1e5cafdf4e27619d0320f03dd51b324850b7b077
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63 /*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72 /*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157 /*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179 /*
180 * These are the runqueue data structures:
181 */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200 struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288 return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297 #ifdef CONFIG_DEBUG_SPINLOCK
298 /* this is a valid case when another task releases the spinlock */
299 rq->lock.owner = current;
300 #endif
301 spin_unlock_irq(&rq->lock);
302 }
303
304 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
305 static inline int task_running(runqueue_t *rq, task_t *p)
306 {
307 #ifdef CONFIG_SMP
308 return p->oncpu;
309 #else
310 return rq->curr == p;
311 #endif
312 }
313
314 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
315 {
316 #ifdef CONFIG_SMP
317 /*
318 * We can optimise this out completely for !SMP, because the
319 * SMP rebalancing from interrupt is the only thing that cares
320 * here.
321 */
322 next->oncpu = 1;
323 #endif
324 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
325 spin_unlock_irq(&rq->lock);
326 #else
327 spin_unlock(&rq->lock);
328 #endif
329 }
330
331 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
332 {
333 #ifdef CONFIG_SMP
334 /*
335 * After ->oncpu is cleared, the task can be moved to a different CPU.
336 * We must ensure this doesn't happen until the switch is completely
337 * finished.
338 */
339 smp_wmb();
340 prev->oncpu = 0;
341 #endif
342 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
343 local_irq_enable();
344 #endif
345 }
346 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
347
348 /*
349 * task_rq_lock - lock the runqueue a given task resides on and disable
350 * interrupts. Note the ordering: we can safely lookup the task_rq without
351 * explicitly disabling preemption.
352 */
353 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
354 __acquires(rq->lock)
355 {
356 struct runqueue *rq;
357
358 repeat_lock_task:
359 local_irq_save(*flags);
360 rq = task_rq(p);
361 spin_lock(&rq->lock);
362 if (unlikely(rq != task_rq(p))) {
363 spin_unlock_irqrestore(&rq->lock, *flags);
364 goto repeat_lock_task;
365 }
366 return rq;
367 }
368
369 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
370 __releases(rq->lock)
371 {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 }
374
375 #ifdef CONFIG_SCHEDSTATS
376 /*
377 * bump this up when changing the output format or the meaning of an existing
378 * format, so that tools can adapt (or abort)
379 */
380 #define SCHEDSTAT_VERSION 12
381
382 static int show_schedstat(struct seq_file *seq, void *v)
383 {
384 int cpu;
385
386 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
387 seq_printf(seq, "timestamp %lu\n", jiffies);
388 for_each_online_cpu(cpu) {
389 runqueue_t *rq = cpu_rq(cpu);
390 #ifdef CONFIG_SMP
391 struct sched_domain *sd;
392 int dcnt = 0;
393 #endif
394
395 /* runqueue-specific stats */
396 seq_printf(seq,
397 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
398 cpu, rq->yld_both_empty,
399 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
400 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
401 rq->ttwu_cnt, rq->ttwu_local,
402 rq->rq_sched_info.cpu_time,
403 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
404
405 seq_printf(seq, "\n");
406
407 #ifdef CONFIG_SMP
408 /* domain-specific stats */
409 preempt_disable();
410 for_each_domain(cpu, sd) {
411 enum idle_type itype;
412 char mask_str[NR_CPUS];
413
414 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
415 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
416 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
417 itype++) {
418 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
419 sd->lb_cnt[itype],
420 sd->lb_balanced[itype],
421 sd->lb_failed[itype],
422 sd->lb_imbalance[itype],
423 sd->lb_gained[itype],
424 sd->lb_hot_gained[itype],
425 sd->lb_nobusyq[itype],
426 sd->lb_nobusyg[itype]);
427 }
428 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
429 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
430 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
431 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
432 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
433 }
434 preempt_enable();
435 #endif
436 }
437 return 0;
438 }
439
440 static int schedstat_open(struct inode *inode, struct file *file)
441 {
442 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
443 char *buf = kmalloc(size, GFP_KERNEL);
444 struct seq_file *m;
445 int res;
446
447 if (!buf)
448 return -ENOMEM;
449 res = single_open(file, show_schedstat, NULL);
450 if (!res) {
451 m = file->private_data;
452 m->buf = buf;
453 m->size = size;
454 } else
455 kfree(buf);
456 return res;
457 }
458
459 struct file_operations proc_schedstat_operations = {
460 .open = schedstat_open,
461 .read = seq_read,
462 .llseek = seq_lseek,
463 .release = single_release,
464 };
465
466 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
467 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
468 #else /* !CONFIG_SCHEDSTATS */
469 # define schedstat_inc(rq, field) do { } while (0)
470 # define schedstat_add(rq, field, amt) do { } while (0)
471 #endif
472
473 /*
474 * rq_lock - lock a given runqueue and disable interrupts.
475 */
476 static inline runqueue_t *this_rq_lock(void)
477 __acquires(rq->lock)
478 {
479 runqueue_t *rq;
480
481 local_irq_disable();
482 rq = this_rq();
483 spin_lock(&rq->lock);
484
485 return rq;
486 }
487
488 #ifdef CONFIG_SCHEDSTATS
489 /*
490 * Called when a process is dequeued from the active array and given
491 * the cpu. We should note that with the exception of interactive
492 * tasks, the expired queue will become the active queue after the active
493 * queue is empty, without explicitly dequeuing and requeuing tasks in the
494 * expired queue. (Interactive tasks may be requeued directly to the
495 * active queue, thus delaying tasks in the expired queue from running;
496 * see scheduler_tick()).
497 *
498 * This function is only called from sched_info_arrive(), rather than
499 * dequeue_task(). Even though a task may be queued and dequeued multiple
500 * times as it is shuffled about, we're really interested in knowing how
501 * long it was from the *first* time it was queued to the time that it
502 * finally hit a cpu.
503 */
504 static inline void sched_info_dequeued(task_t *t)
505 {
506 t->sched_info.last_queued = 0;
507 }
508
509 /*
510 * Called when a task finally hits the cpu. We can now calculate how
511 * long it was waiting to run. We also note when it began so that we
512 * can keep stats on how long its timeslice is.
513 */
514 static inline void sched_info_arrive(task_t *t)
515 {
516 unsigned long now = jiffies, diff = 0;
517 struct runqueue *rq = task_rq(t);
518
519 if (t->sched_info.last_queued)
520 diff = now - t->sched_info.last_queued;
521 sched_info_dequeued(t);
522 t->sched_info.run_delay += diff;
523 t->sched_info.last_arrival = now;
524 t->sched_info.pcnt++;
525
526 if (!rq)
527 return;
528
529 rq->rq_sched_info.run_delay += diff;
530 rq->rq_sched_info.pcnt++;
531 }
532
533 /*
534 * Called when a process is queued into either the active or expired
535 * array. The time is noted and later used to determine how long we
536 * had to wait for us to reach the cpu. Since the expired queue will
537 * become the active queue after active queue is empty, without dequeuing
538 * and requeuing any tasks, we are interested in queuing to either. It
539 * is unusual but not impossible for tasks to be dequeued and immediately
540 * requeued in the same or another array: this can happen in sched_yield(),
541 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
542 * to runqueue.
543 *
544 * This function is only called from enqueue_task(), but also only updates
545 * the timestamp if it is already not set. It's assumed that
546 * sched_info_dequeued() will clear that stamp when appropriate.
547 */
548 static inline void sched_info_queued(task_t *t)
549 {
550 if (!t->sched_info.last_queued)
551 t->sched_info.last_queued = jiffies;
552 }
553
554 /*
555 * Called when a process ceases being the active-running process, either
556 * voluntarily or involuntarily. Now we can calculate how long we ran.
557 */
558 static inline void sched_info_depart(task_t *t)
559 {
560 struct runqueue *rq = task_rq(t);
561 unsigned long diff = jiffies - t->sched_info.last_arrival;
562
563 t->sched_info.cpu_time += diff;
564
565 if (rq)
566 rq->rq_sched_info.cpu_time += diff;
567 }
568
569 /*
570 * Called when tasks are switched involuntarily due, typically, to expiring
571 * their time slice. (This may also be called when switching to or from
572 * the idle task.) We are only called when prev != next.
573 */
574 static inline void sched_info_switch(task_t *prev, task_t *next)
575 {
576 struct runqueue *rq = task_rq(prev);
577
578 /*
579 * prev now departs the cpu. It's not interesting to record
580 * stats about how efficient we were at scheduling the idle
581 * process, however.
582 */
583 if (prev != rq->idle)
584 sched_info_depart(prev);
585
586 if (next != rq->idle)
587 sched_info_arrive(next);
588 }
589 #else
590 #define sched_info_queued(t) do { } while (0)
591 #define sched_info_switch(t, next) do { } while (0)
592 #endif /* CONFIG_SCHEDSTATS */
593
594 /*
595 * Adding/removing a task to/from a priority array:
596 */
597 static void dequeue_task(struct task_struct *p, prio_array_t *array)
598 {
599 array->nr_active--;
600 list_del(&p->run_list);
601 if (list_empty(array->queue + p->prio))
602 __clear_bit(p->prio, array->bitmap);
603 }
604
605 static void enqueue_task(struct task_struct *p, prio_array_t *array)
606 {
607 sched_info_queued(p);
608 list_add_tail(&p->run_list, array->queue + p->prio);
609 __set_bit(p->prio, array->bitmap);
610 array->nr_active++;
611 p->array = array;
612 }
613
614 /*
615 * Put task to the end of the run list without the overhead of dequeue
616 * followed by enqueue.
617 */
618 static void requeue_task(struct task_struct *p, prio_array_t *array)
619 {
620 list_move_tail(&p->run_list, array->queue + p->prio);
621 }
622
623 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
624 {
625 list_add(&p->run_list, array->queue + p->prio);
626 __set_bit(p->prio, array->bitmap);
627 array->nr_active++;
628 p->array = array;
629 }
630
631 /*
632 * effective_prio - return the priority that is based on the static
633 * priority but is modified by bonuses/penalties.
634 *
635 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
636 * into the -5 ... 0 ... +5 bonus/penalty range.
637 *
638 * We use 25% of the full 0...39 priority range so that:
639 *
640 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
641 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
642 *
643 * Both properties are important to certain workloads.
644 */
645 static int effective_prio(task_t *p)
646 {
647 int bonus, prio;
648
649 if (rt_task(p))
650 return p->prio;
651
652 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
653
654 prio = p->static_prio - bonus;
655 if (prio < MAX_RT_PRIO)
656 prio = MAX_RT_PRIO;
657 if (prio > MAX_PRIO-1)
658 prio = MAX_PRIO-1;
659 return prio;
660 }
661
662 /*
663 * __activate_task - move a task to the runqueue.
664 */
665 static inline void __activate_task(task_t *p, runqueue_t *rq)
666 {
667 enqueue_task(p, rq->active);
668 rq->nr_running++;
669 }
670
671 /*
672 * __activate_idle_task - move idle task to the _front_ of runqueue.
