[PATCH] sched: less newidle locking
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63 /*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72 /*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157 /*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179 /*
180 * These are the runqueue data structures:
181 */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200 struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288 return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297 spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304 return p->oncpu;
305 #else
306 return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313 /*
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
317 */
318 next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322 #else
323 spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330 /*
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
334 */
335 smp_wmb();
336 prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
348 */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
351 {
352 struct runqueue *rq;
353
354 repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
361 }
362 return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
367 {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
375 */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380 int cpu;
381
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389 #endif
390
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404 /* domain-specific stats */
405 preempt_disable();
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
409
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
423 }
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429 }
430 preempt_enable();
431 #endif
432 }
433 return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
442
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
467 #endif
468
469 /*
470 * rq_lock - lock a given runqueue and disable interrupts.
471 */
472 static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
474 {
475 runqueue_t *rq;
476
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
480
481 return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
493 *
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
499 */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502 t->sched_info.last_queued = 0;
503 }
504
505 /*
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
509 */
510 static inline void sched_info_arrive(task_t *t)
511 {
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
514
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
521
522 if (!rq)
523 return;
524
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
539 *
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
543 */
544 static inline void sched_info_queued(task_t *t)
545 {
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
553 */
554 static inline void sched_info_depart(task_t *t)
555 {
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559 t->sched_info.cpu_time += diff;
560
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
569 */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572 struct runqueue *rq = task_rq(prev);
573
574 /*
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
578 */
579 if (prev != rq->idle)
580 sched_info_depart(prev);
581
582 if (next != rq->idle)
583 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591 * Adding/removing a task to/from a priority array:
592 */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
608 }
609
610 /*
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
613 */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616 list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
625 }
626
627 /*
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
630 *
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
633 *
634 * We use 25% of the full 0...39 priority range so that:
635 *
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638 *
639 * Both properties are important to certain workloads.
640 */
641 static int effective_prio(task_t *p)
642 {
643 int bonus, prio;
644
645 if (rt_task(p))
646 return p->prio;
647
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
656 }
657
658 /*
659 * __activate_task - move a task to the runqueue.
660 */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
665 }
666
667 /*
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
669 */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
681
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
686
687 if (likely(sleep_time > 0)) {
688 /*
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
693 */
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
699 /*
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
702 */
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705 /*
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
709 */
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
717 }
718 }
719
720 /*
721 * This code gives a bonus to interactive tasks.
722 *
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
727 */
728 p->sleep_avg += sleep_time;
729
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
732 }
733 }
734
735 return effective_prio(p);
736 }
737
738 /*
739 * activate_task - move a task to the runqueue and do priority recalculation
740 *
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
743 */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746 unsigned long long now;
747
748 now = sched_clock();
749 #ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
755 }
756 #endif
757
758 p->prio = recalc_task_prio(p, now);
759
760 /*
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
763 */
764 if (!p->activated) {
765 /*
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
771 */
772 if (in_interrupt())
773 p->activated = 2;
774 else {
775 /*
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
778 */
779 p->activated = 1;
780 }
781 }
782 p->timestamp = now;
783
784 __activate_task(p, rq);
785 }
786
787 /*
788 * deactivate_task - remove a task from the runqueue.
789 */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
795 }
796
797 /*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807 int need_resched, nrpolling;
808
809 assert_spin_locked(&task_rq(p)->lock);
810
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822 set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
829 */
830 inline int task_curr(const task_t *p)
831 {
832 return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837 struct list_head list;
838
839 task_t *task;
840 int dest_cpu;
841
842 struct completion done;
843 } migration_req_t;
844
845 /*
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
848 */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851 runqueue_t *rq = task_rq(p);
852
853 /*
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
856 */
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
860 }
861
862 init_completion(&req->done);
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
867 }
868
869 /*
870 * wait_task_inactive - wait for a thread to unschedule.
871 *
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
877 */
878 void wait_task_inactive(task_t *p)
879 {
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
883
884 repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
895 }
896 task_rq_unlock(rq, &flags);
897 }
898
899 /***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
902 *
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
905 *
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
911 */
912 void kick_process(task_t *p)
913 {
914 int cpu;
915
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
921 }
922
923 /*
924 * Return a low guess at the load of a migration-source cpu.
925 *
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
928 */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933 if (type == 0)
934 return load_now;
935
936 return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940 * Return a high guess at the load of a migration-target cpu
941 */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946 if (type == 0)
947 return load_now;
948
949 return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
955 */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
968
969 /* Skip over this group if it has no CPUs allowed */
970 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971 goto nextgroup;
972
973 local_group = cpu_isset(this_cpu, group->cpumask);
974
975 /* Tally up the load of all CPUs in the group */
976 avg_load = 0;
977
978 for_each_cpu_mask(i, group->cpumask) {
979 /* Bias balancing toward cpus of our domain */
980 if (local_group)
981 load = source_load(i, load_idx);
982 else
983 load = target_load(i, load_idx);
984
985 avg_load += load;
986 }
987
988 /* Adjust by relative CPU power of the group */
989 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
990
991 if (local_group) {
992 this_load = avg_load;
993 this = group;
994 } else if (avg_load < min_load) {
995 min_load = avg_load;
996 idlest = group;
997 }
998 nextgroup:
999 group = group->next;
1000 } while (group != sd->groups);
1001
1002 if (!idlest || 100*this_load < imbalance*min_load)
1003 return NULL;
1004 return idlest;
1005 }
1006
1007 /*
1008 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1009 */
1010 static int
1011 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1012 {
1013 cpumask_t tmp;
1014 unsigned long load, min_load = ULONG_MAX;
1015 int idlest = -1;
1016 int i;
1017
1018 /* Traverse only the allowed CPUs */
1019 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1020
1021 for_each_cpu_mask(i, tmp) {
1022 load = source_load(i, 0);
1023
1024 if (load < min_load || (load == min_load && i == this_cpu)) {
1025 min_load = load;
1026 idlest = i;
1027 }
1028 }
1029
1030 return idlest;
1031 }
1032
1033 /*
1034 * sched_balance_self: balance the current task (running on cpu) in domains
1035 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036 * SD_BALANCE_EXEC.
1037 *
1038 * Balance, ie. select the least loaded group.
1039 *
1040 * Returns the target CPU number, or the same CPU if no balancing is needed.
1041 *
1042 * preempt must be disabled.
1043 */
1044 static int sched_balance_self(int cpu, int flag)
1045 {
1046 struct task_struct *t = current;
1047 struct sched_domain *tmp, *sd = NULL;
1048
1049 for_each_domain(cpu, tmp)
1050 if (tmp->flags & flag)
1051 sd = tmp;
1052
1053 while (sd) {
1054 cpumask_t span;
1055 struct sched_group *group;
1056 int new_cpu;
1057 int weight;
1058
1059 span = sd->span;
1060 group = find_idlest_group(sd, t, cpu);
1061 if (!group)
1062 goto nextlevel;
1063
1064 new_cpu = find_idlest_cpu(group, t, cpu);
1065 if (new_cpu == -1 || new_cpu == cpu)
1066 goto nextlevel;
1067
1068 /* Now try balancing at a lower domain level */
1069 cpu = new_cpu;
1070 nextlevel:
1071 sd = NULL;
1072 weight = cpus_weight(span);
1073 for_each_domain(cpu, tmp) {
1074 if (weight <= cpus_weight(tmp->span))
1075 break;
1076 if (tmp->flags & flag)
1077 sd = tmp;
1078 }
1079 /* while loop will break here if sd == NULL */
1080 }
1081
1082 return cpu;
1083 }
1084
1085 #endif /* CONFIG_SMP */
1086
1087 /*
1088 * wake_idle() will wake a task on an idle cpu if task->cpu is
1089 * not idle and an idle cpu is available. The span of cpus to
1090 * search starts with cpus closest then further out as needed,
1091 * so we always favor a closer, idle cpu.
1092 *
1093 * Returns the CPU we should wake onto.
1094 */
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1097 {
1098 cpumask_t tmp;
1099 struct sched_domain *sd;
1100 int i;
1101
1102 if (idle_cpu(cpu))
1103 return cpu;
1104
1105 for_each_domain(cpu, sd) {
1106 if (sd->flags & SD_WAKE_IDLE) {
1107 cpus_and(tmp, sd->span, p->cpus_allowed);
1108 for_each_cpu_mask(i, tmp) {
1109 if (idle_cpu(i))
1110 return i;
1111 }
1112 }
1113 else
1114 break;
1115 }
1116 return cpu;
1117 }
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1120 {
1121 return cpu;
1122 }
1123 #endif
1124
1125 /***
1126 * try_to_wake_up - wake up a thread
1127 * @p: the to-be-woken-up thread
1128 * @state: the mask of task states that can be woken
1129 * @sync: do a synchronous wakeup?
1130 *
1131 * Put it on the run-queue if it's not already there. The "current"
1132 * thread is always on the run-queue (except when the actual
1133 * re-schedule is in progress), and as such you're allowed to do
1134 * the simpler "current->state = TASK_RUNNING" to mark yourself
1135 * runnable without the overhead of this.
1136 *
1137 * returns failure only if the task is already active.
1138 */
1139 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1140 {
1141 int cpu, this_cpu, success = 0;
1142 unsigned long flags;
1143 long old_state;
1144 runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146 unsigned long load, this_load;
1147 struct sched_domain *sd, *this_sd = NULL;
1148 int new_cpu;
1149 #endif
1150
1151 rq = task_rq_lock(p, &flags);
1152 old_state = p->state;
1153 if (!(old_state & state))
1154 goto out;
1155
1156 if (p->array)
1157 goto out_running;
1158
1159 cpu = task_cpu(p);
1160 this_cpu = smp_processor_id();
1161
1162 #ifdef CONFIG_SMP
1163 if (unlikely(task_running(rq, p)))
1164 goto out_activate;
1165
1166 new_cpu = cpu;
1167
1168 schedstat_inc(rq, ttwu_cnt);
1169 if (cpu == this_cpu) {
1170 schedstat_inc(rq, ttwu_local);
1171 goto out_set_cpu;
1172 }
1173
1174 for_each_domain(this_cpu, sd) {
1175 if (cpu_isset(cpu, sd->span)) {
1176 schedstat_inc(sd, ttwu_wake_remote);
1177 this_sd = sd;
1178 break;
1179 }
1180 }
1181
1182 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183 goto out_set_cpu;
1184
1185 /*
1186 * Check for affine wakeup and passive balancing possibilities.
1187 */
1188 if (this_sd) {
1189 int idx = this_sd->wake_idx;
1190 unsigned int imbalance;
1191
1192 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1193
1194 load = source_load(cpu, idx);
1195 this_load = target_load(this_cpu, idx);
1196
1197 new_cpu = this_cpu; /* Wake to this CPU if we can */
1198
1199 if (this_sd->flags & SD_WAKE_AFFINE) {
1200 unsigned long tl = this_load;
1201 /*
1202 * If sync wakeup then subtract the (maximum possible)
1203 * effect of the currently running task from the load
1204 * of the current CPU:
1205 */
1206 if (sync)
1207 tl -= SCHED_LOAD_SCALE;
1208
1209 if ((tl <= load &&
1210 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1212 /*
1213 * This domain has SD_WAKE_AFFINE and
1214 * p is cache cold in this domain, and
1215 * there is no bad imbalance.
1216 */
1217 schedstat_inc(this_sd, ttwu_move_affine);
1218 goto out_set_cpu;
1219 }
1220 }
1221
1222 /*
1223 * Start passive balancing when half the imbalance_pct
1224 * limit is reached.
1225 */
1226 if (this_sd->flags & SD_WAKE_BALANCE) {
1227 if (imbalance*this_load <= 100*load) {
1228 schedstat_inc(this_sd, ttwu_move_balance);
1229 goto out_set_cpu;
1230 }
1231 }
1232 }
1233
1234 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236 new_cpu = wake_idle(new_cpu, p);
1237 if (new_cpu != cpu) {
1238 set_task_cpu(p, new_cpu);
1239 task_rq_unlock(rq, &flags);
1240 /* might preempt at this point */
1241 rq = task_rq_lock(p, &flags);
1242 old_state = p->state;
1243 if (!(old_state & state))
1244 goto out;
1245 if (p->array)
1246 goto out_running;
1247
1248 this_cpu = smp_processor_id();
1249 cpu = task_cpu(p);
1250 }
1251
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254 if (old_state == TASK_UNINTERRUPTIBLE) {
1255 rq->nr_uninterruptible--;
1256 /*
1257 * Tasks on involuntary sleep don't earn
1258 * sleep_avg beyond just interactive state.
1259 */
1260 p->activated = -1;
1261 }
1262
1263 /*
1264 * Tasks that have marked their sleep as noninteractive get
1265 * woken up without updating their sleep average. (i.e. their
1266 * sleep is handled in a priority-neutral manner, no priority
1267 * boost and no penalty.)
1268 */
1269 if (old_state & TASK_NONINTERACTIVE)
1270 __activate_task(p, rq);
1271 else
1272 activate_task(p, rq, cpu == this_cpu);
1273 /*
1274 * Sync wakeups (i.e. those types of wakeups where the waker
1275 * has indicated that it will leave the CPU in short order)
1276 * don't trigger a preemption, if the woken up task will run on
1277 * this cpu. (in this case the 'I will reschedule' promise of
1278 * the waker guarantees that the freshly woken up task is going
1279 * to be considered on this CPU.)
1280 */
1281 if (!sync || cpu != this_cpu) {
1282 if (TASK_PREEMPTS_CURR(p, rq))
1283 resched_task(rq->curr);
1284 }
1285 success = 1;
1286
1287 out_running:
1288 p->state = TASK_RUNNING;
1289 out:
1290 task_rq_unlock(rq, &flags);
1291
1292 return success;
1293 }
1294
1295 int fastcall wake_up_process(task_t *p)
1296 {
1297 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1298 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1299 }
1300
1301 EXPORT_SYMBOL(wake_up_process);
1302
1303 int fastcall wake_up_state(task_t *p, unsigned int state)
1304 {
1305 return try_to_wake_up(p, state, 0);
1306 }
1307
1308 /*
1309 * Perform scheduler related setup for a newly forked process p.
1310 * p is forked by current.
1311 */
1312 void fastcall sched_fork(task_t *p, int clone_flags)
1313 {
1314 int cpu = get_cpu();
1315
1316 #ifdef CONFIG_SMP
1317 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1318 #endif
1319 set_task_cpu(p, cpu);
1320
1321 /*
1322 * We mark the process as running here, but have not actually
1323 * inserted it onto the runqueue yet. This guarantees that
1324 * nobody will actually run it, and a signal or other external
1325 * event cannot wake it up and insert it on the runqueue either.
1326 */
1327 p->state = TASK_RUNNING;
1328 INIT_LIST_HEAD(&p->run_list);
1329 p->array = NULL;
1330 #ifdef CONFIG_SCHEDSTATS
1331 memset(&p->sched_info, 0, sizeof(p->sched_info));
1332 #endif
1333 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1334 p->oncpu = 0;
1335 #endif
1336 #ifdef CONFIG_PREEMPT
1337 /* Want to start with kernel preemption disabled. */
1338 p->thread_info->preempt_count = 1;
1339 #endif
1340 /*
1341 * Share the timeslice between parent and child, thus the
1342 * total amount of pending timeslices in the system doesn't change,
1343 * resulting in more scheduling fairness.
1344 */
1345 local_irq_disable();
1346 p->time_slice = (current->time_slice + 1) >> 1;
1347 /*
1348 * The remainder of the first timeslice might be recovered by
1349 * the parent if the child exits early enough.
1350 */
1351 p->first_time_slice = 1;
1352 current->time_slice >>= 1;
1353 p->timestamp = sched_clock();
1354 if (unlikely(!current->time_slice)) {
1355 /*
1356 * This case is rare, it happens when the parent has only
1357 * a single jiffy left from its timeslice. Taking the
1358 * runqueue lock is not a problem.
1359 */
1360 current->time_slice = 1;
1361 scheduler_tick();
1362 }
1363 local_irq_enable();
1364 put_cpu();
1365 }
1366
1367 /*
1368 * wake_up_new_task - wake up a newly created task for the first time.
1369 *
1370 * This function will do some initial scheduler statistics housekeeping
1371 * that must be done for every newly created context, then puts the task
1372 * on the runqueue and wakes it.
1373 */
1374 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1375 {
1376 unsigned long flags;
1377 int this_cpu, cpu;
1378 runqueue_t *rq, *this_rq;
1379
1380 rq = task_rq_lock(p, &flags);
1381 BUG_ON(p->state != TASK_RUNNING);
1382 this_cpu = smp_processor_id();
1383 cpu = task_cpu(p);
1384
1385 /*
1386 * We decrease the sleep average of forking parents
1387 * and children as well, to keep max-interactive tasks
1388 * from forking tasks that are max-interactive. The parent
1389 * (current) is done further down, under its lock.
1390 */
1391 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1392 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1393
1394 p->prio = effective_prio(p);
1395
1396 if (likely(cpu == this_cpu)) {
1397 if (!(clone_flags & CLONE_VM)) {
1398 /*
1399 * The VM isn't cloned, so we're in a good position to
1400 * do child-runs-first in anticipation of an exec. This
1401 * usually avoids a lot of COW overhead.
1402 */
1403 if (unlikely(!current->array))
1404 __activate_task(p, rq);
1405 else {
1406 p->prio = current->prio;
1407 list_add_tail(&p->run_list, &current->run_list);
1408 p->array = current->array;
1409 p->array->nr_active++;
1410 rq->nr_running++;
1411 }
1412 set_need_resched();
1413 } else
1414 /* Run child last */
1415 __activate_task(p, rq);
1416 /*
1417 * We skip the following code due to cpu == this_cpu
1418 *
1419 * task_rq_unlock(rq, &flags);
1420 * this_rq = task_rq_lock(current, &flags);
1421 */
1422 this_rq = rq;
1423 } else {
1424 this_rq = cpu_rq(this_cpu);
1425
1426 /*
1427 * Not the local CPU - must adjust timestamp. This should
1428 * get optimised away in the !CONFIG_SMP case.
