group_nodes;
6878 struct root_domain *rd;
6879 };
6880
6881 enum s_alloc {
6882 sa_sched_groups = 0,
6883 sa_rootdomain,
6884 sa_tmpmask,
6885 sa_send_covered,
6886 sa_this_book_map,
6887 sa_this_core_map,
6888 sa_this_sibling_map,
6889 sa_nodemask,
6890 sa_sched_group_nodes,
6891 #ifdef CONFIG_NUMA
6892 sa_notcovered,
6893 sa_covered,
6894 sa_domainspan,
6895 #endif
6896 sa_none,
6897 };
6898
6899 /*
6900 * SMT sched-domains:
6901 */
6902 #ifdef CONFIG_SCHED_SMT
6903 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6904 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6905
6906 static int
6907 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6908 struct sched_group **sg, struct cpumask *unused)
6909 {
6910 if (sg)
6911 *sg = &per_cpu(sched_groups, cpu).sg;
6912 return cpu;
6913 }
6914 #endif /* CONFIG_SCHED_SMT */
6915
6916 /*
6917 * multi-core sched-domains:
6918 */
6919 #ifdef CONFIG_SCHED_MC
6920 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6921 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6922
6923 static int
6924 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6925 struct sched_group **sg, struct cpumask *mask)
6926 {
6927 int group;
6928 #ifdef CONFIG_SCHED_SMT
6929 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6930 group = cpumask_first(mask);
6931 #else
6932 group = cpu;
6933 #endif
6934 if (sg)
6935 *sg = &per_cpu(sched_group_core, group).sg;
6936 return group;
6937 }
6938 #endif /* CONFIG_SCHED_MC */
6939
6940 /*
6941 * book sched-domains:
6942 */
6943 #ifdef CONFIG_SCHED_BOOK
6944 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6945 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6946
6947 static int
6948 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6949 struct sched_group **sg, struct cpumask *mask)
6950 {
6951 int group = cpu;
6952 #ifdef CONFIG_SCHED_MC
6953 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6954 group = cpumask_first(mask);
6955 #elif defined(CONFIG_SCHED_SMT)
6956 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6957 group = cpumask_first(mask);
6958 #endif
6959 if (sg)
6960 *sg = &per_cpu(sched_group_book, group).sg;
6961 return group;
6962 }
6963 #endif /* CONFIG_SCHED_BOOK */
6964
6965 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6966 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6967
6968 static int
6969 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6970 struct sched_group **sg, struct cpumask *mask)
6971 {
6972 int group;
6973 #ifdef CONFIG_SCHED_BOOK
6974 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6975 group = cpumask_first(mask);
6976 #elif defined(CONFIG_SCHED_MC)
6977 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6978 group = cpumask_first(mask);
6979 #elif defined(CONFIG_SCHED_SMT)
6980 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6981 group = cpumask_first(mask);
6982 #else
6983 group = cpu;
6984 #endif
6985 if (sg)
6986 *sg = &per_cpu(sched_group_phys, group).sg;
6987 return group;
6988 }
6989
6990 #ifdef CONFIG_NUMA
6991 /*
6992 * The init_sched_build_groups can't handle what we want to do with node
6993 * groups, so roll our own. Now each node has its own list of groups which
6994 * gets dynamically allocated.
6995 */
6996 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6997 static struct sched_group ***sched_group_nodes_bycpu;
6998
6999 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7000 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7001
7002 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7003 struct sched_group **sg,
7004 struct cpumask *nodemask)
7005 {
7006 int group;
7007
7008 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7009 group = cpumask_first(nodemask);
7010
7011 if (sg)
7012 *sg = &per_cpu(sched_group_allnodes, group).sg;
7013 return group;
7014 }
7015
7016 static void init_numa_sched_groups_power(struct sched_group *group_head)
7017 {
7018 struct sched_group *sg = group_head;
7019 int j;
7020
7021 if (!sg)
7022 return;
7023 do {
7024 for_each_cpu(j, sched_group_cpus(sg)) {
7025 struct sched_domain *sd;
7026
7027 sd = &per_cpu(phys_domains, j).sd;
7028 if (j != group_first_cpu(sd->groups)) {
7029 /*
7030 * Only add "power" once for each
7031 * physical package.
7032 */
7033 continue;
7034 }
7035
7036 sg->cpu_power += sd->groups->cpu_power;
7037 }
7038 sg = sg->next;
7039 } while (sg != group_head);
7040 }
7041
7042 static int build_numa_sched_groups(struct s_data *d,
7043 const struct cpumask *cpu_map, int num)
7044 {
7045 struct sched_domain *sd;
7046 struct sched_group *sg, *prev;
7047 int n, j;
7048
7049 cpumask_clear(d->covered);
7050 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7051 if (cpumask_empty(d->nodemask)) {
7052 d->sched_group_nodes[num] = NULL;
7053 goto out;
7054 }
7055
7056 sched_domain_node_span(num, d->domainspan);
7057 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7058
7059 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7060 GFP_KERNEL, num);
7061 if (!sg) {
7062 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7063 num);
7064 return -ENOMEM;
7065 }
7066 d->sched_group_nodes[num] = sg;
7067
7068 for_each_cpu(j, d->nodemask) {
7069 sd = &per_cpu(node_domains, j).sd;
7070 sd->groups = sg;
7071 }
7072
7073 sg->cpu_power = 0;
7074 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7075 sg->next = sg;
7076 cpumask_or(d->covered, d->covered, d->nodemask);
7077
7078 prev = sg;
7079 for (j = 0; j < nr_node_ids; j++) {
7080 n = (num + j) % nr_node_ids;
7081 cpumask_complement(d->notcovered, d->covered);
7082 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7083 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7084 if (cpumask_empty(d->tmpmask))
7085 break;
7086 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7087 if (cpumask_empty(d->tmpmask))
7088 continue;
7089 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7090 GFP_KERNEL, num);
7091 if (!sg) {
7092 printk(KERN_WARNING
7093 "Can not alloc domain group for node %d\n", j);
7094 return -ENOMEM;
7095 }
7096 sg->cpu_power = 0;
7097 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7098 sg->next = prev->next;
7099 cpumask_or(d->covered, d->covered, d->tmpmask);
7100 prev->next = sg;
7101 prev = sg;
7102 }
7103 out:
7104 return 0;
7105 }
7106 #endif /* CONFIG_NUMA */
7107
7108 #ifdef CONFIG_NUMA
7109 /* Free memory allocated for various sched_group structures */
7110 static void free_sched_groups(const struct cpumask *cpu_map,
7111 struct cpumask *nodemask)
7112 {
7113 int cpu, i;
7114
7115 for_each_cpu(cpu, cpu_map) {
7116 struct sched_group **sched_group_nodes
7117 = sched_group_nodes_bycpu[cpu];
7118
7119 if (!sched_group_nodes)
7120 continue;
7121
7122 for (i = 0; i < nr_node_ids; i++) {
7123 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7124
7125 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7126 if (cpumask_empty(nodemask))
7127 continue;
7128
7129 if (sg == NULL)
7130 continue;
7131 sg = sg->next;
7132 next_sg:
7133 oldsg = sg;
7134 sg = sg->next;
7135 kfree(oldsg);
7136 if (oldsg != sched_group_nodes[i])
7137 goto next_sg;
7138 }
7139 kfree(sched_group_nodes);
7140 sched_group_nodes_bycpu[cpu] = NULL;
7141 }
7142 }
7143 #else /* !CONFIG_NUMA */
7144 static void free_sched_groups(const struct cpumask *cpu_map,
7145 struct cpumask *nodemask)
7146 {
7147 }
7148 #endif /* CONFIG_NUMA */
7149
7150 /*
7151 * Initialize sched groups cpu_power.
7152 *
7153 * cpu_power indicates the capacity of sched group, which is used while
7154 * distributing the load between different sched groups in a sched domain.
7155 * Typically cpu_power for all the groups in a sched domain will be same unless
7156 * there are asymmetries in the topology. If there are asymmetries, group
7157 * having more cpu_power will pickup more load compared to the group having
7158 * less cpu_power.
7159 */
7160 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7161 {
7162 struct sched_domain *child;
7163 struct sched_group *group;
7164 long power;
7165 int weight;
7166
7167 WARN_ON(!sd || !sd->groups);
7168
7169 if (cpu != group_first_cpu(sd->groups))
7170 return;
7171
7172 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7173
7174 child = sd->child;
7175
7176 sd->groups->cpu_power = 0;
7177
7178 if (!child) {
7179 power = SCHED_LOAD_SCALE;
7180 weight = cpumask_weight(sched_domain_span(sd));
7181 /*
7182 * SMT siblings share the power of a single core.
7183 * Usually multiple threads get a better yield out of
7184 * that one core than a single thread would have,
7185 * reflect that in sd->smt_gain.
7186 */
7187 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7188 power *= sd->smt_gain;
7189 power /= weight;
7190 power >>= SCHED_LOAD_SHIFT;
7191 }
7192 sd->groups->cpu_power += power;
7193 return;
7194 }
7195
7196 /*
7197 * Add cpu_power of each child group to this groups cpu_power.
