[PATCH] Numerous fixes to kernel-doc info in source files.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
56
57 #include <asm/unistd.h>
58
59 /*
60 * Scheduler clock - returns current time in nanosec units.
61 * This is default implementation.
62 * Architectures and sub-architectures can override this.
63 */
64 unsigned long long __attribute__((weak)) sched_clock(void)
65 {
66 return (unsigned long long)jiffies * (1000000000 / HZ);
67 }
68
69 /*
70 * Convert user-nice values [ -20 ... 0 ... 19 ]
71 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
72 * and back.
73 */
74 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
75 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
76 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
77
78 /*
79 * 'User priority' is the nice value converted to something we
80 * can work with better when scaling various scheduler parameters,
81 * it's a [ 0 ... 39 ] range.
82 */
83 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
84 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
85 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
86
87 /*
88 * Some helpers for converting nanosecond timing to jiffy resolution
89 */
90 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
91 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
92
93 /*
94 * These are the 'tuning knobs' of the scheduler:
95 *
96 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
97 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
98 * Timeslices get refilled after they expire.
99 */
100 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
101 #define DEF_TIMESLICE (100 * HZ / 1000)
102 #define ON_RUNQUEUE_WEIGHT 30
103 #define CHILD_PENALTY 95
104 #define PARENT_PENALTY 100
105 #define EXIT_WEIGHT 3
106 #define PRIO_BONUS_RATIO 25
107 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
108 #define INTERACTIVE_DELTA 2
109 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
110 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
111 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
112
113 /*
114 * If a task is 'interactive' then we reinsert it in the active
115 * array after it has expired its current timeslice. (it will not
116 * continue to run immediately, it will still roundrobin with
117 * other interactive tasks.)
118 *
119 * This part scales the interactivity limit depending on niceness.
120 *
121 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
122 * Here are a few examples of different nice levels:
123 *
124 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
125 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
126 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
127 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
129 *
130 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
131 * priority range a task can explore, a value of '1' means the
132 * task is rated interactive.)
133 *
134 * Ie. nice +19 tasks can never get 'interactive' enough to be
135 * reinserted into the active array. And only heavily CPU-hog nice -20
136 * tasks will be expired. Default nice 0 tasks are somewhere between,
137 * it takes some effort for them to get interactive, but it's not
138 * too hard.
139 */
140
141 #define CURRENT_BONUS(p) \
142 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
143 MAX_SLEEP_AVG)
144
145 #define GRANULARITY (10 * HZ / 1000 ? : 1)
146
147 #ifdef CONFIG_SMP
148 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
149 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
150 num_online_cpus())
151 #else
152 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
154 #endif
155
156 #define SCALE(v1,v1_max,v2_max) \
157 (v1) * (v2_max) / (v1_max)
158
159 #define DELTA(p) \
160 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
161 INTERACTIVE_DELTA)
162
163 #define TASK_INTERACTIVE(p) \
164 ((p)->prio <= (p)->static_prio - DELTA(p))
165
166 #define INTERACTIVE_SLEEP(p) \
167 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
168 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
169
170 #define TASK_PREEMPTS_CURR(p, rq) \
171 ((p)->prio < (rq)->curr->prio)
172
173 #define SCALE_PRIO(x, prio) \
174 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
175
176 static unsigned int static_prio_timeslice(int static_prio)
177 {
178 if (static_prio < NICE_TO_PRIO(0))
179 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
180 else
181 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
182 }
183
184 /*
185 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
186 * to time slice values: [800ms ... 100ms ... 5ms]
187 *
188 * The higher a thread's priority, the bigger timeslices
189 * it gets during one round of execution. But even the lowest
190 * priority thread gets MIN_TIMESLICE worth of execution time.
191 */
192
193 static inline unsigned int task_timeslice(struct task_struct *p)
194 {
195 return static_prio_timeslice(p->static_prio);
196 }
197
198 /*
199 * These are the runqueue data structures:
200 */
201
202 struct prio_array {
203 unsigned int nr_active;
204 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
205 struct list_head queue[MAX_PRIO];
206 };
207
208 /*
209 * This is the main, per-CPU runqueue data structure.
210 *
211 * Locking rule: those places that want to lock multiple runqueues
212 * (such as the load balancing or the thread migration code), lock
213 * acquire operations must be ordered by ascending &runqueue.
214 */
215 struct rq {
216 spinlock_t lock;
217
218 /*
219 * nr_running and cpu_load should be in the same cacheline because
220 * remote CPUs use both these fields when doing load calculation.
221 */
222 unsigned long nr_running;
223 unsigned long raw_weighted_load;
224 #ifdef CONFIG_SMP
225 unsigned long cpu_load[3];
226 #endif
227 unsigned long long nr_switches;
228
229 /*
230 * This is part of a global counter where only the total sum
231 * over all CPUs matters. A task can increase this counter on
232 * one CPU and if it got migrated afterwards it may decrease
233 * it on another CPU. Always updated under the runqueue lock:
234 */
235 unsigned long nr_uninterruptible;
236
237 unsigned long expired_timestamp;
238 /* Cached timestamp set by update_cpu_clock() */
239 unsigned long long most_recent_timestamp;
240 struct task_struct *curr, *idle;
241 unsigned long next_balance;
242 struct mm_struct *prev_mm;
243 struct prio_array *active, *expired, arrays[2];
244 int best_expired_prio;
245 atomic_t nr_iowait;
246
247 #ifdef CONFIG_SMP
248 struct sched_domain *sd;
249
250 /* For active balancing */
251 int active_balance;
252 int push_cpu;
253 int cpu; /* cpu of this runqueue */
254
255 struct task_struct *migration_thread;
256 struct list_head migration_queue;
257 #endif
258
259 #ifdef CONFIG_SCHEDSTATS
260 /* latency stats */
261 struct sched_info rq_sched_info;
262
263 /* sys_sched_yield() stats */
264 unsigned long yld_exp_empty;
265 unsigned long yld_act_empty;
266 unsigned long yld_both_empty;
267 unsigned long yld_cnt;
268
269 /* schedule() stats */
270 unsigned long sched_switch;
271 unsigned long sched_cnt;
272 unsigned long sched_goidle;
273
274 /* try_to_wake_up() stats */
275 unsigned long ttwu_cnt;
276 unsigned long ttwu_local;
277 #endif
278 struct lock_class_key rq_lock_key;
279 };
280
281 static DEFINE_PER_CPU(struct rq, runqueues);
282
283 static inline int cpu_of(struct rq *rq)
284 {
285 #ifdef CONFIG_SMP
286 return rq->cpu;
287 #else
288 return 0;
289 #endif
290 }
291
292 /*
293 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
294 * See detach_destroy_domains: synchronize_sched for details.
295 *
296 * The domain tree of any CPU may only be accessed from within
297 * preempt-disabled sections.
298 */
299 #define for_each_domain(cpu, __sd) \
300 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
301
302 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
303 #define this_rq() (&__get_cpu_var(runqueues))
304 #define task_rq(p) cpu_rq(task_cpu(p))
305 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
306
307 #ifndef prepare_arch_switch
308 # define prepare_arch_switch(next) do { } while (0)
309 #endif
310 #ifndef finish_arch_switch
311 # define finish_arch_switch(prev) do { } while (0)
312 #endif
313
314 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
315 static inline int task_running(struct rq *rq, struct task_struct *p)
316 {
317 return rq->curr == p;
318 }
319
320 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
321 {
322 }
323
324 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
325 {
326 #ifdef CONFIG_DEBUG_SPINLOCK
327 /* this is a valid case when another task releases the spinlock */
328 rq->lock.owner = current;
329 #endif
330 /*
331 * If we are tracking spinlock dependencies then we have to
332 * fix up the runqueue lock - which gets 'carried over' from
333 * prev into current:
334 */
335 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
336
337 spin_unlock_irq(&rq->lock);
338 }
339
340 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
341 static inline int task_running(struct rq *rq, struct task_struct *p)
342 {
343 #ifdef CONFIG_SMP
344 return p->oncpu;
345 #else
346 return rq->curr == p;
347 #endif
348 }
349
350 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
351 {
352 #ifdef CONFIG_SMP
353 /*
354 * We can optimise this out completely for !SMP, because the
355 * SMP rebalancing from interrupt is the only thing that cares
356 * here.
357 */
358 next->oncpu = 1;
359 #endif
360 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
361 spin_unlock_irq(&rq->lock);
362 #else
363 spin_unlock(&rq->lock);
364 #endif
365 }
366
367 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
368 {
369 #ifdef CONFIG_SMP
370 /*
371 * After ->oncpu is cleared, the task can be moved to a different CPU.
372 * We must ensure this doesn't happen until the switch is completely
373 * finished.
374 */
375 smp_wmb();
376 prev->oncpu = 0;
377 #endif
378 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
379 local_irq_enable();
380 #endif
381 }
382 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
383
384 /*
385 * __task_rq_lock - lock the runqueue a given task resides on.
386 * Must be called interrupts disabled.
387 */
388 static inline struct rq *__task_rq_lock(struct task_struct *p)
389 __acquires(rq->lock)
390 {
391 struct rq *rq;
392
393 repeat_lock_task:
394 rq = task_rq(p);
395 spin_lock(&rq->lock);
396 if (unlikely(rq != task_rq(p))) {
397 spin_unlock(&rq->lock);
398 goto repeat_lock_task;
399 }
400 return rq;
401 }
402
403 /*
404 * task_rq_lock - lock the runqueue a given task resides on and disable
405 * interrupts. Note the ordering: we can safely lookup the task_rq without
406 * explicitly disabling preemption.
407 */
408 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
409 __acquires(rq->lock)
410 {
411 struct rq *rq;
412
413 repeat_lock_task:
414 local_irq_save(*flags);
415 rq = task_rq(p);
416 spin_lock(&rq->lock);
417 if (unlikely(rq != task_rq(p))) {
418 spin_unlock_irqrestore(&rq->lock, *flags);
419 goto repeat_lock_task;
420 }
421 return rq;
422 }
423
424 static inline void __task_rq_unlock(struct rq *rq)
425 __releases(rq->lock)
426 {
427 spin_unlock(&rq->lock);
428 }
429
430 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
431 __releases(rq->lock)
432 {
433 spin_unlock_irqrestore(&rq->lock, *flags);
434 }
435
436 #ifdef CONFIG_SCHEDSTATS
437 /*
438 * bump this up when changing the output format or the meaning of an existing
439 * format, so that tools can adapt (or abort)
440 */
441 #define SCHEDSTAT_VERSION 14
442
443 static int show_schedstat(struct seq_file *seq, void *v)
444 {
445 int cpu;
446
447 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
448 seq_printf(seq, "timestamp %lu\n", jiffies);
449 for_each_online_cpu(cpu) {
450 struct rq *rq = cpu_rq(cpu);
451 #ifdef CONFIG_SMP
452 struct sched_domain *sd;
453 int dcnt = 0;
454 #endif
455
456 /* runqueue-specific stats */
457 seq_printf(seq,
458 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
459 cpu, rq->yld_both_empty,
460 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
461 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
462 rq->ttwu_cnt, rq->ttwu_local,
463 rq->rq_sched_info.cpu_time,
464 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
465
466 seq_printf(seq, "\n");
467
468 #ifdef CONFIG_SMP
469 /* domain-specific stats */
470 preempt_disable();
471 for_each_domain(cpu, sd) {
472 enum idle_type itype;
473 char mask_str[NR_CPUS];
474
475 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
476 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
477 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
478 itype++) {
479 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
480 "%lu",
481 sd->lb_cnt[itype],
482 sd->lb_balanced[itype],
483 sd->lb_failed[itype],
484 sd->lb_imbalance[itype],
485 sd->lb_gained[itype],
486 sd->lb_hot_gained[itype],
487 sd->lb_nobusyq[itype],
488 sd->lb_nobusyg[itype]);
489 }
490 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
491 " %lu %lu %lu\n",
492 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
493 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
494 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
495 sd->ttwu_wake_remote, sd->ttwu_move_affine,
496 sd->ttwu_move_balance);
497 }
498 preempt_enable();
499 #endif
500 }
501 return 0;
502 }
503
504 static int schedstat_open(struct inode *inode, struct file *file)
505 {
506 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
507 char *buf = kmalloc(size, GFP_KERNEL);
508 struct seq_file *m;
509 int res;
510
511 if (!buf)
512 return -ENOMEM;
513 res = single_open(file, show_schedstat, NULL);
514 if (!res) {
515 m = file->private_data;
516 m->buf = buf;
517 m->size = size;
518 } else
519 kfree(buf);
520 return res;
521 }
522
523 const struct file_operations proc_schedstat_operations = {
524 .open = schedstat_open,
525 .read = seq_read,
526 .llseek = seq_lseek,
527 .release = single_release,
528 };
529
530 /*
531 * Expects runqueue lock to be held for atomicity of update
532 */
533 static inline void
534 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
535 {
536 if (rq) {
537 rq->rq_sched_info.run_delay += delta_jiffies;
538 rq->rq_sched_info.pcnt++;
539 }
540 }
541
542 /*
543 * Expects runqueue lock to be held for atomicity of update
544 */
545 static inline void
546 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
547 {
548 if (rq)
549 rq->rq_sched_info.cpu_time += delta_jiffies;
550 }
551 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
552 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
553 #else /* !CONFIG_SCHEDSTATS */
554 static inline void
555 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
556 {}
557 static inline void
558 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
559 {}
560 # define schedstat_inc(rq, field) do { } while (0)
561 # define schedstat_add(rq, field, amt) do { } while (0)
562 #endif
563
564 /*
565 * this_rq_lock - lock this runqueue and disable interrupts.
566 */
567 static inline struct rq *this_rq_lock(void)
568 __acquires(rq->lock)
569 {
570 struct rq *rq;
571
572 local_irq_disable();
573 rq = this_rq();
574 spin_lock(&rq->lock);
575
576 return rq;
577 }
578
579 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
580 /*
581 * Called when a process is dequeued from the active array and given
582 * the cpu. We should note that with the exception of interactive
583 * tasks, the expired queue will become the active queue after the active
584 * queue is empty, without explicitly dequeuing and requeuing tasks in the
585 * expired queue. (Interactive tasks may be requeued directly to the
586 * active queue, thus delaying tasks in the expired queue from running;
587 * see scheduler_tick()).
588 *
589 * This function is only called from sched_info_arrive(), rather than
590 * dequeue_task(). Even though a task may be queued and dequeued multiple
591 * times as it is shuffled about, we're really interested in knowing how
592 * long it was from the *first* time it was queued to the time that it
593 * finally hit a cpu.
594 */
595 static inline void sched_info_dequeued(struct task_struct *t)
596 {
597 t->sched_info.last_queued = 0;
598 }
599
600 /*
601 * Called when a task finally hits the cpu. We can now calculate how
602 * long it was waiting to run. We also note when it began so that we
603 * can keep stats on how long its timeslice is.
604 */
605 static void sched_info_arrive(struct task_struct *t)
606 {
607 unsigned long now = jiffies, delta_jiffies = 0;
608
609 if (t->sched_info.last_queued)
610 delta_jiffies = now - t->sched_info.last_queued;
611 sched_info_dequeued(t);
612 t->sched_info.run_delay += delta_jiffies;
613 t->sched_info.last_arrival = now;
614 t->sched_info.pcnt++;
615
616 rq_sched_info_arrive(task_rq(t), delta_jiffies);
617 }
618
619 /*
620 * Called when a process is queued into either the active or expired
621 * array. The time is noted and later used to determine how long we
622 * had to wait for us to reach the cpu. Since the expired queue will
623 * become the active queue after active queue is empty, without dequeuing
624 * and requeuing any tasks, we are interested in queuing to either. It
625 * is unusual but not impossible for tasks to be dequeued and immediately
626 * requeued in the same or another array: this can happen in sched_yield(),
627 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
628 * to runqueue.
629 *
630 * This function is only called from enqueue_task(), but also only updates
631 * the timestamp if it is already not set. It's assumed that
632 * sched_info_dequeued() will clear that stamp when appropriate.
633 */
634 static inline void sched_info_queued(struct task_struct *t)
635 {
636 if (unlikely(sched_info_on()))
637 if (!t->sched_info.last_queued)
638 t->sched_info.last_queued = jiffies;
639 }
640
641 /*
642 * Called when a process ceases being the active-running process, either
643 * voluntarily or involuntarily. Now we can calculate how long we ran.
644 */
645 static inline void sched_info_depart(struct task_struct *t)
646 {
647 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
648
649 t->sched_info.cpu_time += delta_jiffies;
650 rq_sched_info_depart(task_rq(t), delta_jiffies);
651 }
652
653 /*
654 * Called when tasks are switched involuntarily due, typically, to expiring
655 * their time slice. (This may also be called when switching to or from
656 * the idle task.) We are only called when prev != next.
657 */
658 static inline void
659 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
660 {
661 struct rq *rq = task_rq(prev);
662
663 /*
664 * prev now departs the cpu. It's not interesting to record
665 * stats about how efficient we were at scheduling the idle
666 * process, however.
667 */
668 if (prev != rq->idle)
669 sched_info_depart(prev);
670
671 if (next != rq->idle)
672 sched_info_arrive(next);
673 }
674 static inline void
675 sched_info_switch(struct task_struct *prev, struct task_struct *next)
676 {
677 if (unlikely(sched_info_on()))
678 __sched_info_switch(prev, next);
679 }
680 #else
681 #define sched_info_queued(t) do { } while (0)
682 #define sched_info_switch(t, next) do { } while (0)
683 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
684
685 /*
686 * Adding/removing a task to/from a priority array:
687 */
688 static void dequeue_task(struct task_struct *p, struct prio_array *array)
689 {
690 array->nr_active--;
691 list_del(&p->run_list);
692 if (list_empty(array->queue + p->prio))
693 __clear_bit(p->prio, array->bitmap);
694 }
695
696 static void enqueue_task(struct task_struct *p, struct prio_array *array)
697 {
698 sched_info_queued(p);
699 list_add_tail(&p->run_list, array->queue + p->prio);
700 __set_bit(p->prio, array->bitmap);
701 array->nr_active++;
702 p->array = array;
703 }
704
705 /*
706 * Put task to the end of the run list without the overhead of dequeue
707 * followed by enqueue.
708 */
709 static void requeue_task(struct task_struct *p, struct prio_array *array)
710 {
711 list_move_tail(&p->run_list, array->queue + p->prio);
712 }
713
714 static inline void
715 enqueue_task_head(struct task_struct *p, struct prio_array *array)
716 {
717 list_add(&p->run_list, array->queue + p->prio);
718 __set_bit(p->prio, array->bitmap);
719 array->nr_active++;
720 p->array = array;
721 }
722
723 /*
724 * __normal_prio - return the priority that is based on the static
725 * priority but is modified by bonuses/penalties.
726 *
727 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
728 * into the -5 ... 0 ... +5 bonus/penalty range.
729 *
730 * We use 25% of the full 0...39 priority range so that:
731 *
732 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
733 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
734 *
735 * Both properties are important to certain workloads.
736 */
737
738 static inline int __normal_prio(struct task_struct *p)
739 {
740 int bonus, prio;
741
742 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
743
744 prio = p->static_prio - bonus;
745 if (prio < MAX_RT_PRIO)
746 prio = MAX_RT_PRIO;
747 if (prio > MAX_PRIO-1)
748 prio = MAX_PRIO-1;
749 return prio;
750 }
751
752 /*
753 * To aid in avoiding the subversion of "niceness" due to uneven distribution
754 * of tasks with abnormal "nice" values across CPUs the contribution that
755 * each task makes to its run queue's load is weighted according to its
756 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
757 * scaled version of the new time slice allocation that they receive on time
758 * slice expiry etc.
759 */
760
761 /*
762 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
763 * If static_prio_timeslice() is ever changed to break this assumption then
764 * this code will need modification
765 */
766 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
767 #define LOAD_WEIGHT(lp) \
768 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
769 #define PRIO_TO_LOAD_WEIGHT(prio) \
770 LOAD_WEIGHT(static_prio_timeslice(prio))
771 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
772 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
773
774 static void set_load_weight(struct task_struct *p)
775 {
776 if (has_rt_policy(p)) {
777 #ifdef CONFIG_SMP
778 if (p == task_rq(p)->migration_thread)
779 /*
780 * The migration thread does the actual balancing.
781 * Giving its load any weight will skew balancing
782 * adversely.
783 */
784 p->load_weight = 0;
785 else
786 #endif
787 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
788 } else
789 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
790 }
791
792 static inline void
793 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
794 {
795 rq->raw_weighted_load += p->load_weight;
796 }
797
798 static inline void
799 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
800 {
801 rq->raw_weighted_load -= p->load_weight;
802 }
803
804 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
805 {
806 rq->nr_running++;
807 inc_raw_weighted_load(rq, p);
808 }
809
810 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
811 {
812 rq->nr_running--;
813 dec_raw_weighted_load(rq, p);
814 }
815
816 /*
817 * Calculate the expected normal priority: i.e. priority
818 * without taking RT-inheritance into account. Might be
819 * boosted by interactivity modifiers. Changes upon fork,
820 * setprio syscalls, and whenever the interactivity
821 * estimator recalculates.
822 */
823 static inline int normal_prio(struct task_struct *p)
824 {
825 int prio;
826
827 if (has_rt_policy(p))
828 prio = MAX_RT_PRIO-1 - p->rt_priority;
829 else
830 prio = __normal_prio(p);
831 return prio;
832 }
833
834 /*
835 * Calculate the current priority, i.e. the priority
836 * taken into account by the scheduler. This value might
837 * be boosted by RT tasks, or might be boosted by
838 * interactivity modifiers. Will be RT if the task got
839 * RT-boosted. If not then it returns p->normal_prio.
840 */
841 static int effective_prio(struct task_struct *p)
842 {
843 p->normal_prio = normal_prio(p);
844 /*
845 * If we are RT tasks or we were boosted to RT priority,
846 * keep the priority unchanged. Otherwise, update priority
847 * to the normal priority:
848 */
849 if (!rt_prio(p->prio))
850 return p->normal_prio;
851 return p->prio;
852 }
853
854 /*
855 * __activate_task - move a task to the runqueue.
856 */
857 static void __activate_task(struct task_struct *p, struct rq *rq)
858 {
859 struct prio_array *target = rq->active;
860
861 if (batch_task(p))
862 target = rq->expired;
863 enqueue_task(p, target);
864 inc_nr_running(p, rq);
865 }
866
867 /*
868 * __activate_idle_task - move idle task to the _front_ of runqueue.
869 */
870 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
871 {
872 enqueue_task_head(p, rq->active);
873 inc_nr_running(p, rq);
874 }
875
876 /*
877 * Recalculate p->normal_prio and p->prio after having slept,
878 * updating the sleep-average too:
879 */
880 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
881 {
882 /* Caller must always ensure 'now >= p->timestamp' */
883 unsigned long sleep_time = now - p->timestamp;
884
885 if (batch_task(p))
886 sleep_time = 0;
887
888 if (likely(sleep_time > 0)) {
889 /*
890 * This ceiling is set to the lowest priority that would allow
891 * a task to be reinserted into the active array on timeslice
892 * completion.
893 */
894 unsigned long ceiling = INTERACTIVE_SLEEP(p);
895
896 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
897 /*
898 * Prevents user tasks from achieving best priority
899 * with one single large enough sleep.
900 */
901 p->sleep_avg = ceiling;
902 /*
903 * Using INTERACTIVE_SLEEP() as a ceiling places a
904 * nice(0) task 1ms sleep away from promotion, and
905 * gives it 700ms to round-robin with no chance of
906 * being demoted. This is more than generous, so
907 * mark this sleep as non-interactive to prevent the
908 * on-runqueue bonus logic from intervening should
909 * this task not receive cpu immediately.
910 */
911 p->sleep_type = SLEEP_NONINTERACTIVE;
912 } else {
913 /*
914 * Tasks waking from uninterruptible sleep are
915 * limited in their sleep_avg rise as they
916 * are likely to be waiting on I/O
917 */
918 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
919 if (p->sleep_avg >= ceiling)
920 sleep_time = 0;
921 else if (p->sleep_avg + sleep_time >=
922 ceiling) {
923 p->sleep_avg = ceiling;
924 sleep_time = 0;
925 }
926 }
927
928 /*
929 * This code gives a bonus to interactive tasks.
930 *
931 * The boost works by updating the 'average sleep time'
932 * value here, based on ->timestamp. The more time a
933 * task spends sleeping, the higher the average gets -
934 * and the higher the priority boost gets as well.
935 */
936 p->sleep_avg += sleep_time;
937
938 }
939 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
940 p->sleep_avg = NS_MAX_SLEEP_AVG;
941 }
942
943 return effective_prio(p);
944 }
945
946 /*
947 * activate_task - move a task to the runqueue and do priority recalculation
948 *
949 * Update all the scheduling statistics stuff. (sleep average
950 * calculation, priority modifiers, etc.)
951 */
952 static void activate_task(struct task_struct *p, struct rq *rq, int local)
953 {
954 unsigned long long now;
955
956 if (rt_task(p))
957 goto out;
958
959 now = sched_clock();
960 #ifdef CONFIG_SMP
961 if (!local) {
962 /* Compensate for drifting sched_clock */
963 struct rq *this_rq = this_rq();
964 now = (now - this_rq->most_recent_timestamp)
965 + rq->most_recent_timestamp;
966 }
967 #endif
968
969 /*
970 * Sleep time is in units of nanosecs, so shift by 20 to get a
971 * milliseconds-range estimation of the amount of time that the task
972 * spent sleeping:
973 */
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 if (p->state == TASK_UNINTERRUPTIBLE)
976 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
977 (now - p->timestamp) >> 20);
978 }
979
980 p->prio = recalc_task_prio(p, now);
981
982 /*
983 * This checks to make sure it's not an uninterruptible task
984 * that is now waking up.
985 */
986 if (p->sleep_type == SLEEP_NORMAL) {
987 /*
988 * Tasks which were woken up by interrupts (ie. hw events)
989 * are most likely of interactive nature. So we give them
990 * the credit of extending their sleep time to the period
991 * of time they spend on the runqueue, waiting for execution
992 * on a CPU, first time around:
993 */
994 if (in_interrupt())
995 p->sleep_type = SLEEP_INTERRUPTED;
996 else {
997 /*
998 * Normal first-time wakeups get a credit too for
999 * on-runqueue time, but it will be weighted down:
1000 */
1001 p->sleep_type = SLEEP_INTERACTIVE;
1002 }
1003 }
1004 p->timestamp = now;
1005 out:
1006 __activate_task(p, rq);
1007 }
1008
1009 /*
1010 * deactivate_task - remove a task from the runqueue.
