sched: cleanup: refactor normalize_rt_tasks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 #ifdef CONFIG_SMP
79 #define is_migration_thread(p, rq) ((p) == (rq)->migration_thread)
80 #else
81 #define is_migration_thread(p, rq) 0
82 #endif
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Some helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
106 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 #ifdef CONFIG_FAIR_GROUP_SCHED
161
162 struct cfs_rq;
163
164 /* task group related information */
165 struct task_group {
166 /* schedulable entities of this group on each cpu */
167 struct sched_entity **se;
168 /* runqueue "owned" by this group on each cpu */
169 struct cfs_rq **cfs_rq;
170 unsigned long shares;
171 /* spinlock to serialize modification to shares */
172 spinlock_t lock;
173 };
174
175 /* Default task group's sched entity on each cpu */
176 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
177 /* Default task group's cfs_rq on each cpu */
178 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
179
180 static struct sched_entity *init_sched_entity_p[NR_CPUS];
181 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
182
183 /* Default task group.
184 * Every task in system belong to this group at bootup.
185 */
186 struct task_group init_task_group = {
187 .se = init_sched_entity_p,
188 .cfs_rq = init_cfs_rq_p,
189 };
190
191 #ifdef CONFIG_FAIR_USER_SCHED
192 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
193 #else
194 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
195 #endif
196
197 static int init_task_group_load = INIT_TASK_GRP_LOAD;
198
199 /* return group to which a task belongs */
200 static inline struct task_group *task_group(struct task_struct *p)
201 {
202 struct task_group *tg;
203
204 #ifdef CONFIG_FAIR_USER_SCHED
205 tg = p->user->tg;
206 #else
207 tg = &init_task_group;
208 #endif
209
210 return tg;
211 }
212
213 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
214 static inline void set_task_cfs_rq(struct task_struct *p)
215 {
216 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
217 p->se.parent = task_group(p)->se[task_cpu(p)];
218 }
219
220 #else
221
222 static inline void set_task_cfs_rq(struct task_struct *p) { }
223
224 #endif /* CONFIG_FAIR_GROUP_SCHED */
225
226 /* CFS-related fields in a runqueue */
227 struct cfs_rq {
228 struct load_weight load;
229 unsigned long nr_running;
230
231 u64 exec_clock;
232 u64 min_vruntime;
233
234 struct rb_root tasks_timeline;
235 struct rb_node *rb_leftmost;
236 struct rb_node *rb_load_balance_curr;
237 /* 'curr' points to currently running entity on this cfs_rq.
238 * It is set to NULL otherwise (i.e when none are currently running).
239 */
240 struct sched_entity *curr;
241
242 unsigned long nr_spread_over;
243
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
246
247 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
248 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
249 * (like users, containers etc.)
250 *
251 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
252 * list is used during load balance.
253 */
254 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
255 struct task_group *tg; /* group that "owns" this runqueue */
256 struct rcu_head rcu;
257 #endif
258 };
259
260 /* Real-Time classes' related field in a runqueue: */
261 struct rt_rq {
262 struct rt_prio_array active;
263 int rt_load_balance_idx;
264 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
265 };
266
267 /*
268 * This is the main, per-CPU runqueue data structure.
269 *
270 * Locking rule: those places that want to lock multiple runqueues
271 * (such as the load balancing or the thread migration code), lock
272 * acquire operations must be ordered by ascending &runqueue.
273 */
274 struct rq {
275 spinlock_t lock; /* runqueue lock */
276
277 /*
278 * nr_running and cpu_load should be in the same cacheline because
279 * remote CPUs use both these fields when doing load calculation.
280 */
281 unsigned long nr_running;
282 #define CPU_LOAD_IDX_MAX 5
283 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
284 unsigned char idle_at_tick;
285 #ifdef CONFIG_NO_HZ
286 unsigned char in_nohz_recently;
287 #endif
288 struct load_weight load; /* capture load from *all* tasks on this cpu */
289 unsigned long nr_load_updates;
290 u64 nr_switches;
291
292 struct cfs_rq cfs;
293 #ifdef CONFIG_FAIR_GROUP_SCHED
294 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
295 #endif
296 struct rt_rq rt;
297
298 /*
299 * This is part of a global counter where only the total sum
300 * over all CPUs matters. A task can increase this counter on
301 * one CPU and if it got migrated afterwards it may decrease
302 * it on another CPU. Always updated under the runqueue lock:
303 */
304 unsigned long nr_uninterruptible;
305
306 struct task_struct *curr, *idle;
307 unsigned long next_balance;
308 struct mm_struct *prev_mm;
309
310 u64 clock, prev_clock_raw;
311 s64 clock_max_delta;
312
313 unsigned int clock_warps, clock_overflows;
314 u64 idle_clock;
315 unsigned int clock_deep_idle_events;
316 u64 tick_timestamp;
317
318 atomic_t nr_iowait;
319
320 #ifdef CONFIG_SMP
321 struct sched_domain *sd;
322
323 /* For active balancing */
324 int active_balance;
325 int push_cpu;
326 int cpu; /* cpu of this runqueue */
327
328 struct task_struct *migration_thread;
329 struct list_head migration_queue;
330 #endif
331
332 #ifdef CONFIG_SCHEDSTATS
333 /* latency stats */
334 struct sched_info rq_sched_info;
335
336 /* sys_sched_yield() stats */
337 unsigned long yld_exp_empty;
338 unsigned long yld_act_empty;
339 unsigned long yld_both_empty;
340 unsigned long yld_count;
341
342 /* schedule() stats */
343 unsigned long sched_switch;
344 unsigned long sched_count;
345 unsigned long sched_goidle;
346
347 /* try_to_wake_up() stats */
348 unsigned long ttwu_count;
349 unsigned long ttwu_local;
350
351 /* BKL stats */
352 unsigned long bkl_count;
353 #endif
354 struct lock_class_key rq_lock_key;
355 };
356
357 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
358 static DEFINE_MUTEX(sched_hotcpu_mutex);
359
360 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
361 {
362 rq->curr->sched_class->check_preempt_curr(rq, p);
363 }
364
365 static inline int cpu_of(struct rq *rq)
366 {
367 #ifdef CONFIG_SMP
368 return rq->cpu;
369 #else
370 return 0;
371 #endif
372 }
373
374 /*
375 * Update the per-runqueue clock, as finegrained as the platform can give
376 * us, but without assuming monotonicity, etc.:
377 */
378 static void __update_rq_clock(struct rq *rq)
379 {
380 u64 prev_raw = rq->prev_clock_raw;
381 u64 now = sched_clock();
382 s64 delta = now - prev_raw;
383 u64 clock = rq->clock;
384
385 #ifdef CONFIG_SCHED_DEBUG
386 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
387 #endif
388 /*
389 * Protect against sched_clock() occasionally going backwards:
390 */
391 if (unlikely(delta < 0)) {
392 clock++;
393 rq->clock_warps++;
394 } else {
395 /*
396 * Catch too large forward jumps too:
397 */
398 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
399 if (clock < rq->tick_timestamp + TICK_NSEC)
400 clock = rq->tick_timestamp + TICK_NSEC;
401 else
402 clock++;
403 rq->clock_overflows++;
404 } else {
405 if (unlikely(delta > rq->clock_max_delta))
406 rq->clock_max_delta = delta;
407 clock += delta;
408 }
409 }
410
411 rq->prev_clock_raw = now;
412 rq->clock = clock;
413 }
414
415 static void update_rq_clock(struct rq *rq)
416 {
417 if (likely(smp_processor_id() == cpu_of(rq)))
418 __update_rq_clock(rq);
419 }
420
421 /*
422 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
423 * See detach_destroy_domains: synchronize_sched for details.
424 *
425 * The domain tree of any CPU may only be accessed from within
426 * preempt-disabled sections.
427 */
428 #define for_each_domain(cpu, __sd) \
429 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
430
431 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
432 #define this_rq() (&__get_cpu_var(runqueues))
433 #define task_rq(p) cpu_rq(task_cpu(p))
434 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
435
436 /*
437 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
438 */
439 #ifdef CONFIG_SCHED_DEBUG
440 # define const_debug __read_mostly
441 #else
442 # define const_debug static const
443 #endif
444
445 /*
446 * Debugging: various feature bits
447 */
448 enum {
449 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
450 SCHED_FEAT_START_DEBIT = 2,
451 SCHED_FEAT_TREE_AVG = 4,
452 SCHED_FEAT_APPROX_AVG = 8,
453 SCHED_FEAT_WAKEUP_PREEMPT = 16,
454 SCHED_FEAT_PREEMPT_RESTRICT = 32,
455 };
456
457 const_debug unsigned int sysctl_sched_features =
458 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
459 SCHED_FEAT_START_DEBIT *1 |
460 SCHED_FEAT_TREE_AVG *0 |
461 SCHED_FEAT_APPROX_AVG *0 |
462 SCHED_FEAT_WAKEUP_PREEMPT *1 |
463 SCHED_FEAT_PREEMPT_RESTRICT *1;
464
465 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
466
467 /*
468 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
469 * clock constructed from sched_clock():
470 */
471 unsigned long long cpu_clock(int cpu)
472 {
473 unsigned long long now;
474 unsigned long flags;
475 struct rq *rq;
476
477 local_irq_save(flags);
478 rq = cpu_rq(cpu);
479 update_rq_clock(rq);
480 now = rq->clock;
481 local_irq_restore(flags);
482
483 return now;
484 }
485 EXPORT_SYMBOL_GPL(cpu_clock);
486
487 #ifndef prepare_arch_switch
488 # define prepare_arch_switch(next) do { } while (0)
489 #endif
490 #ifndef finish_arch_switch
491 # define finish_arch_switch(prev) do { } while (0)
492 #endif
493
494 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
495 static inline int task_running(struct rq *rq, struct task_struct *p)
496 {
497 return rq->curr == p;
498 }
499
500 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
501 {
502 }
503
504 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
505 {
506 #ifdef CONFIG_DEBUG_SPINLOCK
507 /* this is a valid case when another task releases the spinlock */
508 rq->lock.owner = current;
509 #endif
510 /*
511 * If we are tracking spinlock dependencies then we have to
512 * fix up the runqueue lock - which gets 'carried over' from
513 * prev into current:
514 */
515 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
516
517 spin_unlock_irq(&rq->lock);
518 }
519
520 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
521 static inline int task_running(struct rq *rq, struct task_struct *p)
522 {
523 #ifdef CONFIG_SMP
524 return p->oncpu;
525 #else
526 return rq->curr == p;
527 #endif
528 }
529
530 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
531 {
532 #ifdef CONFIG_SMP
533 /*
534 * We can optimise this out completely for !SMP, because the
535 * SMP rebalancing from interrupt is the only thing that cares
536 * here.
537 */
538 next->oncpu = 1;
539 #endif
540 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
541 spin_unlock_irq(&rq->lock);
542 #else
543 spin_unlock(&rq->lock);
544 #endif
545 }
546
547 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
548 {
549 #ifdef CONFIG_SMP
550 /*
551 * After ->oncpu is cleared, the task can be moved to a different CPU.
552 * We must ensure this doesn't happen until the switch is completely
553 * finished.
554 */
555 smp_wmb();
556 prev->oncpu = 0;
557 #endif
558 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
559 local_irq_enable();
560 #endif
561 }
562 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
563
564 /*
565 * __task_rq_lock - lock the runqueue a given task resides on.
566 * Must be called interrupts disabled.
567 */
568 static inline struct rq *__task_rq_lock(struct task_struct *p)
569 __acquires(rq->lock)
570 {
571 for (;;) {
572 struct rq *rq = task_rq(p);
573 spin_lock(&rq->lock);
574 if (likely(rq == task_rq(p)))
575 return rq;
576 spin_unlock(&rq->lock);
577 }
578 }
579
580 /*
581 * task_rq_lock - lock the runqueue a given task resides on and disable
582 * interrupts. Note the ordering: we can safely lookup the task_rq without
583 * explicitly disabling preemption.
584 */
585 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
586 __acquires(rq->lock)
587 {
588 struct rq *rq;
589
590 for (;;) {
591 local_irq_save(*flags);
592 rq = task_rq(p);
593 spin_lock(&rq->lock);
594 if (likely(rq == task_rq(p)))
595 return rq;
596 spin_unlock_irqrestore(&rq->lock, *flags);
597 }
598 }
599
600 static void __task_rq_unlock(struct rq *rq)
601 __releases(rq->lock)
602 {
603 spin_unlock(&rq->lock);
604 }
605
606 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
607 __releases(rq->lock)
608 {
609 spin_unlock_irqrestore(&rq->lock, *flags);
610 }
611
612 /*
613 * this_rq_lock - lock this runqueue and disable interrupts.
614 */
615 static struct rq *this_rq_lock(void)
616 __acquires(rq->lock)
617 {
618 struct rq *rq;
619
620 local_irq_disable();
621 rq = this_rq();
622 spin_lock(&rq->lock);
623
624 return rq;
625 }
626
627 /*
628 * We are going deep-idle (irqs are disabled):
629 */
630 void sched_clock_idle_sleep_event(void)
631 {
632 struct rq *rq = cpu_rq(smp_processor_id());
633
634 spin_lock(&rq->lock);
635 __update_rq_clock(rq);
636 spin_unlock(&rq->lock);
637 rq->clock_deep_idle_events++;
638 }
639 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
640
641 /*
642 * We just idled delta nanoseconds (called with irqs disabled):
643 */
644 void sched_clock_idle_wakeup_event(u64 delta_ns)
645 {
646 struct rq *rq = cpu_rq(smp_processor_id());
647 u64 now = sched_clock();
648
649 rq->idle_clock += delta_ns;
650 /*
651 * Override the previous timestamp and ignore all
652 * sched_clock() deltas that occured while we idled,
653 * and use the PM-provided delta_ns to advance the
654 * rq clock:
655 */
656 spin_lock(&rq->lock);
657 rq->prev_clock_raw = now;
658 rq->clock += delta_ns;
659 spin_unlock(&rq->lock);
660 }
661 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
662
663 /*
664 * resched_task - mark a task 'to be rescheduled now'.
665 *
666 * On UP this means the setting of the need_resched flag, on SMP it
667 * might also involve a cross-CPU call to trigger the scheduler on
668 * the target CPU.
669 */
670 #ifdef CONFIG_SMP
671
672 #ifndef tsk_is_polling
673 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
674 #endif
675
676 static void resched_task(struct task_struct *p)
677 {
678 int cpu;
679
680 assert_spin_locked(&task_rq(p)->lock);
681
682 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
683 return;
684
685 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
686
687 cpu = task_cpu(p);
688 if (cpu == smp_processor_id())
689 return;
690
691 /* NEED_RESCHED must be visible before we test polling */
692 smp_mb();
693 if (!tsk_is_polling(p))
694 smp_send_reschedule(cpu);
695 }
696
697 static void resched_cpu(int cpu)
698 {
699 struct rq *rq = cpu_rq(cpu);
700 unsigned long flags;
701
702 if (!spin_trylock_irqsave(&rq->lock, flags))
703 return;
704 resched_task(cpu_curr(cpu));
705 spin_unlock_irqrestore(&rq->lock, flags);
706 }
707 #else
708 static inline void resched_task(struct task_struct *p)
709 {
710 assert_spin_locked(&task_rq(p)->lock);
711 set_tsk_need_resched(p);
712 }
713 #endif
714
715 #if BITS_PER_LONG == 32
716 # define WMULT_CONST (~0UL)
717 #else
718 # define WMULT_CONST (1UL << 32)
719 #endif
720
721 #define WMULT_SHIFT 32
722
723 /*
724 * Shift right and round:
725 */
726 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
727
728 static unsigned long
729 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
730 struct load_weight *lw)
731 {
732 u64 tmp;
733
734 if (unlikely(!lw->inv_weight))
735 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
736
737 tmp = (u64)delta_exec * weight;
738 /*
739 * Check whether we'd overflow the 64-bit multiplication:
740 */
741 if (unlikely(tmp > WMULT_CONST))
742 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
743 WMULT_SHIFT/2);
744 else
745 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
746
747 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
748 }
749
750 static inline unsigned long
751 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
752 {
753 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
754 }
755
756 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
757 {
758 lw->weight += inc;
759 }
760
761 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
762 {
763 lw->weight -= dec;
764 }
765
766 /*
767 * To aid in avoiding the subversion of "niceness" due to uneven distribution
768 * of tasks with abnormal "nice" values across CPUs the contribution that
769 * each task makes to its run queue's load is weighted according to its
770 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
771 * scaled version of the new time slice allocation that they receive on time
772 * slice expiry etc.
773 */
774
775 #define WEIGHT_IDLEPRIO 2
776 #define WMULT_IDLEPRIO (1 << 31)
777
778 /*
779 * Nice levels are multiplicative, with a gentle 10% change for every
780 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
781 * nice 1, it will get ~10% less CPU time than another CPU-bound task
782 * that remained on nice 0.
783 *
784 * The "10% effect" is relative and cumulative: from _any_ nice level,
785 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
786 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
787 * If a task goes up by ~10% and another task goes down by ~10% then
788 * the relative distance between them is ~25%.)
789 */
790 static const int prio_to_weight[40] = {
791 /* -20 */ 88761, 71755, 56483, 46273, 36291,
792 /* -15 */ 29154, 23254, 18705, 14949, 11916,
793 /* -10 */ 9548, 7620, 6100, 4904, 3906,
794 /* -5 */ 3121, 2501, 1991, 1586, 1277,
795 /* 0 */ 1024, 820, 655, 526, 423,
796 /* 5 */ 335, 272, 215, 172, 137,
797 /* 10 */ 110, 87, 70, 56, 45,
798 /* 15 */ 36, 29, 23, 18, 15,
799 };
800
801 /*
802 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
803 *
804 * In cases where the weight does not change often, we can use the
805 * precalculated inverse to speed up arithmetics by turning divisions
806 * into multiplications:
807 */
808 static const u32 prio_to_wmult[40] = {
809 /* -20 */ 48388, 59856, 76040, 92818, 118348,
810 /* -15 */ 147320, 184698, 229616, 287308, 360437,
811 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
812 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
813 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
814 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
815 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
816 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
817 };
818
819 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
820
821 /*
822 * runqueue iterator, to support SMP load-balancing between different
823 * scheduling classes, without having to expose their internal data
824 * structures to the load-balancing proper:
825 */
826 struct rq_iterator {
827 void *arg;
828 struct task_struct *(*start)(void *);
829 struct task_struct *(*next)(void *);
830 };
831
832 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
833 unsigned long max_nr_move, unsigned long max_load_move,
834 struct sched_domain *sd, enum cpu_idle_type idle,
835 int *all_pinned, unsigned long *load_moved,
836 int *this_best_prio, struct rq_iterator *iterator);
837
838 #include "sched_stats.h"
839 #include "sched_idletask.c"
840 #include "sched_fair.c"
841 #include "sched_rt.c"
842 #ifdef CONFIG_SCHED_DEBUG
843 # include "sched_debug.c"
844 #endif
845
846 #define sched_class_highest (&rt_sched_class)
847
848 /*
849 * Update delta_exec, delta_fair fields for rq.
850 *
851 * delta_fair clock advances at a rate inversely proportional to
852 * total load (rq->load.weight) on the runqueue, while
853 * delta_exec advances at the same rate as wall-clock (provided
854 * cpu is not idle).
855 *
856 * delta_exec / delta_fair is a measure of the (smoothened) load on this
857 * runqueue over any given interval. This (smoothened) load is used
858 * during load balance.
859 *
860 * This function is called /before/ updating rq->load
861 * and when switching tasks.
862 */
863 static inline void inc_load(struct rq *rq, const struct task_struct *p)
864 {
865 update_load_add(&rq->load, p->se.load.weight);
866 }
867
868 static inline void dec_load(struct rq *rq, const struct task_struct *p)
869 {
870 update_load_sub(&rq->load, p->se.load.weight);
871 }
872
873 static void inc_nr_running(struct task_struct *p, struct rq *rq)
874 {
875 rq->nr_running++;
876 inc_load(rq, p);
877 }
878
879 static void dec_nr_running(struct task_struct *p, struct rq *rq)
880 {
881 rq->nr_running--;
882 dec_load(rq, p);
883 }
884
885 static void set_load_weight(struct task_struct *p)
886 {
887 if (task_has_rt_policy(p)) {
888 p->se.load.weight = prio_to_weight[0] * 2;
889 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
890 return;
891 }
892
893 /*
894 * SCHED_IDLE tasks get minimal weight:
895 */
896 if (p->policy == SCHED_IDLE) {
897 p->se.load.weight = WEIGHT_IDLEPRIO;
898 p->se.load.inv_weight = WMULT_IDLEPRIO;
899 return;
900 }
901
902 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
903 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
904 }
905
906 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
907 {
908 sched_info_queued(p);
909 p->sched_class->enqueue_task(rq, p, wakeup);
910 p->se.on_rq = 1;
911 }
912
913 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
914 {
915 p->sched_class->dequeue_task(rq, p, sleep);
916 p->se.on_rq = 0;
917 }
918
919 /*
920 * __normal_prio - return the priority that is based on the static prio
921 */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924 return p->static_prio;
925 }
926
927 /*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
934 static inline int normal_prio(struct task_struct *p)
935 {
936 int prio;
937
938 if (task_has_rt_policy(p))
939 prio = MAX_RT_PRIO-1 - p->rt_priority;
940 else
941 prio = __normal_prio(p);
942 return prio;
943 }
944
945 /*
946 * Calculate the current priority, i.e. the priority
947 * taken into account by the scheduler. This value might
948 * be boosted by RT tasks, or might be boosted by
949 * interactivity modifiers. Will be RT if the task got
950 * RT-boosted. If not then it returns p->normal_prio.
951 */
952 static int effective_prio(struct task_struct *p)
953 {
954 p->normal_prio = normal_prio(p);
955 /*
956 * If we are RT tasks or we were boosted to RT priority,
957 * keep the priority unchanged. Otherwise, update priority
958 * to the normal priority:
959 */
960 if (!rt_prio(p->prio))
961 return p->normal_prio;
962 return p->prio;
963 }
964
965 /*
966 * activate_task - move a task to the runqueue.
967 */
968 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
969 {
970 if (p->state == TASK_UNINTERRUPTIBLE)
971 rq->nr_uninterruptible--;
972
973 enqueue_task(rq, p, wakeup);
974 inc_nr_running(p, rq);
975 }
976
977 /*
978 * deactivate_task - remove a task from the runqueue.
979 */
980 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
981 {
982 if (p->state == TASK_UNINTERRUPTIBLE)
983 rq->nr_uninterruptible++;
984
985 dequeue_task(rq, p, sleep);
986 dec_nr_running(p, rq);
987 }
988
989 /**
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
992 */
993 inline int task_curr(const struct task_struct *p)
994 {
995 return cpu_curr(task_cpu(p)) == p;
996 }
997
998 /* Used instead of source_load when we know the type == 0 */
999 unsigned long weighted_cpuload(const int cpu)
1000 {
1001 return cpu_rq(cpu)->load.weight;
1002 }
1003
1004 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1005 {
1006 #ifdef CONFIG_SMP
1007 task_thread_info(p)->cpu = cpu;
1008 #endif
1009 set_task_cfs_rq(p);
1010 }
1011
1012 #ifdef CONFIG_SMP
1013
1014 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1015 {
1016 int old_cpu = task_cpu(p);
1017 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1018 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1019 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1020 u64 clock_offset;
1021
1022 clock_offset = old_rq->clock - new_rq->clock;
1023
1024 #ifdef CONFIG_SCHEDSTATS
1025 if (p->se.wait_start)
1026 p->se.wait_start -= clock_offset;
1027 if (p->se.sleep_start)
1028 p->se.sleep_start -= clock_offset;
1029 if (p->se.block_start)
1030 p->se.block_start -= clock_offset;
1031 #endif
1032 p->se.vruntime -= old_cfsrq->min_vruntime -
1033 new_cfsrq->min_vruntime;
1034
1035 __set_task_cpu(p, new_cpu);
1036 }
1037
1038 struct migration_req {
1039 struct list_head list;
1040
1041 struct task_struct *task;
1042 int dest_cpu;
1043
1044 struct completion done;
1045 };
1046
1047 /*
1048 * The task's runqueue lock must be held.
1049 * Returns true if you have to wait for migration thread.
1050 */
1051 static int
1052 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1053 {
1054 struct rq *rq = task_rq(p);
1055
1056 /*
1057 * If the task is not on a runqueue (and not running), then
1058 * it is sufficient to simply update the task's cpu field.
1059 */
1060 if (!p->se.on_rq && !task_running(rq, p)) {
1061 set_task_cpu(p, dest_cpu);
1062 return 0;
1063 }
1064
1065 init_completion(&req->done);
1066 req->task = p;
1067 req->dest_cpu = dest_cpu;
1068 list_add(&req->list, &rq->migration_queue);
1069
1070 return 1;
1071 }
1072
1073 /*
1074 * wait_task_inactive - wait for a thread to unschedule.