1429 */
1430 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1431 + rq->timestamp_last_tick;
1432 __activate_task(p, rq);
1433 if (TASK_PREEMPTS_CURR(p, rq))
1434 resched_task(rq->curr);
1435
1436 /*
1437 * Parent and child are on different CPUs, now get the
1438 * parent runqueue to update the parent's ->sleep_avg:
1439 */
1440 task_rq_unlock(rq, &flags);
1441 this_rq = task_rq_lock(current, &flags);
1442 }
1443 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1444 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1445 task_rq_unlock(this_rq, &flags);
1446 }
1447
1448 /*
1449 * Potentially available exiting-child timeslices are
1450 * retrieved here - this way the parent does not get
1451 * penalized for creating too many threads.
1452 *
1453 * (this cannot be used to 'generate' timeslices
1454 * artificially, because any timeslice recovered here
1455 * was given away by the parent in the first place.)
1456 */
1457 void fastcall sched_exit(task_t *p)
1458 {
1459 unsigned long flags;
1460 runqueue_t *rq;
1461
1462 /*
1463 * If the child was a (relative-) CPU hog then decrease
1464 * the sleep_avg of the parent as well.
1465 */
1466 rq = task_rq_lock(p->parent, &flags);
1467 if (p->first_time_slice) {
1468 p->parent->time_slice += p->time_slice;
1469 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1470 p->parent->time_slice = task_timeslice(p);
1471 }
1472 if (p->sleep_avg < p->parent->sleep_avg)
1473 p->parent->sleep_avg = p->parent->sleep_avg /
1474 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1475 (EXIT_WEIGHT + 1);
1476 task_rq_unlock(rq, &flags);
1477 }
1478
1479 /**
1480 * prepare_task_switch - prepare to switch tasks
1481 * @rq: the runqueue preparing to switch
1482 * @next: the task we are going to switch to.
1483 *
1484 * This is called with the rq lock held and interrupts off. It must
1485 * be paired with a subsequent finish_task_switch after the context
1486 * switch.
1487 *
1488 * prepare_task_switch sets up locking and calls architecture specific
1489 * hooks.
1490 */
1491 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1492 {
1493 prepare_lock_switch(rq, next);
1494 prepare_arch_switch(next);
1495 }
1496
1497 /**
1498 * finish_task_switch - clean up after a task-switch
1499 * @rq: runqueue associated with task-switch
1500 * @prev: the thread we just switched away from.
1501 *
1502 * finish_task_switch must be called after the context switch, paired
1503 * with a prepare_task_switch call before the context switch.
1504 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1505 * and do any other architecture-specific cleanup actions.
1506 *
1507 * Note that we may have delayed dropping an mm in context_switch(). If
1508 * so, we finish that here outside of the runqueue lock. (Doing it
1509 * with the lock held can cause deadlocks; see schedule() for
1510 * details.)
1511 */
1512 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1513 __releases(rq->lock)
1514 {
1515 struct mm_struct *mm = rq->prev_mm;
1516 unsigned long prev_task_flags;
1517
1518 rq->prev_mm = NULL;
1519
1520 /*
1521 * A task struct has one reference for the use as "current".
1522 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1523 * calls schedule one last time. The schedule call will never return,
1524 * and the scheduled task must drop that reference.
1525 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1526 * still held, otherwise prev could be scheduled on another cpu, die
1527 * there before we look at prev->state, and then the reference would
1528 * be dropped twice.
1529 * Manfred Spraul <manfred@colorfullife.com>
1530 */
1531 prev_task_flags = prev->flags;
1532 #ifdef CONFIG_DEBUG_SPINLOCK
1533 /* this is a valid case when another task releases the spinlock */
1534 rq->lock.owner = current;
1535 #endif
1536 finish_arch_switch(prev);
1537 finish_lock_switch(rq, prev);
1538 if (mm)
1539 mmdrop(mm);
1540 if (unlikely(prev_task_flags & PF_DEAD))
1541 put_task_struct(prev);
1542 }
1543
1544 /**
1545 * schedule_tail - first thing a freshly forked thread must call.
1546 * @prev: the thread we just switched away from.
1547 */
1548 asmlinkage void schedule_tail(task_t *prev)
1549 __releases(rq->lock)
1550 {
1551 runqueue_t *rq = this_rq();
1552 finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554 /* In this case, finish_task_switch does not reenable preemption */
1555 preempt_enable();
1556 #endif
1557 if (current->set_child_tid)
1558 put_user(current->pid, current->set_child_tid);
1559 }
1560
1561 /*
1562 * context_switch - switch to the new MM and the new
1563 * thread's register state.
1564 */
1565 static inline
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567 {
1568 struct mm_struct *mm = next->mm;
1569 struct mm_struct *oldmm = prev->active_mm;
1570
1571 if (unlikely(!mm)) {
1572 next->active_mm = oldmm;
1573 atomic_inc(&oldmm->mm_count);
1574 enter_lazy_tlb(oldmm, next);
1575 } else
1576 switch_mm(oldmm, mm, next);
1577
1578 if (unlikely(!prev->mm)) {
1579 prev->active_mm = NULL;
1580 WARN_ON(rq->prev_mm);
1581 rq->prev_mm = oldmm;
1582 }
1583
1584 /* Here we just switch the register state and the stack. */
1585 switch_to(prev, next, prev);
1586
1587 return prev;
1588 }
1589
1590 /*
1591 * nr_running, nr_uninterruptible and nr_context_switches:
1592 *
1593 * externally visible scheduler statistics: current number of runnable
1594 * threads, current number of uninterruptible-sleeping threads, total
1595 * number of context switches performed since bootup.
1596 */
1597 unsigned long nr_running(void)
1598 {
1599 unsigned long i, sum = 0;
1600
1601 for_each_online_cpu(i)
1602 sum += cpu_rq(i)->nr_running;
1603
1604 return sum;
1605 }
1606
1607 unsigned long nr_uninterruptible(void)
1608 {
1609 unsigned long i, sum = 0;
1610
1611 for_each_cpu(i)
1612 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614 /*
1615 * Since we read the counters lockless, it might be slightly
1616 * inaccurate. Do not allow it to go below zero though:
1617 */
1618 if (unlikely((long)sum < 0))
1619 sum = 0;
1620
1621 return sum;
1622 }
1623
1624 unsigned long long nr_context_switches(void)
1625 {
1626 unsigned long long i, sum = 0;
1627
1628 for_each_cpu(i)
1629 sum += cpu_rq(i)->nr_switches;
1630
1631 return sum;
1632 }
1633
1634 unsigned long nr_iowait(void)
1635 {
1636 unsigned long i, sum = 0;
1637
1638 for_each_cpu(i)
1639 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641 return sum;
1642 }
1643
1644 #ifdef CONFIG_SMP
1645
1646 /*
1647 * double_rq_lock - safely lock two runqueues
1648 *
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1651 */
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1655 {
1656 if (rq1 == rq2) {
1657 spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659 } else {
1660 if (rq1 < rq2) {
1661 spin_lock(&rq1->lock);
1662 spin_lock(&rq2->lock);
1663 } else {
1664 spin_lock(&rq2->lock);
1665 spin_lock(&rq1->lock);
1666 }
1667 }
1668 }
1669
1670 /*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679 {
1680 spin_unlock(&rq1->lock);
1681 if (rq1 != rq2)
1682 spin_unlock(&rq2->lock);
1683 else
1684 __release(rq2->lock);
1685 }
1686
1687 /*
1688 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689 */
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691 __releases(this_rq->lock)
1692 __acquires(busiest->lock)
1693 __acquires(this_rq->lock)
1694 {
1695 if (unlikely(!spin_trylock(&busiest->lock))) {
1696 if (busiest < this_rq) {
1697 spin_unlock(&this_rq->lock);
1698 spin_lock(&busiest->lock);
1699 spin_lock(&this_rq->lock);
1700 } else
1701 spin_lock(&busiest->lock);
1702 }
1703 }
1704
1705 /*
1706 * If dest_cpu is allowed for this process, migrate the task to it.
1707 * This is accomplished by forcing the cpu_allowed mask to only
1708 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1709 * the cpu_allowed mask is restored.
1710 */
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1712 {
1713 migration_req_t req;
1714 runqueue_t *rq;
1715 unsigned long flags;
1716
1717 rq = task_rq_lock(p, &flags);
1718 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719 || unlikely(cpu_is_offline(dest_cpu)))
1720 goto out;
1721
1722 /* force the process onto the specified CPU */
1723 if (migrate_task(p, dest_cpu, &req)) {
1724 /* Need to wait for migration thread (might exit: take ref). */
1725 struct task_struct *mt = rq->migration_thread;
1726 get_task_struct(mt);
1727 task_rq_unlock(rq, &flags);
1728 wake_up_process(mt);
1729 put_task_struct(mt);
1730 wait_for_completion(&req.done);
1731 return;
1732 }
1733 out:
1734 task_rq_unlock(rq, &flags);
1735 }
1736
1737 /*
1738 * sched_exec - execve() is a valuable balancing opportunity, because at
1739 * this point the task has the smallest effective memory and cache footprint.
1740 */
1741 void sched_exec(void)
1742 {
1743 int new_cpu, this_cpu = get_cpu();
1744 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1745 put_cpu();
1746 if (new_cpu != this_cpu)
1747 sched_migrate_task(current, new_cpu);
1748 }
1749
1750 /*
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1753 */
1754 static inline
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757 {
1758 dequeue_task(p, src_array);
1759 src_rq->nr_running--;
1760 set_task_cpu(p, this_cpu);
1761 this_rq->nr_running++;
1762 enqueue_task(p, this_array);
1763 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764 + this_rq->timestamp_last_tick;
1765 /*
1766 * Note that idle threads have a prio of MAX_PRIO, for this test
1767 * to be always true for them.
1768 */
1769 if (TASK_PREEMPTS_CURR(p, this_rq))
1770 resched_task(this_rq->curr);
1771 }
1772
1773 /*
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775 */
1776 static inline
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778 struct sched_domain *sd, enum idle_type idle,
1779 int *all_pinned)
1780 {
1781 /*
1782 * We do not migrate tasks that are:
1783 * 1) running (obviously), or
1784 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785 * 3) are cache-hot on their current CPU.
1786 */
1787 if (!cpu_isset(this_cpu, p->cpus_allowed))
1788 return 0;
1789 *all_pinned = 0;
1790
1791 if (task_running(rq, p))
1792 return 0;
1793
1794 /*
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1798 */
1799
1800 if (sd->nr_balance_failed > sd->cache_nice_tries)
1801 return 1;
1802
1803 if (task_hot(p, rq->timestamp_last_tick, sd))
1804 return 0;
1805 return 1;
1806 }
1807
1808 /*
1809 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810 * as part of a balancing operation within "domain". Returns the number of
1811 * tasks moved.
1812 *
1813 * Called with both runqueues locked.
1814 */
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816 unsigned long max_nr_move, struct sched_domain *sd,
1817 enum idle_type idle, int *all_pinned)
1818 {
1819 prio_array_t *array, *dst_array;
1820 struct list_head *head, *curr;
1821 int idx, pulled = 0, pinned = 0;
1822 task_t *tmp;
1823
1824 if (max_nr_move == 0)
1825 goto out;
1826
1827 pinned = 1;
1828
1829 /*
1830 * We first consider expired tasks. Those will likely not be
1831 * executed in the near future, and they are most likely to
1832 * be cache-cold, thus switching CPUs has the least effect
1833 * on them.
1834 */
1835 if (busiest->expired->nr_active) {
1836 array = busiest->expired;
1837 dst_array = this_rq->expired;
1838 } else {
1839 array = busiest->active;
1840 dst_array = this_rq->active;
1841 }
1842
1843 new_array:
1844 /* Start searching at priority 0: */
1845 idx = 0;
1846 skip_bitmap:
1847 if (!idx)
1848 idx = sched_find_first_bit(array->bitmap);
1849 else
1850 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851 if (idx >= MAX_PRIO) {
1852 if (array == busiest->expired && busiest->active->nr_active) {
1853 array = busiest->active;
1854 dst_array = this_rq->active;
1855 goto new_array;
1856 }
1857 goto out;
1858 }
1859
1860 head = array->queue + idx;
1861 curr = head->prev;
1862 skip_queue:
1863 tmp = list_entry(curr, task_t, run_list);
1864
1865 curr = curr->prev;
1866
1867 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1868 if (curr != head)
1869 goto skip_queue;
1870 idx++;
1871 goto skip_bitmap;
1872 }
1873
1874 #ifdef CONFIG_SCHEDSTATS
1875 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876 schedstat_inc(sd, lb_hot_gained[idle]);
1877 #endif
1878
1879 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880 pulled++;
1881
1882 /* We only want to steal up to the prescribed number of tasks. */
1883 if (pulled < max_nr_move) {
1884 if (curr != head)
1885 goto skip_queue;
1886 idx++;
1887 goto skip_bitmap;
1888 }
1889 out:
1890 /*
1891 * Right now, this is the only place pull_task() is called,
1892 * so we can safely collect pull_task() stats here rather than
1893 * inside pull_task().
1894 */
1895 schedstat_add(sd, lb_gained[idle], pulled);
1896
1897 if (all_pinned)
1898 *all_pinned = pinned;
1899 return pulled;
1900 }
1901
1902 /*
1903 * find_busiest_group finds and returns the busiest CPU group within the
1904 * domain. It calculates and returns the number of tasks which should be
1905 * moved to restore balance via the imbalance parameter.
1906 */
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909 unsigned long *imbalance, enum idle_type idle)
1910 {
1911 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1913 int load_idx;
1914
1915 max_load = this_load = total_load = total_pwr = 0;
1916 if (idle == NOT_IDLE)
1917 load_idx = sd->busy_idx;
1918 else if (idle == NEWLY_IDLE)
1919 load_idx = sd->newidle_idx;
1920 else
1921 load_idx = sd->idle_idx;
1922
1923 do {
1924 unsigned long load;
1925 int local_group;
1926 int i;
1927
1928 local_group = cpu_isset(this_cpu, group->cpumask);
1929
1930 /* Tally up the load of all CPUs in the group */
1931 avg_load = 0;
1932
1933 for_each_cpu_mask(i, group->cpumask) {
1934 /* Bias balancing toward cpus of our domain */
1935 if (local_group)
1936 load = target_load(i, load_idx);
1937 else
1938 load = source_load(i, load_idx);
1939
1940 avg_load += load;
1941 }
1942
1943 total_load += avg_load;
1944 total_pwr += group->cpu_power;
1945
1946 /* Adjust by relative CPU power of the group */
1947 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1948
1949 if (local_group) {
1950 this_load = avg_load;
1951 this = group;
1952 } else if (avg_load > max_load) {
1953 max_load = avg_load;
1954 busiest = group;
1955 }
1956 group = group->next;
1957 } while (group != sd->groups);
1958
1959 if (!busiest || this_load >= max_load)
1960 goto out_balanced;
1961
1962 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1963
1964 if (this_load >= avg_load ||
1965 100*max_load <= sd->imbalance_pct*this_load)
1966 goto out_balanced;
1967
1968 /*
1969 * We're trying to get all the cpus to the average_load, so we don't
1970 * want to push ourselves above the average load, nor do we wish to
1971 * reduce the max loaded cpu below the average load, as either of these
1972 * actions would just result in more rebalancing later, and ping-pong
1973 * tasks around. Thus we look for the minimum possible imbalance.
1974 * Negative imbalances (*we* are more loaded than anyone else) will
1975 * be counted as no imbalance for these purposes -- we can't fix that
1976 * by pulling tasks to us. Be careful of negative numbers as they'll
1977 * appear as very large values with unsigned longs.
1978 */
1979 /* How much load to actually move to equalise the imbalance */
1980 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1981 (avg_load - this_load) * this->cpu_power)
1982 / SCHED_LOAD_SCALE;
1983
1984 if (*imbalance < SCHED_LOAD_SCALE) {
1985 unsigned long pwr_now = 0, pwr_move = 0;
1986 unsigned long tmp;
1987
1988 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1989 *imbalance = 1;
1990 return busiest;
1991 }
1992
1993 /*
1994 * OK, we don't have enough imbalance to justify moving tasks,
1995 * however we may be able to increase total CPU power used by
1996 * moving them.
1997 */
1998
1999 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2000 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2001 pwr_now /= SCHED_LOAD_SCALE;
2002
2003 /* Amount of load we'd subtract */
2004 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2005 if (max_load > tmp)
2006 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2007 max_load - tmp);
2008
2009 /* Amount of load we'd add */
2010 if (max_load*busiest->cpu_power <
2011 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2012 tmp = max_load*busiest->cpu_power/this->cpu_power;
2013 else
2014 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2015 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2016 pwr_move /= SCHED_LOAD_SCALE;
2017
2018 /* Move if we gain throughput */
2019 if (pwr_move <= pwr_now)
2020 goto out_balanced;
2021
2022 *imbalance = 1;
2023 return busiest;
2024 }
2025
2026 /* Get rid of the scaling factor, rounding down as we divide */
2027 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2028 return busiest;
2029
2030 out_balanced:
2031
2032 *imbalance = 0;
2033 return NULL;
2034 }
2035
2036 /*
2037 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2038 */
2039 static runqueue_t *find_busiest_queue(struct sched_group *group)
2040 {
2041 unsigned long load, max_load = 0;
2042 runqueue_t *busiest = NULL;
2043 int i;
2044
2045 for_each_cpu_mask(i, group->cpumask) {
2046 load = source_load(i, 0);
2047
2048 if (load > max_load) {
2049 max_load = load;
2050 busiest = cpu_rq(i);
2051 }
2052 }
2053
2054 return busiest;
2055 }
2056
2057 /*
2058 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2059 * so long as it is large enough.
2060 */
2061 #define MAX_PINNED_INTERVAL 512
2062
2063 /*
2064 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2065 * tasks if there is an imbalance.
2066 *
2067 * Called with this_rq unlocked.