1011 */
1012 static void deactivate_task(struct task_struct *p, struct rq *rq)
1013 {
1014 dec_nr_running(p, rq);
1015 dequeue_task(p, p->array);
1016 p->array = NULL;
1017 }
1018
1019 /*
1020 * resched_task - mark a task 'to be rescheduled now'.
1021 *
1022 * On UP this means the setting of the need_resched flag, on SMP it
1023 * might also involve a cross-CPU call to trigger the scheduler on
1024 * the target CPU.
1025 */
1026 #ifdef CONFIG_SMP
1027
1028 #ifndef tsk_is_polling
1029 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1030 #endif
1031
1032 static void resched_task(struct task_struct *p)
1033 {
1034 int cpu;
1035
1036 assert_spin_locked(&task_rq(p)->lock);
1037
1038 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1039 return;
1040
1041 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1042
1043 cpu = task_cpu(p);
1044 if (cpu == smp_processor_id())
1045 return;
1046
1047 /* NEED_RESCHED must be visible before we test polling */
1048 smp_mb();
1049 if (!tsk_is_polling(p))
1050 smp_send_reschedule(cpu);
1051 }
1052 #else
1053 static inline void resched_task(struct task_struct *p)
1054 {
1055 assert_spin_locked(&task_rq(p)->lock);
1056 set_tsk_need_resched(p);
1057 }
1058 #endif
1059
1060 /**
1061 * task_curr - is this task currently executing on a CPU?
1062 * @p: the task in question.
1063 */
1064 inline int task_curr(const struct task_struct *p)
1065 {
1066 return cpu_curr(task_cpu(p)) == p;
1067 }
1068
1069 /* Used instead of source_load when we know the type == 0 */
1070 unsigned long weighted_cpuload(const int cpu)
1071 {
1072 return cpu_rq(cpu)->raw_weighted_load;
1073 }
1074
1075 #ifdef CONFIG_SMP
1076 struct migration_req {
1077 struct list_head list;
1078
1079 struct task_struct *task;
1080 int dest_cpu;
1081
1082 struct completion done;
1083 };
1084
1085 /*
1086 * The task's runqueue lock must be held.
1087 * Returns true if you have to wait for migration thread.
1088 */
1089 static int
1090 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1091 {
1092 struct rq *rq = task_rq(p);
1093
1094 /*
1095 * If the task is not on a runqueue (and not running), then
1096 * it is sufficient to simply update the task's cpu field.
1097 */
1098 if (!p->array && !task_running(rq, p)) {
1099 set_task_cpu(p, dest_cpu);
1100 return 0;
1101 }
1102
1103 init_completion(&req->done);
1104 req->task = p;
1105 req->dest_cpu = dest_cpu;
1106 list_add(&req->list, &rq->migration_queue);
1107
1108 return 1;
1109 }
1110
1111 /*
1112 * wait_task_inactive - wait for a thread to unschedule.
1113 *
1114 * The caller must ensure that the task *will* unschedule sometime soon,
1115 * else this function might spin for a *long* time. This function can't
1116 * be called with interrupts off, or it may introduce deadlock with
1117 * smp_call_function() if an IPI is sent by the same process we are
1118 * waiting to become inactive.
1119 */
1120 void wait_task_inactive(struct task_struct *p)
1121 {
1122 unsigned long flags;
1123 struct rq *rq;
1124 int preempted;
1125
1126 repeat:
1127 rq = task_rq_lock(p, &flags);
1128 /* Must be off runqueue entirely, not preempted. */
1129 if (unlikely(p->array || task_running(rq, p))) {
1130 /* If it's preempted, we yield. It could be a while. */
1131 preempted = !task_running(rq, p);
1132 task_rq_unlock(rq, &flags);
1133 cpu_relax();
1134 if (preempted)
1135 yield();
1136 goto repeat;
1137 }
1138 task_rq_unlock(rq, &flags);
1139 }
1140
1141 /***
1142 * kick_process - kick a running thread to enter/exit the kernel
1143 * @p: the to-be-kicked thread
1144 *
1145 * Cause a process which is running on another CPU to enter
1146 * kernel-mode, without any delay. (to get signals handled.)
1147 *
1148 * NOTE: this function doesnt have to take the runqueue lock,
1149 * because all it wants to ensure is that the remote task enters
1150 * the kernel. If the IPI races and the task has been migrated
1151 * to another CPU then no harm is done and the purpose has been
1152 * achieved as well.
1153 */
1154 void kick_process(struct task_struct *p)
1155 {
1156 int cpu;
1157
1158 preempt_disable();
1159 cpu = task_cpu(p);
1160 if ((cpu != smp_processor_id()) && task_curr(p))
1161 smp_send_reschedule(cpu);
1162 preempt_enable();
1163 }
1164
1165 /*
1166 * Return a low guess at the load of a migration-source cpu weighted
1167 * according to the scheduling class and "nice" value.
1168 *
1169 * We want to under-estimate the load of migration sources, to
1170 * balance conservatively.
1171 */
1172 static inline unsigned long source_load(int cpu, int type)
1173 {
1174 struct rq *rq = cpu_rq(cpu);
1175
1176 if (type == 0)
1177 return rq->raw_weighted_load;
1178
1179 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1180 }
1181
1182 /*
1183 * Return a high guess at the load of a migration-target cpu weighted
1184 * according to the scheduling class and "nice" value.
1185 */
1186 static inline unsigned long target_load(int cpu, int type)
1187 {
1188 struct rq *rq = cpu_rq(cpu);
1189
1190 if (type == 0)
1191 return rq->raw_weighted_load;
1192
1193 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1194 }
1195
1196 /*
1197 * Return the average load per task on the cpu's run queue
1198 */
1199 static inline unsigned long cpu_avg_load_per_task(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long n = rq->nr_running;
1203
1204 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1205 }
1206
1207 /*
1208 * find_idlest_group finds and returns the least busy CPU group within the
1209 * domain.
1210 */
1211 static struct sched_group *
1212 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1213 {
1214 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1215 unsigned long min_load = ULONG_MAX, this_load = 0;
1216 int load_idx = sd->forkexec_idx;
1217 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1218
1219 do {
1220 unsigned long load, avg_load;
1221 int local_group;
1222 int i;
1223
1224 /* Skip over this group if it has no CPUs allowed */
1225 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1226 goto nextgroup;
1227
1228 local_group = cpu_isset(this_cpu, group->cpumask);
1229
1230 /* Tally up the load of all CPUs in the group */
1231 avg_load = 0;
1232
1233 for_each_cpu_mask(i, group->cpumask) {
1234 /* Bias balancing toward cpus of our domain */
1235 if (local_group)
1236 load = source_load(i, load_idx);
1237 else
1238 load = target_load(i, load_idx);
1239
1240 avg_load += load;
1241 }
1242
1243 /* Adjust by relative CPU power of the group */
1244 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1245
1246 if (local_group) {
1247 this_load = avg_load;
1248 this = group;
1249 } else if (avg_load < min_load) {
1250 min_load = avg_load;
1251 idlest = group;
1252 }
1253 nextgroup:
1254 group = group->next;
1255 } while (group != sd->groups);
1256
1257 if (!idlest || 100*this_load < imbalance*min_load)
1258 return NULL;
1259 return idlest;
1260 }
1261
1262 /*
1263 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1264 */
1265 static int
1266 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1267 {
1268 cpumask_t tmp;
1269 unsigned long load, min_load = ULONG_MAX;
1270 int idlest = -1;
1271 int i;
1272
1273 /* Traverse only the allowed CPUs */
1274 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1275
1276 for_each_cpu_mask(i, tmp) {
1277 load = weighted_cpuload(i);
1278
1279 if (load < min_load || (load == min_load && i == this_cpu)) {
1280 min_load = load;
1281 idlest = i;
1282 }
1283 }
1284
1285 return idlest;
1286 }
1287
1288 /*
1289 * sched_balance_self: balance the current task (running on cpu) in domains
1290 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1291 * SD_BALANCE_EXEC.
1292 *
1293 * Balance, ie. select the least loaded group.
1294 *
1295 * Returns the target CPU number, or the same CPU if no balancing is needed.
1296 *
1297 * preempt must be disabled.
1298 */
1299 static int sched_balance_self(int cpu, int flag)
1300 {
1301 struct task_struct *t = current;
1302 struct sched_domain *tmp, *sd = NULL;
1303
1304 for_each_domain(cpu, tmp) {
1305 /*
1306 * If power savings logic is enabled for a domain, stop there.
1307 */
1308 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1309 break;
1310 if (tmp->flags & flag)
1311 sd = tmp;
1312 }
1313
1314 while (sd) {
1315 cpumask_t span;
1316 struct sched_group *group;
1317 int new_cpu, weight;
1318
1319 if (!(sd->flags & flag)) {
1320 sd = sd->child;
1321 continue;
1322 }
1323
1324 span = sd->span;
1325 group = find_idlest_group(sd, t, cpu);
1326 if (!group) {
1327 sd = sd->child;
1328 continue;
1329 }
1330
1331 new_cpu = find_idlest_cpu(group, t, cpu);
1332 if (new_cpu == -1 || new_cpu == cpu) {
1333 /* Now try balancing at a lower domain level of cpu */
1334 sd = sd->child;
1335 continue;
1336 }
1337
1338 /* Now try balancing at a lower domain level of new_cpu */
1339 cpu = new_cpu;
1340 sd = NULL;
1341 weight = cpus_weight(span);
1342 for_each_domain(cpu, tmp) {
1343 if (weight <= cpus_weight(tmp->span))
1344 break;
1345 if (tmp->flags & flag)
1346 sd = tmp;
1347 }
1348 /* while loop will break here if sd == NULL */
1349 }
1350
1351 return cpu;
1352 }
1353
1354 #endif /* CONFIG_SMP */
1355
1356 /*
1357 * wake_idle() will wake a task on an idle cpu if task->cpu is
1358 * not idle and an idle cpu is available. The span of cpus to
1359 * search starts with cpus closest then further out as needed,
1360 * so we always favor a closer, idle cpu.
1361 *
1362 * Returns the CPU we should wake onto.
1363 */
1364 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1365 static int wake_idle(int cpu, struct task_struct *p)
1366 {
1367 cpumask_t tmp;
1368 struct sched_domain *sd;
1369 int i;
1370
1371 if (idle_cpu(cpu))
1372 return cpu;
1373
1374 for_each_domain(cpu, sd) {
1375 if (sd->flags & SD_WAKE_IDLE) {
1376 cpus_and(tmp, sd->span, p->cpus_allowed);
1377 for_each_cpu_mask(i, tmp) {
1378 if (idle_cpu(i))
1379 return i;
1380 }
1381 }
1382 else
1383 break;
1384 }
1385 return cpu;
1386 }
1387 #else
1388 static inline int wake_idle(int cpu, struct task_struct *p)
1389 {
1390 return cpu;
1391 }
1392 #endif
1393
1394 /***
1395 * try_to_wake_up - wake up a thread
1396 * @p: the to-be-woken-up thread
1397 * @state: the mask of task states that can be woken
1398 * @sync: do a synchronous wakeup?
1399 *
1400 * Put it on the run-queue if it's not already there. The "current"
1401 * thread is always on the run-queue (except when the actual
1402 * re-schedule is in progress), and as such you're allowed to do
1403 * the simpler "current->state = TASK_RUNNING" to mark yourself
1404 * runnable without the overhead of this.
1405 *
1406 * returns failure only if the task is already active.
1407 */
1408 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1409 {
1410 int cpu, this_cpu, success = 0;
1411 unsigned long flags;
1412 long old_state;
1413 struct rq *rq;
1414 #ifdef CONFIG_SMP
1415 struct sched_domain *sd, *this_sd = NULL;
1416 unsigned long load, this_load;
1417 int new_cpu;
1418 #endif
1419
1420 rq = task_rq_lock(p, &flags);
1421 old_state = p->state;
1422 if (!(old_state & state))
1423 goto out;
1424
1425 if (p->array)
1426 goto out_running;
1427
1428 cpu = task_cpu(p);
1429 this_cpu = smp_processor_id();
1430
1431 #ifdef CONFIG_SMP
1432 if (unlikely(task_running(rq, p)))
1433 goto out_activate;
1434
1435 new_cpu = cpu;
1436
1437 schedstat_inc(rq, ttwu_cnt);
1438 if (cpu == this_cpu) {
1439 schedstat_inc(rq, ttwu_local);
1440 goto out_set_cpu;
1441 }
1442
1443 for_each_domain(this_cpu, sd) {
1444 if (cpu_isset(cpu, sd->span)) {
1445 schedstat_inc(sd, ttwu_wake_remote);
1446 this_sd = sd;
1447 break;
1448 }
1449 }
1450
1451 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1452 goto out_set_cpu;
1453
1454 /*
1455 * Check for affine wakeup and passive balancing possibilities.
1456 */
1457 if (this_sd) {
1458 int idx = this_sd->wake_idx;
1459 unsigned int imbalance;
1460
1461 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1462
1463 load = source_load(cpu, idx);
1464 this_load = target_load(this_cpu, idx);
1465
1466 new_cpu = this_cpu; /* Wake to this CPU if we can */
1467
1468 if (this_sd->flags & SD_WAKE_AFFINE) {
1469 unsigned long tl = this_load;
1470 unsigned long tl_per_task;
1471
1472 tl_per_task = cpu_avg_load_per_task(this_cpu);
1473
1474 /*
1475 * If sync wakeup then subtract the (maximum possible)
1476 * effect of the currently running task from the load
1477 * of the current CPU:
1478 */
1479 if (sync)
1480 tl -= current->load_weight;
1481
1482 if ((tl <= load &&
1483 tl + target_load(cpu, idx) <= tl_per_task) ||
1484 100*(tl + p->load_weight) <= imbalance*load) {
1485 /*
1486 * This domain has SD_WAKE_AFFINE and
1487 * p is cache cold in this domain, and
1488 * there is no bad imbalance.
1489 */
1490 schedstat_inc(this_sd, ttwu_move_affine);
1491 goto out_set_cpu;
1492 }
1493 }
1494
1495 /*
1496 * Start passive balancing when half the imbalance_pct
1497 * limit is reached.
1498 */
1499 if (this_sd->flags & SD_WAKE_BALANCE) {
1500 if (imbalance*this_load <= 100*load) {
1501 schedstat_inc(this_sd, ttwu_move_balance);
1502 goto out_set_cpu;
1503 }
1504 }
1505 }
1506
1507 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1508 out_set_cpu:
1509 new_cpu = wake_idle(new_cpu, p);
1510 if (new_cpu != cpu) {
1511 set_task_cpu(p, new_cpu);
1512 task_rq_unlock(rq, &flags);
1513 /* might preempt at this point */
1514 rq = task_rq_lock(p, &flags);
1515 old_state = p->state;
1516 if (!(old_state & state))
1517 goto out;
1518 if (p->array)
1519 goto out_running;
1520
1521 this_cpu = smp_processor_id();
1522 cpu = task_cpu(p);
1523 }
1524
1525 out_activate:
1526 #endif /* CONFIG_SMP */
1527 if (old_state == TASK_UNINTERRUPTIBLE) {
1528 rq->nr_uninterruptible--;
1529 /*
1530 * Tasks on involuntary sleep don't earn
1531 * sleep_avg beyond just interactive state.
1532 */
1533 p->sleep_type = SLEEP_NONINTERACTIVE;
1534 } else
1535
1536 /*
1537 * Tasks that have marked their sleep as noninteractive get
1538 * woken up with their sleep average not weighted in an
1539 * interactive way.
1540 */
1541 if (old_state & TASK_NONINTERACTIVE)
1542 p->sleep_type = SLEEP_NONINTERACTIVE;
1543
1544
1545 activate_task(p, rq, cpu == this_cpu);
1546 /*
1547 * Sync wakeups (i.e. those types of wakeups where the waker
1548 * has indicated that it will leave the CPU in short order)
1549 * don't trigger a preemption, if the woken up task will run on
1550 * this cpu. (in this case the 'I will reschedule' promise of
1551 * the waker guarantees that the freshly woken up task is going
1552 * to be considered on this CPU.)
1553 */
1554 if (!sync || cpu != this_cpu) {
1555 if (TASK_PREEMPTS_CURR(p, rq))
1556 resched_task(rq->curr);
1557 }
1558 success = 1;
1559
1560 out_running:
1561 p->state = TASK_RUNNING;
1562 out:
1563 task_rq_unlock(rq, &flags);
1564
1565 return success;
1566 }
1567
1568 int fastcall wake_up_process(struct task_struct *p)
1569 {
1570 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1571 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1572 }
1573 EXPORT_SYMBOL(wake_up_process);
1574
1575 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1576 {
1577 return try_to_wake_up(p, state, 0);
1578 }
1579
1580 static void task_running_tick(struct rq *rq, struct task_struct *p);
1581 /*
1582 * Perform scheduler related setup for a newly forked process p.
1583 * p is forked by current.
1584 */
1585 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1586 {
1587 int cpu = get_cpu();
1588
1589 #ifdef CONFIG_SMP
1590 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1591 #endif
1592 set_task_cpu(p, cpu);
1593
1594 /*
1595 * We mark the process as running here, but have not actually
1596 * inserted it onto the runqueue yet. This guarantees that
1597 * nobody will actually run it, and a signal or other external
1598 * event cannot wake it up and insert it on the runqueue either.
1599 */
1600 p->state = TASK_RUNNING;
1601
1602 /*
1603 * Make sure we do not leak PI boosting priority to the child:
1604 */
1605 p->prio = current->normal_prio;
1606
1607 INIT_LIST_HEAD(&p->run_list);
1608 p->array = NULL;
1609 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1610 if (unlikely(sched_info_on()))
1611 memset(&p->sched_info, 0, sizeof(p->sched_info));
1612 #endif
1613 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1614 p->oncpu = 0;
1615 #endif
1616 #ifdef CONFIG_PREEMPT
1617 /* Want to start with kernel preemption disabled. */
1618 task_thread_info(p)->preempt_count = 1;
1619 #endif
1620 /*
1621 * Share the timeslice between parent and child, thus the
1622 * total amount of pending timeslices in the system doesn't change,
1623 * resulting in more scheduling fairness.
1624 */
1625 local_irq_disable();
1626 p->time_slice = (current->time_slice + 1) >> 1;
1627 /*
1628 * The remainder of the first timeslice might be recovered by
1629 * the parent if the child exits early enough.
1630 */
1631 p->first_time_slice = 1;
1632 current->time_slice >>= 1;
1633 p->timestamp = sched_clock();
1634 if (unlikely(!current->time_slice)) {
1635 /*
1636 * This case is rare, it happens when the parent has only
1637 * a single jiffy left from its timeslice. Taking the
1638 * runqueue lock is not a problem.
1639 */
1640 current->time_slice = 1;
1641 task_running_tick(cpu_rq(cpu), current);
1642 }
1643 local_irq_enable();
1644 put_cpu();
1645 }
1646
1647 /*
1648 * wake_up_new_task - wake up a newly created task for the first time.
1649 *
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1653 */
1654 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1655 {
1656 struct rq *rq, *this_rq;
1657 unsigned long flags;
1658 int this_cpu, cpu;
1659
1660 rq = task_rq_lock(p, &flags);
1661 BUG_ON(p->state != TASK_RUNNING);
1662 this_cpu = smp_processor_id();
1663 cpu = task_cpu(p);
1664
1665 /*
1666 * We decrease the sleep average of forking parents
1667 * and children as well, to keep max-interactive tasks
1668 * from forking tasks that are max-interactive. The parent
1669 * (current) is done further down, under its lock.
1670 */
1671 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1672 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1673
1674 p->prio = effective_prio(p);
1675
1676 if (likely(cpu == this_cpu)) {
1677 if (!(clone_flags & CLONE_VM)) {
1678 /*
1679 * The VM isn't cloned, so we're in a good position to
1680 * do child-runs-first in anticipation of an exec. This
1681 * usually avoids a lot of COW overhead.
1682 */
1683 if (unlikely(!current->array))
1684 __activate_task(p, rq);
1685 else {
1686 p->prio = current->prio;
1687 p->normal_prio = current->normal_prio;
1688 list_add_tail(&p->run_list, &current->run_list);
1689 p->array = current->array;
1690 p->array->nr_active++;
1691 inc_nr_running(p, rq);
1692 }
1693 set_need_resched();
1694 } else
1695 /* Run child last */
1696 __activate_task(p, rq);
1697 /*
1698 * We skip the following code due to cpu == this_cpu
1699 *
1700 * task_rq_unlock(rq, &flags);
1701 * this_rq = task_rq_lock(current, &flags);
1702 */
1703 this_rq = rq;
1704 } else {
1705 this_rq = cpu_rq(this_cpu);
1706
1707 /*
1708 * Not the local CPU - must adjust timestamp. This should
1709 * get optimised away in the !CONFIG_SMP case.
1710 */
1711 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1712 + rq->most_recent_timestamp;
1713 __activate_task(p, rq);
1714 if (TASK_PREEMPTS_CURR(p, rq))
1715 resched_task(rq->curr);
1716
1717 /*
1718 * Parent and child are on different CPUs, now get the
1719 * parent runqueue to update the parent's ->sleep_avg:
1720 */
1721 task_rq_unlock(rq, &flags);
1722 this_rq = task_rq_lock(current, &flags);
1723 }
1724 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1725 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1726 task_rq_unlock(this_rq, &flags);
1727 }
1728
1729 /*
1730 * Potentially available exiting-child timeslices are
1731 * retrieved here - this way the parent does not get
1732 * penalized for creating too many threads.
1733 *
1734 * (this cannot be used to 'generate' timeslices
1735 * artificially, because any timeslice recovered here
1736 * was given away by the parent in the first place.)
1737 */
1738 void fastcall sched_exit(struct task_struct *p)
1739 {
1740 unsigned long flags;
1741 struct rq *rq;
1742
1743 /*
1744 * If the child was a (relative-) CPU hog then decrease
1745 * the sleep_avg of the parent as well.
1746 */
1747 rq = task_rq_lock(p->parent, &flags);
1748 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1749 p->parent->time_slice += p->time_slice;
1750 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1751 p->parent->time_slice = task_timeslice(p);
1752 }
1753 if (p->sleep_avg < p->parent->sleep_avg)
1754 p->parent->sleep_avg = p->parent->sleep_avg /
1755 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1756 (EXIT_WEIGHT + 1);
1757 task_rq_unlock(rq, &flags);
1758 }
1759
1760 /**
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
1763 * @next: the task we are going to switch to.
1764 *
1765 * This is called with the rq lock held and interrupts off. It must
1766 * be paired with a subsequent finish_task_switch after the context
1767 * switch.
1768 *
1769 * prepare_task_switch sets up locking and calls architecture specific
1770 * hooks.
1771 */
1772 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1773 {
1774 prepare_lock_switch(rq, next);
1775 prepare_arch_switch(next);
1776 }
1777
1778 /**
1779 * finish_task_switch - clean up after a task-switch
1780 * @rq: runqueue associated with task-switch
1781 * @prev: the thread we just switched away from.
1782 *
1783 * finish_task_switch must be called after the context switch, paired
1784 * with a prepare_task_switch call before the context switch.
1785 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1786 * and do any other architecture-specific cleanup actions.
1787 *
1788 * Note that we may have delayed dropping an mm in context_switch(). If
1789 * so, we finish that here outside of the runqueue lock. (Doing it
1790 * with the lock held can cause deadlocks; see schedule() for
1791 * details.)
1792 */
1793 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1794 __releases(rq->lock)
1795 {
1796 struct mm_struct *mm = rq->prev_mm;
1797 long prev_state;
1798
1799 rq->prev_mm = NULL;
1800
1801 /*
1802 * A task struct has one reference for the use as "current".
1803 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1804 * schedule one last time. The schedule call will never return, and
1805 * the scheduled task must drop that reference.
1806 * The test for TASK_DEAD must occur while the runqueue locks are
1807 * still held, otherwise prev could be scheduled on another cpu, die
1808 * there before we look at prev->state, and then the reference would
1809 * be dropped twice.
1810 * Manfred Spraul <manfred@colorfullife.com>
1811 */
1812 prev_state = prev->state;
1813 finish_arch_switch(prev);
1814 finish_lock_switch(rq, prev);
1815 if (mm)
1816 mmdrop(mm);
1817 if (unlikely(prev_state == TASK_DEAD)) {
1818 /*
1819 * Remove function-return probe instances associated with this
1820 * task and put them back on the free list.
1821 */
1822 kprobe_flush_task(prev);
1823 put_task_struct(prev);
1824 }
1825 }
1826
1827 /**
1828 * schedule_tail - first thing a freshly forked thread must call.
1829 * @prev: the thread we just switched away from.
1830 */
1831 asmlinkage void schedule_tail(struct task_struct *prev)
1832 __releases(rq->lock)
1833 {
1834 struct rq *rq = this_rq();
1835
1836 finish_task_switch(rq, prev);
1837 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1838 /* In this case, finish_task_switch does not reenable preemption */
1839 preempt_enable();
1840 #endif
1841 if (current->set_child_tid)
1842 put_user(current->pid, current->set_child_tid);
1843 }
1844
1845 /*
1846 * context_switch - switch to the new MM and the new
1847 * thread's register state.
1848 */
1849 static inline struct task_struct *
1850 context_switch(struct rq *rq, struct task_struct *prev,
1851 struct task_struct *next)
1852 {
1853 struct mm_struct *mm = next->mm;
1854 struct mm_struct *oldmm = prev->active_mm;
1855
1856 if (!mm) {
1857 next->active_mm = oldmm;
1858 atomic_inc(&oldmm->mm_count);
1859 enter_lazy_tlb(oldmm, next);
1860 } else
1861 switch_mm(oldmm, mm, next);
1862
1863 if (!prev->mm) {
1864 prev->active_mm = NULL;
1865 WARN_ON(rq->prev_mm);
1866 rq->prev_mm = oldmm;
1867 }
1868 /*
1869 * Since the runqueue lock will be released by the next
1870 * task (which is an invalid locking op but in the case
1871 * of the scheduler it's an obvious special-case), so we
1872 * do an early lockdep release here:
1873 */
1874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1876 #endif
1877
1878 /* Here we just switch the register state and the stack. */
1879 switch_to(prev, next, prev);
1880
1881 return prev;
1882 }
1883
1884 /*
1885 * nr_running, nr_uninterruptible and nr_context_switches:
1886 *
1887 * externally visible scheduler statistics: current number of runnable
1888 * threads, current number of uninterruptible-sleeping threads, total
1889 * number of context switches performed since bootup.