1075 *
1076 * The caller must ensure that the task *will* unschedule sometime soon,
1077 * else this function might spin for a *long* time. This function can't
1078 * be called with interrupts off, or it may introduce deadlock with
1079 * smp_call_function() if an IPI is sent by the same process we are
1080 * waiting to become inactive.
1081 */
1082 void wait_task_inactive(struct task_struct *p)
1083 {
1084 unsigned long flags;
1085 int running, on_rq;
1086 struct rq *rq;
1087
1088 for (;;) {
1089 /*
1090 * We do the initial early heuristics without holding
1091 * any task-queue locks at all. We'll only try to get
1092 * the runqueue lock when things look like they will
1093 * work out!
1094 */
1095 rq = task_rq(p);
1096
1097 /*
1098 * If the task is actively running on another CPU
1099 * still, just relax and busy-wait without holding
1100 * any locks.
1101 *
1102 * NOTE! Since we don't hold any locks, it's not
1103 * even sure that "rq" stays as the right runqueue!
1104 * But we don't care, since "task_running()" will
1105 * return false if the runqueue has changed and p
1106 * is actually now running somewhere else!
1107 */
1108 while (task_running(rq, p))
1109 cpu_relax();
1110
1111 /*
1112 * Ok, time to look more closely! We need the rq
1113 * lock now, to be *sure*. If we're wrong, we'll
1114 * just go back and repeat.
1115 */
1116 rq = task_rq_lock(p, &flags);
1117 running = task_running(rq, p);
1118 on_rq = p->se.on_rq;
1119 task_rq_unlock(rq, &flags);
1120
1121 /*
1122 * Was it really running after all now that we
1123 * checked with the proper locks actually held?
1124 *
1125 * Oops. Go back and try again..
1126 */
1127 if (unlikely(running)) {
1128 cpu_relax();
1129 continue;
1130 }
1131
1132 /*
1133 * It's not enough that it's not actively running,
1134 * it must be off the runqueue _entirely_, and not
1135 * preempted!
1136 *
1137 * So if it wa still runnable (but just not actively
1138 * running right now), it's preempted, and we should
1139 * yield - it could be a while.
1140 */
1141 if (unlikely(on_rq)) {
1142 schedule_timeout_uninterruptible(1);
1143 continue;
1144 }
1145
1146 /*
1147 * Ahh, all good. It wasn't running, and it wasn't
1148 * runnable, which means that it will never become
1149 * running in the future either. We're all done!
1150 */
1151 break;
1152 }
1153 }
1154
1155 /***
1156 * kick_process - kick a running thread to enter/exit the kernel
1157 * @p: the to-be-kicked thread
1158 *
1159 * Cause a process which is running on another CPU to enter
1160 * kernel-mode, without any delay. (to get signals handled.)
1161 *
1162 * NOTE: this function doesnt have to take the runqueue lock,
1163 * because all it wants to ensure is that the remote task enters
1164 * the kernel. If the IPI races and the task has been migrated
1165 * to another CPU then no harm is done and the purpose has been
1166 * achieved as well.
1167 */
1168 void kick_process(struct task_struct *p)
1169 {
1170 int cpu;
1171
1172 preempt_disable();
1173 cpu = task_cpu(p);
1174 if ((cpu != smp_processor_id()) && task_curr(p))
1175 smp_send_reschedule(cpu);
1176 preempt_enable();
1177 }
1178
1179 /*
1180 * Return a low guess at the load of a migration-source cpu weighted
1181 * according to the scheduling class and "nice" value.
1182 *
1183 * We want to under-estimate the load of migration sources, to
1184 * balance conservatively.
1185 */
1186 static unsigned long source_load(int cpu, int type)
1187 {
1188 struct rq *rq = cpu_rq(cpu);
1189 unsigned long total = weighted_cpuload(cpu);
1190
1191 if (type == 0)
1192 return total;
1193
1194 return min(rq->cpu_load[type-1], total);
1195 }
1196
1197 /*
1198 * Return a high guess at the load of a migration-target cpu weighted
1199 * according to the scheduling class and "nice" value.
1200 */
1201 static unsigned long target_load(int cpu, int type)
1202 {
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long total = weighted_cpuload(cpu);
1205
1206 if (type == 0)
1207 return total;
1208
1209 return max(rq->cpu_load[type-1], total);
1210 }
1211
1212 /*
1213 * Return the average load per task on the cpu's run queue
1214 */
1215 static inline unsigned long cpu_avg_load_per_task(int cpu)
1216 {
1217 struct rq *rq = cpu_rq(cpu);
1218 unsigned long total = weighted_cpuload(cpu);
1219 unsigned long n = rq->nr_running;
1220
1221 return n ? total / n : SCHED_LOAD_SCALE;
1222 }
1223
1224 /*
1225 * find_idlest_group finds and returns the least busy CPU group within the
1226 * domain.
1227 */
1228 static struct sched_group *
1229 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1230 {
1231 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1232 unsigned long min_load = ULONG_MAX, this_load = 0;
1233 int load_idx = sd->forkexec_idx;
1234 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1235
1236 do {
1237 unsigned long load, avg_load;
1238 int local_group;
1239 int i;
1240
1241 /* Skip over this group if it has no CPUs allowed */
1242 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1243 continue;
1244
1245 local_group = cpu_isset(this_cpu, group->cpumask);
1246
1247 /* Tally up the load of all CPUs in the group */
1248 avg_load = 0;
1249
1250 for_each_cpu_mask(i, group->cpumask) {
1251 /* Bias balancing toward cpus of our domain */
1252 if (local_group)
1253 load = source_load(i, load_idx);
1254 else
1255 load = target_load(i, load_idx);
1256
1257 avg_load += load;
1258 }
1259
1260 /* Adjust by relative CPU power of the group */
1261 avg_load = sg_div_cpu_power(group,
1262 avg_load * SCHED_LOAD_SCALE);
1263
1264 if (local_group) {
1265 this_load = avg_load;
1266 this = group;
1267 } else if (avg_load < min_load) {
1268 min_load = avg_load;
1269 idlest = group;
1270 }
1271 } while (group = group->next, group != sd->groups);
1272
1273 if (!idlest || 100*this_load < imbalance*min_load)
1274 return NULL;
1275 return idlest;
1276 }
1277
1278 /*
1279 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1280 */
1281 static int
1282 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1283 {
1284 cpumask_t tmp;
1285 unsigned long load, min_load = ULONG_MAX;
1286 int idlest = -1;
1287 int i;
1288
1289 /* Traverse only the allowed CPUs */
1290 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1291
1292 for_each_cpu_mask(i, tmp) {
1293 load = weighted_cpuload(i);
1294
1295 if (load < min_load || (load == min_load && i == this_cpu)) {
1296 min_load = load;
1297 idlest = i;
1298 }
1299 }
1300
1301 return idlest;
1302 }
1303
1304 /*
1305 * sched_balance_self: balance the current task (running on cpu) in domains
1306 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1307 * SD_BALANCE_EXEC.
1308 *
1309 * Balance, ie. select the least loaded group.
1310 *
1311 * Returns the target CPU number, or the same CPU if no balancing is needed.
1312 *
1313 * preempt must be disabled.
1314 */
1315 static int sched_balance_self(int cpu, int flag)
1316 {
1317 struct task_struct *t = current;
1318 struct sched_domain *tmp, *sd = NULL;
1319
1320 for_each_domain(cpu, tmp) {
1321 /*
1322 * If power savings logic is enabled for a domain, stop there.
1323 */
1324 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1325 break;
1326 if (tmp->flags & flag)
1327 sd = tmp;
1328 }
1329
1330 while (sd) {
1331 cpumask_t span;
1332 struct sched_group *group;
1333 int new_cpu, weight;
1334
1335 if (!(sd->flags & flag)) {
1336 sd = sd->child;
1337 continue;
1338 }
1339
1340 span = sd->span;
1341 group = find_idlest_group(sd, t, cpu);
1342 if (!group) {
1343 sd = sd->child;
1344 continue;
1345 }
1346
1347 new_cpu = find_idlest_cpu(group, t, cpu);
1348 if (new_cpu == -1 || new_cpu == cpu) {
1349 /* Now try balancing at a lower domain level of cpu */
1350 sd = sd->child;
1351 continue;
1352 }
1353
1354 /* Now try balancing at a lower domain level of new_cpu */
1355 cpu = new_cpu;
1356 sd = NULL;
1357 weight = cpus_weight(span);
1358 for_each_domain(cpu, tmp) {
1359 if (weight <= cpus_weight(tmp->span))
1360 break;
1361 if (tmp->flags & flag)
1362 sd = tmp;
1363 }
1364 /* while loop will break here if sd == NULL */
1365 }
1366
1367 return cpu;
1368 }
1369
1370 #endif /* CONFIG_SMP */
1371
1372 /*
1373 * wake_idle() will wake a task on an idle cpu if task->cpu is
1374 * not idle and an idle cpu is available. The span of cpus to
1375 * search starts with cpus closest then further out as needed,
1376 * so we always favor a closer, idle cpu.
1377 *
1378 * Returns the CPU we should wake onto.
1379 */
1380 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1381 static int wake_idle(int cpu, struct task_struct *p)
1382 {
1383 cpumask_t tmp;
1384 struct sched_domain *sd;
1385 int i;
1386
1387 /*
1388 * If it is idle, then it is the best cpu to run this task.
1389 *
1390 * This cpu is also the best, if it has more than one task already.
1391 * Siblings must be also busy(in most cases) as they didn't already
1392 * pickup the extra load from this cpu and hence we need not check
1393 * sibling runqueue info. This will avoid the checks and cache miss
1394 * penalities associated with that.
1395 */
1396 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1397 return cpu;
1398
1399 for_each_domain(cpu, sd) {
1400 if (sd->flags & SD_WAKE_IDLE) {
1401 cpus_and(tmp, sd->span, p->cpus_allowed);
1402 for_each_cpu_mask(i, tmp) {
1403 if (idle_cpu(i))
1404 return i;
1405 }
1406 } else {
1407 break;
1408 }
1409 }
1410 return cpu;
1411 }
1412 #else
1413 static inline int wake_idle(int cpu, struct task_struct *p)
1414 {
1415 return cpu;
1416 }
1417 #endif
1418
1419 /***
1420 * try_to_wake_up - wake up a thread
1421 * @p: the to-be-woken-up thread
1422 * @state: the mask of task states that can be woken
1423 * @sync: do a synchronous wakeup?
1424 *
1425 * Put it on the run-queue if it's not already there. The "current"
1426 * thread is always on the run-queue (except when the actual
1427 * re-schedule is in progress), and as such you're allowed to do
1428 * the simpler "current->state = TASK_RUNNING" to mark yourself
1429 * runnable without the overhead of this.
1430 *
1431 * returns failure only if the task is already active.
1432 */
1433 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1434 {
1435 int cpu, this_cpu, success = 0;
1436 unsigned long flags;
1437 long old_state;
1438 struct rq *rq;
1439 #ifdef CONFIG_SMP
1440 struct sched_domain *sd, *this_sd = NULL;
1441 unsigned long load, this_load;
1442 int new_cpu;
1443 #endif
1444
1445 rq = task_rq_lock(p, &flags);
1446 old_state = p->state;
1447 if (!(old_state & state))
1448 goto out;
1449
1450 if (p->se.on_rq)
1451 goto out_running;
1452
1453 cpu = task_cpu(p);
1454 this_cpu = smp_processor_id();
1455
1456 #ifdef CONFIG_SMP
1457 if (unlikely(task_running(rq, p)))
1458 goto out_activate;
1459
1460 new_cpu = cpu;
1461
1462 schedstat_inc(rq, ttwu_count);
1463 if (cpu == this_cpu) {
1464 schedstat_inc(rq, ttwu_local);
1465 goto out_set_cpu;
1466 }
1467
1468 for_each_domain(this_cpu, sd) {
1469 if (cpu_isset(cpu, sd->span)) {
1470 schedstat_inc(sd, ttwu_wake_remote);
1471 this_sd = sd;
1472 break;
1473 }
1474 }
1475
1476 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1477 goto out_set_cpu;
1478
1479 /*
1480 * Check for affine wakeup and passive balancing possibilities.
1481 */
1482 if (this_sd) {
1483 int idx = this_sd->wake_idx;
1484 unsigned int imbalance;
1485
1486 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1487
1488 load = source_load(cpu, idx);
1489 this_load = target_load(this_cpu, idx);
1490
1491 new_cpu = this_cpu; /* Wake to this CPU if we can */
1492
1493 if (this_sd->flags & SD_WAKE_AFFINE) {
1494 unsigned long tl = this_load;
1495 unsigned long tl_per_task;
1496
1497 tl_per_task = cpu_avg_load_per_task(this_cpu);
1498
1499 /*
1500 * If sync wakeup then subtract the (maximum possible)
1501 * effect of the currently running task from the load
1502 * of the current CPU:
1503 */
1504 if (sync)
1505 tl -= current->se.load.weight;
1506
1507 if ((tl <= load &&
1508 tl + target_load(cpu, idx) <= tl_per_task) ||
1509 100*(tl + p->se.load.weight) <= imbalance*load) {
1510 /*
1511 * This domain has SD_WAKE_AFFINE and
1512 * p is cache cold in this domain, and
1513 * there is no bad imbalance.
1514 */
1515 schedstat_inc(this_sd, ttwu_move_affine);
1516 goto out_set_cpu;
1517 }
1518 }
1519
1520 /*
1521 * Start passive balancing when half the imbalance_pct
1522 * limit is reached.
1523 */
1524 if (this_sd->flags & SD_WAKE_BALANCE) {
1525 if (imbalance*this_load <= 100*load) {
1526 schedstat_inc(this_sd, ttwu_move_balance);
1527 goto out_set_cpu;
1528 }
1529 }
1530 }
1531
1532 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1533 out_set_cpu:
1534 new_cpu = wake_idle(new_cpu, p);
1535 if (new_cpu != cpu) {
1536 set_task_cpu(p, new_cpu);
1537 task_rq_unlock(rq, &flags);
1538 /* might preempt at this point */
1539 rq = task_rq_lock(p, &flags);
1540 old_state = p->state;
1541 if (!(old_state & state))
1542 goto out;
1543 if (p->se.on_rq)
1544 goto out_running;
1545
1546 this_cpu = smp_processor_id();
1547 cpu = task_cpu(p);
1548 }
1549
1550 out_activate:
1551 #endif /* CONFIG_SMP */
1552 update_rq_clock(rq);
1553 activate_task(rq, p, 1);
1554 /*
1555 * Sync wakeups (i.e. those types of wakeups where the waker
1556 * has indicated that it will leave the CPU in short order)
1557 * don't trigger a preemption, if the woken up task will run on
1558 * this cpu. (in this case the 'I will reschedule' promise of
1559 * the waker guarantees that the freshly woken up task is going
1560 * to be considered on this CPU.)
1561 */
1562 if (!sync || cpu != this_cpu)
1563 check_preempt_curr(rq, p);
1564 success = 1;
1565
1566 out_running:
1567 p->state = TASK_RUNNING;
1568 out:
1569 task_rq_unlock(rq, &flags);
1570
1571 return success;
1572 }
1573
1574 int fastcall wake_up_process(struct task_struct *p)
1575 {
1576 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1577 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1578 }
1579 EXPORT_SYMBOL(wake_up_process);
1580
1581 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1582 {
1583 return try_to_wake_up(p, state, 0);
1584 }
1585
1586 /*
1587 * Perform scheduler related setup for a newly forked process p.
1588 * p is forked by current.
1589 *
1590 * __sched_fork() is basic setup used by init_idle() too:
1591 */
1592 static void __sched_fork(struct task_struct *p)
1593 {
1594 p->se.exec_start = 0;
1595 p->se.sum_exec_runtime = 0;
1596 p->se.prev_sum_exec_runtime = 0;
1597
1598 #ifdef CONFIG_SCHEDSTATS
1599 p->se.wait_start = 0;
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
1602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
1606 p->se.slice_max = 0;
1607 p->se.wait_max = 0;
1608 #endif
1609
1610 INIT_LIST_HEAD(&p->run_list);
1611 p->se.on_rq = 0;
1612
1613 #ifdef CONFIG_PREEMPT_NOTIFIERS
1614 INIT_HLIST_HEAD(&p->preempt_notifiers);
1615 #endif
1616
1617 /*
1618 * We mark the process as running here, but have not actually
1619 * inserted it onto the runqueue yet. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
1624 }
1625
1626 /*
1627 * fork()/clone()-time setup:
1628 */
1629 void sched_fork(struct task_struct *p, int clone_flags)
1630 {
1631 int cpu = get_cpu();
1632
1633 __sched_fork(p);
1634
1635 #ifdef CONFIG_SMP
1636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1637 #endif
1638 set_task_cpu(p, cpu);
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
1644 if (!rt_prio(p->prio))
1645 p->sched_class = &fair_sched_class;
1646
1647 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1648 if (likely(sched_info_on()))
1649 memset(&p->sched_info, 0, sizeof(p->sched_info));
1650 #endif
1651 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1652 p->oncpu = 0;
1653 #endif
1654 #ifdef CONFIG_PREEMPT
1655 /* Want to start with kernel preemption disabled. */
1656 task_thread_info(p)->preempt_count = 1;
1657 #endif
1658 put_cpu();
1659 }
1660
1661 /*
1662 * wake_up_new_task - wake up a newly created task for the first time.
1663 *
1664 * This function will do some initial scheduler statistics housekeeping
1665 * that must be done for every newly created context, then puts the task
1666 * on the runqueue and wakes it.
1667 */
1668 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1669 {
1670 unsigned long flags;
1671 struct rq *rq;
1672
1673 rq = task_rq_lock(p, &flags);
1674 BUG_ON(p->state != TASK_RUNNING);
1675 update_rq_clock(rq);
1676
1677 p->prio = effective_prio(p);
1678
1679 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1680 activate_task(rq, p, 0);
1681 } else {
1682 /*
1683 * Let the scheduling class do new task startup
1684 * management (if any):
1685 */
1686 p->sched_class->task_new(rq, p);
1687 inc_nr_running(p, rq);
1688 }
1689 check_preempt_curr(rq, p);
1690 task_rq_unlock(rq, &flags);
1691 }
1692
1693 #ifdef CONFIG_PREEMPT_NOTIFIERS
1694
1695 /**
1696 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1697 * @notifier: notifier struct to register
1698 */
1699 void preempt_notifier_register(struct preempt_notifier *notifier)
1700 {
1701 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1702 }
1703 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1704
1705 /**
1706 * preempt_notifier_unregister - no longer interested in preemption notifications
1707 * @notifier: notifier struct to unregister
1708 *
1709 * This is safe to call from within a preemption notifier.
1710 */
1711 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1712 {
1713 hlist_del(&notifier->link);
1714 }
1715 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1716
1717 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1718 {
1719 struct preempt_notifier *notifier;
1720 struct hlist_node *node;
1721
1722 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1723 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1724 }
1725
1726 static void
1727 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1729 {
1730 struct preempt_notifier *notifier;
1731 struct hlist_node *node;
1732
1733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1734 notifier->ops->sched_out(notifier, next);
1735 }
1736
1737 #else
1738
1739 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1740 {
1741 }
1742
1743 static void
1744 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1745 struct task_struct *next)
1746 {
1747 }
1748
1749 #endif
1750
1751 /**
1752 * prepare_task_switch - prepare to switch tasks
1753 * @rq: the runqueue preparing to switch
1754 * @prev: the current task that is being switched out
1755 * @next: the task we are going to switch to.
1756 *
1757 * This is called with the rq lock held and interrupts off. It must
1758 * be paired with a subsequent finish_task_switch after the context
1759 * switch.
1760 *
1761 * prepare_task_switch sets up locking and calls architecture specific
1762 * hooks.
1763 */
1764 static inline void
1765 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1766 struct task_struct *next)
1767 {
1768 fire_sched_out_preempt_notifiers(prev, next);
1769 prepare_lock_switch(rq, next);
1770 prepare_arch_switch(next);
1771 }
1772
1773 /**
1774 * finish_task_switch - clean up after a task-switch
1775 * @rq: runqueue associated with task-switch
1776 * @prev: the thread we just switched away from.
1777 *
1778 * finish_task_switch must be called after the context switch, paired
1779 * with a prepare_task_switch call before the context switch.
1780 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1781 * and do any other architecture-specific cleanup actions.
1782 *
1783 * Note that we may have delayed dropping an mm in context_switch(). If
1784 * so, we finish that here outside of the runqueue lock. (Doing it
1785 * with the lock held can cause deadlocks; see schedule() for
1786 * details.)
1787 */
1788 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1789 __releases(rq->lock)
1790 {
1791 struct mm_struct *mm = rq->prev_mm;
1792 long prev_state;
1793
1794 rq->prev_mm = NULL;
1795
1796 /*
1797 * A task struct has one reference for the use as "current".
1798 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1799 * schedule one last time. The schedule call will never return, and
1800 * the scheduled task must drop that reference.
1801 * The test for TASK_DEAD must occur while the runqueue locks are
1802 * still held, otherwise prev could be scheduled on another cpu, die
1803 * there before we look at prev->state, and then the reference would
1804 * be dropped twice.
1805 * Manfred Spraul <manfred@colorfullife.com>
1806 */
1807 prev_state = prev->state;
1808 finish_arch_switch(prev);
1809 finish_lock_switch(rq, prev);
1810 fire_sched_in_preempt_notifiers(current);
1811 if (mm)
1812 mmdrop(mm);
1813 if (unlikely(prev_state == TASK_DEAD)) {
1814 /*
1815 * Remove function-return probe instances associated with this
1816 * task and put them back on the free list.
1817 */
1818 kprobe_flush_task(prev);
1819 put_task_struct(prev);
1820 }
1821 }
1822
1823 /**
1824 * schedule_tail - first thing a freshly forked thread must call.
1825 * @prev: the thread we just switched away from.
1826 */
1827 asmlinkage void schedule_tail(struct task_struct *prev)
1828 __releases(rq->lock)
1829 {
1830 struct rq *rq = this_rq();
1831
1832 finish_task_switch(rq, prev);
1833 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1834 /* In this case, finish_task_switch does not reenable preemption */
1835 preempt_enable();
1836 #endif
1837 if (current->set_child_tid)
1838 put_user(current->pid, current->set_child_tid);
1839 }
1840
1841 /*
1842 * context_switch - switch to the new MM and the new
1843 * thread's register state.
1844 */
1845 static inline void
1846 context_switch(struct rq *rq, struct task_struct *prev,
1847 struct task_struct *next)
1848 {
1849 struct mm_struct *mm, *oldmm;
1850
1851 prepare_task_switch(rq, prev, next);
1852 mm = next->mm;
1853 oldmm = prev->active_mm;
1854 /*
1855 * For paravirt, this is coupled with an exit in switch_to to
1856 * combine the page table reload and the switch backend into
1857 * one hypercall.
1858 */
1859 arch_enter_lazy_cpu_mode();
1860
1861 if (unlikely(!mm)) {
1862 next->active_mm = oldmm;
1863 atomic_inc(&oldmm->mm_count);
1864 enter_lazy_tlb(oldmm, next);
1865 } else
1866 switch_mm(oldmm, mm, next);
1867
1868 if (unlikely(!prev->mm)) {
1869 prev->active_mm = NULL;
1870 rq->prev_mm = oldmm;
1871 }
1872 /*
1873 * Since the runqueue lock will be released by the next
1874 * task (which is an invalid locking op but in the case
1875 * of the scheduler it's an obvious special-case), so we
1876 * do an early lockdep release here:
1877 */
1878 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1879 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1880 #endif
1881
1882 /* Here we just switch the register state and the stack. */
1883 switch_to(prev, next, prev);
1884
1885 barrier();
1886 /*
1887 * this_rq must be evaluated again because prev may have moved
1888 * CPUs since it called schedule(), thus the 'rq' on its stack
1889 * frame will be invalid.
1890 */
1891 finish_task_switch(this_rq(), prev);
1892 }
1893
1894 /*
1895 * nr_running, nr_uninterruptible and nr_context_switches:
1896 *
1897 * externally visible scheduler statistics: current number of runnable
1898 * threads, current number of uninterruptible-sleeping threads, total
1899 * number of context switches performed since bootup.
1900 */
1901 unsigned long nr_running(void)
1902 {
1903 unsigned long i, sum = 0;
1904
1905 for_each_online_cpu(i)
1906 sum += cpu_rq(i)->nr_running;
1907
1908 return sum;
1909 }
1910
1911 unsigned long nr_uninterruptible(void)
1912 {
1913 unsigned long i, sum = 0;
1914
1915 for_each_possible_cpu(i)
1916 sum += cpu_rq(i)->nr_uninterruptible;
1917
1918 /*
1919 * Since we read the counters lockless, it might be slightly
1920 * inaccurate. Do not allow it to go below zero though:
1921 */
1922 if (unlikely((long)sum < 0))
1923 sum = 0;
1924
1925 return sum;
1926 }
1927
1928 unsigned long long nr_context_switches(void)
1929 {
1930 int i;
1931 unsigned long long sum = 0;
1932
1933 for_each_possible_cpu(i)
1934 sum += cpu_rq(i)->nr_switches;
1935
1936 return sum;
1937 }
1938
1939 unsigned long nr_iowait(void)
1940 {
1941 unsigned long i, sum = 0;
1942
1943 for_each_possible_cpu(i)
1944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1945
1946 return sum;
1947 }
1948
1949 unsigned long nr_active(void)
1950 {
1951 unsigned long i, running = 0, uninterruptible = 0;
1952
1953 for_each_online_cpu(i) {
1954 running += cpu_rq(i)->nr_running;
1955 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1956 }
1957
1958 if (unlikely((long)uninterruptible < 0))
1959 uninterruptible = 0;
1960
1961 return running + uninterruptible;
1962 }
1963
1964 /*
1965 * Update rq->cpu_load[] statistics. This function is usually called every
1966 * scheduler tick (TICK_NSEC).