2068 */
2069 static int load_balance(int this_cpu, runqueue_t *this_rq,
2070 struct sched_domain *sd, enum idle_type idle)
2071 {
2072 struct sched_group *group;
2073 runqueue_t *busiest;
2074 unsigned long imbalance;
2075 int nr_moved, all_pinned = 0;
2076 int active_balance = 0;
2077
2078 spin_lock(&this_rq->lock);
2079 schedstat_inc(sd, lb_cnt[idle]);
2080
2081 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2082 if (!group) {
2083 schedstat_inc(sd, lb_nobusyg[idle]);
2084 goto out_balanced;
2085 }
2086
2087 busiest = find_busiest_queue(group);
2088 if (!busiest) {
2089 schedstat_inc(sd, lb_nobusyq[idle]);
2090 goto out_balanced;
2091 }
2092
2093 BUG_ON(busiest == this_rq);
2094
2095 schedstat_add(sd, lb_imbalance[idle], imbalance);
2096
2097 nr_moved = 0;
2098 if (busiest->nr_running > 1) {
2099 /*
2100 * Attempt to move tasks. If find_busiest_group has found
2101 * an imbalance but busiest->nr_running <= 1, the group is
2102 * still unbalanced. nr_moved simply stays zero, so it is
2103 * correctly treated as an imbalance.
2104 */
2105 double_lock_balance(this_rq, busiest);
2106 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2107 imbalance, sd, idle, &all_pinned);
2108 spin_unlock(&busiest->lock);
2109
2110 /* All tasks on this runqueue were pinned by CPU affinity */
2111 if (unlikely(all_pinned))
2112 goto out_balanced;
2113 }
2114
2115 spin_unlock(&this_rq->lock);
2116
2117 if (!nr_moved) {
2118 schedstat_inc(sd, lb_failed[idle]);
2119 sd->nr_balance_failed++;
2120
2121 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2122
2123 spin_lock(&busiest->lock);
2124 if (!busiest->active_balance) {
2125 busiest->active_balance = 1;
2126 busiest->push_cpu = this_cpu;
2127 active_balance = 1;
2128 }
2129 spin_unlock(&busiest->lock);
2130 if (active_balance)
2131 wake_up_process(busiest->migration_thread);
2132
2133 /*
2134 * We've kicked active balancing, reset the failure
2135 * counter.
2136 */
2137 sd->nr_balance_failed = sd->cache_nice_tries+1;
2138 }
2139 } else
2140 sd->nr_balance_failed = 0;
2141
2142 if (likely(!active_balance)) {
2143 /* We were unbalanced, so reset the balancing interval */
2144 sd->balance_interval = sd->min_interval;
2145 } else {
2146 /*
2147 * If we've begun active balancing, start to back off. This
2148 * case may not be covered by the all_pinned logic if there
2149 * is only 1 task on the busy runqueue (because we don't call
2150 * move_tasks).
2151 */
2152 if (sd->balance_interval < sd->max_interval)
2153 sd->balance_interval *= 2;
2154 }
2155
2156 return nr_moved;
2157
2158 out_balanced:
2159 spin_unlock(&this_rq->lock);
2160
2161 schedstat_inc(sd, lb_balanced[idle]);
2162
2163 sd->nr_balance_failed = 0;
2164 /* tune up the balancing interval */
2165 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2166 (sd->balance_interval < sd->max_interval))
2167 sd->balance_interval *= 2;
2168
2169 return 0;
2170 }
2171
2172 /*
2173 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2174 * tasks if there is an imbalance.
2175 *
2176 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2177 * this_rq is locked.
2178 */
2179 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2180 struct sched_domain *sd)
2181 {
2182 struct sched_group *group;
2183 runqueue_t *busiest = NULL;
2184 unsigned long imbalance;
2185 int nr_moved = 0;
2186
2187 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2188 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2189 if (!group) {
2190 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2191 goto out_balanced;
2192 }
2193
2194 busiest = find_busiest_queue(group);
2195 if (!busiest) {
2196 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2197 goto out_balanced;
2198 }
2199
2200 BUG_ON(busiest == this_rq);
2201
2202 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2203
2204 nr_moved = 0;
2205 if (busiest->nr_running > 1) {
2206 /* Attempt to move tasks */
2207 double_lock_balance(this_rq, busiest);
2208 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2209 imbalance, sd, NEWLY_IDLE, NULL);
2210 spin_unlock(&busiest->lock);
2211 }
2212
2213 if (!nr_moved)
2214 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2215 else
2216 sd->nr_balance_failed = 0;
2217
2218 return nr_moved;
2219
2220 out_balanced:
2221 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2222 sd->nr_balance_failed = 0;
2223 return 0;
2224 }
2225
2226 /*
2227 * idle_balance is called by schedule() if this_cpu is about to become
2228 * idle. Attempts to pull tasks from other CPUs.
2229 */
2230 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2231 {
2232 struct sched_domain *sd;
2233
2234 for_each_domain(this_cpu, sd) {
2235 if (sd->flags & SD_BALANCE_NEWIDLE) {
2236 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2237 /* We've pulled tasks over so stop searching */
2238 break;
2239 }
2240 }
2241 }
2242 }
2243
2244 /*
2245 * active_load_balance is run by migration threads. It pushes running tasks
2246 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2247 * running on each physical CPU where possible, and avoids physical /
2248 * logical imbalances.
2249 *
2250 * Called with busiest_rq locked.
2251 */
2252 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2253 {
2254 struct sched_domain *sd;
2255 runqueue_t *target_rq;
2256 int target_cpu = busiest_rq->push_cpu;
2257
2258 if (busiest_rq->nr_running <= 1)
2259 /* no task to move */
2260 return;
2261
2262 target_rq = cpu_rq(target_cpu);
2263
2264 /*
2265 * This condition is "impossible", if it occurs
2266 * we need to fix it. Originally reported by
2267 * Bjorn Helgaas on a 128-cpu setup.
2268 */
2269 BUG_ON(busiest_rq == target_rq);
2270
2271 /* move a task from busiest_rq to target_rq */
2272 double_lock_balance(busiest_rq, target_rq);
2273
2274 /* Search for an sd spanning us and the target CPU. */
2275 for_each_domain(target_cpu, sd)
2276 if ((sd->flags & SD_LOAD_BALANCE) &&
2277 cpu_isset(busiest_cpu, sd->span))
2278 break;
2279
2280 if (unlikely(sd == NULL))
2281 goto out;
2282
2283 schedstat_inc(sd, alb_cnt);
2284
2285 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2286 schedstat_inc(sd, alb_pushed);
2287 else
2288 schedstat_inc(sd, alb_failed);
2289 out:
2290 spin_unlock(&target_rq->lock);
2291 }
2292
2293 /*
2294 * rebalance_tick will get called every timer tick, on every CPU.
2295 *
2296 * It checks each scheduling domain to see if it is due to be balanced,
2297 * and initiates a balancing operation if so.
2298 *
2299 * Balancing parameters are set up in arch_init_sched_domains.
2300 */
2301
2302 /* Don't have all balancing operations going off at once */
2303 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2304
2305 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2306 enum idle_type idle)
2307 {
2308 unsigned long old_load, this_load;
2309 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2310 struct sched_domain *sd;
2311 int i;
2312
2313 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2314 /* Update our load */
2315 for (i = 0; i < 3; i++) {
2316 unsigned long new_load = this_load;
2317 int scale = 1 << i;
2318 old_load = this_rq->cpu_load[i];
2319 /*
2320 * Round up the averaging division if load is increasing. This
2321 * prevents us from getting stuck on 9 if the load is 10, for
2322 * example.
2323 */
2324 if (new_load > old_load)
2325 new_load += scale-1;
2326 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2327 }
2328
2329 for_each_domain(this_cpu, sd) {
2330 unsigned long interval;
2331
2332 if (!(sd->flags & SD_LOAD_BALANCE))
2333 continue;
2334
2335 interval = sd->balance_interval;
2336 if (idle != SCHED_IDLE)
2337 interval *= sd->busy_factor;
2338
2339 /* scale ms to jiffies */
2340 interval = msecs_to_jiffies(interval);
2341 if (unlikely(!interval))
2342 interval = 1;
2343
2344 if (j - sd->last_balance >= interval) {
2345 if (load_balance(this_cpu, this_rq, sd, idle)) {
2346 /* We've pulled tasks over so no longer idle */
2347 idle = NOT_IDLE;
2348 }
2349 sd->last_balance += interval;
2350 }
2351 }
2352 }
2353 #else
2354 /*
2355 * on UP we do not need to balance between CPUs:
2356 */
2357 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2358 {
2359 }
2360 static inline void idle_balance(int cpu, runqueue_t *rq)
2361 {
2362 }
2363 #endif
2364
2365 static inline int wake_priority_sleeper(runqueue_t *rq)
2366 {
2367 int ret = 0;
2368 #ifdef CONFIG_SCHED_SMT
2369 spin_lock(&rq->lock);
2370 /*
2371 * If an SMT sibling task has been put to sleep for priority
2372 * reasons reschedule the idle task to see if it can now run.
2373 */
2374 if (rq->nr_running) {
2375 resched_task(rq->idle);
2376 ret = 1;
2377 }
2378 spin_unlock(&rq->lock);
2379 #endif
2380 return ret;
2381 }
2382
2383 DEFINE_PER_CPU(struct kernel_stat, kstat);
2384
2385 EXPORT_PER_CPU_SYMBOL(kstat);
2386
2387 /*
2388 * This is called on clock ticks and on context switches.
2389 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2390 */
2391 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2392 unsigned long long now)
2393 {
2394 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2395 p->sched_time += now - last;
2396 }
2397
2398 /*
2399 * Return current->sched_time plus any more ns on the sched_clock
2400 * that have not yet been banked.
2401 */
2402 unsigned long long current_sched_time(const task_t *tsk)
2403 {
2404 unsigned long long ns;
2405 unsigned long flags;
2406 local_irq_save(flags);
2407 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2408 ns = tsk->sched_time + (sched_clock() - ns);
2409 local_irq_restore(flags);
2410 return ns;
2411 }
2412
2413 /*
2414 * We place interactive tasks back into the active array, if possible.
2415 *
2416 * To guarantee that this does not starve expired tasks we ignore the
2417 * interactivity of a task if the first expired task had to wait more
2418 * than a 'reasonable' amount of time. This deadline timeout is
2419 * load-dependent, as the frequency of array switched decreases with
2420 * increasing number of running tasks. We also ignore the interactivity
2421 * if a better static_prio task has expired:
2422 */
2423 #define EXPIRED_STARVING(rq) \
2424 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2425 (jiffies - (rq)->expired_timestamp >= \
2426 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2427 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2428
2429 /*
2430 * Account user cpu time to a process.
2431 * @p: the process that the cpu time gets accounted to
2432 * @hardirq_offset: the offset to subtract from hardirq_count()
2433 * @cputime: the cpu time spent in user space since the last update
2434 */
2435 void account_user_time(struct task_struct *p, cputime_t cputime)
2436 {
2437 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2438 cputime64_t tmp;
2439
2440 p->utime = cputime_add(p->utime, cputime);
2441
2442 /* Add user time to cpustat. */
2443 tmp = cputime_to_cputime64(cputime);
2444 if (TASK_NICE(p) > 0)
2445 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2446 else
2447 cpustat->user = cputime64_add(cpustat->user, tmp);
2448 }
2449
2450 /*
2451 * Account system cpu time to a process.
2452 * @p: the process that the cpu time gets accounted to
2453 * @hardirq_offset: the offset to subtract from hardirq_count()
2454 * @cputime: the cpu time spent in kernel space since the last update
2455 */
2456 void account_system_time(struct task_struct *p, int hardirq_offset,
2457 cputime_t cputime)
2458 {
2459 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2460 runqueue_t *rq = this_rq();
2461 cputime64_t tmp;
2462
2463 p->stime = cputime_add(p->stime, cputime);
2464
2465 /* Add system time to cpustat. */
2466 tmp = cputime_to_cputime64(cputime);
2467 if (hardirq_count() - hardirq_offset)
2468 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2469 else if (softirq_count())
2470 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2471 else if (p != rq->idle)
2472 cpustat->system = cputime64_add(cpustat->system, tmp);
2473 else if (atomic_read(&rq->nr_iowait) > 0)
2474 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2475 else
2476 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2477 /* Account for system time used */
2478 acct_update_integrals(p);
2479 /* Update rss highwater mark */
2480 update_mem_hiwater(p);
2481 }
2482
2483 /*
2484 * Account for involuntary wait time.
2485 * @p: the process from which the cpu time has been stolen
2486 * @steal: the cpu time spent in involuntary wait
2487 */
2488 void account_steal_time(struct task_struct *p, cputime_t steal)
2489 {
2490 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2491 cputime64_t tmp = cputime_to_cputime64(steal);
2492 runqueue_t *rq = this_rq();
2493
2494 if (p == rq->idle) {
2495 p->stime = cputime_add(p->stime, steal);
2496 if (atomic_read(&rq->nr_iowait) > 0)
2497 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2498 else
2499 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2500 } else
2501 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2502 }
2503
2504 /*
2505 * This function gets called by the timer code, with HZ frequency.
2506 * We call it with interrupts disabled.
2507 *
2508 * It also gets called by the fork code, when changing the parent's
2509 * timeslices.
2510 */
2511 void scheduler_tick(void)
2512 {
2513 int cpu = smp_processor_id();
2514 runqueue_t *rq = this_rq();
2515 task_t *p = current;
2516 unsigned long long now = sched_clock();
2517
2518 update_cpu_clock(p, rq, now);
2519
2520 rq->timestamp_last_tick = now;
2521
2522 if (p == rq->idle) {
2523 if (wake_priority_sleeper(rq))
2524 goto out;
2525 rebalance_tick(cpu, rq, SCHED_IDLE);
2526 return;
2527 }
2528
2529 /* Task might have expired already, but not scheduled off yet */
2530 if (p->array != rq->active) {
2531 set_tsk_need_resched(p);
2532 goto out;
2533 }
2534 spin_lock(&rq->lock);
2535 /*
2536 * The task was running during this tick - update the
2537 * time slice counter. Note: we do not update a thread's
2538 * priority until it either goes to sleep or uses up its
2539 * timeslice. This makes it possible for interactive tasks
2540 * to use up their timeslices at their highest priority levels.
2541 */
2542 if (rt_task(p)) {
2543 /*
2544 * RR tasks need a special form of timeslice management.
2545 * FIFO tasks have no timeslices.
2546 */
2547 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2548 p->time_slice = task_timeslice(p);
2549 p->first_time_slice = 0;
2550 set_tsk_need_resched(p);
2551
2552 /* put it at the end of the queue: */
2553 requeue_task(p, rq->active);
2554 }
2555 goto out_unlock;
2556 }
2557 if (!--p->time_slice) {
2558 dequeue_task(p, rq->active);
2559 set_tsk_need_resched(p);
2560 p->prio = effective_prio(p);
2561 p->time_slice = task_timeslice(p);
2562 p->first_time_slice = 0;
2563
2564 if (!rq->expired_timestamp)
2565 rq->expired_timestamp = jiffies;
2566 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2567 enqueue_task(p, rq->expired);
2568 if (p->static_prio < rq->best_expired_prio)
2569 rq->best_expired_prio = p->static_prio;
2570 } else
2571 enqueue_task(p, rq->active);
2572 } else {
2573 /*
2574 * Prevent a too long timeslice allowing a task to monopolize
2575 * the CPU. We do this by splitting up the timeslice into
2576 * smaller pieces.
2577 *
2578 * Note: this does not mean the task's timeslices expire or
2579 * get lost in any way, they just might be preempted by
2580 * another task of equal priority. (one with higher
2581 * priority would have preempted this task already.) We
2582 * requeue this task to the end of the list on this priority
2583 * level, which is in essence a round-robin of tasks with
2584 * equal priority.
2585 *
2586 * This only applies to tasks in the interactive
2587 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2588 */
2589 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2590 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2591 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2592 (p->array == rq->active)) {
2593
2594 requeue_task(p, rq->active);
2595 set_tsk_need_resched(p);
2596 }
2597 }
2598 out_unlock:
2599 spin_unlock(&rq->lock);
2600 out:
2601 rebalance_tick(cpu, rq, NOT_IDLE);
2602 }
2603
2604 #ifdef CONFIG_SCHED_SMT
2605 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2606 {
2607 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2608 if (rq->curr == rq->idle && rq->nr_running)
2609 resched_task(rq->idle);
2610 }
2611
2612 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2613 {
2614 struct sched_domain *tmp, *sd = NULL;
2615 cpumask_t sibling_map;
2616 int i;
2617
2618 for_each_domain(this_cpu, tmp)
2619 if (tmp->flags & SD_SHARE_CPUPOWER)
2620 sd = tmp;
2621
2622 if (!sd)
2623 return;
2624
2625 /*
2626 * Unlock the current runqueue because we have to lock in
2627 * CPU order to avoid deadlocks. Caller knows that we might
2628 * unlock. We keep IRQs disabled.