1890 */
1891 unsigned long nr_running(void)
1892 {
1893 unsigned long i, sum = 0;
1894
1895 for_each_online_cpu(i)
1896 sum += cpu_rq(i)->nr_running;
1897
1898 return sum;
1899 }
1900
1901 unsigned long nr_uninterruptible(void)
1902 {
1903 unsigned long i, sum = 0;
1904
1905 for_each_possible_cpu(i)
1906 sum += cpu_rq(i)->nr_uninterruptible;
1907
1908 /*
1909 * Since we read the counters lockless, it might be slightly
1910 * inaccurate. Do not allow it to go below zero though:
1911 */
1912 if (unlikely((long)sum < 0))
1913 sum = 0;
1914
1915 return sum;
1916 }
1917
1918 unsigned long long nr_context_switches(void)
1919 {
1920 int i;
1921 unsigned long long sum = 0;
1922
1923 for_each_possible_cpu(i)
1924 sum += cpu_rq(i)->nr_switches;
1925
1926 return sum;
1927 }
1928
1929 unsigned long nr_iowait(void)
1930 {
1931 unsigned long i, sum = 0;
1932
1933 for_each_possible_cpu(i)
1934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1935
1936 return sum;
1937 }
1938
1939 unsigned long nr_active(void)
1940 {
1941 unsigned long i, running = 0, uninterruptible = 0;
1942
1943 for_each_online_cpu(i) {
1944 running += cpu_rq(i)->nr_running;
1945 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1946 }
1947
1948 if (unlikely((long)uninterruptible < 0))
1949 uninterruptible = 0;
1950
1951 return running + uninterruptible;
1952 }
1953
1954 #ifdef CONFIG_SMP
1955
1956 /*
1957 * Is this task likely cache-hot:
1958 */
1959 static inline int
1960 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1961 {
1962 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1963 }
1964
1965 /*
1966 * double_rq_lock - safely lock two runqueues
1967 *
1968 * Note this does not disable interrupts like task_rq_lock,
1969 * you need to do so manually before calling.
1970 */
1971 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1972 __acquires(rq1->lock)
1973 __acquires(rq2->lock)
1974 {
1975 BUG_ON(!irqs_disabled());
1976 if (rq1 == rq2) {
1977 spin_lock(&rq1->lock);
1978 __acquire(rq2->lock); /* Fake it out ;) */
1979 } else {
1980 if (rq1 < rq2) {
1981 spin_lock(&rq1->lock);
1982 spin_lock(&rq2->lock);
1983 } else {
1984 spin_lock(&rq2->lock);
1985 spin_lock(&rq1->lock);
1986 }
1987 }
1988 }
1989
1990 /*
1991 * double_rq_unlock - safely unlock two runqueues
1992 *
1993 * Note this does not restore interrupts like task_rq_unlock,
1994 * you need to do so manually after calling.
1995 */
1996 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1997 __releases(rq1->lock)
1998 __releases(rq2->lock)
1999 {
2000 spin_unlock(&rq1->lock);
2001 if (rq1 != rq2)
2002 spin_unlock(&rq2->lock);
2003 else
2004 __release(rq2->lock);
2005 }
2006
2007 /*
2008 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2009 */
2010 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2011 __releases(this_rq->lock)
2012 __acquires(busiest->lock)
2013 __acquires(this_rq->lock)
2014 {
2015 if (unlikely(!irqs_disabled())) {
2016 /* printk() doesn't work good under rq->lock */
2017 spin_unlock(&this_rq->lock);
2018 BUG_ON(1);
2019 }
2020 if (unlikely(!spin_trylock(&busiest->lock))) {
2021 if (busiest < this_rq) {
2022 spin_unlock(&this_rq->lock);
2023 spin_lock(&busiest->lock);
2024 spin_lock(&this_rq->lock);
2025 } else
2026 spin_lock(&busiest->lock);
2027 }
2028 }
2029
2030 /*
2031 * If dest_cpu is allowed for this process, migrate the task to it.
2032 * This is accomplished by forcing the cpu_allowed mask to only
2033 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2034 * the cpu_allowed mask is restored.
2035 */
2036 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2037 {
2038 struct migration_req req;
2039 unsigned long flags;
2040 struct rq *rq;
2041
2042 rq = task_rq_lock(p, &flags);
2043 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2044 || unlikely(cpu_is_offline(dest_cpu)))
2045 goto out;
2046
2047 /* force the process onto the specified CPU */
2048 if (migrate_task(p, dest_cpu, &req)) {
2049 /* Need to wait for migration thread (might exit: take ref). */
2050 struct task_struct *mt = rq->migration_thread;
2051
2052 get_task_struct(mt);
2053 task_rq_unlock(rq, &flags);
2054 wake_up_process(mt);
2055 put_task_struct(mt);
2056 wait_for_completion(&req.done);
2057
2058 return;
2059 }
2060 out:
2061 task_rq_unlock(rq, &flags);
2062 }
2063
2064 /*
2065 * sched_exec - execve() is a valuable balancing opportunity, because at
2066 * this point the task has the smallest effective memory and cache footprint.
2067 */
2068 void sched_exec(void)
2069 {
2070 int new_cpu, this_cpu = get_cpu();
2071 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2072 put_cpu();
2073 if (new_cpu != this_cpu)
2074 sched_migrate_task(current, new_cpu);
2075 }
2076
2077 /*
2078 * pull_task - move a task from a remote runqueue to the local runqueue.
2079 * Both runqueues must be locked.
2080 */
2081 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2082 struct task_struct *p, struct rq *this_rq,
2083 struct prio_array *this_array, int this_cpu)
2084 {
2085 dequeue_task(p, src_array);
2086 dec_nr_running(p, src_rq);
2087 set_task_cpu(p, this_cpu);
2088 inc_nr_running(p, this_rq);
2089 enqueue_task(p, this_array);
2090 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2091 + this_rq->most_recent_timestamp;
2092 /*
2093 * Note that idle threads have a prio of MAX_PRIO, for this test
2094 * to be always true for them.
2095 */
2096 if (TASK_PREEMPTS_CURR(p, this_rq))
2097 resched_task(this_rq->curr);
2098 }
2099
2100 /*
2101 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2102 */
2103 static
2104 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2105 struct sched_domain *sd, enum idle_type idle,
2106 int *all_pinned)
2107 {
2108 /*
2109 * We do not migrate tasks that are:
2110 * 1) running (obviously), or
2111 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2112 * 3) are cache-hot on their current CPU.
2113 */
2114 if (!cpu_isset(this_cpu, p->cpus_allowed))
2115 return 0;
2116 *all_pinned = 0;
2117
2118 if (task_running(rq, p))
2119 return 0;
2120
2121 /*
2122 * Aggressive migration if:
2123 * 1) task is cache cold, or
2124 * 2) too many balance attempts have failed.
2125 */
2126
2127 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2128 #ifdef CONFIG_SCHEDSTATS
2129 if (task_hot(p, rq->most_recent_timestamp, sd))
2130 schedstat_inc(sd, lb_hot_gained[idle]);
2131 #endif
2132 return 1;
2133 }
2134
2135 if (task_hot(p, rq->most_recent_timestamp, sd))
2136 return 0;
2137 return 1;
2138 }
2139
2140 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2141
2142 /*
2143 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2144 * load from busiest to this_rq, as part of a balancing operation within
2145 * "domain". Returns the number of tasks moved.
2146 *
2147 * Called with both runqueues locked.
2148 */
2149 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2150 unsigned long max_nr_move, unsigned long max_load_move,
2151 struct sched_domain *sd, enum idle_type idle,
2152 int *all_pinned)
2153 {
2154 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2155 best_prio_seen, skip_for_load;
2156 struct prio_array *array, *dst_array;
2157 struct list_head *head, *curr;
2158 struct task_struct *tmp;
2159 long rem_load_move;
2160
2161 if (max_nr_move == 0 || max_load_move == 0)
2162 goto out;
2163
2164 rem_load_move = max_load_move;
2165 pinned = 1;
2166 this_best_prio = rq_best_prio(this_rq);
2167 best_prio = rq_best_prio(busiest);
2168 /*
2169 * Enable handling of the case where there is more than one task
2170 * with the best priority. If the current running task is one
2171 * of those with prio==best_prio we know it won't be moved
2172 * and therefore it's safe to override the skip (based on load) of
2173 * any task we find with that prio.
2174 */
2175 best_prio_seen = best_prio == busiest->curr->prio;
2176
2177 /*
2178 * We first consider expired tasks. Those will likely not be
2179 * executed in the near future, and they are most likely to
2180 * be cache-cold, thus switching CPUs has the least effect
2181 * on them.
2182 */
2183 if (busiest->expired->nr_active) {
2184 array = busiest->expired;
2185 dst_array = this_rq->expired;
2186 } else {
2187 array = busiest->active;
2188 dst_array = this_rq->active;
2189 }
2190
2191 new_array:
2192 /* Start searching at priority 0: */
2193 idx = 0;
2194 skip_bitmap:
2195 if (!idx)
2196 idx = sched_find_first_bit(array->bitmap);
2197 else
2198 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2199 if (idx >= MAX_PRIO) {
2200 if (array == busiest->expired && busiest->active->nr_active) {
2201 array = busiest->active;
2202 dst_array = this_rq->active;
2203 goto new_array;
2204 }
2205 goto out;
2206 }
2207
2208 head = array->queue + idx;
2209 curr = head->prev;
2210 skip_queue:
2211 tmp = list_entry(curr, struct task_struct, run_list);
2212
2213 curr = curr->prev;
2214
2215 /*
2216 * To help distribute high priority tasks accross CPUs we don't
2217 * skip a task if it will be the highest priority task (i.e. smallest
2218 * prio value) on its new queue regardless of its load weight
2219 */
2220 skip_for_load = tmp->load_weight > rem_load_move;
2221 if (skip_for_load && idx < this_best_prio)
2222 skip_for_load = !best_prio_seen && idx == best_prio;
2223 if (skip_for_load ||
2224 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2225
2226 best_prio_seen |= idx == best_prio;
2227 if (curr != head)
2228 goto skip_queue;
2229 idx++;
2230 goto skip_bitmap;
2231 }
2232
2233 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2234 pulled++;
2235 rem_load_move -= tmp->load_weight;
2236
2237 /*
2238 * We only want to steal up to the prescribed number of tasks
2239 * and the prescribed amount of weighted load.
2240 */
2241 if (pulled < max_nr_move && rem_load_move > 0) {
2242 if (idx < this_best_prio)
2243 this_best_prio = idx;
2244 if (curr != head)
2245 goto skip_queue;
2246 idx++;
2247 goto skip_bitmap;
2248 }
2249 out:
2250 /*
2251 * Right now, this is the only place pull_task() is called,
2252 * so we can safely collect pull_task() stats here rather than
2253 * inside pull_task().
2254 */
2255 schedstat_add(sd, lb_gained[idle], pulled);
2256
2257 if (all_pinned)
2258 *all_pinned = pinned;
2259 return pulled;
2260 }
2261
2262 /*
2263 * find_busiest_group finds and returns the busiest CPU group within the
2264 * domain. It calculates and returns the amount of weighted load which
2265 * should be moved to restore balance via the imbalance parameter.
2266 */
2267 static struct sched_group *
2268 find_busiest_group(struct sched_domain *sd, int this_cpu,
2269 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2270 cpumask_t *cpus, int *balance)
2271 {
2272 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2273 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2274 unsigned long max_pull;
2275 unsigned long busiest_load_per_task, busiest_nr_running;
2276 unsigned long this_load_per_task, this_nr_running;
2277 int load_idx;
2278 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2279 int power_savings_balance = 1;
2280 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2281 unsigned long min_nr_running = ULONG_MAX;
2282 struct sched_group *group_min = NULL, *group_leader = NULL;
2283 #endif
2284
2285 max_load = this_load = total_load = total_pwr = 0;
2286 busiest_load_per_task = busiest_nr_running = 0;
2287 this_load_per_task = this_nr_running = 0;
2288 if (idle == NOT_IDLE)
2289 load_idx = sd->busy_idx;
2290 else if (idle == NEWLY_IDLE)
2291 load_idx = sd->newidle_idx;
2292 else
2293 load_idx = sd->idle_idx;
2294
2295 do {
2296 unsigned long load, group_capacity;
2297 int local_group;
2298 int i;
2299 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2300 unsigned long sum_nr_running, sum_weighted_load;
2301
2302 local_group = cpu_isset(this_cpu, group->cpumask);
2303
2304 if (local_group)
2305 balance_cpu = first_cpu(group->cpumask);
2306
2307 /* Tally up the load of all CPUs in the group */
2308 sum_weighted_load = sum_nr_running = avg_load = 0;
2309
2310 for_each_cpu_mask(i, group->cpumask) {
2311 struct rq *rq;
2312
2313 if (!cpu_isset(i, *cpus))
2314 continue;
2315
2316 rq = cpu_rq(i);
2317
2318 if (*sd_idle && !idle_cpu(i))
2319 *sd_idle = 0;
2320
2321 /* Bias balancing toward cpus of our domain */
2322 if (local_group) {
2323 if (idle_cpu(i) && !first_idle_cpu) {
2324 first_idle_cpu = 1;
2325 balance_cpu = i;
2326 }
2327
2328 load = target_load(i, load_idx);
2329 } else
2330 load = source_load(i, load_idx);
2331
2332 avg_load += load;
2333 sum_nr_running += rq->nr_running;
2334 sum_weighted_load += rq->raw_weighted_load;
2335 }
2336
2337 /*
2338 * First idle cpu or the first cpu(busiest) in this sched group
2339 * is eligible for doing load balancing at this and above
2340 * domains.
2341 */
2342 if (local_group && balance_cpu != this_cpu && balance) {
2343 *balance = 0;
2344 goto ret;
2345 }
2346
2347 total_load += avg_load;
2348 total_pwr += group->cpu_power;
2349
2350 /* Adjust by relative CPU power of the group */
2351 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2352
2353 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2354
2355 if (local_group) {
2356 this_load = avg_load;
2357 this = group;
2358 this_nr_running = sum_nr_running;
2359 this_load_per_task = sum_weighted_load;
2360 } else if (avg_load > max_load &&
2361 sum_nr_running > group_capacity) {
2362 max_load = avg_load;
2363 busiest = group;
2364 busiest_nr_running = sum_nr_running;
2365 busiest_load_per_task = sum_weighted_load;
2366 }
2367
2368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2369 /*
2370 * Busy processors will not participate in power savings
2371 * balance.
2372 */
2373 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2374 goto group_next;
2375
2376 /*
2377 * If the local group is idle or completely loaded
2378 * no need to do power savings balance at this domain
2379 */
2380 if (local_group && (this_nr_running >= group_capacity ||
2381 !this_nr_running))
2382 power_savings_balance = 0;
2383
2384 /*
2385 * If a group is already running at full capacity or idle,
2386 * don't include that group in power savings calculations
2387 */
2388 if (!power_savings_balance || sum_nr_running >= group_capacity
2389 || !sum_nr_running)
2390 goto group_next;
2391
2392 /*
2393 * Calculate the group which has the least non-idle load.
2394 * This is the group from where we need to pick up the load
2395 * for saving power
2396 */
2397 if ((sum_nr_running < min_nr_running) ||
2398 (sum_nr_running == min_nr_running &&
2399 first_cpu(group->cpumask) <
2400 first_cpu(group_min->cpumask))) {
2401 group_min = group;
2402 min_nr_running = sum_nr_running;
2403 min_load_per_task = sum_weighted_load /
2404 sum_nr_running;
2405 }
2406
2407 /*
2408 * Calculate the group which is almost near its
2409 * capacity but still has some space to pick up some load
2410 * from other group and save more power
2411 */
2412 if (sum_nr_running <= group_capacity - 1) {
2413 if (sum_nr_running > leader_nr_running ||
2414 (sum_nr_running == leader_nr_running &&
2415 first_cpu(group->cpumask) >
2416 first_cpu(group_leader->cpumask))) {
2417 group_leader = group;
2418 leader_nr_running = sum_nr_running;
2419 }
2420 }
2421 group_next:
2422 #endif
2423 group = group->next;
2424 } while (group != sd->groups);
2425
2426 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2427 goto out_balanced;
2428
2429 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2430
2431 if (this_load >= avg_load ||
2432 100*max_load <= sd->imbalance_pct*this_load)
2433 goto out_balanced;
2434
2435 busiest_load_per_task /= busiest_nr_running;
2436 /*
2437 * We're trying to get all the cpus to the average_load, so we don't
2438 * want to push ourselves above the average load, nor do we wish to
2439 * reduce the max loaded cpu below the average load, as either of these
2440 * actions would just result in more rebalancing later, and ping-pong
2441 * tasks around. Thus we look for the minimum possible imbalance.
2442 * Negative imbalances (*we* are more loaded than anyone else) will
2443 * be counted as no imbalance for these purposes -- we can't fix that
2444 * by pulling tasks to us. Be careful of negative numbers as they'll
2445 * appear as very large values with unsigned longs.
2446 */
2447 if (max_load <= busiest_load_per_task)
2448 goto out_balanced;
2449
2450 /*
2451 * In the presence of smp nice balancing, certain scenarios can have
2452 * max load less than avg load(as we skip the groups at or below
2453 * its cpu_power, while calculating max_load..)
2454 */
2455 if (max_load < avg_load) {
2456 *imbalance = 0;
2457 goto small_imbalance;
2458 }
2459
2460 /* Don't want to pull so many tasks that a group would go idle */
2461 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2462
2463 /* How much load to actually move to equalise the imbalance */
2464 *imbalance = min(max_pull * busiest->cpu_power,
2465 (avg_load - this_load) * this->cpu_power)
2466 / SCHED_LOAD_SCALE;
2467
2468 /*
2469 * if *imbalance is less than the average load per runnable task
2470 * there is no gaurantee that any tasks will be moved so we'll have
2471 * a think about bumping its value to force at least one task to be
2472 * moved
2473 */
2474 if (*imbalance < busiest_load_per_task) {
2475 unsigned long tmp, pwr_now, pwr_move;
2476 unsigned int imbn;
2477
2478 small_imbalance:
2479 pwr_move = pwr_now = 0;
2480 imbn = 2;
2481 if (this_nr_running) {
2482 this_load_per_task /= this_nr_running;
2483 if (busiest_load_per_task > this_load_per_task)
2484 imbn = 1;
2485 } else
2486 this_load_per_task = SCHED_LOAD_SCALE;
2487
2488 if (max_load - this_load >= busiest_load_per_task * imbn) {
2489 *imbalance = busiest_load_per_task;
2490 return busiest;
2491 }
2492
2493 /*
2494 * OK, we don't have enough imbalance to justify moving tasks,
2495 * however we may be able to increase total CPU power used by
2496 * moving them.
2497 */
2498
2499 pwr_now += busiest->cpu_power *
2500 min(busiest_load_per_task, max_load);
2501 pwr_now += this->cpu_power *
2502 min(this_load_per_task, this_load);
2503 pwr_now /= SCHED_LOAD_SCALE;
2504
2505 /* Amount of load we'd subtract */
2506 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2507 busiest->cpu_power;
2508 if (max_load > tmp)
2509 pwr_move += busiest->cpu_power *
2510 min(busiest_load_per_task, max_load - tmp);
2511
2512 /* Amount of load we'd add */
2513 if (max_load * busiest->cpu_power <
2514 busiest_load_per_task * SCHED_LOAD_SCALE)
2515 tmp = max_load * busiest->cpu_power / this->cpu_power;
2516 else
2517 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2518 this->cpu_power;
2519 pwr_move += this->cpu_power *
2520 min(this_load_per_task, this_load + tmp);
2521 pwr_move /= SCHED_LOAD_SCALE;
2522
2523 /* Move if we gain throughput */
2524 if (pwr_move <= pwr_now)
2525 goto out_balanced;
2526
2527 *imbalance = busiest_load_per_task;
2528 }
2529
2530 return busiest;
2531
2532 out_balanced:
2533 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2534 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2535 goto ret;
2536
2537 if (this == group_leader && group_leader != group_min) {
2538 *imbalance = min_load_per_task;
2539 return group_min;
2540 }
2541 #endif
2542 ret:
2543 *imbalance = 0;
2544 return NULL;
2545 }
2546
2547 /*
2548 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2549 */
2550 static struct rq *
2551 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2552 unsigned long imbalance, cpumask_t *cpus)
2553 {
2554 struct rq *busiest = NULL, *rq;
2555 unsigned long max_load = 0;
2556 int i;
2557
2558 for_each_cpu_mask(i, group->cpumask) {
2559
2560 if (!cpu_isset(i, *cpus))
2561 continue;
2562
2563 rq = cpu_rq(i);
2564
2565 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2566 continue;
2567
2568 if (rq->raw_weighted_load > max_load) {
2569 max_load = rq->raw_weighted_load;
2570 busiest = rq;
2571 }
2572 }
2573
2574 return busiest;
2575 }
2576
2577 /*
2578 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2579 * so long as it is large enough.
2580 */
2581 #define MAX_PINNED_INTERVAL 512
2582
2583 static inline unsigned long minus_1_or_zero(unsigned long n)
2584 {
2585 return n > 0 ? n - 1 : 0;
2586 }
2587
2588 /*
2589 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2590 * tasks if there is an imbalance.
2591 */
2592 static int load_balance(int this_cpu, struct rq *this_rq,
2593 struct sched_domain *sd, enum idle_type idle,
2594 int *balance)
2595 {
2596 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2597 struct sched_group *group;
2598 unsigned long imbalance;
2599 struct rq *busiest;
2600 cpumask_t cpus = CPU_MASK_ALL;
2601 unsigned long flags;
2602
2603 /*
2604 * When power savings policy is enabled for the parent domain, idle
2605 * sibling can pick up load irrespective of busy siblings. In this case,
2606 * let the state of idle sibling percolate up as IDLE, instead of
2607 * portraying it as NOT_IDLE.
2608 */
2609 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2611 sd_idle = 1;
2612
2613 schedstat_inc(sd, lb_cnt[idle]);
2614
2615 redo:
2616 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2617 &cpus, balance);
2618
2619 if (*balance == 0)
2620 goto out_balanced;
2621
2622 if (!group) {
2623 schedstat_inc(sd, lb_nobusyg[idle]);
2624 goto out_balanced;
2625 }
2626
2627 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2628 if (!busiest) {
2629 schedstat_inc(sd, lb_nobusyq[idle]);
2630 goto out_balanced;
2631 }
2632
2633 BUG_ON(busiest == this_rq);
2634
2635 schedstat_add(sd, lb_imbalance[idle], imbalance);
2636
2637 nr_moved = 0;
2638 if (busiest->nr_running > 1) {
2639 /*
2640 * Attempt to move tasks. If find_busiest_group has found
2641 * an imbalance but busiest->nr_running <= 1, the group is
2642 * still unbalanced. nr_moved simply stays zero, so it is
2643 * correctly treated as an imbalance.
2644 */
2645 local_irq_save(flags);
2646 double_rq_lock(this_rq, busiest);
2647 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2648 minus_1_or_zero(busiest->nr_running),
2649 imbalance, sd, idle, &all_pinned);
2650 double_rq_unlock(this_rq, busiest);
2651 local_irq_restore(flags);
2652
2653 /* All tasks on this runqueue were pinned by CPU affinity */
2654 if (unlikely(all_pinned)) {
2655 cpu_clear(cpu_of(busiest), cpus);
2656 if (!cpus_empty(cpus))
2657 goto redo;
2658 goto out_balanced;
2659 }
2660 }
2661
2662 if (!nr_moved) {
2663 schedstat_inc(sd, lb_failed[idle]);
2664 sd->nr_balance_failed++;
2665
2666 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2667
2668 spin_lock_irqsave(&busiest->lock, flags);
2669
2670 /* don't kick the migration_thread, if the curr
2671 * task on busiest cpu can't be moved to this_cpu
2672 */
2673 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2674 spin_unlock_irqrestore(&busiest->lock, flags);
2675 all_pinned = 1;
2676 goto out_one_pinned;
2677 }
2678
2679 if (!busiest->active_balance) {
2680 busiest->active_balance = 1;
2681 busiest->push_cpu = this_cpu;
2682 active_balance = 1;
2683 }
2684 spin_unlock_irqrestore(&busiest->lock, flags);
2685 if (active_balance)
2686 wake_up_process(busiest->migration_thread);
2687
2688 /*
2689 * We've kicked active balancing, reset the failure
2690 * counter.
2691 */
2692 sd->nr_balance_failed = sd->cache_nice_tries+1;
2693 }
2694 } else
2695 sd->nr_balance_failed = 0;
2696
2697 if (likely(!active_balance)) {
2698 /* We were unbalanced, so reset the balancing interval */
2699 sd->balance_interval = sd->min_interval;
2700 } else {
2701 /*
2702 * If we've begun active balancing, start to back off. This
2703 * case may not be covered by the all_pinned logic if there
2704 * is only 1 task on the busy runqueue (because we don't call
2705 * move_tasks).
2706 */
2707 if (sd->balance_interval < sd->max_interval)
2708 sd->balance_interval *= 2;
2709 }
2710
2711 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2712 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2713 return -1;
2714 return nr_moved;
2715
2716 out_balanced:
2717 schedstat_inc(sd, lb_balanced[idle]);
2718
2719 sd->nr_balance_failed = 0;
2720
2721 out_one_pinned:
2722 /* tune up the balancing interval */
2723 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2724 (sd->balance_interval < sd->max_interval))
2725 sd->balance_interval *= 2;
2726
2727 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2729 return -1;
2730 return 0;
2731 }
2732
2733 /*
2734 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2735 * tasks if there is an imbalance.
2736 *
2737 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2738 * this_rq is locked.
2739 */
2740 static int
2741 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2742 {
2743 struct sched_group *group;
2744 struct rq *busiest = NULL;
2745 unsigned long imbalance;
2746 int nr_moved = 0;
2747 int sd_idle = 0;
2748 cpumask_t cpus = CPU_MASK_ALL;
2749
2750 /*
2751 * When power savings policy is enabled for the parent domain, idle
2752 * sibling can pick up load irrespective of busy siblings. In this case,
2753 * let the state of idle sibling percolate up as IDLE, instead of
2754 * portraying it as NOT_IDLE.