1967 */
1968 static void update_cpu_load(struct rq *this_rq)
1969 {
1970 unsigned long this_load = this_rq->load.weight;
1971 int i, scale;
1972
1973 this_rq->nr_load_updates++;
1974
1975 /* Update our load: */
1976 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1977 unsigned long old_load, new_load;
1978
1979 /* scale is effectively 1 << i now, and >> i divides by scale */
1980
1981 old_load = this_rq->cpu_load[i];
1982 new_load = this_load;
1983 /*
1984 * Round up the averaging division if load is increasing. This
1985 * prevents us from getting stuck on 9 if the load is 10, for
1986 * example.
1987 */
1988 if (new_load > old_load)
1989 new_load += scale-1;
1990 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1991 }
1992 }
1993
1994 #ifdef CONFIG_SMP
1995
1996 /*
1997 * double_rq_lock - safely lock two runqueues
1998 *
1999 * Note this does not disable interrupts like task_rq_lock,
2000 * you need to do so manually before calling.
2001 */
2002 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2003 __acquires(rq1->lock)
2004 __acquires(rq2->lock)
2005 {
2006 BUG_ON(!irqs_disabled());
2007 if (rq1 == rq2) {
2008 spin_lock(&rq1->lock);
2009 __acquire(rq2->lock); /* Fake it out ;) */
2010 } else {
2011 if (rq1 < rq2) {
2012 spin_lock(&rq1->lock);
2013 spin_lock(&rq2->lock);
2014 } else {
2015 spin_lock(&rq2->lock);
2016 spin_lock(&rq1->lock);
2017 }
2018 }
2019 update_rq_clock(rq1);
2020 update_rq_clock(rq2);
2021 }
2022
2023 /*
2024 * double_rq_unlock - safely unlock two runqueues
2025 *
2026 * Note this does not restore interrupts like task_rq_unlock,
2027 * you need to do so manually after calling.
2028 */
2029 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2030 __releases(rq1->lock)
2031 __releases(rq2->lock)
2032 {
2033 spin_unlock(&rq1->lock);
2034 if (rq1 != rq2)
2035 spin_unlock(&rq2->lock);
2036 else
2037 __release(rq2->lock);
2038 }
2039
2040 /*
2041 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2042 */
2043 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2044 __releases(this_rq->lock)
2045 __acquires(busiest->lock)
2046 __acquires(this_rq->lock)
2047 {
2048 if (unlikely(!irqs_disabled())) {
2049 /* printk() doesn't work good under rq->lock */
2050 spin_unlock(&this_rq->lock);
2051 BUG_ON(1);
2052 }
2053 if (unlikely(!spin_trylock(&busiest->lock))) {
2054 if (busiest < this_rq) {
2055 spin_unlock(&this_rq->lock);
2056 spin_lock(&busiest->lock);
2057 spin_lock(&this_rq->lock);
2058 } else
2059 spin_lock(&busiest->lock);
2060 }
2061 }
2062
2063 /*
2064 * If dest_cpu is allowed for this process, migrate the task to it.
2065 * This is accomplished by forcing the cpu_allowed mask to only
2066 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2067 * the cpu_allowed mask is restored.
2068 */
2069 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2070 {
2071 struct migration_req req;
2072 unsigned long flags;
2073 struct rq *rq;
2074
2075 rq = task_rq_lock(p, &flags);
2076 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2077 || unlikely(cpu_is_offline(dest_cpu)))
2078 goto out;
2079
2080 /* force the process onto the specified CPU */
2081 if (migrate_task(p, dest_cpu, &req)) {
2082 /* Need to wait for migration thread (might exit: take ref). */
2083 struct task_struct *mt = rq->migration_thread;
2084
2085 get_task_struct(mt);
2086 task_rq_unlock(rq, &flags);
2087 wake_up_process(mt);
2088 put_task_struct(mt);
2089 wait_for_completion(&req.done);
2090
2091 return;
2092 }
2093 out:
2094 task_rq_unlock(rq, &flags);
2095 }
2096
2097 /*
2098 * sched_exec - execve() is a valuable balancing opportunity, because at
2099 * this point the task has the smallest effective memory and cache footprint.
2100 */
2101 void sched_exec(void)
2102 {
2103 int new_cpu, this_cpu = get_cpu();
2104 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2105 put_cpu();
2106 if (new_cpu != this_cpu)
2107 sched_migrate_task(current, new_cpu);
2108 }
2109
2110 /*
2111 * pull_task - move a task from a remote runqueue to the local runqueue.
2112 * Both runqueues must be locked.
2113 */
2114 static void pull_task(struct rq *src_rq, struct task_struct *p,
2115 struct rq *this_rq, int this_cpu)
2116 {
2117 deactivate_task(src_rq, p, 0);
2118 set_task_cpu(p, this_cpu);
2119 activate_task(this_rq, p, 0);
2120 /*
2121 * Note that idle threads have a prio of MAX_PRIO, for this test
2122 * to be always true for them.
2123 */
2124 check_preempt_curr(this_rq, p);
2125 }
2126
2127 /*
2128 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2129 */
2130 static
2131 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2132 struct sched_domain *sd, enum cpu_idle_type idle,
2133 int *all_pinned)
2134 {
2135 /*
2136 * We do not migrate tasks that are:
2137 * 1) running (obviously), or
2138 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2139 * 3) are cache-hot on their current CPU.
2140 */
2141 if (!cpu_isset(this_cpu, p->cpus_allowed))
2142 return 0;
2143 *all_pinned = 0;
2144
2145 if (task_running(rq, p))
2146 return 0;
2147
2148 return 1;
2149 }
2150
2151 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2152 unsigned long max_nr_move, unsigned long max_load_move,
2153 struct sched_domain *sd, enum cpu_idle_type idle,
2154 int *all_pinned, unsigned long *load_moved,
2155 int *this_best_prio, struct rq_iterator *iterator)
2156 {
2157 int pulled = 0, pinned = 0, skip_for_load;
2158 struct task_struct *p;
2159 long rem_load_move = max_load_move;
2160
2161 if (max_nr_move == 0 || max_load_move == 0)
2162 goto out;
2163
2164 pinned = 1;
2165
2166 /*
2167 * Start the load-balancing iterator:
2168 */
2169 p = iterator->start(iterator->arg);
2170 next:
2171 if (!p)
2172 goto out;
2173 /*
2174 * To help distribute high priority tasks accross CPUs we don't
2175 * skip a task if it will be the highest priority task (i.e. smallest
2176 * prio value) on its new queue regardless of its load weight
2177 */
2178 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2179 SCHED_LOAD_SCALE_FUZZ;
2180 if ((skip_for_load && p->prio >= *this_best_prio) ||
2181 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2182 p = iterator->next(iterator->arg);
2183 goto next;
2184 }
2185
2186 pull_task(busiest, p, this_rq, this_cpu);
2187 pulled++;
2188 rem_load_move -= p->se.load.weight;
2189
2190 /*
2191 * We only want to steal up to the prescribed number of tasks
2192 * and the prescribed amount of weighted load.
2193 */
2194 if (pulled < max_nr_move && rem_load_move > 0) {
2195 if (p->prio < *this_best_prio)
2196 *this_best_prio = p->prio;
2197 p = iterator->next(iterator->arg);
2198 goto next;
2199 }
2200 out:
2201 /*
2202 * Right now, this is the only place pull_task() is called,
2203 * so we can safely collect pull_task() stats here rather than
2204 * inside pull_task().
2205 */
2206 schedstat_add(sd, lb_gained[idle], pulled);
2207
2208 if (all_pinned)
2209 *all_pinned = pinned;
2210 *load_moved = max_load_move - rem_load_move;
2211 return pulled;
2212 }
2213
2214 /*
2215 * move_tasks tries to move up to max_load_move weighted load from busiest to
2216 * this_rq, as part of a balancing operation within domain "sd".
2217 * Returns 1 if successful and 0 otherwise.
2218 *
2219 * Called with both runqueues locked.
2220 */
2221 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2222 unsigned long max_load_move,
2223 struct sched_domain *sd, enum cpu_idle_type idle,
2224 int *all_pinned)
2225 {
2226 const struct sched_class *class = sched_class_highest;
2227 unsigned long total_load_moved = 0;
2228 int this_best_prio = this_rq->curr->prio;
2229
2230 do {
2231 total_load_moved +=
2232 class->load_balance(this_rq, this_cpu, busiest,
2233 ULONG_MAX, max_load_move - total_load_moved,
2234 sd, idle, all_pinned, &this_best_prio);
2235 class = class->next;
2236 } while (class && max_load_move > total_load_moved);
2237
2238 return total_load_moved > 0;
2239 }
2240
2241 /*
2242 * move_one_task tries to move exactly one task from busiest to this_rq, as
2243 * part of active balancing operations within "domain".
2244 * Returns 1 if successful and 0 otherwise.
2245 *
2246 * Called with both runqueues locked.
2247 */
2248 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2249 struct sched_domain *sd, enum cpu_idle_type idle)
2250 {
2251 const struct sched_class *class;
2252 int this_best_prio = MAX_PRIO;
2253
2254 for (class = sched_class_highest; class; class = class->next)
2255 if (class->load_balance(this_rq, this_cpu, busiest,
2256 1, ULONG_MAX, sd, idle, NULL,
2257 &this_best_prio))
2258 return 1;
2259
2260 return 0;
2261 }
2262
2263 /*
2264 * find_busiest_group finds and returns the busiest CPU group within the
2265 * domain. It calculates and returns the amount of weighted load which
2266 * should be moved to restore balance via the imbalance parameter.
2267 */
2268 static struct sched_group *
2269 find_busiest_group(struct sched_domain *sd, int this_cpu,
2270 unsigned long *imbalance, enum cpu_idle_type idle,
2271 int *sd_idle, cpumask_t *cpus, int *balance)
2272 {
2273 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2274 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2275 unsigned long max_pull;
2276 unsigned long busiest_load_per_task, busiest_nr_running;
2277 unsigned long this_load_per_task, this_nr_running;
2278 int load_idx;
2279 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2280 int power_savings_balance = 1;
2281 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2282 unsigned long min_nr_running = ULONG_MAX;
2283 struct sched_group *group_min = NULL, *group_leader = NULL;
2284 #endif
2285
2286 max_load = this_load = total_load = total_pwr = 0;
2287 busiest_load_per_task = busiest_nr_running = 0;
2288 this_load_per_task = this_nr_running = 0;
2289 if (idle == CPU_NOT_IDLE)
2290 load_idx = sd->busy_idx;
2291 else if (idle == CPU_NEWLY_IDLE)
2292 load_idx = sd->newidle_idx;
2293 else
2294 load_idx = sd->idle_idx;
2295
2296 do {
2297 unsigned long load, group_capacity;
2298 int local_group;
2299 int i;
2300 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2301 unsigned long sum_nr_running, sum_weighted_load;
2302
2303 local_group = cpu_isset(this_cpu, group->cpumask);
2304
2305 if (local_group)
2306 balance_cpu = first_cpu(group->cpumask);
2307
2308 /* Tally up the load of all CPUs in the group */
2309 sum_weighted_load = sum_nr_running = avg_load = 0;
2310
2311 for_each_cpu_mask(i, group->cpumask) {
2312 struct rq *rq;
2313
2314 if (!cpu_isset(i, *cpus))
2315 continue;
2316
2317 rq = cpu_rq(i);
2318
2319 if (*sd_idle && rq->nr_running)
2320 *sd_idle = 0;
2321
2322 /* Bias balancing toward cpus of our domain */
2323 if (local_group) {
2324 if (idle_cpu(i) && !first_idle_cpu) {
2325 first_idle_cpu = 1;
2326 balance_cpu = i;
2327 }
2328
2329 load = target_load(i, load_idx);
2330 } else
2331 load = source_load(i, load_idx);
2332
2333 avg_load += load;
2334 sum_nr_running += rq->nr_running;
2335 sum_weighted_load += weighted_cpuload(i);
2336 }
2337
2338 /*
2339 * First idle cpu or the first cpu(busiest) in this sched group
2340 * is eligible for doing load balancing at this and above
2341 * domains. In the newly idle case, we will allow all the cpu's
2342 * to do the newly idle load balance.
2343 */
2344 if (idle != CPU_NEWLY_IDLE && local_group &&
2345 balance_cpu != this_cpu && balance) {
2346 *balance = 0;
2347 goto ret;
2348 }
2349
2350 total_load += avg_load;
2351 total_pwr += group->__cpu_power;
2352
2353 /* Adjust by relative CPU power of the group */
2354 avg_load = sg_div_cpu_power(group,
2355 avg_load * SCHED_LOAD_SCALE);
2356
2357 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2358
2359 if (local_group) {
2360 this_load = avg_load;
2361 this = group;
2362 this_nr_running = sum_nr_running;
2363 this_load_per_task = sum_weighted_load;
2364 } else if (avg_load > max_load &&
2365 sum_nr_running > group_capacity) {
2366 max_load = avg_load;
2367 busiest = group;
2368 busiest_nr_running = sum_nr_running;
2369 busiest_load_per_task = sum_weighted_load;
2370 }
2371
2372 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2373 /*
2374 * Busy processors will not participate in power savings
2375 * balance.
2376 */
2377 if (idle == CPU_NOT_IDLE ||
2378 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2379 goto group_next;
2380
2381 /*
2382 * If the local group is idle or completely loaded
2383 * no need to do power savings balance at this domain
2384 */
2385 if (local_group && (this_nr_running >= group_capacity ||
2386 !this_nr_running))
2387 power_savings_balance = 0;
2388
2389 /*
2390 * If a group is already running at full capacity or idle,
2391 * don't include that group in power savings calculations
2392 */
2393 if (!power_savings_balance || sum_nr_running >= group_capacity
2394 || !sum_nr_running)
2395 goto group_next;
2396
2397 /*
2398 * Calculate the group which has the least non-idle load.
2399 * This is the group from where we need to pick up the load
2400 * for saving power
2401 */
2402 if ((sum_nr_running < min_nr_running) ||
2403 (sum_nr_running == min_nr_running &&
2404 first_cpu(group->cpumask) <
2405 first_cpu(group_min->cpumask))) {
2406 group_min = group;
2407 min_nr_running = sum_nr_running;
2408 min_load_per_task = sum_weighted_load /
2409 sum_nr_running;
2410 }
2411
2412 /*
2413 * Calculate the group which is almost near its
2414 * capacity but still has some space to pick up some load
2415 * from other group and save more power
2416 */
2417 if (sum_nr_running <= group_capacity - 1) {
2418 if (sum_nr_running > leader_nr_running ||
2419 (sum_nr_running == leader_nr_running &&
2420 first_cpu(group->cpumask) >
2421 first_cpu(group_leader->cpumask))) {
2422 group_leader = group;
2423 leader_nr_running = sum_nr_running;
2424 }
2425 }
2426 group_next:
2427 #endif
2428 group = group->next;
2429 } while (group != sd->groups);
2430
2431 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2432 goto out_balanced;
2433
2434 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2435
2436 if (this_load >= avg_load ||
2437 100*max_load <= sd->imbalance_pct*this_load)
2438 goto out_balanced;
2439
2440 busiest_load_per_task /= busiest_nr_running;
2441 /*
2442 * We're trying to get all the cpus to the average_load, so we don't
2443 * want to push ourselves above the average load, nor do we wish to
2444 * reduce the max loaded cpu below the average load, as either of these
2445 * actions would just result in more rebalancing later, and ping-pong
2446 * tasks around. Thus we look for the minimum possible imbalance.
2447 * Negative imbalances (*we* are more loaded than anyone else) will
2448 * be counted as no imbalance for these purposes -- we can't fix that
2449 * by pulling tasks to us. Be careful of negative numbers as they'll
2450 * appear as very large values with unsigned longs.
2451 */
2452 if (max_load <= busiest_load_per_task)
2453 goto out_balanced;
2454
2455 /*
2456 * In the presence of smp nice balancing, certain scenarios can have
2457 * max load less than avg load(as we skip the groups at or below
2458 * its cpu_power, while calculating max_load..)
2459 */
2460 if (max_load < avg_load) {
2461 *imbalance = 0;
2462 goto small_imbalance;
2463 }
2464
2465 /* Don't want to pull so many tasks that a group would go idle */
2466 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2467
2468 /* How much load to actually move to equalise the imbalance */
2469 *imbalance = min(max_pull * busiest->__cpu_power,
2470 (avg_load - this_load) * this->__cpu_power)
2471 / SCHED_LOAD_SCALE;
2472
2473 /*
2474 * if *imbalance is less than the average load per runnable task
2475 * there is no gaurantee that any tasks will be moved so we'll have
2476 * a think about bumping its value to force at least one task to be
2477 * moved
2478 */
2479 if (*imbalance < busiest_load_per_task) {
2480 unsigned long tmp, pwr_now, pwr_move;
2481 unsigned int imbn;
2482
2483 small_imbalance:
2484 pwr_move = pwr_now = 0;
2485 imbn = 2;
2486 if (this_nr_running) {
2487 this_load_per_task /= this_nr_running;
2488 if (busiest_load_per_task > this_load_per_task)
2489 imbn = 1;
2490 } else
2491 this_load_per_task = SCHED_LOAD_SCALE;
2492
2493 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2494 busiest_load_per_task * imbn) {
2495 *imbalance = busiest_load_per_task;
2496 return busiest;
2497 }
2498
2499 /*
2500 * OK, we don't have enough imbalance to justify moving tasks,
2501 * however we may be able to increase total CPU power used by
2502 * moving them.
2503 */
2504
2505 pwr_now += busiest->__cpu_power *
2506 min(busiest_load_per_task, max_load);
2507 pwr_now += this->__cpu_power *
2508 min(this_load_per_task, this_load);
2509 pwr_now /= SCHED_LOAD_SCALE;
2510
2511 /* Amount of load we'd subtract */
2512 tmp = sg_div_cpu_power(busiest,
2513 busiest_load_per_task * SCHED_LOAD_SCALE);
2514 if (max_load > tmp)
2515 pwr_move += busiest->__cpu_power *
2516 min(busiest_load_per_task, max_load - tmp);
2517
2518 /* Amount of load we'd add */
2519 if (max_load * busiest->__cpu_power <
2520 busiest_load_per_task * SCHED_LOAD_SCALE)
2521 tmp = sg_div_cpu_power(this,
2522 max_load * busiest->__cpu_power);
2523 else
2524 tmp = sg_div_cpu_power(this,
2525 busiest_load_per_task * SCHED_LOAD_SCALE);
2526 pwr_move += this->__cpu_power *
2527 min(this_load_per_task, this_load + tmp);
2528 pwr_move /= SCHED_LOAD_SCALE;
2529
2530 /* Move if we gain throughput */
2531 if (pwr_move > pwr_now)
2532 *imbalance = busiest_load_per_task;
2533 }
2534
2535 return busiest;
2536
2537 out_balanced:
2538 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2539 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2540 goto ret;
2541
2542 if (this == group_leader && group_leader != group_min) {
2543 *imbalance = min_load_per_task;
2544 return group_min;
2545 }
2546 #endif
2547 ret:
2548 *imbalance = 0;
2549 return NULL;
2550 }
2551
2552 /*
2553 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2554 */
2555 static struct rq *
2556 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2557 unsigned long imbalance, cpumask_t *cpus)
2558 {
2559 struct rq *busiest = NULL, *rq;
2560 unsigned long max_load = 0;
2561 int i;
2562
2563 for_each_cpu_mask(i, group->cpumask) {
2564 unsigned long wl;
2565
2566 if (!cpu_isset(i, *cpus))
2567 continue;
2568
2569 rq = cpu_rq(i);
2570 wl = weighted_cpuload(i);
2571
2572 if (rq->nr_running == 1 && wl > imbalance)
2573 continue;
2574
2575 if (wl > max_load) {
2576 max_load = wl;
2577 busiest = rq;
2578 }
2579 }
2580
2581 return busiest;
2582 }
2583
2584 /*
2585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2586 * so long as it is large enough.
2587 */
2588 #define MAX_PINNED_INTERVAL 512
2589
2590 /*
2591 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2592 * tasks if there is an imbalance.
2593 */
2594 static int load_balance(int this_cpu, struct rq *this_rq,
2595 struct sched_domain *sd, enum cpu_idle_type idle,
2596 int *balance)
2597 {
2598 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2599 struct sched_group *group;
2600 unsigned long imbalance;
2601 struct rq *busiest;
2602 cpumask_t cpus = CPU_MASK_ALL;
2603 unsigned long flags;
2604
2605 /*
2606 * When power savings policy is enabled for the parent domain, idle
2607 * sibling can pick up load irrespective of busy siblings. In this case,
2608 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2609 * portraying it as CPU_NOT_IDLE.
2610 */
2611 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2612 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2613 sd_idle = 1;
2614
2615 schedstat_inc(sd, lb_count[idle]);
2616
2617 redo:
2618 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2619 &cpus, balance);
2620
2621 if (*balance == 0)
2622 goto out_balanced;
2623
2624 if (!group) {
2625 schedstat_inc(sd, lb_nobusyg[idle]);
2626 goto out_balanced;
2627 }
2628
2629 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2630 if (!busiest) {
2631 schedstat_inc(sd, lb_nobusyq[idle]);
2632 goto out_balanced;
2633 }
2634
2635 BUG_ON(busiest == this_rq);
2636
2637 schedstat_add(sd, lb_imbalance[idle], imbalance);
2638
2639 ld_moved = 0;
2640 if (busiest->nr_running > 1) {
2641 /*
2642 * Attempt to move tasks. If find_busiest_group has found
2643 * an imbalance but busiest->nr_running <= 1, the group is
2644 * still unbalanced. ld_moved simply stays zero, so it is
2645 * correctly treated as an imbalance.
2646 */
2647 local_irq_save(flags);
2648 double_rq_lock(this_rq, busiest);
2649 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2650 imbalance, sd, idle, &all_pinned);
2651 double_rq_unlock(this_rq, busiest);
2652 local_irq_restore(flags);
2653
2654 /*
2655 * some other cpu did the load balance for us.
2656 */
2657 if (ld_moved && this_cpu != smp_processor_id())
2658 resched_cpu(this_cpu);
2659
2660 /* All tasks on this runqueue were pinned by CPU affinity */
2661 if (unlikely(all_pinned)) {
2662 cpu_clear(cpu_of(busiest), cpus);
2663 if (!cpus_empty(cpus))
2664 goto redo;
2665 goto out_balanced;
2666 }
2667 }
2668
2669 if (!ld_moved) {
2670 schedstat_inc(sd, lb_failed[idle]);
2671 sd->nr_balance_failed++;
2672
2673 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2674
2675 spin_lock_irqsave(&busiest->lock, flags);
2676
2677 /* don't kick the migration_thread, if the curr
2678 * task on busiest cpu can't be moved to this_cpu
2679 */
2680 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2681 spin_unlock_irqrestore(&busiest->lock, flags);
2682 all_pinned = 1;
2683 goto out_one_pinned;
2684 }
2685
2686 if (!busiest->active_balance) {
2687 busiest->active_balance = 1;
2688 busiest->push_cpu = this_cpu;
2689 active_balance = 1;
2690 }
2691 spin_unlock_irqrestore(&busiest->lock, flags);
2692 if (active_balance)
2693 wake_up_process(busiest->migration_thread);
2694
2695 /*
2696 * We've kicked active balancing, reset the failure
2697 * counter.
2698 */
2699 sd->nr_balance_failed = sd->cache_nice_tries+1;
2700 }
2701 } else
2702 sd->nr_balance_failed = 0;
2703
2704 if (likely(!active_balance)) {
2705 /* We were unbalanced, so reset the balancing interval */
2706 sd->balance_interval = sd->min_interval;
2707 } else {
2708 /*
2709 * If we've begun active balancing, start to back off. This
2710 * case may not be covered by the all_pinned logic if there
2711 * is only 1 task on the busy runqueue (because we don't call
2712 * move_tasks).
2713 */
2714 if (sd->balance_interval < sd->max_interval)
2715 sd->balance_interval *= 2;
2716 }
2717
2718 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2719 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2720 return -1;
2721 return ld_moved;
2722
2723 out_balanced:
2724 schedstat_inc(sd, lb_balanced[idle]);
2725
2726 sd->nr_balance_failed = 0;
2727
2728 out_one_pinned:
2729 /* tune up the balancing interval */
2730 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2731 (sd->balance_interval < sd->max_interval))
2732 sd->balance_interval *= 2;
2733
2734 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2735 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2736 return -1;
2737 return 0;
2738 }
2739
2740 /*
2741 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2742 * tasks if there is an imbalance.