2629 */
2630 spin_unlock(&this_rq->lock);
2631
2632 sibling_map = sd->span;
2633
2634 for_each_cpu_mask(i, sibling_map)
2635 spin_lock(&cpu_rq(i)->lock);
2636 /*
2637 * We clear this CPU from the mask. This both simplifies the
2638 * inner loop and keps this_rq locked when we exit:
2639 */
2640 cpu_clear(this_cpu, sibling_map);
2641
2642 for_each_cpu_mask(i, sibling_map) {
2643 runqueue_t *smt_rq = cpu_rq(i);
2644
2645 wakeup_busy_runqueue(smt_rq);
2646 }
2647
2648 for_each_cpu_mask(i, sibling_map)
2649 spin_unlock(&cpu_rq(i)->lock);
2650 /*
2651 * We exit with this_cpu's rq still held and IRQs
2652 * still disabled:
2653 */
2654 }
2655
2656 /*
2657 * number of 'lost' timeslices this task wont be able to fully
2658 * utilize, if another task runs on a sibling. This models the
2659 * slowdown effect of other tasks running on siblings:
2660 */
2661 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2662 {
2663 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2664 }
2665
2666 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2667 {
2668 struct sched_domain *tmp, *sd = NULL;
2669 cpumask_t sibling_map;
2670 prio_array_t *array;
2671 int ret = 0, i;
2672 task_t *p;
2673
2674 for_each_domain(this_cpu, tmp)
2675 if (tmp->flags & SD_SHARE_CPUPOWER)
2676 sd = tmp;
2677
2678 if (!sd)
2679 return 0;
2680
2681 /*
2682 * The same locking rules and details apply as for
2683 * wake_sleeping_dependent():
2684 */
2685 spin_unlock(&this_rq->lock);
2686 sibling_map = sd->span;
2687 for_each_cpu_mask(i, sibling_map)
2688 spin_lock(&cpu_rq(i)->lock);
2689 cpu_clear(this_cpu, sibling_map);
2690
2691 /*
2692 * Establish next task to be run - it might have gone away because
2693 * we released the runqueue lock above:
2694 */
2695 if (!this_rq->nr_running)
2696 goto out_unlock;
2697 array = this_rq->active;
2698 if (!array->nr_active)
2699 array = this_rq->expired;
2700 BUG_ON(!array->nr_active);
2701
2702 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2703 task_t, run_list);
2704
2705 for_each_cpu_mask(i, sibling_map) {
2706 runqueue_t *smt_rq = cpu_rq(i);
2707 task_t *smt_curr = smt_rq->curr;
2708
2709 /* Kernel threads do not participate in dependent sleeping */
2710 if (!p->mm || !smt_curr->mm || rt_task(p))
2711 goto check_smt_task;
2712
2713 /*
2714 * If a user task with lower static priority than the
2715 * running task on the SMT sibling is trying to schedule,
2716 * delay it till there is proportionately less timeslice
2717 * left of the sibling task to prevent a lower priority
2718 * task from using an unfair proportion of the
2719 * physical cpu's resources. -ck
2720 */
2721 if (rt_task(smt_curr)) {
2722 /*
2723 * With real time tasks we run non-rt tasks only
2724 * per_cpu_gain% of the time.
2725 */
2726 if ((jiffies % DEF_TIMESLICE) >
2727 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2728 ret = 1;
2729 } else
2730 if (smt_curr->static_prio < p->static_prio &&
2731 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2732 smt_slice(smt_curr, sd) > task_timeslice(p))
2733 ret = 1;
2734
2735 check_smt_task:
2736 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2737 rt_task(smt_curr))
2738 continue;
2739 if (!p->mm) {
2740 wakeup_busy_runqueue(smt_rq);
2741 continue;
2742 }
2743
2744 /*
2745 * Reschedule a lower priority task on the SMT sibling for
2746 * it to be put to sleep, or wake it up if it has been put to
2747 * sleep for priority reasons to see if it should run now.
2748 */
2749 if (rt_task(p)) {
2750 if ((jiffies % DEF_TIMESLICE) >
2751 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2752 resched_task(smt_curr);
2753 } else {
2754 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2755 smt_slice(p, sd) > task_timeslice(smt_curr))
2756 resched_task(smt_curr);
2757 else
2758 wakeup_busy_runqueue(smt_rq);
2759 }
2760 }
2761 out_unlock:
2762 for_each_cpu_mask(i, sibling_map)
2763 spin_unlock(&cpu_rq(i)->lock);
2764 return ret;
2765 }
2766 #else
2767 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2768 {
2769 }
2770
2771 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2772 {
2773 return 0;
2774 }
2775 #endif
2776
2777 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2778
2779 void fastcall add_preempt_count(int val)
2780 {
2781 /*
2782 * Underflow?
2783 */
2784 BUG_ON((preempt_count() < 0));
2785 preempt_count() += val;
2786 /*
2787 * Spinlock count overflowing soon?
2788 */
2789 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2790 }
2791 EXPORT_SYMBOL(add_preempt_count);
2792
2793 void fastcall sub_preempt_count(int val)
2794 {
2795 /*
2796 * Underflow?
2797 */
2798 BUG_ON(val > preempt_count());
2799 /*
2800 * Is the spinlock portion underflowing?
2801 */
2802 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2803 preempt_count() -= val;
2804 }
2805 EXPORT_SYMBOL(sub_preempt_count);
2806
2807 #endif
2808
2809 /*
2810 * schedule() is the main scheduler function.
2811 */
2812 asmlinkage void __sched schedule(void)
2813 {
2814 long *switch_count;
2815 task_t *prev, *next;
2816 runqueue_t *rq;
2817 prio_array_t *array;
2818 struct list_head *queue;
2819 unsigned long long now;
2820 unsigned long run_time;
2821 int cpu, idx, new_prio;
2822
2823 /*
2824 * Test if we are atomic. Since do_exit() needs to call into
2825 * schedule() atomically, we ignore that path for now.
2826 * Otherwise, whine if we are scheduling when we should not be.
2827 */
2828 if (likely(!current->exit_state)) {
2829 if (unlikely(in_atomic())) {
2830 printk(KERN_ERR "scheduling while atomic: "
2831 "%s/0x%08x/%d\n",
2832 current->comm, preempt_count(), current->pid);
2833 dump_stack();
2834 }
2835 }
2836 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2837
2838 need_resched:
2839 preempt_disable();
2840 prev = current;
2841 release_kernel_lock(prev);
2842 need_resched_nonpreemptible:
2843 rq = this_rq();
2844
2845 /*
2846 * The idle thread is not allowed to schedule!
2847 * Remove this check after it has been exercised a bit.
2848 */
2849 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2850 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2851 dump_stack();
2852 }
2853
2854 schedstat_inc(rq, sched_cnt);
2855 now = sched_clock();
2856 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2857 run_time = now - prev->timestamp;
2858 if (unlikely((long long)(now - prev->timestamp) < 0))
2859 run_time = 0;
2860 } else
2861 run_time = NS_MAX_SLEEP_AVG;
2862
2863 /*
2864 * Tasks charged proportionately less run_time at high sleep_avg to
2865 * delay them losing their interactive status
2866 */
2867 run_time /= (CURRENT_BONUS(prev) ? : 1);
2868
2869 spin_lock_irq(&rq->lock);
2870
2871 if (unlikely(prev->flags & PF_DEAD))
2872 prev->state = EXIT_DEAD;
2873
2874 switch_count = &prev->nivcsw;
2875 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2876 switch_count = &prev->nvcsw;
2877 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2878 unlikely(signal_pending(prev))))
2879 prev->state = TASK_RUNNING;
2880 else {
2881 if (prev->state == TASK_UNINTERRUPTIBLE)
2882 rq->nr_uninterruptible++;
2883 deactivate_task(prev, rq);
2884 }
2885 }
2886
2887 cpu = smp_processor_id();
2888 if (unlikely(!rq->nr_running)) {
2889 go_idle:
2890 idle_balance(cpu, rq);
2891 if (!rq->nr_running) {
2892 next = rq->idle;
2893 rq->expired_timestamp = 0;
2894 wake_sleeping_dependent(cpu, rq);
2895 /*
2896 * wake_sleeping_dependent() might have released
2897 * the runqueue, so break out if we got new
2898 * tasks meanwhile:
2899 */
2900 if (!rq->nr_running)
2901 goto switch_tasks;
2902 }
2903 } else {
2904 if (dependent_sleeper(cpu, rq)) {
2905 next = rq->idle;
2906 goto switch_tasks;
2907 }
2908 /*
2909 * dependent_sleeper() releases and reacquires the runqueue
2910 * lock, hence go into the idle loop if the rq went
2911 * empty meanwhile:
2912 */
2913 if (unlikely(!rq->nr_running))
2914 goto go_idle;
2915 }
2916
2917 array = rq->active;
2918 if (unlikely(!array->nr_active)) {
2919 /*
2920 * Switch the active and expired arrays.
2921 */
2922 schedstat_inc(rq, sched_switch);
2923 rq->active = rq->expired;
2924 rq->expired = array;
2925 array = rq->active;
2926 rq->expired_timestamp = 0;
2927 rq->best_expired_prio = MAX_PRIO;
2928 }
2929
2930 idx = sched_find_first_bit(array->bitmap);
2931 queue = array->queue + idx;
2932 next = list_entry(queue->next, task_t, run_list);
2933
2934 if (!rt_task(next) && next->activated > 0) {
2935 unsigned long long delta = now - next->timestamp;
2936 if (unlikely((long long)(now - next->timestamp) < 0))
2937 delta = 0;
2938
2939 if (next->activated == 1)
2940 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2941
2942 array = next->array;
2943 new_prio = recalc_task_prio(next, next->timestamp + delta);
2944
2945 if (unlikely(next->prio != new_prio)) {
2946 dequeue_task(next, array);
2947 next->prio = new_prio;
2948 enqueue_task(next, array);
2949 } else
2950 requeue_task(next, array);
2951 }
2952 next->activated = 0;
2953 switch_tasks:
2954 if (next == rq->idle)
2955 schedstat_inc(rq, sched_goidle);
2956 prefetch(next);
2957 prefetch_stack(next);
2958 clear_tsk_need_resched(prev);
2959 rcu_qsctr_inc(task_cpu(prev));
2960
2961 update_cpu_clock(prev, rq, now);
2962
2963 prev->sleep_avg -= run_time;
2964 if ((long)prev->sleep_avg <= 0)
2965 prev->sleep_avg = 0;
2966 prev->timestamp = prev->last_ran = now;
2967
2968 sched_info_switch(prev, next);
2969 if (likely(prev != next)) {
2970 next->timestamp = now;
2971 rq->nr_switches++;
2972 rq->curr = next;
2973 ++*switch_count;
2974
2975 prepare_task_switch(rq, next);
2976 prev = context_switch(rq, prev, next);
2977 barrier();
2978 /*
2979 * this_rq must be evaluated again because prev may have moved
2980 * CPUs since it called schedule(), thus the 'rq' on its stack
2981 * frame will be invalid.
2982 */
2983 finish_task_switch(this_rq(), prev);
2984 } else
2985 spin_unlock_irq(&rq->lock);
2986
2987 prev = current;
2988 if (unlikely(reacquire_kernel_lock(prev) < 0))
2989 goto need_resched_nonpreemptible;
2990 preempt_enable_no_resched();
2991 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2992 goto need_resched;
2993 }
2994
2995 EXPORT_SYMBOL(schedule);
2996
2997 #ifdef CONFIG_PREEMPT
2998 /*
2999 * this is is the entry point to schedule() from in-kernel preemption
3000 * off of preempt_enable. Kernel preemptions off return from interrupt
3001 * occur there and call schedule directly.
3002 */
3003 asmlinkage void __sched preempt_schedule(void)
3004 {
3005 struct thread_info *ti = current_thread_info();
3006 #ifdef CONFIG_PREEMPT_BKL
3007 struct task_struct *task = current;
3008 int saved_lock_depth;
3009 #endif
3010 /*
3011 * If there is a non-zero preempt_count or interrupts are disabled,
3012 * we do not want to preempt the current task. Just return..
3013 */
3014 if (unlikely(ti->preempt_count || irqs_disabled()))
3015 return;
3016
3017 need_resched:
3018 add_preempt_count(PREEMPT_ACTIVE);
3019 /*
3020 * We keep the big kernel semaphore locked, but we
3021 * clear ->lock_depth so that schedule() doesnt
3022 * auto-release the semaphore:
3023 */
3024 #ifdef CONFIG_PREEMPT_BKL
3025 saved_lock_depth = task->lock_depth;
3026 task->lock_depth = -1;
3027 #endif
3028 schedule();
3029 #ifdef CONFIG_PREEMPT_BKL
3030 task->lock_depth = saved_lock_depth;
3031 #endif
3032 sub_preempt_count(PREEMPT_ACTIVE);
3033
3034 /* we could miss a preemption opportunity between schedule and now */
3035 barrier();
3036 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3037 goto need_resched;
3038 }
3039
3040 EXPORT_SYMBOL(preempt_schedule);
3041
3042 /*
3043 * this is is the entry point to schedule() from kernel preemption
3044 * off of irq context.
3045 * Note, that this is called and return with irqs disabled. This will
3046 * protect us against recursive calling from irq.
3047 */
3048 asmlinkage void __sched preempt_schedule_irq(void)
3049 {
3050 struct thread_info *ti = current_thread_info();
3051 #ifdef CONFIG_PREEMPT_BKL
3052 struct task_struct *task = current;
3053 int saved_lock_depth;
3054 #endif
3055 /* Catch callers which need to be fixed*/
3056 BUG_ON(ti->preempt_count || !irqs_disabled());
3057
3058 need_resched:
3059 add_preempt_count(PREEMPT_ACTIVE);
3060 /*
3061 * We keep the big kernel semaphore locked, but we
3062 * clear ->lock_depth so that schedule() doesnt
3063 * auto-release the semaphore:
3064 */
3065 #ifdef CONFIG_PREEMPT_BKL
3066 saved_lock_depth = task->lock_depth;
3067 task->lock_depth = -1;
3068 #endif
3069 local_irq_enable();
3070 schedule();
3071 local_irq_disable();
3072 #ifdef CONFIG_PREEMPT_BKL
3073 task->lock_depth = saved_lock_depth;
3074 #endif
3075 sub_preempt_count(PREEMPT_ACTIVE);
3076
3077 /* we could miss a preemption opportunity between schedule and now */
3078 barrier();
3079 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3080 goto need_resched;
3081 }
3082
3083 #endif /* CONFIG_PREEMPT */
3084
3085 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3086 void *key)
3087 {
3088 task_t *p = curr->private;
3089 return try_to_wake_up(p, mode, sync);
3090 }
3091
3092 EXPORT_SYMBOL(default_wake_function);
3093
3094 /*
3095 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3096 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3097 * number) then we wake all the non-exclusive tasks and one exclusive task.
3098 *
3099 * There are circumstances in which we can try to wake a task which has already
3100 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3101 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3102 */
3103 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3104 int nr_exclusive, int sync, void *key)
3105 {
3106 struct list_head *tmp, *next;
3107
3108 list_for_each_safe(tmp, next, &q->task_list) {
3109 wait_queue_t *curr;
3110 unsigned flags;
3111 curr = list_entry(tmp, wait_queue_t, task_list);
3112 flags = curr->flags;
3113 if (curr->func(curr, mode, sync, key) &&
3114 (flags & WQ_FLAG_EXCLUSIVE) &&
3115 !--nr_exclusive)
3116 break;
3117 }
3118 }
3119
3120 /**
3121 * __wake_up - wake up threads blocked on a waitqueue.
3122 * @q: the waitqueue
3123 * @mode: which threads
3124 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3125 * @key: is directly passed to the wakeup function
3126 */
3127 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3128 int nr_exclusive, void *key)
3129 {
3130 unsigned long flags;
3131
3132 spin_lock_irqsave(&q->lock, flags);
3133 __wake_up_common(q, mode, nr_exclusive, 0, key);
3134 spin_unlock_irqrestore(&q->lock, flags);
3135 }
3136
3137 EXPORT_SYMBOL(__wake_up);
3138
3139 /*
3140 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3141 */
3142 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3143 {
3144 __wake_up_common(q, mode, 1, 0, NULL);
3145 }
3146
3147 /**
3148 * __wake_up_sync - wake up threads blocked on a waitqueue.
3149 * @q: the waitqueue
3150 * @mode: which threads
3151 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3152 *
3153 * The sync wakeup differs that the waker knows that it will schedule
3154 * away soon, so while the target thread will be woken up, it will not
3155 * be migrated to another CPU - ie. the two threads are 'synchronized'
3156 * with each other. This can prevent needless bouncing between CPUs.
3157 *
3158 * On UP it can prevent extra preemption.