7198 */
7199 group = child->groups;
7200 do {
7201 sd->groups->cpu_power += group->cpu_power;
7202 group = group->next;
7203 } while (group != child->groups);
7204 }
7205
7206 /*
7207 * Initializers for schedule domains
7208 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7209 */
7210
7211 #ifdef CONFIG_SCHED_DEBUG
7212 # define SD_INIT_NAME(sd, type) sd->name = #type
7213 #else
7214 # define SD_INIT_NAME(sd, type) do { } while (0)
7215 #endif
7216
7217 #define SD_INIT(sd, type) sd_init_##type(sd)
7218
7219 #define SD_INIT_FUNC(type) \
7220 static noinline void sd_init_##type(struct sched_domain *sd) \
7221 { \
7222 memset(sd, 0, sizeof(*sd)); \
7223 *sd = SD_##type##_INIT; \
7224 sd->level = SD_LV_##type; \
7225 SD_INIT_NAME(sd, type); \
7226 }
7227
7228 SD_INIT_FUNC(CPU)
7229 #ifdef CONFIG_NUMA
7230 SD_INIT_FUNC(ALLNODES)
7231 SD_INIT_FUNC(NODE)
7232 #endif
7233 #ifdef CONFIG_SCHED_SMT
7234 SD_INIT_FUNC(SIBLING)
7235 #endif
7236 #ifdef CONFIG_SCHED_MC
7237 SD_INIT_FUNC(MC)
7238 #endif
7239 #ifdef CONFIG_SCHED_BOOK
7240 SD_INIT_FUNC(BOOK)
7241 #endif
7242
7243 static int default_relax_domain_level = -1;
7244
7245 static int __init setup_relax_domain_level(char *str)
7246 {
7247 unsigned long val;
7248
7249 val = simple_strtoul(str, NULL, 0);
7250 if (val < SD_LV_MAX)
7251 default_relax_domain_level = val;
7252
7253 return 1;
7254 }
7255 __setup("relax_domain_level=", setup_relax_domain_level);
7256
7257 static void set_domain_attribute(struct sched_domain *sd,
7258 struct sched_domain_attr *attr)
7259 {
7260 int request;
7261
7262 if (!attr || attr->relax_domain_level < 0) {
7263 if (default_relax_domain_level < 0)
7264 return;
7265 else
7266 request = default_relax_domain_level;
7267 } else
7268 request = attr->relax_domain_level;
7269 if (request < sd->level) {
7270 /* turn off idle balance on this domain */
7271 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7272 } else {
7273 /* turn on idle balance on this domain */
7274 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7275 }
7276 }
7277
7278 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7279 const struct cpumask *cpu_map)
7280 {
7281 switch (what) {
7282 case sa_sched_groups:
7283 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7284 d->sched_group_nodes = NULL;
7285 case sa_rootdomain:
7286 free_rootdomain(d->rd); /* fall through */
7287 case sa_tmpmask:
7288 free_cpumask_var(d->tmpmask); /* fall through */
7289 case sa_send_covered:
7290 free_cpumask_var(d->send_covered); /* fall through */
7291 case sa_this_book_map:
7292 free_cpumask_var(d->this_book_map); /* fall through */
7293 case sa_this_core_map:
7294 free_cpumask_var(d->this_core_map); /* fall through */
7295 case sa_this_sibling_map:
7296 free_cpumask_var(d->this_sibling_map); /* fall through */
7297 case sa_nodemask:
7298 free_cpumask_var(d->nodemask); /* fall through */
7299 case sa_sched_group_nodes:
7300 #ifdef CONFIG_NUMA
7301 kfree(d->sched_group_nodes); /* fall through */
7302 case sa_notcovered:
7303 free_cpumask_var(d->notcovered); /* fall through */
7304 case sa_covered:
7305 free_cpumask_var(d->covered); /* fall through */
7306 case sa_domainspan:
7307 free_cpumask_var(d->domainspan); /* fall through */
7308 #endif
7309 case sa_none:
7310 break;
7311 }
7312 }
7313
7314 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7315 const struct cpumask *cpu_map)
7316 {
7317 #ifdef CONFIG_NUMA
7318 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7319 return sa_none;
7320 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7321 return sa_domainspan;
7322 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7323 return sa_covered;
7324 /* Allocate the per-node list of sched groups */
7325 d->sched_group_nodes = kcalloc(nr_node_ids,
7326 sizeof(struct sched_group *), GFP_KERNEL);
7327 if (!d->sched_group_nodes) {
7328 printk(KERN_WARNING "Can not alloc sched group node list\n");
7329 return sa_notcovered;
7330 }
7331 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7332 #endif
7333 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7334 return sa_sched_group_nodes;
7335 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7336 return sa_nodemask;
7337 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7338 return sa_this_sibling_map;
7339 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7340 return sa_this_core_map;
7341 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7342 return sa_this_book_map;
7343 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7344 return sa_send_covered;
7345 d->rd = alloc_rootdomain();
7346 if (!d->rd) {
7347 printk(KERN_WARNING "Cannot alloc root domain\n");
7348 return sa_tmpmask;
7349 }
7350 return sa_rootdomain;
7351 }
7352
7353 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7354 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7355 {
7356 struct sched_domain *sd = NULL;
7357 #ifdef CONFIG_NUMA
7358 struct sched_domain *parent;
7359
7360 d->sd_allnodes = 0;
7361 if (cpumask_weight(cpu_map) >
7362 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7363 sd = &per_cpu(allnodes_domains, i).sd;
7364 SD_INIT(sd, ALLNODES);
7365 set_domain_attribute(sd, attr);
7366 cpumask_copy(sched_domain_span(sd), cpu_map);
7367 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7368 d->sd_allnodes = 1;
7369 }
7370 parent = sd;
7371
7372 sd = &per_cpu(node_domains, i).sd;
7373 SD_INIT(sd, NODE);
7374 set_domain_attribute(sd, attr);
7375 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7376 sd->parent = parent;
7377 if (parent)
7378 parent->child = sd;
7379 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7380 #endif
7381 return sd;
7382 }
7383
7384 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7385 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7386 struct sched_domain *parent, int i)
7387 {
7388 struct sched_domain *sd;
7389 sd = &per_cpu(phys_domains, i).sd;
7390 SD_INIT(sd, CPU);
7391 set_domain_attribute(sd, attr);
7392 cpumask_copy(sched_domain_span(sd), d->nodemask);
7393 sd->parent = parent;
7394 if (parent)
7395 parent->child = sd;
7396 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7397 return sd;
7398 }
7399
7400 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7401 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7402 struct sched_domain *parent, int i)
7403 {
7404 struct sched_domain *sd = parent;
7405 #ifdef CONFIG_SCHED_BOOK
7406 sd = &per_cpu(book_domains, i).sd;
7407 SD_INIT(sd, BOOK);
7408 set_domain_attribute(sd, attr);
7409 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7410 sd->parent = parent;
7411 parent->child = sd;
7412 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7413 #endif
7414 return sd;
7415 }
7416
7417 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7418 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7419 struct sched_domain *parent, int i)
7420 {
7421 struct sched_domain *sd = parent;
7422 #ifdef CONFIG_SCHED_MC
7423 sd = &per_cpu(core_domains, i).sd;
7424 SD_INIT(sd, MC);
7425 set_domain_attribute(sd, attr);
7426 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7427 sd->parent = parent;
7428 parent->child = sd;
7429 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7430 #endif
7431 return sd;
7432 }
7433
7434 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7435 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7436 struct sched_domain *parent, int i)
7437 {
7438 struct sched_domain *sd = parent;
7439 #ifdef CONFIG_SCHED_SMT
7440 sd = &per_cpu(cpu_domains, i).sd;
7441 SD_INIT(sd, SIBLING);
7442 set_domain_attribute(sd, attr);
7443 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7444 sd->parent = parent;
7445 parent->child = sd;
7446 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7447 #endif
7448 return sd;
7449 }
7450
7451 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7452 const struct cpumask *cpu_map, int cpu)
7453 {
7454 switch (l) {
7455 #ifdef CONFIG_SCHED_SMT
7456 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7457 cpumask_and(d->this_sibling_map, cpu_map,
7458 topology_thread_cpumask(cpu));
7459 if (cpu == cpumask_first(d->this_sibling_map))
7460 init_sched_build_groups(d->this_sibling_map, cpu_map,
7461 &cpu_to_cpu_group,
7462 d->send_covered, d->tmpmask);
7463 break;
7464 #endif
7465 #ifdef CONFIG_SCHED_MC
7466 case SD_LV_MC: /* set up multi-core groups */
7467 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7468 if (cpu == cpumask_first(d->this_core_map))
7469 init_sched_build_groups(d->this_core_map, cpu_map,
7470 &cpu_to_core_group,
7471 d->send_covered, d->tmpmask);
7472 break;
7473 #endif
7474 #ifdef CONFIG_SCHED_BOOK
7475 case SD_LV_BOOK: /* set up book groups */
7476 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7477 if (cpu == cpumask_first(d->this_book_map))
7478 init_sched_build_groups(d->this_book_map, cpu_map,
7479 &cpu_to_book_group,
7480 d->send_covered, d->tmpmask);
7481 break;
7482 #endif
7483 case SD_LV_CPU: /* set up physical groups */
7484 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7485 if (!cpumask_empty(d->nodemask))
7486 init_sched_build_groups(d->nodemask, cpu_map,
7487 &cpu_to_phys_group,
7488 d->send_covered, d->tmpmask);
7489 break;
7490 #ifdef CONFIG_NUMA
7491 case SD_LV_ALLNODES:
7492 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7493 d->send_covered, d->tmpmask);
7494 break;
7495 #endif
7496 default:
7497 break;
7498 }
7499 }
7500
7501 /*
7502 * Build sched domains for a given set of cpus and attach the sched domains
7503 * to the individual cpus
7504 */
7505 static int __build_sched_domains(const struct cpumask *cpu_map,
7506 struct sched_domain_attr *attr)
7507 {
7508 enum s_alloc alloc_state = sa_none;
7509 struct s_data d;
7510 struct sched_domain *sd;
7511 int i;
7512 #ifdef CONFIG_NUMA
7513 d.sd_allnodes = 0;
7514 #endif
7515
7516 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7517 if (alloc_state != sa_rootdomain)
7518 goto error;
7519 alloc_state = sa_sched_groups;
7520
7521 /*
7522 * Set up domains for cpus specified by the cpu_map.