2743 *
2744 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2745 * this_rq is locked.
2746 */
2747 static int
2748 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2749 {
2750 struct sched_group *group;
2751 struct rq *busiest = NULL;
2752 unsigned long imbalance;
2753 int ld_moved = 0;
2754 int sd_idle = 0;
2755 int all_pinned = 0;
2756 cpumask_t cpus = CPU_MASK_ALL;
2757
2758 /*
2759 * When power savings policy is enabled for the parent domain, idle
2760 * sibling can pick up load irrespective of busy siblings. In this case,
2761 * let the state of idle sibling percolate up as IDLE, instead of
2762 * portraying it as CPU_NOT_IDLE.
2763 */
2764 if (sd->flags & SD_SHARE_CPUPOWER &&
2765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2766 sd_idle = 1;
2767
2768 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2769 redo:
2770 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2771 &sd_idle, &cpus, NULL);
2772 if (!group) {
2773 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2774 goto out_balanced;
2775 }
2776
2777 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2778 &cpus);
2779 if (!busiest) {
2780 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2781 goto out_balanced;
2782 }
2783
2784 BUG_ON(busiest == this_rq);
2785
2786 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2787
2788 ld_moved = 0;
2789 if (busiest->nr_running > 1) {
2790 /* Attempt to move tasks */
2791 double_lock_balance(this_rq, busiest);
2792 /* this_rq->clock is already updated */
2793 update_rq_clock(busiest);
2794 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2795 imbalance, sd, CPU_NEWLY_IDLE,
2796 &all_pinned);
2797 spin_unlock(&busiest->lock);
2798
2799 if (unlikely(all_pinned)) {
2800 cpu_clear(cpu_of(busiest), cpus);
2801 if (!cpus_empty(cpus))
2802 goto redo;
2803 }
2804 }
2805
2806 if (!ld_moved) {
2807 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2808 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2810 return -1;
2811 } else
2812 sd->nr_balance_failed = 0;
2813
2814 return ld_moved;
2815
2816 out_balanced:
2817 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2818 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2819 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2820 return -1;
2821 sd->nr_balance_failed = 0;
2822
2823 return 0;
2824 }
2825
2826 /*
2827 * idle_balance is called by schedule() if this_cpu is about to become
2828 * idle. Attempts to pull tasks from other CPUs.
2829 */
2830 static void idle_balance(int this_cpu, struct rq *this_rq)
2831 {
2832 struct sched_domain *sd;
2833 int pulled_task = -1;
2834 unsigned long next_balance = jiffies + HZ;
2835
2836 for_each_domain(this_cpu, sd) {
2837 unsigned long interval;
2838
2839 if (!(sd->flags & SD_LOAD_BALANCE))
2840 continue;
2841
2842 if (sd->flags & SD_BALANCE_NEWIDLE)
2843 /* If we've pulled tasks over stop searching: */
2844 pulled_task = load_balance_newidle(this_cpu,
2845 this_rq, sd);
2846
2847 interval = msecs_to_jiffies(sd->balance_interval);
2848 if (time_after(next_balance, sd->last_balance + interval))
2849 next_balance = sd->last_balance + interval;
2850 if (pulled_task)
2851 break;
2852 }
2853 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2854 /*
2855 * We are going idle. next_balance may be set based on
2856 * a busy processor. So reset next_balance.
2857 */
2858 this_rq->next_balance = next_balance;
2859 }
2860 }
2861
2862 /*
2863 * active_load_balance is run by migration threads. It pushes running tasks
2864 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2865 * running on each physical CPU where possible, and avoids physical /
2866 * logical imbalances.
2867 *
2868 * Called with busiest_rq locked.
2869 */
2870 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2871 {
2872 int target_cpu = busiest_rq->push_cpu;
2873 struct sched_domain *sd;
2874 struct rq *target_rq;
2875
2876 /* Is there any task to move? */
2877 if (busiest_rq->nr_running <= 1)
2878 return;
2879
2880 target_rq = cpu_rq(target_cpu);
2881
2882 /*
2883 * This condition is "impossible", if it occurs
2884 * we need to fix it. Originally reported by
2885 * Bjorn Helgaas on a 128-cpu setup.
2886 */
2887 BUG_ON(busiest_rq == target_rq);
2888
2889 /* move a task from busiest_rq to target_rq */
2890 double_lock_balance(busiest_rq, target_rq);
2891 update_rq_clock(busiest_rq);
2892 update_rq_clock(target_rq);
2893
2894 /* Search for an sd spanning us and the target CPU. */
2895 for_each_domain(target_cpu, sd) {
2896 if ((sd->flags & SD_LOAD_BALANCE) &&
2897 cpu_isset(busiest_cpu, sd->span))
2898 break;
2899 }
2900
2901 if (likely(sd)) {
2902 schedstat_inc(sd, alb_count);
2903
2904 if (move_one_task(target_rq, target_cpu, busiest_rq,
2905 sd, CPU_IDLE))
2906 schedstat_inc(sd, alb_pushed);
2907 else
2908 schedstat_inc(sd, alb_failed);
2909 }
2910 spin_unlock(&target_rq->lock);
2911 }
2912
2913 #ifdef CONFIG_NO_HZ
2914 static struct {
2915 atomic_t load_balancer;
2916 cpumask_t cpu_mask;
2917 } nohz ____cacheline_aligned = {
2918 .load_balancer = ATOMIC_INIT(-1),
2919 .cpu_mask = CPU_MASK_NONE,
2920 };
2921
2922 /*
2923 * This routine will try to nominate the ilb (idle load balancing)
2924 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2925 * load balancing on behalf of all those cpus. If all the cpus in the system
2926 * go into this tickless mode, then there will be no ilb owner (as there is
2927 * no need for one) and all the cpus will sleep till the next wakeup event
2928 * arrives...
2929 *
2930 * For the ilb owner, tick is not stopped. And this tick will be used
2931 * for idle load balancing. ilb owner will still be part of
2932 * nohz.cpu_mask..
2933 *
2934 * While stopping the tick, this cpu will become the ilb owner if there
2935 * is no other owner. And will be the owner till that cpu becomes busy
2936 * or if all cpus in the system stop their ticks at which point
2937 * there is no need for ilb owner.
2938 *
2939 * When the ilb owner becomes busy, it nominates another owner, during the
2940 * next busy scheduler_tick()
2941 */
2942 int select_nohz_load_balancer(int stop_tick)
2943 {
2944 int cpu = smp_processor_id();
2945
2946 if (stop_tick) {
2947 cpu_set(cpu, nohz.cpu_mask);
2948 cpu_rq(cpu)->in_nohz_recently = 1;
2949
2950 /*
2951 * If we are going offline and still the leader, give up!
2952 */
2953 if (cpu_is_offline(cpu) &&
2954 atomic_read(&nohz.load_balancer) == cpu) {
2955 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2956 BUG();
2957 return 0;
2958 }
2959
2960 /* time for ilb owner also to sleep */
2961 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2962 if (atomic_read(&nohz.load_balancer) == cpu)
2963 atomic_set(&nohz.load_balancer, -1);
2964 return 0;
2965 }
2966
2967 if (atomic_read(&nohz.load_balancer) == -1) {
2968 /* make me the ilb owner */
2969 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2970 return 1;
2971 } else if (atomic_read(&nohz.load_balancer) == cpu)
2972 return 1;
2973 } else {
2974 if (!cpu_isset(cpu, nohz.cpu_mask))
2975 return 0;
2976
2977 cpu_clear(cpu, nohz.cpu_mask);
2978
2979 if (atomic_read(&nohz.load_balancer) == cpu)
2980 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2981 BUG();
2982 }
2983 return 0;
2984 }
2985 #endif
2986
2987 static DEFINE_SPINLOCK(balancing);
2988
2989 /*
2990 * It checks each scheduling domain to see if it is due to be balanced,
2991 * and initiates a balancing operation if so.
2992 *
2993 * Balancing parameters are set up in arch_init_sched_domains.
2994 */
2995 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
2996 {
2997 int balance = 1;
2998 struct rq *rq = cpu_rq(cpu);
2999 unsigned long interval;
3000 struct sched_domain *sd;
3001 /* Earliest time when we have to do rebalance again */
3002 unsigned long next_balance = jiffies + 60*HZ;
3003 int update_next_balance = 0;
3004
3005 for_each_domain(cpu, sd) {
3006 if (!(sd->flags & SD_LOAD_BALANCE))
3007 continue;
3008
3009 interval = sd->balance_interval;
3010 if (idle != CPU_IDLE)
3011 interval *= sd->busy_factor;
3012
3013 /* scale ms to jiffies */
3014 interval = msecs_to_jiffies(interval);
3015 if (unlikely(!interval))
3016 interval = 1;
3017 if (interval > HZ*NR_CPUS/10)
3018 interval = HZ*NR_CPUS/10;
3019
3020
3021 if (sd->flags & SD_SERIALIZE) {
3022 if (!spin_trylock(&balancing))
3023 goto out;
3024 }
3025
3026 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3027 if (load_balance(cpu, rq, sd, idle, &balance)) {
3028 /*
3029 * We've pulled tasks over so either we're no
3030 * longer idle, or one of our SMT siblings is
3031 * not idle.
3032 */
3033 idle = CPU_NOT_IDLE;
3034 }
3035 sd->last_balance = jiffies;
3036 }
3037 if (sd->flags & SD_SERIALIZE)
3038 spin_unlock(&balancing);
3039 out:
3040 if (time_after(next_balance, sd->last_balance + interval)) {
3041 next_balance = sd->last_balance + interval;
3042 update_next_balance = 1;
3043 }
3044
3045 /*
3046 * Stop the load balance at this level. There is another
3047 * CPU in our sched group which is doing load balancing more
3048 * actively.
3049 */
3050 if (!balance)
3051 break;
3052 }
3053
3054 /*
3055 * next_balance will be updated only when there is a need.
3056 * When the cpu is attached to null domain for ex, it will not be
3057 * updated.
3058 */
3059 if (likely(update_next_balance))
3060 rq->next_balance = next_balance;
3061 }
3062
3063 /*
3064 * run_rebalance_domains is triggered when needed from the scheduler tick.
3065 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3066 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3067 */
3068 static void run_rebalance_domains(struct softirq_action *h)
3069 {
3070 int this_cpu = smp_processor_id();
3071 struct rq *this_rq = cpu_rq(this_cpu);
3072 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3073 CPU_IDLE : CPU_NOT_IDLE;
3074
3075 rebalance_domains(this_cpu, idle);
3076
3077 #ifdef CONFIG_NO_HZ
3078 /*
3079 * If this cpu is the owner for idle load balancing, then do the
3080 * balancing on behalf of the other idle cpus whose ticks are
3081 * stopped.
3082 */
3083 if (this_rq->idle_at_tick &&
3084 atomic_read(&nohz.load_balancer) == this_cpu) {
3085 cpumask_t cpus = nohz.cpu_mask;
3086 struct rq *rq;
3087 int balance_cpu;
3088
3089 cpu_clear(this_cpu, cpus);
3090 for_each_cpu_mask(balance_cpu, cpus) {
3091 /*
3092 * If this cpu gets work to do, stop the load balancing
3093 * work being done for other cpus. Next load
3094 * balancing owner will pick it up.
3095 */
3096 if (need_resched())
3097 break;
3098
3099 rebalance_domains(balance_cpu, CPU_IDLE);
3100
3101 rq = cpu_rq(balance_cpu);
3102 if (time_after(this_rq->next_balance, rq->next_balance))
3103 this_rq->next_balance = rq->next_balance;
3104 }
3105 }
3106 #endif
3107 }
3108
3109 /*
3110 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3111 *
3112 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3113 * idle load balancing owner or decide to stop the periodic load balancing,
3114 * if the whole system is idle.
3115 */
3116 static inline void trigger_load_balance(struct rq *rq, int cpu)
3117 {
3118 #ifdef CONFIG_NO_HZ
3119 /*
3120 * If we were in the nohz mode recently and busy at the current
3121 * scheduler tick, then check if we need to nominate new idle
3122 * load balancer.
3123 */
3124 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3125 rq->in_nohz_recently = 0;
3126
3127 if (atomic_read(&nohz.load_balancer) == cpu) {
3128 cpu_clear(cpu, nohz.cpu_mask);
3129 atomic_set(&nohz.load_balancer, -1);
3130 }
3131
3132 if (atomic_read(&nohz.load_balancer) == -1) {
3133 /*
3134 * simple selection for now: Nominate the
3135 * first cpu in the nohz list to be the next
3136 * ilb owner.
3137 *
3138 * TBD: Traverse the sched domains and nominate
3139 * the nearest cpu in the nohz.cpu_mask.
3140 */
3141 int ilb = first_cpu(nohz.cpu_mask);
3142
3143 if (ilb != NR_CPUS)
3144 resched_cpu(ilb);
3145 }
3146 }
3147
3148 /*
3149 * If this cpu is idle and doing idle load balancing for all the
3150 * cpus with ticks stopped, is it time for that to stop?
3151 */
3152 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3153 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3154 resched_cpu(cpu);
3155 return;
3156 }
3157
3158 /*
3159 * If this cpu is idle and the idle load balancing is done by
3160 * someone else, then no need raise the SCHED_SOFTIRQ
3161 */
3162 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3163 cpu_isset(cpu, nohz.cpu_mask))
3164 return;
3165 #endif
3166 if (time_after_eq(jiffies, rq->next_balance))
3167 raise_softirq(SCHED_SOFTIRQ);
3168 }
3169
3170 #else /* CONFIG_SMP */
3171
3172 /*
3173 * on UP we do not need to balance between CPUs:
3174 */
3175 static inline void idle_balance(int cpu, struct rq *rq)
3176 {
3177 }
3178
3179 /* Avoid "used but not defined" warning on UP */
3180 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3181 unsigned long max_nr_move, unsigned long max_load_move,
3182 struct sched_domain *sd, enum cpu_idle_type idle,
3183 int *all_pinned, unsigned long *load_moved,
3184 int *this_best_prio, struct rq_iterator *iterator)
3185 {
3186 *load_moved = 0;
3187
3188 return 0;
3189 }
3190
3191 #endif
3192
3193 DEFINE_PER_CPU(struct kernel_stat, kstat);
3194
3195 EXPORT_PER_CPU_SYMBOL(kstat);
3196
3197 /*
3198 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3199 * that have not yet been banked in case the task is currently running.
3200 */
3201 unsigned long long task_sched_runtime(struct task_struct *p)
3202 {
3203 unsigned long flags;
3204 u64 ns, delta_exec;
3205 struct rq *rq;
3206
3207 rq = task_rq_lock(p, &flags);
3208 ns = p->se.sum_exec_runtime;
3209 if (rq->curr == p) {
3210 update_rq_clock(rq);
3211 delta_exec = rq->clock - p->se.exec_start;
3212 if ((s64)delta_exec > 0)
3213 ns += delta_exec;
3214 }
3215 task_rq_unlock(rq, &flags);
3216
3217 return ns;
3218 }
3219
3220 /*
3221 * Account user cpu time to a process.
3222 * @p: the process that the cpu time gets accounted to
3223 * @hardirq_offset: the offset to subtract from hardirq_count()
3224 * @cputime: the cpu time spent in user space since the last update
3225 */
3226 void account_user_time(struct task_struct *p, cputime_t cputime)
3227 {
3228 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3229 cputime64_t tmp;
3230
3231 p->utime = cputime_add(p->utime, cputime);
3232
3233 /* Add user time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (TASK_NICE(p) > 0)
3236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3237 else
3238 cpustat->user = cputime64_add(cpustat->user, tmp);
3239 }
3240
3241 /*
3242 * Account system cpu time to a process.
3243 * @p: the process that the cpu time gets accounted to
3244 * @hardirq_offset: the offset to subtract from hardirq_count()
3245 * @cputime: the cpu time spent in kernel space since the last update
3246 */
3247 void account_system_time(struct task_struct *p, int hardirq_offset,
3248 cputime_t cputime)
3249 {
3250 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3251 struct rq *rq = this_rq();
3252 cputime64_t tmp;
3253
3254 p->stime = cputime_add(p->stime, cputime);
3255
3256 /* Add system time to cpustat. */
3257 tmp = cputime_to_cputime64(cputime);
3258 if (hardirq_count() - hardirq_offset)
3259 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3260 else if (softirq_count())
3261 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3262 else if (p != rq->idle)
3263 cpustat->system = cputime64_add(cpustat->system, tmp);
3264 else if (atomic_read(&rq->nr_iowait) > 0)
3265 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3266 else
3267 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3268 /* Account for system time used */
3269 acct_update_integrals(p);
3270 }
3271
3272 /*
3273 * Account for involuntary wait time.
3274 * @p: the process from which the cpu time has been stolen
3275 * @steal: the cpu time spent in involuntary wait
3276 */
3277 void account_steal_time(struct task_struct *p, cputime_t steal)
3278 {
3279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280 cputime64_t tmp = cputime_to_cputime64(steal);
3281 struct rq *rq = this_rq();
3282
3283 if (p == rq->idle) {
3284 p->stime = cputime_add(p->stime, steal);
3285 if (atomic_read(&rq->nr_iowait) > 0)
3286 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3287 else
3288 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3289 } else
3290 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3291 }
3292
3293 /*
3294 * This function gets called by the timer code, with HZ frequency.
3295 * We call it with interrupts disabled.
3296 *
3297 * It also gets called by the fork code, when changing the parent's
3298 * timeslices.
3299 */
3300 void scheduler_tick(void)
3301 {
3302 int cpu = smp_processor_id();
3303 struct rq *rq = cpu_rq(cpu);
3304 struct task_struct *curr = rq->curr;
3305 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3306
3307 spin_lock(&rq->lock);
3308 __update_rq_clock(rq);
3309 /*
3310 * Let rq->clock advance by at least TICK_NSEC:
3311 */
3312 if (unlikely(rq->clock < next_tick))
3313 rq->clock = next_tick;
3314 rq->tick_timestamp = rq->clock;
3315 update_cpu_load(rq);
3316 if (curr != rq->idle) /* FIXME: needed? */
3317 curr->sched_class->task_tick(rq, curr);
3318 spin_unlock(&rq->lock);
3319
3320 #ifdef CONFIG_SMP
3321 rq->idle_at_tick = idle_cpu(cpu);
3322 trigger_load_balance(rq, cpu);
3323 #endif
3324 }
3325
3326 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3327
3328 void fastcall add_preempt_count(int val)
3329 {
3330 /*
3331 * Underflow?
3332 */
3333 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3334 return;
3335 preempt_count() += val;
3336 /*
3337 * Spinlock count overflowing soon?
3338 */
3339 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3340 PREEMPT_MASK - 10);
3341 }
3342 EXPORT_SYMBOL(add_preempt_count);
3343
3344 void fastcall sub_preempt_count(int val)
3345 {
3346 /*
3347 * Underflow?
3348 */
3349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3350 return;
3351 /*
3352 * Is the spinlock portion underflowing?
3353 */
3354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3355 !(preempt_count() & PREEMPT_MASK)))
3356 return;
3357
3358 preempt_count() -= val;
3359 }
3360 EXPORT_SYMBOL(sub_preempt_count);
3361
3362 #endif
3363
3364 /*
3365 * Print scheduling while atomic bug:
3366 */
3367 static noinline void __schedule_bug(struct task_struct *prev)
3368 {
3369 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3370 prev->comm, preempt_count(), prev->pid);
3371 debug_show_held_locks(prev);
3372 if (irqs_disabled())
3373 print_irqtrace_events(prev);
3374 dump_stack();
3375 }
3376
3377 /*
3378 * Various schedule()-time debugging checks and statistics:
3379 */
3380 static inline void schedule_debug(struct task_struct *prev)
3381 {
3382 /*
3383 * Test if we are atomic. Since do_exit() needs to call into
3384 * schedule() atomically, we ignore that path for now.
3385 * Otherwise, whine if we are scheduling when we should not be.
3386 */
3387 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3388 __schedule_bug(prev);
3389
3390 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3391
3392 schedstat_inc(this_rq(), sched_count);
3393 #ifdef CONFIG_SCHEDSTATS
3394 if (unlikely(prev->lock_depth >= 0)) {
3395 schedstat_inc(this_rq(), bkl_count);
3396 schedstat_inc(prev, sched_info.bkl_count);
3397 }
3398 #endif
3399 }
3400
3401 /*
3402 * Pick up the highest-prio task:
3403 */
3404 static inline struct task_struct *
3405 pick_next_task(struct rq *rq, struct task_struct *prev)
3406 {
3407 const struct sched_class *class;
3408 struct task_struct *p;
3409
3410 /*
3411 * Optimization: we know that if all tasks are in
3412 * the fair class we can call that function directly:
3413 */
3414 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3415 p = fair_sched_class.pick_next_task(rq);
3416 if (likely(p))
3417 return p;
3418 }
3419
3420 class = sched_class_highest;
3421 for ( ; ; ) {
3422 p = class->pick_next_task(rq);
3423 if (p)
3424 return p;
3425 /*
3426 * Will never be NULL as the idle class always
3427 * returns a non-NULL p:
3428 */
3429 class = class->next;
3430 }
3431 }
3432
3433 /*
3434 * schedule() is the main scheduler function.
3435 */
3436 asmlinkage void __sched schedule(void)
3437 {
3438 struct task_struct *prev, *next;
3439 long *switch_count;
3440 struct rq *rq;
3441 int cpu;
3442
3443 need_resched:
3444 preempt_disable();
3445 cpu = smp_processor_id();
3446 rq = cpu_rq(cpu);
3447 rcu_qsctr_inc(cpu);
3448 prev = rq->curr;
3449 switch_count = &prev->nivcsw;
3450
3451 release_kernel_lock(prev);
3452 need_resched_nonpreemptible:
3453
3454 schedule_debug(prev);
3455
3456 /*
3457 * Do the rq-clock update outside the rq lock:
3458 */
3459 local_irq_disable();
3460 __update_rq_clock(rq);
3461 spin_lock(&rq->lock);
3462 clear_tsk_need_resched(prev);
3463
3464 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3465 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3466 unlikely(signal_pending(prev)))) {
3467 prev->state = TASK_RUNNING;
3468 } else {
3469 deactivate_task(rq, prev, 1);
3470 }
3471 switch_count = &prev->nvcsw;
3472 }
3473
3474 if (unlikely(!rq->nr_running))
3475 idle_balance(cpu, rq);
3476
3477 prev->sched_class->put_prev_task(rq, prev);
3478 next = pick_next_task(rq, prev);
3479
3480 sched_info_switch(prev, next);
3481
3482 if (likely(prev != next)) {
3483 rq->nr_switches++;
3484 rq->curr = next;
3485 ++*switch_count;
3486
3487 context_switch(rq, prev, next); /* unlocks the rq */
3488 } else
3489 spin_unlock_irq(&rq->lock);
3490
3491 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3492 cpu = smp_processor_id();
3493 rq = cpu_rq(cpu);
3494 goto need_resched_nonpreemptible;
3495 }
3496 preempt_enable_no_resched();
3497 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3498 goto need_resched;
3499 }
3500 EXPORT_SYMBOL(schedule);
3501
3502 #ifdef CONFIG_PREEMPT
3503 /*
3504 * this is the entry point to schedule() from in-kernel preemption
3505 * off of preempt_enable. Kernel preemptions off return from interrupt
3506 * occur there and call schedule directly.
3507 */
3508 asmlinkage void __sched preempt_schedule(void)
3509 {
3510 struct thread_info *ti = current_thread_info();
3511 #ifdef CONFIG_PREEMPT_BKL
3512 struct task_struct *task = current;
3513 int saved_lock_depth;
3514 #endif
3515 /*
3516 * If there is a non-zero preempt_count or interrupts are disabled,
3517 * we do not want to preempt the current task. Just return..
3518 */
3519 if (likely(ti->preempt_count || irqs_disabled()))
3520 return;
3521
3522 do {
3523 add_preempt_count(PREEMPT_ACTIVE);
3524
3525 /*
3526 * We keep the big kernel semaphore locked, but we
3527 * clear ->lock_depth so that schedule() doesnt
3528 * auto-release the semaphore:
3529 */
3530 #ifdef CONFIG_PREEMPT_BKL
3531 saved_lock_depth = task->lock_depth;
3532 task->lock_depth = -1;
3533 #endif
3534 schedule();
3535 #ifdef CONFIG_PREEMPT_BKL
3536 task->lock_depth = saved_lock_depth;
3537 #endif
3538 sub_preempt_count(PREEMPT_ACTIVE);
3539
3540 /*
3541 * Check again in case we missed a preemption opportunity
3542 * between schedule and now.
3543 */
3544 barrier();
3545 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3546 }
3547 EXPORT_SYMBOL(preempt_schedule);
3548
3549 /*
3550 * this is the entry point to schedule() from kernel preemption
3551 * off of irq context.
3552 * Note, that this is called and return with irqs disabled. This will
3553 * protect us against recursive calling from irq.