673 */
674 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
675 {
676 enqueue_task_head(p, rq->active);
677 rq->nr_running++;
678 }
679
680 static int recalc_task_prio(task_t *p, unsigned long long now)
681 {
682 /* Caller must always ensure 'now >= p->timestamp' */
683 unsigned long long __sleep_time = now - p->timestamp;
684 unsigned long sleep_time;
685
686 if (__sleep_time > NS_MAX_SLEEP_AVG)
687 sleep_time = NS_MAX_SLEEP_AVG;
688 else
689 sleep_time = (unsigned long)__sleep_time;
690
691 if (likely(sleep_time > 0)) {
692 /*
693 * User tasks that sleep a long time are categorised as
694 * idle and will get just interactive status to stay active &
695 * prevent them suddenly becoming cpu hogs and starving
696 * other processes.
697 */
698 if (p->mm && p->activated != -1 &&
699 sleep_time > INTERACTIVE_SLEEP(p)) {
700 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
701 DEF_TIMESLICE);
702 } else {
703 /*
704 * The lower the sleep avg a task has the more
705 * rapidly it will rise with sleep time.
706 */
707 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
708
709 /*
710 * Tasks waking from uninterruptible sleep are
711 * limited in their sleep_avg rise as they
712 * are likely to be waiting on I/O
713 */
714 if (p->activated == -1 && p->mm) {
715 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
716 sleep_time = 0;
717 else if (p->sleep_avg + sleep_time >=
718 INTERACTIVE_SLEEP(p)) {
719 p->sleep_avg = INTERACTIVE_SLEEP(p);
720 sleep_time = 0;
721 }
722 }
723
724 /*
725 * This code gives a bonus to interactive tasks.
726 *
727 * The boost works by updating the 'average sleep time'
728 * value here, based on ->timestamp. The more time a
729 * task spends sleeping, the higher the average gets -
730 * and the higher the priority boost gets as well.
731 */
732 p->sleep_avg += sleep_time;
733
734 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
735 p->sleep_avg = NS_MAX_SLEEP_AVG;
736 }
737 }
738
739 return effective_prio(p);
740 }
741
742 /*
743 * activate_task - move a task to the runqueue and do priority recalculation
744 *
745 * Update all the scheduling statistics stuff. (sleep average
746 * calculation, priority modifiers, etc.)
747 */
748 static void activate_task(task_t *p, runqueue_t *rq, int local)
749 {
750 unsigned long long now;
751
752 now = sched_clock();
753 #ifdef CONFIG_SMP
754 if (!local) {
755 /* Compensate for drifting sched_clock */
756 runqueue_t *this_rq = this_rq();
757 now = (now - this_rq->timestamp_last_tick)
758 + rq->timestamp_last_tick;
759 }
760 #endif
761
762 p->prio = recalc_task_prio(p, now);
763
764 /*
765 * This checks to make sure it's not an uninterruptible task
766 * that is now waking up.
767 */
768 if (!p->activated) {
769 /*
770 * Tasks which were woken up by interrupts (ie. hw events)
771 * are most likely of interactive nature. So we give them
772 * the credit of extending their sleep time to the period
773 * of time they spend on the runqueue, waiting for execution
774 * on a CPU, first time around:
775 */
776 if (in_interrupt())
777 p->activated = 2;
778 else {
779 /*
780 * Normal first-time wakeups get a credit too for
781 * on-runqueue time, but it will be weighted down:
782 */
783 p->activated = 1;
784 }
785 }
786 p->timestamp = now;
787
788 __activate_task(p, rq);
789 }
790
791 /*
792 * deactivate_task - remove a task from the runqueue.
793 */
794 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
795 {
796 rq->nr_running--;
797 dequeue_task(p, p->array);
798 p->array = NULL;
799 }
800
801 /*
802 * resched_task - mark a task 'to be rescheduled now'.
803 *
804 * On UP this means the setting of the need_resched flag, on SMP it
805 * might also involve a cross-CPU call to trigger the scheduler on
806 * the target CPU.
807 */
808 #ifdef CONFIG_SMP
809 static void resched_task(task_t *p)
810 {
811 int need_resched, nrpolling;
812
813 assert_spin_locked(&task_rq(p)->lock);
814
815 /* minimise the chance of sending an interrupt to poll_idle() */
816 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
817 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
818 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
819
820 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
821 smp_send_reschedule(task_cpu(p));
822 }
823 #else
824 static inline void resched_task(task_t *p)
825 {
826 set_tsk_need_resched(p);
827 }
828 #endif
829
830 /**
831 * task_curr - is this task currently executing on a CPU?
832 * @p: the task in question.
833 */
834 inline int task_curr(const task_t *p)
835 {
836 return cpu_curr(task_cpu(p)) == p;
837 }
838
839 #ifdef CONFIG_SMP
840 typedef struct {
841 struct list_head list;
842
843 task_t *task;
844 int dest_cpu;
845
846 struct completion done;
847 } migration_req_t;
848
849 /*
850 * The task's runqueue lock must be held.
851 * Returns true if you have to wait for migration thread.
852 */
853 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
854 {
855 runqueue_t *rq = task_rq(p);
856
857 /*
858 * If the task is not on a runqueue (and not running), then
859 * it is sufficient to simply update the task's cpu field.
860 */
861 if (!p->array && !task_running(rq, p)) {
862 set_task_cpu(p, dest_cpu);
863 return 0;
864 }
865
866 init_completion(&req->done);
867 req->task = p;
868 req->dest_cpu = dest_cpu;
869 list_add(&req->list, &rq->migration_queue);
870 return 1;
871 }
872
873 /*
874 * wait_task_inactive - wait for a thread to unschedule.
875 *
876 * The caller must ensure that the task *will* unschedule sometime soon,
877 * else this function might spin for a *long* time. This function can't
878 * be called with interrupts off, or it may introduce deadlock with
879 * smp_call_function() if an IPI is sent by the same process we are
880 * waiting to become inactive.
881 */
882 void wait_task_inactive(task_t *p)
883 {
884 unsigned long flags;
885 runqueue_t *rq;
886 int preempted;
887
888 repeat:
889 rq = task_rq_lock(p, &flags);
890 /* Must be off runqueue entirely, not preempted. */
891 if (unlikely(p->array || task_running(rq, p))) {
892 /* If it's preempted, we yield. It could be a while. */
893 preempted = !task_running(rq, p);
894 task_rq_unlock(rq, &flags);
895 cpu_relax();
896 if (preempted)
897 yield();
898 goto repeat;
899 }
900 task_rq_unlock(rq, &flags);
901 }
902
903 /***
904 * kick_process - kick a running thread to enter/exit the kernel
905 * @p: the to-be-kicked thread
906 *
907 * Cause a process which is running on another CPU to enter
908 * kernel-mode, without any delay. (to get signals handled.)
909 *
910 * NOTE: this function doesnt have to take the runqueue lock,
911 * because all it wants to ensure is that the remote task enters
912 * the kernel. If the IPI races and the task has been migrated
913 * to another CPU then no harm is done and the purpose has been
914 * achieved as well.
915 */
916 void kick_process(task_t *p)
917 {
918 int cpu;
919
920 preempt_disable();
921 cpu = task_cpu(p);
922 if ((cpu != smp_processor_id()) && task_curr(p))
923 smp_send_reschedule(cpu);
924 preempt_enable();
925 }
926
927 /*
928 * Return a low guess at the load of a migration-source cpu.
929 *
930 * We want to under-estimate the load of migration sources, to
931 * balance conservatively.
932 */
933 static inline unsigned long source_load(int cpu, int type)
934 {
935 runqueue_t *rq = cpu_rq(cpu);
936 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
937 if (type == 0)
938 return load_now;
939
940 return min(rq->cpu_load[type-1], load_now);
941 }
942
943 /*
944 * Return a high guess at the load of a migration-target cpu
945 */
946 static inline unsigned long target_load(int cpu, int type)
947 {
948 runqueue_t *rq = cpu_rq(cpu);
949 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
950 if (type == 0)
951 return load_now;
952
953 return max(rq->cpu_load[type-1], load_now);
954 }
955
956 /*
957 * find_idlest_group finds and returns the least busy CPU group within the
958 * domain.
959 */
960 static struct sched_group *
961 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
962 {
963 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
964 unsigned long min_load = ULONG_MAX, this_load = 0;
965 int load_idx = sd->forkexec_idx;
966 int imbalance = 100 + (sd->imbalance_pct-100)/2;
967
968 do {
969 unsigned long load, avg_load;
970 int local_group;
971 int i;
972
973 /* Skip over this group if it has no CPUs allowed */
974 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
975 goto nextgroup;
976
977 local_group = cpu_isset(this_cpu, group->cpumask);
978
979 /* Tally up the load of all CPUs in the group */
980 avg_load = 0;
981
982 for_each_cpu_mask(i, group->cpumask) {
983 /* Bias balancing toward cpus of our domain */
984 if (local_group)
985 load = source_load(i, load_idx);
986 else
987 load = target_load(i, load_idx);
988
989 avg_load += load;
990 }
991
992 /* Adjust by relative CPU power of the group */
993 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
994
995 if (local_group) {
996 this_load = avg_load;
997 this = group;
998 } else if (avg_load < min_load) {
999 min_load = avg_load;
1000 idlest = group;
1001 }
1002 nextgroup:
1003 group = group->next;
1004 } while (group != sd->groups);
1005
1006 if (!idlest || 100*this_load < imbalance*min_load)
1007 return NULL;
1008 return idlest;
1009 }
1010
1011 /*
1012 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1013 */
1014 static int
1015 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1016 {
1017 cpumask_t tmp;
1018 unsigned long load, min_load = ULONG_MAX;
1019 int idlest = -1;
1020 int i;
1021
1022 /* Traverse only the allowed CPUs */
1023 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1024
1025 for_each_cpu_mask(i, tmp) {
1026 load = source_load(i, 0);
1027
1028 if (load < min_load || (load == min_load && i == this_cpu)) {
1029 min_load = load;
1030 idlest = i;
1031 }
1032 }
1033
1034 return idlest;
1035 }
1036
1037 /*
1038 * sched_balance_self: balance the current task (running on cpu) in domains
1039 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1040 * SD_BALANCE_EXEC.
1041 *
1042 * Balance, ie. select the least loaded group.
1043 *
1044 * Returns the target CPU number, or the same CPU if no balancing is needed.
1045 *
1046 * preempt must be disabled.
1047 */
1048 static int sched_balance_self(int cpu, int flag)
1049 {
1050 struct task_struct *t = current;
1051 struct sched_domain *tmp, *sd = NULL;
1052
1053 for_each_domain(cpu, tmp)
1054 if (tmp->flags & flag)
1055 sd = tmp;
1056
1057 while (sd) {
1058 cpumask_t span;
1059 struct sched_group *group;
1060 int new_cpu;
1061 int weight;
1062
1063 span = sd->span;
1064 group = find_idlest_group(sd, t, cpu);
1065 if (!group)
1066 goto nextlevel;
1067
1068 new_cpu = find_idlest_cpu(group, t, cpu);
1069 if (new_cpu == -1 || new_cpu == cpu)
1070 goto nextlevel;
1071
1072 /* Now try balancing at a lower domain level */
1073 cpu = new_cpu;
1074 nextlevel:
1075 sd = NULL;
1076 weight = cpus_weight(span);
1077 for_each_domain(cpu, tmp) {
1078 if (weight <= cpus_weight(tmp->span))
1079 break;
1080 if (tmp->flags & flag)
1081 sd = tmp;
1082 }
1083 /* while loop will break here if sd == NULL */
1084 }
1085
1086 return cpu;
1087 }
1088
1089 #endif /* CONFIG_SMP */
1090
1091 /*
1092 * wake_idle() will wake a task on an idle cpu if task->cpu is
1093 * not idle and an idle cpu is available. The span of cpus to
1094 * search starts with cpus closest then further out as needed,
1095 * so we always favor a closer, idle cpu.