3159 */
3160 void fastcall
3161 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3162 {
3163 unsigned long flags;
3164 int sync = 1;
3165
3166 if (unlikely(!q))
3167 return;
3168
3169 if (unlikely(!nr_exclusive))
3170 sync = 0;
3171
3172 spin_lock_irqsave(&q->lock, flags);
3173 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3174 spin_unlock_irqrestore(&q->lock, flags);
3175 }
3176 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3177
3178 void fastcall complete(struct completion *x)
3179 {
3180 unsigned long flags;
3181
3182 spin_lock_irqsave(&x->wait.lock, flags);
3183 x->done++;
3184 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3185 1, 0, NULL);
3186 spin_unlock_irqrestore(&x->wait.lock, flags);
3187 }
3188 EXPORT_SYMBOL(complete);
3189
3190 void fastcall complete_all(struct completion *x)
3191 {
3192 unsigned long flags;
3193
3194 spin_lock_irqsave(&x->wait.lock, flags);
3195 x->done += UINT_MAX/2;
3196 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3197 0, 0, NULL);
3198 spin_unlock_irqrestore(&x->wait.lock, flags);
3199 }
3200 EXPORT_SYMBOL(complete_all);
3201
3202 void fastcall __sched wait_for_completion(struct completion *x)
3203 {
3204 might_sleep();
3205 spin_lock_irq(&x->wait.lock);
3206 if (!x->done) {
3207 DECLARE_WAITQUEUE(wait, current);
3208
3209 wait.flags |= WQ_FLAG_EXCLUSIVE;
3210 __add_wait_queue_tail(&x->wait, &wait);
3211 do {
3212 __set_current_state(TASK_UNINTERRUPTIBLE);
3213 spin_unlock_irq(&x->wait.lock);
3214 schedule();
3215 spin_lock_irq(&x->wait.lock);
3216 } while (!x->done);
3217 __remove_wait_queue(&x->wait, &wait);
3218 }
3219 x->done--;
3220 spin_unlock_irq(&x->wait.lock);
3221 }
3222 EXPORT_SYMBOL(wait_for_completion);
3223
3224 unsigned long fastcall __sched
3225 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3226 {
3227 might_sleep();
3228
3229 spin_lock_irq(&x->wait.lock);
3230 if (!x->done) {
3231 DECLARE_WAITQUEUE(wait, current);
3232
3233 wait.flags |= WQ_FLAG_EXCLUSIVE;
3234 __add_wait_queue_tail(&x->wait, &wait);
3235 do {
3236 __set_current_state(TASK_UNINTERRUPTIBLE);
3237 spin_unlock_irq(&x->wait.lock);
3238 timeout = schedule_timeout(timeout);
3239 spin_lock_irq(&x->wait.lock);
3240 if (!timeout) {
3241 __remove_wait_queue(&x->wait, &wait);
3242 goto out;
3243 }
3244 } while (!x->done);
3245 __remove_wait_queue(&x->wait, &wait);
3246 }
3247 x->done--;
3248 out:
3249 spin_unlock_irq(&x->wait.lock);
3250 return timeout;
3251 }
3252 EXPORT_SYMBOL(wait_for_completion_timeout);
3253
3254 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3255 {
3256 int ret = 0;
3257
3258 might_sleep();
3259
3260 spin_lock_irq(&x->wait.lock);
3261 if (!x->done) {
3262 DECLARE_WAITQUEUE(wait, current);
3263
3264 wait.flags |= WQ_FLAG_EXCLUSIVE;
3265 __add_wait_queue_tail(&x->wait, &wait);
3266 do {
3267 if (signal_pending(current)) {
3268 ret = -ERESTARTSYS;
3269 __remove_wait_queue(&x->wait, &wait);
3270 goto out;
3271 }
3272 __set_current_state(TASK_INTERRUPTIBLE);
3273 spin_unlock_irq(&x->wait.lock);
3274 schedule();
3275 spin_lock_irq(&x->wait.lock);
3276 } while (!x->done);
3277 __remove_wait_queue(&x->wait, &wait);
3278 }
3279 x->done--;
3280 out:
3281 spin_unlock_irq(&x->wait.lock);
3282
3283 return ret;
3284 }
3285 EXPORT_SYMBOL(wait_for_completion_interruptible);
3286
3287 unsigned long fastcall __sched
3288 wait_for_completion_interruptible_timeout(struct completion *x,
3289 unsigned long timeout)
3290 {
3291 might_sleep();
3292
3293 spin_lock_irq(&x->wait.lock);
3294 if (!x->done) {
3295 DECLARE_WAITQUEUE(wait, current);
3296
3297 wait.flags |= WQ_FLAG_EXCLUSIVE;
3298 __add_wait_queue_tail(&x->wait, &wait);
3299 do {
3300 if (signal_pending(current)) {
3301 timeout = -ERESTARTSYS;
3302 __remove_wait_queue(&x->wait, &wait);
3303 goto out;
3304 }
3305 __set_current_state(TASK_INTERRUPTIBLE);
3306 spin_unlock_irq(&x->wait.lock);
3307 timeout = schedule_timeout(timeout);
3308 spin_lock_irq(&x->wait.lock);
3309 if (!timeout) {
3310 __remove_wait_queue(&x->wait, &wait);
3311 goto out;
3312 }
3313 } while (!x->done);
3314 __remove_wait_queue(&x->wait, &wait);
3315 }
3316 x->done--;
3317 out:
3318 spin_unlock_irq(&x->wait.lock);
3319 return timeout;
3320 }
3321 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3322
3323
3324 #define SLEEP_ON_VAR \
3325 unsigned long flags; \
3326 wait_queue_t wait; \
3327 init_waitqueue_entry(&wait, current);
3328
3329 #define SLEEP_ON_HEAD \
3330 spin_lock_irqsave(&q->lock,flags); \
3331 __add_wait_queue(q, &wait); \
3332 spin_unlock(&q->lock);
3333
3334 #define SLEEP_ON_TAIL \
3335 spin_lock_irq(&q->lock); \
3336 __remove_wait_queue(q, &wait); \
3337 spin_unlock_irqrestore(&q->lock, flags);
3338
3339 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3340 {
3341 SLEEP_ON_VAR
3342
3343 current->state = TASK_INTERRUPTIBLE;
3344
3345 SLEEP_ON_HEAD
3346 schedule();
3347 SLEEP_ON_TAIL
3348 }
3349
3350 EXPORT_SYMBOL(interruptible_sleep_on);
3351
3352 long fastcall __sched
3353 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3354 {
3355 SLEEP_ON_VAR
3356
3357 current->state = TASK_INTERRUPTIBLE;
3358
3359 SLEEP_ON_HEAD
3360 timeout = schedule_timeout(timeout);
3361 SLEEP_ON_TAIL
3362
3363 return timeout;
3364 }
3365
3366 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3367
3368 void fastcall __sched sleep_on(wait_queue_head_t *q)
3369 {
3370 SLEEP_ON_VAR
3371
3372 current->state = TASK_UNINTERRUPTIBLE;
3373
3374 SLEEP_ON_HEAD
3375 schedule();
3376 SLEEP_ON_TAIL
3377 }
3378
3379 EXPORT_SYMBOL(sleep_on);
3380
3381 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3382 {
3383 SLEEP_ON_VAR
3384
3385 current->state = TASK_UNINTERRUPTIBLE;
3386
3387 SLEEP_ON_HEAD
3388 timeout = schedule_timeout(timeout);
3389 SLEEP_ON_TAIL
3390
3391 return timeout;
3392 }
3393
3394 EXPORT_SYMBOL(sleep_on_timeout);
3395
3396 void set_user_nice(task_t *p, long nice)
3397 {
3398 unsigned long flags;
3399 prio_array_t *array;
3400 runqueue_t *rq;
3401 int old_prio, new_prio, delta;
3402
3403 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3404 return;
3405 /*
3406 * We have to be careful, if called from sys_setpriority(),
3407 * the task might be in the middle of scheduling on another CPU.
3408 */
3409 rq = task_rq_lock(p, &flags);
3410 /*
3411 * The RT priorities are set via sched_setscheduler(), but we still
3412 * allow the 'normal' nice value to be set - but as expected
3413 * it wont have any effect on scheduling until the task is
3414 * not SCHED_NORMAL:
3415 */
3416 if (rt_task(p)) {
3417 p->static_prio = NICE_TO_PRIO(nice);
3418 goto out_unlock;
3419 }
3420 array = p->array;
3421 if (array)
3422 dequeue_task(p, array);
3423
3424 old_prio = p->prio;
3425 new_prio = NICE_TO_PRIO(nice);
3426 delta = new_prio - old_prio;
3427 p->static_prio = NICE_TO_PRIO(nice);
3428 p->prio += delta;
3429
3430 if (array) {
3431 enqueue_task(p, array);
3432 /*
3433 * If the task increased its priority or is running and
3434 * lowered its priority, then reschedule its CPU:
3435 */
3436 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3437 resched_task(rq->curr);
3438 }
3439 out_unlock:
3440 task_rq_unlock(rq, &flags);
3441 }
3442
3443 EXPORT_SYMBOL(set_user_nice);
3444
3445 /*
3446 * can_nice - check if a task can reduce its nice value
3447 * @p: task
3448 * @nice: nice value
3449 */
3450 int can_nice(const task_t *p, const int nice)
3451 {
3452 /* convert nice value [19,-20] to rlimit style value [1,40] */
3453 int nice_rlim = 20 - nice;
3454 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3455 capable(CAP_SYS_NICE));
3456 }
3457
3458 #ifdef __ARCH_WANT_SYS_NICE
3459
3460 /*
3461 * sys_nice - change the priority of the current process.
3462 * @increment: priority increment
3463 *
3464 * sys_setpriority is a more generic, but much slower function that
3465 * does similar things.
3466 */
3467 asmlinkage long sys_nice(int increment)
3468 {
3469 int retval;
3470 long nice;
3471
3472 /*
3473 * Setpriority might change our priority at the same moment.
3474 * We don't have to worry. Conceptually one call occurs first
3475 * and we have a single winner.
3476 */
3477 if (increment < -40)
3478 increment = -40;
3479 if (increment > 40)
3480 increment = 40;
3481
3482 nice = PRIO_TO_NICE(current->static_prio) + increment;
3483 if (nice < -20)
3484 nice = -20;
3485 if (nice > 19)
3486 nice = 19;
3487
3488 if (increment < 0 && !can_nice(current, nice))
3489 return -EPERM;
3490
3491 retval = security_task_setnice(current, nice);
3492 if (retval)
3493 return retval;
3494
3495 set_user_nice(current, nice);
3496 return 0;
3497 }
3498
3499 #endif
3500
3501 /**
3502 * task_prio - return the priority value of a given task.
3503 * @p: the task in question.
3504 *
3505 * This is the priority value as seen by users in /proc.
3506 * RT tasks are offset by -200. Normal tasks are centered
3507 * around 0, value goes from -16 to +15.
3508 */
3509 int task_prio(const task_t *p)
3510 {
3511 return p->prio - MAX_RT_PRIO;
3512 }
3513
3514 /**
3515 * task_nice - return the nice value of a given task.
3516 * @p: the task in question.
3517 */
3518 int task_nice(const task_t *p)
3519 {
3520 return TASK_NICE(p);
3521 }
3522 EXPORT_SYMBOL_GPL(task_nice);
3523
3524 /**
3525 * idle_cpu - is a given cpu idle currently?
3526 * @cpu: the processor in question.
3527 */
3528 int idle_cpu(int cpu)
3529 {
3530 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3531 }
3532
3533 EXPORT_SYMBOL_GPL(idle_cpu);
3534
3535 /**
3536 * idle_task - return the idle task for a given cpu.
3537 * @cpu: the processor in question.
3538 */
3539 task_t *idle_task(int cpu)
3540 {
3541 return cpu_rq(cpu)->idle;
3542 }
3543
3544 /**
3545 * find_process_by_pid - find a process with a matching PID value.
3546 * @pid: the pid in question.
3547 */
3548 static inline task_t *find_process_by_pid(pid_t pid)
3549 {
3550 return pid ? find_task_by_pid(pid) : current;
3551 }
3552
3553 /* Actually do priority change: must hold rq lock. */
3554 static void __setscheduler(struct task_struct *p, int policy, int prio)
3555 {
3556 BUG_ON(p->array);
3557 p->policy = policy;
3558 p->rt_priority = prio;
3559 if (policy != SCHED_NORMAL)
3560 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3561 else
3562 p->prio = p->static_prio;
3563 }
3564
3565 /**
3566 * sched_setscheduler - change the scheduling policy and/or RT priority of
3567 * a thread.
3568 * @p: the task in question.
3569 * @policy: new policy.
3570 * @param: structure containing the new RT priority.
3571 */
3572 int sched_setscheduler(struct task_struct *p, int policy,
3573 struct sched_param *param)
3574 {
3575 int retval;
3576 int oldprio, oldpolicy = -1;
3577 prio_array_t *array;
3578 unsigned long flags;
3579 runqueue_t *rq;
3580
3581 recheck:
3582 /* double check policy once rq lock held */
3583 if (policy < 0)
3584 policy = oldpolicy = p->policy;
3585 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3586 policy != SCHED_NORMAL)
3587 return -EINVAL;
3588 /*
3589 * Valid priorities for SCHED_FIFO and SCHED_RR are
3590 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3591 */
3592 if (param->sched_priority < 0 ||
3593 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3594 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3595 return -EINVAL;
3596 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3597 return -EINVAL;
3598
3599 /*
3600 * Allow unprivileged RT tasks to decrease priority:
3601 */
3602 if (!capable(CAP_SYS_NICE)) {
3603 /* can't change policy */
3604 if (policy != p->policy &&
3605 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3606 return -EPERM;
3607 /* can't increase priority */
3608 if (policy != SCHED_NORMAL &&
3609 param->sched_priority > p->rt_priority &&
3610 param->sched_priority >
3611 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3612 return -EPERM;
3613 /* can't change other user's priorities */
3614 if ((current->euid != p->euid) &&
3615 (current->euid != p->uid))
3616 return -EPERM;
3617 }
3618
3619 retval = security_task_setscheduler(p, policy, param);
3620 if (retval)
3621 return retval;
3622 /*
3623 * To be able to change p->policy safely, the apropriate
3624 * runqueue lock must be held.
3625 */
3626 rq = task_rq_lock(p, &flags);
3627 /* recheck policy now with rq lock held */
3628 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3629 policy = oldpolicy = -1;
3630 task_rq_unlock(rq, &flags);
3631 goto recheck;
3632 }
3633 array = p->array;
3634 if (array)
3635 deactivate_task(p, rq);
3636 oldprio = p->prio;
3637 __setscheduler(p, policy, param->sched_priority);
3638 if (array) {
3639 __activate_task(p, rq);
3640 /*
3641 * Reschedule if we are currently running on this runqueue and
3642 * our priority decreased, or if we are not currently running on
3643 * this runqueue and our priority is higher than the current's
3644 */
3645 if (task_running(rq, p)) {
3646 if (p->prio > oldprio)
3647 resched_task(rq->curr);
3648 } else if (TASK_PREEMPTS_CURR(p, rq))
3649 resched_task(rq->curr);
3650 }
3651 task_rq_unlock(rq, &flags);
3652 return 0;
3653 }
3654 EXPORT_SYMBOL_GPL(sched_setscheduler);
3655
3656 static int
3657 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3658 {
3659 int retval;
3660 struct sched_param lparam;
3661 struct task_struct *p;
3662
3663 if (!param || pid < 0)
3664 return -EINVAL;
3665 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3666 return -EFAULT;
3667 read_lock_irq(&tasklist_lock);
3668 p = find_process_by_pid(pid);
3669 if (!p) {
3670 read_unlock_irq(&tasklist_lock);
3671 return -ESRCH;
3672 }
3673 retval = sched_setscheduler(p, policy, &lparam);
3674 read_unlock_irq(&tasklist_lock);
3675 return retval;
3676 }
3677
3678 /**
3679 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3680 * @pid: the pid in question.
3681 * @policy: new policy.
3682 * @param: structure containing the new RT priority.
3683 */
3684 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3685 struct sched_param __user *param)
3686 {
3687 return do_sched_setscheduler(pid, policy, param);
3688 }
3689
3690 /**
3691 * sys_sched_setparam - set/change the RT priority of a thread
3692 * @pid: the pid in question.
3693 * @param: structure containing the new RT priority.
3694 */
3695 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3696 {
3697 return do_sched_setscheduler(pid, -1, param);
3698 }
3699
3700 /**
3701 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3702 * @pid: the pid in question.
3703 */
3704 asmlinkage long sys_sched_getscheduler(pid_t pid)
3705 {
3706 int retval = -EINVAL;
3707 task_t *p;
3708
3709 if (pid < 0)
3710 goto out_nounlock;
3711
3712 retval = -ESRCH;
3713 read_lock(&tasklist_lock);
3714 p = find_process_by_pid(pid);
3715 if (p) {
3716 retval = security_task_getscheduler(p);
3717 if (!retval)
3718 retval = p->policy;
3719 }
3720 read_unlock(&tasklist_lock);
3721
3722 out_nounlock:
3723 return retval;
3724 }
3725
3726 /**
3727 * sys_sched_getscheduler - get the RT priority of a thread
3728 * @pid: the pid in question.
3729 * @param: structure containing the RT priority.
3730 */
3731 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3732 {
3733 struct sched_param lp;
3734 int retval = -EINVAL;
3735 task_t *p;
3736
3737 if (!param || pid < 0)
3738 goto out_nounlock;
3739
3740 read_lock(&tasklist_lock);
3741 p = find_process_by_pid(pid);
3742 retval = -ESRCH;
3743 if (!p)
3744 goto out_unlock;
3745
3746 retval = security_task_getscheduler(p);
3747 if (retval)
3748 goto out_unlock;
3749
3750 lp.sched_priority = p->rt_priority;
3751 read_unlock(&tasklist_lock);
3752
3753 /*
3754 * This one might sleep, we cannot do it with a spinlock held ...
3755 */
3756 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3757
3758 out_nounlock:
3759 return retval;
3760
3761 out_unlock:
3762 read_unlock(&tasklist_lock);
3763 return retval;
3764 }
3765
3766 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3767 {
3768 task_t *p;
3769 int retval;
3770 cpumask_t cpus_allowed;
3771
3772 lock_cpu_hotplug();
3773 read_lock(&tasklist_lock);
3774
3775 p = find_process_by_pid(pid);
3776 if (!p) {
3777 read_unlock(&tasklist_lock);
3778 unlock_cpu_hotplug();
3779 return -ESRCH;
3780 }
3781
3782 /*
3783 * It is not safe to call set_cpus_allowed with the
3784 * tasklist_lock held. We will bump the task_struct's
3785 * usage count and then drop tasklist_lock.
3786 */
3787 get_task_struct(p);
3788 read_unlock(&tasklist_lock);
3789
3790 retval = -EPERM;
3791 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3792 !capable(CAP_SYS_NICE))
3793 goto out_unlock;
3794
3795 cpus_allowed = cpuset_cpus_allowed(p);
3796 cpus_and(new_mask, new_mask, cpus_allowed);
3797 retval = set_cpus_allowed(p, new_mask);
3798
3799 out_unlock:
3800 put_task_struct(p);
3801 unlock_cpu_hotplug();
3802 return retval;
3803 }
3804
3805 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3806 cpumask_t *new_mask)
3807 {
3808 if (len < sizeof(cpumask_t)) {
3809 memset(new_mask, 0, sizeof(cpumask_t));
3810 } else if (len > sizeof(cpumask_t)) {
3811 len = sizeof(cpumask_t);
3812 }
3813 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3814 }
3815
3816 /**
3817 * sys_sched_setaffinity - set the cpu affinity of a process
3818 * @pid: pid of the process
3819 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3820 * @user_mask_ptr: user-space pointer to the new cpu mask
3821 */
3822 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3823 unsigned long __user *user_mask_ptr)
3824 {
3825 cpumask_t new_mask;
3826 int retval;
3827
3828 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3829 if (retval)
3830 return retval;
3831
3832 return sched_setaffinity(pid, new_mask);
3833 }
3834
3835 /*
3836 * Represents all cpu's present in the system
3837 * In systems capable of hotplug, this map could dynamically grow
3838 * as new cpu's are detected in the system via any platform specific
3839 * method, such as ACPI for e.g.