3554 */
3555 asmlinkage void __sched preempt_schedule_irq(void)
3556 {
3557 struct thread_info *ti = current_thread_info();
3558 #ifdef CONFIG_PREEMPT_BKL
3559 struct task_struct *task = current;
3560 int saved_lock_depth;
3561 #endif
3562 /* Catch callers which need to be fixed */
3563 BUG_ON(ti->preempt_count || !irqs_disabled());
3564
3565 do {
3566 add_preempt_count(PREEMPT_ACTIVE);
3567
3568 /*
3569 * We keep the big kernel semaphore locked, but we
3570 * clear ->lock_depth so that schedule() doesnt
3571 * auto-release the semaphore:
3572 */
3573 #ifdef CONFIG_PREEMPT_BKL
3574 saved_lock_depth = task->lock_depth;
3575 task->lock_depth = -1;
3576 #endif
3577 local_irq_enable();
3578 schedule();
3579 local_irq_disable();
3580 #ifdef CONFIG_PREEMPT_BKL
3581 task->lock_depth = saved_lock_depth;
3582 #endif
3583 sub_preempt_count(PREEMPT_ACTIVE);
3584
3585 /*
3586 * Check again in case we missed a preemption opportunity
3587 * between schedule and now.
3588 */
3589 barrier();
3590 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3591 }
3592
3593 #endif /* CONFIG_PREEMPT */
3594
3595 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3596 void *key)
3597 {
3598 return try_to_wake_up(curr->private, mode, sync);
3599 }
3600 EXPORT_SYMBOL(default_wake_function);
3601
3602 /*
3603 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3604 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3605 * number) then we wake all the non-exclusive tasks and one exclusive task.
3606 *
3607 * There are circumstances in which we can try to wake a task which has already
3608 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3609 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3610 */
3611 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3612 int nr_exclusive, int sync, void *key)
3613 {
3614 wait_queue_t *curr, *next;
3615
3616 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3617 unsigned flags = curr->flags;
3618
3619 if (curr->func(curr, mode, sync, key) &&
3620 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3621 break;
3622 }
3623 }
3624
3625 /**
3626 * __wake_up - wake up threads blocked on a waitqueue.
3627 * @q: the waitqueue
3628 * @mode: which threads
3629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3630 * @key: is directly passed to the wakeup function
3631 */
3632 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3633 int nr_exclusive, void *key)
3634 {
3635 unsigned long flags;
3636
3637 spin_lock_irqsave(&q->lock, flags);
3638 __wake_up_common(q, mode, nr_exclusive, 0, key);
3639 spin_unlock_irqrestore(&q->lock, flags);
3640 }
3641 EXPORT_SYMBOL(__wake_up);
3642
3643 /*
3644 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3645 */
3646 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3647 {
3648 __wake_up_common(q, mode, 1, 0, NULL);
3649 }
3650
3651 /**
3652 * __wake_up_sync - wake up threads blocked on a waitqueue.
3653 * @q: the waitqueue
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3656 *
3657 * The sync wakeup differs that the waker knows that it will schedule
3658 * away soon, so while the target thread will be woken up, it will not
3659 * be migrated to another CPU - ie. the two threads are 'synchronized'
3660 * with each other. This can prevent needless bouncing between CPUs.
3661 *
3662 * On UP it can prevent extra preemption.
3663 */
3664 void fastcall
3665 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3666 {
3667 unsigned long flags;
3668 int sync = 1;
3669
3670 if (unlikely(!q))
3671 return;
3672
3673 if (unlikely(!nr_exclusive))
3674 sync = 0;
3675
3676 spin_lock_irqsave(&q->lock, flags);
3677 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3678 spin_unlock_irqrestore(&q->lock, flags);
3679 }
3680 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3681
3682 void fastcall complete(struct completion *x)
3683 {
3684 unsigned long flags;
3685
3686 spin_lock_irqsave(&x->wait.lock, flags);
3687 x->done++;
3688 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3689 1, 0, NULL);
3690 spin_unlock_irqrestore(&x->wait.lock, flags);
3691 }
3692 EXPORT_SYMBOL(complete);
3693
3694 void fastcall complete_all(struct completion *x)
3695 {
3696 unsigned long flags;
3697
3698 spin_lock_irqsave(&x->wait.lock, flags);
3699 x->done += UINT_MAX/2;
3700 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3701 0, 0, NULL);
3702 spin_unlock_irqrestore(&x->wait.lock, flags);
3703 }
3704 EXPORT_SYMBOL(complete_all);
3705
3706 static inline long __sched
3707 do_wait_for_common(struct completion *x, long timeout, int state)
3708 {
3709 if (!x->done) {
3710 DECLARE_WAITQUEUE(wait, current);
3711
3712 wait.flags |= WQ_FLAG_EXCLUSIVE;
3713 __add_wait_queue_tail(&x->wait, &wait);
3714 do {
3715 if (state == TASK_INTERRUPTIBLE &&
3716 signal_pending(current)) {
3717 __remove_wait_queue(&x->wait, &wait);
3718 return -ERESTARTSYS;
3719 }
3720 __set_current_state(state);
3721 spin_unlock_irq(&x->wait.lock);
3722 timeout = schedule_timeout(timeout);
3723 spin_lock_irq(&x->wait.lock);
3724 if (!timeout) {
3725 __remove_wait_queue(&x->wait, &wait);
3726 return timeout;
3727 }
3728 } while (!x->done);
3729 __remove_wait_queue(&x->wait, &wait);
3730 }
3731 x->done--;
3732 return timeout;
3733 }
3734
3735 static long __sched
3736 wait_for_common(struct completion *x, long timeout, int state)
3737 {
3738 might_sleep();
3739
3740 spin_lock_irq(&x->wait.lock);
3741 timeout = do_wait_for_common(x, timeout, state);
3742 spin_unlock_irq(&x->wait.lock);
3743 return timeout;
3744 }
3745
3746 void fastcall __sched wait_for_completion(struct completion *x)
3747 {
3748 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3749 }
3750 EXPORT_SYMBOL(wait_for_completion);
3751
3752 unsigned long fastcall __sched
3753 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3754 {
3755 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3756 }
3757 EXPORT_SYMBOL(wait_for_completion_timeout);
3758
3759 int __sched wait_for_completion_interruptible(struct completion *x)
3760 {
3761 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3762 }
3763 EXPORT_SYMBOL(wait_for_completion_interruptible);
3764
3765 unsigned long fastcall __sched
3766 wait_for_completion_interruptible_timeout(struct completion *x,
3767 unsigned long timeout)
3768 {
3769 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3770 }
3771 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3772
3773 static long __sched
3774 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3775 {
3776 unsigned long flags;
3777 wait_queue_t wait;
3778
3779 init_waitqueue_entry(&wait, current);
3780
3781 __set_current_state(state);
3782
3783 spin_lock_irqsave(&q->lock, flags);
3784 __add_wait_queue(q, &wait);
3785 spin_unlock(&q->lock);
3786 timeout = schedule_timeout(timeout);
3787 spin_lock_irq(&q->lock);
3788 __remove_wait_queue(q, &wait);
3789 spin_unlock_irqrestore(&q->lock, flags);
3790
3791 return timeout;
3792 }
3793
3794 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3795 {
3796 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3797 }
3798 EXPORT_SYMBOL(interruptible_sleep_on);
3799
3800 long __sched
3801 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3802 {
3803 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3804 }
3805 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3806
3807 void __sched sleep_on(wait_queue_head_t *q)
3808 {
3809 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3810 }
3811 EXPORT_SYMBOL(sleep_on);
3812
3813 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3814 {
3815 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3816 }
3817 EXPORT_SYMBOL(sleep_on_timeout);
3818
3819 #ifdef CONFIG_RT_MUTEXES
3820
3821 /*
3822 * rt_mutex_setprio - set the current priority of a task
3823 * @p: task
3824 * @prio: prio value (kernel-internal form)
3825 *
3826 * This function changes the 'effective' priority of a task. It does
3827 * not touch ->normal_prio like __setscheduler().
3828 *
3829 * Used by the rt_mutex code to implement priority inheritance logic.
3830 */
3831 void rt_mutex_setprio(struct task_struct *p, int prio)
3832 {
3833 unsigned long flags;
3834 int oldprio, on_rq, running;
3835 struct rq *rq;
3836
3837 BUG_ON(prio < 0 || prio > MAX_PRIO);
3838
3839 rq = task_rq_lock(p, &flags);
3840 update_rq_clock(rq);
3841
3842 oldprio = p->prio;
3843 on_rq = p->se.on_rq;
3844 running = task_running(rq, p);
3845 if (on_rq) {
3846 dequeue_task(rq, p, 0);
3847 if (running)
3848 p->sched_class->put_prev_task(rq, p);
3849 }
3850
3851 if (rt_prio(prio))
3852 p->sched_class = &rt_sched_class;
3853 else
3854 p->sched_class = &fair_sched_class;
3855
3856 p->prio = prio;
3857
3858 if (on_rq) {
3859 if (running)
3860 p->sched_class->set_curr_task(rq);
3861 enqueue_task(rq, p, 0);
3862 /*
3863 * Reschedule if we are currently running on this runqueue and
3864 * our priority decreased, or if we are not currently running on
3865 * this runqueue and our priority is higher than the current's
3866 */
3867 if (running) {
3868 if (p->prio > oldprio)
3869 resched_task(rq->curr);
3870 } else {
3871 check_preempt_curr(rq, p);
3872 }
3873 }
3874 task_rq_unlock(rq, &flags);
3875 }
3876
3877 #endif
3878
3879 void set_user_nice(struct task_struct *p, long nice)
3880 {
3881 int old_prio, delta, on_rq;
3882 unsigned long flags;
3883 struct rq *rq;
3884
3885 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3886 return;
3887 /*
3888 * We have to be careful, if called from sys_setpriority(),
3889 * the task might be in the middle of scheduling on another CPU.
3890 */
3891 rq = task_rq_lock(p, &flags);
3892 update_rq_clock(rq);
3893 /*
3894 * The RT priorities are set via sched_setscheduler(), but we still
3895 * allow the 'normal' nice value to be set - but as expected
3896 * it wont have any effect on scheduling until the task is
3897 * SCHED_FIFO/SCHED_RR:
3898 */
3899 if (task_has_rt_policy(p)) {
3900 p->static_prio = NICE_TO_PRIO(nice);
3901 goto out_unlock;
3902 }
3903 on_rq = p->se.on_rq;
3904 if (on_rq) {
3905 dequeue_task(rq, p, 0);
3906 dec_load(rq, p);
3907 }
3908
3909 p->static_prio = NICE_TO_PRIO(nice);
3910 set_load_weight(p);
3911 old_prio = p->prio;
3912 p->prio = effective_prio(p);
3913 delta = p->prio - old_prio;
3914
3915 if (on_rq) {
3916 enqueue_task(rq, p, 0);
3917 inc_load(rq, p);
3918 /*
3919 * If the task increased its priority or is running and
3920 * lowered its priority, then reschedule its CPU:
3921 */
3922 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3923 resched_task(rq->curr);
3924 }
3925 out_unlock:
3926 task_rq_unlock(rq, &flags);
3927 }
3928 EXPORT_SYMBOL(set_user_nice);
3929
3930 /*
3931 * can_nice - check if a task can reduce its nice value
3932 * @p: task
3933 * @nice: nice value
3934 */
3935 int can_nice(const struct task_struct *p, const int nice)
3936 {
3937 /* convert nice value [19,-20] to rlimit style value [1,40] */
3938 int nice_rlim = 20 - nice;
3939
3940 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3941 capable(CAP_SYS_NICE));
3942 }
3943
3944 #ifdef __ARCH_WANT_SYS_NICE
3945
3946 /*
3947 * sys_nice - change the priority of the current process.
3948 * @increment: priority increment
3949 *
3950 * sys_setpriority is a more generic, but much slower function that
3951 * does similar things.
3952 */
3953 asmlinkage long sys_nice(int increment)
3954 {
3955 long nice, retval;
3956
3957 /*
3958 * Setpriority might change our priority at the same moment.
3959 * We don't have to worry. Conceptually one call occurs first
3960 * and we have a single winner.
3961 */
3962 if (increment < -40)
3963 increment = -40;
3964 if (increment > 40)
3965 increment = 40;
3966
3967 nice = PRIO_TO_NICE(current->static_prio) + increment;
3968 if (nice < -20)
3969 nice = -20;
3970 if (nice > 19)
3971 nice = 19;
3972
3973 if (increment < 0 && !can_nice(current, nice))
3974 return -EPERM;
3975
3976 retval = security_task_setnice(current, nice);
3977 if (retval)
3978 return retval;
3979
3980 set_user_nice(current, nice);
3981 return 0;
3982 }
3983
3984 #endif
3985
3986 /**
3987 * task_prio - return the priority value of a given task.
3988 * @p: the task in question.
3989 *
3990 * This is the priority value as seen by users in /proc.
3991 * RT tasks are offset by -200. Normal tasks are centered
3992 * around 0, value goes from -16 to +15.
3993 */
3994 int task_prio(const struct task_struct *p)
3995 {
3996 return p->prio - MAX_RT_PRIO;
3997 }
3998
3999 /**
4000 * task_nice - return the nice value of a given task.
4001 * @p: the task in question.
4002 */
4003 int task_nice(const struct task_struct *p)
4004 {
4005 return TASK_NICE(p);
4006 }
4007 EXPORT_SYMBOL_GPL(task_nice);
4008
4009 /**
4010 * idle_cpu - is a given cpu idle currently?
4011 * @cpu: the processor in question.
4012 */
4013 int idle_cpu(int cpu)
4014 {
4015 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4016 }
4017
4018 /**
4019 * idle_task - return the idle task for a given cpu.
4020 * @cpu: the processor in question.
4021 */
4022 struct task_struct *idle_task(int cpu)
4023 {
4024 return cpu_rq(cpu)->idle;
4025 }
4026
4027 /**
4028 * find_process_by_pid - find a process with a matching PID value.
4029 * @pid: the pid in question.
4030 */
4031 static struct task_struct *find_process_by_pid(pid_t pid)
4032 {
4033 return pid ? find_task_by_pid(pid) : current;
4034 }
4035
4036 /* Actually do priority change: must hold rq lock. */
4037 static void
4038 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4039 {
4040 BUG_ON(p->se.on_rq);
4041
4042 p->policy = policy;
4043 switch (p->policy) {
4044 case SCHED_NORMAL:
4045 case SCHED_BATCH:
4046 case SCHED_IDLE:
4047 p->sched_class = &fair_sched_class;
4048 break;
4049 case SCHED_FIFO:
4050 case SCHED_RR:
4051 p->sched_class = &rt_sched_class;
4052 break;
4053 }
4054
4055 p->rt_priority = prio;
4056 p->normal_prio = normal_prio(p);
4057 /* we are holding p->pi_lock already */
4058 p->prio = rt_mutex_getprio(p);
4059 set_load_weight(p);
4060 }
4061
4062 /**
4063 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4064 * @p: the task in question.
4065 * @policy: new policy.
4066 * @param: structure containing the new RT priority.
4067 *
4068 * NOTE that the task may be already dead.
4069 */
4070 int sched_setscheduler(struct task_struct *p, int policy,
4071 struct sched_param *param)
4072 {
4073 int retval, oldprio, oldpolicy = -1, on_rq, running;
4074 unsigned long flags;
4075 struct rq *rq;
4076
4077 /* may grab non-irq protected spin_locks */
4078 BUG_ON(in_interrupt());
4079 recheck:
4080 /* double check policy once rq lock held */
4081 if (policy < 0)
4082 policy = oldpolicy = p->policy;
4083 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4084 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4085 policy != SCHED_IDLE)
4086 return -EINVAL;
4087 /*
4088 * Valid priorities for SCHED_FIFO and SCHED_RR are
4089 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4090 * SCHED_BATCH and SCHED_IDLE is 0.
4091 */
4092 if (param->sched_priority < 0 ||
4093 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4094 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4095 return -EINVAL;
4096 if (rt_policy(policy) != (param->sched_priority != 0))
4097 return -EINVAL;
4098
4099 /*
4100 * Allow unprivileged RT tasks to decrease priority:
4101 */
4102 if (!capable(CAP_SYS_NICE)) {
4103 if (rt_policy(policy)) {
4104 unsigned long rlim_rtprio;
4105
4106 if (!lock_task_sighand(p, &flags))
4107 return -ESRCH;
4108 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4109 unlock_task_sighand(p, &flags);
4110
4111 /* can't set/change the rt policy */
4112 if (policy != p->policy && !rlim_rtprio)
4113 return -EPERM;
4114
4115 /* can't increase priority */
4116 if (param->sched_priority > p->rt_priority &&
4117 param->sched_priority > rlim_rtprio)
4118 return -EPERM;
4119 }
4120 /*
4121 * Like positive nice levels, dont allow tasks to
4122 * move out of SCHED_IDLE either:
4123 */
4124 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4125 return -EPERM;
4126
4127 /* can't change other user's priorities */
4128 if ((current->euid != p->euid) &&
4129 (current->euid != p->uid))
4130 return -EPERM;
4131 }
4132
4133 retval = security_task_setscheduler(p, policy, param);
4134 if (retval)
4135 return retval;
4136 /*
4137 * make sure no PI-waiters arrive (or leave) while we are
4138 * changing the priority of the task:
4139 */
4140 spin_lock_irqsave(&p->pi_lock, flags);
4141 /*
4142 * To be able to change p->policy safely, the apropriate
4143 * runqueue lock must be held.
4144 */
4145 rq = __task_rq_lock(p);
4146 /* recheck policy now with rq lock held */
4147 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4148 policy = oldpolicy = -1;
4149 __task_rq_unlock(rq);
4150 spin_unlock_irqrestore(&p->pi_lock, flags);
4151 goto recheck;
4152 }
4153 update_rq_clock(rq);
4154 on_rq = p->se.on_rq;
4155 running = task_running(rq, p);
4156 if (on_rq) {
4157 deactivate_task(rq, p, 0);
4158 if (running)
4159 p->sched_class->put_prev_task(rq, p);
4160 }
4161
4162 oldprio = p->prio;
4163 __setscheduler(rq, p, policy, param->sched_priority);
4164
4165 if (on_rq) {
4166 if (running)
4167 p->sched_class->set_curr_task(rq);
4168 activate_task(rq, p, 0);
4169 /*
4170 * Reschedule if we are currently running on this runqueue and
4171 * our priority decreased, or if we are not currently running on
4172 * this runqueue and our priority is higher than the current's
4173 */
4174 if (running) {
4175 if (p->prio > oldprio)
4176 resched_task(rq->curr);
4177 } else {
4178 check_preempt_curr(rq, p);
4179 }
4180 }
4181 __task_rq_unlock(rq);
4182 spin_unlock_irqrestore(&p->pi_lock, flags);
4183
4184 rt_mutex_adjust_pi(p);
4185
4186 return 0;
4187 }
4188 EXPORT_SYMBOL_GPL(sched_setscheduler);
4189
4190 static int
4191 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4192 {
4193 struct sched_param lparam;
4194 struct task_struct *p;
4195 int retval;
4196
4197 if (!param || pid < 0)
4198 return -EINVAL;
4199 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4200 return -EFAULT;
4201
4202 rcu_read_lock();
4203 retval = -ESRCH;
4204 p = find_process_by_pid(pid);
4205 if (p != NULL)
4206 retval = sched_setscheduler(p, policy, &lparam);
4207 rcu_read_unlock();
4208
4209 return retval;
4210 }
4211
4212 /**
4213 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4214 * @pid: the pid in question.
4215 * @policy: new policy.
4216 * @param: structure containing the new RT priority.
4217 */
4218 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4219 struct sched_param __user *param)
4220 {
4221 /* negative values for policy are not valid */
4222 if (policy < 0)
4223 return -EINVAL;
4224
4225 return do_sched_setscheduler(pid, policy, param);
4226 }
4227
4228 /**
4229 * sys_sched_setparam - set/change the RT priority of a thread
4230 * @pid: the pid in question.
4231 * @param: structure containing the new RT priority.
4232 */
4233 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4234 {
4235 return do_sched_setscheduler(pid, -1, param);
4236 }
4237
4238 /**
4239 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4240 * @pid: the pid in question.
4241 */
4242 asmlinkage long sys_sched_getscheduler(pid_t pid)
4243 {
4244 struct task_struct *p;
4245 int retval;
4246
4247 if (pid < 0)
4248 return -EINVAL;
4249
4250 retval = -ESRCH;
4251 read_lock(&tasklist_lock);
4252 p = find_process_by_pid(pid);
4253 if (p) {
4254 retval = security_task_getscheduler(p);
4255 if (!retval)
4256 retval = p->policy;
4257 }
4258 read_unlock(&tasklist_lock);
4259 return retval;
4260 }
4261
4262 /**
4263 * sys_sched_getscheduler - get the RT priority of a thread
4264 * @pid: the pid in question.
4265 * @param: structure containing the RT priority.
4266 */
4267 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4268 {
4269 struct sched_param lp;
4270 struct task_struct *p;
4271 int retval;
4272
4273 if (!param || pid < 0)
4274 return -EINVAL;
4275
4276 read_lock(&tasklist_lock);
4277 p = find_process_by_pid(pid);
4278 retval = -ESRCH;
4279 if (!p)
4280 goto out_unlock;
4281
4282 retval = security_task_getscheduler(p);
4283 if (retval)
4284 goto out_unlock;
4285
4286 lp.sched_priority = p->rt_priority;
4287 read_unlock(&tasklist_lock);
4288
4289 /*
4290 * This one might sleep, we cannot do it with a spinlock held ...
4291 */
4292 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4293
4294 return retval;
4295
4296 out_unlock:
4297 read_unlock(&tasklist_lock);
4298 return retval;
4299 }
4300
4301 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4302 {
4303 cpumask_t cpus_allowed;
4304 struct task_struct *p;
4305 int retval;
4306
4307 mutex_lock(&sched_hotcpu_mutex);
4308 read_lock(&tasklist_lock);
4309
4310 p = find_process_by_pid(pid);
4311 if (!p) {
4312 read_unlock(&tasklist_lock);
4313 mutex_unlock(&sched_hotcpu_mutex);
4314 return -ESRCH;
4315 }
4316
4317 /*
4318 * It is not safe to call set_cpus_allowed with the
4319 * tasklist_lock held. We will bump the task_struct's
4320 * usage count and then drop tasklist_lock.
4321 */
4322 get_task_struct(p);
4323 read_unlock(&tasklist_lock);
4324
4325 retval = -EPERM;
4326 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4327 !capable(CAP_SYS_NICE))
4328 goto out_unlock;
4329
4330 retval = security_task_setscheduler(p, 0, NULL);
4331 if (retval)
4332 goto out_unlock;
4333
4334 cpus_allowed = cpuset_cpus_allowed(p);
4335 cpus_and(new_mask, new_mask, cpus_allowed);
4336 retval = set_cpus_allowed(p, new_mask);
4337
4338 out_unlock:
4339 put_task_struct(p);
4340 mutex_unlock(&sched_hotcpu_mutex);
4341 return retval;
4342 }
4343
4344 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4345 cpumask_t *new_mask)
4346 {
4347 if (len < sizeof(cpumask_t)) {
4348 memset(new_mask, 0, sizeof(cpumask_t));
4349 } else if (len > sizeof(cpumask_t)) {
4350 len = sizeof(cpumask_t);
4351 }
4352 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4353 }
4354
4355 /**
4356 * sys_sched_setaffinity - set the cpu affinity of a process
4357 * @pid: pid of the process
4358 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4359 * @user_mask_ptr: user-space pointer to the new cpu mask
4360 */
4361 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4362 unsigned long __user *user_mask_ptr)
4363 {
4364 cpumask_t new_mask;
4365 int retval;
4366
4367 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4368 if (retval)
4369 return retval;
4370
4371 return sched_setaffinity(pid, new_mask);
4372 }
4373
4374 /*
4375 * Represents all cpu's present in the system
4376 * In systems capable of hotplug, this map could dynamically grow
4377 * as new cpu's are detected in the system via any platform specific
4378 * method, such as ACPI for e.g.
4379 */
4380
4381 cpumask_t cpu_present_map __read_mostly;
4382 EXPORT_SYMBOL(cpu_present_map);
4383
4384 #ifndef CONFIG_SMP
4385 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4386 EXPORT_SYMBOL(cpu_online_map);
4387
4388 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4389 EXPORT_SYMBOL(cpu_possible_map);
4390 #endif
4391
4392 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4393 {
4394 struct task_struct *p;
4395 int retval;
4396
4397 mutex_lock(&sched_hotcpu_mutex);
4398 read_lock(&tasklist_lock);
4399
4400 retval = -ESRCH;
4401 p = find_process_by_pid(pid);
4402 if (!p)
4403 goto out_unlock;
4404
4405 retval = security_task_getscheduler(p);
4406 if (retval)
4407 goto out_unlock;
4408
4409 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4410
4411 out_unlock:
4412 read_unlock(&tasklist_lock);
4413 mutex_unlock(&sched_hotcpu_mutex);
4414
4415 return retval;
4416 }
4417
4418 /**
4419 * sys_sched_getaffinity - get the cpu affinity of a process
4420 * @pid: pid of the process
4421 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4422 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4423 */
4424 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4425 unsigned long __user *user_mask_ptr)
4426 {
4427 int ret;
4428 cpumask_t mask;
4429
4430 if (len < sizeof(cpumask_t))
4431 return -EINVAL;
4432
4433 ret = sched_getaffinity(pid, &mask);
4434 if (ret < 0)
4435 return ret;
4436
4437 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4438 return -EFAULT;
4439
4440 return sizeof(cpumask_t);
4441 }
4442
4443 /**
4444 * sys_sched_yield - yield the current processor to other threads.