1096 *
1097 * Returns the CPU we should wake onto.
1098 */
1099 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1100 static int wake_idle(int cpu, task_t *p)
1101 {
1102 cpumask_t tmp;
1103 struct sched_domain *sd;
1104 int i;
1105
1106 if (idle_cpu(cpu))
1107 return cpu;
1108
1109 for_each_domain(cpu, sd) {
1110 if (sd->flags & SD_WAKE_IDLE) {
1111 cpus_and(tmp, sd->span, p->cpus_allowed);
1112 for_each_cpu_mask(i, tmp) {
1113 if (idle_cpu(i))
1114 return i;
1115 }
1116 }
1117 else
1118 break;
1119 }
1120 return cpu;
1121 }
1122 #else
1123 static inline int wake_idle(int cpu, task_t *p)
1124 {
1125 return cpu;
1126 }
1127 #endif
1128
1129 /***
1130 * try_to_wake_up - wake up a thread
1131 * @p: the to-be-woken-up thread
1132 * @state: the mask of task states that can be woken
1133 * @sync: do a synchronous wakeup?
1134 *
1135 * Put it on the run-queue if it's not already there. The "current"
1136 * thread is always on the run-queue (except when the actual
1137 * re-schedule is in progress), and as such you're allowed to do
1138 * the simpler "current->state = TASK_RUNNING" to mark yourself
1139 * runnable without the overhead of this.
1140 *
1141 * returns failure only if the task is already active.
1142 */
1143 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1144 {
1145 int cpu, this_cpu, success = 0;
1146 unsigned long flags;
1147 long old_state;
1148 runqueue_t *rq;
1149 #ifdef CONFIG_SMP
1150 unsigned long load, this_load;
1151 struct sched_domain *sd, *this_sd = NULL;
1152 int new_cpu;
1153 #endif
1154
1155 rq = task_rq_lock(p, &flags);
1156 old_state = p->state;
1157 if (!(old_state & state))
1158 goto out;
1159
1160 if (p->array)
1161 goto out_running;
1162
1163 cpu = task_cpu(p);
1164 this_cpu = smp_processor_id();
1165
1166 #ifdef CONFIG_SMP
1167 if (unlikely(task_running(rq, p)))
1168 goto out_activate;
1169
1170 new_cpu = cpu;
1171
1172 schedstat_inc(rq, ttwu_cnt);
1173 if (cpu == this_cpu) {
1174 schedstat_inc(rq, ttwu_local);
1175 goto out_set_cpu;
1176 }
1177
1178 for_each_domain(this_cpu, sd) {
1179 if (cpu_isset(cpu, sd->span)) {
1180 schedstat_inc(sd, ttwu_wake_remote);
1181 this_sd = sd;
1182 break;
1183 }
1184 }
1185
1186 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1187 goto out_set_cpu;
1188
1189 /*
1190 * Check for affine wakeup and passive balancing possibilities.
1191 */
1192 if (this_sd) {
1193 int idx = this_sd->wake_idx;
1194 unsigned int imbalance;
1195
1196 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1197
1198 load = source_load(cpu, idx);
1199 this_load = target_load(this_cpu, idx);
1200
1201 new_cpu = this_cpu; /* Wake to this CPU if we can */
1202
1203 if (this_sd->flags & SD_WAKE_AFFINE) {
1204 unsigned long tl = this_load;
1205 /*
1206 * If sync wakeup then subtract the (maximum possible)
1207 * effect of the currently running task from the load
1208 * of the current CPU:
1209 */
1210 if (sync)
1211 tl -= SCHED_LOAD_SCALE;
1212
1213 if ((tl <= load &&
1214 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1215 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1216 /*
1217 * This domain has SD_WAKE_AFFINE and
1218 * p is cache cold in this domain, and
1219 * there is no bad imbalance.
1220 */
1221 schedstat_inc(this_sd, ttwu_move_affine);
1222 goto out_set_cpu;
1223 }
1224 }
1225
1226 /*
1227 * Start passive balancing when half the imbalance_pct
1228 * limit is reached.
1229 */
1230 if (this_sd->flags & SD_WAKE_BALANCE) {
1231 if (imbalance*this_load <= 100*load) {
1232 schedstat_inc(this_sd, ttwu_move_balance);
1233 goto out_set_cpu;
1234 }
1235 }
1236 }
1237
1238 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1239 out_set_cpu:
1240 new_cpu = wake_idle(new_cpu, p);
1241 if (new_cpu != cpu) {
1242 set_task_cpu(p, new_cpu);
1243 task_rq_unlock(rq, &flags);
1244 /* might preempt at this point */
1245 rq = task_rq_lock(p, &flags);
1246 old_state = p->state;
1247 if (!(old_state & state))
1248 goto out;
1249 if (p->array)
1250 goto out_running;
1251
1252 this_cpu = smp_processor_id();
1253 cpu = task_cpu(p);
1254 }
1255
1256 out_activate:
1257 #endif /* CONFIG_SMP */
1258 if (old_state == TASK_UNINTERRUPTIBLE) {
1259 rq->nr_uninterruptible--;
1260 /*
1261 * Tasks on involuntary sleep don't earn
1262 * sleep_avg beyond just interactive state.
1263 */
1264 p->activated = -1;
1265 }
1266
1267 /*
1268 * Tasks that have marked their sleep as noninteractive get
1269 * woken up without updating their sleep average. (i.e. their
1270 * sleep is handled in a priority-neutral manner, no priority
1271 * boost and no penalty.)
1272 */
1273 if (old_state & TASK_NONINTERACTIVE)
1274 __activate_task(p, rq);
1275 else
1276 activate_task(p, rq, cpu == this_cpu);
1277 /*
1278 * Sync wakeups (i.e. those types of wakeups where the waker
1279 * has indicated that it will leave the CPU in short order)
1280 * don't trigger a preemption, if the woken up task will run on
1281 * this cpu. (in this case the 'I will reschedule' promise of
1282 * the waker guarantees that the freshly woken up task is going
1283 * to be considered on this CPU.)
1284 */
1285 if (!sync || cpu != this_cpu) {
1286 if (TASK_PREEMPTS_CURR(p, rq))
1287 resched_task(rq->curr);
1288 }
1289 success = 1;
1290
1291 out_running:
1292 p->state = TASK_RUNNING;
1293 out:
1294 task_rq_unlock(rq, &flags);
1295
1296 return success;
1297 }
1298
1299 int fastcall wake_up_process(task_t *p)
1300 {
1301 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1302 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1303 }
1304
1305 EXPORT_SYMBOL(wake_up_process);
1306
1307 int fastcall wake_up_state(task_t *p, unsigned int state)
1308 {
1309 return try_to_wake_up(p, state, 0);
1310 }
1311
1312 /*
1313 * Perform scheduler related setup for a newly forked process p.
1314 * p is forked by current.
1315 */
1316 void fastcall sched_fork(task_t *p, int clone_flags)
1317 {
1318 int cpu = get_cpu();
1319
1320 #ifdef CONFIG_SMP
1321 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1322 #endif
1323 set_task_cpu(p, cpu);
1324
1325 /*
1326 * We mark the process as running here, but have not actually
1327 * inserted it onto the runqueue yet. This guarantees that
1328 * nobody will actually run it, and a signal or other external
1329 * event cannot wake it up and insert it on the runqueue either.
1330 */
1331 p->state = TASK_RUNNING;
1332 INIT_LIST_HEAD(&p->run_list);
1333 p->array = NULL;
1334 #ifdef CONFIG_SCHEDSTATS
1335 memset(&p->sched_info, 0, sizeof(p->sched_info));
1336 #endif
1337 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1338 p->oncpu = 0;
1339 #endif
1340 #ifdef CONFIG_PREEMPT
1341 /* Want to start with kernel preemption disabled. */
1342 p->thread_info->preempt_count = 1;
1343 #endif
1344 /*
1345 * Share the timeslice between parent and child, thus the
1346 * total amount of pending timeslices in the system doesn't change,
1347 * resulting in more scheduling fairness.
1348 */
1349 local_irq_disable();
1350 p->time_slice = (current->time_slice + 1) >> 1;
1351 /*
1352 * The remainder of the first timeslice might be recovered by
1353 * the parent if the child exits early enough.
1354 */
1355 p->first_time_slice = 1;
1356 current->time_slice >>= 1;
1357 p->timestamp = sched_clock();
1358 if (unlikely(!current->time_slice)) {
1359 /*
1360 * This case is rare, it happens when the parent has only
1361 * a single jiffy left from its timeslice. Taking the
1362 * runqueue lock is not a problem.
1363 */
1364 current->time_slice = 1;
1365 scheduler_tick();
1366 }
1367 local_irq_enable();
1368 put_cpu();
1369 }
1370
1371 /*
1372 * wake_up_new_task - wake up a newly created task for the first time.
1373 *
1374 * This function will do some initial scheduler statistics housekeeping
1375 * that must be done for every newly created context, then puts the task
1376 * on the runqueue and wakes it.
1377 */
1378 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1379 {
1380 unsigned long flags;
1381 int this_cpu, cpu;
1382 runqueue_t *rq, *this_rq;
1383
1384 rq = task_rq_lock(p, &flags);
1385 BUG_ON(p->state != TASK_RUNNING);
1386 this_cpu = smp_processor_id();
1387 cpu = task_cpu(p);
1388
1389 /*
1390 * We decrease the sleep average of forking parents
1391 * and children as well, to keep max-interactive tasks
1392 * from forking tasks that are max-interactive. The parent
1393 * (current) is done further down, under its lock.
1394 */
1395 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1396 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1397
1398 p->prio = effective_prio(p);
1399
1400 if (likely(cpu == this_cpu)) {
1401 if (!(clone_flags & CLONE_VM)) {
1402 /*
1403 * The VM isn't cloned, so we're in a good position to
1404 * do child-runs-first in anticipation of an exec. This
1405 * usually avoids a lot of COW overhead.
1406 */
1407 if (unlikely(!current->array))
1408 __activate_task(p, rq);
1409 else {
1410 p->prio = current->prio;
1411 list_add_tail(&p->run_list, &current->run_list);
1412 p->array = current->array;
1413 p->array->nr_active++;
1414 rq->nr_running++;
1415 }
1416 set_need_resched();
1417 } else
1418 /* Run child last */
1419 __activate_task(p, rq);
1420 /*
1421 * We skip the following code due to cpu == this_cpu
1422 *
1423 * task_rq_unlock(rq, &flags);
1424 * this_rq = task_rq_lock(current, &flags);
1425 */
1426 this_rq = rq;
1427 } else {
1428 this_rq = cpu_rq(this_cpu);
1429
1430 /*
1431 * Not the local CPU - must adjust timestamp. This should
1432 * get optimised away in the !CONFIG_SMP case.