3840 */
3841
3842 cpumask_t cpu_present_map;
3843 EXPORT_SYMBOL(cpu_present_map);
3844
3845 #ifndef CONFIG_SMP
3846 cpumask_t cpu_online_map = CPU_MASK_ALL;
3847 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3848 #endif
3849
3850 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3851 {
3852 int retval;
3853 task_t *p;
3854
3855 lock_cpu_hotplug();
3856 read_lock(&tasklist_lock);
3857
3858 retval = -ESRCH;
3859 p = find_process_by_pid(pid);
3860 if (!p)
3861 goto out_unlock;
3862
3863 retval = 0;
3864 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3865
3866 out_unlock:
3867 read_unlock(&tasklist_lock);
3868 unlock_cpu_hotplug();
3869 if (retval)
3870 return retval;
3871
3872 return 0;
3873 }
3874
3875 /**
3876 * sys_sched_getaffinity - get the cpu affinity of a process
3877 * @pid: pid of the process
3878 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3879 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3880 */
3881 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3882 unsigned long __user *user_mask_ptr)
3883 {
3884 int ret;
3885 cpumask_t mask;
3886
3887 if (len < sizeof(cpumask_t))
3888 return -EINVAL;
3889
3890 ret = sched_getaffinity(pid, &mask);
3891 if (ret < 0)
3892 return ret;
3893
3894 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3895 return -EFAULT;
3896
3897 return sizeof(cpumask_t);
3898 }
3899
3900 /**
3901 * sys_sched_yield - yield the current processor to other threads.
3902 *
3903 * this function yields the current CPU by moving the calling thread
3904 * to the expired array. If there are no other threads running on this
3905 * CPU then this function will return.
3906 */
3907 asmlinkage long sys_sched_yield(void)
3908 {
3909 runqueue_t *rq = this_rq_lock();
3910 prio_array_t *array = current->array;
3911 prio_array_t *target = rq->expired;
3912
3913 schedstat_inc(rq, yld_cnt);
3914 /*
3915 * We implement yielding by moving the task into the expired
3916 * queue.
3917 *
3918 * (special rule: RT tasks will just roundrobin in the active
3919 * array.)
3920 */
3921 if (rt_task(current))
3922 target = rq->active;
3923
3924 if (current->array->nr_active == 1) {
3925 schedstat_inc(rq, yld_act_empty);
3926 if (!rq->expired->nr_active)
3927 schedstat_inc(rq, yld_both_empty);
3928 } else if (!rq->expired->nr_active)
3929 schedstat_inc(rq, yld_exp_empty);
3930
3931 if (array != target) {
3932 dequeue_task(current, array);
3933 enqueue_task(current, target);
3934 } else
3935 /*
3936 * requeue_task is cheaper so perform that if possible.
3937 */
3938 requeue_task(current, array);
3939
3940 /*
3941 * Since we are going to call schedule() anyway, there's
3942 * no need to preempt or enable interrupts:
3943 */
3944 __release(rq->lock);
3945 _raw_spin_unlock(&rq->lock);
3946 preempt_enable_no_resched();
3947
3948 schedule();
3949
3950 return 0;
3951 }
3952
3953 static inline void __cond_resched(void)
3954 {
3955 /*
3956 * The BKS might be reacquired before we have dropped
3957 * PREEMPT_ACTIVE, which could trigger a second
3958 * cond_resched() call.
3959 */
3960 if (unlikely(preempt_count()))
3961 return;
3962 do {
3963 add_preempt_count(PREEMPT_ACTIVE);
3964 schedule();
3965 sub_preempt_count(PREEMPT_ACTIVE);
3966 } while (need_resched());
3967 }
3968
3969 int __sched cond_resched(void)
3970 {
3971 if (need_resched()) {
3972 __cond_resched();
3973 return 1;
3974 }
3975 return 0;
3976 }
3977
3978 EXPORT_SYMBOL(cond_resched);
3979
3980 /*
3981 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3982 * call schedule, and on return reacquire the lock.
3983 *
3984 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3985 * operations here to prevent schedule() from being called twice (once via
3986 * spin_unlock(), once by hand).
3987 */
3988 int cond_resched_lock(spinlock_t *lock)
3989 {
3990 int ret = 0;
3991
3992 if (need_lockbreak(lock)) {
3993 spin_unlock(lock);
3994 cpu_relax();
3995 ret = 1;
3996 spin_lock(lock);
3997 }
3998 if (need_resched()) {
3999 _raw_spin_unlock(lock);
4000 preempt_enable_no_resched();
4001 __cond_resched();
4002 ret = 1;
4003 spin_lock(lock);
4004 }
4005 return ret;
4006 }
4007
4008 EXPORT_SYMBOL(cond_resched_lock);
4009
4010 int __sched cond_resched_softirq(void)
4011 {
4012 BUG_ON(!in_softirq());
4013
4014 if (need_resched()) {
4015 __local_bh_enable();
4016 __cond_resched();
4017 local_bh_disable();
4018 return 1;
4019 }
4020 return 0;
4021 }
4022
4023 EXPORT_SYMBOL(cond_resched_softirq);
4024
4025
4026 /**
4027 * yield - yield the current processor to other threads.
4028 *
4029 * this is a shortcut for kernel-space yielding - it marks the
4030 * thread runnable and calls sys_sched_yield().
4031 */
4032 void __sched yield(void)
4033 {
4034 set_current_state(TASK_RUNNING);
4035 sys_sched_yield();
4036 }
4037
4038 EXPORT_SYMBOL(yield);
4039
4040 /*
4041 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4042 * that process accounting knows that this is a task in IO wait state.
4043 *
4044 * But don't do that if it is a deliberate, throttling IO wait (this task
4045 * has set its backing_dev_info: the queue against which it should throttle)
4046 */
4047 void __sched io_schedule(void)
4048 {
4049 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4050
4051 atomic_inc(&rq->nr_iowait);
4052 schedule();
4053 atomic_dec(&rq->nr_iowait);
4054 }
4055
4056 EXPORT_SYMBOL(io_schedule);
4057
4058 long __sched io_schedule_timeout(long timeout)
4059 {
4060 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4061 long ret;
4062
4063 atomic_inc(&rq->nr_iowait);
4064 ret = schedule_timeout(timeout);
4065 atomic_dec(&rq->nr_iowait);
4066 return ret;
4067 }
4068
4069 /**
4070 * sys_sched_get_priority_max - return maximum RT priority.
4071 * @policy: scheduling class.
4072 *
4073 * this syscall returns the maximum rt_priority that can be used
4074 * by a given scheduling class.
4075 */
4076 asmlinkage long sys_sched_get_priority_max(int policy)
4077 {
4078 int ret = -EINVAL;
4079
4080 switch (policy) {
4081 case SCHED_FIFO:
4082 case SCHED_RR:
4083 ret = MAX_USER_RT_PRIO-1;
4084 break;
4085 case SCHED_NORMAL:
4086 ret = 0;
4087 break;
4088 }
4089 return ret;
4090 }
4091
4092 /**
4093 * sys_sched_get_priority_min - return minimum RT priority.
4094 * @policy: scheduling class.
4095 *
4096 * this syscall returns the minimum rt_priority that can be used
4097 * by a given scheduling class.
4098 */
4099 asmlinkage long sys_sched_get_priority_min(int policy)
4100 {
4101 int ret = -EINVAL;
4102
4103 switch (policy) {
4104 case SCHED_FIFO:
4105 case SCHED_RR:
4106 ret = 1;
4107 break;
4108 case SCHED_NORMAL:
4109 ret = 0;
4110 }
4111 return ret;
4112 }
4113
4114 /**
4115 * sys_sched_rr_get_interval - return the default timeslice of a process.
4116 * @pid: pid of the process.
4117 * @interval: userspace pointer to the timeslice value.
4118 *
4119 * this syscall writes the default timeslice value of a given process
4120 * into the user-space timespec buffer. A value of '0' means infinity.
4121 */
4122 asmlinkage
4123 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4124 {
4125 int retval = -EINVAL;
4126 struct timespec t;
4127 task_t *p;
4128
4129 if (pid < 0)
4130 goto out_nounlock;
4131
4132 retval = -ESRCH;
4133 read_lock(&tasklist_lock);
4134 p = find_process_by_pid(pid);
4135 if (!p)
4136 goto out_unlock;
4137
4138 retval = security_task_getscheduler(p);
4139 if (retval)
4140 goto out_unlock;
4141
4142 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4143 0 : task_timeslice(p), &t);
4144 read_unlock(&tasklist_lock);
4145 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4146 out_nounlock:
4147 return retval;
4148 out_unlock:
4149 read_unlock(&tasklist_lock);
4150 return retval;
4151 }
4152
4153 static inline struct task_struct *eldest_child(struct task_struct *p)
4154 {
4155 if (list_empty(&p->children)) return NULL;
4156 return list_entry(p->children.next,struct task_struct,sibling);
4157 }
4158
4159 static inline struct task_struct *older_sibling(struct task_struct *p)
4160 {
4161 if (p->sibling.prev==&p->parent->children) return NULL;
4162 return list_entry(p->sibling.prev,struct task_struct,sibling);
4163 }
4164
4165 static inline struct task_struct *younger_sibling(struct task_struct *p)
4166 {
4167 if (p->sibling.next==&p->parent->children) return NULL;
4168 return list_entry(p->sibling.next,struct task_struct,sibling);
4169 }
4170
4171 static void show_task(task_t *p)
4172 {
4173 task_t *relative;
4174 unsigned state;
4175 unsigned long free = 0;
4176 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4177
4178 printk("%-13.13s ", p->comm);
4179 state = p->state ? __ffs(p->state) + 1 : 0;
4180 if (state < ARRAY_SIZE(stat_nam))
4181 printk(stat_nam[state]);
4182 else
4183 printk("?");
4184 #if (BITS_PER_LONG == 32)
4185 if (state == TASK_RUNNING)
4186 printk(" running ");
4187 else
4188 printk(" %08lX ", thread_saved_pc(p));
4189 #else
4190 if (state == TASK_RUNNING)
4191 printk(" running task ");
4192 else
4193 printk(" %016lx ", thread_saved_pc(p));
4194 #endif
4195 #ifdef CONFIG_DEBUG_STACK_USAGE
4196 {
4197 unsigned long *n = (unsigned long *) (p->thread_info+1);
4198 while (!*n)
4199 n++;
4200 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4201 }
4202 #endif
4203 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4204 if ((relative = eldest_child(p)))
4205 printk("%5d ", relative->pid);
4206 else
4207 printk(" ");
4208 if ((relative = younger_sibling(p)))
4209 printk("%7d", relative->pid);
4210 else
4211 printk(" ");
4212 if ((relative = older_sibling(p)))
4213 printk(" %5d", relative->pid);
4214 else
4215 printk(" ");
4216 if (!p->mm)
4217 printk(" (L-TLB)\n");
4218 else
4219 printk(" (NOTLB)\n");
4220
4221 if (state != TASK_RUNNING)
4222 show_stack(p, NULL);
4223 }
4224
4225 void show_state(void)
4226 {
4227 task_t *g, *p;
4228
4229 #if (BITS_PER_LONG == 32)
4230 printk("\n"
4231 " sibling\n");
4232 printk(" task PC pid father child younger older\n");
4233 #else
4234 printk("\n"
4235 " sibling\n");
4236 printk(" task PC pid father child younger older\n");
4237 #endif
4238 read_lock(&tasklist_lock);
4239 do_each_thread(g, p) {
4240 /*
4241 * reset the NMI-timeout, listing all files on a slow
4242 * console might take alot of time:
4243 */
4244 touch_nmi_watchdog();
4245 show_task(p);
4246 } while_each_thread(g, p);
4247
4248 read_unlock(&tasklist_lock);
4249 }
4250
4251 /**
4252 * init_idle - set up an idle thread for a given CPU
4253 * @idle: task in question
4254 * @cpu: cpu the idle task belongs to
4255 *
4256 * NOTE: this function does not set the idle thread's NEED_RESCHED
4257 * flag, to make booting more robust.
4258 */
4259 void __devinit init_idle(task_t *idle, int cpu)
4260 {
4261 runqueue_t *rq = cpu_rq(cpu);
4262 unsigned long flags;
4263
4264 idle->sleep_avg = 0;
4265 idle->array = NULL;
4266 idle->prio = MAX_PRIO;
4267 idle->state = TASK_RUNNING;
4268 idle->cpus_allowed = cpumask_of_cpu(cpu);
4269 set_task_cpu(idle, cpu);
4270
4271 spin_lock_irqsave(&rq->lock, flags);
4272 rq->curr = rq->idle = idle;
4273 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4274 idle->oncpu = 1;
4275 #endif
4276 spin_unlock_irqrestore(&rq->lock, flags);
4277
4278 /* Set the preempt count _outside_ the spinlocks! */
4279 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4280 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4281 #else
4282 idle->thread_info->preempt_count = 0;
4283 #endif
4284 }
4285
4286 /*
4287 * In a system that switches off the HZ timer nohz_cpu_mask
4288 * indicates which cpus entered this state. This is used
4289 * in the rcu update to wait only for active cpus. For system
4290 * which do not switch off the HZ timer nohz_cpu_mask should
4291 * always be CPU_MASK_NONE.
4292 */
4293 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4294
4295 #ifdef CONFIG_SMP
4296 /*
4297 * This is how migration works:
4298 *
4299 * 1) we queue a migration_req_t structure in the source CPU's
4300 * runqueue and wake up that CPU's migration thread.
4301 * 2) we down() the locked semaphore => thread blocks.
4302 * 3) migration thread wakes up (implicitly it forces the migrated
4303 * thread off the CPU)
4304 * 4) it gets the migration request and checks whether the migrated
4305 * task is still in the wrong runqueue.
4306 * 5) if it's in the wrong runqueue then the migration thread removes
4307 * it and puts it into the right queue.
4308 * 6) migration thread up()s the semaphore.
4309 * 7) we wake up and the migration is done.
4310 */
4311
4312 /*
4313 * Change a given task's CPU affinity. Migrate the thread to a
4314 * proper CPU and schedule it away if the CPU it's executing on
4315 * is removed from the allowed bitmask.
4316 *
4317 * NOTE: the caller must have a valid reference to the task, the
4318 * task must not exit() & deallocate itself prematurely. The
4319 * call is not atomic; no spinlocks may be held.
4320 */
4321 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4322 {
4323 unsigned long flags;
4324 int ret = 0;
4325 migration_req_t req;
4326 runqueue_t *rq;
4327
4328 rq = task_rq_lock(p, &flags);
4329 if (!cpus_intersects(new_mask, cpu_online_map)) {
4330 ret = -EINVAL;
4331 goto out;
4332 }
4333
4334 p->cpus_allowed = new_mask;
4335 /* Can the task run on the task's current CPU? If so, we're done */
4336 if (cpu_isset(task_cpu(p), new_mask))
4337 goto out;
4338
4339 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4340 /* Need help from migration thread: drop lock and wait. */
4341 task_rq_unlock(rq, &flags);
4342 wake_up_process(rq->migration_thread);
4343 wait_for_completion(&req.done);
4344 tlb_migrate_finish(p->mm);
4345 return 0;
4346 }
4347 out:
4348 task_rq_unlock(rq, &flags);
4349 return ret;
4350 }
4351
4352 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4353
4354 /*
4355 * Move (not current) task off this cpu, onto dest cpu. We're doing
4356 * this because either it can't run here any more (set_cpus_allowed()
4357 * away from this CPU, or CPU going down), or because we're
4358 * attempting to rebalance this task on exec (sched_exec).
4359 *
4360 * So we race with normal scheduler movements, but that's OK, as long
4361 * as the task is no longer on this CPU.
4362 */
4363 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4364 {
4365 runqueue_t *rq_dest, *rq_src;
4366
4367 if (unlikely(cpu_is_offline(dest_cpu)))
4368 return;
4369
4370 rq_src = cpu_rq(src_cpu);
4371 rq_dest = cpu_rq(dest_cpu);
4372
4373 double_rq_lock(rq_src, rq_dest);
4374 /* Already moved. */
4375 if (task_cpu(p) != src_cpu)
4376 goto out;
4377 /* Affinity changed (again). */
4378 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4379 goto out;
4380
4381 set_task_cpu(p, dest_cpu);
4382 if (p->array) {
4383 /*
4384 * Sync timestamp with rq_dest's before activating.
4385 * The same thing could be achieved by doing this step
4386 * afterwards, and pretending it was a local activate.
4387 * This way is cleaner and logically correct.
4388 */
4389 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4390 + rq_dest->timestamp_last_tick;
4391 deactivate_task(p, rq_src);
4392 activate_task(p, rq_dest, 0);
4393 if (TASK_PREEMPTS_CURR(p, rq_dest))
4394 resched_task(rq_dest->curr);
4395 }
4396
4397 out:
4398 double_rq_unlock(rq_src, rq_dest);
4399 }
4400
4401 /*
4402 * migration_thread - this is a highprio system thread that performs
4403 * thread migration by bumping thread off CPU then 'pushing' onto
4404 * another runqueue.
4405 */
4406 static int migration_thread(void *data)
4407 {
4408 runqueue_t *rq;
4409 int cpu = (long)data;
4410
4411 rq = cpu_rq(cpu);
4412 BUG_ON(rq->migration_thread != current);
4413
4414 set_current_state(TASK_INTERRUPTIBLE);
4415 while (!kthread_should_stop()) {
4416 struct list_head *head;
4417 migration_req_t *req;
4418
4419 try_to_freeze();
4420
4421 spin_lock_irq(&rq->lock);
4422
4423 if (cpu_is_offline(cpu)) {
4424 spin_unlock_irq(&rq->lock);
4425 goto wait_to_die;
4426 }
4427
4428 if (rq->active_balance) {
4429 active_load_balance(rq, cpu);
4430 rq->active_balance = 0;
4431 }
4432
4433 head = &rq->migration_queue;
4434
4435 if (list_empty(head)) {
4436 spin_unlock_irq(&rq->lock);
4437 schedule();
4438 set_current_state(TASK_INTERRUPTIBLE);
4439 continue;
4440 }
4441 req = list_entry(head->next, migration_req_t, list);
4442 list_del_init(head->next);
4443
4444 spin_unlock(&rq->lock);
4445 __migrate_task(req->task, cpu, req->dest_cpu);
4446 local_irq_enable();
4447
4448 complete(&req->done);
4449 }
4450 __set_current_state(TASK_RUNNING);
4451 return 0;
4452
4453 wait_to_die:
4454 /* Wait for kthread_stop */
4455 set_current_state(TASK_INTERRUPTIBLE);
4456 while (!kthread_should_stop()) {
4457 schedule();
4458 set_current_state(TASK_INTERRUPTIBLE);
4459 }
4460 __set_current_state(TASK_RUNNING);
4461 return 0;
4462 }
4463
4464 #ifdef CONFIG_HOTPLUG_CPU
4465 /* Figure out where task on dead CPU should go, use force if neccessary. */
4466 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4467 {
4468 int dest_cpu;
4469 cpumask_t mask;
4470
4471 /* On same node? */
4472 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4473 cpus_and(mask, mask, tsk->cpus_allowed);
4474 dest_cpu = any_online_cpu(mask);
4475
4476 /* On any allowed CPU? */
4477 if (dest_cpu == NR_CPUS)
4478 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4479
4480 /* No more Mr. Nice Guy. */
4481 if (dest_cpu == NR_CPUS) {
4482 cpus_setall(tsk->cpus_allowed);
4483 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4484
4485 /*
4486 * Don't tell them about moving exiting tasks or
4487 * kernel threads (both mm NULL), since they never
4488 * leave kernel.