7523 */
7524 for_each_cpu(i, cpu_map) {
7525 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7526 cpu_map);
7527
7528 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7529 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7530 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7531 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7532 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7533 }
7534
7535 for_each_cpu(i, cpu_map) {
7536 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7537 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7538 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7539 }
7540
7541 /* Set up physical groups */
7542 for (i = 0; i < nr_node_ids; i++)
7543 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7544
7545 #ifdef CONFIG_NUMA
7546 /* Set up node groups */
7547 if (d.sd_allnodes)
7548 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7549
7550 for (i = 0; i < nr_node_ids; i++)
7551 if (build_numa_sched_groups(&d, cpu_map, i))
7552 goto error;
7553 #endif
7554
7555 /* Calculate CPU power for physical packages and nodes */
7556 #ifdef CONFIG_SCHED_SMT
7557 for_each_cpu(i, cpu_map) {
7558 sd = &per_cpu(cpu_domains, i).sd;
7559 init_sched_groups_power(i, sd);
7560 }
7561 #endif
7562 #ifdef CONFIG_SCHED_MC
7563 for_each_cpu(i, cpu_map) {
7564 sd = &per_cpu(core_domains, i).sd;
7565 init_sched_groups_power(i, sd);
7566 }
7567 #endif
7568 #ifdef CONFIG_SCHED_BOOK
7569 for_each_cpu(i, cpu_map) {
7570 sd = &per_cpu(book_domains, i).sd;
7571 init_sched_groups_power(i, sd);
7572 }
7573 #endif
7574
7575 for_each_cpu(i, cpu_map) {
7576 sd = &per_cpu(phys_domains, i).sd;
7577 init_sched_groups_power(i, sd);
7578 }
7579
7580 #ifdef CONFIG_NUMA
7581 for (i = 0; i < nr_node_ids; i++)
7582 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7583
7584 if (d.sd_allnodes) {
7585 struct sched_group *sg;
7586
7587 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7588 d.tmpmask);
7589 init_numa_sched_groups_power(sg);
7590 }
7591 #endif
7592
7593 /* Attach the domains */
7594 for_each_cpu(i, cpu_map) {
7595 #ifdef CONFIG_SCHED_SMT
7596 sd = &per_cpu(cpu_domains, i).sd;
7597 #elif defined(CONFIG_SCHED_MC)
7598 sd = &per_cpu(core_domains, i).sd;
7599 #elif defined(CONFIG_SCHED_BOOK)
7600 sd = &per_cpu(book_domains, i).sd;
7601 #else
7602 sd = &per_cpu(phys_domains, i).sd;
7603 #endif
7604 cpu_attach_domain(sd, d.rd, i);
7605 }
7606
7607 d.sched_group_nodes = NULL; /* don't free this we still need it */
7608 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7609 return 0;
7610
7611 error:
7612 __free_domain_allocs(&d, alloc_state, cpu_map);
7613 return -ENOMEM;
7614 }
7615
7616 static int build_sched_domains(const struct cpumask *cpu_map)
7617 {
7618 return __build_sched_domains(cpu_map, NULL);
7619 }
7620
7621 static cpumask_var_t *doms_cur; /* current sched domains */
7622 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7623 static struct sched_domain_attr *dattr_cur;
7624 /* attribues of custom domains in 'doms_cur' */
7625
7626 /*
7627 * Special case: If a kmalloc of a doms_cur partition (array of
7628 * cpumask) fails, then fallback to a single sched domain,
7629 * as determined by the single cpumask fallback_doms.
7630 */
7631 static cpumask_var_t fallback_doms;
7632
7633 /*
7634 * arch_update_cpu_topology lets virtualized architectures update the
7635 * cpu core maps. It is supposed to return 1 if the topology changed
7636 * or 0 if it stayed the same.
7637 */
7638 int __attribute__((weak)) arch_update_cpu_topology(void)
7639 {
7640 return 0;
7641 }
7642
7643 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7644 {
7645 int i;
7646 cpumask_var_t *doms;
7647
7648 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7649 if (!doms)
7650 return NULL;
7651 for (i = 0; i < ndoms; i++) {
7652 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7653 free_sched_domains(doms, i);
7654 return NULL;
7655 }
7656 }
7657 return doms;
7658 }
7659
7660 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7661 {
7662 unsigned int i;
7663 for (i = 0; i < ndoms; i++)
7664 free_cpumask_var(doms[i]);
7665 kfree(doms);
7666 }
7667
7668 /*
7669 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7670 * For now this just excludes isolated cpus, but could be used to
7671 * exclude other special cases in the future.
7672 */
7673 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7674 {
7675 int err;
7676
7677 arch_update_cpu_topology();
7678 ndoms_cur = 1;
7679 doms_cur = alloc_sched_domains(ndoms_cur);
7680 if (!doms_cur)
7681 doms_cur = &fallback_doms;
7682 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7683 dattr_cur = NULL;
7684 err = build_sched_domains(doms_cur[0]);
7685 register_sched_domain_sysctl();
7686
7687 return err;
7688 }
7689
7690 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7691 struct cpumask *tmpmask)
7692 {
7693 free_sched_groups(cpu_map, tmpmask);
7694 }
7695
7696 /*
7697 * Detach sched domains from a group of cpus specified in cpu_map
7698 * These cpus will now be attached to the NULL domain
7699 */
7700 static void detach_destroy_domains(const struct cpumask *cpu_map)
7701 {
7702 /* Save because hotplug lock held. */
7703 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7704 int i;
7705
7706 for_each_cpu(i, cpu_map)
7707 cpu_attach_domain(NULL, &def_root_domain, i);
7708 synchronize_sched();
7709 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7710 }
7711
7712 /* handle null as "default" */
7713 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7714 struct sched_domain_attr *new, int idx_new)
7715 {
7716 struct sched_domain_attr tmp;
7717
7718 /* fast path */
7719 if (!new && !cur)
7720 return 1;
7721
7722 tmp = SD_ATTR_INIT;
7723 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7724 new ? (new + idx_new) : &tmp,
7725 sizeof(struct sched_domain_attr));
7726 }
7727
7728 /*
7729 * Partition sched domains as specified by the 'ndoms_new'
7730 * cpumasks in the array doms_new[] of cpumasks. This compares
7731 * doms_new[] to the current sched domain partitioning, doms_cur[].
7732 * It destroys each deleted domain and builds each new domain.
7733 *
7734 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7735 * The masks don't intersect (don't overlap.) We should setup one
7736 * sched domain for each mask. CPUs not in any of the cpumasks will
7737 * not be load balanced. If the same cpumask appears both in the
7738 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7739 * it as it is.
7740 *
7741 * The passed in 'doms_new' should be allocated using
7742 * alloc_sched_domains. This routine takes ownership of it and will
7743 * free_sched_domains it when done with it. If the caller failed the
7744 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7745 * and partition_sched_domains() will fallback to the single partition
7746 * 'fallback_doms', it also forces the domains to be rebuilt.
7747 *
7748 * If doms_new == NULL it will be replaced with cpu_online_mask.
7749 * ndoms_new == 0 is a special case for destroying existing domains,
7750 * and it will not create the default domain.
7751 *
7752 * Call with hotplug lock held
7753 */
7754 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7755 struct sched_domain_attr *dattr_new)
7756 {
7757 int i, j, n;
7758 int new_topology;
7759
7760 mutex_lock(&sched_domains_mutex);
7761
7762 /* always unregister in case we don't destroy any domains */
7763 unregister_sched_domain_sysctl();
7764
7765 /* Let architecture update cpu core mappings. */
7766 new_topology = arch_update_cpu_topology();
7767
7768 n = doms_new ? ndoms_new : 0;
7769
7770 /* Destroy deleted domains */
7771 for (i = 0; i < ndoms_cur; i++) {
7772 for (j = 0; j < n && !new_topology; j++) {
7773 if (cpumask_equal(doms_cur[i], doms_new[j])
7774 && dattrs_equal(dattr_cur, i, dattr_new, j))
7775 goto match1;
7776 }
7777 /* no match - a current sched domain not in new doms_new[] */
7778 detach_destroy_domains(doms_cur[i]);
7779 match1:
7780 ;
7781 }
7782
7783 if (doms_new == NULL) {
7784 ndoms_cur = 0;
7785 doms_new = &fallback_doms;
7786 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7787 WARN_ON_ONCE(dattr_new);
7788 }
7789
7790 /* Build new domains */
7791 for (i = 0; i < ndoms_new; i++) {
7792 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7793 if (cpumask_equal(doms_new[i], doms_cur[j])
7794 && dattrs_equal(dattr_new, i, dattr_cur, j))
7795 goto match2;
7796 }
7797 /* no match - add a new doms_new */
7798 __build_sched_domains(doms_new[i],
7799 dattr_new ? dattr_new + i : NULL);
7800 match2:
7801 ;
7802 }
7803
7804 /* Remember the new sched domains */
7805 if (doms_cur != &fallback_doms)
7806 free_sched_domains(doms_cur, ndoms_cur);
7807 kfree(dattr_cur); /* kfree(NULL) is safe */
7808 doms_cur = doms_new;
7809 dattr_cur = dattr_new;
7810 ndoms_cur = ndoms_new;
7811
7812 register_sched_domain_sysctl();
7813
7814 mutex_unlock(&sched_domains_mutex);
7815 }
7816
7817 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7818 static void arch_reinit_sched_domains(void)
7819 {
7820 get_online_cpus();
7821
7822 /* Destroy domains first to force the rebuild */
7823 partition_sched_domains(0, NULL, NULL);
7824
7825 rebuild_sched_domains();
7826 put_online_cpus();
7827 }
7828
7829 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7830 {
7831 unsigned int level = 0;
7832
7833 if (sscanf(buf, "%u", &level) != 1)
7834 return -EINVAL;
7835
7836 /*
7837 * level is always be positive so don't check for
7838 * level < POWERSAVINGS_BALANCE_NONE which is 0
7839 * What happens on 0 or 1 byte write,
7840 * need to check for count as well?