1433 */
1434 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1435 + rq->timestamp_last_tick;
1436 __activate_task(p, rq);
1437 if (TASK_PREEMPTS_CURR(p, rq))
1438 resched_task(rq->curr);
1439
1440 /*
1441 * Parent and child are on different CPUs, now get the
1442 * parent runqueue to update the parent's ->sleep_avg:
1443 */
1444 task_rq_unlock(rq, &flags);
1445 this_rq = task_rq_lock(current, &flags);
1446 }
1447 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1448 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1449 task_rq_unlock(this_rq, &flags);
1450 }
1451
1452 /*
1453 * Potentially available exiting-child timeslices are
1454 * retrieved here - this way the parent does not get
1455 * penalized for creating too many threads.
1456 *
1457 * (this cannot be used to 'generate' timeslices
1458 * artificially, because any timeslice recovered here
1459 * was given away by the parent in the first place.)
1460 */
1461 void fastcall sched_exit(task_t *p)
1462 {
1463 unsigned long flags;
1464 runqueue_t *rq;
1465
1466 /*
1467 * If the child was a (relative-) CPU hog then decrease
1468 * the sleep_avg of the parent as well.
1469 */
1470 rq = task_rq_lock(p->parent, &flags);
1471 if (p->first_time_slice) {
1472 p->parent->time_slice += p->time_slice;
1473 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1474 p->parent->time_slice = task_timeslice(p);
1475 }
1476 if (p->sleep_avg < p->parent->sleep_avg)
1477 p->parent->sleep_avg = p->parent->sleep_avg /
1478 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1479 (EXIT_WEIGHT + 1);
1480 task_rq_unlock(rq, &flags);
1481 }
1482
1483 /**
1484 * prepare_task_switch - prepare to switch tasks
1485 * @rq: the runqueue preparing to switch
1486 * @next: the task we are going to switch to.
1487 *
1488 * This is called with the rq lock held and interrupts off. It must
1489 * be paired with a subsequent finish_task_switch after the context
1490 * switch.
1491 *
1492 * prepare_task_switch sets up locking and calls architecture specific
1493 * hooks.
1494 */
1495 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1496 {
1497 prepare_lock_switch(rq, next);
1498 prepare_arch_switch(next);
1499 }
1500
1501 /**
1502 * finish_task_switch - clean up after a task-switch
1503 * @rq: runqueue associated with task-switch
1504 * @prev: the thread we just switched away from.
1505 *
1506 * finish_task_switch must be called after the context switch, paired
1507 * with a prepare_task_switch call before the context switch.
1508 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1509 * and do any other architecture-specific cleanup actions.
1510 *
1511 * Note that we may have delayed dropping an mm in context_switch(). If
1512 * so, we finish that here outside of the runqueue lock. (Doing it
1513 * with the lock held can cause deadlocks; see schedule() for
1514 * details.)
1515 */
1516 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1517 __releases(rq->lock)
1518 {
1519 struct mm_struct *mm = rq->prev_mm;
1520 unsigned long prev_task_flags;
1521
1522 rq->prev_mm = NULL;
1523
1524 /*
1525 * A task struct has one reference for the use as "current".
1526 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1527 * calls schedule one last time. The schedule call will never return,
1528 * and the scheduled task must drop that reference.
1529 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1530 * still held, otherwise prev could be scheduled on another cpu, die
1531 * there before we look at prev->state, and then the reference would
1532 * be dropped twice.
1533 * Manfred Spraul <manfred@colorfullife.com>
1534 */
1535 prev_task_flags = prev->flags;
1536 finish_arch_switch(prev);
1537 finish_lock_switch(rq, prev);
1538 if (mm)
1539 mmdrop(mm);
1540 if (unlikely(prev_task_flags & PF_DEAD))
1541 put_task_struct(prev);
1542 }
1543
1544 /**
1545 * schedule_tail - first thing a freshly forked thread must call.
1546 * @prev: the thread we just switched away from.
1547 */
1548 asmlinkage void schedule_tail(task_t *prev)
1549 __releases(rq->lock)
1550 {
1551 runqueue_t *rq = this_rq();
1552 finish_task_switch(rq, prev);
1553 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1554 /* In this case, finish_task_switch does not reenable preemption */
1555 preempt_enable();
1556 #endif
1557 if (current->set_child_tid)
1558 put_user(current->pid, current->set_child_tid);
1559 }
1560
1561 /*
1562 * context_switch - switch to the new MM and the new
1563 * thread's register state.
1564 */
1565 static inline
1566 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1567 {
1568 struct mm_struct *mm = next->mm;
1569 struct mm_struct *oldmm = prev->active_mm;
1570
1571 if (unlikely(!mm)) {
1572 next->active_mm = oldmm;
1573 atomic_inc(&oldmm->mm_count);
1574 enter_lazy_tlb(oldmm, next);
1575 } else
1576 switch_mm(oldmm, mm, next);
1577
1578 if (unlikely(!prev->mm)) {
1579 prev->active_mm = NULL;
1580 WARN_ON(rq->prev_mm);
1581 rq->prev_mm = oldmm;
1582 }
1583
1584 /* Here we just switch the register state and the stack. */
1585 switch_to(prev, next, prev);
1586
1587 return prev;
1588 }
1589
1590 /*
1591 * nr_running, nr_uninterruptible and nr_context_switches:
1592 *
1593 * externally visible scheduler statistics: current number of runnable
1594 * threads, current number of uninterruptible-sleeping threads, total
1595 * number of context switches performed since bootup.
1596 */
1597 unsigned long nr_running(void)
1598 {
1599 unsigned long i, sum = 0;
1600
1601 for_each_online_cpu(i)
1602 sum += cpu_rq(i)->nr_running;
1603
1604 return sum;
1605 }
1606
1607 unsigned long nr_uninterruptible(void)
1608 {
1609 unsigned long i, sum = 0;
1610
1611 for_each_cpu(i)
1612 sum += cpu_rq(i)->nr_uninterruptible;
1613
1614 /*
1615 * Since we read the counters lockless, it might be slightly
1616 * inaccurate. Do not allow it to go below zero though:
1617 */
1618 if (unlikely((long)sum < 0))
1619 sum = 0;
1620
1621 return sum;
1622 }
1623
1624 unsigned long long nr_context_switches(void)
1625 {
1626 unsigned long long i, sum = 0;
1627
1628 for_each_cpu(i)
1629 sum += cpu_rq(i)->nr_switches;
1630
1631 return sum;
1632 }
1633
1634 unsigned long nr_iowait(void)
1635 {
1636 unsigned long i, sum = 0;
1637
1638 for_each_cpu(i)
1639 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1640
1641 return sum;
1642 }
1643
1644 #ifdef CONFIG_SMP
1645
1646 /*
1647 * double_rq_lock - safely lock two runqueues
1648 *
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1651 */
1652 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1655 {
1656 if (rq1 == rq2) {
1657 spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659 } else {
1660 if (rq1 < rq2) {
1661 spin_lock(&rq1->lock);
1662 spin_lock(&rq2->lock);
1663 } else {
1664 spin_lock(&rq2->lock);
1665 spin_lock(&rq1->lock);
1666 }
1667 }
1668 }
1669
1670 /*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679 {
1680 spin_unlock(&rq1->lock);
1681 if (rq1 != rq2)
1682 spin_unlock(&rq2->lock);
1683 else
1684 __release(rq2->lock);
1685 }
1686
1687 /*
1688 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1689 */
1690 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1691 __releases(this_rq->lock)
1692 __acquires(busiest->lock)
1693 __acquires(this_rq->lock)
1694 {
1695 if (unlikely(!spin_trylock(&busiest->lock))) {
1696 if (busiest < this_rq) {
1697 spin_unlock(&this_rq->lock);
1698 spin_lock(&busiest->lock);
1699 spin_lock(&this_rq->lock);
1700 } else
1701 spin_lock(&busiest->lock);
1702 }
1703 }
1704
1705 /*
1706 * If dest_cpu is allowed for this process, migrate the task to it.
1707 * This is accomplished by forcing the cpu_allowed mask to only
1708 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1709 * the cpu_allowed mask is restored.
1710 */
1711 static void sched_migrate_task(task_t *p, int dest_cpu)
1712 {
1713 migration_req_t req;
1714 runqueue_t *rq;
1715 unsigned long flags;
1716
1717 rq = task_rq_lock(p, &flags);
1718 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1719 || unlikely(cpu_is_offline(dest_cpu)))
1720 goto out;
1721
1722 /* force the process onto the specified CPU */
1723 if (migrate_task(p, dest_cpu, &req)) {
1724 /* Need to wait for migration thread (might exit: take ref). */
1725 struct task_struct *mt = rq->migration_thread;
1726 get_task_struct(mt);
1727 task_rq_unlock(rq, &flags);
1728 wake_up_process(mt);
1729 put_task_struct(mt);
1730 wait_for_completion(&req.done);
1731 return;
1732 }
1733 out:
1734 task_rq_unlock(rq, &flags);
1735 }
1736
1737 /*
1738 * sched_exec - execve() is a valuable balancing opportunity, because at
1739 * this point the task has the smallest effective memory and cache footprint.
1740 */
1741 void sched_exec(void)
1742 {
1743 int new_cpu, this_cpu = get_cpu();
1744 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1745 put_cpu();
1746 if (new_cpu != this_cpu)
1747 sched_migrate_task(current, new_cpu);
1748 }
1749
1750 /*
1751 * pull_task - move a task from a remote runqueue to the local runqueue.
1752 * Both runqueues must be locked.
1753 */
1754 static inline
1755 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1756 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1757 {
1758 dequeue_task(p, src_array);
1759 src_rq->nr_running--;
1760 set_task_cpu(p, this_cpu);
1761 this_rq->nr_running++;
1762 enqueue_task(p, this_array);
1763 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1764 + this_rq->timestamp_last_tick;
1765 /*
1766 * Note that idle threads have a prio of MAX_PRIO, for this test
1767 * to be always true for them.
1768 */
1769 if (TASK_PREEMPTS_CURR(p, this_rq))
1770 resched_task(this_rq->curr);
1771 }
1772
1773 /*
1774 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1775 */
1776 static inline
1777 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1778 struct sched_domain *sd, enum idle_type idle,
1779 int *all_pinned)
1780 {
1781 /*
1782 * We do not migrate tasks that are:
1783 * 1) running (obviously), or
1784 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1785 * 3) are cache-hot on their current CPU.
1786 */
1787 if (!cpu_isset(this_cpu, p->cpus_allowed))
1788 return 0;
1789 *all_pinned = 0;
1790
1791 if (task_running(rq, p))
1792 return 0;
1793
1794 /*
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1798 */
1799
1800 if (sd->nr_balance_failed > sd->cache_nice_tries)
1801 return 1;
1802
1803 if (task_hot(p, rq->timestamp_last_tick, sd))
1804 return 0;
1805 return 1;
1806 }
1807
1808 /*
1809 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1810 * as part of a balancing operation within "domain". Returns the number of
1811 * tasks moved.
1812 *
1813 * Called with both runqueues locked.
1814 */
1815 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1816 unsigned long max_nr_move, struct sched_domain *sd,
1817 enum idle_type idle, int *all_pinned)
1818 {
1819 prio_array_t *array, *dst_array;
1820 struct list_head *head, *curr;
1821 int idx, pulled = 0, pinned = 0;
1822 task_t *tmp;
1823
1824 if (max_nr_move == 0)
1825 goto out;
1826
1827 pinned = 1;
1828
1829 /*
1830 * We first consider expired tasks. Those will likely not be
1831 * executed in the near future, and they are most likely to
1832 * be cache-cold, thus switching CPUs has the least effect
1833 * on them.