2755 */
2756 if (sd->flags & SD_SHARE_CPUPOWER &&
2757 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2758 sd_idle = 1;
2759
2760 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2761 redo:
2762 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2763 &sd_idle, &cpus, NULL);
2764 if (!group) {
2765 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2766 goto out_balanced;
2767 }
2768
2769 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2770 &cpus);
2771 if (!busiest) {
2772 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2773 goto out_balanced;
2774 }
2775
2776 BUG_ON(busiest == this_rq);
2777
2778 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2779
2780 nr_moved = 0;
2781 if (busiest->nr_running > 1) {
2782 /* Attempt to move tasks */
2783 double_lock_balance(this_rq, busiest);
2784 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2785 minus_1_or_zero(busiest->nr_running),
2786 imbalance, sd, NEWLY_IDLE, NULL);
2787 spin_unlock(&busiest->lock);
2788
2789 if (!nr_moved) {
2790 cpu_clear(cpu_of(busiest), cpus);
2791 if (!cpus_empty(cpus))
2792 goto redo;
2793 }
2794 }
2795
2796 if (!nr_moved) {
2797 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 return -1;
2801 } else
2802 sd->nr_balance_failed = 0;
2803
2804 return nr_moved;
2805
2806 out_balanced:
2807 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2808 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2810 return -1;
2811 sd->nr_balance_failed = 0;
2812
2813 return 0;
2814 }
2815
2816 /*
2817 * idle_balance is called by schedule() if this_cpu is about to become
2818 * idle. Attempts to pull tasks from other CPUs.
2819 */
2820 static void idle_balance(int this_cpu, struct rq *this_rq)
2821 {
2822 struct sched_domain *sd;
2823 int pulled_task = 0;
2824 unsigned long next_balance = jiffies + 60 * HZ;
2825
2826 for_each_domain(this_cpu, sd) {
2827 if (sd->flags & SD_BALANCE_NEWIDLE) {
2828 /* If we've pulled tasks over stop searching: */
2829 pulled_task = load_balance_newidle(this_cpu,
2830 this_rq, sd);
2831 if (time_after(next_balance,
2832 sd->last_balance + sd->balance_interval))
2833 next_balance = sd->last_balance
2834 + sd->balance_interval;
2835 if (pulled_task)
2836 break;
2837 }
2838 }
2839 if (!pulled_task)
2840 /*
2841 * We are going idle. next_balance may be set based on
2842 * a busy processor. So reset next_balance.
2843 */
2844 this_rq->next_balance = next_balance;
2845 }
2846
2847 /*
2848 * active_load_balance is run by migration threads. It pushes running tasks
2849 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2850 * running on each physical CPU where possible, and avoids physical /
2851 * logical imbalances.
2852 *
2853 * Called with busiest_rq locked.
2854 */
2855 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2856 {
2857 int target_cpu = busiest_rq->push_cpu;
2858 struct sched_domain *sd;
2859 struct rq *target_rq;
2860
2861 /* Is there any task to move? */
2862 if (busiest_rq->nr_running <= 1)
2863 return;
2864
2865 target_rq = cpu_rq(target_cpu);
2866
2867 /*
2868 * This condition is "impossible", if it occurs
2869 * we need to fix it. Originally reported by
2870 * Bjorn Helgaas on a 128-cpu setup.
2871 */
2872 BUG_ON(busiest_rq == target_rq);
2873
2874 /* move a task from busiest_rq to target_rq */
2875 double_lock_balance(busiest_rq, target_rq);
2876
2877 /* Search for an sd spanning us and the target CPU. */
2878 for_each_domain(target_cpu, sd) {
2879 if ((sd->flags & SD_LOAD_BALANCE) &&
2880 cpu_isset(busiest_cpu, sd->span))
2881 break;
2882 }
2883
2884 if (likely(sd)) {
2885 schedstat_inc(sd, alb_cnt);
2886
2887 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2888 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2889 NULL))
2890 schedstat_inc(sd, alb_pushed);
2891 else
2892 schedstat_inc(sd, alb_failed);
2893 }
2894 spin_unlock(&target_rq->lock);
2895 }
2896
2897 static void update_load(struct rq *this_rq)
2898 {
2899 unsigned long this_load;
2900 int i, scale;
2901
2902 this_load = this_rq->raw_weighted_load;
2903
2904 /* Update our load: */
2905 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2906 unsigned long old_load, new_load;
2907
2908 old_load = this_rq->cpu_load[i];
2909 new_load = this_load;
2910 /*
2911 * Round up the averaging division if load is increasing. This
2912 * prevents us from getting stuck on 9 if the load is 10, for
2913 * example.
2914 */
2915 if (new_load > old_load)
2916 new_load += scale-1;
2917 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2918 }
2919 }
2920
2921 /*
2922 * run_rebalance_domains is triggered when needed from the scheduler tick.
2923 *
2924 * It checks each scheduling domain to see if it is due to be balanced,
2925 * and initiates a balancing operation if so.
2926 *
2927 * Balancing parameters are set up in arch_init_sched_domains.
2928 */
2929 static DEFINE_SPINLOCK(balancing);
2930
2931 static void run_rebalance_domains(struct softirq_action *h)
2932 {
2933 int this_cpu = smp_processor_id(), balance = 1;
2934 struct rq *this_rq = cpu_rq(this_cpu);
2935 unsigned long interval;
2936 struct sched_domain *sd;
2937 /*
2938 * We are idle if there are no processes running. This
2939 * is valid even if we are the idle process (SMT).
2940 */
2941 enum idle_type idle = !this_rq->nr_running ?
2942 SCHED_IDLE : NOT_IDLE;
2943 /* Earliest time when we have to call run_rebalance_domains again */
2944 unsigned long next_balance = jiffies + 60*HZ;
2945
2946 for_each_domain(this_cpu, sd) {
2947 if (!(sd->flags & SD_LOAD_BALANCE))
2948 continue;
2949
2950 interval = sd->balance_interval;
2951 if (idle != SCHED_IDLE)
2952 interval *= sd->busy_factor;
2953
2954 /* scale ms to jiffies */
2955 interval = msecs_to_jiffies(interval);
2956 if (unlikely(!interval))
2957 interval = 1;
2958
2959 if (sd->flags & SD_SERIALIZE) {
2960 if (!spin_trylock(&balancing))
2961 goto out;
2962 }
2963
2964 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2965 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
2966 /*
2967 * We've pulled tasks over so either we're no
2968 * longer idle, or one of our SMT siblings is
2969 * not idle.
2970 */
2971 idle = NOT_IDLE;
2972 }
2973 sd->last_balance = jiffies;
2974 }
2975 if (sd->flags & SD_SERIALIZE)
2976 spin_unlock(&balancing);
2977 out:
2978 if (time_after(next_balance, sd->last_balance + interval))
2979 next_balance = sd->last_balance + interval;
2980
2981 /*
2982 * Stop the load balance at this level. There is another
2983 * CPU in our sched group which is doing load balancing more
2984 * actively.
2985 */
2986 if (!balance)
2987 break;
2988 }
2989 this_rq->next_balance = next_balance;
2990 }
2991 #else
2992 /*
2993 * on UP we do not need to balance between CPUs:
2994 */
2995 static inline void idle_balance(int cpu, struct rq *rq)
2996 {
2997 }
2998 #endif
2999
3000 static inline void wake_priority_sleeper(struct rq *rq)
3001 {
3002 #ifdef CONFIG_SCHED_SMT
3003 if (!rq->nr_running)
3004 return;
3005
3006 spin_lock(&rq->lock);
3007 /*
3008 * If an SMT sibling task has been put to sleep for priority
3009 * reasons reschedule the idle task to see if it can now run.
3010 */
3011 if (rq->nr_running)
3012 resched_task(rq->idle);
3013 spin_unlock(&rq->lock);
3014 #endif
3015 }
3016
3017 DEFINE_PER_CPU(struct kernel_stat, kstat);
3018
3019 EXPORT_PER_CPU_SYMBOL(kstat);
3020
3021 /*
3022 * This is called on clock ticks and on context switches.
3023 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3024 */
3025 static inline void
3026 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3027 {
3028 p->sched_time += now - p->last_ran;
3029 p->last_ran = rq->most_recent_timestamp = now;
3030 }
3031
3032 /*
3033 * Return current->sched_time plus any more ns on the sched_clock
3034 * that have not yet been banked.
3035 */
3036 unsigned long long current_sched_time(const struct task_struct *p)
3037 {
3038 unsigned long long ns;
3039 unsigned long flags;
3040
3041 local_irq_save(flags);
3042 ns = p->sched_time + sched_clock() - p->last_ran;
3043 local_irq_restore(flags);
3044
3045 return ns;
3046 }
3047
3048 /*
3049 * We place interactive tasks back into the active array, if possible.
3050 *
3051 * To guarantee that this does not starve expired tasks we ignore the
3052 * interactivity of a task if the first expired task had to wait more
3053 * than a 'reasonable' amount of time. This deadline timeout is
3054 * load-dependent, as the frequency of array switched decreases with
3055 * increasing number of running tasks. We also ignore the interactivity
3056 * if a better static_prio task has expired:
3057 */
3058 static inline int expired_starving(struct rq *rq)
3059 {
3060 if (rq->curr->static_prio > rq->best_expired_prio)
3061 return 1;
3062 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3063 return 0;
3064 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3065 return 1;
3066 return 0;
3067 }
3068
3069 /*
3070 * Account user cpu time to a process.
3071 * @p: the process that the cpu time gets accounted to
3072 * @hardirq_offset: the offset to subtract from hardirq_count()
3073 * @cputime: the cpu time spent in user space since the last update
3074 */
3075 void account_user_time(struct task_struct *p, cputime_t cputime)
3076 {
3077 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3078 cputime64_t tmp;
3079
3080 p->utime = cputime_add(p->utime, cputime);
3081
3082 /* Add user time to cpustat. */
3083 tmp = cputime_to_cputime64(cputime);
3084 if (TASK_NICE(p) > 0)
3085 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3086 else
3087 cpustat->user = cputime64_add(cpustat->user, tmp);
3088 }
3089
3090 /*
3091 * Account system cpu time to a process.
3092 * @p: the process that the cpu time gets accounted to
3093 * @hardirq_offset: the offset to subtract from hardirq_count()
3094 * @cputime: the cpu time spent in kernel space since the last update
3095 */
3096 void account_system_time(struct task_struct *p, int hardirq_offset,
3097 cputime_t cputime)
3098 {
3099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3100 struct rq *rq = this_rq();
3101 cputime64_t tmp;
3102
3103 p->stime = cputime_add(p->stime, cputime);
3104
3105 /* Add system time to cpustat. */
3106 tmp = cputime_to_cputime64(cputime);
3107 if (hardirq_count() - hardirq_offset)
3108 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3109 else if (softirq_count())
3110 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3111 else if (p != rq->idle)
3112 cpustat->system = cputime64_add(cpustat->system, tmp);
3113 else if (atomic_read(&rq->nr_iowait) > 0)
3114 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3115 else
3116 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3117 /* Account for system time used */
3118 acct_update_integrals(p);
3119 }
3120
3121 /*
3122 * Account for involuntary wait time.
3123 * @p: the process from which the cpu time has been stolen
3124 * @steal: the cpu time spent in involuntary wait
3125 */
3126 void account_steal_time(struct task_struct *p, cputime_t steal)
3127 {
3128 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3129 cputime64_t tmp = cputime_to_cputime64(steal);
3130 struct rq *rq = this_rq();
3131
3132 if (p == rq->idle) {
3133 p->stime = cputime_add(p->stime, steal);
3134 if (atomic_read(&rq->nr_iowait) > 0)
3135 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3136 else
3137 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3138 } else
3139 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3140 }
3141
3142 static void task_running_tick(struct rq *rq, struct task_struct *p)
3143 {
3144 if (p->array != rq->active) {
3145 /* Task has expired but was not scheduled yet */
3146 set_tsk_need_resched(p);
3147 return;
3148 }
3149 spin_lock(&rq->lock);
3150 /*
3151 * The task was running during this tick - update the
3152 * time slice counter. Note: we do not update a thread's
3153 * priority until it either goes to sleep or uses up its
3154 * timeslice. This makes it possible for interactive tasks
3155 * to use up their timeslices at their highest priority levels.
3156 */
3157 if (rt_task(p)) {
3158 /*
3159 * RR tasks need a special form of timeslice management.
3160 * FIFO tasks have no timeslices.
3161 */
3162 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3163 p->time_slice = task_timeslice(p);
3164 p->first_time_slice = 0;
3165 set_tsk_need_resched(p);
3166
3167 /* put it at the end of the queue: */
3168 requeue_task(p, rq->active);
3169 }
3170 goto out_unlock;
3171 }
3172 if (!--p->time_slice) {
3173 dequeue_task(p, rq->active);
3174 set_tsk_need_resched(p);
3175 p->prio = effective_prio(p);
3176 p->time_slice = task_timeslice(p);
3177 p->first_time_slice = 0;
3178
3179 if (!rq->expired_timestamp)
3180 rq->expired_timestamp = jiffies;
3181 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3182 enqueue_task(p, rq->expired);
3183 if (p->static_prio < rq->best_expired_prio)
3184 rq->best_expired_prio = p->static_prio;
3185 } else
3186 enqueue_task(p, rq->active);
3187 } else {
3188 /*
3189 * Prevent a too long timeslice allowing a task to monopolize
3190 * the CPU. We do this by splitting up the timeslice into
3191 * smaller pieces.
3192 *
3193 * Note: this does not mean the task's timeslices expire or
3194 * get lost in any way, they just might be preempted by
3195 * another task of equal priority. (one with higher
3196 * priority would have preempted this task already.) We
3197 * requeue this task to the end of the list on this priority
3198 * level, which is in essence a round-robin of tasks with
3199 * equal priority.
3200 *
3201 * This only applies to tasks in the interactive
3202 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3203 */
3204 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3205 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3206 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3207 (p->array == rq->active)) {
3208
3209 requeue_task(p, rq->active);
3210 set_tsk_need_resched(p);
3211 }
3212 }
3213 out_unlock:
3214 spin_unlock(&rq->lock);
3215 }
3216
3217 /*
3218 * This function gets called by the timer code, with HZ frequency.
3219 * We call it with interrupts disabled.
3220 *
3221 * It also gets called by the fork code, when changing the parent's
3222 * timeslices.
3223 */
3224 void scheduler_tick(void)
3225 {
3226 unsigned long long now = sched_clock();
3227 struct task_struct *p = current;
3228 int cpu = smp_processor_id();
3229 struct rq *rq = cpu_rq(cpu);
3230
3231 update_cpu_clock(p, rq, now);
3232
3233 if (p == rq->idle)
3234 /* Task on the idle queue */
3235 wake_priority_sleeper(rq);
3236 else
3237 task_running_tick(rq, p);
3238 #ifdef CONFIG_SMP
3239 update_load(rq);
3240 if (time_after_eq(jiffies, rq->next_balance))
3241 raise_softirq(SCHED_SOFTIRQ);
3242 #endif
3243 }
3244
3245 #ifdef CONFIG_SCHED_SMT
3246 static inline void wakeup_busy_runqueue(struct rq *rq)
3247 {
3248 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3249 if (rq->curr == rq->idle && rq->nr_running)
3250 resched_task(rq->idle);
3251 }
3252
3253 /*
3254 * Called with interrupt disabled and this_rq's runqueue locked.
3255 */
3256 static void wake_sleeping_dependent(int this_cpu)
3257 {
3258 struct sched_domain *tmp, *sd = NULL;
3259 int i;
3260
3261 for_each_domain(this_cpu, tmp) {
3262 if (tmp->flags & SD_SHARE_CPUPOWER) {
3263 sd = tmp;
3264 break;
3265 }
3266 }
3267
3268 if (!sd)
3269 return;
3270
3271 for_each_cpu_mask(i, sd->span) {
3272 struct rq *smt_rq = cpu_rq(i);
3273
3274 if (i == this_cpu)
3275 continue;
3276 if (unlikely(!spin_trylock(&smt_rq->lock)))
3277 continue;
3278
3279 wakeup_busy_runqueue(smt_rq);
3280 spin_unlock(&smt_rq->lock);
3281 }
3282 }
3283
3284 /*
3285 * number of 'lost' timeslices this task wont be able to fully
3286 * utilize, if another task runs on a sibling. This models the
3287 * slowdown effect of other tasks running on siblings:
3288 */
3289 static inline unsigned long
3290 smt_slice(struct task_struct *p, struct sched_domain *sd)
3291 {
3292 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3293 }
3294
3295 /*
3296 * To minimise lock contention and not have to drop this_rq's runlock we only
3297 * trylock the sibling runqueues and bypass those runqueues if we fail to
3298 * acquire their lock. As we only trylock the normal locking order does not
3299 * need to be obeyed.
3300 */
3301 static int
3302 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3303 {
3304 struct sched_domain *tmp, *sd = NULL;
3305 int ret = 0, i;
3306
3307 /* kernel/rt threads do not participate in dependent sleeping */
3308 if (!p->mm || rt_task(p))
3309 return 0;
3310
3311 for_each_domain(this_cpu, tmp) {
3312 if (tmp->flags & SD_SHARE_CPUPOWER) {
3313 sd = tmp;
3314 break;
3315 }
3316 }
3317
3318 if (!sd)
3319 return 0;
3320
3321 for_each_cpu_mask(i, sd->span) {
3322 struct task_struct *smt_curr;
3323 struct rq *smt_rq;
3324
3325 if (i == this_cpu)
3326 continue;
3327
3328 smt_rq = cpu_rq(i);
3329 if (unlikely(!spin_trylock(&smt_rq->lock)))
3330 continue;
3331
3332 smt_curr = smt_rq->curr;
3333
3334 if (!smt_curr->mm)
3335 goto unlock;
3336
3337 /*
3338 * If a user task with lower static priority than the
3339 * running task on the SMT sibling is trying to schedule,
3340 * delay it till there is proportionately less timeslice
3341 * left of the sibling task to prevent a lower priority
3342 * task from using an unfair proportion of the
3343 * physical cpu's resources. -ck
3344 */
3345 if (rt_task(smt_curr)) {
3346 /*
3347 * With real time tasks we run non-rt tasks only
3348 * per_cpu_gain% of the time.
3349 */
3350 if ((jiffies % DEF_TIMESLICE) >
3351 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3352 ret = 1;
3353 } else {
3354 if (smt_curr->static_prio < p->static_prio &&
3355 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3356 smt_slice(smt_curr, sd) > task_timeslice(p))
3357 ret = 1;
3358 }
3359 unlock:
3360 spin_unlock(&smt_rq->lock);
3361 }
3362 return ret;
3363 }
3364 #else
3365 static inline void wake_sleeping_dependent(int this_cpu)
3366 {
3367 }
3368 static inline int
3369 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3370 {
3371 return 0;
3372 }
3373 #endif
3374
3375 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3376
3377 void fastcall add_preempt_count(int val)
3378 {
3379 /*
3380 * Underflow?
3381 */
3382 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3383 return;
3384 preempt_count() += val;
3385 /*
3386 * Spinlock count overflowing soon?
3387 */
3388 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3389 PREEMPT_MASK - 10);
3390 }
3391 EXPORT_SYMBOL(add_preempt_count);
3392
3393 void fastcall sub_preempt_count(int val)
3394 {
3395 /*
3396 * Underflow?
3397 */
3398 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3399 return;
3400 /*
3401 * Is the spinlock portion underflowing?
3402 */
3403 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3404 !(preempt_count() & PREEMPT_MASK)))
3405 return;
3406
3407 preempt_count() -= val;
3408 }
3409 EXPORT_SYMBOL(sub_preempt_count);
3410
3411 #endif
3412
3413 static inline int interactive_sleep(enum sleep_type sleep_type)
3414 {
3415 return (sleep_type == SLEEP_INTERACTIVE ||
3416 sleep_type == SLEEP_INTERRUPTED);
3417 }
3418
3419 /*
3420 * schedule() is the main scheduler function.
3421 */
3422 asmlinkage void __sched schedule(void)
3423 {
3424 struct task_struct *prev, *next;
3425 struct prio_array *array;
3426 struct list_head *queue;
3427 unsigned long long now;
3428 unsigned long run_time;
3429 int cpu, idx, new_prio;
3430 long *switch_count;
3431 struct rq *rq;
3432
3433 /*
3434 * Test if we are atomic. Since do_exit() needs to call into
3435 * schedule() atomically, we ignore that path for now.
3436 * Otherwise, whine if we are scheduling when we should not be.
3437 */
3438 if (unlikely(in_atomic() && !current->exit_state)) {
3439 printk(KERN_ERR "BUG: scheduling while atomic: "
3440 "%s/0x%08x/%d\n",
3441 current->comm, preempt_count(), current->pid);
3442 debug_show_held_locks(current);
3443 if (irqs_disabled())
3444 print_irqtrace_events(current);
3445 dump_stack();
3446 }
3447 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3448
3449 need_resched:
3450 preempt_disable();
3451 prev = current;
3452 release_kernel_lock(prev);
3453 need_resched_nonpreemptible:
3454 rq = this_rq();
3455
3456 /*
3457 * The idle thread is not allowed to schedule!
3458 * Remove this check after it has been exercised a bit.
3459 */
3460 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3461 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3462 dump_stack();
3463 }
3464
3465 schedstat_inc(rq, sched_cnt);
3466 now = sched_clock();
3467 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3468 run_time = now - prev->timestamp;
3469 if (unlikely((long long)(now - prev->timestamp) < 0))
3470 run_time = 0;
3471 } else
3472 run_time = NS_MAX_SLEEP_AVG;
3473
3474 /*
3475 * Tasks charged proportionately less run_time at high sleep_avg to
3476 * delay them losing their interactive status
3477 */
3478 run_time /= (CURRENT_BONUS(prev) ? : 1);
3479
3480 spin_lock_irq(&rq->lock);
3481
3482 switch_count = &prev->nivcsw;
3483 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3484 switch_count = &prev->nvcsw;
3485 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3486 unlikely(signal_pending(prev))))
3487 prev->state = TASK_RUNNING;
3488 else {
3489 if (prev->state == TASK_UNINTERRUPTIBLE)
3490 rq->nr_uninterruptible++;
3491 deactivate_task(prev, rq);
3492 }
3493 }
3494
3495 cpu = smp_processor_id();
3496 if (unlikely(!rq->nr_running)) {
3497 idle_balance(cpu, rq);
3498 if (!rq->nr_running) {
3499 next = rq->idle;
3500 rq->expired_timestamp = 0;
3501 wake_sleeping_dependent(cpu);
3502 goto switch_tasks;
3503 }
3504 }
3505
3506 array = rq->active;
3507 if (unlikely(!array->nr_active)) {
3508 /*
3509 * Switch the active and expired arrays.
3510 */
3511 schedstat_inc(rq, sched_switch);
3512 rq->active = rq->expired;
3513 rq->expired = array;
3514 array = rq->active;
3515 rq->expired_timestamp = 0;
3516 rq->best_expired_prio = MAX_PRIO;
3517 }
3518
3519 idx = sched_find_first_bit(array->bitmap);
3520 queue = array->queue + idx;
3521 next = list_entry(queue->next, struct task_struct, run_list);
3522
3523 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3524 unsigned long long delta = now - next->timestamp;
3525 if (unlikely((long long)(now - next->timestamp) < 0))
3526 delta = 0;
3527
3528 if (next->sleep_type == SLEEP_INTERACTIVE)
3529 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3530
3531 array = next->array;
3532 new_prio = recalc_task_prio(next, next->timestamp + delta);
3533
3534 if (unlikely(next->prio != new_prio)) {
3535 dequeue_task(next, array);
3536 next->prio = new_prio;
3537 enqueue_task(next, array);
3538 }
3539 }
3540 next->sleep_type = SLEEP_NORMAL;
3541 if (dependent_sleeper(cpu, rq, next))
3542 next = rq->idle;
3543 switch_tasks:
3544 if (next == rq->idle)
3545 schedstat_inc(rq, sched_goidle);
3546 prefetch(next);
3547 prefetch_stack(next);
3548 clear_tsk_need_resched(prev);
3549 rcu_qsctr_inc(task_cpu(prev));
3550
3551 update_cpu_clock(prev, rq, now);
3552
3553 prev->sleep_avg -= run_time;
3554 if ((long)prev->sleep_avg <= 0)
3555 prev->sleep_avg = 0;
3556 prev->timestamp = prev->last_ran = now;
3557
3558 sched_info_switch(prev, next);
3559 if (likely(prev != next)) {
3560 next->timestamp = now;
3561 rq->nr_switches++;
3562 rq->curr = next;
3563 ++*switch_count;
3564
3565 prepare_task_switch(rq, next);
3566 prev = context_switch(rq, prev, next);
3567 barrier();
3568 /*
3569 * this_rq must be evaluated again because prev may have moved
3570 * CPUs since it called schedule(), thus the 'rq' on its stack
3571 * frame will be invalid.
3572 */
3573 finish_task_switch(this_rq(), prev);
3574 } else
3575 spin_unlock_irq(&rq->lock);
3576
3577 prev = current;
3578 if (unlikely(reacquire_kernel_lock(prev) < 0))
3579 goto need_resched_nonpreemptible;
3580 preempt_enable_no_resched();
3581 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3582 goto need_resched;
3583 }
3584 EXPORT_SYMBOL(schedule);
3585
3586 #ifdef CONFIG_PREEMPT
3587 /*
3588 * this is the entry point to schedule() from in-kernel preemption
3589 * off of preempt_enable. Kernel preemptions off return from interrupt
3590 * occur there and call schedule directly.
3591 */
3592 asmlinkage void __sched preempt_schedule(void)
3593 {
3594 struct thread_info *ti = current_thread_info();
3595 #ifdef CONFIG_PREEMPT_BKL
3596 struct task_struct *task = current;
3597 int saved_lock_depth;
3598 #endif
3599 /*
3600 * If there is a non-zero preempt_count or interrupts are disabled,
3601 * we do not want to preempt the current task. Just return..
3602 */
3603 if (likely(ti->preempt_count || irqs_disabled()))
3604 return;
3605
3606 need_resched:
3607 add_preempt_count(PREEMPT_ACTIVE);
3608 /*
3609 * We keep the big kernel semaphore locked, but we
3610 * clear ->lock_depth so that schedule() doesnt
3611 * auto-release the semaphore:
3612 */
3613 #ifdef CONFIG_PREEMPT_BKL
3614 saved_lock_depth = task->lock_depth;
3615 task->lock_depth = -1;
3616 #endif
3617 schedule();
3618 #ifdef CONFIG_PREEMPT_BKL
3619 task->lock_depth = saved_lock_depth;
3620 #endif
3621 sub_preempt_count(PREEMPT_ACTIVE);
3622
3623 /* we could miss a preemption opportunity between schedule and now */
3624 barrier();
3625 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3626 goto need_resched;
3627 }
3628 EXPORT_SYMBOL(preempt_schedule);
3629
3630 /*
3631 * this is the entry point to schedule() from kernel preemption
3632 * off of irq context.