7841 */
7842
7843 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7844 return -EINVAL;
7845
7846 if (smt)
7847 sched_smt_power_savings = level;
7848 else
7849 sched_mc_power_savings = level;
7850
7851 arch_reinit_sched_domains();
7852
7853 return count;
7854 }
7855
7856 #ifdef CONFIG_SCHED_MC
7857 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7858 struct sysdev_class_attribute *attr,
7859 char *page)
7860 {
7861 return sprintf(page, "%u\n", sched_mc_power_savings);
7862 }
7863 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7864 struct sysdev_class_attribute *attr,
7865 const char *buf, size_t count)
7866 {
7867 return sched_power_savings_store(buf, count, 0);
7868 }
7869 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7870 sched_mc_power_savings_show,
7871 sched_mc_power_savings_store);
7872 #endif
7873
7874 #ifdef CONFIG_SCHED_SMT
7875 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7876 struct sysdev_class_attribute *attr,
7877 char *page)
7878 {
7879 return sprintf(page, "%u\n", sched_smt_power_savings);
7880 }
7881 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7882 struct sysdev_class_attribute *attr,
7883 const char *buf, size_t count)
7884 {
7885 return sched_power_savings_store(buf, count, 1);
7886 }
7887 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7888 sched_smt_power_savings_show,
7889 sched_smt_power_savings_store);
7890 #endif
7891
7892 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7893 {
7894 int err = 0;
7895
7896 #ifdef CONFIG_SCHED_SMT
7897 if (smt_capable())
7898 err = sysfs_create_file(&cls->kset.kobj,
7899 &attr_sched_smt_power_savings.attr);
7900 #endif
7901 #ifdef CONFIG_SCHED_MC
7902 if (!err && mc_capable())
7903 err = sysfs_create_file(&cls->kset.kobj,
7904 &attr_sched_mc_power_savings.attr);
7905 #endif
7906 return err;
7907 }
7908 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7909
7910 /*
7911 * Update cpusets according to cpu_active mask. If cpusets are
7912 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7913 * around partition_sched_domains().
7914 */
7915 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7916 void *hcpu)
7917 {
7918 switch (action & ~CPU_TASKS_FROZEN) {
7919 case CPU_ONLINE:
7920 case CPU_DOWN_FAILED:
7921 cpuset_update_active_cpus();
7922 return NOTIFY_OK;
7923 default:
7924 return NOTIFY_DONE;
7925 }
7926 }
7927
7928 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7929 void *hcpu)
7930 {
7931 switch (action & ~CPU_TASKS_FROZEN) {
7932 case CPU_DOWN_PREPARE:
7933 cpuset_update_active_cpus();
7934 return NOTIFY_OK;
7935 default:
7936 return NOTIFY_DONE;
7937 }
7938 }
7939
7940 static int update_runtime(struct notifier_block *nfb,
7941 unsigned long action, void *hcpu)
7942 {
7943 int cpu = (int)(long)hcpu;
7944
7945 switch (action) {
7946 case CPU_DOWN_PREPARE:
7947 case CPU_DOWN_PREPARE_FROZEN:
7948 disable_runtime(cpu_rq(cpu));
7949 return NOTIFY_OK;
7950
7951 case CPU_DOWN_FAILED:
7952 case CPU_DOWN_FAILED_FROZEN:
7953 case CPU_ONLINE:
7954 case CPU_ONLINE_FROZEN:
7955 enable_runtime(cpu_rq(cpu));
7956 return NOTIFY_OK;
7957
7958 default:
7959 return NOTIFY_DONE;
7960 }
7961 }
7962
7963 void __init sched_init_smp(void)
7964 {
7965 cpumask_var_t non_isolated_cpus;
7966
7967 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7968 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7969
7970 #if defined(CONFIG_NUMA)
7971 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7972 GFP_KERNEL);
7973 BUG_ON(sched_group_nodes_bycpu == NULL);
7974 #endif
7975 get_online_cpus();
7976 mutex_lock(&sched_domains_mutex);
7977 arch_init_sched_domains(cpu_active_mask);
7978 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7979 if (cpumask_empty(non_isolated_cpus))
7980 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7981 mutex_unlock(&sched_domains_mutex);
7982 put_online_cpus();
7983
7984 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7985 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7986
7987 /* RT runtime code needs to handle some hotplug events */
7988 hotcpu_notifier(update_runtime, 0);
7989
7990 init_hrtick();
7991
7992 /* Move init over to a non-isolated CPU */
7993 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7994 BUG();
7995 sched_init_granularity();
7996 free_cpumask_var(non_isolated_cpus);
7997
7998 init_sched_rt_class();
7999 }
8000 #else
8001 void __init sched_init_smp(void)
8002 {
8003 sched_init_granularity();
8004 }
8005 #endif /* CONFIG_SMP */
8006
8007 const_debug unsigned int sysctl_timer_migration = 1;
8008
8009 int in_sched_functions(unsigned long addr)
8010 {
8011 return in_lock_functions(addr) ||
8012 (addr >= (unsigned long)__sched_text_start
8013 && addr < (unsigned long)__sched_text_end);
8014 }
8015
8016 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8017 {
8018 cfs_rq->tasks_timeline = RB_ROOT;
8019 INIT_LIST_HEAD(&cfs_rq->tasks);
8020 #ifdef CONFIG_FAIR_GROUP_SCHED
8021 cfs_rq->rq = rq;
8022 /* allow initial update_cfs_load() to truncate */
8023 #ifdef CONFIG_SMP
8024 cfs_rq->load_stamp = 1;
8025 #endif
8026 #endif
8027 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8028 }
8029
8030 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8031 {
8032 struct rt_prio_array *array;
8033 int i;
8034
8035 array = &rt_rq->active;
8036 for (i = 0; i < MAX_RT_PRIO; i++) {
8037 INIT_LIST_HEAD(array->queue + i);
8038 __clear_bit(i, array->bitmap);
8039 }
8040 /* delimiter for bitsearch: */
8041 __set_bit(MAX_RT_PRIO, array->bitmap);
8042
8043 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8044 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8045 #ifdef CONFIG_SMP
8046 rt_rq->highest_prio.next = MAX_RT_PRIO;
8047 #endif
8048 #endif
8049 #ifdef CONFIG_SMP
8050 rt_rq->rt_nr_migratory = 0;
8051 rt_rq->overloaded = 0;
8052 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8053 #endif
8054
8055 rt_rq->rt_time = 0;
8056 rt_rq->rt_throttled = 0;
8057 rt_rq->rt_runtime = 0;
8058 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8059
8060 #ifdef CONFIG_RT_GROUP_SCHED
8061 rt_rq->rt_nr_boosted = 0;
8062 rt_rq->rq = rq;
8063 #endif
8064 }
8065
8066 #ifdef CONFIG_FAIR_GROUP_SCHED
8067 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8068 struct sched_entity *se, int cpu,
8069 struct sched_entity *parent)
8070 {
8071 struct rq *rq = cpu_rq(cpu);
8072 tg->cfs_rq[cpu] = cfs_rq;
8073 init_cfs_rq(cfs_rq, rq);
8074 cfs_rq->tg = tg;
8075
8076 tg->se[cpu] = se;
8077 /* se could be NULL for root_task_group */
8078 if (!se)
8079 return;
8080
8081 if (!parent)
8082 se->cfs_rq = &rq->cfs;
8083 else
8084 se->cfs_rq = parent->my_q;
8085
8086 se->my_q = cfs_rq;
8087 update_load_set(&se->load, 0);
8088 se->parent = parent;
8089 }
8090 #endif
8091
8092 #ifdef CONFIG_RT_GROUP_SCHED
8093 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8094 struct sched_rt_entity *rt_se, int cpu,
8095 struct sched_rt_entity *parent)
8096 {
8097 struct rq *rq = cpu_rq(cpu);
8098
8099 tg->rt_rq[cpu] = rt_rq;
8100 init_rt_rq(rt_rq, rq);
8101 rt_rq->tg = tg;
8102 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8103
8104 tg->rt_se[cpu] = rt_se;
8105 if (!rt_se)
8106 return;
8107
8108 if (!parent)
8109 rt_se->rt_rq = &rq->rt;
8110 else
8111 rt_se->rt_rq = parent->my_q;
8112
8113 rt_se->my_q = rt_rq;
8114 rt_se->parent = parent;
8115 INIT_LIST_HEAD(&rt_se->run_list);
8116 }
8117 #endif
8118
8119 void __init sched_init(void)
8120 {
8121 int i, j;
8122 unsigned long alloc_size = 0, ptr;
8123
8124 #ifdef CONFIG_FAIR_GROUP_SCHED
8125 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8126 #endif
8127 #ifdef CONFIG_RT_GROUP_SCHED
8128 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8129 #endif
8130 #ifdef CONFIG_CPUMASK_OFFSTACK
8131 alloc_size += num_possible_cpus() * cpumask_size();
8132 #endif
8133 if (alloc_size) {
8134 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8135
8136 #ifdef CONFIG_FAIR_GROUP_SCHED
8137 root_task_group.se = (struct sched_entity **)ptr;
8138 ptr += nr_cpu_ids * sizeof(void **);
8139
8140 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8141 ptr += nr_cpu_ids * sizeof(void **);
8142
8143 #endif /* CONFIG_FAIR_GROUP_SCHED */
8144 #ifdef CONFIG_RT_GROUP_SCHED
8145 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8146 ptr += nr_cpu_ids * sizeof(void **);
8147
8148 root_task_group.rt_rq = (struct rt_rq **)ptr;
8149 ptr += nr_cpu_ids * sizeof(void **);
8150
8151 #endif /* CONFIG_RT_GROUP_SCHED */
8152 #ifdef CONFIG_CPUMASK_OFFSTACK
8153 for_each_possible_cpu(i) {
8154 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8155 ptr += cpumask_size();
8156 }
8157 #endif /* CONFIG_CPUMASK_OFFSTACK */
8158 }
8159
8160 #ifdef CONFIG_SMP
8161 init_defrootdomain();
8162 #endif
8163
8164 init_rt_bandwidth(&def_rt_bandwidth,
8165 global_rt_period(), global_rt_runtime());
8166
8167 #ifdef CONFIG_RT_GROUP_SCHED
8168 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8169 global_rt_period(), global_rt_runtime());
8170 #endif /* CONFIG_RT_GROUP_SCHED */
8171
8172 #ifdef CONFIG_CGROUP_SCHED
8173 list_add(&root_task_group.list, &task_groups);
8174 INIT_LIST_HEAD(&root_task_group.children);
8175 autogroup_init(&init_task);
8176 #endif /* CONFIG_CGROUP_SCHED */
8177
8178 for_each_possible_cpu(i) {
8179 struct rq *rq;
8180
8181 rq = cpu_rq(i);
8182 raw_spin_lock_init(&rq->lock);
8183 rq->nr_running = 0;
8184 rq->calc_load_active = 0;
8185 rq->calc_load_update = jiffies + LOAD_FREQ;
8186 init_cfs_rq(&rq->cfs, rq);
8187 init_rt_rq(&rq->rt, rq);
8188 #ifdef CONFIG_FAIR_GROUP_SCHED
8189 root_task_group.shares = root_task_group_load;
8190 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8191 /*
8192 * How much cpu bandwidth does root_task_group get?