1834 */
1835 if (busiest->expired->nr_active) {
1836 array = busiest->expired;
1837 dst_array = this_rq->expired;
1838 } else {
1839 array = busiest->active;
1840 dst_array = this_rq->active;
1841 }
1842
1843 new_array:
1844 /* Start searching at priority 0: */
1845 idx = 0;
1846 skip_bitmap:
1847 if (!idx)
1848 idx = sched_find_first_bit(array->bitmap);
1849 else
1850 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1851 if (idx >= MAX_PRIO) {
1852 if (array == busiest->expired && busiest->active->nr_active) {
1853 array = busiest->active;
1854 dst_array = this_rq->active;
1855 goto new_array;
1856 }
1857 goto out;
1858 }
1859
1860 head = array->queue + idx;
1861 curr = head->prev;
1862 skip_queue:
1863 tmp = list_entry(curr, task_t, run_list);
1864
1865 curr = curr->prev;
1866
1867 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1868 if (curr != head)
1869 goto skip_queue;
1870 idx++;
1871 goto skip_bitmap;
1872 }
1873
1874 #ifdef CONFIG_SCHEDSTATS
1875 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1876 schedstat_inc(sd, lb_hot_gained[idle]);
1877 #endif
1878
1879 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1880 pulled++;
1881
1882 /* We only want to steal up to the prescribed number of tasks. */
1883 if (pulled < max_nr_move) {
1884 if (curr != head)
1885 goto skip_queue;
1886 idx++;
1887 goto skip_bitmap;
1888 }
1889 out:
1890 /*
1891 * Right now, this is the only place pull_task() is called,
1892 * so we can safely collect pull_task() stats here rather than
1893 * inside pull_task().
1894 */
1895 schedstat_add(sd, lb_gained[idle], pulled);
1896
1897 if (all_pinned)
1898 *all_pinned = pinned;
1899 return pulled;
1900 }
1901
1902 /*
1903 * find_busiest_group finds and returns the busiest CPU group within the
1904 * domain. It calculates and returns the number of tasks which should be
1905 * moved to restore balance via the imbalance parameter.
1906 */
1907 static struct sched_group *
1908 find_busiest_group(struct sched_domain *sd, int this_cpu,
1909 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1910 {
1911 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1912 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1913 unsigned long max_pull;
1914 int load_idx;
1915
1916 max_load = this_load = total_load = total_pwr = 0;
1917 if (idle == NOT_IDLE)
1918 load_idx = sd->busy_idx;
1919 else if (idle == NEWLY_IDLE)
1920 load_idx = sd->newidle_idx;
1921 else
1922 load_idx = sd->idle_idx;
1923
1924 do {
1925 unsigned long load;
1926 int local_group;
1927 int i;
1928
1929 local_group = cpu_isset(this_cpu, group->cpumask);
1930
1931 /* Tally up the load of all CPUs in the group */
1932 avg_load = 0;
1933
1934 for_each_cpu_mask(i, group->cpumask) {
1935 if (*sd_idle && !idle_cpu(i))
1936 *sd_idle = 0;
1937
1938 /* Bias balancing toward cpus of our domain */
1939 if (local_group)
1940 load = target_load(i, load_idx);
1941 else
1942 load = source_load(i, load_idx);
1943
1944 avg_load += load;
1945 }
1946
1947 total_load += avg_load;
1948 total_pwr += group->cpu_power;
1949
1950 /* Adjust by relative CPU power of the group */
1951 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1952
1953 if (local_group) {
1954 this_load = avg_load;
1955 this = group;
1956 } else if (avg_load > max_load) {
1957 max_load = avg_load;
1958 busiest = group;
1959 }
1960 group = group->next;
1961 } while (group != sd->groups);
1962
1963 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1964 goto out_balanced;
1965
1966 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1967
1968 if (this_load >= avg_load ||
1969 100*max_load <= sd->imbalance_pct*this_load)
1970 goto out_balanced;
1971
1972 /*
1973 * We're trying to get all the cpus to the average_load, so we don't
1974 * want to push ourselves above the average load, nor do we wish to
1975 * reduce the max loaded cpu below the average load, as either of these
1976 * actions would just result in more rebalancing later, and ping-pong
1977 * tasks around. Thus we look for the minimum possible imbalance.
1978 * Negative imbalances (*we* are more loaded than anyone else) will
1979 * be counted as no imbalance for these purposes -- we can't fix that
1980 * by pulling tasks to us. Be careful of negative numbers as they'll
1981 * appear as very large values with unsigned longs.
1982 */
1983
1984 /* Don't want to pull so many tasks that a group would go idle */
1985 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
1986
1987 /* How much load to actually move to equalise the imbalance */
1988 *imbalance = min(max_pull * busiest->cpu_power,
1989 (avg_load - this_load) * this->cpu_power)
1990 / SCHED_LOAD_SCALE;
1991
1992 if (*imbalance < SCHED_LOAD_SCALE) {
1993 unsigned long pwr_now = 0, pwr_move = 0;
1994 unsigned long tmp;
1995
1996 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1997 *imbalance = 1;
1998 return busiest;
1999 }
2000
2001 /*
2002 * OK, we don't have enough imbalance to justify moving tasks,
2003 * however we may be able to increase total CPU power used by
2004 * moving them.
2005 */
2006
2007 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2008 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2009 pwr_now /= SCHED_LOAD_SCALE;
2010
2011 /* Amount of load we'd subtract */
2012 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2013 if (max_load > tmp)
2014 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2015 max_load - tmp);
2016
2017 /* Amount of load we'd add */
2018 if (max_load*busiest->cpu_power <
2019 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2020 tmp = max_load*busiest->cpu_power/this->cpu_power;
2021 else
2022 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2023 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2024 pwr_move /= SCHED_LOAD_SCALE;
2025
2026 /* Move if we gain throughput */
2027 if (pwr_move <= pwr_now)
2028 goto out_balanced;
2029
2030 *imbalance = 1;
2031 return busiest;
2032 }
2033
2034 /* Get rid of the scaling factor, rounding down as we divide */
2035 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2036 return busiest;
2037
2038 out_balanced:
2039
2040 *imbalance = 0;
2041 return NULL;
2042 }
2043
2044 /*
2045 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2046 */
2047 static runqueue_t *find_busiest_queue(struct sched_group *group)
2048 {
2049 unsigned long load, max_load = 0;
2050 runqueue_t *busiest = NULL;
2051 int i;
2052
2053 for_each_cpu_mask(i, group->cpumask) {
2054 load = source_load(i, 0);
2055
2056 if (load > max_load) {
2057 max_load = load;
2058 busiest = cpu_rq(i);
2059 }
2060 }
2061
2062 return busiest;
2063 }
2064
2065 /*
2066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2067 * so long as it is large enough.
2068 */
2069 #define MAX_PINNED_INTERVAL 512
2070
2071 /*
2072 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2073 * tasks if there is an imbalance.
2074 *
2075 * Called with this_rq unlocked.
2076 */
2077 static int load_balance(int this_cpu, runqueue_t *this_rq,
2078 struct sched_domain *sd, enum idle_type idle)
2079 {
2080 struct sched_group *group;
2081 runqueue_t *busiest;
2082 unsigned long imbalance;
2083 int nr_moved, all_pinned = 0;
2084 int active_balance = 0;
2085 int sd_idle = 0;
2086
2087 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2088 sd_idle = 1;
2089
2090 schedstat_inc(sd, lb_cnt[idle]);
2091
2092 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2093 if (!group) {
2094 schedstat_inc(sd, lb_nobusyg[idle]);
2095 goto out_balanced;
2096 }
2097
2098 busiest = find_busiest_queue(group);
2099 if (!busiest) {
2100 schedstat_inc(sd, lb_nobusyq[idle]);
2101 goto out_balanced;
2102 }
2103
2104 BUG_ON(busiest == this_rq);
2105
2106 schedstat_add(sd, lb_imbalance[idle], imbalance);
2107
2108 nr_moved = 0;
2109 if (busiest->nr_running > 1) {
2110 /*
2111 * Attempt to move tasks. If find_busiest_group has found
2112 * an imbalance but busiest->nr_running <= 1, the group is
2113 * still unbalanced. nr_moved simply stays zero, so it is
2114 * correctly treated as an imbalance.
2115 */
2116 double_rq_lock(this_rq, busiest);
2117 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2118 imbalance, sd, idle, &all_pinned);
2119 double_rq_unlock(this_rq, busiest);
2120
2121 /* All tasks on this runqueue were pinned by CPU affinity */
2122 if (unlikely(all_pinned))
2123 goto out_balanced;
2124 }
2125
2126 if (!nr_moved) {
2127 schedstat_inc(sd, lb_failed[idle]);
2128 sd->nr_balance_failed++;
2129
2130 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2131
2132 spin_lock(&busiest->lock);
2133
2134 /* don't kick the migration_thread, if the curr
2135 * task on busiest cpu can't be moved to this_cpu
2136 */
2137 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2138 spin_unlock(&busiest->lock);
2139 all_pinned = 1;
2140 goto out_one_pinned;
2141 }
2142
2143 if (!busiest->active_balance) {
2144 busiest->active_balance = 1;
2145 busiest->push_cpu = this_cpu;
2146 active_balance = 1;
2147 }
2148 spin_unlock(&busiest->lock);
2149 if (active_balance)
2150 wake_up_process(busiest->migration_thread);
2151
2152 /*
2153 * We've kicked active balancing, reset the failure
2154 * counter.
2155 */
2156 sd->nr_balance_failed = sd->cache_nice_tries+1;
2157 }
2158 } else
2159 sd->nr_balance_failed = 0;
2160
2161 if (likely(!active_balance)) {
2162 /* We were unbalanced, so reset the balancing interval */
2163 sd->balance_interval = sd->min_interval;
2164 } else {
2165 /*
2166 * If we've begun active balancing, start to back off. This
2167 * case may not be covered by the all_pinned logic if there
2168 * is only 1 task on the busy runqueue (because we don't call
2169 * move_tasks).
2170 */
2171 if (sd->balance_interval < sd->max_interval)
2172 sd->balance_interval *= 2;
2173 }
2174
2175 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2176 return -1;
2177 return nr_moved;
2178
2179 out_balanced:
2180 schedstat_inc(sd, lb_balanced[idle]);
2181
2182 sd->nr_balance_failed = 0;
2183
2184 out_one_pinned:
2185 /* tune up the balancing interval */
2186 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2187 (sd->balance_interval < sd->max_interval))
2188 sd->balance_interval *= 2;
2189
2190 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2191 return -1;
2192 return 0;
2193 }
2194
2195 /*
2196 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2197 * tasks if there is an imbalance.
2198 *
2199 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2200 * this_rq is locked.