4445 *
4446 * This function yields the current CPU to other tasks. If there are no
4447 * other threads running on this CPU then this function will return.
4448 */
4449 asmlinkage long sys_sched_yield(void)
4450 {
4451 struct rq *rq = this_rq_lock();
4452
4453 schedstat_inc(rq, yld_count);
4454 current->sched_class->yield_task(rq);
4455
4456 /*
4457 * Since we are going to call schedule() anyway, there's
4458 * no need to preempt or enable interrupts:
4459 */
4460 __release(rq->lock);
4461 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4462 _raw_spin_unlock(&rq->lock);
4463 preempt_enable_no_resched();
4464
4465 schedule();
4466
4467 return 0;
4468 }
4469
4470 static void __cond_resched(void)
4471 {
4472 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4473 __might_sleep(__FILE__, __LINE__);
4474 #endif
4475 /*
4476 * The BKS might be reacquired before we have dropped
4477 * PREEMPT_ACTIVE, which could trigger a second
4478 * cond_resched() call.
4479 */
4480 do {
4481 add_preempt_count(PREEMPT_ACTIVE);
4482 schedule();
4483 sub_preempt_count(PREEMPT_ACTIVE);
4484 } while (need_resched());
4485 }
4486
4487 int __sched cond_resched(void)
4488 {
4489 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4490 system_state == SYSTEM_RUNNING) {
4491 __cond_resched();
4492 return 1;
4493 }
4494 return 0;
4495 }
4496 EXPORT_SYMBOL(cond_resched);
4497
4498 /*
4499 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4500 * call schedule, and on return reacquire the lock.
4501 *
4502 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4503 * operations here to prevent schedule() from being called twice (once via
4504 * spin_unlock(), once by hand).
4505 */
4506 int cond_resched_lock(spinlock_t *lock)
4507 {
4508 int ret = 0;
4509
4510 if (need_lockbreak(lock)) {
4511 spin_unlock(lock);
4512 cpu_relax();
4513 ret = 1;
4514 spin_lock(lock);
4515 }
4516 if (need_resched() && system_state == SYSTEM_RUNNING) {
4517 spin_release(&lock->dep_map, 1, _THIS_IP_);
4518 _raw_spin_unlock(lock);
4519 preempt_enable_no_resched();
4520 __cond_resched();
4521 ret = 1;
4522 spin_lock(lock);
4523 }
4524 return ret;
4525 }
4526 EXPORT_SYMBOL(cond_resched_lock);
4527
4528 int __sched cond_resched_softirq(void)
4529 {
4530 BUG_ON(!in_softirq());
4531
4532 if (need_resched() && system_state == SYSTEM_RUNNING) {
4533 local_bh_enable();
4534 __cond_resched();
4535 local_bh_disable();
4536 return 1;
4537 }
4538 return 0;
4539 }
4540 EXPORT_SYMBOL(cond_resched_softirq);
4541
4542 /**
4543 * yield - yield the current processor to other threads.
4544 *
4545 * This is a shortcut for kernel-space yielding - it marks the
4546 * thread runnable and calls sys_sched_yield().
4547 */
4548 void __sched yield(void)
4549 {
4550 set_current_state(TASK_RUNNING);
4551 sys_sched_yield();
4552 }
4553 EXPORT_SYMBOL(yield);
4554
4555 /*
4556 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4557 * that process accounting knows that this is a task in IO wait state.
4558 *
4559 * But don't do that if it is a deliberate, throttling IO wait (this task
4560 * has set its backing_dev_info: the queue against which it should throttle)
4561 */
4562 void __sched io_schedule(void)
4563 {
4564 struct rq *rq = &__raw_get_cpu_var(runqueues);
4565
4566 delayacct_blkio_start();
4567 atomic_inc(&rq->nr_iowait);
4568 schedule();
4569 atomic_dec(&rq->nr_iowait);
4570 delayacct_blkio_end();
4571 }
4572 EXPORT_SYMBOL(io_schedule);
4573
4574 long __sched io_schedule_timeout(long timeout)
4575 {
4576 struct rq *rq = &__raw_get_cpu_var(runqueues);
4577 long ret;
4578
4579 delayacct_blkio_start();
4580 atomic_inc(&rq->nr_iowait);
4581 ret = schedule_timeout(timeout);
4582 atomic_dec(&rq->nr_iowait);
4583 delayacct_blkio_end();
4584 return ret;
4585 }
4586
4587 /**
4588 * sys_sched_get_priority_max - return maximum RT priority.
4589 * @policy: scheduling class.
4590 *
4591 * this syscall returns the maximum rt_priority that can be used
4592 * by a given scheduling class.
4593 */
4594 asmlinkage long sys_sched_get_priority_max(int policy)
4595 {
4596 int ret = -EINVAL;
4597
4598 switch (policy) {
4599 case SCHED_FIFO:
4600 case SCHED_RR:
4601 ret = MAX_USER_RT_PRIO-1;
4602 break;
4603 case SCHED_NORMAL:
4604 case SCHED_BATCH:
4605 case SCHED_IDLE:
4606 ret = 0;
4607 break;
4608 }
4609 return ret;
4610 }
4611
4612 /**
4613 * sys_sched_get_priority_min - return minimum RT priority.
4614 * @policy: scheduling class.
4615 *
4616 * this syscall returns the minimum rt_priority that can be used
4617 * by a given scheduling class.
4618 */
4619 asmlinkage long sys_sched_get_priority_min(int policy)
4620 {
4621 int ret = -EINVAL;
4622
4623 switch (policy) {
4624 case SCHED_FIFO:
4625 case SCHED_RR:
4626 ret = 1;
4627 break;
4628 case SCHED_NORMAL:
4629 case SCHED_BATCH:
4630 case SCHED_IDLE:
4631 ret = 0;
4632 }
4633 return ret;
4634 }
4635
4636 /**
4637 * sys_sched_rr_get_interval - return the default timeslice of a process.
4638 * @pid: pid of the process.
4639 * @interval: userspace pointer to the timeslice value.
4640 *
4641 * this syscall writes the default timeslice value of a given process
4642 * into the user-space timespec buffer. A value of '0' means infinity.
4643 */
4644 asmlinkage
4645 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4646 {
4647 struct task_struct *p;
4648 unsigned int time_slice;
4649 int retval;
4650 struct timespec t;
4651
4652 if (pid < 0)
4653 return -EINVAL;
4654
4655 retval = -ESRCH;
4656 read_lock(&tasklist_lock);
4657 p = find_process_by_pid(pid);
4658 if (!p)
4659 goto out_unlock;
4660
4661 retval = security_task_getscheduler(p);
4662 if (retval)
4663 goto out_unlock;
4664
4665 if (p->policy == SCHED_FIFO)
4666 time_slice = 0;
4667 else if (p->policy == SCHED_RR)
4668 time_slice = DEF_TIMESLICE;
4669 else {
4670 struct sched_entity *se = &p->se;
4671 unsigned long flags;
4672 struct rq *rq;
4673
4674 rq = task_rq_lock(p, &flags);
4675 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4676 task_rq_unlock(rq, &flags);
4677 }
4678 read_unlock(&tasklist_lock);
4679 jiffies_to_timespec(time_slice, &t);
4680 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4681 return retval;
4682
4683 out_unlock:
4684 read_unlock(&tasklist_lock);
4685 return retval;
4686 }
4687
4688 static const char stat_nam[] = "RSDTtZX";
4689
4690 static void show_task(struct task_struct *p)
4691 {
4692 unsigned long free = 0;
4693 unsigned state;
4694
4695 state = p->state ? __ffs(p->state) + 1 : 0;
4696 printk("%-13.13s %c", p->comm,
4697 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4698 #if BITS_PER_LONG == 32
4699 if (state == TASK_RUNNING)
4700 printk(" running ");
4701 else
4702 printk(" %08lx ", thread_saved_pc(p));
4703 #else
4704 if (state == TASK_RUNNING)
4705 printk(" running task ");
4706 else
4707 printk(" %016lx ", thread_saved_pc(p));
4708 #endif
4709 #ifdef CONFIG_DEBUG_STACK_USAGE
4710 {
4711 unsigned long *n = end_of_stack(p);
4712 while (!*n)
4713 n++;
4714 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4715 }
4716 #endif
4717 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4718
4719 if (state != TASK_RUNNING)
4720 show_stack(p, NULL);
4721 }
4722
4723 void show_state_filter(unsigned long state_filter)
4724 {
4725 struct task_struct *g, *p;
4726
4727 #if BITS_PER_LONG == 32
4728 printk(KERN_INFO
4729 " task PC stack pid father\n");
4730 #else
4731 printk(KERN_INFO
4732 " task PC stack pid father\n");
4733 #endif
4734 read_lock(&tasklist_lock);
4735 do_each_thread(g, p) {
4736 /*
4737 * reset the NMI-timeout, listing all files on a slow
4738 * console might take alot of time:
4739 */
4740 touch_nmi_watchdog();
4741 if (!state_filter || (p->state & state_filter))
4742 show_task(p);
4743 } while_each_thread(g, p);
4744
4745 touch_all_softlockup_watchdogs();
4746
4747 #ifdef CONFIG_SCHED_DEBUG
4748 sysrq_sched_debug_show();
4749 #endif
4750 read_unlock(&tasklist_lock);
4751 /*
4752 * Only show locks if all tasks are dumped:
4753 */
4754 if (state_filter == -1)
4755 debug_show_all_locks();
4756 }
4757
4758 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4759 {
4760 idle->sched_class = &idle_sched_class;
4761 }
4762
4763 /**
4764 * init_idle - set up an idle thread for a given CPU
4765 * @idle: task in question
4766 * @cpu: cpu the idle task belongs to
4767 *
4768 * NOTE: this function does not set the idle thread's NEED_RESCHED
4769 * flag, to make booting more robust.
4770 */
4771 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4772 {
4773 struct rq *rq = cpu_rq(cpu);
4774 unsigned long flags;
4775
4776 __sched_fork(idle);
4777 idle->se.exec_start = sched_clock();
4778
4779 idle->prio = idle->normal_prio = MAX_PRIO;
4780 idle->cpus_allowed = cpumask_of_cpu(cpu);
4781 __set_task_cpu(idle, cpu);
4782
4783 spin_lock_irqsave(&rq->lock, flags);
4784 rq->curr = rq->idle = idle;
4785 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4786 idle->oncpu = 1;
4787 #endif
4788 spin_unlock_irqrestore(&rq->lock, flags);
4789
4790 /* Set the preempt count _outside_ the spinlocks! */
4791 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4792 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4793 #else
4794 task_thread_info(idle)->preempt_count = 0;
4795 #endif
4796 /*
4797 * The idle tasks have their own, simple scheduling class:
4798 */
4799 idle->sched_class = &idle_sched_class;
4800 }
4801
4802 /*
4803 * In a system that switches off the HZ timer nohz_cpu_mask
4804 * indicates which cpus entered this state. This is used
4805 * in the rcu update to wait only for active cpus. For system
4806 * which do not switch off the HZ timer nohz_cpu_mask should
4807 * always be CPU_MASK_NONE.
4808 */
4809 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4810
4811 #ifdef CONFIG_SMP
4812 /*
4813 * This is how migration works:
4814 *
4815 * 1) we queue a struct migration_req structure in the source CPU's
4816 * runqueue and wake up that CPU's migration thread.
4817 * 2) we down() the locked semaphore => thread blocks.
4818 * 3) migration thread wakes up (implicitly it forces the migrated
4819 * thread off the CPU)
4820 * 4) it gets the migration request and checks whether the migrated
4821 * task is still in the wrong runqueue.
4822 * 5) if it's in the wrong runqueue then the migration thread removes
4823 * it and puts it into the right queue.
4824 * 6) migration thread up()s the semaphore.
4825 * 7) we wake up and the migration is done.
4826 */
4827
4828 /*
4829 * Change a given task's CPU affinity. Migrate the thread to a
4830 * proper CPU and schedule it away if the CPU it's executing on
4831 * is removed from the allowed bitmask.
4832 *
4833 * NOTE: the caller must have a valid reference to the task, the
4834 * task must not exit() & deallocate itself prematurely. The
4835 * call is not atomic; no spinlocks may be held.
4836 */
4837 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4838 {
4839 struct migration_req req;
4840 unsigned long flags;
4841 struct rq *rq;
4842 int ret = 0;
4843
4844 rq = task_rq_lock(p, &flags);
4845 if (!cpus_intersects(new_mask, cpu_online_map)) {
4846 ret = -EINVAL;
4847 goto out;
4848 }
4849
4850 p->cpus_allowed = new_mask;
4851 /* Can the task run on the task's current CPU? If so, we're done */
4852 if (cpu_isset(task_cpu(p), new_mask))
4853 goto out;
4854
4855 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4856 /* Need help from migration thread: drop lock and wait. */
4857 task_rq_unlock(rq, &flags);
4858 wake_up_process(rq->migration_thread);
4859 wait_for_completion(&req.done);
4860 tlb_migrate_finish(p->mm);
4861 return 0;
4862 }
4863 out:
4864 task_rq_unlock(rq, &flags);
4865
4866 return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4869
4870 /*
4871 * Move (not current) task off this cpu, onto dest cpu. We're doing
4872 * this because either it can't run here any more (set_cpus_allowed()
4873 * away from this CPU, or CPU going down), or because we're
4874 * attempting to rebalance this task on exec (sched_exec).
4875 *
4876 * So we race with normal scheduler movements, but that's OK, as long
4877 * as the task is no longer on this CPU.
4878 *
4879 * Returns non-zero if task was successfully migrated.
4880 */
4881 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4882 {
4883 struct rq *rq_dest, *rq_src;
4884 int ret = 0, on_rq;
4885
4886 if (unlikely(cpu_is_offline(dest_cpu)))
4887 return ret;
4888
4889 rq_src = cpu_rq(src_cpu);
4890 rq_dest = cpu_rq(dest_cpu);
4891
4892 double_rq_lock(rq_src, rq_dest);
4893 /* Already moved. */
4894 if (task_cpu(p) != src_cpu)
4895 goto out;
4896 /* Affinity changed (again). */
4897 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4898 goto out;
4899
4900 on_rq = p->se.on_rq;
4901 if (on_rq)
4902 deactivate_task(rq_src, p, 0);
4903
4904 set_task_cpu(p, dest_cpu);
4905 if (on_rq) {
4906 activate_task(rq_dest, p, 0);
4907 check_preempt_curr(rq_dest, p);
4908 }
4909 ret = 1;
4910 out:
4911 double_rq_unlock(rq_src, rq_dest);
4912 return ret;
4913 }
4914
4915 /*
4916 * migration_thread - this is a highprio system thread that performs
4917 * thread migration by bumping thread off CPU then 'pushing' onto
4918 * another runqueue.
4919 */
4920 static int migration_thread(void *data)
4921 {
4922 int cpu = (long)data;
4923 struct rq *rq;
4924
4925 rq = cpu_rq(cpu);
4926 BUG_ON(rq->migration_thread != current);
4927
4928 set_current_state(TASK_INTERRUPTIBLE);
4929 while (!kthread_should_stop()) {
4930 struct migration_req *req;
4931 struct list_head *head;
4932
4933 spin_lock_irq(&rq->lock);
4934
4935 if (cpu_is_offline(cpu)) {
4936 spin_unlock_irq(&rq->lock);
4937 goto wait_to_die;
4938 }
4939
4940 if (rq->active_balance) {
4941 active_load_balance(rq, cpu);
4942 rq->active_balance = 0;
4943 }
4944
4945 head = &rq->migration_queue;
4946
4947 if (list_empty(head)) {
4948 spin_unlock_irq(&rq->lock);
4949 schedule();
4950 set_current_state(TASK_INTERRUPTIBLE);
4951 continue;
4952 }
4953 req = list_entry(head->next, struct migration_req, list);
4954 list_del_init(head->next);
4955
4956 spin_unlock(&rq->lock);
4957 __migrate_task(req->task, cpu, req->dest_cpu);
4958 local_irq_enable();
4959
4960 complete(&req->done);
4961 }
4962 __set_current_state(TASK_RUNNING);
4963 return 0;
4964
4965 wait_to_die:
4966 /* Wait for kthread_stop */
4967 set_current_state(TASK_INTERRUPTIBLE);
4968 while (!kthread_should_stop()) {
4969 schedule();
4970 set_current_state(TASK_INTERRUPTIBLE);
4971 }
4972 __set_current_state(TASK_RUNNING);
4973 return 0;
4974 }
4975
4976 #ifdef CONFIG_HOTPLUG_CPU
4977 /*
4978 * Figure out where task on dead CPU should go, use force if neccessary.
4979 * NOTE: interrupts should be disabled by the caller
4980 */
4981 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
4982 {
4983 unsigned long flags;
4984 cpumask_t mask;
4985 struct rq *rq;
4986 int dest_cpu;
4987
4988 do {
4989 /* On same node? */
4990 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4991 cpus_and(mask, mask, p->cpus_allowed);
4992 dest_cpu = any_online_cpu(mask);
4993
4994 /* On any allowed CPU? */
4995 if (dest_cpu == NR_CPUS)
4996 dest_cpu = any_online_cpu(p->cpus_allowed);
4997
4998 /* No more Mr. Nice Guy. */
4999 if (dest_cpu == NR_CPUS) {
5000 rq = task_rq_lock(p, &flags);
5001 cpus_setall(p->cpus_allowed);
5002 dest_cpu = any_online_cpu(p->cpus_allowed);
5003 task_rq_unlock(rq, &flags);
5004
5005 /*
5006 * Don't tell them about moving exiting tasks or
5007 * kernel threads (both mm NULL), since they never
5008 * leave kernel.
5009 */
5010 if (p->mm && printk_ratelimit())
5011 printk(KERN_INFO "process %d (%s) no "
5012 "longer affine to cpu%d\n",
5013 p->pid, p->comm, dead_cpu);
5014 }
5015 } while (!__migrate_task(p, dead_cpu, dest_cpu));
5016 }
5017
5018 /*
5019 * While a dead CPU has no uninterruptible tasks queued at this point,
5020 * it might still have a nonzero ->nr_uninterruptible counter, because
5021 * for performance reasons the counter is not stricly tracking tasks to
5022 * their home CPUs. So we just add the counter to another CPU's counter,
5023 * to keep the global sum constant after CPU-down:
5024 */
5025 static void migrate_nr_uninterruptible(struct rq *rq_src)
5026 {
5027 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5028 unsigned long flags;
5029
5030 local_irq_save(flags);
5031 double_rq_lock(rq_src, rq_dest);
5032 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5033 rq_src->nr_uninterruptible = 0;
5034 double_rq_unlock(rq_src, rq_dest);
5035 local_irq_restore(flags);
5036 }
5037
5038 /* Run through task list and migrate tasks from the dead cpu. */
5039 static void migrate_live_tasks(int src_cpu)
5040 {
5041 struct task_struct *p, *t;
5042
5043 write_lock_irq(&tasklist_lock);
5044
5045 do_each_thread(t, p) {
5046 if (p == current)
5047 continue;
5048
5049 if (task_cpu(p) == src_cpu)
5050 move_task_off_dead_cpu(src_cpu, p);
5051 } while_each_thread(t, p);
5052
5053 write_unlock_irq(&tasklist_lock);
5054 }
5055
5056 /*
5057 * activate_idle_task - move idle task to the _front_ of runqueue.
5058 */
5059 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5060 {
5061 update_rq_clock(rq);
5062
5063 if (p->state == TASK_UNINTERRUPTIBLE)
5064 rq->nr_uninterruptible--;
5065
5066 enqueue_task(rq, p, 0);
5067 inc_nr_running(p, rq);
5068 }
5069
5070 /*
5071 * Schedules idle task to be the next runnable task on current CPU.
5072 * It does so by boosting its priority to highest possible and adding it to
5073 * the _front_ of the runqueue. Used by CPU offline code.
5074 */
5075 void sched_idle_next(void)
5076 {
5077 int this_cpu = smp_processor_id();
5078 struct rq *rq = cpu_rq(this_cpu);
5079 struct task_struct *p = rq->idle;
5080 unsigned long flags;
5081
5082 /* cpu has to be offline */
5083 BUG_ON(cpu_online(this_cpu));
5084
5085 /*
5086 * Strictly not necessary since rest of the CPUs are stopped by now
5087 * and interrupts disabled on the current cpu.
5088 */
5089 spin_lock_irqsave(&rq->lock, flags);
5090
5091 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5092
5093 /* Add idle task to the _front_ of its priority queue: */
5094 activate_idle_task(p, rq);
5095
5096 spin_unlock_irqrestore(&rq->lock, flags);
5097 }
5098
5099 /*
5100 * Ensures that the idle task is using init_mm right before its cpu goes
5101 * offline.
5102 */
5103 void idle_task_exit(void)
5104 {
5105 struct mm_struct *mm = current->active_mm;
5106
5107 BUG_ON(cpu_online(smp_processor_id()));
5108
5109 if (mm != &init_mm)
5110 switch_mm(mm, &init_mm, current);
5111 mmdrop(mm);
5112 }
5113
5114 /* called under rq->lock with disabled interrupts */
5115 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5116 {
5117 struct rq *rq = cpu_rq(dead_cpu);
5118
5119 /* Must be exiting, otherwise would be on tasklist. */
5120 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5121
5122 /* Cannot have done final schedule yet: would have vanished. */
5123 BUG_ON(p->state == TASK_DEAD);
5124
5125 get_task_struct(p);
5126
5127 /*
5128 * Drop lock around migration; if someone else moves it,
5129 * that's OK. No task can be added to this CPU, so iteration is
5130 * fine.
5131 * NOTE: interrupts should be left disabled --dev@
5132 */
5133 spin_unlock(&rq->lock);
5134 move_task_off_dead_cpu(dead_cpu, p);
5135 spin_lock(&rq->lock);
5136
5137 put_task_struct(p);
5138 }
5139
5140 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5141 static void migrate_dead_tasks(unsigned int dead_cpu)
5142 {
5143 struct rq *rq = cpu_rq(dead_cpu);
5144 struct task_struct *next;
5145
5146 for ( ; ; ) {
5147 if (!rq->nr_running)
5148 break;
5149 update_rq_clock(rq);
5150 next = pick_next_task(rq, rq->curr);
5151 if (!next)
5152 break;
5153 migrate_dead(dead_cpu, next);
5154
5155 }
5156 }
5157 #endif /* CONFIG_HOTPLUG_CPU */
5158
5159 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5160
5161 static struct ctl_table sd_ctl_dir[] = {
5162 {
5163 .procname = "sched_domain",
5164 .mode = 0555,
5165 },
5166 {0,},
5167 };
5168
5169 static struct ctl_table sd_ctl_root[] = {
5170 {
5171 .ctl_name = CTL_KERN,
5172 .procname = "kernel",
5173 .mode = 0555,
5174 .child = sd_ctl_dir,
5175 },
5176 {0,},
5177 };
5178
5179 static struct ctl_table *sd_alloc_ctl_entry(int n)
5180 {
5181 struct ctl_table *entry =
5182 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5183
5184 BUG_ON(!entry);
5185 memset(entry, 0, n * sizeof(struct ctl_table));
5186
5187 return entry;
5188 }
5189
5190 static void
5191 set_table_entry(struct ctl_table *entry,
5192 const char *procname, void *data, int maxlen,
5193 mode_t mode, proc_handler *proc_handler)
5194 {
5195 entry->procname = procname;
5196 entry->data = data;
5197 entry->maxlen = maxlen;
5198 entry->mode = mode;
5199 entry->proc_handler = proc_handler;
5200 }
5201
5202 static struct ctl_table *
5203 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5204 {
5205 struct ctl_table *table = sd_alloc_ctl_entry(12);
5206
5207 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5208 sizeof(long), 0644, proc_doulongvec_minmax);
5209 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5210 sizeof(long), 0644, proc_doulongvec_minmax);
5211 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5212 sizeof(int), 0644, proc_dointvec_minmax);
5213 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5214 sizeof(int), 0644, proc_dointvec_minmax);
5215 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5216 sizeof(int), 0644, proc_dointvec_minmax);
5217 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5218 sizeof(int), 0644, proc_dointvec_minmax);
5219 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5220 sizeof(int), 0644, proc_dointvec_minmax);
5221 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5222 sizeof(int), 0644, proc_dointvec_minmax);
5223 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5224 sizeof(int), 0644, proc_dointvec_minmax);
5225 set_table_entry(&table[9], "cache_nice_tries",
5226 &sd->cache_nice_tries,
5227 sizeof(int), 0644, proc_dointvec_minmax);
5228 set_table_entry(&table[10], "flags", &sd->flags,
5229 sizeof(int), 0644, proc_dointvec_minmax);
5230
5231 return table;
5232 }
5233
5234 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5235 {
5236 struct ctl_table *entry, *table;
5237 struct sched_domain *sd;
5238 int domain_num = 0, i;
5239 char buf[32];
5240
5241 for_each_domain(cpu, sd)
5242 domain_num++;
5243 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5244
5245 i = 0;
5246 for_each_domain(cpu, sd) {
5247 snprintf(buf, 32, "domain%d", i);
5248 entry->procname = kstrdup(buf, GFP_KERNEL);
5249 entry->mode = 0555;
5250 entry->child = sd_alloc_ctl_domain_table(sd);
5251 entry++;
5252 i++;
5253 }
5254 return table;
5255 }
5256
5257 static struct ctl_table_header *sd_sysctl_header;
5258 static void init_sched_domain_sysctl(void)
5259 {
5260 int i, cpu_num = num_online_cpus();
5261 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5262 char buf[32];
5263
5264 sd_ctl_dir[0].child = entry;
5265
5266 for (i = 0; i < cpu_num; i++, entry++) {
5267 snprintf(buf, 32, "cpu%d", i);
5268 entry->procname = kstrdup(buf, GFP_KERNEL);
5269 entry->mode = 0555;
5270 entry->child = sd_alloc_ctl_cpu_table(i);
5271 }
5272 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5273 }
5274 #else
5275 static void init_sched_domain_sysctl(void)
5276 {
5277 }
5278 #endif
5279
5280 /*
5281 * migration_call - callback that gets triggered when a CPU is added.