3633 * Note, that this is called and return with irqs disabled. This will
3634 * protect us against recursive calling from irq.
3635 */
3636 asmlinkage void __sched preempt_schedule_irq(void)
3637 {
3638 struct thread_info *ti = current_thread_info();
3639 #ifdef CONFIG_PREEMPT_BKL
3640 struct task_struct *task = current;
3641 int saved_lock_depth;
3642 #endif
3643 /* Catch callers which need to be fixed */
3644 BUG_ON(ti->preempt_count || !irqs_disabled());
3645
3646 need_resched:
3647 add_preempt_count(PREEMPT_ACTIVE);
3648 /*
3649 * We keep the big kernel semaphore locked, but we
3650 * clear ->lock_depth so that schedule() doesnt
3651 * auto-release the semaphore:
3652 */
3653 #ifdef CONFIG_PREEMPT_BKL
3654 saved_lock_depth = task->lock_depth;
3655 task->lock_depth = -1;
3656 #endif
3657 local_irq_enable();
3658 schedule();
3659 local_irq_disable();
3660 #ifdef CONFIG_PREEMPT_BKL
3661 task->lock_depth = saved_lock_depth;
3662 #endif
3663 sub_preempt_count(PREEMPT_ACTIVE);
3664
3665 /* we could miss a preemption opportunity between schedule and now */
3666 barrier();
3667 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3668 goto need_resched;
3669 }
3670
3671 #endif /* CONFIG_PREEMPT */
3672
3673 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3674 void *key)
3675 {
3676 return try_to_wake_up(curr->private, mode, sync);
3677 }
3678 EXPORT_SYMBOL(default_wake_function);
3679
3680 /*
3681 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3682 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3683 * number) then we wake all the non-exclusive tasks and one exclusive task.
3684 *
3685 * There are circumstances in which we can try to wake a task which has already
3686 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3687 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3688 */
3689 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3690 int nr_exclusive, int sync, void *key)
3691 {
3692 struct list_head *tmp, *next;
3693
3694 list_for_each_safe(tmp, next, &q->task_list) {
3695 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3696 unsigned flags = curr->flags;
3697
3698 if (curr->func(curr, mode, sync, key) &&
3699 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3700 break;
3701 }
3702 }
3703
3704 /**
3705 * __wake_up - wake up threads blocked on a waitqueue.
3706 * @q: the waitqueue
3707 * @mode: which threads
3708 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3709 * @key: is directly passed to the wakeup function
3710 */
3711 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3712 int nr_exclusive, void *key)
3713 {
3714 unsigned long flags;
3715
3716 spin_lock_irqsave(&q->lock, flags);
3717 __wake_up_common(q, mode, nr_exclusive, 0, key);
3718 spin_unlock_irqrestore(&q->lock, flags);
3719 }
3720 EXPORT_SYMBOL(__wake_up);
3721
3722 /*
3723 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3724 */
3725 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3726 {
3727 __wake_up_common(q, mode, 1, 0, NULL);
3728 }
3729
3730 /**
3731 * __wake_up_sync - wake up threads blocked on a waitqueue.
3732 * @q: the waitqueue
3733 * @mode: which threads
3734 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3735 *
3736 * The sync wakeup differs that the waker knows that it will schedule
3737 * away soon, so while the target thread will be woken up, it will not
3738 * be migrated to another CPU - ie. the two threads are 'synchronized'
3739 * with each other. This can prevent needless bouncing between CPUs.
3740 *
3741 * On UP it can prevent extra preemption.
3742 */
3743 void fastcall
3744 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3745 {
3746 unsigned long flags;
3747 int sync = 1;
3748
3749 if (unlikely(!q))
3750 return;
3751
3752 if (unlikely(!nr_exclusive))
3753 sync = 0;
3754
3755 spin_lock_irqsave(&q->lock, flags);
3756 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3757 spin_unlock_irqrestore(&q->lock, flags);
3758 }
3759 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3760
3761 void fastcall complete(struct completion *x)
3762 {
3763 unsigned long flags;
3764
3765 spin_lock_irqsave(&x->wait.lock, flags);
3766 x->done++;
3767 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3768 1, 0, NULL);
3769 spin_unlock_irqrestore(&x->wait.lock, flags);
3770 }
3771 EXPORT_SYMBOL(complete);
3772
3773 void fastcall complete_all(struct completion *x)
3774 {
3775 unsigned long flags;
3776
3777 spin_lock_irqsave(&x->wait.lock, flags);
3778 x->done += UINT_MAX/2;
3779 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3780 0, 0, NULL);
3781 spin_unlock_irqrestore(&x->wait.lock, flags);
3782 }
3783 EXPORT_SYMBOL(complete_all);
3784
3785 void fastcall __sched wait_for_completion(struct completion *x)
3786 {
3787 might_sleep();
3788
3789 spin_lock_irq(&x->wait.lock);
3790 if (!x->done) {
3791 DECLARE_WAITQUEUE(wait, current);
3792
3793 wait.flags |= WQ_FLAG_EXCLUSIVE;
3794 __add_wait_queue_tail(&x->wait, &wait);
3795 do {
3796 __set_current_state(TASK_UNINTERRUPTIBLE);
3797 spin_unlock_irq(&x->wait.lock);
3798 schedule();
3799 spin_lock_irq(&x->wait.lock);
3800 } while (!x->done);
3801 __remove_wait_queue(&x->wait, &wait);
3802 }
3803 x->done--;
3804 spin_unlock_irq(&x->wait.lock);
3805 }
3806 EXPORT_SYMBOL(wait_for_completion);
3807
3808 unsigned long fastcall __sched
3809 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3810 {
3811 might_sleep();
3812
3813 spin_lock_irq(&x->wait.lock);
3814 if (!x->done) {
3815 DECLARE_WAITQUEUE(wait, current);
3816
3817 wait.flags |= WQ_FLAG_EXCLUSIVE;
3818 __add_wait_queue_tail(&x->wait, &wait);
3819 do {
3820 __set_current_state(TASK_UNINTERRUPTIBLE);
3821 spin_unlock_irq(&x->wait.lock);
3822 timeout = schedule_timeout(timeout);
3823 spin_lock_irq(&x->wait.lock);
3824 if (!timeout) {
3825 __remove_wait_queue(&x->wait, &wait);
3826 goto out;
3827 }
3828 } while (!x->done);
3829 __remove_wait_queue(&x->wait, &wait);
3830 }
3831 x->done--;
3832 out:
3833 spin_unlock_irq(&x->wait.lock);
3834 return timeout;
3835 }
3836 EXPORT_SYMBOL(wait_for_completion_timeout);
3837
3838 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3839 {
3840 int ret = 0;
3841
3842 might_sleep();
3843
3844 spin_lock_irq(&x->wait.lock);
3845 if (!x->done) {
3846 DECLARE_WAITQUEUE(wait, current);
3847
3848 wait.flags |= WQ_FLAG_EXCLUSIVE;
3849 __add_wait_queue_tail(&x->wait, &wait);
3850 do {
3851 if (signal_pending(current)) {
3852 ret = -ERESTARTSYS;
3853 __remove_wait_queue(&x->wait, &wait);
3854 goto out;
3855 }
3856 __set_current_state(TASK_INTERRUPTIBLE);
3857 spin_unlock_irq(&x->wait.lock);
3858 schedule();
3859 spin_lock_irq(&x->wait.lock);
3860 } while (!x->done);
3861 __remove_wait_queue(&x->wait, &wait);
3862 }
3863 x->done--;
3864 out:
3865 spin_unlock_irq(&x->wait.lock);
3866
3867 return ret;
3868 }
3869 EXPORT_SYMBOL(wait_for_completion_interruptible);
3870
3871 unsigned long fastcall __sched
3872 wait_for_completion_interruptible_timeout(struct completion *x,
3873 unsigned long timeout)
3874 {
3875 might_sleep();
3876
3877 spin_lock_irq(&x->wait.lock);
3878 if (!x->done) {
3879 DECLARE_WAITQUEUE(wait, current);
3880
3881 wait.flags |= WQ_FLAG_EXCLUSIVE;
3882 __add_wait_queue_tail(&x->wait, &wait);
3883 do {
3884 if (signal_pending(current)) {
3885 timeout = -ERESTARTSYS;
3886 __remove_wait_queue(&x->wait, &wait);
3887 goto out;
3888 }
3889 __set_current_state(TASK_INTERRUPTIBLE);
3890 spin_unlock_irq(&x->wait.lock);
3891 timeout = schedule_timeout(timeout);
3892 spin_lock_irq(&x->wait.lock);
3893 if (!timeout) {
3894 __remove_wait_queue(&x->wait, &wait);
3895 goto out;
3896 }
3897 } while (!x->done);
3898 __remove_wait_queue(&x->wait, &wait);
3899 }
3900 x->done--;
3901 out:
3902 spin_unlock_irq(&x->wait.lock);
3903 return timeout;
3904 }
3905 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3906
3907
3908 #define SLEEP_ON_VAR \
3909 unsigned long flags; \
3910 wait_queue_t wait; \
3911 init_waitqueue_entry(&wait, current);
3912
3913 #define SLEEP_ON_HEAD \
3914 spin_lock_irqsave(&q->lock,flags); \
3915 __add_wait_queue(q, &wait); \
3916 spin_unlock(&q->lock);
3917
3918 #define SLEEP_ON_TAIL \
3919 spin_lock_irq(&q->lock); \
3920 __remove_wait_queue(q, &wait); \
3921 spin_unlock_irqrestore(&q->lock, flags);
3922
3923 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3924 {
3925 SLEEP_ON_VAR
3926
3927 current->state = TASK_INTERRUPTIBLE;
3928
3929 SLEEP_ON_HEAD
3930 schedule();
3931 SLEEP_ON_TAIL
3932 }
3933 EXPORT_SYMBOL(interruptible_sleep_on);
3934
3935 long fastcall __sched
3936 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3937 {
3938 SLEEP_ON_VAR
3939
3940 current->state = TASK_INTERRUPTIBLE;
3941
3942 SLEEP_ON_HEAD
3943 timeout = schedule_timeout(timeout);
3944 SLEEP_ON_TAIL
3945
3946 return timeout;
3947 }
3948 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3949
3950 void fastcall __sched sleep_on(wait_queue_head_t *q)
3951 {
3952 SLEEP_ON_VAR
3953
3954 current->state = TASK_UNINTERRUPTIBLE;
3955
3956 SLEEP_ON_HEAD
3957 schedule();
3958 SLEEP_ON_TAIL
3959 }
3960 EXPORT_SYMBOL(sleep_on);
3961
3962 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3963 {
3964 SLEEP_ON_VAR
3965
3966 current->state = TASK_UNINTERRUPTIBLE;
3967
3968 SLEEP_ON_HEAD
3969 timeout = schedule_timeout(timeout);
3970 SLEEP_ON_TAIL
3971
3972 return timeout;
3973 }
3974
3975 EXPORT_SYMBOL(sleep_on_timeout);
3976
3977 #ifdef CONFIG_RT_MUTEXES
3978
3979 /*
3980 * rt_mutex_setprio - set the current priority of a task
3981 * @p: task
3982 * @prio: prio value (kernel-internal form)
3983 *
3984 * This function changes the 'effective' priority of a task. It does
3985 * not touch ->normal_prio like __setscheduler().
3986 *
3987 * Used by the rt_mutex code to implement priority inheritance logic.
3988 */
3989 void rt_mutex_setprio(struct task_struct *p, int prio)
3990 {
3991 struct prio_array *array;
3992 unsigned long flags;
3993 struct rq *rq;
3994 int oldprio;
3995
3996 BUG_ON(prio < 0 || prio > MAX_PRIO);
3997
3998 rq = task_rq_lock(p, &flags);
3999
4000 oldprio = p->prio;
4001 array = p->array;
4002 if (array)
4003 dequeue_task(p, array);
4004 p->prio = prio;
4005
4006 if (array) {
4007 /*
4008 * If changing to an RT priority then queue it
4009 * in the active array!
4010 */
4011 if (rt_task(p))
4012 array = rq->active;
4013 enqueue_task(p, array);
4014 /*
4015 * Reschedule if we are currently running on this runqueue and
4016 * our priority decreased, or if we are not currently running on
4017 * this runqueue and our priority is higher than the current's
4018 */
4019 if (task_running(rq, p)) {
4020 if (p->prio > oldprio)
4021 resched_task(rq->curr);
4022 } else if (TASK_PREEMPTS_CURR(p, rq))
4023 resched_task(rq->curr);
4024 }
4025 task_rq_unlock(rq, &flags);
4026 }
4027
4028 #endif
4029
4030 void set_user_nice(struct task_struct *p, long nice)
4031 {
4032 struct prio_array *array;
4033 int old_prio, delta;
4034 unsigned long flags;
4035 struct rq *rq;
4036
4037 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4038 return;
4039 /*
4040 * We have to be careful, if called from sys_setpriority(),
4041 * the task might be in the middle of scheduling on another CPU.
4042 */
4043 rq = task_rq_lock(p, &flags);
4044 /*
4045 * The RT priorities are set via sched_setscheduler(), but we still
4046 * allow the 'normal' nice value to be set - but as expected
4047 * it wont have any effect on scheduling until the task is
4048 * not SCHED_NORMAL/SCHED_BATCH:
4049 */
4050 if (has_rt_policy(p)) {
4051 p->static_prio = NICE_TO_PRIO(nice);
4052 goto out_unlock;
4053 }
4054 array = p->array;
4055 if (array) {
4056 dequeue_task(p, array);
4057 dec_raw_weighted_load(rq, p);
4058 }
4059
4060 p->static_prio = NICE_TO_PRIO(nice);
4061 set_load_weight(p);
4062 old_prio = p->prio;
4063 p->prio = effective_prio(p);
4064 delta = p->prio - old_prio;
4065
4066 if (array) {
4067 enqueue_task(p, array);
4068 inc_raw_weighted_load(rq, p);
4069 /*
4070 * If the task increased its priority or is running and
4071 * lowered its priority, then reschedule its CPU:
4072 */
4073 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4074 resched_task(rq->curr);
4075 }
4076 out_unlock:
4077 task_rq_unlock(rq, &flags);
4078 }
4079 EXPORT_SYMBOL(set_user_nice);
4080
4081 /*
4082 * can_nice - check if a task can reduce its nice value
4083 * @p: task
4084 * @nice: nice value
4085 */
4086 int can_nice(const struct task_struct *p, const int nice)
4087 {
4088 /* convert nice value [19,-20] to rlimit style value [1,40] */
4089 int nice_rlim = 20 - nice;
4090
4091 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4092 capable(CAP_SYS_NICE));
4093 }
4094
4095 #ifdef __ARCH_WANT_SYS_NICE
4096
4097 /*
4098 * sys_nice - change the priority of the current process.
4099 * @increment: priority increment
4100 *
4101 * sys_setpriority is a more generic, but much slower function that
4102 * does similar things.
4103 */
4104 asmlinkage long sys_nice(int increment)
4105 {
4106 long nice, retval;
4107
4108 /*
4109 * Setpriority might change our priority at the same moment.
4110 * We don't have to worry. Conceptually one call occurs first
4111 * and we have a single winner.
4112 */
4113 if (increment < -40)
4114 increment = -40;
4115 if (increment > 40)
4116 increment = 40;
4117
4118 nice = PRIO_TO_NICE(current->static_prio) + increment;
4119 if (nice < -20)
4120 nice = -20;
4121 if (nice > 19)
4122 nice = 19;
4123
4124 if (increment < 0 && !can_nice(current, nice))
4125 return -EPERM;
4126
4127 retval = security_task_setnice(current, nice);
4128 if (retval)
4129 return retval;
4130
4131 set_user_nice(current, nice);
4132 return 0;
4133 }
4134
4135 #endif
4136
4137 /**
4138 * task_prio - return the priority value of a given task.
4139 * @p: the task in question.
4140 *
4141 * This is the priority value as seen by users in /proc.
4142 * RT tasks are offset by -200. Normal tasks are centered
4143 * around 0, value goes from -16 to +15.
4144 */
4145 int task_prio(const struct task_struct *p)
4146 {
4147 return p->prio - MAX_RT_PRIO;
4148 }
4149
4150 /**
4151 * task_nice - return the nice value of a given task.
4152 * @p: the task in question.
4153 */
4154 int task_nice(const struct task_struct *p)
4155 {
4156 return TASK_NICE(p);
4157 }
4158 EXPORT_SYMBOL_GPL(task_nice);
4159
4160 /**
4161 * idle_cpu - is a given cpu idle currently?
4162 * @cpu: the processor in question.
4163 */
4164 int idle_cpu(int cpu)
4165 {
4166 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4167 }
4168
4169 /**
4170 * idle_task - return the idle task for a given cpu.
4171 * @cpu: the processor in question.
4172 */
4173 struct task_struct *idle_task(int cpu)
4174 {
4175 return cpu_rq(cpu)->idle;
4176 }
4177
4178 /**
4179 * find_process_by_pid - find a process with a matching PID value.
4180 * @pid: the pid in question.
4181 */
4182 static inline struct task_struct *find_process_by_pid(pid_t pid)
4183 {
4184 return pid ? find_task_by_pid(pid) : current;
4185 }
4186
4187 /* Actually do priority change: must hold rq lock. */
4188 static void __setscheduler(struct task_struct *p, int policy, int prio)
4189 {
4190 BUG_ON(p->array);
4191
4192 p->policy = policy;
4193 p->rt_priority = prio;
4194 p->normal_prio = normal_prio(p);
4195 /* we are holding p->pi_lock already */
4196 p->prio = rt_mutex_getprio(p);
4197 /*
4198 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4199 */
4200 if (policy == SCHED_BATCH)
4201 p->sleep_avg = 0;
4202 set_load_weight(p);
4203 }
4204
4205 /**
4206 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4207 * @p: the task in question.
4208 * @policy: new policy.
4209 * @param: structure containing the new RT priority.
4210 *
4211 * NOTE that the task may be already dead.
4212 */
4213 int sched_setscheduler(struct task_struct *p, int policy,
4214 struct sched_param *param)
4215 {
4216 int retval, oldprio, oldpolicy = -1;
4217 struct prio_array *array;
4218 unsigned long flags;
4219 struct rq *rq;
4220
4221 /* may grab non-irq protected spin_locks */
4222 BUG_ON(in_interrupt());
4223 recheck:
4224 /* double check policy once rq lock held */
4225 if (policy < 0)
4226 policy = oldpolicy = p->policy;
4227 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4228 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4229 return -EINVAL;
4230 /*
4231 * Valid priorities for SCHED_FIFO and SCHED_RR are
4232 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4233 * SCHED_BATCH is 0.
4234 */
4235 if (param->sched_priority < 0 ||
4236 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4237 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4238 return -EINVAL;
4239 if (is_rt_policy(policy) != (param->sched_priority != 0))
4240 return -EINVAL;
4241
4242 /*
4243 * Allow unprivileged RT tasks to decrease priority:
4244 */
4245 if (!capable(CAP_SYS_NICE)) {
4246 if (is_rt_policy(policy)) {
4247 unsigned long rlim_rtprio;
4248 unsigned long flags;
4249
4250 if (!lock_task_sighand(p, &flags))
4251 return -ESRCH;
4252 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4253 unlock_task_sighand(p, &flags);
4254
4255 /* can't set/change the rt policy */
4256 if (policy != p->policy && !rlim_rtprio)
4257 return -EPERM;
4258
4259 /* can't increase priority */
4260 if (param->sched_priority > p->rt_priority &&
4261 param->sched_priority > rlim_rtprio)
4262 return -EPERM;
4263 }
4264
4265 /* can't change other user's priorities */
4266 if ((current->euid != p->euid) &&
4267 (current->euid != p->uid))
4268 return -EPERM;
4269 }
4270
4271 retval = security_task_setscheduler(p, policy, param);
4272 if (retval)
4273 return retval;
4274 /*
4275 * make sure no PI-waiters arrive (or leave) while we are
4276 * changing the priority of the task:
4277 */
4278 spin_lock_irqsave(&p->pi_lock, flags);
4279 /*
4280 * To be able to change p->policy safely, the apropriate
4281 * runqueue lock must be held.
4282 */
4283 rq = __task_rq_lock(p);
4284 /* recheck policy now with rq lock held */
4285 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4286 policy = oldpolicy = -1;
4287 __task_rq_unlock(rq);
4288 spin_unlock_irqrestore(&p->pi_lock, flags);
4289 goto recheck;
4290 }
4291 array = p->array;
4292 if (array)
4293 deactivate_task(p, rq);
4294 oldprio = p->prio;
4295 __setscheduler(p, policy, param->sched_priority);
4296 if (array) {
4297 __activate_task(p, rq);
4298 /*
4299 * Reschedule if we are currently running on this runqueue and
4300 * our priority decreased, or if we are not currently running on
4301 * this runqueue and our priority is higher than the current's
4302 */
4303 if (task_running(rq, p)) {
4304 if (p->prio > oldprio)
4305 resched_task(rq->curr);
4306 } else if (TASK_PREEMPTS_CURR(p, rq))
4307 resched_task(rq->curr);
4308 }
4309 __task_rq_unlock(rq);
4310 spin_unlock_irqrestore(&p->pi_lock, flags);
4311
4312 rt_mutex_adjust_pi(p);
4313
4314 return 0;
4315 }
4316 EXPORT_SYMBOL_GPL(sched_setscheduler);
4317
4318 static int
4319 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4320 {
4321 struct sched_param lparam;
4322 struct task_struct *p;
4323 int retval;
4324
4325 if (!param || pid < 0)
4326 return -EINVAL;
4327 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4328 return -EFAULT;
4329
4330 rcu_read_lock();
4331 retval = -ESRCH;
4332 p = find_process_by_pid(pid);
4333 if (p != NULL)
4334 retval = sched_setscheduler(p, policy, &lparam);
4335 rcu_read_unlock();
4336
4337 return retval;
4338 }
4339
4340 /**
4341 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4342 * @pid: the pid in question.
4343 * @policy: new policy.
4344 * @param: structure containing the new RT priority.
4345 */
4346 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4347 struct sched_param __user *param)
4348 {
4349 /* negative values for policy are not valid */
4350 if (policy < 0)
4351 return -EINVAL;
4352
4353 return do_sched_setscheduler(pid, policy, param);
4354 }
4355
4356 /**
4357 * sys_sched_setparam - set/change the RT priority of a thread
4358 * @pid: the pid in question.
4359 * @param: structure containing the new RT priority.
4360 */
4361 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4362 {
4363 return do_sched_setscheduler(pid, -1, param);
4364 }
4365
4366 /**
4367 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4368 * @pid: the pid in question.
4369 */
4370 asmlinkage long sys_sched_getscheduler(pid_t pid)
4371 {
4372 struct task_struct *p;
4373 int retval = -EINVAL;
4374
4375 if (pid < 0)
4376 goto out_nounlock;
4377
4378 retval = -ESRCH;
4379 read_lock(&tasklist_lock);
4380 p = find_process_by_pid(pid);
4381 if (p) {
4382 retval = security_task_getscheduler(p);
4383 if (!retval)
4384 retval = p->policy;
4385 }
4386 read_unlock(&tasklist_lock);
4387
4388 out_nounlock:
4389 return retval;
4390 }
4391
4392 /**
4393 * sys_sched_getscheduler - get the RT priority of a thread
4394 * @pid: the pid in question.
4395 * @param: structure containing the RT priority.
4396 */
4397 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4398 {
4399 struct sched_param lp;
4400 struct task_struct *p;
4401 int retval = -EINVAL;
4402
4403 if (!param || pid < 0)
4404 goto out_nounlock;
4405
4406 read_lock(&tasklist_lock);
4407 p = find_process_by_pid(pid);
4408 retval = -ESRCH;
4409 if (!p)
4410 goto out_unlock;
4411
4412 retval = security_task_getscheduler(p);
4413 if (retval)
4414 goto out_unlock;
4415
4416 lp.sched_priority = p->rt_priority;
4417 read_unlock(&tasklist_lock);
4418
4419 /*
4420 * This one might sleep, we cannot do it with a spinlock held ...
4421 */
4422 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4423
4424 out_nounlock:
4425 return retval;
4426
4427 out_unlock:
4428 read_unlock(&tasklist_lock);
4429 return retval;
4430 }
4431
4432 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4433 {
4434 cpumask_t cpus_allowed;
4435 struct task_struct *p;
4436 int retval;
4437
4438 lock_cpu_hotplug();
4439 read_lock(&tasklist_lock);
4440
4441 p = find_process_by_pid(pid);
4442 if (!p) {
4443 read_unlock(&tasklist_lock);
4444 unlock_cpu_hotplug();
4445 return -ESRCH;
4446 }
4447
4448 /*
4449 * It is not safe to call set_cpus_allowed with the
4450 * tasklist_lock held. We will bump the task_struct's
4451 * usage count and then drop tasklist_lock.
4452 */
4453 get_task_struct(p);
4454 read_unlock(&tasklist_lock);
4455
4456 retval = -EPERM;
4457 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4458 !capable(CAP_SYS_NICE))
4459 goto out_unlock;
4460
4461 retval = security_task_setscheduler(p, 0, NULL);
4462 if (retval)
4463 goto out_unlock;
4464
4465 cpus_allowed = cpuset_cpus_allowed(p);
4466 cpus_and(new_mask, new_mask, cpus_allowed);
4467 retval = set_cpus_allowed(p, new_mask);
4468
4469 out_unlock:
4470 put_task_struct(p);
4471 unlock_cpu_hotplug();
4472 return retval;
4473 }
4474
4475 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4476 cpumask_t *new_mask)
4477 {
4478 if (len < sizeof(cpumask_t)) {
4479 memset(new_mask, 0, sizeof(cpumask_t));
4480 } else if (len > sizeof(cpumask_t)) {
4481 len = sizeof(cpumask_t);
4482 }
4483 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4484 }
4485
4486 /**
4487 * sys_sched_setaffinity - set the cpu affinity of a process
4488 * @pid: pid of the process
4489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4490 * @user_mask_ptr: user-space pointer to the new cpu mask
4491 */
4492 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4493 unsigned long __user *user_mask_ptr)
4494 {
4495 cpumask_t new_mask;
4496 int retval;
4497
4498 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4499 if (retval)
4500 return retval;
4501
4502 return sched_setaffinity(pid, new_mask);
4503 }
4504
4505 /*
4506 * Represents all cpu's present in the system
4507 * In systems capable of hotplug, this map could dynamically grow
4508 * as new cpu's are detected in the system via any platform specific
4509 * method, such as ACPI for e.g.