2201 */
2202 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2203 struct sched_domain *sd)
2204 {
2205 struct sched_group *group;
2206 runqueue_t *busiest = NULL;
2207 unsigned long imbalance;
2208 int nr_moved = 0;
2209 int sd_idle = 0;
2210
2211 if (sd->flags & SD_SHARE_CPUPOWER)
2212 sd_idle = 1;
2213
2214 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2215 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2216 if (!group) {
2217 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2218 goto out_balanced;
2219 }
2220
2221 busiest = find_busiest_queue(group);
2222 if (!busiest) {
2223 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2224 goto out_balanced;
2225 }
2226
2227 BUG_ON(busiest == this_rq);
2228
2229 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2230
2231 nr_moved = 0;
2232 if (busiest->nr_running > 1) {
2233 /* Attempt to move tasks */
2234 double_lock_balance(this_rq, busiest);
2235 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2236 imbalance, sd, NEWLY_IDLE, NULL);
2237 spin_unlock(&busiest->lock);
2238 }
2239
2240 if (!nr_moved) {
2241 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2242 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2243 return -1;
2244 } else
2245 sd->nr_balance_failed = 0;
2246
2247 return nr_moved;
2248
2249 out_balanced:
2250 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2252 return -1;
2253 sd->nr_balance_failed = 0;
2254 return 0;
2255 }
2256
2257 /*
2258 * idle_balance is called by schedule() if this_cpu is about to become
2259 * idle. Attempts to pull tasks from other CPUs.
2260 */
2261 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2262 {
2263 struct sched_domain *sd;
2264
2265 for_each_domain(this_cpu, sd) {
2266 if (sd->flags & SD_BALANCE_NEWIDLE) {
2267 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2268 /* We've pulled tasks over so stop searching */
2269 break;
2270 }
2271 }
2272 }
2273 }
2274
2275 /*
2276 * active_load_balance is run by migration threads. It pushes running tasks
2277 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2278 * running on each physical CPU where possible, and avoids physical /
2279 * logical imbalances.
2280 *
2281 * Called with busiest_rq locked.
2282 */
2283 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2284 {
2285 struct sched_domain *sd;
2286 runqueue_t *target_rq;
2287 int target_cpu = busiest_rq->push_cpu;
2288
2289 if (busiest_rq->nr_running <= 1)
2290 /* no task to move */
2291 return;
2292
2293 target_rq = cpu_rq(target_cpu);
2294
2295 /*
2296 * This condition is "impossible", if it occurs
2297 * we need to fix it. Originally reported by
2298 * Bjorn Helgaas on a 128-cpu setup.
2299 */
2300 BUG_ON(busiest_rq == target_rq);
2301
2302 /* move a task from busiest_rq to target_rq */
2303 double_lock_balance(busiest_rq, target_rq);
2304
2305 /* Search for an sd spanning us and the target CPU. */
2306 for_each_domain(target_cpu, sd)
2307 if ((sd->flags & SD_LOAD_BALANCE) &&
2308 cpu_isset(busiest_cpu, sd->span))
2309 break;
2310
2311 if (unlikely(sd == NULL))
2312 goto out;
2313
2314 schedstat_inc(sd, alb_cnt);
2315
2316 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2317 schedstat_inc(sd, alb_pushed);
2318 else
2319 schedstat_inc(sd, alb_failed);
2320 out:
2321 spin_unlock(&target_rq->lock);
2322 }
2323
2324 /*
2325 * rebalance_tick will get called every timer tick, on every CPU.
2326 *
2327 * It checks each scheduling domain to see if it is due to be balanced,
2328 * and initiates a balancing operation if so.
2329 *
2330 * Balancing parameters are set up in arch_init_sched_domains.
2331 */
2332
2333 /* Don't have all balancing operations going off at once */
2334 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2335
2336 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2337 enum idle_type idle)
2338 {
2339 unsigned long old_load, this_load;
2340 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2341 struct sched_domain *sd;
2342 int i;
2343
2344 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2345 /* Update our load */
2346 for (i = 0; i < 3; i++) {
2347 unsigned long new_load = this_load;
2348 int scale = 1 << i;
2349 old_load = this_rq->cpu_load[i];
2350 /*
2351 * Round up the averaging division if load is increasing. This
2352 * prevents us from getting stuck on 9 if the load is 10, for
2353 * example.
2354 */
2355 if (new_load > old_load)
2356 new_load += scale-1;
2357 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2358 }
2359
2360 for_each_domain(this_cpu, sd) {
2361 unsigned long interval;
2362
2363 if (!(sd->flags & SD_LOAD_BALANCE))
2364 continue;
2365
2366 interval = sd->balance_interval;
2367 if (idle != SCHED_IDLE)
2368 interval *= sd->busy_factor;
2369
2370 /* scale ms to jiffies */
2371 interval = msecs_to_jiffies(interval);
2372 if (unlikely(!interval))
2373 interval = 1;
2374
2375 if (j - sd->last_balance >= interval) {
2376 if (load_balance(this_cpu, this_rq, sd, idle)) {
2377 /*
2378 * We've pulled tasks over so either we're no
2379 * longer idle, or one of our SMT siblings is
2380 * not idle.
2381 */
2382 idle = NOT_IDLE;
2383 }
2384 sd->last_balance += interval;
2385 }
2386 }
2387 }
2388 #else
2389 /*
2390 * on UP we do not need to balance between CPUs:
2391 */
2392 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2393 {
2394 }
2395 static inline void idle_balance(int cpu, runqueue_t *rq)
2396 {
2397 }
2398 #endif
2399
2400 static inline int wake_priority_sleeper(runqueue_t *rq)
2401 {
2402 int ret = 0;
2403 #ifdef CONFIG_SCHED_SMT
2404 spin_lock(&rq->lock);
2405 /*
2406 * If an SMT sibling task has been put to sleep for priority
2407 * reasons reschedule the idle task to see if it can now run.
2408 */
2409 if (rq->nr_running) {
2410 resched_task(rq->idle);
2411 ret = 1;
2412 }
2413 spin_unlock(&rq->lock);
2414 #endif
2415 return ret;
2416 }
2417
2418 DEFINE_PER_CPU(struct kernel_stat, kstat);
2419
2420 EXPORT_PER_CPU_SYMBOL(kstat);
2421
2422 /*
2423 * This is called on clock ticks and on context switches.
2424 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2425 */
2426 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2427 unsigned long long now)
2428 {
2429 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2430 p->sched_time += now - last;
2431 }
2432
2433 /*
2434 * Return current->sched_time plus any more ns on the sched_clock
2435 * that have not yet been banked.
2436 */
2437 unsigned long long current_sched_time(const task_t *tsk)
2438 {
2439 unsigned long long ns;
2440 unsigned long flags;
2441 local_irq_save(flags);
2442 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2443 ns = tsk->sched_time + (sched_clock() - ns);
2444 local_irq_restore(flags);
2445 return ns;
2446 }
2447
2448 /*
2449 * We place interactive tasks back into the active array, if possible.
2450 *
2451 * To guarantee that this does not starve expired tasks we ignore the
2452 * interactivity of a task if the first expired task had to wait more
2453 * than a 'reasonable' amount of time. This deadline timeout is
2454 * load-dependent, as the frequency of array switched decreases with
2455 * increasing number of running tasks. We also ignore the interactivity
2456 * if a better static_prio task has expired:
2457 */
2458 #define EXPIRED_STARVING(rq) \
2459 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2460 (jiffies - (rq)->expired_timestamp >= \
2461 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2462 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2463
2464 /*
2465 * Account user cpu time to a process.
2466 * @p: the process that the cpu time gets accounted to
2467 * @hardirq_offset: the offset to subtract from hardirq_count()
2468 * @cputime: the cpu time spent in user space since the last update
2469 */
2470 void account_user_time(struct task_struct *p, cputime_t cputime)
2471 {
2472 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2473 cputime64_t tmp;
2474
2475 p->utime = cputime_add(p->utime, cputime);
2476
2477 /* Add user time to cpustat. */
2478 tmp = cputime_to_cputime64(cputime);
2479 if (TASK_NICE(p) > 0)
2480 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2481 else
2482 cpustat->user = cputime64_add(cpustat->user, tmp);
2483 }
2484
2485 /*
2486 * Account system cpu time to a process.
2487 * @p: the process that the cpu time gets accounted to
2488 * @hardirq_offset: the offset to subtract from hardirq_count()
2489 * @cputime: the cpu time spent in kernel space since the last update
2490 */
2491 void account_system_time(struct task_struct *p, int hardirq_offset,
2492 cputime_t cputime)
2493 {
2494 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2495 runqueue_t *rq = this_rq();
2496 cputime64_t tmp;
2497
2498 p->stime = cputime_add(p->stime, cputime);
2499
2500 /* Add system time to cpustat. */
2501 tmp = cputime_to_cputime64(cputime);
2502 if (hardirq_count() - hardirq_offset)
2503 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2504 else if (softirq_count())
2505 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2506 else if (p != rq->idle)
2507 cpustat->system = cputime64_add(cpustat->system, tmp);
2508 else if (atomic_read(&rq->nr_iowait) > 0)
2509 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2510 else
2511 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2512 /* Account for system time used */
2513 acct_update_integrals(p);
2514 /* Update rss highwater mark */
2515 update_mem_hiwater(p);
2516 }
2517
2518 /*
2519 * Account for involuntary wait time.
2520 * @p: the process from which the cpu time has been stolen
2521 * @steal: the cpu time spent in involuntary wait
2522 */
2523 void account_steal_time(struct task_struct *p, cputime_t steal)
2524 {
2525 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2526 cputime64_t tmp = cputime_to_cputime64(steal);
2527 runqueue_t *rq = this_rq();
2528
2529 if (p == rq->idle) {
2530 p->stime = cputime_add(p->stime, steal);
2531 if (atomic_read(&rq->nr_iowait) > 0)
2532 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2533 else
2534 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2535 } else
2536 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2537 }
2538
2539 /*
2540 * This function gets called by the timer code, with HZ frequency.
2541 * We call it with interrupts disabled.
2542 *
2543 * It also gets called by the fork code, when changing the parent's
2544 * timeslices.
2545 */
2546 void scheduler_tick(void)
2547 {
2548 int cpu = smp_processor_id();
2549 runqueue_t *rq = this_rq();
2550 task_t *p = current;
2551 unsigned long long now = sched_clock();
2552
2553 update_cpu_clock(p, rq, now);
2554
2555 rq->timestamp_last_tick = now;
2556
2557 if (p == rq->idle) {
2558 if (wake_priority_sleeper(rq))
2559 goto out;
2560 rebalance_tick(cpu, rq, SCHED_IDLE);
2561 return;
2562 }
2563
2564 /* Task might have expired already, but not scheduled off yet */
2565 if (p->array != rq->active) {
2566 set_tsk_need_resched(p);
2567 goto out;
2568 }
2569 spin_lock(&rq->lock);
2570 /*
2571 * The task was running during this tick - update the
2572 * time slice counter. Note: we do not update a thread's
2573 * priority until it either goes to sleep or uses up its
2574 * timeslice. This makes it possible for interactive tasks
2575 * to use up their timeslices at their highest priority levels.
2576 */
2577 if (rt_task(p)) {
2578 /*
2579 * RR tasks need a special form of timeslice management.
2580 * FIFO tasks have no timeslices.