5282 * Here we can start up the necessary migration thread for the new CPU.
5283 */
5284 static int __cpuinit
5285 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5286 {
5287 struct task_struct *p;
5288 int cpu = (long)hcpu;
5289 unsigned long flags;
5290 struct rq *rq;
5291
5292 switch (action) {
5293 case CPU_LOCK_ACQUIRE:
5294 mutex_lock(&sched_hotcpu_mutex);
5295 break;
5296
5297 case CPU_UP_PREPARE:
5298 case CPU_UP_PREPARE_FROZEN:
5299 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5300 if (IS_ERR(p))
5301 return NOTIFY_BAD;
5302 kthread_bind(p, cpu);
5303 /* Must be high prio: stop_machine expects to yield to it. */
5304 rq = task_rq_lock(p, &flags);
5305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5306 task_rq_unlock(rq, &flags);
5307 cpu_rq(cpu)->migration_thread = p;
5308 break;
5309
5310 case CPU_ONLINE:
5311 case CPU_ONLINE_FROZEN:
5312 /* Strictly unneccessary, as first user will wake it. */
5313 wake_up_process(cpu_rq(cpu)->migration_thread);
5314 break;
5315
5316 #ifdef CONFIG_HOTPLUG_CPU
5317 case CPU_UP_CANCELED:
5318 case CPU_UP_CANCELED_FROZEN:
5319 if (!cpu_rq(cpu)->migration_thread)
5320 break;
5321 /* Unbind it from offline cpu so it can run. Fall thru. */
5322 kthread_bind(cpu_rq(cpu)->migration_thread,
5323 any_online_cpu(cpu_online_map));
5324 kthread_stop(cpu_rq(cpu)->migration_thread);
5325 cpu_rq(cpu)->migration_thread = NULL;
5326 break;
5327
5328 case CPU_DEAD:
5329 case CPU_DEAD_FROZEN:
5330 migrate_live_tasks(cpu);
5331 rq = cpu_rq(cpu);
5332 kthread_stop(rq->migration_thread);
5333 rq->migration_thread = NULL;
5334 /* Idle task back to normal (off runqueue, low prio) */
5335 rq = task_rq_lock(rq->idle, &flags);
5336 update_rq_clock(rq);
5337 deactivate_task(rq, rq->idle, 0);
5338 rq->idle->static_prio = MAX_PRIO;
5339 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5340 rq->idle->sched_class = &idle_sched_class;
5341 migrate_dead_tasks(cpu);
5342 task_rq_unlock(rq, &flags);
5343 migrate_nr_uninterruptible(rq);
5344 BUG_ON(rq->nr_running != 0);
5345
5346 /* No need to migrate the tasks: it was best-effort if
5347 * they didn't take sched_hotcpu_mutex. Just wake up
5348 * the requestors. */
5349 spin_lock_irq(&rq->lock);
5350 while (!list_empty(&rq->migration_queue)) {
5351 struct migration_req *req;
5352
5353 req = list_entry(rq->migration_queue.next,
5354 struct migration_req, list);
5355 list_del_init(&req->list);
5356 complete(&req->done);
5357 }
5358 spin_unlock_irq(&rq->lock);
5359 break;
5360 #endif
5361 case CPU_LOCK_RELEASE:
5362 mutex_unlock(&sched_hotcpu_mutex);
5363 break;
5364 }
5365 return NOTIFY_OK;
5366 }
5367
5368 /* Register at highest priority so that task migration (migrate_all_tasks)
5369 * happens before everything else.
5370 */
5371 static struct notifier_block __cpuinitdata migration_notifier = {
5372 .notifier_call = migration_call,
5373 .priority = 10
5374 };
5375
5376 int __init migration_init(void)
5377 {
5378 void *cpu = (void *)(long)smp_processor_id();
5379 int err;
5380
5381 /* Start one for the boot CPU: */
5382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5383 BUG_ON(err == NOTIFY_BAD);
5384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5385 register_cpu_notifier(&migration_notifier);
5386
5387 return 0;
5388 }
5389 #endif
5390
5391 #ifdef CONFIG_SMP
5392
5393 /* Number of possible processor ids */
5394 int nr_cpu_ids __read_mostly = NR_CPUS;
5395 EXPORT_SYMBOL(nr_cpu_ids);
5396
5397 #ifdef CONFIG_SCHED_DEBUG
5398 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5399 {
5400 int level = 0;
5401
5402 if (!sd) {
5403 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5404 return;
5405 }
5406
5407 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5408
5409 do {
5410 int i;
5411 char str[NR_CPUS];
5412 struct sched_group *group = sd->groups;
5413 cpumask_t groupmask;
5414
5415 cpumask_scnprintf(str, NR_CPUS, sd->span);
5416 cpus_clear(groupmask);
5417
5418 printk(KERN_DEBUG);
5419 for (i = 0; i < level + 1; i++)
5420 printk(" ");
5421 printk("domain %d: ", level);
5422
5423 if (!(sd->flags & SD_LOAD_BALANCE)) {
5424 printk("does not load-balance\n");
5425 if (sd->parent)
5426 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5427 " has parent");
5428 break;
5429 }
5430
5431 printk("span %s\n", str);
5432
5433 if (!cpu_isset(cpu, sd->span))
5434 printk(KERN_ERR "ERROR: domain->span does not contain "
5435 "CPU%d\n", cpu);
5436 if (!cpu_isset(cpu, group->cpumask))
5437 printk(KERN_ERR "ERROR: domain->groups does not contain"
5438 " CPU%d\n", cpu);
5439
5440 printk(KERN_DEBUG);
5441 for (i = 0; i < level + 2; i++)
5442 printk(" ");
5443 printk("groups:");
5444 do {
5445 if (!group) {
5446 printk("\n");
5447 printk(KERN_ERR "ERROR: group is NULL\n");
5448 break;
5449 }
5450
5451 if (!group->__cpu_power) {
5452 printk("\n");
5453 printk(KERN_ERR "ERROR: domain->cpu_power not "
5454 "set\n");
5455 break;
5456 }
5457
5458 if (!cpus_weight(group->cpumask)) {
5459 printk("\n");
5460 printk(KERN_ERR "ERROR: empty group\n");
5461 break;
5462 }
5463
5464 if (cpus_intersects(groupmask, group->cpumask)) {
5465 printk("\n");
5466 printk(KERN_ERR "ERROR: repeated CPUs\n");
5467 break;
5468 }
5469
5470 cpus_or(groupmask, groupmask, group->cpumask);
5471
5472 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5473 printk(" %s", str);
5474
5475 group = group->next;
5476 } while (group != sd->groups);
5477 printk("\n");
5478
5479 if (!cpus_equal(sd->span, groupmask))
5480 printk(KERN_ERR "ERROR: groups don't span "
5481 "domain->span\n");
5482
5483 level++;
5484 sd = sd->parent;
5485 if (!sd)
5486 continue;
5487
5488 if (!cpus_subset(groupmask, sd->span))
5489 printk(KERN_ERR "ERROR: parent span is not a superset "
5490 "of domain->span\n");
5491
5492 } while (sd);
5493 }
5494 #else
5495 # define sched_domain_debug(sd, cpu) do { } while (0)
5496 #endif
5497
5498 static int sd_degenerate(struct sched_domain *sd)
5499 {
5500 if (cpus_weight(sd->span) == 1)
5501 return 1;
5502
5503 /* Following flags need at least 2 groups */
5504 if (sd->flags & (SD_LOAD_BALANCE |
5505 SD_BALANCE_NEWIDLE |
5506 SD_BALANCE_FORK |
5507 SD_BALANCE_EXEC |
5508 SD_SHARE_CPUPOWER |
5509 SD_SHARE_PKG_RESOURCES)) {
5510 if (sd->groups != sd->groups->next)
5511 return 0;
5512 }
5513
5514 /* Following flags don't use groups */
5515 if (sd->flags & (SD_WAKE_IDLE |
5516 SD_WAKE_AFFINE |
5517 SD_WAKE_BALANCE))
5518 return 0;
5519
5520 return 1;
5521 }
5522
5523 static int
5524 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5525 {
5526 unsigned long cflags = sd->flags, pflags = parent->flags;
5527
5528 if (sd_degenerate(parent))
5529 return 1;
5530
5531 if (!cpus_equal(sd->span, parent->span))
5532 return 0;
5533
5534 /* Does parent contain flags not in child? */
5535 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5536 if (cflags & SD_WAKE_AFFINE)
5537 pflags &= ~SD_WAKE_BALANCE;
5538 /* Flags needing groups don't count if only 1 group in parent */
5539 if (parent->groups == parent->groups->next) {
5540 pflags &= ~(SD_LOAD_BALANCE |
5541 SD_BALANCE_NEWIDLE |
5542 SD_BALANCE_FORK |
5543 SD_BALANCE_EXEC |
5544 SD_SHARE_CPUPOWER |
5545 SD_SHARE_PKG_RESOURCES);
5546 }
5547 if (~cflags & pflags)
5548 return 0;
5549
5550 return 1;
5551 }
5552
5553 /*
5554 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5555 * hold the hotplug lock.
5556 */
5557 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5558 {
5559 struct rq *rq = cpu_rq(cpu);
5560 struct sched_domain *tmp;
5561
5562 /* Remove the sched domains which do not contribute to scheduling. */
5563 for (tmp = sd; tmp; tmp = tmp->parent) {
5564 struct sched_domain *parent = tmp->parent;
5565 if (!parent)
5566 break;
5567 if (sd_parent_degenerate(tmp, parent)) {
5568 tmp->parent = parent->parent;
5569 if (parent->parent)
5570 parent->parent->child = tmp;
5571 }
5572 }
5573
5574 if (sd && sd_degenerate(sd)) {
5575 sd = sd->parent;
5576 if (sd)
5577 sd->child = NULL;
5578 }
5579
5580 sched_domain_debug(sd, cpu);
5581
5582 rcu_assign_pointer(rq->sd, sd);
5583 }
5584
5585 /* cpus with isolated domains */
5586 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5587
5588 /* Setup the mask of cpus configured for isolated domains */
5589 static int __init isolated_cpu_setup(char *str)
5590 {
5591 int ints[NR_CPUS], i;
5592
5593 str = get_options(str, ARRAY_SIZE(ints), ints);
5594 cpus_clear(cpu_isolated_map);
5595 for (i = 1; i <= ints[0]; i++)
5596 if (ints[i] < NR_CPUS)
5597 cpu_set(ints[i], cpu_isolated_map);
5598 return 1;
5599 }
5600
5601 __setup("isolcpus=", isolated_cpu_setup);
5602
5603 /*
5604 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5605 * to a function which identifies what group(along with sched group) a CPU
5606 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5607 * (due to the fact that we keep track of groups covered with a cpumask_t).
5608 *
5609 * init_sched_build_groups will build a circular linked list of the groups
5610 * covered by the given span, and will set each group's ->cpumask correctly,
5611 * and ->cpu_power to 0.
5612 */
5613 static void
5614 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5615 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5616 struct sched_group **sg))
5617 {
5618 struct sched_group *first = NULL, *last = NULL;
5619 cpumask_t covered = CPU_MASK_NONE;
5620 int i;
5621
5622 for_each_cpu_mask(i, span) {
5623 struct sched_group *sg;
5624 int group = group_fn(i, cpu_map, &sg);
5625 int j;
5626
5627 if (cpu_isset(i, covered))
5628 continue;
5629
5630 sg->cpumask = CPU_MASK_NONE;
5631 sg->__cpu_power = 0;
5632
5633 for_each_cpu_mask(j, span) {
5634 if (group_fn(j, cpu_map, NULL) != group)
5635 continue;
5636
5637 cpu_set(j, covered);
5638 cpu_set(j, sg->cpumask);
5639 }
5640 if (!first)
5641 first = sg;
5642 if (last)
5643 last->next = sg;
5644 last = sg;
5645 }
5646 last->next = first;
5647 }
5648
5649 #define SD_NODES_PER_DOMAIN 16
5650
5651 #ifdef CONFIG_NUMA
5652
5653 /**
5654 * find_next_best_node - find the next node to include in a sched_domain
5655 * @node: node whose sched_domain we're building
5656 * @used_nodes: nodes already in the sched_domain
5657 *
5658 * Find the next node to include in a given scheduling domain. Simply
5659 * finds the closest node not already in the @used_nodes map.
5660 *
5661 * Should use nodemask_t.
5662 */
5663 static int find_next_best_node(int node, unsigned long *used_nodes)
5664 {
5665 int i, n, val, min_val, best_node = 0;
5666
5667 min_val = INT_MAX;
5668
5669 for (i = 0; i < MAX_NUMNODES; i++) {
5670 /* Start at @node */
5671 n = (node + i) % MAX_NUMNODES;
5672
5673 if (!nr_cpus_node(n))
5674 continue;
5675
5676 /* Skip already used nodes */
5677 if (test_bit(n, used_nodes))
5678 continue;
5679
5680 /* Simple min distance search */
5681 val = node_distance(node, n);
5682
5683 if (val < min_val) {
5684 min_val = val;
5685 best_node = n;
5686 }
5687 }
5688
5689 set_bit(best_node, used_nodes);
5690 return best_node;
5691 }
5692
5693 /**
5694 * sched_domain_node_span - get a cpumask for a node's sched_domain
5695 * @node: node whose cpumask we're constructing
5696 * @size: number of nodes to include in this span
5697 *
5698 * Given a node, construct a good cpumask for its sched_domain to span. It
5699 * should be one that prevents unnecessary balancing, but also spreads tasks
5700 * out optimally.
5701 */
5702 static cpumask_t sched_domain_node_span(int node)
5703 {
5704 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5705 cpumask_t span, nodemask;
5706 int i;
5707
5708 cpus_clear(span);
5709 bitmap_zero(used_nodes, MAX_NUMNODES);
5710
5711 nodemask = node_to_cpumask(node);
5712 cpus_or(span, span, nodemask);
5713 set_bit(node, used_nodes);
5714
5715 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5716 int next_node = find_next_best_node(node, used_nodes);
5717
5718 nodemask = node_to_cpumask(next_node);
5719 cpus_or(span, span, nodemask);
5720 }
5721
5722 return span;
5723 }
5724 #endif
5725
5726 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5727
5728 /*
5729 * SMT sched-domains:
5730 */
5731 #ifdef CONFIG_SCHED_SMT
5732 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5733 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5734
5735 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5736 struct sched_group **sg)
5737 {
5738 if (sg)
5739 *sg = &per_cpu(sched_group_cpus, cpu);
5740 return cpu;
5741 }
5742 #endif
5743
5744 /*
5745 * multi-core sched-domains:
5746 */
5747 #ifdef CONFIG_SCHED_MC
5748 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5749 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5750 #endif
5751
5752 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5753 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5754 struct sched_group **sg)
5755 {
5756 int group;
5757 cpumask_t mask = cpu_sibling_map[cpu];
5758 cpus_and(mask, mask, *cpu_map);
5759 group = first_cpu(mask);
5760 if (sg)
5761 *sg = &per_cpu(sched_group_core, group);
5762 return group;
5763 }
5764 #elif defined(CONFIG_SCHED_MC)
5765 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5766 struct sched_group **sg)
5767 {
5768 if (sg)
5769 *sg = &per_cpu(sched_group_core, cpu);
5770 return cpu;
5771 }
5772 #endif
5773
5774 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5775 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5776
5777 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5778 struct sched_group **sg)
5779 {
5780 int group;
5781 #ifdef CONFIG_SCHED_MC
5782 cpumask_t mask = cpu_coregroup_map(cpu);
5783 cpus_and(mask, mask, *cpu_map);
5784 group = first_cpu(mask);
5785 #elif defined(CONFIG_SCHED_SMT)
5786 cpumask_t mask = cpu_sibling_map[cpu];
5787 cpus_and(mask, mask, *cpu_map);
5788 group = first_cpu(mask);
5789 #else
5790 group = cpu;
5791 #endif
5792 if (sg)
5793 *sg = &per_cpu(sched_group_phys, group);
5794 return group;
5795 }
5796
5797 #ifdef CONFIG_NUMA
5798 /*
5799 * The init_sched_build_groups can't handle what we want to do with node
5800 * groups, so roll our own. Now each node has its own list of groups which
5801 * gets dynamically allocated.
5802 */
5803 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5804 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5805
5806 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5807 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5808
5809 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5810 struct sched_group **sg)
5811 {
5812 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5813 int group;
5814
5815 cpus_and(nodemask, nodemask, *cpu_map);
5816 group = first_cpu(nodemask);
5817
5818 if (sg)
5819 *sg = &per_cpu(sched_group_allnodes, group);
5820 return group;
5821 }
5822
5823 static void init_numa_sched_groups_power(struct sched_group *group_head)
5824 {
5825 struct sched_group *sg = group_head;
5826 int j;
5827
5828 if (!sg)
5829 return;
5830 do {
5831 for_each_cpu_mask(j, sg->cpumask) {
5832 struct sched_domain *sd;
5833
5834 sd = &per_cpu(phys_domains, j);
5835 if (j != first_cpu(sd->groups->cpumask)) {
5836 /*
5837 * Only add "power" once for each
5838 * physical package.
5839 */
5840 continue;
5841 }
5842
5843 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5844 }
5845 sg = sg->next;
5846 } while (sg != group_head);
5847 }
5848 #endif
5849
5850 #ifdef CONFIG_NUMA
5851 /* Free memory allocated for various sched_group structures */
5852 static void free_sched_groups(const cpumask_t *cpu_map)
5853 {
5854 int cpu, i;
5855
5856 for_each_cpu_mask(cpu, *cpu_map) {
5857 struct sched_group **sched_group_nodes
5858 = sched_group_nodes_bycpu[cpu];
5859
5860 if (!sched_group_nodes)
5861 continue;
5862
5863 for (i = 0; i < MAX_NUMNODES; i++) {
5864 cpumask_t nodemask = node_to_cpumask(i);
5865 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5866
5867 cpus_and(nodemask, nodemask, *cpu_map);
5868 if (cpus_empty(nodemask))
5869 continue;
5870
5871 if (sg == NULL)
5872 continue;
5873 sg = sg->next;
5874 next_sg:
5875 oldsg = sg;
5876 sg = sg->next;
5877 kfree(oldsg);
5878 if (oldsg != sched_group_nodes[i])
5879 goto next_sg;
5880 }
5881 kfree(sched_group_nodes);
5882 sched_group_nodes_bycpu[cpu] = NULL;
5883 }
5884 }
5885 #else
5886 static void free_sched_groups(const cpumask_t *cpu_map)
5887 {
5888 }
5889 #endif
5890
5891 /*
5892 * Initialize sched groups cpu_power.
5893 *
5894 * cpu_power indicates the capacity of sched group, which is used while
5895 * distributing the load between different sched groups in a sched domain.
5896 * Typically cpu_power for all the groups in a sched domain will be same unless
5897 * there are asymmetries in the topology. If there are asymmetries, group
5898 * having more cpu_power will pickup more load compared to the group having
5899 * less cpu_power.
5900 *
5901 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5902 * the maximum number of tasks a group can handle in the presence of other idle
5903 * or lightly loaded groups in the same sched domain.
5904 */
5905 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5906 {
5907 struct sched_domain *child;
5908 struct sched_group *group;
5909
5910 WARN_ON(!sd || !sd->groups);
5911
5912 if (cpu != first_cpu(sd->groups->cpumask))
5913 return;
5914
5915 child = sd->child;
5916
5917 sd->groups->__cpu_power = 0;
5918
5919 /*
5920 * For perf policy, if the groups in child domain share resources
5921 * (for example cores sharing some portions of the cache hierarchy
5922 * or SMT), then set this domain groups cpu_power such that each group
5923 * can handle only one task, when there are other idle groups in the
5924 * same sched domain.
5925 */
5926 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5927 (child->flags &
5928 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5929 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5930 return;
5931 }
5932
5933 /*
5934 * add cpu_power of each child group to this groups cpu_power
5935 */
5936 group = child->groups;
5937 do {
5938 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5939 group = group->next;
5940 } while (group != child->groups);
5941 }
5942
5943 /*
5944 * Build sched domains for a given set of cpus and attach the sched domains
5945 * to the individual cpus
5946 */
5947 static int build_sched_domains(const cpumask_t *cpu_map)
5948 {
5949 int i;
5950 #ifdef CONFIG_NUMA
5951 struct sched_group **sched_group_nodes = NULL;
5952 int sd_allnodes = 0;
5953
5954 /*
5955 * Allocate the per-node list of sched groups
5956 */
5957 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5958 GFP_KERNEL);
5959 if (!sched_group_nodes) {
5960 printk(KERN_WARNING "Can not alloc sched group node list\n");
5961 return -ENOMEM;
5962 }
5963 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5964 #endif
5965
5966 /*
5967 * Set up domains for cpus specified by the cpu_map.