4489 */
4490 if (tsk->mm && printk_ratelimit())
4491 printk(KERN_INFO "process %d (%s) no "
4492 "longer affine to cpu%d\n",
4493 tsk->pid, tsk->comm, dead_cpu);
4494 }
4495 __migrate_task(tsk, dead_cpu, dest_cpu);
4496 }
4497
4498 /*
4499 * While a dead CPU has no uninterruptible tasks queued at this point,
4500 * it might still have a nonzero ->nr_uninterruptible counter, because
4501 * for performance reasons the counter is not stricly tracking tasks to
4502 * their home CPUs. So we just add the counter to another CPU's counter,
4503 * to keep the global sum constant after CPU-down:
4504 */
4505 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4506 {
4507 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4508 unsigned long flags;
4509
4510 local_irq_save(flags);
4511 double_rq_lock(rq_src, rq_dest);
4512 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4513 rq_src->nr_uninterruptible = 0;
4514 double_rq_unlock(rq_src, rq_dest);
4515 local_irq_restore(flags);
4516 }
4517
4518 /* Run through task list and migrate tasks from the dead cpu. */
4519 static void migrate_live_tasks(int src_cpu)
4520 {
4521 struct task_struct *tsk, *t;
4522
4523 write_lock_irq(&tasklist_lock);
4524
4525 do_each_thread(t, tsk) {
4526 if (tsk == current)
4527 continue;
4528
4529 if (task_cpu(tsk) == src_cpu)
4530 move_task_off_dead_cpu(src_cpu, tsk);
4531 } while_each_thread(t, tsk);
4532
4533 write_unlock_irq(&tasklist_lock);
4534 }
4535
4536 /* Schedules idle task to be the next runnable task on current CPU.
4537 * It does so by boosting its priority to highest possible and adding it to
4538 * the _front_ of runqueue. Used by CPU offline code.
4539 */
4540 void sched_idle_next(void)
4541 {
4542 int cpu = smp_processor_id();
4543 runqueue_t *rq = this_rq();
4544 struct task_struct *p = rq->idle;
4545 unsigned long flags;
4546
4547 /* cpu has to be offline */
4548 BUG_ON(cpu_online(cpu));
4549
4550 /* Strictly not necessary since rest of the CPUs are stopped by now
4551 * and interrupts disabled on current cpu.
4552 */
4553 spin_lock_irqsave(&rq->lock, flags);
4554
4555 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4556 /* Add idle task to _front_ of it's priority queue */
4557 __activate_idle_task(p, rq);
4558
4559 spin_unlock_irqrestore(&rq->lock, flags);
4560 }
4561
4562 /* Ensures that the idle task is using init_mm right before its cpu goes
4563 * offline.
4564 */
4565 void idle_task_exit(void)
4566 {
4567 struct mm_struct *mm = current->active_mm;
4568
4569 BUG_ON(cpu_online(smp_processor_id()));
4570
4571 if (mm != &init_mm)
4572 switch_mm(mm, &init_mm, current);
4573 mmdrop(mm);
4574 }
4575
4576 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4577 {
4578 struct runqueue *rq = cpu_rq(dead_cpu);
4579
4580 /* Must be exiting, otherwise would be on tasklist. */
4581 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4582
4583 /* Cannot have done final schedule yet: would have vanished. */
4584 BUG_ON(tsk->flags & PF_DEAD);
4585
4586 get_task_struct(tsk);
4587
4588 /*
4589 * Drop lock around migration; if someone else moves it,
4590 * that's OK. No task can be added to this CPU, so iteration is
4591 * fine.
4592 */
4593 spin_unlock_irq(&rq->lock);
4594 move_task_off_dead_cpu(dead_cpu, tsk);
4595 spin_lock_irq(&rq->lock);
4596
4597 put_task_struct(tsk);
4598 }
4599
4600 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4601 static void migrate_dead_tasks(unsigned int dead_cpu)
4602 {
4603 unsigned arr, i;
4604 struct runqueue *rq = cpu_rq(dead_cpu);
4605
4606 for (arr = 0; arr < 2; arr++) {
4607 for (i = 0; i < MAX_PRIO; i++) {
4608 struct list_head *list = &rq->arrays[arr].queue[i];
4609 while (!list_empty(list))
4610 migrate_dead(dead_cpu,
4611 list_entry(list->next, task_t,
4612 run_list));
4613 }
4614 }
4615 }
4616 #endif /* CONFIG_HOTPLUG_CPU */
4617
4618 /*
4619 * migration_call - callback that gets triggered when a CPU is added.
4620 * Here we can start up the necessary migration thread for the new CPU.
4621 */
4622 static int migration_call(struct notifier_block *nfb, unsigned long action,
4623 void *hcpu)
4624 {
4625 int cpu = (long)hcpu;
4626 struct task_struct *p;
4627 struct runqueue *rq;
4628 unsigned long flags;
4629
4630 switch (action) {
4631 case CPU_UP_PREPARE:
4632 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4633 if (IS_ERR(p))
4634 return NOTIFY_BAD;
4635 p->flags |= PF_NOFREEZE;
4636 kthread_bind(p, cpu);
4637 /* Must be high prio: stop_machine expects to yield to it. */
4638 rq = task_rq_lock(p, &flags);
4639 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4640 task_rq_unlock(rq, &flags);
4641 cpu_rq(cpu)->migration_thread = p;
4642 break;
4643 case CPU_ONLINE:
4644 /* Strictly unneccessary, as first user will wake it. */
4645 wake_up_process(cpu_rq(cpu)->migration_thread);
4646 break;
4647 #ifdef CONFIG_HOTPLUG_CPU
4648 case CPU_UP_CANCELED:
4649 /* Unbind it from offline cpu so it can run. Fall thru. */
4650 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4651 kthread_stop(cpu_rq(cpu)->migration_thread);
4652 cpu_rq(cpu)->migration_thread = NULL;
4653 break;
4654 case CPU_DEAD:
4655 migrate_live_tasks(cpu);
4656 rq = cpu_rq(cpu);
4657 kthread_stop(rq->migration_thread);
4658 rq->migration_thread = NULL;
4659 /* Idle task back to normal (off runqueue, low prio) */
4660 rq = task_rq_lock(rq->idle, &flags);
4661 deactivate_task(rq->idle, rq);
4662 rq->idle->static_prio = MAX_PRIO;
4663 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4664 migrate_dead_tasks(cpu);
4665 task_rq_unlock(rq, &flags);
4666 migrate_nr_uninterruptible(rq);
4667 BUG_ON(rq->nr_running != 0);
4668
4669 /* No need to migrate the tasks: it was best-effort if
4670 * they didn't do lock_cpu_hotplug(). Just wake up
4671 * the requestors. */
4672 spin_lock_irq(&rq->lock);
4673 while (!list_empty(&rq->migration_queue)) {
4674 migration_req_t *req;
4675 req = list_entry(rq->migration_queue.next,
4676 migration_req_t, list);
4677 list_del_init(&req->list);
4678 complete(&req->done);
4679 }
4680 spin_unlock_irq(&rq->lock);
4681 break;
4682 #endif
4683 }
4684 return NOTIFY_OK;
4685 }
4686
4687 /* Register at highest priority so that task migration (migrate_all_tasks)
4688 * happens before everything else.
4689 */
4690 static struct notifier_block __devinitdata migration_notifier = {
4691 .notifier_call = migration_call,
4692 .priority = 10
4693 };
4694
4695 int __init migration_init(void)
4696 {
4697 void *cpu = (void *)(long)smp_processor_id();
4698 /* Start one for boot CPU. */
4699 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4700 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4701 register_cpu_notifier(&migration_notifier);
4702 return 0;
4703 }
4704 #endif
4705
4706 #ifdef CONFIG_SMP
4707 #undef SCHED_DOMAIN_DEBUG
4708 #ifdef SCHED_DOMAIN_DEBUG
4709 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4710 {
4711 int level = 0;
4712
4713 if (!sd) {
4714 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4715 return;
4716 }
4717
4718 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4719
4720 do {
4721 int i;
4722 char str[NR_CPUS];
4723 struct sched_group *group = sd->groups;
4724 cpumask_t groupmask;
4725
4726 cpumask_scnprintf(str, NR_CPUS, sd->span);
4727 cpus_clear(groupmask);
4728
4729 printk(KERN_DEBUG);
4730 for (i = 0; i < level + 1; i++)
4731 printk(" ");
4732 printk("domain %d: ", level);
4733
4734 if (!(sd->flags & SD_LOAD_BALANCE)) {
4735 printk("does not load-balance\n");
4736 if (sd->parent)
4737 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4738 break;
4739 }
4740
4741 printk("span %s\n", str);
4742
4743 if (!cpu_isset(cpu, sd->span))
4744 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4745 if (!cpu_isset(cpu, group->cpumask))
4746 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4747
4748 printk(KERN_DEBUG);
4749 for (i = 0; i < level + 2; i++)
4750 printk(" ");
4751 printk("groups:");
4752 do {
4753 if (!group) {
4754 printk("\n");
4755 printk(KERN_ERR "ERROR: group is NULL\n");
4756 break;
4757 }
4758
4759 if (!group->cpu_power) {
4760 printk("\n");
4761 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4762 }
4763
4764 if (!cpus_weight(group->cpumask)) {
4765 printk("\n");
4766 printk(KERN_ERR "ERROR: empty group\n");
4767 }
4768
4769 if (cpus_intersects(groupmask, group->cpumask)) {
4770 printk("\n");
4771 printk(KERN_ERR "ERROR: repeated CPUs\n");
4772 }
4773
4774 cpus_or(groupmask, groupmask, group->cpumask);
4775
4776 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4777 printk(" %s", str);
4778
4779 group = group->next;
4780 } while (group != sd->groups);
4781 printk("\n");
4782
4783 if (!cpus_equal(sd->span, groupmask))
4784 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4785
4786 level++;
4787 sd = sd->parent;
4788
4789 if (sd) {
4790 if (!cpus_subset(groupmask, sd->span))
4791 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4792 }
4793
4794 } while (sd);
4795 }
4796 #else
4797 #define sched_domain_debug(sd, cpu) {}
4798 #endif
4799
4800 static int sd_degenerate(struct sched_domain *sd)
4801 {
4802 if (cpus_weight(sd->span) == 1)
4803 return 1;
4804
4805 /* Following flags need at least 2 groups */
4806 if (sd->flags & (SD_LOAD_BALANCE |
4807 SD_BALANCE_NEWIDLE |
4808 SD_BALANCE_FORK |
4809 SD_BALANCE_EXEC)) {
4810 if (sd->groups != sd->groups->next)
4811 return 0;
4812 }
4813
4814 /* Following flags don't use groups */
4815 if (sd->flags & (SD_WAKE_IDLE |
4816 SD_WAKE_AFFINE |
4817 SD_WAKE_BALANCE))
4818 return 0;
4819
4820 return 1;
4821 }
4822
4823 static int sd_parent_degenerate(struct sched_domain *sd,
4824 struct sched_domain *parent)
4825 {
4826 unsigned long cflags = sd->flags, pflags = parent->flags;
4827
4828 if (sd_degenerate(parent))
4829 return 1;
4830
4831 if (!cpus_equal(sd->span, parent->span))
4832 return 0;
4833
4834 /* Does parent contain flags not in child? */
4835 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4836 if (cflags & SD_WAKE_AFFINE)
4837 pflags &= ~SD_WAKE_BALANCE;
4838 /* Flags needing groups don't count if only 1 group in parent */
4839 if (parent->groups == parent->groups->next) {
4840 pflags &= ~(SD_LOAD_BALANCE |
4841 SD_BALANCE_NEWIDLE |
4842 SD_BALANCE_FORK |
4843 SD_BALANCE_EXEC);
4844 }
4845 if (~cflags & pflags)
4846 return 0;
4847
4848 return 1;
4849 }
4850
4851 /*
4852 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4853 * hold the hotplug lock.
4854 */
4855 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4856 {
4857 runqueue_t *rq = cpu_rq(cpu);
4858 struct sched_domain *tmp;
4859
4860 /* Remove the sched domains which do not contribute to scheduling. */
4861 for (tmp = sd; tmp; tmp = tmp->parent) {
4862 struct sched_domain *parent = tmp->parent;
4863 if (!parent)
4864 break;
4865 if (sd_parent_degenerate(tmp, parent))
4866 tmp->parent = parent->parent;
4867 }
4868
4869 if (sd && sd_degenerate(sd))
4870 sd = sd->parent;
4871
4872 sched_domain_debug(sd, cpu);
4873
4874 rcu_assign_pointer(rq->sd, sd);
4875 }
4876
4877 /* cpus with isolated domains */
4878 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4879
4880 /* Setup the mask of cpus configured for isolated domains */
4881 static int __init isolated_cpu_setup(char *str)
4882 {
4883 int ints[NR_CPUS], i;
4884
4885 str = get_options(str, ARRAY_SIZE(ints), ints);
4886 cpus_clear(cpu_isolated_map);
4887 for (i = 1; i <= ints[0]; i++)
4888 if (ints[i] < NR_CPUS)
4889 cpu_set(ints[i], cpu_isolated_map);
4890 return 1;
4891 }
4892
4893 __setup ("isolcpus=", isolated_cpu_setup);
4894
4895 /*
4896 * init_sched_build_groups takes an array of groups, the cpumask we wish
4897 * to span, and a pointer to a function which identifies what group a CPU
4898 * belongs to. The return value of group_fn must be a valid index into the
4899 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4900 * keep track of groups covered with a cpumask_t).
4901 *
4902 * init_sched_build_groups will build a circular linked list of the groups
4903 * covered by the given span, and will set each group's ->cpumask correctly,
4904 * and ->cpu_power to 0.
4905 */
4906 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4907 int (*group_fn)(int cpu))
4908 {
4909 struct sched_group *first = NULL, *last = NULL;
4910 cpumask_t covered = CPU_MASK_NONE;
4911 int i;
4912
4913 for_each_cpu_mask(i, span) {
4914 int group = group_fn(i);
4915 struct sched_group *sg = &groups[group];
4916 int j;
4917
4918 if (cpu_isset(i, covered))
4919 continue;
4920
4921 sg->cpumask = CPU_MASK_NONE;
4922 sg->cpu_power = 0;
4923
4924 for_each_cpu_mask(j, span) {
4925 if (group_fn(j) != group)
4926 continue;
4927
4928 cpu_set(j, covered);
4929 cpu_set(j, sg->cpumask);
4930 }
4931 if (!first)
4932 first = sg;
4933 if (last)
4934 last->next = sg;
4935 last = sg;
4936 }
4937 last->next = first;
4938 }
4939
4940 #define SD_NODES_PER_DOMAIN 16
4941
4942 #ifdef CONFIG_NUMA
4943 /**
4944 * find_next_best_node - find the next node to include in a sched_domain
4945 * @node: node whose sched_domain we're building
4946 * @used_nodes: nodes already in the sched_domain
4947 *
4948 * Find the next node to include in a given scheduling domain. Simply
4949 * finds the closest node not already in the @used_nodes map.
4950 *
4951 * Should use nodemask_t.
4952 */
4953 static int find_next_best_node(int node, unsigned long *used_nodes)
4954 {
4955 int i, n, val, min_val, best_node = 0;
4956
4957 min_val = INT_MAX;
4958
4959 for (i = 0; i < MAX_NUMNODES; i++) {
4960 /* Start at @node */
4961 n = (node + i) % MAX_NUMNODES;
4962
4963 if (!nr_cpus_node(n))
4964 continue;
4965
4966 /* Skip already used nodes */
4967 if (test_bit(n, used_nodes))
4968 continue;
4969
4970 /* Simple min distance search */
4971 val = node_distance(node, n);
4972
4973 if (val < min_val) {
4974 min_val = val;
4975 best_node = n;
4976 }
4977 }
4978
4979 set_bit(best_node, used_nodes);
4980 return best_node;
4981 }
4982
4983 /**
4984 * sched_domain_node_span - get a cpumask for a node's sched_domain
4985 * @node: node whose cpumask we're constructing
4986 * @size: number of nodes to include in this span
4987 *
4988 * Given a node, construct a good cpumask for its sched_domain to span. It
4989 * should be one that prevents unnecessary balancing, but also spreads tasks
4990 * out optimally.
4991 */
4992 static cpumask_t sched_domain_node_span(int node)
4993 {
4994 int i;
4995 cpumask_t span, nodemask;
4996 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4997
4998 cpus_clear(span);
4999 bitmap_zero(used_nodes, MAX_NUMNODES);
5000
5001 nodemask = node_to_cpumask(node);
5002 cpus_or(span, span, nodemask);
5003 set_bit(node, used_nodes);
5004
5005 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5006 int next_node = find_next_best_node(node, used_nodes);
5007 nodemask = node_to_cpumask(next_node);
5008 cpus_or(span, span, nodemask);
5009 }
5010
5011 return span;
5012 }
5013 #endif
5014
5015 /*
5016 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5017 * can switch it on easily if needed.