2581 */
2582 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2583 p->time_slice = task_timeslice(p);
2584 p->first_time_slice = 0;
2585 set_tsk_need_resched(p);
2586
2587 /* put it at the end of the queue: */
2588 requeue_task(p, rq->active);
2589 }
2590 goto out_unlock;
2591 }
2592 if (!--p->time_slice) {
2593 dequeue_task(p, rq->active);
2594 set_tsk_need_resched(p);
2595 p->prio = effective_prio(p);
2596 p->time_slice = task_timeslice(p);
2597 p->first_time_slice = 0;
2598
2599 if (!rq->expired_timestamp)
2600 rq->expired_timestamp = jiffies;
2601 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2602 enqueue_task(p, rq->expired);
2603 if (p->static_prio < rq->best_expired_prio)
2604 rq->best_expired_prio = p->static_prio;
2605 } else
2606 enqueue_task(p, rq->active);
2607 } else {
2608 /*
2609 * Prevent a too long timeslice allowing a task to monopolize
2610 * the CPU. We do this by splitting up the timeslice into
2611 * smaller pieces.
2612 *
2613 * Note: this does not mean the task's timeslices expire or
2614 * get lost in any way, they just might be preempted by
2615 * another task of equal priority. (one with higher
2616 * priority would have preempted this task already.) We
2617 * requeue this task to the end of the list on this priority
2618 * level, which is in essence a round-robin of tasks with
2619 * equal priority.
2620 *
2621 * This only applies to tasks in the interactive
2622 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2623 */
2624 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2625 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2626 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2627 (p->array == rq->active)) {
2628
2629 requeue_task(p, rq->active);
2630 set_tsk_need_resched(p);
2631 }
2632 }
2633 out_unlock:
2634 spin_unlock(&rq->lock);
2635 out:
2636 rebalance_tick(cpu, rq, NOT_IDLE);
2637 }
2638
2639 #ifdef CONFIG_SCHED_SMT
2640 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2641 {
2642 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2643 if (rq->curr == rq->idle && rq->nr_running)
2644 resched_task(rq->idle);
2645 }
2646
2647 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2648 {
2649 struct sched_domain *tmp, *sd = NULL;
2650 cpumask_t sibling_map;
2651 int i;
2652
2653 for_each_domain(this_cpu, tmp)
2654 if (tmp->flags & SD_SHARE_CPUPOWER)
2655 sd = tmp;
2656
2657 if (!sd)
2658 return;
2659
2660 /*
2661 * Unlock the current runqueue because we have to lock in
2662 * CPU order to avoid deadlocks. Caller knows that we might
2663 * unlock. We keep IRQs disabled.
2664 */
2665 spin_unlock(&this_rq->lock);
2666
2667 sibling_map = sd->span;
2668
2669 for_each_cpu_mask(i, sibling_map)
2670 spin_lock(&cpu_rq(i)->lock);
2671 /*
2672 * We clear this CPU from the mask. This both simplifies the
2673 * inner loop and keps this_rq locked when we exit:
2674 */
2675 cpu_clear(this_cpu, sibling_map);
2676
2677 for_each_cpu_mask(i, sibling_map) {
2678 runqueue_t *smt_rq = cpu_rq(i);
2679
2680 wakeup_busy_runqueue(smt_rq);
2681 }
2682
2683 for_each_cpu_mask(i, sibling_map)
2684 spin_unlock(&cpu_rq(i)->lock);
2685 /*
2686 * We exit with this_cpu's rq still held and IRQs
2687 * still disabled:
2688 */
2689 }
2690
2691 /*
2692 * number of 'lost' timeslices this task wont be able to fully
2693 * utilize, if another task runs on a sibling. This models the
2694 * slowdown effect of other tasks running on siblings:
2695 */
2696 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2697 {
2698 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2699 }
2700
2701 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2702 {
2703 struct sched_domain *tmp, *sd = NULL;
2704 cpumask_t sibling_map;
2705 prio_array_t *array;
2706 int ret = 0, i;
2707 task_t *p;
2708
2709 for_each_domain(this_cpu, tmp)
2710 if (tmp->flags & SD_SHARE_CPUPOWER)
2711 sd = tmp;
2712
2713 if (!sd)
2714 return 0;
2715
2716 /*
2717 * The same locking rules and details apply as for
2718 * wake_sleeping_dependent():
2719 */
2720 spin_unlock(&this_rq->lock);
2721 sibling_map = sd->span;
2722 for_each_cpu_mask(i, sibling_map)
2723 spin_lock(&cpu_rq(i)->lock);
2724 cpu_clear(this_cpu, sibling_map);
2725
2726 /*
2727 * Establish next task to be run - it might have gone away because
2728 * we released the runqueue lock above:
2729 */
2730 if (!this_rq->nr_running)
2731 goto out_unlock;
2732 array = this_rq->active;
2733 if (!array->nr_active)
2734 array = this_rq->expired;
2735 BUG_ON(!array->nr_active);
2736
2737 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2738 task_t, run_list);
2739
2740 for_each_cpu_mask(i, sibling_map) {
2741 runqueue_t *smt_rq = cpu_rq(i);
2742 task_t *smt_curr = smt_rq->curr;
2743
2744 /* Kernel threads do not participate in dependent sleeping */
2745 if (!p->mm || !smt_curr->mm || rt_task(p))
2746 goto check_smt_task;
2747
2748 /*
2749 * If a user task with lower static priority than the
2750 * running task on the SMT sibling is trying to schedule,
2751 * delay it till there is proportionately less timeslice
2752 * left of the sibling task to prevent a lower priority
2753 * task from using an unfair proportion of the
2754 * physical cpu's resources. -ck
2755 */
2756 if (rt_task(smt_curr)) {
2757 /*
2758 * With real time tasks we run non-rt tasks only
2759 * per_cpu_gain% of the time.
2760 */
2761 if ((jiffies % DEF_TIMESLICE) >
2762 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2763 ret = 1;
2764 } else
2765 if (smt_curr->static_prio < p->static_prio &&
2766 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2767 smt_slice(smt_curr, sd) > task_timeslice(p))
2768 ret = 1;
2769
2770 check_smt_task:
2771 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2772 rt_task(smt_curr))
2773 continue;
2774 if (!p->mm) {
2775 wakeup_busy_runqueue(smt_rq);
2776 continue;
2777 }
2778
2779 /*
2780 * Reschedule a lower priority task on the SMT sibling for
2781 * it to be put to sleep, or wake it up if it has been put to
2782 * sleep for priority reasons to see if it should run now.
2783 */
2784 if (rt_task(p)) {
2785 if ((jiffies % DEF_TIMESLICE) >
2786 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2787 resched_task(smt_curr);
2788 } else {
2789 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2790 smt_slice(p, sd) > task_timeslice(smt_curr))
2791 resched_task(smt_curr);
2792 else
2793 wakeup_busy_runqueue(smt_rq);
2794 }
2795 }
2796 out_unlock:
2797 for_each_cpu_mask(i, sibling_map)
2798 spin_unlock(&cpu_rq(i)->lock);
2799 return ret;
2800 }
2801 #else
2802 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2803 {
2804 }
2805
2806 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2807 {
2808 return 0;
2809 }
2810 #endif
2811
2812 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2813
2814 void fastcall add_preempt_count(int val)
2815 {
2816 /*
2817 * Underflow?
2818 */
2819 BUG_ON((preempt_count() < 0));
2820 preempt_count() += val;
2821 /*
2822 * Spinlock count overflowing soon?
2823 */
2824 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2825 }
2826 EXPORT_SYMBOL(add_preempt_count);
2827
2828 void fastcall sub_preempt_count(int val)
2829 {
2830 /*
2831 * Underflow?
2832 */
2833 BUG_ON(val > preempt_count());
2834 /*
2835 * Is the spinlock portion underflowing?
2836 */
2837 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2838 preempt_count() -= val;
2839 }
2840 EXPORT_SYMBOL(sub_preempt_count);
2841
2842 #endif
2843
2844 /*
2845 * schedule() is the main scheduler function.
2846 */
2847 asmlinkage void __sched schedule(void)
2848 {
2849 long *switch_count;
2850 task_t *prev, *next;
2851 runqueue_t *rq;
2852 prio_array_t *array;
2853 struct list_head *queue;
2854 unsigned long long now;
2855 unsigned long run_time;
2856 int cpu, idx, new_prio;
2857
2858 /*
2859 * Test if we are atomic. Since do_exit() needs to call into
2860 * schedule() atomically, we ignore that path for now.
2861 * Otherwise, whine if we are scheduling when we should not be.
2862 */
2863 if (likely(!current->exit_state)) {
2864 if (unlikely(in_atomic())) {
2865 printk(KERN_ERR "scheduling while atomic: "
2866 "%s/0x%08x/%d\n",
2867 current->comm, preempt_count(), current->pid);
2868 dump_stack();
2869 }
2870 }
2871 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2872
2873 need_resched:
2874 preempt_disable();
2875 prev = current;
2876 release_kernel_lock(prev);
2877 need_resched_nonpreemptible:
2878 rq = this_rq();
2879
2880 /*
2881 * The idle thread is not allowed to schedule!
2882 * Remove this check after it has been exercised a bit.
2883 */
2884 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2885 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2886 dump_stack();
2887 }
2888
2889 schedstat_inc(rq, sched_cnt);
2890 now = sched_clock();
2891 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2892 run_time = now - prev->timestamp;
2893 if (unlikely((long long)(now - prev->timestamp) < 0))
2894 run_time = 0;
2895 } else
2896 run_time = NS_MAX_SLEEP_AVG;
2897
2898 /*
2899 * Tasks charged proportionately less run_time at high sleep_avg to
2900 * delay them losing their interactive status
2901 */
2902 run_time /= (CURRENT_BONUS(prev) ? : 1);
2903
2904 spin_lock_irq(&rq->lock);
2905
2906 if (unlikely(prev->flags & PF_DEAD))
2907 prev->state = EXIT_DEAD;
2908
2909 switch_count = &prev->nivcsw;
2910 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2911 switch_count = &prev->nvcsw;
2912 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2913 unlikely(signal_pending(prev))))
2914 prev->state = TASK_RUNNING;
2915 else {
2916 if (prev->state == TASK_UNINTERRUPTIBLE)
2917 rq->nr_uninterruptible++;
2918 deactivate_task(prev, rq);
2919 }
2920 }
2921
2922 cpu = smp_processor_id();
2923 if (unlikely(!rq->nr_running)) {
2924 go_idle:
2925 idle_balance(cpu, rq);
2926 if (!rq->nr_running) {
2927 next = rq->idle;
2928 rq->expired_timestamp = 0;
2929 wake_sleeping_dependent(cpu, rq);
2930 /*
2931 * wake_sleeping_dependent() might have released
2932 * the runqueue, so break out if we got new
2933 * tasks meanwhile:
2934 */
2935 if (!rq->nr_running)
2936 goto switch_tasks;
2937 }
2938 } else {
2939 if (dependent_sleeper(cpu, rq)) {
2940 next = rq->idle;
2941 goto switch_tasks;
2942 }
2943 /*
2944 * dependent_sleeper() releases and reacquires the runqueue
2945 * lock, hence go into the idle loop if the rq went
2946 * empty meanwhile:
2947 */
2948 if (unlikely(!rq->nr_running))
2949 goto go_idle;
2950 }
2951
2952 array = rq->active;
2953 if (unlikely(!array->nr_active)) {
2954 /*
2955 * Switch the active and expired arrays.