8193 *
8194 * In case of task-groups formed thr' the cgroup filesystem, it
8195 * gets 100% of the cpu resources in the system. This overall
8196 * system cpu resource is divided among the tasks of
8197 * root_task_group and its child task-groups in a fair manner,
8198 * based on each entity's (task or task-group's) weight
8199 * (se->load.weight).
8200 *
8201 * In other words, if root_task_group has 10 tasks of weight
8202 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8203 * then A0's share of the cpu resource is:
8204 *
8205 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8206 *
8207 * We achieve this by letting root_task_group's tasks sit
8208 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8209 */
8210 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8211 #endif /* CONFIG_FAIR_GROUP_SCHED */
8212
8213 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8214 #ifdef CONFIG_RT_GROUP_SCHED
8215 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8216 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8217 #endif
8218
8219 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8220 rq->cpu_load[j] = 0;
8221
8222 rq->last_load_update_tick = jiffies;
8223
8224 #ifdef CONFIG_SMP
8225 rq->sd = NULL;
8226 rq->rd = NULL;
8227 rq->cpu_power = SCHED_LOAD_SCALE;
8228 rq->post_schedule = 0;
8229 rq->active_balance = 0;
8230 rq->next_balance = jiffies;
8231 rq->push_cpu = 0;
8232 rq->cpu = i;
8233 rq->online = 0;
8234 rq->idle_stamp = 0;
8235 rq->avg_idle = 2*sysctl_sched_migration_cost;
8236 rq_attach_root(rq, &def_root_domain);
8237 #ifdef CONFIG_NO_HZ
8238 rq->nohz_balance_kick = 0;
8239 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8240 #endif
8241 #endif
8242 init_rq_hrtick(rq);
8243 atomic_set(&rq->nr_iowait, 0);
8244 }
8245
8246 set_load_weight(&init_task);
8247
8248 #ifdef CONFIG_PREEMPT_NOTIFIERS
8249 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8250 #endif
8251
8252 #ifdef CONFIG_SMP
8253 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8254 #endif
8255
8256 #ifdef CONFIG_RT_MUTEXES
8257 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8258 #endif
8259
8260 /*
8261 * The boot idle thread does lazy MMU switching as well:
8262 */
8263 atomic_inc(&init_mm.mm_count);
8264 enter_lazy_tlb(&init_mm, current);
8265
8266 /*
8267 * Make us the idle thread. Technically, schedule() should not be
8268 * called from this thread, however somewhere below it might be,
8269 * but because we are the idle thread, we just pick up running again
8270 * when this runqueue becomes "idle".
8271 */
8272 init_idle(current, smp_processor_id());
8273
8274 calc_load_update = jiffies + LOAD_FREQ;
8275
8276 /*
8277 * During early bootup we pretend to be a normal task:
8278 */
8279 current->sched_class = &fair_sched_class;
8280
8281 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8282 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8283 #ifdef CONFIG_SMP
8284 #ifdef CONFIG_NO_HZ
8285 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8286 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8287 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8288 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8289 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8290 #endif
8291 /* May be allocated at isolcpus cmdline parse time */
8292 if (cpu_isolated_map == NULL)
8293 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8294 #endif /* SMP */
8295
8296 scheduler_running = 1;
8297 }
8298
8299 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8300 static inline int preempt_count_equals(int preempt_offset)
8301 {
8302 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8303
8304 return (nested == preempt_offset);
8305 }
8306
8307 void __might_sleep(const char *file, int line, int preempt_offset)
8308 {
8309 #ifdef in_atomic
8310 static unsigned long prev_jiffy; /* ratelimiting */
8311
8312 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8313 system_state != SYSTEM_RUNNING || oops_in_progress)
8314 return;
8315 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8316 return;
8317 prev_jiffy = jiffies;
8318
8319 printk(KERN_ERR
8320 "BUG: sleeping function called from invalid context at %s:%d\n",
8321 file, line);
8322 printk(KERN_ERR
8323 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8324 in_atomic(), irqs_disabled(),
8325 current->pid, current->comm);
8326
8327 debug_show_held_locks(current);
8328 if (irqs_disabled())
8329 print_irqtrace_events(current);
8330 dump_stack();
8331 #endif
8332 }
8333 EXPORT_SYMBOL(__might_sleep);
8334 #endif
8335
8336 #ifdef CONFIG_MAGIC_SYSRQ
8337 static void normalize_task(struct rq *rq, struct task_struct *p)
8338 {
8339 const struct sched_class *prev_class = p->sched_class;
8340 int old_prio = p->prio;
8341 int on_rq;
8342
8343 on_rq = p->se.on_rq;
8344 if (on_rq)
8345 deactivate_task(rq, p, 0);
8346 __setscheduler(rq, p, SCHED_NORMAL, 0);
8347 if (on_rq) {
8348 activate_task(rq, p, 0);
8349 resched_task(rq->curr);
8350 }
8351
8352 check_class_changed(rq, p, prev_class, old_prio);
8353 }
8354
8355 void normalize_rt_tasks(void)
8356 {
8357 struct task_struct *g, *p;
8358 unsigned long flags;
8359 struct rq *rq;
8360
8361 read_lock_irqsave(&tasklist_lock, flags);
8362 do_each_thread(g, p) {
8363 /*
8364 * Only normalize user tasks:
8365 */
8366 if (!p->mm)
8367 continue;
8368
8369 p->se.exec_start = 0;
8370 #ifdef CONFIG_SCHEDSTATS
8371 p->se.statistics.wait_start = 0;
8372 p->se.statistics.sleep_start = 0;
8373 p->se.statistics.block_start = 0;
8374 #endif
8375
8376 if (!rt_task(p)) {
8377 /*
8378 * Renice negative nice level userspace
8379 * tasks back to 0:
8380 */
8381 if (TASK_NICE(p) < 0 && p->mm)
8382 set_user_nice(p, 0);
8383 continue;
8384 }
8385
8386 raw_spin_lock(&p->pi_lock);
8387 rq = __task_rq_lock(p);
8388
8389 normalize_task(rq, p);
8390
8391 __task_rq_unlock(rq);
8392 raw_spin_unlock(&p->pi_lock);
8393 } while_each_thread(g, p);
8394
8395 read_unlock_irqrestore(&tasklist_lock, flags);
8396 }
8397
8398 #endif /* CONFIG_MAGIC_SYSRQ */
8399
8400 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8401 /*
8402 * These functions are only useful for the IA64 MCA handling, or kdb.
8403 *
8404 * They can only be called when the whole system has been
8405 * stopped - every CPU needs to be quiescent, and no scheduling
8406 * activity can take place. Using them for anything else would
8407 * be a serious bug, and as a result, they aren't even visible
8408 * under any other configuration.
8409 */
8410
8411 /**
8412 * curr_task - return the current task for a given cpu.
8413 * @cpu: the processor in question.
8414 *
8415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8416 */
8417 struct task_struct *curr_task(int cpu)
8418 {
8419 return cpu_curr(cpu);
8420 }
8421
8422 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8423
8424 #ifdef CONFIG_IA64
8425 /**
8426 * set_curr_task - set the current task for a given cpu.
8427 * @cpu: the processor in question.
8428 * @p: the task pointer to set.