4510 */
4511
4512 cpumask_t cpu_present_map __read_mostly;
4513 EXPORT_SYMBOL(cpu_present_map);
4514
4515 #ifndef CONFIG_SMP
4516 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4517 EXPORT_SYMBOL(cpu_online_map);
4518
4519 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4520 EXPORT_SYMBOL(cpu_possible_map);
4521 #endif
4522
4523 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4524 {
4525 struct task_struct *p;
4526 int retval;
4527
4528 lock_cpu_hotplug();
4529 read_lock(&tasklist_lock);
4530
4531 retval = -ESRCH;
4532 p = find_process_by_pid(pid);
4533 if (!p)
4534 goto out_unlock;
4535
4536 retval = security_task_getscheduler(p);
4537 if (retval)
4538 goto out_unlock;
4539
4540 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4541
4542 out_unlock:
4543 read_unlock(&tasklist_lock);
4544 unlock_cpu_hotplug();
4545 if (retval)
4546 return retval;
4547
4548 return 0;
4549 }
4550
4551 /**
4552 * sys_sched_getaffinity - get the cpu affinity of a process
4553 * @pid: pid of the process
4554 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4555 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4556 */
4557 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4558 unsigned long __user *user_mask_ptr)
4559 {
4560 int ret;
4561 cpumask_t mask;
4562
4563 if (len < sizeof(cpumask_t))
4564 return -EINVAL;
4565
4566 ret = sched_getaffinity(pid, &mask);
4567 if (ret < 0)
4568 return ret;
4569
4570 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4571 return -EFAULT;
4572
4573 return sizeof(cpumask_t);
4574 }
4575
4576 /**
4577 * sys_sched_yield - yield the current processor to other threads.
4578 *
4579 * This function yields the current CPU by moving the calling thread
4580 * to the expired array. If there are no other threads running on this
4581 * CPU then this function will return.
4582 */
4583 asmlinkage long sys_sched_yield(void)
4584 {
4585 struct rq *rq = this_rq_lock();
4586 struct prio_array *array = current->array, *target = rq->expired;
4587
4588 schedstat_inc(rq, yld_cnt);
4589 /*
4590 * We implement yielding by moving the task into the expired
4591 * queue.
4592 *
4593 * (special rule: RT tasks will just roundrobin in the active
4594 * array.)
4595 */
4596 if (rt_task(current))
4597 target = rq->active;
4598
4599 if (array->nr_active == 1) {
4600 schedstat_inc(rq, yld_act_empty);
4601 if (!rq->expired->nr_active)
4602 schedstat_inc(rq, yld_both_empty);
4603 } else if (!rq->expired->nr_active)
4604 schedstat_inc(rq, yld_exp_empty);
4605
4606 if (array != target) {
4607 dequeue_task(current, array);
4608 enqueue_task(current, target);
4609 } else
4610 /*
4611 * requeue_task is cheaper so perform that if possible.
4612 */
4613 requeue_task(current, array);
4614
4615 /*
4616 * Since we are going to call schedule() anyway, there's
4617 * no need to preempt or enable interrupts:
4618 */
4619 __release(rq->lock);
4620 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4621 _raw_spin_unlock(&rq->lock);
4622 preempt_enable_no_resched();
4623
4624 schedule();
4625
4626 return 0;
4627 }
4628
4629 static void __cond_resched(void)
4630 {
4631 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4632 __might_sleep(__FILE__, __LINE__);
4633 #endif
4634 /*
4635 * The BKS might be reacquired before we have dropped
4636 * PREEMPT_ACTIVE, which could trigger a second
4637 * cond_resched() call.
4638 */
4639 do {
4640 add_preempt_count(PREEMPT_ACTIVE);
4641 schedule();
4642 sub_preempt_count(PREEMPT_ACTIVE);
4643 } while (need_resched());
4644 }
4645
4646 int __sched cond_resched(void)
4647 {
4648 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4649 system_state == SYSTEM_RUNNING) {
4650 __cond_resched();
4651 return 1;
4652 }
4653 return 0;
4654 }
4655 EXPORT_SYMBOL(cond_resched);
4656
4657 /*
4658 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4659 * call schedule, and on return reacquire the lock.
4660 *
4661 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4662 * operations here to prevent schedule() from being called twice (once via
4663 * spin_unlock(), once by hand).
4664 */
4665 int cond_resched_lock(spinlock_t *lock)
4666 {
4667 int ret = 0;
4668
4669 if (need_lockbreak(lock)) {
4670 spin_unlock(lock);
4671 cpu_relax();
4672 ret = 1;
4673 spin_lock(lock);
4674 }
4675 if (need_resched() && system_state == SYSTEM_RUNNING) {
4676 spin_release(&lock->dep_map, 1, _THIS_IP_);
4677 _raw_spin_unlock(lock);
4678 preempt_enable_no_resched();
4679 __cond_resched();
4680 ret = 1;
4681 spin_lock(lock);
4682 }
4683 return ret;
4684 }
4685 EXPORT_SYMBOL(cond_resched_lock);
4686
4687 int __sched cond_resched_softirq(void)
4688 {
4689 BUG_ON(!in_softirq());
4690
4691 if (need_resched() && system_state == SYSTEM_RUNNING) {
4692 raw_local_irq_disable();
4693 _local_bh_enable();
4694 raw_local_irq_enable();
4695 __cond_resched();
4696 local_bh_disable();
4697 return 1;
4698 }
4699 return 0;
4700 }
4701 EXPORT_SYMBOL(cond_resched_softirq);
4702
4703 /**
4704 * yield - yield the current processor to other threads.
4705 *
4706 * This is a shortcut for kernel-space yielding - it marks the
4707 * thread runnable and calls sys_sched_yield().
4708 */
4709 void __sched yield(void)
4710 {
4711 set_current_state(TASK_RUNNING);
4712 sys_sched_yield();
4713 }
4714 EXPORT_SYMBOL(yield);
4715
4716 /*
4717 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4718 * that process accounting knows that this is a task in IO wait state.
4719 *
4720 * But don't do that if it is a deliberate, throttling IO wait (this task
4721 * has set its backing_dev_info: the queue against which it should throttle)
4722 */
4723 void __sched io_schedule(void)
4724 {
4725 struct rq *rq = &__raw_get_cpu_var(runqueues);
4726
4727 delayacct_blkio_start();
4728 atomic_inc(&rq->nr_iowait);
4729 schedule();
4730 atomic_dec(&rq->nr_iowait);
4731 delayacct_blkio_end();
4732 }
4733 EXPORT_SYMBOL(io_schedule);
4734
4735 long __sched io_schedule_timeout(long timeout)
4736 {
4737 struct rq *rq = &__raw_get_cpu_var(runqueues);
4738 long ret;
4739
4740 delayacct_blkio_start();
4741 atomic_inc(&rq->nr_iowait);
4742 ret = schedule_timeout(timeout);
4743 atomic_dec(&rq->nr_iowait);
4744 delayacct_blkio_end();
4745 return ret;
4746 }
4747
4748 /**
4749 * sys_sched_get_priority_max - return maximum RT priority.
4750 * @policy: scheduling class.
4751 *
4752 * this syscall returns the maximum rt_priority that can be used
4753 * by a given scheduling class.
4754 */
4755 asmlinkage long sys_sched_get_priority_max(int policy)
4756 {
4757 int ret = -EINVAL;
4758
4759 switch (policy) {
4760 case SCHED_FIFO:
4761 case SCHED_RR:
4762 ret = MAX_USER_RT_PRIO-1;
4763 break;
4764 case SCHED_NORMAL:
4765 case SCHED_BATCH:
4766 ret = 0;
4767 break;
4768 }
4769 return ret;
4770 }
4771
4772 /**
4773 * sys_sched_get_priority_min - return minimum RT priority.
4774 * @policy: scheduling class.
4775 *
4776 * this syscall returns the minimum rt_priority that can be used
4777 * by a given scheduling class.
4778 */
4779 asmlinkage long sys_sched_get_priority_min(int policy)
4780 {
4781 int ret = -EINVAL;
4782
4783 switch (policy) {
4784 case SCHED_FIFO:
4785 case SCHED_RR:
4786 ret = 1;
4787 break;
4788 case SCHED_NORMAL:
4789 case SCHED_BATCH:
4790 ret = 0;
4791 }
4792 return ret;
4793 }
4794
4795 /**
4796 * sys_sched_rr_get_interval - return the default timeslice of a process.
4797 * @pid: pid of the process.
4798 * @interval: userspace pointer to the timeslice value.
4799 *
4800 * this syscall writes the default timeslice value of a given process
4801 * into the user-space timespec buffer. A value of '0' means infinity.
4802 */
4803 asmlinkage
4804 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4805 {
4806 struct task_struct *p;
4807 int retval = -EINVAL;
4808 struct timespec t;
4809
4810 if (pid < 0)
4811 goto out_nounlock;
4812
4813 retval = -ESRCH;
4814 read_lock(&tasklist_lock);
4815 p = find_process_by_pid(pid);
4816 if (!p)
4817 goto out_unlock;
4818
4819 retval = security_task_getscheduler(p);
4820 if (retval)
4821 goto out_unlock;
4822
4823 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4824 0 : task_timeslice(p), &t);
4825 read_unlock(&tasklist_lock);
4826 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4827 out_nounlock:
4828 return retval;
4829 out_unlock:
4830 read_unlock(&tasklist_lock);
4831 return retval;
4832 }
4833
4834 static inline struct task_struct *eldest_child(struct task_struct *p)
4835 {
4836 if (list_empty(&p->children))
4837 return NULL;
4838 return list_entry(p->children.next,struct task_struct,sibling);
4839 }
4840
4841 static inline struct task_struct *older_sibling(struct task_struct *p)
4842 {
4843 if (p->sibling.prev==&p->parent->children)
4844 return NULL;
4845 return list_entry(p->sibling.prev,struct task_struct,sibling);
4846 }
4847
4848 static inline struct task_struct *younger_sibling(struct task_struct *p)
4849 {
4850 if (p->sibling.next==&p->parent->children)
4851 return NULL;
4852 return list_entry(p->sibling.next,struct task_struct,sibling);
4853 }
4854
4855 static const char stat_nam[] = "RSDTtZX";
4856
4857 static void show_task(struct task_struct *p)
4858 {
4859 struct task_struct *relative;
4860 unsigned long free = 0;
4861 unsigned state;
4862
4863 state = p->state ? __ffs(p->state) + 1 : 0;
4864 printk("%-13.13s %c", p->comm,
4865 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4866 #if (BITS_PER_LONG == 32)
4867 if (state == TASK_RUNNING)
4868 printk(" running ");
4869 else
4870 printk(" %08lX ", thread_saved_pc(p));
4871 #else
4872 if (state == TASK_RUNNING)
4873 printk(" running task ");
4874 else
4875 printk(" %016lx ", thread_saved_pc(p));
4876 #endif
4877 #ifdef CONFIG_DEBUG_STACK_USAGE
4878 {
4879 unsigned long *n = end_of_stack(p);
4880 while (!*n)
4881 n++;
4882 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4883 }
4884 #endif
4885 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4886 if ((relative = eldest_child(p)))
4887 printk("%5d ", relative->pid);
4888 else
4889 printk(" ");
4890 if ((relative = younger_sibling(p)))
4891 printk("%7d", relative->pid);
4892 else
4893 printk(" ");
4894 if ((relative = older_sibling(p)))
4895 printk(" %5d", relative->pid);
4896 else
4897 printk(" ");
4898 if (!p->mm)
4899 printk(" (L-TLB)\n");
4900 else
4901 printk(" (NOTLB)\n");
4902
4903 if (state != TASK_RUNNING)
4904 show_stack(p, NULL);
4905 }
4906
4907 void show_state_filter(unsigned long state_filter)
4908 {
4909 struct task_struct *g, *p;
4910
4911 #if (BITS_PER_LONG == 32)
4912 printk("\n"
4913 " free sibling\n");
4914 printk(" task PC stack pid father child younger older\n");
4915 #else
4916 printk("\n"
4917 " free sibling\n");
4918 printk(" task PC stack pid father child younger older\n");
4919 #endif
4920 read_lock(&tasklist_lock);
4921 do_each_thread(g, p) {
4922 /*
4923 * reset the NMI-timeout, listing all files on a slow
4924 * console might take alot of time:
4925 */
4926 touch_nmi_watchdog();
4927 if (p->state & state_filter)
4928 show_task(p);
4929 } while_each_thread(g, p);
4930
4931 read_unlock(&tasklist_lock);
4932 /*
4933 * Only show locks if all tasks are dumped:
4934 */
4935 if (state_filter == -1)
4936 debug_show_all_locks();
4937 }
4938
4939 /**
4940 * init_idle - set up an idle thread for a given CPU
4941 * @idle: task in question
4942 * @cpu: cpu the idle task belongs to
4943 *
4944 * NOTE: this function does not set the idle thread's NEED_RESCHED
4945 * flag, to make booting more robust.
4946 */
4947 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4948 {
4949 struct rq *rq = cpu_rq(cpu);
4950 unsigned long flags;
4951
4952 idle->timestamp = sched_clock();
4953 idle->sleep_avg = 0;
4954 idle->array = NULL;
4955 idle->prio = idle->normal_prio = MAX_PRIO;
4956 idle->state = TASK_RUNNING;
4957 idle->cpus_allowed = cpumask_of_cpu(cpu);
4958 set_task_cpu(idle, cpu);
4959
4960 spin_lock_irqsave(&rq->lock, flags);
4961 rq->curr = rq->idle = idle;
4962 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4963 idle->oncpu = 1;
4964 #endif
4965 spin_unlock_irqrestore(&rq->lock, flags);
4966
4967 /* Set the preempt count _outside_ the spinlocks! */
4968 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4969 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4970 #else
4971 task_thread_info(idle)->preempt_count = 0;
4972 #endif
4973 }
4974
4975 /*
4976 * In a system that switches off the HZ timer nohz_cpu_mask
4977 * indicates which cpus entered this state. This is used
4978 * in the rcu update to wait only for active cpus. For system
4979 * which do not switch off the HZ timer nohz_cpu_mask should
4980 * always be CPU_MASK_NONE.
4981 */
4982 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4983
4984 #ifdef CONFIG_SMP
4985 /*
4986 * This is how migration works:
4987 *
4988 * 1) we queue a struct migration_req structure in the source CPU's
4989 * runqueue and wake up that CPU's migration thread.
4990 * 2) we down() the locked semaphore => thread blocks.
4991 * 3) migration thread wakes up (implicitly it forces the migrated
4992 * thread off the CPU)
4993 * 4) it gets the migration request and checks whether the migrated
4994 * task is still in the wrong runqueue.
4995 * 5) if it's in the wrong runqueue then the migration thread removes
4996 * it and puts it into the right queue.
4997 * 6) migration thread up()s the semaphore.
4998 * 7) we wake up and the migration is done.
4999 */
5000
5001 /*
5002 * Change a given task's CPU affinity. Migrate the thread to a
5003 * proper CPU and schedule it away if the CPU it's executing on
5004 * is removed from the allowed bitmask.
5005 *
5006 * NOTE: the caller must have a valid reference to the task, the
5007 * task must not exit() & deallocate itself prematurely. The
5008 * call is not atomic; no spinlocks may be held.
5009 */
5010 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5011 {
5012 struct migration_req req;
5013 unsigned long flags;
5014 struct rq *rq;
5015 int ret = 0;
5016
5017 rq = task_rq_lock(p, &flags);
5018 if (!cpus_intersects(new_mask, cpu_online_map)) {
5019 ret = -EINVAL;
5020 goto out;
5021 }
5022
5023 p->cpus_allowed = new_mask;
5024 /* Can the task run on the task's current CPU? If so, we're done */
5025 if (cpu_isset(task_cpu(p), new_mask))
5026 goto out;
5027
5028 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5029 /* Need help from migration thread: drop lock and wait. */
5030 task_rq_unlock(rq, &flags);
5031 wake_up_process(rq->migration_thread);
5032 wait_for_completion(&req.done);
5033 tlb_migrate_finish(p->mm);
5034 return 0;
5035 }
5036 out:
5037 task_rq_unlock(rq, &flags);
5038
5039 return ret;
5040 }
5041 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5042
5043 /*
5044 * Move (not current) task off this cpu, onto dest cpu. We're doing
5045 * this because either it can't run here any more (set_cpus_allowed()
5046 * away from this CPU, or CPU going down), or because we're
5047 * attempting to rebalance this task on exec (sched_exec).
5048 *
5049 * So we race with normal scheduler movements, but that's OK, as long
5050 * as the task is no longer on this CPU.
5051 *
5052 * Returns non-zero if task was successfully migrated.
5053 */
5054 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5055 {
5056 struct rq *rq_dest, *rq_src;
5057 int ret = 0;
5058
5059 if (unlikely(cpu_is_offline(dest_cpu)))
5060 return ret;
5061
5062 rq_src = cpu_rq(src_cpu);
5063 rq_dest = cpu_rq(dest_cpu);
5064
5065 double_rq_lock(rq_src, rq_dest);
5066 /* Already moved. */
5067 if (task_cpu(p) != src_cpu)
5068 goto out;
5069 /* Affinity changed (again). */
5070 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5071 goto out;
5072
5073 set_task_cpu(p, dest_cpu);
5074 if (p->array) {
5075 /*
5076 * Sync timestamp with rq_dest's before activating.
5077 * The same thing could be achieved by doing this step
5078 * afterwards, and pretending it was a local activate.
5079 * This way is cleaner and logically correct.
5080 */
5081 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5082 + rq_dest->most_recent_timestamp;
5083 deactivate_task(p, rq_src);
5084 __activate_task(p, rq_dest);
5085 if (TASK_PREEMPTS_CURR(p, rq_dest))
5086 resched_task(rq_dest->curr);
5087 }
5088 ret = 1;
5089 out:
5090 double_rq_unlock(rq_src, rq_dest);
5091 return ret;
5092 }
5093
5094 /*
5095 * migration_thread - this is a highprio system thread that performs
5096 * thread migration by bumping thread off CPU then 'pushing' onto
5097 * another runqueue.
5098 */
5099 static int migration_thread(void *data)
5100 {
5101 int cpu = (long)data;
5102 struct rq *rq;
5103
5104 rq = cpu_rq(cpu);
5105 BUG_ON(rq->migration_thread != current);
5106
5107 set_current_state(TASK_INTERRUPTIBLE);
5108 while (!kthread_should_stop()) {
5109 struct migration_req *req;
5110 struct list_head *head;
5111
5112 try_to_freeze();
5113
5114 spin_lock_irq(&rq->lock);
5115
5116 if (cpu_is_offline(cpu)) {
5117 spin_unlock_irq(&rq->lock);
5118 goto wait_to_die;
5119 }
5120
5121 if (rq->active_balance) {
5122 active_load_balance(rq, cpu);
5123 rq->active_balance = 0;
5124 }
5125
5126 head = &rq->migration_queue;
5127
5128 if (list_empty(head)) {
5129 spin_unlock_irq(&rq->lock);
5130 schedule();
5131 set_current_state(TASK_INTERRUPTIBLE);
5132 continue;
5133 }
5134 req = list_entry(head->next, struct migration_req, list);
5135 list_del_init(head->next);
5136
5137 spin_unlock(&rq->lock);
5138 __migrate_task(req->task, cpu, req->dest_cpu);
5139 local_irq_enable();
5140
5141 complete(&req->done);
5142 }
5143 __set_current_state(TASK_RUNNING);
5144 return 0;
5145
5146 wait_to_die:
5147 /* Wait for kthread_stop */
5148 set_current_state(TASK_INTERRUPTIBLE);
5149 while (!kthread_should_stop()) {
5150 schedule();
5151 set_current_state(TASK_INTERRUPTIBLE);
5152 }
5153 __set_current_state(TASK_RUNNING);
5154 return 0;
5155 }
5156
5157 #ifdef CONFIG_HOTPLUG_CPU
5158 /*
5159 * Figure out where task on dead CPU should go, use force if neccessary.
5160 * NOTE: interrupts should be disabled by the caller
5161 */
5162 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5163 {
5164 unsigned long flags;
5165 cpumask_t mask;
5166 struct rq *rq;
5167 int dest_cpu;
5168
5169 restart:
5170 /* On same node? */
5171 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5172 cpus_and(mask, mask, p->cpus_allowed);
5173 dest_cpu = any_online_cpu(mask);
5174
5175 /* On any allowed CPU? */
5176 if (dest_cpu == NR_CPUS)
5177 dest_cpu = any_online_cpu(p->cpus_allowed);
5178
5179 /* No more Mr. Nice Guy. */
5180 if (dest_cpu == NR_CPUS) {
5181 rq = task_rq_lock(p, &flags);
5182 cpus_setall(p->cpus_allowed);
5183 dest_cpu = any_online_cpu(p->cpus_allowed);
5184 task_rq_unlock(rq, &flags);
5185
5186 /*
5187 * Don't tell them about moving exiting tasks or
5188 * kernel threads (both mm NULL), since they never
5189 * leave kernel.
5190 */
5191 if (p->mm && printk_ratelimit())
5192 printk(KERN_INFO "process %d (%s) no "
5193 "longer affine to cpu%d\n",
5194 p->pid, p->comm, dead_cpu);
5195 }
5196 if (!__migrate_task(p, dead_cpu, dest_cpu))
5197 goto restart;
5198 }
5199
5200 /*
5201 * While a dead CPU has no uninterruptible tasks queued at this point,
5202 * it might still have a nonzero ->nr_uninterruptible counter, because
5203 * for performance reasons the counter is not stricly tracking tasks to
5204 * their home CPUs. So we just add the counter to another CPU's counter,
5205 * to keep the global sum constant after CPU-down:
5206 */
5207 static void migrate_nr_uninterruptible(struct rq *rq_src)
5208 {
5209 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5210 unsigned long flags;
5211
5212 local_irq_save(flags);
5213 double_rq_lock(rq_src, rq_dest);
5214 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5215 rq_src->nr_uninterruptible = 0;
5216 double_rq_unlock(rq_src, rq_dest);
5217 local_irq_restore(flags);
5218 }
5219
5220 /* Run through task list and migrate tasks from the dead cpu. */
5221 static void migrate_live_tasks(int src_cpu)
5222 {
5223 struct task_struct *p, *t;
5224
5225 write_lock_irq(&tasklist_lock);
5226
5227 do_each_thread(t, p) {
5228 if (p == current)
5229 continue;
5230
5231 if (task_cpu(p) == src_cpu)
5232 move_task_off_dead_cpu(src_cpu, p);
5233 } while_each_thread(t, p);
5234
5235 write_unlock_irq(&tasklist_lock);
5236 }
5237
5238 /* Schedules idle task to be the next runnable task on current CPU.
5239 * It does so by boosting its priority to highest possible and adding it to
5240 * the _front_ of the runqueue. Used by CPU offline code.
5241 */
5242 void sched_idle_next(void)
5243 {
5244 int this_cpu = smp_processor_id();
5245 struct rq *rq = cpu_rq(this_cpu);
5246 struct task_struct *p = rq->idle;
5247 unsigned long flags;
5248
5249 /* cpu has to be offline */
5250 BUG_ON(cpu_online(this_cpu));
5251
5252 /*
5253 * Strictly not necessary since rest of the CPUs are stopped by now
5254 * and interrupts disabled on the current cpu.
5255 */
5256 spin_lock_irqsave(&rq->lock, flags);
5257
5258 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5259
5260 /* Add idle task to the _front_ of its priority queue: */
5261 __activate_idle_task(p, rq);
5262
5263 spin_unlock_irqrestore(&rq->lock, flags);
5264 }
5265
5266 /*
5267 * Ensures that the idle task is using init_mm right before its cpu goes
5268 * offline.
5269 */
5270 void idle_task_exit(void)
5271 {
5272 struct mm_struct *mm = current->active_mm;
5273
5274 BUG_ON(cpu_online(smp_processor_id()));
5275
5276 if (mm != &init_mm)
5277 switch_mm(mm, &init_mm, current);
5278 mmdrop(mm);
5279 }
5280
5281 /* called under rq->lock with disabled interrupts */
5282 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5283 {
5284 struct rq *rq = cpu_rq(dead_cpu);
5285
5286 /* Must be exiting, otherwise would be on tasklist. */
5287 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5288
5289 /* Cannot have done final schedule yet: would have vanished. */
5290 BUG_ON(p->state == TASK_DEAD);
5291
5292 get_task_struct(p);
5293
5294 /*
5295 * Drop lock around migration; if someone else moves it,
5296 * that's OK. No task can be added to this CPU, so iteration is
5297 * fine.
5298 * NOTE: interrupts should be left disabled --dev@
5299 */
5300 spin_unlock(&rq->lock);
5301 move_task_off_dead_cpu(dead_cpu, p);
5302 spin_lock(&rq->lock);
5303
5304 put_task_struct(p);
5305 }
5306
5307 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5308 static void migrate_dead_tasks(unsigned int dead_cpu)
5309 {
5310 struct rq *rq = cpu_rq(dead_cpu);
5311 unsigned int arr, i;
5312
5313 for (arr = 0; arr < 2; arr++) {
5314 for (i = 0; i < MAX_PRIO; i++) {
5315 struct list_head *list = &rq->arrays[arr].queue[i];
5316
5317 while (!list_empty(list))
5318 migrate_dead(dead_cpu, list_entry(list->next,
5319 struct task_struct, run_list));
5320 }
5321 }
5322 }
5323 #endif /* CONFIG_HOTPLUG_CPU */
5324
5325 /*
5326 * migration_call - callback that gets triggered when a CPU is added.
5327 * Here we can start up the necessary migration thread for the new CPU.