5968 */
5969 for_each_cpu_mask(i, *cpu_map) {
5970 struct sched_domain *sd = NULL, *p;
5971 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5972
5973 cpus_and(nodemask, nodemask, *cpu_map);
5974
5975 #ifdef CONFIG_NUMA
5976 if (cpus_weight(*cpu_map) >
5977 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5978 sd = &per_cpu(allnodes_domains, i);
5979 *sd = SD_ALLNODES_INIT;
5980 sd->span = *cpu_map;
5981 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5982 p = sd;
5983 sd_allnodes = 1;
5984 } else
5985 p = NULL;
5986
5987 sd = &per_cpu(node_domains, i);
5988 *sd = SD_NODE_INIT;
5989 sd->span = sched_domain_node_span(cpu_to_node(i));
5990 sd->parent = p;
5991 if (p)
5992 p->child = sd;
5993 cpus_and(sd->span, sd->span, *cpu_map);
5994 #endif
5995
5996 p = sd;
5997 sd = &per_cpu(phys_domains, i);
5998 *sd = SD_CPU_INIT;
5999 sd->span = nodemask;
6000 sd->parent = p;
6001 if (p)
6002 p->child = sd;
6003 cpu_to_phys_group(i, cpu_map, &sd->groups);
6004
6005 #ifdef CONFIG_SCHED_MC
6006 p = sd;
6007 sd = &per_cpu(core_domains, i);
6008 *sd = SD_MC_INIT;
6009 sd->span = cpu_coregroup_map(i);
6010 cpus_and(sd->span, sd->span, *cpu_map);
6011 sd->parent = p;
6012 p->child = sd;
6013 cpu_to_core_group(i, cpu_map, &sd->groups);
6014 #endif
6015
6016 #ifdef CONFIG_SCHED_SMT
6017 p = sd;
6018 sd = &per_cpu(cpu_domains, i);
6019 *sd = SD_SIBLING_INIT;
6020 sd->span = cpu_sibling_map[i];
6021 cpus_and(sd->span, sd->span, *cpu_map);
6022 sd->parent = p;
6023 p->child = sd;
6024 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6025 #endif
6026 }
6027
6028 #ifdef CONFIG_SCHED_SMT
6029 /* Set up CPU (sibling) groups */
6030 for_each_cpu_mask(i, *cpu_map) {
6031 cpumask_t this_sibling_map = cpu_sibling_map[i];
6032 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6033 if (i != first_cpu(this_sibling_map))
6034 continue;
6035
6036 init_sched_build_groups(this_sibling_map, cpu_map,
6037 &cpu_to_cpu_group);
6038 }
6039 #endif
6040
6041 #ifdef CONFIG_SCHED_MC
6042 /* Set up multi-core groups */
6043 for_each_cpu_mask(i, *cpu_map) {
6044 cpumask_t this_core_map = cpu_coregroup_map(i);
6045 cpus_and(this_core_map, this_core_map, *cpu_map);
6046 if (i != first_cpu(this_core_map))
6047 continue;
6048 init_sched_build_groups(this_core_map, cpu_map,
6049 &cpu_to_core_group);
6050 }
6051 #endif
6052
6053 /* Set up physical groups */
6054 for (i = 0; i < MAX_NUMNODES; i++) {
6055 cpumask_t nodemask = node_to_cpumask(i);
6056
6057 cpus_and(nodemask, nodemask, *cpu_map);
6058 if (cpus_empty(nodemask))
6059 continue;
6060
6061 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6062 }
6063
6064 #ifdef CONFIG_NUMA
6065 /* Set up node groups */
6066 if (sd_allnodes)
6067 init_sched_build_groups(*cpu_map, cpu_map,
6068 &cpu_to_allnodes_group);
6069
6070 for (i = 0; i < MAX_NUMNODES; i++) {
6071 /* Set up node groups */
6072 struct sched_group *sg, *prev;
6073 cpumask_t nodemask = node_to_cpumask(i);
6074 cpumask_t domainspan;
6075 cpumask_t covered = CPU_MASK_NONE;
6076 int j;
6077
6078 cpus_and(nodemask, nodemask, *cpu_map);
6079 if (cpus_empty(nodemask)) {
6080 sched_group_nodes[i] = NULL;
6081 continue;
6082 }
6083
6084 domainspan = sched_domain_node_span(i);
6085 cpus_and(domainspan, domainspan, *cpu_map);
6086
6087 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6088 if (!sg) {
6089 printk(KERN_WARNING "Can not alloc domain group for "
6090 "node %d\n", i);
6091 goto error;
6092 }
6093 sched_group_nodes[i] = sg;
6094 for_each_cpu_mask(j, nodemask) {
6095 struct sched_domain *sd;
6096
6097 sd = &per_cpu(node_domains, j);
6098 sd->groups = sg;
6099 }
6100 sg->__cpu_power = 0;
6101 sg->cpumask = nodemask;
6102 sg->next = sg;
6103 cpus_or(covered, covered, nodemask);
6104 prev = sg;
6105
6106 for (j = 0; j < MAX_NUMNODES; j++) {
6107 cpumask_t tmp, notcovered;
6108 int n = (i + j) % MAX_NUMNODES;
6109
6110 cpus_complement(notcovered, covered);
6111 cpus_and(tmp, notcovered, *cpu_map);
6112 cpus_and(tmp, tmp, domainspan);
6113 if (cpus_empty(tmp))
6114 break;
6115
6116 nodemask = node_to_cpumask(n);
6117 cpus_and(tmp, tmp, nodemask);
6118 if (cpus_empty(tmp))
6119 continue;
6120
6121 sg = kmalloc_node(sizeof(struct sched_group),
6122 GFP_KERNEL, i);
6123 if (!sg) {
6124 printk(KERN_WARNING
6125 "Can not alloc domain group for node %d\n", j);
6126 goto error;
6127 }
6128 sg->__cpu_power = 0;
6129 sg->cpumask = tmp;
6130 sg->next = prev->next;
6131 cpus_or(covered, covered, tmp);
6132 prev->next = sg;
6133 prev = sg;
6134 }
6135 }
6136 #endif
6137
6138 /* Calculate CPU power for physical packages and nodes */
6139 #ifdef CONFIG_SCHED_SMT
6140 for_each_cpu_mask(i, *cpu_map) {
6141 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6142
6143 init_sched_groups_power(i, sd);
6144 }
6145 #endif
6146 #ifdef CONFIG_SCHED_MC
6147 for_each_cpu_mask(i, *cpu_map) {
6148 struct sched_domain *sd = &per_cpu(core_domains, i);
6149
6150 init_sched_groups_power(i, sd);
6151 }
6152 #endif
6153
6154 for_each_cpu_mask(i, *cpu_map) {
6155 struct sched_domain *sd = &per_cpu(phys_domains, i);
6156
6157 init_sched_groups_power(i, sd);
6158 }
6159
6160 #ifdef CONFIG_NUMA
6161 for (i = 0; i < MAX_NUMNODES; i++)
6162 init_numa_sched_groups_power(sched_group_nodes[i]);
6163
6164 if (sd_allnodes) {
6165 struct sched_group *sg;
6166
6167 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6168 init_numa_sched_groups_power(sg);
6169 }
6170 #endif
6171
6172 /* Attach the domains */
6173 for_each_cpu_mask(i, *cpu_map) {
6174 struct sched_domain *sd;
6175 #ifdef CONFIG_SCHED_SMT
6176 sd = &per_cpu(cpu_domains, i);
6177 #elif defined(CONFIG_SCHED_MC)
6178 sd = &per_cpu(core_domains, i);
6179 #else
6180 sd = &per_cpu(phys_domains, i);
6181 #endif
6182 cpu_attach_domain(sd, i);
6183 }
6184
6185 return 0;
6186
6187 #ifdef CONFIG_NUMA
6188 error:
6189 free_sched_groups(cpu_map);
6190 return -ENOMEM;
6191 #endif
6192 }
6193 /*
6194 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6195 */
6196 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6197 {
6198 cpumask_t cpu_default_map;
6199 int err;
6200
6201 /*
6202 * Setup mask for cpus without special case scheduling requirements.
6203 * For now this just excludes isolated cpus, but could be used to
6204 * exclude other special cases in the future.
6205 */
6206 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6207
6208 err = build_sched_domains(&cpu_default_map);
6209
6210 return err;
6211 }
6212
6213 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6214 {
6215 free_sched_groups(cpu_map);
6216 }
6217
6218 /*
6219 * Detach sched domains from a group of cpus specified in cpu_map
6220 * These cpus will now be attached to the NULL domain
6221 */
6222 static void detach_destroy_domains(const cpumask_t *cpu_map)
6223 {
6224 int i;
6225
6226 for_each_cpu_mask(i, *cpu_map)
6227 cpu_attach_domain(NULL, i);
6228 synchronize_sched();
6229 arch_destroy_sched_domains(cpu_map);
6230 }
6231
6232 /*
6233 * Partition sched domains as specified by the cpumasks below.
6234 * This attaches all cpus from the cpumasks to the NULL domain,
6235 * waits for a RCU quiescent period, recalculates sched
6236 * domain information and then attaches them back to the
6237 * correct sched domains
6238 * Call with hotplug lock held
6239 */
6240 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6241 {
6242 cpumask_t change_map;
6243 int err = 0;
6244
6245 cpus_and(*partition1, *partition1, cpu_online_map);
6246 cpus_and(*partition2, *partition2, cpu_online_map);
6247 cpus_or(change_map, *partition1, *partition2);
6248
6249 /* Detach sched domains from all of the affected cpus */
6250 detach_destroy_domains(&change_map);
6251 if (!cpus_empty(*partition1))
6252 err = build_sched_domains(partition1);
6253 if (!err && !cpus_empty(*partition2))
6254 err = build_sched_domains(partition2);
6255
6256 return err;
6257 }
6258
6259 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6260 static int arch_reinit_sched_domains(void)
6261 {
6262 int err;
6263
6264 mutex_lock(&sched_hotcpu_mutex);
6265 detach_destroy_domains(&cpu_online_map);
6266 err = arch_init_sched_domains(&cpu_online_map);
6267 mutex_unlock(&sched_hotcpu_mutex);
6268
6269 return err;
6270 }
6271
6272 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6273 {
6274 int ret;
6275
6276 if (buf[0] != '0' && buf[0] != '1')
6277 return -EINVAL;
6278
6279 if (smt)
6280 sched_smt_power_savings = (buf[0] == '1');
6281 else
6282 sched_mc_power_savings = (buf[0] == '1');
6283
6284 ret = arch_reinit_sched_domains();
6285
6286 return ret ? ret : count;
6287 }
6288
6289 #ifdef CONFIG_SCHED_MC
6290 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6291 {
6292 return sprintf(page, "%u\n", sched_mc_power_savings);
6293 }
6294 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6295 const char *buf, size_t count)
6296 {
6297 return sched_power_savings_store(buf, count, 0);
6298 }
6299 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6300 sched_mc_power_savings_store);
6301 #endif
6302
6303 #ifdef CONFIG_SCHED_SMT
6304 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6305 {
6306 return sprintf(page, "%u\n", sched_smt_power_savings);
6307 }
6308 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6309 const char *buf, size_t count)
6310 {
6311 return sched_power_savings_store(buf, count, 1);
6312 }
6313 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6314 sched_smt_power_savings_store);
6315 #endif
6316
6317 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6318 {
6319 int err = 0;
6320
6321 #ifdef CONFIG_SCHED_SMT
6322 if (smt_capable())
6323 err = sysfs_create_file(&cls->kset.kobj,
6324 &attr_sched_smt_power_savings.attr);
6325 #endif
6326 #ifdef CONFIG_SCHED_MC
6327 if (!err && mc_capable())
6328 err = sysfs_create_file(&cls->kset.kobj,
6329 &attr_sched_mc_power_savings.attr);
6330 #endif
6331 return err;
6332 }
6333 #endif
6334
6335 /*
6336 * Force a reinitialization of the sched domains hierarchy. The domains
6337 * and groups cannot be updated in place without racing with the balancing
6338 * code, so we temporarily attach all running cpus to the NULL domain
6339 * which will prevent rebalancing while the sched domains are recalculated.
6340 */
6341 static int update_sched_domains(struct notifier_block *nfb,
6342 unsigned long action, void *hcpu)
6343 {
6344 switch (action) {
6345 case CPU_UP_PREPARE:
6346 case CPU_UP_PREPARE_FROZEN:
6347 case CPU_DOWN_PREPARE:
6348 case CPU_DOWN_PREPARE_FROZEN:
6349 detach_destroy_domains(&cpu_online_map);
6350 return NOTIFY_OK;
6351
6352 case CPU_UP_CANCELED:
6353 case CPU_UP_CANCELED_FROZEN:
6354 case CPU_DOWN_FAILED:
6355 case CPU_DOWN_FAILED_FROZEN:
6356 case CPU_ONLINE:
6357 case CPU_ONLINE_FROZEN:
6358 case CPU_DEAD:
6359 case CPU_DEAD_FROZEN:
6360 /*
6361 * Fall through and re-initialise the domains.
6362 */
6363 break;
6364 default:
6365 return NOTIFY_DONE;
6366 }
6367
6368 /* The hotplug lock is already held by cpu_up/cpu_down */
6369 arch_init_sched_domains(&cpu_online_map);
6370
6371 return NOTIFY_OK;
6372 }
6373
6374 void __init sched_init_smp(void)
6375 {
6376 cpumask_t non_isolated_cpus;
6377
6378 mutex_lock(&sched_hotcpu_mutex);
6379 arch_init_sched_domains(&cpu_online_map);
6380 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6381 if (cpus_empty(non_isolated_cpus))
6382 cpu_set(smp_processor_id(), non_isolated_cpus);
6383 mutex_unlock(&sched_hotcpu_mutex);
6384 /* XXX: Theoretical race here - CPU may be hotplugged now */
6385 hotcpu_notifier(update_sched_domains, 0);
6386
6387 init_sched_domain_sysctl();
6388
6389 /* Move init over to a non-isolated CPU */
6390 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6391 BUG();
6392 }
6393 #else
6394 void __init sched_init_smp(void)
6395 {
6396 }
6397 #endif /* CONFIG_SMP */
6398
6399 int in_sched_functions(unsigned long addr)
6400 {
6401 /* Linker adds these: start and end of __sched functions */
6402 extern char __sched_text_start[], __sched_text_end[];
6403
6404 return in_lock_functions(addr) ||
6405 (addr >= (unsigned long)__sched_text_start
6406 && addr < (unsigned long)__sched_text_end);
6407 }
6408
6409 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6410 {
6411 cfs_rq->tasks_timeline = RB_ROOT;
6412 #ifdef CONFIG_FAIR_GROUP_SCHED
6413 cfs_rq->rq = rq;
6414 #endif
6415 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6416 }
6417
6418 void __init sched_init(void)
6419 {
6420 int highest_cpu = 0;
6421 int i, j;
6422
6423 for_each_possible_cpu(i) {
6424 struct rt_prio_array *array;
6425 struct rq *rq;
6426
6427 rq = cpu_rq(i);
6428 spin_lock_init(&rq->lock);
6429 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6430 rq->nr_running = 0;
6431 rq->clock = 1;
6432 init_cfs_rq(&rq->cfs, rq);
6433 #ifdef CONFIG_FAIR_GROUP_SCHED
6434 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6435 {
6436 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6437 struct sched_entity *se =
6438 &per_cpu(init_sched_entity, i);
6439
6440 init_cfs_rq_p[i] = cfs_rq;
6441 init_cfs_rq(cfs_rq, rq);
6442 cfs_rq->tg = &init_task_group;
6443 list_add(&cfs_rq->leaf_cfs_rq_list,
6444 &rq->leaf_cfs_rq_list);
6445
6446 init_sched_entity_p[i] = se;
6447 se->cfs_rq = &rq->cfs;
6448 se->my_q = cfs_rq;
6449 se->load.weight = init_task_group_load;
6450 se->load.inv_weight =
6451 div64_64(1ULL<<32, init_task_group_load);
6452 se->parent = NULL;
6453 }
6454 init_task_group.shares = init_task_group_load;
6455 spin_lock_init(&init_task_group.lock);
6456 #endif
6457
6458 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6459 rq->cpu_load[j] = 0;
6460 #ifdef CONFIG_SMP
6461 rq->sd = NULL;
6462 rq->active_balance = 0;
6463 rq->next_balance = jiffies;
6464 rq->push_cpu = 0;
6465 rq->cpu = i;
6466 rq->migration_thread = NULL;
6467 INIT_LIST_HEAD(&rq->migration_queue);
6468 #endif
6469 atomic_set(&rq->nr_iowait, 0);
6470
6471 array = &rq->rt.active;
6472 for (j = 0; j < MAX_RT_PRIO; j++) {
6473 INIT_LIST_HEAD(array->queue + j);
6474 __clear_bit(j, array->bitmap);
6475 }
6476 highest_cpu = i;
6477 /* delimiter for bitsearch: */
6478 __set_bit(MAX_RT_PRIO, array->bitmap);
6479 }
6480
6481 set_load_weight(&init_task);
6482
6483 #ifdef CONFIG_PREEMPT_NOTIFIERS
6484 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6485 #endif
6486
6487 #ifdef CONFIG_SMP
6488 nr_cpu_ids = highest_cpu + 1;
6489 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6490 #endif
6491
6492 #ifdef CONFIG_RT_MUTEXES
6493 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6494 #endif
6495
6496 /*
6497 * The boot idle thread does lazy MMU switching as well:
6498 */
6499 atomic_inc(&init_mm.mm_count);
6500 enter_lazy_tlb(&init_mm, current);
6501
6502 /*
6503 * Make us the idle thread. Technically, schedule() should not be
6504 * called from this thread, however somewhere below it might be,
6505 * but because we are the idle thread, we just pick up running again
6506 * when this runqueue becomes "idle".
6507 */
6508 init_idle(current, smp_processor_id());
6509 /*
6510 * During early bootup we pretend to be a normal task:
6511 */
6512 current->sched_class = &fair_sched_class;
6513 }
6514
6515 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6516 void __might_sleep(char *file, int line)
6517 {
6518 #ifdef in_atomic
6519 static unsigned long prev_jiffy; /* ratelimiting */
6520
6521 if ((in_atomic() || irqs_disabled()) &&
6522 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6523 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6524 return;
6525 prev_jiffy = jiffies;
6526 printk(KERN_ERR "BUG: sleeping function called from invalid"
6527 " context at %s:%d\n", file, line);
6528 printk("in_atomic():%d, irqs_disabled():%d\n",
6529 in_atomic(), irqs_disabled());
6530 debug_show_held_locks(current);
6531 if (irqs_disabled())
6532 print_irqtrace_events(current);
6533 dump_stack();
6534 }
6535 #endif
6536 }
6537 EXPORT_SYMBOL(__might_sleep);
6538 #endif
6539
6540 #ifdef CONFIG_MAGIC_SYSRQ
6541 static void normalize_task(struct rq *rq, struct task_struct *p)
6542 {
6543 int on_rq;
6544 update_rq_clock(rq);
6545 on_rq = p->se.on_rq;
6546 if (on_rq)
6547 deactivate_task(rq, p, 0);
6548 __setscheduler(rq, p, SCHED_NORMAL, 0);
6549 if (on_rq) {
6550 activate_task(rq, p, 0);
6551 resched_task(rq->curr);
6552 }
6553 }
6554
6555 void normalize_rt_tasks(void)
6556 {
6557 struct task_struct *g, *p;
6558 unsigned long flags;
6559 struct rq *rq;
6560
6561 read_lock_irq(&tasklist_lock);
6562 do_each_thread(g, p) {
6563 p->se.exec_start = 0;
6564 #ifdef CONFIG_SCHEDSTATS
6565 p->se.wait_start = 0;
6566 p->se.sleep_start = 0;
6567 p->se.block_start = 0;
6568 #endif
6569 task_rq(p)->clock = 0;
6570
6571 if (!rt_task(p)) {
6572 /*
6573 * Renice negative nice level userspace
6574 * tasks back to 0:
6575 */
6576 if (TASK_NICE(p) < 0 && p->mm)
6577 set_user_nice(p, 0);
6578 continue;
6579 }
6580
6581 spin_lock_irqsave(&p->pi_lock, flags);
6582 rq = __task_rq_lock(p);
6583
6584 if (!is_migration_thread(p, rq))
6585 normalize_task(rq, p);
6586
6587 __task_rq_unlock(rq);
6588 spin_unlock_irqrestore(&p->pi_lock, flags);
6589 } while_each_thread(g, p);
6590
6591 read_unlock_irq(&tasklist_lock);
6592 }
6593
6594 #endif /* CONFIG_MAGIC_SYSRQ */
6595
6596 #ifdef CONFIG_IA64
6597 /*
6598 * These functions are only useful for the IA64 MCA handling.
6599 *
6600 * They can only be called when the whole system has been
6601 * stopped - every CPU needs to be quiescent, and no scheduling
6602 * activity can take place. Using them for anything else would
6603 * be a serious bug, and as a result, they aren't even visible
6604 * under any other configuration.
6605 */
6606
6607 /**
6608 * curr_task - return the current task for a given cpu.
6609 * @cpu: the processor in question.
6610 *
6611 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6612 */
6613 struct task_struct *curr_task(int cpu)
6614 {
6615 return cpu_curr(cpu);
6616 }
6617
6618 /**
6619 * set_curr_task - set the current task for a given cpu.
6620 * @cpu: the processor in question.
6621 * @p: the task pointer to set.
6622 *
6623 * Description: This function must only be used when non-maskable interrupts
6624 * are serviced on a separate stack. It allows the architecture to switch the
6625 * notion of the current task on a cpu in a non-blocking manner. This function
6626 * must be called with all CPU's synchronized, and interrupts disabled, the
6627 * and caller must save the original value of the current task (see
6628 * curr_task() above) and restore that value before reenabling interrupts and
6629 * re-starting the system.
6630 *
6631 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6632 */
6633 void set_curr_task(int cpu, struct task_struct *p)
6634 {
6635 cpu_curr(cpu) = p;
6636 }
6637
6638 #endif
6639
6640 #ifdef CONFIG_FAIR_GROUP_SCHED
6641
6642 /* allocate runqueue etc for a new task group */
6643 struct task_group *sched_create_group(void)
6644 {
6645 struct task_group *tg;
6646 struct cfs_rq *cfs_rq;
6647 struct sched_entity *se;
6648 struct rq *rq;
6649 int i;
6650
6651 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6652 if (!tg)
6653 return ERR_PTR(-ENOMEM);
6654
6655 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6656 if (!tg->cfs_rq)
6657 goto err;
6658 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6659 if (!tg->se)
6660 goto err;
6661
6662 for_each_possible_cpu(i) {
6663 rq = cpu_rq(i);
6664
6665 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6666 cpu_to_node(i));
6667 if (!cfs_rq)
6668 goto err;
6669
6670 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6671 cpu_to_node(i));
6672 if (!se)
6673 goto err;
6674
6675 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6676 memset(se, 0, sizeof(struct sched_entity));
6677
6678 tg->cfs_rq[i] = cfs_rq;
6679 init_cfs_rq(cfs_rq, rq);
6680 cfs_rq->tg = tg;
6681
6682 tg->se[i] = se;
6683 se->cfs_rq = &rq->cfs;
6684 se->my_q = cfs_rq;
6685 se->load.weight = NICE_0_LOAD;
6686 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6687 se->parent = NULL;
6688 }
6689
6690 for_each_possible_cpu(i) {
6691 rq = cpu_rq(i);
6692 cfs_rq = tg->cfs_rq[i];
6693 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6694 }
6695
6696 tg->shares = NICE_0_LOAD;
6697 spin_lock_init(&tg->lock);
6698
6699 return tg;
6700
6701 err:
6702 for_each_possible_cpu(i) {
6703 if (tg->cfs_rq)
6704 kfree(tg->cfs_rq[i]);
6705 if (tg->se)
6706 kfree(tg->se[i]);
6707 }
6708 kfree(tg->cfs_rq);
6709 kfree(tg->se);
6710 kfree(tg);
6711
6712 return ERR_PTR(-ENOMEM);
6713 }
6714
6715 /* rcu callback to free various structures associated with a task group */
6716 static void free_sched_group(struct rcu_head *rhp)
6717 {
6718 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6719 struct task_group *tg = cfs_rq->tg;
6720 struct sched_entity *se;
6721 int i;
6722
6723 /* now it should be safe to free those cfs_rqs */
6724 for_each_possible_cpu(i) {
6725 cfs_rq = tg->cfs_rq[i];
6726 kfree(cfs_rq);
6727
6728 se = tg->se[i];
6729 kfree(se);
6730 }
6731
6732 kfree(tg->cfs_rq);
6733 kfree(tg->se);
6734 kfree(tg);
6735 }
6736
6737 /* Destroy runqueue etc associated with a task group */
6738 void sched_destroy_group(struct task_group *tg)
6739 {
6740 struct cfs_rq *cfs_rq;
6741 int i;
6742
6743 for_each_possible_cpu(i) {
6744 cfs_rq = tg->cfs_rq[i];
6745 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6746 }
6747
6748 cfs_rq = tg->cfs_rq[0];
6749
6750 /* wait for possible concurrent references to cfs_rqs complete */
6751 call_rcu(&cfs_rq->rcu, free_sched_group);
6752 }
6753
6754 /* change task's runqueue when it moves between groups.
6755 * The caller of this function should have put the task in its new group
6756 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6757 * reflect its new group.
6758 */
6759 void sched_move_task(struct task_struct *tsk)
6760 {
6761 int on_rq, running;
6762 unsigned long flags;
6763 struct rq *rq;
6764
6765 rq = task_rq_lock(tsk, &flags);
6766
6767 if (tsk->sched_class != &fair_sched_class)
6768 goto done;
6769
6770 update_rq_clock(rq);
6771
6772 running = task_running(rq, tsk);
6773 on_rq = tsk->se.on_rq;
6774
6775 if (on_rq) {
6776 dequeue_task(rq, tsk, 0);
6777 if (unlikely(running))
6778 tsk->sched_class->put_prev_task(rq, tsk);
6779 }
6780
6781 set_task_cfs_rq(tsk);
6782
6783 if (on_rq) {
6784 if (unlikely(running))
6785 tsk->sched_class->set_curr_task(rq);
6786 enqueue_task(rq, tsk, 0);
6787 }
6788
6789 done:
6790 task_rq_unlock(rq, &flags);
6791 }
6792
6793 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6794 {
6795 struct cfs_rq *cfs_rq = se->cfs_rq;
6796 struct rq *rq = cfs_rq->rq;
6797 int on_rq;
6798
6799 spin_lock_irq(&rq->lock);
6800
6801 on_rq = se->on_rq;
6802 if (on_rq)
6803 dequeue_entity(cfs_rq, se, 0);
6804
6805 se->load.weight = shares;
6806 se->load.inv_weight = div64_64((1ULL<<32), shares);
6807
6808 if (on_rq)
6809 enqueue_entity(cfs_rq, se, 0);
6810
6811 spin_unlock_irq(&rq->lock);
6812 }
6813
6814 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6815 {
6816 int i;
6817
6818 spin_lock(&tg->lock);
6819 if (tg->shares == shares)
6820 goto done;
6821
6822 /* return -EINVAL if the new value is not sane */
6823
6824 tg->shares = shares;
6825 for_each_possible_cpu(i)
6826 set_se_shares(tg->se[i], shares);
6827
6828 done:
6829 spin_unlock(&tg->lock);
6830 return 0;
6831 }
6832
6833 unsigned long sched_group_shares(struct task_group *tg)
6834 {
6835 return tg->shares;
6836 }
6837
6838 #endif /* CONFIG_FAIR_GROUP_SCHED */