8429 *
8430 * Description: This function must only be used when non-maskable interrupts
8431 * are serviced on a separate stack. It allows the architecture to switch the
8432 * notion of the current task on a cpu in a non-blocking manner. This function
8433 * must be called with all CPU's synchronized, and interrupts disabled, the
8434 * and caller must save the original value of the current task (see
8435 * curr_task() above) and restore that value before reenabling interrupts and
8436 * re-starting the system.
8437 *
8438 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8439 */
8440 void set_curr_task(int cpu, struct task_struct *p)
8441 {
8442 cpu_curr(cpu) = p;
8443 }
8444
8445 #endif
8446
8447 #ifdef CONFIG_FAIR_GROUP_SCHED
8448 static void free_fair_sched_group(struct task_group *tg)
8449 {
8450 int i;
8451
8452 for_each_possible_cpu(i) {
8453 if (tg->cfs_rq)
8454 kfree(tg->cfs_rq[i]);
8455 if (tg->se)
8456 kfree(tg->se[i]);
8457 }
8458
8459 kfree(tg->cfs_rq);
8460 kfree(tg->se);
8461 }
8462
8463 static
8464 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8465 {
8466 struct cfs_rq *cfs_rq;
8467 struct sched_entity *se;
8468 int i;
8469
8470 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8471 if (!tg->cfs_rq)
8472 goto err;
8473 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8474 if (!tg->se)
8475 goto err;
8476
8477 tg->shares = NICE_0_LOAD;
8478
8479 for_each_possible_cpu(i) {
8480 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8481 GFP_KERNEL, cpu_to_node(i));
8482 if (!cfs_rq)
8483 goto err;
8484
8485 se = kzalloc_node(sizeof(struct sched_entity),
8486 GFP_KERNEL, cpu_to_node(i));
8487 if (!se)
8488 goto err_free_rq;
8489
8490 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8491 }
8492
8493 return 1;
8494
8495 err_free_rq:
8496 kfree(cfs_rq);
8497 err:
8498 return 0;
8499 }
8500
8501 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8502 {
8503 struct rq *rq = cpu_rq(cpu);
8504 unsigned long flags;
8505
8506 /*
8507 * Only empty task groups can be destroyed; so we can speculatively
8508 * check on_list without danger of it being re-added.
8509 */
8510 if (!tg->cfs_rq[cpu]->on_list)
8511 return;
8512
8513 raw_spin_lock_irqsave(&rq->lock, flags);
8514 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8515 raw_spin_unlock_irqrestore(&rq->lock, flags);
8516 }
8517 #else /* !CONFG_FAIR_GROUP_SCHED */
8518 static inline void free_fair_sched_group(struct task_group *tg)
8519 {
8520 }
8521
8522 static inline
8523 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8524 {
8525 return 1;
8526 }
8527
8528 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8529 {
8530 }
8531 #endif /* CONFIG_FAIR_GROUP_SCHED */
8532
8533 #ifdef CONFIG_RT_GROUP_SCHED
8534 static void free_rt_sched_group(struct task_group *tg)
8535 {
8536 int i;
8537
8538 destroy_rt_bandwidth(&tg->rt_bandwidth);
8539
8540 for_each_possible_cpu(i) {
8541 if (tg->rt_rq)
8542 kfree(tg->rt_rq[i]);
8543 if (tg->rt_se)
8544 kfree(tg->rt_se[i]);
8545 }
8546
8547 kfree(tg->rt_rq);
8548 kfree(tg->rt_se);
8549 }
8550
8551 static
8552 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8553 {
8554 struct rt_rq *rt_rq;
8555 struct sched_rt_entity *rt_se;
8556 struct rq *rq;
8557 int i;
8558
8559 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8560 if (!tg->rt_rq)
8561 goto err;
8562 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8563 if (!tg->rt_se)
8564 goto err;
8565
8566 init_rt_bandwidth(&tg->rt_bandwidth,
8567 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8568
8569 for_each_possible_cpu(i) {
8570 rq = cpu_rq(i);
8571
8572 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8573 GFP_KERNEL, cpu_to_node(i));
8574 if (!rt_rq)
8575 goto err;
8576
8577 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8578 GFP_KERNEL, cpu_to_node(i));
8579 if (!rt_se)
8580 goto err_free_rq;
8581
8582 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8583 }
8584
8585 return 1;
8586
8587 err_free_rq:
8588 kfree(rt_rq);
8589 err:
8590 return 0;
8591 }
8592 #else /* !CONFIG_RT_GROUP_SCHED */
8593 static inline void free_rt_sched_group(struct task_group *tg)
8594 {
8595 }
8596
8597 static inline
8598 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8599 {
8600 return 1;
8601 }
8602 #endif /* CONFIG_RT_GROUP_SCHED */
8603
8604 #ifdef CONFIG_CGROUP_SCHED
8605 static void free_sched_group(struct task_group *tg)
8606 {
8607 free_fair_sched_group(tg);
8608 free_rt_sched_group(tg);
8609 autogroup_free(tg);
8610 kfree(tg);
8611 }
8612
8613 /* allocate runqueue etc for a new task group */
8614 struct task_group *sched_create_group(struct task_group *parent)
8615 {
8616 struct task_group *tg;
8617 unsigned long flags;
8618
8619 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8620 if (!tg)
8621 return ERR_PTR(-ENOMEM);
8622
8623 if (!alloc_fair_sched_group(tg, parent))
8624 goto err;
8625
8626 if (!alloc_rt_sched_group(tg, parent))
8627 goto err;
8628
8629 spin_lock_irqsave(&task_group_lock, flags);
8630 list_add_rcu(&tg->list, &task_groups);
8631
8632 WARN_ON(!parent); /* root should already exist */
8633
8634 tg->parent = parent;
8635 INIT_LIST_HEAD(&tg->children);
8636 list_add_rcu(&tg->siblings, &parent->children);
8637 spin_unlock_irqrestore(&task_group_lock, flags);
8638
8639 return tg;
8640
8641 err:
8642 free_sched_group(tg);
8643 return ERR_PTR(-ENOMEM);
8644 }
8645
8646 /* rcu callback to free various structures associated with a task group */
8647 static void free_sched_group_rcu(struct rcu_head *rhp)
8648 {
8649 /* now it should be safe to free those cfs_rqs */
8650 free_sched_group(container_of(rhp, struct task_group, rcu));
8651 }
8652
8653 /* Destroy runqueue etc associated with a task group */
8654 void sched_destroy_group(struct task_group *tg)
8655 {
8656 unsigned long flags;
8657 int i;
8658
8659 /* end participation in shares distribution */
8660 for_each_possible_cpu(i)
8661 unregister_fair_sched_group(tg, i);
8662
8663 spin_lock_irqsave(&task_group_lock, flags);
8664 list_del_rcu(&tg->list);
8665 list_del_rcu(&tg->siblings);
8666 spin_unlock_irqrestore(&task_group_lock, flags);
8667
8668 /* wait for possible concurrent references to cfs_rqs complete */
8669 call_rcu(&tg->rcu, free_sched_group_rcu);
8670 }
8671
8672 /* change task's runqueue when it moves between groups.
8673 * The caller of this function should have put the task in its new group
8674 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8675 * reflect its new group.
8676 */
8677 void sched_move_task(struct task_struct *tsk)
8678 {
8679 int on_rq, running;
8680 unsigned long flags;
8681 struct rq *rq;
8682
8683 rq = task_rq_lock(tsk, &flags);
8684
8685 running = task_current(rq, tsk);
8686 on_rq = tsk->se.on_rq;
8687
8688 if (on_rq)
8689 dequeue_task(rq, tsk, 0);
8690 if (unlikely(running))
8691 tsk->sched_class->put_prev_task(rq, tsk);
8692
8693 #ifdef CONFIG_FAIR_GROUP_SCHED
8694 if (tsk->sched_class->task_move_group)
8695 tsk->sched_class->task_move_group(tsk, on_rq);
8696 else
8697 #endif
8698 set_task_rq(tsk, task_cpu(tsk));
8699
8700 if (unlikely(running))
8701 tsk->sched_class->set_curr_task(rq);
8702 if (on_rq)
8703 enqueue_task(rq, tsk, 0);
8704
8705 task_rq_unlock(rq, &flags);
8706 }
8707 #endif /* CONFIG_CGROUP_SCHED */
8708
8709 #ifdef CONFIG_FAIR_GROUP_SCHED
8710 static DEFINE_MUTEX(shares_mutex);
8711
8712 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8713 {
8714 int i;
8715 unsigned long flags;
8716
8717 /*
8718 * We can't change the weight of the root cgroup.
8719 */
8720 if (!tg->se[0])
8721 return -EINVAL;
8722
8723 if (shares < MIN_SHARES)
8724 shares = MIN_SHARES;
8725 else if (shares > MAX_SHARES)
8726 shares = MAX_SHARES;
8727
8728 mutex_lock(&shares_mutex);
8729 if (tg->shares == shares)
8730 goto done;
8731
8732 tg->shares = shares;
8733 for_each_possible_cpu(i) {
8734 struct rq *rq = cpu_rq(i);
8735 struct sched_entity *se;
8736
8737 se = tg->se[i];
8738 /* Propagate contribution to hierarchy */
8739 raw_spin_lock_irqsave(&rq->lock, flags);
8740 for_each_sched_entity(se)
8741 update_cfs_shares(group_cfs_rq(se));
8742 raw_spin_unlock_irqrestore(&rq->lock, flags);
8743 }
8744
8745 done:
8746 mutex_unlock(&shares_mutex);
8747 return 0;
8748 }
8749
8750 unsigned long sched_group_shares(struct task_group *tg)
8751 {
8752 return tg->shares;
8753 }
8754 #endif
8755
8756 #ifdef CONFIG_RT_GROUP_SCHED
8757 /*
8758 * Ensure that the real time constraints are schedulable.