5328 */
5329 static int __cpuinit
5330 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5331 {
5332 struct task_struct *p;
5333 int cpu = (long)hcpu;
5334 unsigned long flags;
5335 struct rq *rq;
5336
5337 switch (action) {
5338 case CPU_UP_PREPARE:
5339 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5340 if (IS_ERR(p))
5341 return NOTIFY_BAD;
5342 p->flags |= PF_NOFREEZE;
5343 kthread_bind(p, cpu);
5344 /* Must be high prio: stop_machine expects to yield to it. */
5345 rq = task_rq_lock(p, &flags);
5346 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5347 task_rq_unlock(rq, &flags);
5348 cpu_rq(cpu)->migration_thread = p;
5349 break;
5350
5351 case CPU_ONLINE:
5352 /* Strictly unneccessary, as first user will wake it. */
5353 wake_up_process(cpu_rq(cpu)->migration_thread);
5354 break;
5355
5356 #ifdef CONFIG_HOTPLUG_CPU
5357 case CPU_UP_CANCELED:
5358 if (!cpu_rq(cpu)->migration_thread)
5359 break;
5360 /* Unbind it from offline cpu so it can run. Fall thru. */
5361 kthread_bind(cpu_rq(cpu)->migration_thread,
5362 any_online_cpu(cpu_online_map));
5363 kthread_stop(cpu_rq(cpu)->migration_thread);
5364 cpu_rq(cpu)->migration_thread = NULL;
5365 break;
5366
5367 case CPU_DEAD:
5368 migrate_live_tasks(cpu);
5369 rq = cpu_rq(cpu);
5370 kthread_stop(rq->migration_thread);
5371 rq->migration_thread = NULL;
5372 /* Idle task back to normal (off runqueue, low prio) */
5373 rq = task_rq_lock(rq->idle, &flags);
5374 deactivate_task(rq->idle, rq);
5375 rq->idle->static_prio = MAX_PRIO;
5376 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5377 migrate_dead_tasks(cpu);
5378 task_rq_unlock(rq, &flags);
5379 migrate_nr_uninterruptible(rq);
5380 BUG_ON(rq->nr_running != 0);
5381
5382 /* No need to migrate the tasks: it was best-effort if
5383 * they didn't do lock_cpu_hotplug(). Just wake up
5384 * the requestors. */
5385 spin_lock_irq(&rq->lock);
5386 while (!list_empty(&rq->migration_queue)) {
5387 struct migration_req *req;
5388
5389 req = list_entry(rq->migration_queue.next,
5390 struct migration_req, list);
5391 list_del_init(&req->list);
5392 complete(&req->done);
5393 }
5394 spin_unlock_irq(&rq->lock);
5395 break;
5396 #endif
5397 }
5398 return NOTIFY_OK;
5399 }
5400
5401 /* Register at highest priority so that task migration (migrate_all_tasks)
5402 * happens before everything else.
5403 */
5404 static struct notifier_block __cpuinitdata migration_notifier = {
5405 .notifier_call = migration_call,
5406 .priority = 10
5407 };
5408
5409 int __init migration_init(void)
5410 {
5411 void *cpu = (void *)(long)smp_processor_id();
5412 int err;
5413
5414 /* Start one for the boot CPU: */
5415 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5416 BUG_ON(err == NOTIFY_BAD);
5417 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5418 register_cpu_notifier(&migration_notifier);
5419
5420 return 0;
5421 }
5422 #endif
5423
5424 #ifdef CONFIG_SMP
5425 #undef SCHED_DOMAIN_DEBUG
5426 #ifdef SCHED_DOMAIN_DEBUG
5427 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5428 {
5429 int level = 0;
5430
5431 if (!sd) {
5432 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5433 return;
5434 }
5435
5436 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5437
5438 do {
5439 int i;
5440 char str[NR_CPUS];
5441 struct sched_group *group = sd->groups;
5442 cpumask_t groupmask;
5443
5444 cpumask_scnprintf(str, NR_CPUS, sd->span);
5445 cpus_clear(groupmask);
5446
5447 printk(KERN_DEBUG);
5448 for (i = 0; i < level + 1; i++)
5449 printk(" ");
5450 printk("domain %d: ", level);
5451
5452 if (!(sd->flags & SD_LOAD_BALANCE)) {
5453 printk("does not load-balance\n");
5454 if (sd->parent)
5455 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5456 " has parent");
5457 break;
5458 }
5459
5460 printk("span %s\n", str);
5461
5462 if (!cpu_isset(cpu, sd->span))
5463 printk(KERN_ERR "ERROR: domain->span does not contain "
5464 "CPU%d\n", cpu);
5465 if (!cpu_isset(cpu, group->cpumask))
5466 printk(KERN_ERR "ERROR: domain->groups does not contain"
5467 " CPU%d\n", cpu);
5468
5469 printk(KERN_DEBUG);
5470 for (i = 0; i < level + 2; i++)
5471 printk(" ");
5472 printk("groups:");
5473 do {
5474 if (!group) {
5475 printk("\n");
5476 printk(KERN_ERR "ERROR: group is NULL\n");
5477 break;
5478 }
5479
5480 if (!group->cpu_power) {
5481 printk("\n");
5482 printk(KERN_ERR "ERROR: domain->cpu_power not "
5483 "set\n");
5484 }
5485
5486 if (!cpus_weight(group->cpumask)) {
5487 printk("\n");
5488 printk(KERN_ERR "ERROR: empty group\n");
5489 }
5490
5491 if (cpus_intersects(groupmask, group->cpumask)) {
5492 printk("\n");
5493 printk(KERN_ERR "ERROR: repeated CPUs\n");
5494 }
5495
5496 cpus_or(groupmask, groupmask, group->cpumask);
5497
5498 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5499 printk(" %s", str);
5500
5501 group = group->next;
5502 } while (group != sd->groups);
5503 printk("\n");
5504
5505 if (!cpus_equal(sd->span, groupmask))
5506 printk(KERN_ERR "ERROR: groups don't span "
5507 "domain->span\n");
5508
5509 level++;
5510 sd = sd->parent;
5511 if (!sd)
5512 continue;
5513
5514 if (!cpus_subset(groupmask, sd->span))
5515 printk(KERN_ERR "ERROR: parent span is not a superset "
5516 "of domain->span\n");
5517
5518 } while (sd);
5519 }
5520 #else
5521 # define sched_domain_debug(sd, cpu) do { } while (0)
5522 #endif
5523
5524 static int sd_degenerate(struct sched_domain *sd)
5525 {
5526 if (cpus_weight(sd->span) == 1)
5527 return 1;
5528
5529 /* Following flags need at least 2 groups */
5530 if (sd->flags & (SD_LOAD_BALANCE |
5531 SD_BALANCE_NEWIDLE |
5532 SD_BALANCE_FORK |
5533 SD_BALANCE_EXEC |
5534 SD_SHARE_CPUPOWER |
5535 SD_SHARE_PKG_RESOURCES)) {
5536 if (sd->groups != sd->groups->next)
5537 return 0;
5538 }
5539
5540 /* Following flags don't use groups */
5541 if (sd->flags & (SD_WAKE_IDLE |
5542 SD_WAKE_AFFINE |
5543 SD_WAKE_BALANCE))
5544 return 0;
5545
5546 return 1;
5547 }
5548
5549 static int
5550 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5551 {
5552 unsigned long cflags = sd->flags, pflags = parent->flags;
5553
5554 if (sd_degenerate(parent))
5555 return 1;
5556
5557 if (!cpus_equal(sd->span, parent->span))
5558 return 0;
5559
5560 /* Does parent contain flags not in child? */
5561 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5562 if (cflags & SD_WAKE_AFFINE)
5563 pflags &= ~SD_WAKE_BALANCE;
5564 /* Flags needing groups don't count if only 1 group in parent */
5565 if (parent->groups == parent->groups->next) {
5566 pflags &= ~(SD_LOAD_BALANCE |
5567 SD_BALANCE_NEWIDLE |
5568 SD_BALANCE_FORK |
5569 SD_BALANCE_EXEC |
5570 SD_SHARE_CPUPOWER |
5571 SD_SHARE_PKG_RESOURCES);
5572 }
5573 if (~cflags & pflags)
5574 return 0;
5575
5576 return 1;
5577 }
5578
5579 /*
5580 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5581 * hold the hotplug lock.
5582 */
5583 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5584 {
5585 struct rq *rq = cpu_rq(cpu);
5586 struct sched_domain *tmp;
5587
5588 /* Remove the sched domains which do not contribute to scheduling. */
5589 for (tmp = sd; tmp; tmp = tmp->parent) {
5590 struct sched_domain *parent = tmp->parent;
5591 if (!parent)
5592 break;
5593 if (sd_parent_degenerate(tmp, parent)) {
5594 tmp->parent = parent->parent;
5595 if (parent->parent)
5596 parent->parent->child = tmp;
5597 }
5598 }
5599
5600 if (sd && sd_degenerate(sd)) {
5601 sd = sd->parent;
5602 if (sd)
5603 sd->child = NULL;
5604 }
5605
5606 sched_domain_debug(sd, cpu);
5607
5608 rcu_assign_pointer(rq->sd, sd);
5609 }
5610
5611 /* cpus with isolated domains */
5612 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5613
5614 /* Setup the mask of cpus configured for isolated domains */
5615 static int __init isolated_cpu_setup(char *str)
5616 {
5617 int ints[NR_CPUS], i;
5618
5619 str = get_options(str, ARRAY_SIZE(ints), ints);
5620 cpus_clear(cpu_isolated_map);
5621 for (i = 1; i <= ints[0]; i++)
5622 if (ints[i] < NR_CPUS)
5623 cpu_set(ints[i], cpu_isolated_map);
5624 return 1;
5625 }
5626
5627 __setup ("isolcpus=", isolated_cpu_setup);
5628
5629 /*
5630 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5631 * to a function which identifies what group(along with sched group) a CPU
5632 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5633 * (due to the fact that we keep track of groups covered with a cpumask_t).
5634 *
5635 * init_sched_build_groups will build a circular linked list of the groups
5636 * covered by the given span, and will set each group's ->cpumask correctly,
5637 * and ->cpu_power to 0.
5638 */
5639 static void
5640 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5641 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5642 struct sched_group **sg))
5643 {
5644 struct sched_group *first = NULL, *last = NULL;
5645 cpumask_t covered = CPU_MASK_NONE;
5646 int i;
5647
5648 for_each_cpu_mask(i, span) {
5649 struct sched_group *sg;
5650 int group = group_fn(i, cpu_map, &sg);
5651 int j;
5652
5653 if (cpu_isset(i, covered))
5654 continue;
5655
5656 sg->cpumask = CPU_MASK_NONE;
5657 sg->cpu_power = 0;
5658
5659 for_each_cpu_mask(j, span) {
5660 if (group_fn(j, cpu_map, NULL) != group)
5661 continue;
5662
5663 cpu_set(j, covered);
5664 cpu_set(j, sg->cpumask);
5665 }
5666 if (!first)
5667 first = sg;
5668 if (last)
5669 last->next = sg;
5670 last = sg;
5671 }
5672 last->next = first;
5673 }
5674
5675 #define SD_NODES_PER_DOMAIN 16
5676
5677 /*
5678 * Self-tuning task migration cost measurement between source and target CPUs.
5679 *
5680 * This is done by measuring the cost of manipulating buffers of varying
5681 * sizes. For a given buffer-size here are the steps that are taken:
5682 *
5683 * 1) the source CPU reads+dirties a shared buffer
5684 * 2) the target CPU reads+dirties the same shared buffer
5685 *
5686 * We measure how long they take, in the following 4 scenarios:
5687 *
5688 * - source: CPU1, target: CPU2 | cost1
5689 * - source: CPU2, target: CPU1 | cost2
5690 * - source: CPU1, target: CPU1 | cost3
5691 * - source: CPU2, target: CPU2 | cost4
5692 *
5693 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5694 * the cost of migration.
5695 *
5696 * We then start off from a small buffer-size and iterate up to larger
5697 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5698 * doing a maximum search for the cost. (The maximum cost for a migration
5699 * normally occurs when the working set size is around the effective cache
5700 * size.)
5701 */
5702 #define SEARCH_SCOPE 2
5703 #define MIN_CACHE_SIZE (64*1024U)
5704 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5705 #define ITERATIONS 1
5706 #define SIZE_THRESH 130
5707 #define COST_THRESH 130
5708
5709 /*
5710 * The migration cost is a function of 'domain distance'. Domain
5711 * distance is the number of steps a CPU has to iterate down its
5712 * domain tree to share a domain with the other CPU. The farther
5713 * two CPUs are from each other, the larger the distance gets.
5714 *
5715 * Note that we use the distance only to cache measurement results,
5716 * the distance value is not used numerically otherwise. When two
5717 * CPUs have the same distance it is assumed that the migration
5718 * cost is the same. (this is a simplification but quite practical)
5719 */
5720 #define MAX_DOMAIN_DISTANCE 32
5721
5722 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5723 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5724 /*
5725 * Architectures may override the migration cost and thus avoid
5726 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5727 * virtualized hardware:
5728 */
5729 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5730 CONFIG_DEFAULT_MIGRATION_COST
5731 #else
5732 -1LL
5733 #endif
5734 };
5735
5736 /*
5737 * Allow override of migration cost - in units of microseconds.
5738 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5739 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5740 */
5741 static int __init migration_cost_setup(char *str)
5742 {
5743 int ints[MAX_DOMAIN_DISTANCE+1], i;
5744
5745 str = get_options(str, ARRAY_SIZE(ints), ints);
5746
5747 printk("#ints: %d\n", ints[0]);
5748 for (i = 1; i <= ints[0]; i++) {
5749 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5750 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5751 }
5752 return 1;
5753 }
5754
5755 __setup ("migration_cost=", migration_cost_setup);
5756
5757 /*
5758 * Global multiplier (divisor) for migration-cutoff values,
5759 * in percentiles. E.g. use a value of 150 to get 1.5 times
5760 * longer cache-hot cutoff times.
5761 *
5762 * (We scale it from 100 to 128 to long long handling easier.)
5763 */
5764
5765 #define MIGRATION_FACTOR_SCALE 128
5766
5767 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5768
5769 static int __init setup_migration_factor(char *str)
5770 {
5771 get_option(&str, &migration_factor);
5772 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5773 return 1;
5774 }
5775
5776 __setup("migration_factor=", setup_migration_factor);
5777
5778 /*
5779 * Estimated distance of two CPUs, measured via the number of domains
5780 * we have to pass for the two CPUs to be in the same span:
5781 */
5782 static unsigned long domain_distance(int cpu1, int cpu2)
5783 {
5784 unsigned long distance = 0;
5785 struct sched_domain *sd;
5786
5787 for_each_domain(cpu1, sd) {
5788 WARN_ON(!cpu_isset(cpu1, sd->span));
5789 if (cpu_isset(cpu2, sd->span))
5790 return distance;
5791 distance++;
5792 }
5793 if (distance >= MAX_DOMAIN_DISTANCE) {
5794 WARN_ON(1);
5795 distance = MAX_DOMAIN_DISTANCE-1;
5796 }
5797
5798 return distance;
5799 }
5800
5801 static unsigned int migration_debug;
5802
5803 static int __init setup_migration_debug(char *str)
5804 {
5805 get_option(&str, &migration_debug);
5806 return 1;
5807 }
5808
5809 __setup("migration_debug=", setup_migration_debug);
5810
5811 /*
5812 * Maximum cache-size that the scheduler should try to measure.
5813 * Architectures with larger caches should tune this up during
5814 * bootup. Gets used in the domain-setup code (i.e. during SMP
5815 * bootup).
5816 */
5817 unsigned int max_cache_size;
5818
5819 static int __init setup_max_cache_size(char *str)
5820 {
5821 get_option(&str, &max_cache_size);
5822 return 1;
5823 }
5824
5825 __setup("max_cache_size=", setup_max_cache_size);
5826
5827 /*
5828 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5829 * is the operation that is timed, so we try to generate unpredictable
5830 * cachemisses that still end up filling the L2 cache:
5831 */
5832 static void touch_cache(void *__cache, unsigned long __size)
5833 {
5834 unsigned long size = __size / sizeof(long);
5835 unsigned long chunk1 = size / 3;
5836 unsigned long chunk2 = 2 * size / 3;
5837 unsigned long *cache = __cache;
5838 int i;
5839
5840 for (i = 0; i < size/6; i += 8) {
5841 switch (i % 6) {
5842 case 0: cache[i]++;
5843 case 1: cache[size-1-i]++;
5844 case 2: cache[chunk1-i]++;
5845 case 3: cache[chunk1+i]++;
5846 case 4: cache[chunk2-i]++;
5847 case 5: cache[chunk2+i]++;
5848 }
5849 }
5850 }
5851
5852 /*
5853 * Measure the cache-cost of one task migration. Returns in units of nsec.
5854 */
5855 static unsigned long long
5856 measure_one(void *cache, unsigned long size, int source, int target)
5857 {
5858 cpumask_t mask, saved_mask;
5859 unsigned long long t0, t1, t2, t3, cost;
5860
5861 saved_mask = current->cpus_allowed;
5862
5863 /*
5864 * Flush source caches to RAM and invalidate them:
5865 */
5866 sched_cacheflush();
5867
5868 /*
5869 * Migrate to the source CPU:
5870 */
5871 mask = cpumask_of_cpu(source);
5872 set_cpus_allowed(current, mask);
5873 WARN_ON(smp_processor_id() != source);
5874
5875 /*
5876 * Dirty the working set:
5877 */
5878 t0 = sched_clock();
5879 touch_cache(cache, size);
5880 t1 = sched_clock();
5881
5882 /*
5883 * Migrate to the target CPU, dirty the L2 cache and access
5884 * the shared buffer. (which represents the working set
5885 * of a migrated task.)
5886 */
5887 mask = cpumask_of_cpu(target);
5888 set_cpus_allowed(current, mask);
5889 WARN_ON(smp_processor_id() != target);
5890
5891 t2 = sched_clock();
5892 touch_cache(cache, size);
5893 t3 = sched_clock();
5894
5895 cost = t1-t0 + t3-t2;
5896
5897 if (migration_debug >= 2)
5898 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5899 source, target, t1-t0, t1-t0, t3-t2, cost);
5900 /*
5901 * Flush target caches to RAM and invalidate them:
5902 */
5903 sched_cacheflush();
5904
5905 set_cpus_allowed(current, saved_mask);
5906
5907 return cost;
5908 }
5909
5910 /*
5911 * Measure a series of task migrations and return the average
5912 * result. Since this code runs early during bootup the system
5913 * is 'undisturbed' and the average latency makes sense.
5914 *
5915 * The algorithm in essence auto-detects the relevant cache-size,
5916 * so it will properly detect different cachesizes for different
5917 * cache-hierarchies, depending on how the CPUs are connected.
5918 *
5919 * Architectures can prime the upper limit of the search range via
5920 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5921 */
5922 static unsigned long long
5923 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5924 {
5925 unsigned long long cost1, cost2;
5926 int i;
5927
5928 /*
5929 * Measure the migration cost of 'size' bytes, over an
5930 * average of 10 runs:
5931 *
5932 * (We perturb the cache size by a small (0..4k)
5933 * value to compensate size/alignment related artifacts.
5934 * We also subtract the cost of the operation done on
5935 * the same CPU.)
5936 */
5937 cost1 = 0;
5938
5939 /*
5940 * dry run, to make sure we start off cache-cold on cpu1,
5941 * and to get any vmalloc pagefaults in advance:
5942 */
5943 measure_one(cache, size, cpu1, cpu2);
5944 for (i = 0; i < ITERATIONS; i++)
5945 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
5946
5947 measure_one(cache, size, cpu2, cpu1);
5948 for (i = 0; i < ITERATIONS; i++)
5949 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
5950
5951 /*
5952 * (We measure the non-migrating [cached] cost on both
5953 * cpu1 and cpu2, to handle CPUs with different speeds)
5954 */
5955 cost2 = 0;
5956
5957 measure_one(cache, size, cpu1, cpu1);
5958 for (i = 0; i < ITERATIONS; i++)
5959 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
5960
5961 measure_one(cache, size, cpu2, cpu2);
5962 for (i = 0; i < ITERATIONS; i++)
5963 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
5964
5965 /*
5966 * Get the per-iteration migration cost:
5967 */
5968 do_div(cost1, 2 * ITERATIONS);
5969 do_div(cost2, 2 * ITERATIONS);
5970
5971 return cost1 - cost2;
5972 }
5973
5974 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5975 {
5976 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5977 unsigned int max_size, size, size_found = 0;
5978 long long cost = 0, prev_cost;
5979 void *cache;
5980
5981 /*
5982 * Search from max_cache_size*5 down to 64K - the real relevant
5983 * cachesize has to lie somewhere inbetween.
5984 */
5985 if (max_cache_size) {
5986 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5987 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5988 } else {
5989 /*
5990 * Since we have no estimation about the relevant
5991 * search range
5992 */
5993 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5994 size = MIN_CACHE_SIZE;
5995 }
5996
5997 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5998 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5999 return 0;
6000 }
6001
6002 /*
6003 * Allocate the working set:
6004 */
6005 cache = vmalloc(max_size);
6006 if (!cache) {
6007 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6008 return 1000000; /* return 1 msec on very small boxen */
6009 }
6010
6011 while (size <= max_size) {
6012 prev_cost = cost;
6013 cost = measure_cost(cpu1, cpu2, cache, size);
6014
6015 /*
6016 * Update the max:
6017 */
6018 if (cost > 0) {
6019 if (max_cost < cost) {
6020 max_cost = cost;
6021 size_found = size;
6022 }
6023 }
6024 /*
6025 * Calculate average fluctuation, we use this to prevent
6026 * noise from triggering an early break out of the loop:
6027 */
6028 fluct = abs(cost - prev_cost);
6029 avg_fluct = (avg_fluct + fluct)/2;
6030
6031 if (migration_debug)
6032 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6033 "(%8Ld %8Ld)\n",
6034 cpu1, cpu2, size,
6035 (long)cost / 1000000,
6036 ((long)cost / 100000) % 10,
6037 (long)max_cost / 1000000,
6038 ((long)max_cost / 100000) % 10,
6039 domain_distance(cpu1, cpu2),
6040 cost, avg_fluct);
6041
6042 /*
6043 * If we iterated at least 20% past the previous maximum,
6044 * and the cost has dropped by more than 20% already,
6045 * (taking fluctuations into account) then we assume to
6046 * have found the maximum and break out of the loop early:
6047 */
6048 if (size_found && (size*100 > size_found*SIZE_THRESH))
6049 if (cost+avg_fluct <= 0 ||
6050 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6051
6052 if (migration_debug)
6053 printk("-> found max.\n");
6054 break;
6055 }
6056 /*
6057 * Increase the cachesize in 10% steps:
6058 */
6059 size = size * 10 / 9;
6060 }
6061
6062 if (migration_debug)
6063 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6064 cpu1, cpu2, size_found, max_cost);
6065
6066 vfree(cache);
6067
6068 /*
6069 * A task is considered 'cache cold' if at least 2 times
6070 * the worst-case cost of migration has passed.
6071 *
6072 * (this limit is only listened to if the load-balancing
6073 * situation is 'nice' - if there is a large imbalance we
6074 * ignore it for the sake of CPU utilization and
6075 * processing fairness.)
6076 */
6077 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6078 }
6079
6080 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6081 {
6082 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6083 unsigned long j0, j1, distance, max_distance = 0;
6084 struct sched_domain *sd;
6085
6086 j0 = jiffies;
6087
6088 /*
6089 * First pass - calculate the cacheflush times:
6090 */
6091 for_each_cpu_mask(cpu1, *cpu_map) {
6092 for_each_cpu_mask(cpu2, *cpu_map) {
6093 if (cpu1 == cpu2)
6094 continue;
6095 distance = domain_distance(cpu1, cpu2);
6096 max_distance = max(max_distance, distance);
6097 /*
6098 * No result cached yet?
6099 */
6100 if (migration_cost[distance] == -1LL)
6101 migration_cost[distance] =
6102 measure_migration_cost(cpu1, cpu2);
6103 }
6104 }
6105 /*
6106 * Second pass - update the sched domain hierarchy with
6107 * the new cache-hot-time estimations:
6108 */
6109 for_each_cpu_mask(cpu, *cpu_map) {
6110 distance = 0;
6111 for_each_domain(cpu, sd) {
6112 sd->cache_hot_time = migration_cost[distance];
6113 distance++;
6114 }
6115 }
6116 /*
6117 * Print the matrix:
6118 */
6119 if (migration_debug)
6120 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6121 max_cache_size,
6122 #ifdef CONFIG_X86
6123 cpu_khz/1000
6124 #else
6125 -1
6126 #endif
6127 );
6128 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6129 printk("migration_cost=");
6130 for (distance = 0; distance <= max_distance; distance++) {
6131 if (distance)
6132 printk(",");
6133 printk("%ld", (long)migration_cost[distance] / 1000);
6134 }
6135 printk("\n");
6136 }
6137 j1 = jiffies;
6138 if (migration_debug)
6139 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6140
6141 /*
6142 * Move back to the original CPU. NUMA-Q gets confused
6143 * if we migrate to another quad during bootup.
6144 */
6145 if (raw_smp_processor_id() != orig_cpu) {
6146 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6147 saved_mask = current->cpus_allowed;
6148
6149 set_cpus_allowed(current, mask);
6150 set_cpus_allowed(current, saved_mask);
6151 }
6152 }
6153
6154 #ifdef CONFIG_NUMA
6155
6156 /**
6157 * find_next_best_node - find the next node to include in a sched_domain
6158 * @node: node whose sched_domain we're building
6159 * @used_nodes: nodes already in the sched_domain
6160 *
6161 * Find the next node to include in a given scheduling domain. Simply
6162 * finds the closest node not already in the @used_nodes map.
6163 *
6164 * Should use nodemask_t.
6165 */
6166 static int find_next_best_node(int node, unsigned long *used_nodes)
6167 {
6168 int i, n, val, min_val, best_node = 0;
6169
6170 min_val = INT_MAX;
6171
6172 for (i = 0; i < MAX_NUMNODES; i++) {
6173 /* Start at @node */
6174 n = (node + i) % MAX_NUMNODES;
6175
6176 if (!nr_cpus_node(n))
6177 continue;
6178
6179 /* Skip already used nodes */
6180 if (test_bit(n, used_nodes))
6181 continue;
6182
6183 /* Simple min distance search */
6184 val = node_distance(node, n);
6185
6186 if (val < min_val) {
6187 min_val = val;
6188 best_node = n;
6189 }
6190 }
6191
6192 set_bit(best_node, used_nodes);
6193 return best_node;
6194 }
6195
6196 /**
6197 * sched_domain_node_span - get a cpumask for a node's sched_domain
6198 * @node: node whose cpumask we're constructing
6199 * @size: number of nodes to include in this span
6200 *
6201 * Given a node, construct a good cpumask for its sched_domain to span. It
6202 * should be one that prevents unnecessary balancing, but also spreads tasks
6203 * out optimally.