5018 */
5019 #ifdef CONFIG_SCHED_SMT
5020 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5021 static struct sched_group sched_group_cpus[NR_CPUS];
5022 static int cpu_to_cpu_group(int cpu)
5023 {
5024 return cpu;
5025 }
5026 #endif
5027
5028 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5029 static struct sched_group sched_group_phys[NR_CPUS];
5030 static int cpu_to_phys_group(int cpu)
5031 {
5032 #ifdef CONFIG_SCHED_SMT
5033 return first_cpu(cpu_sibling_map[cpu]);
5034 #else
5035 return cpu;
5036 #endif
5037 }
5038
5039 #ifdef CONFIG_NUMA
5040 /*
5041 * The init_sched_build_groups can't handle what we want to do with node
5042 * groups, so roll our own. Now each node has its own list of groups which
5043 * gets dynamically allocated.
5044 */
5045 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5046 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5047
5048 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5049 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5050
5051 static int cpu_to_allnodes_group(int cpu)
5052 {
5053 return cpu_to_node(cpu);
5054 }
5055 #endif
5056
5057 /*
5058 * Build sched domains for a given set of cpus and attach the sched domains
5059 * to the individual cpus
5060 */
5061 void build_sched_domains(const cpumask_t *cpu_map)
5062 {
5063 int i;
5064 #ifdef CONFIG_NUMA
5065 struct sched_group **sched_group_nodes = NULL;
5066 struct sched_group *sched_group_allnodes = NULL;
5067
5068 /*
5069 * Allocate the per-node list of sched groups
5070 */
5071 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5072 GFP_ATOMIC);
5073 if (!sched_group_nodes) {
5074 printk(KERN_WARNING "Can not alloc sched group node list\n");
5075 return;
5076 }
5077 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5078 #endif
5079
5080 /*
5081 * Set up domains for cpus specified by the cpu_map.
5082 */
5083 for_each_cpu_mask(i, *cpu_map) {
5084 int group;
5085 struct sched_domain *sd = NULL, *p;
5086 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5087
5088 cpus_and(nodemask, nodemask, *cpu_map);
5089
5090 #ifdef CONFIG_NUMA
5091 if (cpus_weight(*cpu_map)
5092 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5093 if (!sched_group_allnodes) {
5094 sched_group_allnodes
5095 = kmalloc(sizeof(struct sched_group)
5096 * MAX_NUMNODES,
5097 GFP_KERNEL);
5098 if (!sched_group_allnodes) {
5099 printk(KERN_WARNING
5100 "Can not alloc allnodes sched group\n");
5101 break;
5102 }
5103 sched_group_allnodes_bycpu[i]
5104 = sched_group_allnodes;
5105 }
5106 sd = &per_cpu(allnodes_domains, i);
5107 *sd = SD_ALLNODES_INIT;
5108 sd->span = *cpu_map;
5109 group = cpu_to_allnodes_group(i);
5110 sd->groups = &sched_group_allnodes[group];
5111 p = sd;
5112 } else
5113 p = NULL;
5114
5115 sd = &per_cpu(node_domains, i);
5116 *sd = SD_NODE_INIT;
5117 sd->span = sched_domain_node_span(cpu_to_node(i));
5118 sd->parent = p;
5119 cpus_and(sd->span, sd->span, *cpu_map);
5120 #endif
5121
5122 p = sd;
5123 sd = &per_cpu(phys_domains, i);
5124 group = cpu_to_phys_group(i);
5125 *sd = SD_CPU_INIT;
5126 sd->span = nodemask;
5127 sd->parent = p;
5128 sd->groups = &sched_group_phys[group];
5129
5130 #ifdef CONFIG_SCHED_SMT
5131 p = sd;
5132 sd = &per_cpu(cpu_domains, i);
5133 group = cpu_to_cpu_group(i);
5134 *sd = SD_SIBLING_INIT;
5135 sd->span = cpu_sibling_map[i];
5136 cpus_and(sd->span, sd->span, *cpu_map);
5137 sd->parent = p;
5138 sd->groups = &sched_group_cpus[group];
5139 #endif
5140 }
5141
5142 #ifdef CONFIG_SCHED_SMT
5143 /* Set up CPU (sibling) groups */
5144 for_each_cpu_mask(i, *cpu_map) {
5145 cpumask_t this_sibling_map = cpu_sibling_map[i];
5146 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5147 if (i != first_cpu(this_sibling_map))
5148 continue;
5149
5150 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5151 &cpu_to_cpu_group);
5152 }
5153 #endif
5154
5155 /* Set up physical groups */
5156 for (i = 0; i < MAX_NUMNODES; i++) {
5157 cpumask_t nodemask = node_to_cpumask(i);
5158
5159 cpus_and(nodemask, nodemask, *cpu_map);
5160 if (cpus_empty(nodemask))
5161 continue;
5162
5163 init_sched_build_groups(sched_group_phys, nodemask,
5164 &cpu_to_phys_group);
5165 }
5166
5167 #ifdef CONFIG_NUMA
5168 /* Set up node groups */
5169 if (sched_group_allnodes)
5170 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5171 &cpu_to_allnodes_group);
5172
5173 for (i = 0; i < MAX_NUMNODES; i++) {
5174 /* Set up node groups */
5175 struct sched_group *sg, *prev;
5176 cpumask_t nodemask = node_to_cpumask(i);
5177 cpumask_t domainspan;
5178 cpumask_t covered = CPU_MASK_NONE;
5179 int j;
5180
5181 cpus_and(nodemask, nodemask, *cpu_map);
5182 if (cpus_empty(nodemask)) {
5183 sched_group_nodes[i] = NULL;
5184 continue;
5185 }
5186
5187 domainspan = sched_domain_node_span(i);
5188 cpus_and(domainspan, domainspan, *cpu_map);
5189
5190 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5191 sched_group_nodes[i] = sg;
5192 for_each_cpu_mask(j, nodemask) {
5193 struct sched_domain *sd;
5194 sd = &per_cpu(node_domains, j);
5195 sd->groups = sg;
5196 if (sd->groups == NULL) {
5197 /* Turn off balancing if we have no groups */
5198 sd->flags = 0;
5199 }
5200 }
5201 if (!sg) {
5202 printk(KERN_WARNING
5203 "Can not alloc domain group for node %d\n", i);
5204 continue;
5205 }
5206 sg->cpu_power = 0;
5207 sg->cpumask = nodemask;
5208 cpus_or(covered, covered, nodemask);
5209 prev = sg;
5210
5211 for (j = 0; j < MAX_NUMNODES; j++) {
5212 cpumask_t tmp, notcovered;
5213 int n = (i + j) % MAX_NUMNODES;
5214
5215 cpus_complement(notcovered, covered);
5216 cpus_and(tmp, notcovered, *cpu_map);
5217 cpus_and(tmp, tmp, domainspan);
5218 if (cpus_empty(tmp))
5219 break;
5220
5221 nodemask = node_to_cpumask(n);
5222 cpus_and(tmp, tmp, nodemask);
5223 if (cpus_empty(tmp))
5224 continue;
5225
5226 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5227 if (!sg) {
5228 printk(KERN_WARNING
5229 "Can not alloc domain group for node %d\n", j);
5230 break;
5231 }
5232 sg->cpu_power = 0;
5233 sg->cpumask = tmp;
5234 cpus_or(covered, covered, tmp);
5235 prev->next = sg;
5236 prev = sg;
5237 }
5238 prev->next = sched_group_nodes[i];
5239 }
5240 #endif
5241
5242 /* Calculate CPU power for physical packages and nodes */
5243 for_each_cpu_mask(i, *cpu_map) {
5244 int power;
5245 struct sched_domain *sd;
5246 #ifdef CONFIG_SCHED_SMT
5247 sd = &per_cpu(cpu_domains, i);
5248 power = SCHED_LOAD_SCALE;
5249 sd->groups->cpu_power = power;
5250 #endif
5251
5252 sd = &per_cpu(phys_domains, i);
5253 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5254 (cpus_weight(sd->groups->cpumask)-1) / 10;
5255 sd->groups->cpu_power = power;
5256
5257 #ifdef CONFIG_NUMA
5258 sd = &per_cpu(allnodes_domains, i);
5259 if (sd->groups) {
5260 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5261 (cpus_weight(sd->groups->cpumask)-1) / 10;
5262 sd->groups->cpu_power = power;
5263 }
5264 #endif
5265 }
5266
5267 #ifdef CONFIG_NUMA
5268 for (i = 0; i < MAX_NUMNODES; i++) {
5269 struct sched_group *sg = sched_group_nodes[i];
5270 int j;
5271
5272 if (sg == NULL)
5273 continue;
5274 next_sg:
5275 for_each_cpu_mask(j, sg->cpumask) {
5276 struct sched_domain *sd;
5277 int power;
5278
5279 sd = &per_cpu(phys_domains, j);
5280 if (j != first_cpu(sd->groups->cpumask)) {
5281 /*
5282 * Only add "power" once for each
5283 * physical package.
5284 */
5285 continue;
5286 }
5287 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5288 (cpus_weight(sd->groups->cpumask)-1) / 10;
5289
5290 sg->cpu_power += power;
5291 }
5292 sg = sg->next;
5293 if (sg != sched_group_nodes[i])
5294 goto next_sg;
5295 }
5296 #endif
5297
5298 /* Attach the domains */
5299 for_each_cpu_mask(i, *cpu_map) {
5300 struct sched_domain *sd;
5301 #ifdef CONFIG_SCHED_SMT
5302 sd = &per_cpu(cpu_domains, i);
5303 #else
5304 sd = &per_cpu(phys_domains, i);
5305 #endif
5306 cpu_attach_domain(sd, i);
5307 }
5308 }
5309 /*
5310 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5311 */
5312 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5313 {
5314 cpumask_t cpu_default_map;
5315
5316 /*
5317 * Setup mask for cpus without special case scheduling requirements.
5318 * For now this just excludes isolated cpus, but could be used to
5319 * exclude other special cases in the future.
5320 */
5321 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5322
5323 build_sched_domains(&cpu_default_map);
5324 }
5325
5326 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5327 {
5328 #ifdef CONFIG_NUMA
5329 int i;
5330 int cpu;
5331
5332 for_each_cpu_mask(cpu, *cpu_map) {
5333 struct sched_group *sched_group_allnodes
5334 = sched_group_allnodes_bycpu[cpu];
5335 struct sched_group **sched_group_nodes
5336 = sched_group_nodes_bycpu[cpu];
5337
5338 if (sched_group_allnodes) {
5339 kfree(sched_group_allnodes);
5340 sched_group_allnodes_bycpu[cpu] = NULL;
5341 }
5342
5343 if (!sched_group_nodes)
5344 continue;
5345
5346 for (i = 0; i < MAX_NUMNODES; i++) {
5347 cpumask_t nodemask = node_to_cpumask(i);
5348 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5349
5350 cpus_and(nodemask, nodemask, *cpu_map);
5351 if (cpus_empty(nodemask))
5352 continue;
5353
5354 if (sg == NULL)
5355 continue;
5356 sg = sg->next;
5357 next_sg:
5358 oldsg = sg;
5359 sg = sg->next;
5360 kfree(oldsg);
5361 if (oldsg != sched_group_nodes[i])
5362 goto next_sg;
5363 }
5364 kfree(sched_group_nodes);
5365 sched_group_nodes_bycpu[cpu] = NULL;
5366 }
5367 #endif
5368 }
5369
5370 /*
5371 * Detach sched domains from a group of cpus specified in cpu_map
5372 * These cpus will now be attached to the NULL domain
5373 */
5374 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5375 {
5376 int i;
5377
5378 for_each_cpu_mask(i, *cpu_map)
5379 cpu_attach_domain(NULL, i);
5380 synchronize_sched();
5381 arch_destroy_sched_domains(cpu_map);
5382 }
5383
5384 /*
5385 * Partition sched domains as specified by the cpumasks below.
5386 * This attaches all cpus from the cpumasks to the NULL domain,
5387 * waits for a RCU quiescent period, recalculates sched
5388 * domain information and then attaches them back to the
5389 * correct sched domains
5390 * Call with hotplug lock held
5391 */
5392 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5393 {
5394 cpumask_t change_map;
5395
5396 cpus_and(*partition1, *partition1, cpu_online_map);
5397 cpus_and(*partition2, *partition2, cpu_online_map);
5398 cpus_or(change_map, *partition1, *partition2);
5399
5400 /* Detach sched domains from all of the affected cpus */
5401 detach_destroy_domains(&change_map);
5402 if (!cpus_empty(*partition1))
5403 build_sched_domains(partition1);
5404 if (!cpus_empty(*partition2))
5405 build_sched_domains(partition2);
5406 }
5407
5408 #ifdef CONFIG_HOTPLUG_CPU
5409 /*
5410 * Force a reinitialization of the sched domains hierarchy. The domains
5411 * and groups cannot be updated in place without racing with the balancing
5412 * code, so we temporarily attach all running cpus to the NULL domain
5413 * which will prevent rebalancing while the sched domains are recalculated.
5414 */
5415 static int update_sched_domains(struct notifier_block *nfb,
5416 unsigned long action, void *hcpu)
5417 {
5418 switch (action) {
5419 case CPU_UP_PREPARE:
5420 case CPU_DOWN_PREPARE:
5421 detach_destroy_domains(&cpu_online_map);
5422 return NOTIFY_OK;
5423
5424 case CPU_UP_CANCELED:
5425 case CPU_DOWN_FAILED:
5426 case CPU_ONLINE:
5427 case CPU_DEAD:
5428 /*
5429 * Fall through and re-initialise the domains.
5430 */
5431 break;
5432 default:
5433 return NOTIFY_DONE;
5434 }
5435
5436 /* The hotplug lock is already held by cpu_up/cpu_down */
5437 arch_init_sched_domains(&cpu_online_map);
5438
5439 return NOTIFY_OK;
5440 }
5441 #endif
5442
5443 void __init sched_init_smp(void)
5444 {
5445 lock_cpu_hotplug();
5446 arch_init_sched_domains(&cpu_online_map);
5447 unlock_cpu_hotplug();
5448 /* XXX: Theoretical race here - CPU may be hotplugged now */
5449 hotcpu_notifier(update_sched_domains, 0);
5450 }
5451 #else
5452 void __init sched_init_smp(void)
5453 {
5454 }
5455 #endif /* CONFIG_SMP */
5456
5457 int in_sched_functions(unsigned long addr)
5458 {
5459 /* Linker adds these: start and end of __sched functions */
5460 extern char __sched_text_start[], __sched_text_end[];
5461 return in_lock_functions(addr) ||
5462 (addr >= (unsigned long)__sched_text_start
5463 && addr < (unsigned long)__sched_text_end);
5464 }
5465
5466 void __init sched_init(void)
5467 {
5468 runqueue_t *rq;
5469 int i, j, k;
5470
5471 for (i = 0; i < NR_CPUS; i++) {
5472 prio_array_t *array;
5473
5474 rq = cpu_rq(i);
5475 spin_lock_init(&rq->lock);
5476 rq->nr_running = 0;
5477 rq->active = rq->arrays;
5478 rq->expired = rq->arrays + 1;
5479 rq->best_expired_prio = MAX_PRIO;
5480
5481 #ifdef CONFIG_SMP
5482 rq->sd = NULL;
5483 for (j = 1; j < 3; j++)
5484 rq->cpu_load[j] = 0;
5485 rq->active_balance = 0;
5486 rq->push_cpu = 0;
5487 rq->migration_thread = NULL;
5488 INIT_LIST_HEAD(&rq->migration_queue);
5489 #endif
5490 atomic_set(&rq->nr_iowait, 0);
5491
5492 for (j = 0; j < 2; j++) {
5493 array = rq->arrays + j;
5494 for (k = 0; k < MAX_PRIO; k++) {
5495 INIT_LIST_HEAD(array->queue + k);
5496 __clear_bit(k, array->bitmap);
5497 }
5498 // delimiter for bitsearch
5499 __set_bit(MAX_PRIO, array->bitmap);
5500 }
5501 }
5502
5503 /*
5504 * The boot idle thread does lazy MMU switching as well:
5505 */
5506 atomic_inc(&init_mm.mm_count);
5507 enter_lazy_tlb(&init_mm, current);
5508
5509 /*
5510 * Make us the idle thread. Technically, schedule() should not be
5511 * called from this thread, however somewhere below it might be,
5512 * but because we are the idle thread, we just pick up running again
5513 * when this runqueue becomes "idle".
5514 */
5515 init_idle(current, smp_processor_id());
5516 }
5517
5518 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5519 void __might_sleep(char *file, int line)
5520 {
5521 #if defined(in_atomic)
5522 static unsigned long prev_jiffy; /* ratelimiting */
5523
5524 if ((in_atomic() || irqs_disabled()) &&
5525 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5526 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5527 return;
5528 prev_jiffy = jiffies;
5529 printk(KERN_ERR "Debug: sleeping function called from invalid"
5530 " context at %s:%d\n", file, line);
5531 printk("in_atomic():%d, irqs_disabled():%d\n",
5532 in_atomic(), irqs_disabled());
5533 dump_stack();
5534 }
5535 #endif
5536 }
5537 EXPORT_SYMBOL(__might_sleep);
5538 #endif
5539
5540 #ifdef CONFIG_MAGIC_SYSRQ
5541 void normalize_rt_tasks(void)
5542 {
5543 struct task_struct *p;
5544 prio_array_t *array;
5545 unsigned long flags;
5546 runqueue_t *rq;
5547
5548 read_lock_irq(&tasklist_lock);
5549 for_each_process (p) {
5550 if (!rt_task(p))
5551 continue;
5552
5553 rq = task_rq_lock(p, &flags);
5554
5555 array = p->array;
5556 if (array)
5557 deactivate_task(p, task_rq(p));
5558 __setscheduler(p, SCHED_NORMAL, 0);
5559 if (array) {
5560 __activate_task(p, task_rq(p));
5561 resched_task(rq->curr);
5562 }
5563
5564 task_rq_unlock(rq, &flags);
5565 }
5566 read_unlock_irq(&tasklist_lock);
5567 }
5568
5569 #endif /* CONFIG_MAGIC_SYSRQ */