8759 */
8760 static DEFINE_MUTEX(rt_constraints_mutex);
8761
8762 static unsigned long to_ratio(u64 period, u64 runtime)
8763 {
8764 if (runtime == RUNTIME_INF)
8765 return 1ULL << 20;
8766
8767 return div64_u64(runtime << 20, period);
8768 }
8769
8770 /* Must be called with tasklist_lock held */
8771 static inline int tg_has_rt_tasks(struct task_group *tg)
8772 {
8773 struct task_struct *g, *p;
8774
8775 do_each_thread(g, p) {
8776 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8777 return 1;
8778 } while_each_thread(g, p);
8779
8780 return 0;
8781 }
8782
8783 struct rt_schedulable_data {
8784 struct task_group *tg;
8785 u64 rt_period;
8786 u64 rt_runtime;
8787 };
8788
8789 static int tg_schedulable(struct task_group *tg, void *data)
8790 {
8791 struct rt_schedulable_data *d = data;
8792 struct task_group *child;
8793 unsigned long total, sum = 0;
8794 u64 period, runtime;
8795
8796 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8797 runtime = tg->rt_bandwidth.rt_runtime;
8798
8799 if (tg == d->tg) {
8800 period = d->rt_period;
8801 runtime = d->rt_runtime;
8802 }
8803
8804 /*
8805 * Cannot have more runtime than the period.
8806 */
8807 if (runtime > period && runtime != RUNTIME_INF)
8808 return -EINVAL;
8809
8810 /*
8811 * Ensure we don't starve existing RT tasks.
8812 */
8813 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8814 return -EBUSY;
8815
8816 total = to_ratio(period, runtime);
8817
8818 /*
8819 * Nobody can have more than the global setting allows.
8820 */
8821 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8822 return -EINVAL;
8823
8824 /*
8825 * The sum of our children's runtime should not exceed our own.
8826 */
8827 list_for_each_entry_rcu(child, &tg->children, siblings) {
8828 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8829 runtime = child->rt_bandwidth.rt_runtime;
8830
8831 if (child == d->tg) {
8832 period = d->rt_period;
8833 runtime = d->rt_runtime;
8834 }
8835
8836 sum += to_ratio(period, runtime);
8837 }
8838
8839 if (sum > total)
8840 return -EINVAL;
8841
8842 return 0;
8843 }
8844
8845 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8846 {
8847 struct rt_schedulable_data data = {
8848 .tg = tg,
8849 .rt_period = period,
8850 .rt_runtime = runtime,
8851 };
8852
8853 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8854 }
8855
8856 static int tg_set_bandwidth(struct task_group *tg,
8857 u64 rt_period, u64 rt_runtime)
8858 {
8859 int i, err = 0;
8860
8861 mutex_lock(&rt_constraints_mutex);
8862 read_lock(&tasklist_lock);
8863 err = __rt_schedulable(tg, rt_period, rt_runtime);
8864 if (err)
8865 goto unlock;
8866
8867 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8868 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8869 tg->rt_bandwidth.rt_runtime = rt_runtime;
8870
8871 for_each_possible_cpu(i) {
8872 struct rt_rq *rt_rq = tg->rt_rq[i];
8873
8874 raw_spin_lock(&rt_rq->rt_runtime_lock);
8875 rt_rq->rt_runtime = rt_runtime;
8876 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8877 }
8878 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8879 unlock:
8880 read_unlock(&tasklist_lock);
8881 mutex_unlock(&rt_constraints_mutex);
8882
8883 return err;
8884 }
8885
8886 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8887 {
8888 u64 rt_runtime, rt_period;
8889
8890 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8891 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8892 if (rt_runtime_us < 0)
8893 rt_runtime = RUNTIME_INF;
8894
8895 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8896 }
8897
8898 long sched_group_rt_runtime(struct task_group *tg)
8899 {
8900 u64 rt_runtime_us;
8901
8902 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8903 return -1;
8904
8905 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8906 do_div(rt_runtime_us, NSEC_PER_USEC);
8907 return rt_runtime_us;
8908 }
8909
8910 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8911 {
8912 u64 rt_runtime, rt_period;
8913
8914 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8915 rt_runtime = tg->rt_bandwidth.rt_runtime;
8916
8917 if (rt_period == 0)
8918 return -EINVAL;
8919
8920 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8921 }
8922
8923 long sched_group_rt_period(struct task_group *tg)
8924 {
8925 u64 rt_period_us;
8926
8927 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8928 do_div(rt_period_us, NSEC_PER_USEC);
8929 return rt_period_us;
8930 }
8931
8932 static int sched_rt_global_constraints(void)
8933 {
8934 u64 runtime, period;
8935 int ret = 0;
8936
8937 if (sysctl_sched_rt_period <= 0)
8938 return -EINVAL;
8939
8940 runtime = global_rt_runtime();
8941 period = global_rt_period();
8942
8943 /*
8944 * Sanity check on the sysctl variables.
8945 */
8946 if (runtime > period && runtime != RUNTIME_INF)
8947 return -EINVAL;
8948
8949 mutex_lock(&rt_constraints_mutex);
8950 read_lock(&tasklist_lock);
8951 ret = __rt_schedulable(NULL, 0, 0);
8952 read_unlock(&tasklist_lock);
8953 mutex_unlock(&rt_constraints_mutex);
8954
8955 return ret;
8956 }
8957
8958 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8959 {
8960 /* Don't accept realtime tasks when there is no way for them to run */
8961 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8962 return 0;
8963
8964 return 1;
8965 }
8966
8967 #else /* !CONFIG_RT_GROUP_SCHED */
8968 static int sched_rt_global_constraints(void)
8969 {
8970 unsigned long flags;
8971 int i;
8972
8973 if (sysctl_sched_rt_period <= 0)
8974 return -EINVAL;
8975
8976 /*
8977 * There's always some RT tasks in the root group
8978 * -- migration, kstopmachine etc..
8979 */
8980 if (sysctl_sched_rt_runtime == 0)
8981 return -EBUSY;
8982
8983 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8984 for_each_possible_cpu(i) {
8985 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8986
8987 raw_spin_lock(&rt_rq->rt_runtime_lock);
8988 rt_rq->rt_runtime = global_rt_runtime();
8989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8990 }
8991 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8992
8993 return 0;
8994 }
8995 #endif /* CONFIG_RT_GROUP_SCHED */
8996
8997 int sched_rt_handler(struct ctl_table *table, int write,
8998 void __user *buffer, size_t *lenp,
8999 loff_t *ppos)
9000 {
9001 int ret;
9002 int old_period, old_runtime;
9003 static DEFINE_MUTEX(mutex);
9004
9005 mutex_lock(&mutex);
9006 old_period = sysctl_sched_rt_period;
9007 old_runtime = sysctl_sched_rt_runtime;
9008
9009 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9010
9011 if (!ret && write) {
9012 ret = sched_rt_global_constraints();
9013 if (ret) {
9014 sysctl_sched_rt_period = old_period;
9015 sysctl_sched_rt_runtime = old_runtime;
9016 } else {
9017 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9018 def_rt_bandwidth.rt_period =
9019 ns_to_ktime(global_rt_period());
9020 }
9021 }
9022 mutex_unlock(&mutex);
9023
9024 return ret;
9025 }
9026
9027 #ifdef CONFIG_CGROUP_SCHED
9028
9029 /* return corresponding task_group object of a cgroup */
9030 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9031 {
9032 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9033 struct task_group, css);
9034 }
9035
9036 static struct cgroup_subsys_state *
9037 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9038 {
9039 struct task_group *tg, *parent;
9040
9041 if (!cgrp->parent) {
9042 /* This is early initialization for the top cgroup */
9043 return &root_task_group.css;
9044 }
9045
9046 parent = cgroup_tg(cgrp->parent);
9047 tg = sched_create_group(parent);
9048 if (IS_ERR(tg))
9049 return ERR_PTR(-ENOMEM);
9050
9051 return &tg->css;
9052 }
9053
9054 static void
9055 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9056 {
9057 struct task_group *tg = cgroup_tg(cgrp);
9058
9059 sched_destroy_group(tg);
9060 }
9061
9062 static int
9063 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9064 {
9065 #ifdef CONFIG_RT_GROUP_SCHED
9066 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9067 return -EINVAL;
9068 #else
9069 /* We don't support RT-tasks being in separate groups */
9070 if (tsk->sched_class != &fair_sched_class)
9071 return -EINVAL;
9072 #endif
9073 return 0;
9074 }
9075
9076 static int
9077 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9078 struct task_struct *tsk, bool threadgroup)
9079 {
9080 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9081 if (retval)
9082 return retval;
9083 if (threadgroup) {
9084 struct task_struct *c;
9085 rcu_read_lock();
9086 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9087 retval = cpu_cgroup_can_attach_task(cgrp, c);
9088 if (retval) {
9089 rcu_read_unlock();
9090 return retval;
9091 }
9092 }
9093 rcu_read_unlock();
9094 }
9095 return 0;
9096 }
9097
9098 static void
9099 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9100 struct cgroup *old_cont, struct task_struct *tsk,
9101 bool threadgroup)
9102 {
9103 sched_move_task(tsk);
9104 if (threadgroup) {
9105 struct task_struct *c;
9106 rcu_read_lock();
9107 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9108 sched_move_task(c);
9109 }
9110 rcu_read_unlock();
9111 }
9112 }
9113
9114 static void
9115 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9116 struct cgroup *old_cgrp, struct task_struct *task)
9117 {
9118 /*
9119 * cgroup_exit() is called in the copy_process() failure path.
9120 * Ignore this case since the task hasn't ran yet, this avoids
9121 * trying to poke a half freed task state from generic code.