6204 */
6205 static cpumask_t sched_domain_node_span(int node)
6206 {
6207 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6208 cpumask_t span, nodemask;
6209 int i;
6210
6211 cpus_clear(span);
6212 bitmap_zero(used_nodes, MAX_NUMNODES);
6213
6214 nodemask = node_to_cpumask(node);
6215 cpus_or(span, span, nodemask);
6216 set_bit(node, used_nodes);
6217
6218 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6219 int next_node = find_next_best_node(node, used_nodes);
6220
6221 nodemask = node_to_cpumask(next_node);
6222 cpus_or(span, span, nodemask);
6223 }
6224
6225 return span;
6226 }
6227 #endif
6228
6229 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6230
6231 /*
6232 * SMT sched-domains:
6233 */
6234 #ifdef CONFIG_SCHED_SMT
6235 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6236 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6237
6238 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6239 struct sched_group **sg)
6240 {
6241 if (sg)
6242 *sg = &per_cpu(sched_group_cpus, cpu);
6243 return cpu;
6244 }
6245 #endif
6246
6247 /*
6248 * multi-core sched-domains:
6249 */
6250 #ifdef CONFIG_SCHED_MC
6251 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6252 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6253 #endif
6254
6255 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6256 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6257 struct sched_group **sg)
6258 {
6259 int group;
6260 cpumask_t mask = cpu_sibling_map[cpu];
6261 cpus_and(mask, mask, *cpu_map);
6262 group = first_cpu(mask);
6263 if (sg)
6264 *sg = &per_cpu(sched_group_core, group);
6265 return group;
6266 }
6267 #elif defined(CONFIG_SCHED_MC)
6268 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6269 struct sched_group **sg)
6270 {
6271 if (sg)
6272 *sg = &per_cpu(sched_group_core, cpu);
6273 return cpu;
6274 }
6275 #endif
6276
6277 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6278 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6279
6280 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6281 struct sched_group **sg)
6282 {
6283 int group;
6284 #ifdef CONFIG_SCHED_MC
6285 cpumask_t mask = cpu_coregroup_map(cpu);
6286 cpus_and(mask, mask, *cpu_map);
6287 group = first_cpu(mask);
6288 #elif defined(CONFIG_SCHED_SMT)
6289 cpumask_t mask = cpu_sibling_map[cpu];
6290 cpus_and(mask, mask, *cpu_map);
6291 group = first_cpu(mask);
6292 #else
6293 group = cpu;
6294 #endif
6295 if (sg)
6296 *sg = &per_cpu(sched_group_phys, group);
6297 return group;
6298 }
6299
6300 #ifdef CONFIG_NUMA
6301 /*
6302 * The init_sched_build_groups can't handle what we want to do with node
6303 * groups, so roll our own. Now each node has its own list of groups which
6304 * gets dynamically allocated.
6305 */
6306 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6307 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6308
6309 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6310 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6311
6312 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6313 struct sched_group **sg)
6314 {
6315 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6316 int group;
6317
6318 cpus_and(nodemask, nodemask, *cpu_map);
6319 group = first_cpu(nodemask);
6320
6321 if (sg)
6322 *sg = &per_cpu(sched_group_allnodes, group);
6323 return group;
6324 }
6325
6326 static void init_numa_sched_groups_power(struct sched_group *group_head)
6327 {
6328 struct sched_group *sg = group_head;
6329 int j;
6330
6331 if (!sg)
6332 return;
6333 next_sg:
6334 for_each_cpu_mask(j, sg->cpumask) {
6335 struct sched_domain *sd;
6336
6337 sd = &per_cpu(phys_domains, j);
6338 if (j != first_cpu(sd->groups->cpumask)) {
6339 /*
6340 * Only add "power" once for each
6341 * physical package.
6342 */
6343 continue;
6344 }
6345
6346 sg->cpu_power += sd->groups->cpu_power;
6347 }
6348 sg = sg->next;
6349 if (sg != group_head)
6350 goto next_sg;
6351 }
6352 #endif
6353
6354 #ifdef CONFIG_NUMA
6355 /* Free memory allocated for various sched_group structures */
6356 static void free_sched_groups(const cpumask_t *cpu_map)
6357 {
6358 int cpu, i;
6359
6360 for_each_cpu_mask(cpu, *cpu_map) {
6361 struct sched_group **sched_group_nodes
6362 = sched_group_nodes_bycpu[cpu];
6363
6364 if (!sched_group_nodes)
6365 continue;
6366
6367 for (i = 0; i < MAX_NUMNODES; i++) {
6368 cpumask_t nodemask = node_to_cpumask(i);
6369 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6370
6371 cpus_and(nodemask, nodemask, *cpu_map);
6372 if (cpus_empty(nodemask))
6373 continue;
6374
6375 if (sg == NULL)
6376 continue;
6377 sg = sg->next;
6378 next_sg:
6379 oldsg = sg;
6380 sg = sg->next;
6381 kfree(oldsg);
6382 if (oldsg != sched_group_nodes[i])
6383 goto next_sg;
6384 }
6385 kfree(sched_group_nodes);
6386 sched_group_nodes_bycpu[cpu] = NULL;
6387 }
6388 }
6389 #else
6390 static void free_sched_groups(const cpumask_t *cpu_map)
6391 {
6392 }
6393 #endif
6394
6395 /*
6396 * Initialize sched groups cpu_power.
6397 *
6398 * cpu_power indicates the capacity of sched group, which is used while
6399 * distributing the load between different sched groups in a sched domain.
6400 * Typically cpu_power for all the groups in a sched domain will be same unless
6401 * there are asymmetries in the topology. If there are asymmetries, group
6402 * having more cpu_power will pickup more load compared to the group having
6403 * less cpu_power.
6404 *
6405 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6406 * the maximum number of tasks a group can handle in the presence of other idle
6407 * or lightly loaded groups in the same sched domain.
6408 */
6409 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6410 {
6411 struct sched_domain *child;
6412 struct sched_group *group;
6413
6414 WARN_ON(!sd || !sd->groups);
6415
6416 if (cpu != first_cpu(sd->groups->cpumask))
6417 return;
6418
6419 child = sd->child;
6420
6421 /*
6422 * For perf policy, if the groups in child domain share resources
6423 * (for example cores sharing some portions of the cache hierarchy
6424 * or SMT), then set this domain groups cpu_power such that each group
6425 * can handle only one task, when there are other idle groups in the
6426 * same sched domain.
6427 */
6428 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6429 (child->flags &
6430 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6431 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6432 return;
6433 }
6434
6435 sd->groups->cpu_power = 0;
6436
6437 /*
6438 * add cpu_power of each child group to this groups cpu_power
6439 */
6440 group = child->groups;
6441 do {
6442 sd->groups->cpu_power += group->cpu_power;
6443 group = group->next;
6444 } while (group != child->groups);
6445 }
6446
6447 /*
6448 * Build sched domains for a given set of cpus and attach the sched domains
6449 * to the individual cpus
6450 */
6451 static int build_sched_domains(const cpumask_t *cpu_map)
6452 {
6453 int i;
6454 struct sched_domain *sd;
6455 #ifdef CONFIG_NUMA
6456 struct sched_group **sched_group_nodes = NULL;
6457 int sd_allnodes = 0;
6458
6459 /*
6460 * Allocate the per-node list of sched groups
6461 */
6462 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6463 GFP_KERNEL);
6464 if (!sched_group_nodes) {
6465 printk(KERN_WARNING "Can not alloc sched group node list\n");
6466 return -ENOMEM;
6467 }
6468 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6469 #endif
6470
6471 /*
6472 * Set up domains for cpus specified by the cpu_map.
6473 */
6474 for_each_cpu_mask(i, *cpu_map) {
6475 struct sched_domain *sd = NULL, *p;
6476 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6477
6478 cpus_and(nodemask, nodemask, *cpu_map);
6479
6480 #ifdef CONFIG_NUMA
6481 if (cpus_weight(*cpu_map)
6482 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6483 sd = &per_cpu(allnodes_domains, i);
6484 *sd = SD_ALLNODES_INIT;
6485 sd->span = *cpu_map;
6486 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6487 p = sd;
6488 sd_allnodes = 1;
6489 } else
6490 p = NULL;
6491
6492 sd = &per_cpu(node_domains, i);
6493 *sd = SD_NODE_INIT;
6494 sd->span = sched_domain_node_span(cpu_to_node(i));
6495 sd->parent = p;
6496 if (p)
6497 p->child = sd;
6498 cpus_and(sd->span, sd->span, *cpu_map);
6499 #endif
6500
6501 p = sd;
6502 sd = &per_cpu(phys_domains, i);
6503 *sd = SD_CPU_INIT;
6504 sd->span = nodemask;
6505 sd->parent = p;
6506 if (p)
6507 p->child = sd;
6508 cpu_to_phys_group(i, cpu_map, &sd->groups);
6509
6510 #ifdef CONFIG_SCHED_MC
6511 p = sd;
6512 sd = &per_cpu(core_domains, i);
6513 *sd = SD_MC_INIT;
6514 sd->span = cpu_coregroup_map(i);
6515 cpus_and(sd->span, sd->span, *cpu_map);
6516 sd->parent = p;
6517 p->child = sd;
6518 cpu_to_core_group(i, cpu_map, &sd->groups);
6519 #endif
6520
6521 #ifdef CONFIG_SCHED_SMT
6522 p = sd;
6523 sd = &per_cpu(cpu_domains, i);
6524 *sd = SD_SIBLING_INIT;
6525 sd->span = cpu_sibling_map[i];
6526 cpus_and(sd->span, sd->span, *cpu_map);
6527 sd->parent = p;
6528 p->child = sd;
6529 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6530 #endif
6531 }
6532
6533 #ifdef CONFIG_SCHED_SMT
6534 /* Set up CPU (sibling) groups */
6535 for_each_cpu_mask(i, *cpu_map) {
6536 cpumask_t this_sibling_map = cpu_sibling_map[i];
6537 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6538 if (i != first_cpu(this_sibling_map))
6539 continue;
6540
6541 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6542 }
6543 #endif
6544
6545 #ifdef CONFIG_SCHED_MC
6546 /* Set up multi-core groups */
6547 for_each_cpu_mask(i, *cpu_map) {
6548 cpumask_t this_core_map = cpu_coregroup_map(i);
6549 cpus_and(this_core_map, this_core_map, *cpu_map);
6550 if (i != first_cpu(this_core_map))
6551 continue;
6552 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6553 }
6554 #endif
6555
6556
6557 /* Set up physical groups */
6558 for (i = 0; i < MAX_NUMNODES; i++) {
6559 cpumask_t nodemask = node_to_cpumask(i);
6560
6561 cpus_and(nodemask, nodemask, *cpu_map);
6562 if (cpus_empty(nodemask))
6563 continue;
6564
6565 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6566 }
6567
6568 #ifdef CONFIG_NUMA
6569 /* Set up node groups */
6570 if (sd_allnodes)
6571 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6572
6573 for (i = 0; i < MAX_NUMNODES; i++) {
6574 /* Set up node groups */
6575 struct sched_group *sg, *prev;
6576 cpumask_t nodemask = node_to_cpumask(i);
6577 cpumask_t domainspan;
6578 cpumask_t covered = CPU_MASK_NONE;
6579 int j;
6580
6581 cpus_and(nodemask, nodemask, *cpu_map);
6582 if (cpus_empty(nodemask)) {
6583 sched_group_nodes[i] = NULL;
6584 continue;
6585 }
6586
6587 domainspan = sched_domain_node_span(i);
6588 cpus_and(domainspan, domainspan, *cpu_map);
6589
6590 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6591 if (!sg) {
6592 printk(KERN_WARNING "Can not alloc domain group for "
6593 "node %d\n", i);
6594 goto error;
6595 }
6596 sched_group_nodes[i] = sg;
6597 for_each_cpu_mask(j, nodemask) {
6598 struct sched_domain *sd;
6599 sd = &per_cpu(node_domains, j);
6600 sd->groups = sg;
6601 }
6602 sg->cpu_power = 0;
6603 sg->cpumask = nodemask;
6604 sg->next = sg;
6605 cpus_or(covered, covered, nodemask);
6606 prev = sg;
6607
6608 for (j = 0; j < MAX_NUMNODES; j++) {
6609 cpumask_t tmp, notcovered;
6610 int n = (i + j) % MAX_NUMNODES;
6611
6612 cpus_complement(notcovered, covered);
6613 cpus_and(tmp, notcovered, *cpu_map);
6614 cpus_and(tmp, tmp, domainspan);
6615 if (cpus_empty(tmp))
6616 break;
6617
6618 nodemask = node_to_cpumask(n);
6619 cpus_and(tmp, tmp, nodemask);
6620 if (cpus_empty(tmp))
6621 continue;
6622
6623 sg = kmalloc_node(sizeof(struct sched_group),
6624 GFP_KERNEL, i);
6625 if (!sg) {
6626 printk(KERN_WARNING
6627 "Can not alloc domain group for node %d\n", j);
6628 goto error;
6629 }
6630 sg->cpu_power = 0;
6631 sg->cpumask = tmp;
6632 sg->next = prev->next;
6633 cpus_or(covered, covered, tmp);
6634 prev->next = sg;
6635 prev = sg;
6636 }
6637 }
6638 #endif
6639
6640 /* Calculate CPU power for physical packages and nodes */
6641 #ifdef CONFIG_SCHED_SMT
6642 for_each_cpu_mask(i, *cpu_map) {
6643 sd = &per_cpu(cpu_domains, i);
6644 init_sched_groups_power(i, sd);
6645 }
6646 #endif
6647 #ifdef CONFIG_SCHED_MC
6648 for_each_cpu_mask(i, *cpu_map) {
6649 sd = &per_cpu(core_domains, i);
6650 init_sched_groups_power(i, sd);
6651 }
6652 #endif
6653
6654 for_each_cpu_mask(i, *cpu_map) {
6655 sd = &per_cpu(phys_domains, i);
6656 init_sched_groups_power(i, sd);
6657 }
6658
6659 #ifdef CONFIG_NUMA
6660 for (i = 0; i < MAX_NUMNODES; i++)
6661 init_numa_sched_groups_power(sched_group_nodes[i]);
6662
6663 if (sd_allnodes) {
6664 struct sched_group *sg;
6665
6666 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6667 init_numa_sched_groups_power(sg);
6668 }
6669 #endif
6670
6671 /* Attach the domains */
6672 for_each_cpu_mask(i, *cpu_map) {
6673 struct sched_domain *sd;
6674 #ifdef CONFIG_SCHED_SMT
6675 sd = &per_cpu(cpu_domains, i);
6676 #elif defined(CONFIG_SCHED_MC)
6677 sd = &per_cpu(core_domains, i);
6678 #else
6679 sd = &per_cpu(phys_domains, i);
6680 #endif
6681 cpu_attach_domain(sd, i);
6682 }
6683 /*
6684 * Tune cache-hot values:
6685 */
6686 calibrate_migration_costs(cpu_map);
6687
6688 return 0;
6689
6690 #ifdef CONFIG_NUMA
6691 error:
6692 free_sched_groups(cpu_map);
6693 return -ENOMEM;
6694 #endif
6695 }
6696 /*
6697 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6698 */
6699 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6700 {
6701 cpumask_t cpu_default_map;
6702 int err;
6703
6704 /*
6705 * Setup mask for cpus without special case scheduling requirements.
6706 * For now this just excludes isolated cpus, but could be used to
6707 * exclude other special cases in the future.
6708 */
6709 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6710
6711 err = build_sched_domains(&cpu_default_map);
6712
6713 return err;
6714 }
6715
6716 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6717 {
6718 free_sched_groups(cpu_map);
6719 }
6720
6721 /*
6722 * Detach sched domains from a group of cpus specified in cpu_map
6723 * These cpus will now be attached to the NULL domain
6724 */
6725 static void detach_destroy_domains(const cpumask_t *cpu_map)
6726 {
6727 int i;
6728
6729 for_each_cpu_mask(i, *cpu_map)
6730 cpu_attach_domain(NULL, i);
6731 synchronize_sched();
6732 arch_destroy_sched_domains(cpu_map);
6733 }
6734
6735 /*
6736 * Partition sched domains as specified by the cpumasks below.
6737 * This attaches all cpus from the cpumasks to the NULL domain,
6738 * waits for a RCU quiescent period, recalculates sched
6739 * domain information and then attaches them back to the
6740 * correct sched domains
6741 * Call with hotplug lock held
6742 */
6743 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6744 {
6745 cpumask_t change_map;
6746 int err = 0;
6747
6748 cpus_and(*partition1, *partition1, cpu_online_map);
6749 cpus_and(*partition2, *partition2, cpu_online_map);
6750 cpus_or(change_map, *partition1, *partition2);
6751
6752 /* Detach sched domains from all of the affected cpus */
6753 detach_destroy_domains(&change_map);
6754 if (!cpus_empty(*partition1))
6755 err = build_sched_domains(partition1);
6756 if (!err && !cpus_empty(*partition2))
6757 err = build_sched_domains(partition2);
6758
6759 return err;
6760 }
6761
6762 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6763 int arch_reinit_sched_domains(void)
6764 {
6765 int err;
6766
6767 lock_cpu_hotplug();
6768 detach_destroy_domains(&cpu_online_map);
6769 err = arch_init_sched_domains(&cpu_online_map);
6770 unlock_cpu_hotplug();
6771
6772 return err;
6773 }
6774
6775 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6776 {
6777 int ret;
6778
6779 if (buf[0] != '0' && buf[0] != '1')
6780 return -EINVAL;
6781
6782 if (smt)
6783 sched_smt_power_savings = (buf[0] == '1');
6784 else
6785 sched_mc_power_savings = (buf[0] == '1');
6786
6787 ret = arch_reinit_sched_domains();
6788
6789 return ret ? ret : count;
6790 }
6791
6792 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6793 {
6794 int err = 0;
6795
6796 #ifdef CONFIG_SCHED_SMT
6797 if (smt_capable())
6798 err = sysfs_create_file(&cls->kset.kobj,
6799 &attr_sched_smt_power_savings.attr);
6800 #endif
6801 #ifdef CONFIG_SCHED_MC
6802 if (!err && mc_capable())
6803 err = sysfs_create_file(&cls->kset.kobj,
6804 &attr_sched_mc_power_savings.attr);
6805 #endif
6806 return err;
6807 }
6808 #endif
6809
6810 #ifdef CONFIG_SCHED_MC
6811 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6812 {
6813 return sprintf(page, "%u\n", sched_mc_power_savings);
6814 }
6815 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6816 const char *buf, size_t count)
6817 {
6818 return sched_power_savings_store(buf, count, 0);
6819 }
6820 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6821 sched_mc_power_savings_store);
6822 #endif
6823
6824 #ifdef CONFIG_SCHED_SMT
6825 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6826 {
6827 return sprintf(page, "%u\n", sched_smt_power_savings);
6828 }
6829 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6830 const char *buf, size_t count)
6831 {
6832 return sched_power_savings_store(buf, count, 1);
6833 }
6834 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6835 sched_smt_power_savings_store);
6836 #endif
6837
6838 /*
6839 * Force a reinitialization of the sched domains hierarchy. The domains
6840 * and groups cannot be updated in place without racing with the balancing
6841 * code, so we temporarily attach all running cpus to the NULL domain
6842 * which will prevent rebalancing while the sched domains are recalculated.
6843 */
6844 static int update_sched_domains(struct notifier_block *nfb,
6845 unsigned long action, void *hcpu)
6846 {
6847 switch (action) {
6848 case CPU_UP_PREPARE:
6849 case CPU_DOWN_PREPARE:
6850 detach_destroy_domains(&cpu_online_map);
6851 return NOTIFY_OK;
6852
6853 case CPU_UP_CANCELED:
6854 case CPU_DOWN_FAILED:
6855 case CPU_ONLINE:
6856 case CPU_DEAD:
6857 /*
6858 * Fall through and re-initialise the domains.
6859 */
6860 break;
6861 default:
6862 return NOTIFY_DONE;
6863 }
6864
6865 /* The hotplug lock is already held by cpu_up/cpu_down */
6866 arch_init_sched_domains(&cpu_online_map);
6867
6868 return NOTIFY_OK;
6869 }
6870
6871 void __init sched_init_smp(void)
6872 {
6873 cpumask_t non_isolated_cpus;
6874
6875 lock_cpu_hotplug();
6876 arch_init_sched_domains(&cpu_online_map);
6877 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6878 if (cpus_empty(non_isolated_cpus))
6879 cpu_set(smp_processor_id(), non_isolated_cpus);
6880 unlock_cpu_hotplug();
6881 /* XXX: Theoretical race here - CPU may be hotplugged now */
6882 hotcpu_notifier(update_sched_domains, 0);
6883
6884 /* Move init over to a non-isolated CPU */
6885 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6886 BUG();
6887 }
6888 #else
6889 void __init sched_init_smp(void)
6890 {
6891 }
6892 #endif /* CONFIG_SMP */
6893
6894 int in_sched_functions(unsigned long addr)
6895 {
6896 /* Linker adds these: start and end of __sched functions */
6897 extern char __sched_text_start[], __sched_text_end[];
6898
6899 return in_lock_functions(addr) ||
6900 (addr >= (unsigned long)__sched_text_start
6901 && addr < (unsigned long)__sched_text_end);
6902 }
6903
6904 void __init sched_init(void)
6905 {
6906 int i, j, k;
6907
6908 for_each_possible_cpu(i) {
6909 struct prio_array *array;
6910 struct rq *rq;
6911
6912 rq = cpu_rq(i);
6913 spin_lock_init(&rq->lock);
6914 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6915 rq->nr_running = 0;
6916 rq->active = rq->arrays;
6917 rq->expired = rq->arrays + 1;
6918 rq->best_expired_prio = MAX_PRIO;
6919
6920 #ifdef CONFIG_SMP
6921 rq->sd = NULL;
6922 for (j = 1; j < 3; j++)
6923 rq->cpu_load[j] = 0;
6924 rq->active_balance = 0;
6925 rq->push_cpu = 0;
6926 rq->cpu = i;
6927 rq->migration_thread = NULL;
6928 INIT_LIST_HEAD(&rq->migration_queue);
6929 #endif
6930 atomic_set(&rq->nr_iowait, 0);
6931
6932 for (j = 0; j < 2; j++) {
6933 array = rq->arrays + j;
6934 for (k = 0; k < MAX_PRIO; k++) {
6935 INIT_LIST_HEAD(array->queue + k);
6936 __clear_bit(k, array->bitmap);
6937 }
6938 // delimiter for bitsearch
6939 __set_bit(MAX_PRIO, array->bitmap);
6940 }
6941 }
6942
6943 set_load_weight(&init_task);
6944
6945 #ifdef CONFIG_SMP
6946 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6947 #endif
6948
6949 #ifdef CONFIG_RT_MUTEXES
6950 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6951 #endif
6952
6953 /*
6954 * The boot idle thread does lazy MMU switching as well:
6955 */
6956 atomic_inc(&init_mm.mm_count);
6957 enter_lazy_tlb(&init_mm, current);
6958
6959 /*
6960 * Make us the idle thread. Technically, schedule() should not be
6961 * called from this thread, however somewhere below it might be,
6962 * but because we are the idle thread, we just pick up running again
6963 * when this runqueue becomes "idle".
6964 */
6965 init_idle(current, smp_processor_id());
6966 }
6967
6968 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6969 void __might_sleep(char *file, int line)
6970 {
6971 #ifdef in_atomic
6972 static unsigned long prev_jiffy; /* ratelimiting */
6973
6974 if ((in_atomic() || irqs_disabled()) &&
6975 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6976 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6977 return;
6978 prev_jiffy = jiffies;
6979 printk(KERN_ERR "BUG: sleeping function called from invalid"
6980 " context at %s:%d\n", file, line);
6981 printk("in_atomic():%d, irqs_disabled():%d\n",
6982 in_atomic(), irqs_disabled());
6983 debug_show_held_locks(current);
6984 if (irqs_disabled())
6985 print_irqtrace_events(current);
6986 dump_stack();
6987 }
6988 #endif
6989 }
6990 EXPORT_SYMBOL(__might_sleep);
6991 #endif
6992
6993 #ifdef CONFIG_MAGIC_SYSRQ
6994 void normalize_rt_tasks(void)
6995 {
6996 struct prio_array *array;
6997 struct task_struct *p;
6998 unsigned long flags;
6999 struct rq *rq;
7000
7001 read_lock_irq(&tasklist_lock);
7002 for_each_process(p) {
7003 if (!rt_task(p))
7004 continue;
7005
7006 spin_lock_irqsave(&p->pi_lock, flags);
7007 rq = __task_rq_lock(p);
7008
7009 array = p->array;
7010 if (array)
7011 deactivate_task(p, task_rq(p));
7012 __setscheduler(p, SCHED_NORMAL, 0);
7013 if (array) {
7014 __activate_task(p, task_rq(p));
7015 resched_task(rq->curr);
7016 }
7017
7018 __task_rq_unlock(rq);
7019 spin_unlock_irqrestore(&p->pi_lock, flags);
7020 }
7021 read_unlock_irq(&tasklist_lock);
7022 }
7023
7024 #endif /* CONFIG_MAGIC_SYSRQ */
7025
7026 #ifdef CONFIG_IA64
7027 /*
7028 * These functions are only useful for the IA64 MCA handling.
7029 *
7030 * They can only be called when the whole system has been
7031 * stopped - every CPU needs to be quiescent, and no scheduling
7032 * activity can take place. Using them for anything else would
7033 * be a serious bug, and as a result, they aren't even visible
7034 * under any other configuration.
7035 */
7036
7037 /**
7038 * curr_task - return the current task for a given cpu.
7039 * @cpu: the processor in question.
7040 *
7041 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7042 */
7043 struct task_struct *curr_task(int cpu)
7044 {
7045 return cpu_curr(cpu);
7046 }
7047
7048 /**
7049 * set_curr_task - set the current task for a given cpu.
7050 * @cpu: the processor in question.
7051 * @p: the task pointer to set.
7052 *
7053 * Description: This function must only be used when non-maskable interrupts
7054 * are serviced on a separate stack. It allows the architecture to switch the
7055 * notion of the current task on a cpu in a non-blocking manner. This function
7056 * must be called with all CPU's synchronized, and interrupts disabled, the
7057 * and caller must save the original value of the current task (see
7058 * curr_task() above) and restore that value before reenabling interrupts and
7059 * re-starting the system.
7060 *
7061 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7062 */
7063 void set_curr_task(int cpu, struct task_struct *p)
7064 {
7065 cpu_curr(cpu) = p;
7066 }
7067
7068 #endif