9122 */
9123 if (!(task->flags & PF_EXITING))
9124 return;
9125
9126 sched_move_task(task);
9127 }
9128
9129 #ifdef CONFIG_FAIR_GROUP_SCHED
9130 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9131 u64 shareval)
9132 {
9133 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9134 }
9135
9136 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9137 {
9138 struct task_group *tg = cgroup_tg(cgrp);
9139
9140 return (u64) tg->shares;
9141 }
9142 #endif /* CONFIG_FAIR_GROUP_SCHED */
9143
9144 #ifdef CONFIG_RT_GROUP_SCHED
9145 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9146 s64 val)
9147 {
9148 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9149 }
9150
9151 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9152 {
9153 return sched_group_rt_runtime(cgroup_tg(cgrp));
9154 }
9155
9156 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9157 u64 rt_period_us)
9158 {
9159 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9160 }
9161
9162 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9163 {
9164 return sched_group_rt_period(cgroup_tg(cgrp));
9165 }
9166 #endif /* CONFIG_RT_GROUP_SCHED */
9167
9168 static struct cftype cpu_files[] = {
9169 #ifdef CONFIG_FAIR_GROUP_SCHED
9170 {
9171 .name = "shares",
9172 .read_u64 = cpu_shares_read_u64,
9173 .write_u64 = cpu_shares_write_u64,
9174 },
9175 #endif
9176 #ifdef CONFIG_RT_GROUP_SCHED
9177 {
9178 .name = "rt_runtime_us",
9179 .read_s64 = cpu_rt_runtime_read,
9180 .write_s64 = cpu_rt_runtime_write,
9181 },
9182 {
9183 .name = "rt_period_us",
9184 .read_u64 = cpu_rt_period_read_uint,
9185 .write_u64 = cpu_rt_period_write_uint,
9186 },
9187 #endif
9188 };
9189
9190 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9191 {
9192 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9193 }
9194
9195 struct cgroup_subsys cpu_cgroup_subsys = {
9196 .name = "cpu",
9197 .create = cpu_cgroup_create,
9198 .destroy = cpu_cgroup_destroy,
9199 .can_attach = cpu_cgroup_can_attach,
9200 .attach = cpu_cgroup_attach,
9201 .exit = cpu_cgroup_exit,
9202 .populate = cpu_cgroup_populate,
9203 .subsys_id = cpu_cgroup_subsys_id,
9204 .early_init = 1,
9205 };
9206
9207 #endif /* CONFIG_CGROUP_SCHED */
9208
9209 #ifdef CONFIG_CGROUP_CPUACCT
9210
9211 /*
9212 * CPU accounting code for task groups.
9213 *
9214 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9215 * (balbir@in.ibm.com).
9216 */
9217
9218 /* track cpu usage of a group of tasks and its child groups */
9219 struct cpuacct {
9220 struct cgroup_subsys_state css;
9221 /* cpuusage holds pointer to a u64-type object on every cpu */
9222 u64 __percpu *cpuusage;
9223 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9224 struct cpuacct *parent;
9225 };
9226
9227 struct cgroup_subsys cpuacct_subsys;
9228
9229 /* return cpu accounting group corresponding to this container */
9230 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9231 {
9232 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9233 struct cpuacct, css);
9234 }
9235
9236 /* return cpu accounting group to which this task belongs */
9237 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9238 {
9239 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9240 struct cpuacct, css);
9241 }
9242
9243 /* create a new cpu accounting group */
9244 static struct cgroup_subsys_state *cpuacct_create(
9245 struct cgroup_subsys *ss, struct cgroup *cgrp)
9246 {
9247 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9248 int i;
9249
9250 if (!ca)
9251 goto out;
9252
9253 ca->cpuusage = alloc_percpu(u64);
9254 if (!ca->cpuusage)
9255 goto out_free_ca;
9256
9257 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9258 if (percpu_counter_init(&ca->cpustat[i], 0))
9259 goto out_free_counters;
9260
9261 if (cgrp->parent)
9262 ca->parent = cgroup_ca(cgrp->parent);
9263
9264 return &ca->css;
9265
9266 out_free_counters:
9267 while (--i >= 0)
9268 percpu_counter_destroy(&ca->cpustat[i]);
9269 free_percpu(ca->cpuusage);
9270 out_free_ca:
9271 kfree(ca);
9272 out:
9273 return ERR_PTR(-ENOMEM);
9274 }
9275
9276 /* destroy an existing cpu accounting group */
9277 static void
9278 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9279 {
9280 struct cpuacct *ca = cgroup_ca(cgrp);
9281 int i;
9282
9283 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9284 percpu_counter_destroy(&ca->cpustat[i]);
9285 free_percpu(ca->cpuusage);
9286 kfree(ca);
9287 }
9288
9289 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9290 {
9291 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9292 u64 data;
9293
9294 #ifndef CONFIG_64BIT
9295 /*
9296 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9297 */
9298 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9299 data = *cpuusage;
9300 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9301 #else
9302 data = *cpuusage;
9303 #endif
9304
9305 return data;
9306 }
9307
9308 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9309 {
9310 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9311
9312 #ifndef CONFIG_64BIT
9313 /*
9314 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9315 */
9316 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9317 *cpuusage = val;
9318 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9319 #else
9320 *cpuusage = val;
9321 #endif
9322 }
9323
9324 /* return total cpu usage (in nanoseconds) of a group */
9325 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9326 {
9327 struct cpuacct *ca = cgroup_ca(cgrp);
9328 u64 totalcpuusage = 0;
9329 int i;
9330
9331 for_each_present_cpu(i)
9332 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9333
9334 return totalcpuusage;
9335 }
9336
9337 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9338 u64 reset)
9339 {
9340 struct cpuacct *ca = cgroup_ca(cgrp);
9341 int err = 0;
9342 int i;
9343
9344 if (reset) {
9345 err = -EINVAL;
9346 goto out;
9347 }
9348
9349 for_each_present_cpu(i)
9350 cpuacct_cpuusage_write(ca, i, 0);
9351
9352 out:
9353 return err;
9354 }
9355
9356 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9357 struct seq_file *m)
9358 {
9359 struct cpuacct *ca = cgroup_ca(cgroup);
9360 u64 percpu;
9361 int i;
9362
9363 for_each_present_cpu(i) {
9364 percpu = cpuacct_cpuusage_read(ca, i);
9365 seq_printf(m, "%llu ", (unsigned long long) percpu);
9366 }
9367 seq_printf(m, "\n");
9368 return 0;
9369 }
9370
9371 static const char *cpuacct_stat_desc[] = {
9372 [CPUACCT_STAT_USER] = "user",
9373 [CPUACCT_STAT_SYSTEM] = "system",
9374 };
9375
9376 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9377 struct cgroup_map_cb *cb)
9378 {
9379 struct cpuacct *ca = cgroup_ca(cgrp);
9380 int i;
9381
9382 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9383 s64 val = percpu_counter_read(&ca->cpustat[i]);
9384 val = cputime64_to_clock_t(val);
9385 cb->fill(cb, cpuacct_stat_desc[i], val);
9386 }
9387 return 0;
9388 }
9389
9390 static struct cftype files[] = {
9391 {
9392 .name = "usage",
9393 .read_u64 = cpuusage_read,
9394 .write_u64 = cpuusage_write,
9395 },
9396 {
9397 .name = "usage_percpu",
9398 .read_seq_string = cpuacct_percpu_seq_read,
9399 },
9400 {
9401 .name = "stat",
9402 .read_map = cpuacct_stats_show,
9403 },
9404 };
9405
9406 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9407 {
9408 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9409 }
9410
9411 /*
9412 * charge this task's execution time to its accounting group.
9413 *
9414 * called with rq->lock held.
9415 */
9416 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9417 {
9418 struct cpuacct *ca;
9419 int cpu;
9420
9421 if (unlikely(!cpuacct_subsys.active))
9422 return;
9423
9424 cpu = task_cpu(tsk);
9425
9426 rcu_read_lock();
9427
9428 ca = task_ca(tsk);
9429
9430 for (; ca; ca = ca->parent) {
9431 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9432 *cpuusage += cputime;
9433 }
9434
9435 rcu_read_unlock();
9436 }
9437
9438 /*
9439 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9440 * in cputime_t units. As a result, cpuacct_update_stats calls
9441 * percpu_counter_add with values large enough to always overflow the
9442 * per cpu batch limit causing bad SMP scalability.
9443 *
9444 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9445 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9446 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9447 */
9448 #ifdef CONFIG_SMP
9449 #define CPUACCT_BATCH \
9450 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9451 #else
9452 #define CPUACCT_BATCH 0
9453 #endif
9454
9455 /*
9456 * Charge the system/user time to the task's accounting group.
9457 */
9458 static void cpuacct_update_stats(struct task_struct *tsk,
9459 enum cpuacct_stat_index idx, cputime_t val)
9460 {
9461 struct cpuacct *ca;
9462 int batch = CPUACCT_BATCH;
9463
9464 if (unlikely(!cpuacct_subsys.active))
9465 return;
9466
9467 rcu_read_lock();
9468 ca = task_ca(tsk);
9469
9470 do {
9471 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9472 ca = ca->parent;
9473 } while (ca);
9474 rcu_read_unlock();
9475 }
9476
9477 struct cgroup_subsys cpuacct_subsys = {
9478 .name = "cpuacct",
9479 .create = cpuacct_create,
9480 .destroy = cpuacct_destroy,
9481 .populate = cpuacct_populate,
9482 .subsys_id = cpuacct_subsys_id,
9483 };
9484 #endif /* CONFIG_CGROUP_CPUACCT */
9485