2956 */
2957 schedstat_inc(rq, sched_switch);
2958 rq->active = rq->expired;
2959 rq->expired = array;
2960 array = rq->active;
2961 rq->expired_timestamp = 0;
2962 rq->best_expired_prio = MAX_PRIO;
2963 }
2964
2965 idx = sched_find_first_bit(array->bitmap);
2966 queue = array->queue + idx;
2967 next = list_entry(queue->next, task_t, run_list);
2968
2969 if (!rt_task(next) && next->activated > 0) {
2970 unsigned long long delta = now - next->timestamp;
2971 if (unlikely((long long)(now - next->timestamp) < 0))
2972 delta = 0;
2973
2974 if (next->activated == 1)
2975 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2976
2977 array = next->array;
2978 new_prio = recalc_task_prio(next, next->timestamp + delta);
2979
2980 if (unlikely(next->prio != new_prio)) {
2981 dequeue_task(next, array);
2982 next->prio = new_prio;
2983 enqueue_task(next, array);
2984 } else
2985 requeue_task(next, array);
2986 }
2987 next->activated = 0;
2988 switch_tasks:
2989 if (next == rq->idle)
2990 schedstat_inc(rq, sched_goidle);
2991 prefetch(next);
2992 prefetch_stack(next);
2993 clear_tsk_need_resched(prev);
2994 rcu_qsctr_inc(task_cpu(prev));
2995
2996 update_cpu_clock(prev, rq, now);
2997
2998 prev->sleep_avg -= run_time;
2999 if ((long)prev->sleep_avg <= 0)
3000 prev->sleep_avg = 0;
3001 prev->timestamp = prev->last_ran = now;
3002
3003 sched_info_switch(prev, next);
3004 if (likely(prev != next)) {
3005 next->timestamp = now;
3006 rq->nr_switches++;
3007 rq->curr = next;
3008 ++*switch_count;
3009
3010 prepare_task_switch(rq, next);
3011 prev = context_switch(rq, prev, next);
3012 barrier();
3013 /*
3014 * this_rq must be evaluated again because prev may have moved
3015 * CPUs since it called schedule(), thus the 'rq' on its stack
3016 * frame will be invalid.
3017 */
3018 finish_task_switch(this_rq(), prev);
3019 } else
3020 spin_unlock_irq(&rq->lock);
3021
3022 prev = current;
3023 if (unlikely(reacquire_kernel_lock(prev) < 0))
3024 goto need_resched_nonpreemptible;
3025 preempt_enable_no_resched();
3026 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3027 goto need_resched;
3028 }
3029
3030 EXPORT_SYMBOL(schedule);
3031
3032 #ifdef CONFIG_PREEMPT
3033 /*
3034 * this is is the entry point to schedule() from in-kernel preemption
3035 * off of preempt_enable. Kernel preemptions off return from interrupt
3036 * occur there and call schedule directly.
3037 */
3038 asmlinkage void __sched preempt_schedule(void)
3039 {
3040 struct thread_info *ti = current_thread_info();
3041 #ifdef CONFIG_PREEMPT_BKL
3042 struct task_struct *task = current;
3043 int saved_lock_depth;
3044 #endif
3045 /*
3046 * If there is a non-zero preempt_count or interrupts are disabled,
3047 * we do not want to preempt the current task. Just return..
3048 */
3049 if (unlikely(ti->preempt_count || irqs_disabled()))
3050 return;
3051
3052 need_resched:
3053 add_preempt_count(PREEMPT_ACTIVE);
3054 /*
3055 * We keep the big kernel semaphore locked, but we
3056 * clear ->lock_depth so that schedule() doesnt
3057 * auto-release the semaphore:
3058 */
3059 #ifdef CONFIG_PREEMPT_BKL
3060 saved_lock_depth = task->lock_depth;
3061 task->lock_depth = -1;
3062 #endif
3063 schedule();
3064 #ifdef CONFIG_PREEMPT_BKL
3065 task->lock_depth = saved_lock_depth;
3066 #endif
3067 sub_preempt_count(PREEMPT_ACTIVE);
3068
3069 /* we could miss a preemption opportunity between schedule and now */
3070 barrier();
3071 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3072 goto need_resched;
3073 }
3074
3075 EXPORT_SYMBOL(preempt_schedule);
3076
3077 /*
3078 * this is is the entry point to schedule() from kernel preemption
3079 * off of irq context.
3080 * Note, that this is called and return with irqs disabled. This will
3081 * protect us against recursive calling from irq.
3082 */
3083 asmlinkage void __sched preempt_schedule_irq(void)
3084 {
3085 struct thread_info *ti = current_thread_info();
3086 #ifdef CONFIG_PREEMPT_BKL
3087 struct task_struct *task = current;
3088 int saved_lock_depth;
3089 #endif
3090 /* Catch callers which need to be fixed*/
3091 BUG_ON(ti->preempt_count || !irqs_disabled());
3092
3093 need_resched:
3094 add_preempt_count(PREEMPT_ACTIVE);
3095 /*
3096 * We keep the big kernel semaphore locked, but we
3097 * clear ->lock_depth so that schedule() doesnt
3098 * auto-release the semaphore:
3099 */
3100 #ifdef CONFIG_PREEMPT_BKL
3101 saved_lock_depth = task->lock_depth;
3102 task->lock_depth = -1;
3103 #endif
3104 local_irq_enable();
3105 schedule();
3106 local_irq_disable();
3107 #ifdef CONFIG_PREEMPT_BKL
3108 task->lock_depth = saved_lock_depth;
3109 #endif
3110 sub_preempt_count(PREEMPT_ACTIVE);
3111
3112 /* we could miss a preemption opportunity between schedule and now */
3113 barrier();
3114 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3115 goto need_resched;
3116 }
3117
3118 #endif /* CONFIG_PREEMPT */
3119
3120 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3121 void *key)
3122 {
3123 task_t *p = curr->private;
3124 return try_to_wake_up(p, mode, sync);
3125 }
3126
3127 EXPORT_SYMBOL(default_wake_function);
3128
3129 /*
3130 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3131 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3132 * number) then we wake all the non-exclusive tasks and one exclusive task.
3133 *
3134 * There are circumstances in which we can try to wake a task which has already
3135 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3136 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3137 */
3138 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3139 int nr_exclusive, int sync, void *key)
3140 {
3141 struct list_head *tmp, *next;
3142
3143 list_for_each_safe(tmp, next, &q->task_list) {
3144 wait_queue_t *curr;
3145 unsigned flags;
3146 curr = list_entry(tmp, wait_queue_t, task_list);
3147 flags = curr->flags;
3148 if (curr->func(curr, mode, sync, key) &&
3149 (flags & WQ_FLAG_EXCLUSIVE) &&
3150 !--nr_exclusive)
3151 break;
3152 }
3153 }
3154
3155 /**
3156 * __wake_up - wake up threads blocked on a waitqueue.
3157 * @q: the waitqueue
3158 * @mode: which threads
3159 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3160 * @key: is directly passed to the wakeup function
3161 */
3162 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3163 int nr_exclusive, void *key)
3164 {
3165 unsigned long flags;
3166
3167 spin_lock_irqsave(&q->lock, flags);
3168 __wake_up_common(q, mode, nr_exclusive, 0, key);
3169 spin_unlock_irqrestore(&q->lock, flags);
3170 }
3171
3172 EXPORT_SYMBOL(__wake_up);
3173
3174 /*
3175 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3176 */
3177 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3178 {
3179 __wake_up_common(q, mode, 1, 0, NULL);
3180 }
3181
3182 /**
3183 * __wake_up_sync - wake up threads blocked on a waitqueue.
3184 * @q: the waitqueue
3185 * @mode: which threads
3186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3187 *
3188 * The sync wakeup differs that the waker knows that it will schedule
3189 * away soon, so while the target thread will be woken up, it will not
3190 * be migrated to another CPU - ie. the two threads are 'synchronized'
3191 * with each other. This can prevent needless bouncing between CPUs.
3192 *
3193 * On UP it can prevent extra preemption.
3194 */
3195 void fastcall
3196 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3197 {
3198 unsigned long flags;
3199 int sync = 1;
3200
3201 if (unlikely(!q))
3202 return;
3203
3204 if (unlikely(!nr_exclusive))
3205 sync = 0;
3206
3207 spin_lock_irqsave(&q->lock, flags);
3208 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3209 spin_unlock_irqrestore(&q->lock, flags);
3210 }
3211 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3212
3213 void fastcall complete(struct completion *x)
3214 {
3215 unsigned long flags;
3216
3217 spin_lock_irqsave(&x->wait.lock, flags);
3218 x->done++;
3219 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3220 1, 0, NULL);
3221 spin_unlock_irqrestore(&x->wait.lock, flags);
3222 }
3223 EXPORT_SYMBOL(complete);
3224
3225 void fastcall complete_all(struct completion *x)
3226 {
3227 unsigned long flags;
3228
3229 spin_lock_irqsave(&x->wait.lock, flags);
3230 x->done += UINT_MAX/2;
3231 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3232 0, 0, NULL);
3233 spin_unlock_irqrestore(&x->wait.lock, flags);
3234 }
3235 EXPORT_SYMBOL(complete_all);
3236
3237 void fastcall __sched wait_for_completion(struct completion *x)
3238 {
3239 might_sleep();
3240 spin_lock_irq(&x->wait.lock);
3241 if (!x->done) {
3242 DECLARE_WAITQUEUE(wait, current);
3243
3244 wait.flags |= WQ_FLAG_EXCLUSIVE;
3245 __add_wait_queue_tail(&x->wait, &wait);
3246 do {
3247 __set_current_state(TASK_UNINTERRUPTIBLE);
3248 spin_unlock_irq(&x->wait.lock);
3249 schedule();
3250 spin_lock_irq(&x->wait.lock);
3251 } while (!x->done);
3252 __remove_wait_queue(&x->wait, &wait);
3253 }
3254 x->done--;
3255 spin_unlock_irq(&x->wait.lock);
3256 }
3257 EXPORT_SYMBOL(wait_for_completion);
3258
3259 unsigned long fastcall __sched
3260 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3261 {
3262 might_sleep();
3263
3264 spin_lock_irq(&x->wait.lock);
3265 if (!x->done) {
3266 DECLARE_WAITQUEUE(wait, current);
3267
3268 wait.flags |= WQ_FLAG_EXCLUSIVE;
3269 __add_wait_queue_tail(&x->wait, &wait);
3270 do {
3271 __set_current_state(TASK_UNINTERRUPTIBLE);
3272 spin_unlock_irq(&x->wait.lock);
3273 timeout = schedule_timeout(timeout);
3274 spin_lock_irq(&x->wait.lock);
3275 if (!timeout) {
3276 __remove_wait_queue(&x->wait, &wait);
3277 goto out;
3278 }
3279 } while (!x->done);
3280 __remove_wait_queue(&x->wait, &wait);
3281 }
3282 x->done--;
3283 out:
3284 spin_unlock_irq(&x->wait.lock);
3285 return timeout;
3286 }
3287 EXPORT_SYMBOL(wait_for_completion_timeout);
3288
3289 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3290 {
3291 int ret = 0;
3292
3293 might_sleep();
3294
3295 spin_lock_irq(&x->wait.lock);
3296 if (!x->done) {
3297 DECLARE_WAITQUEUE(wait, current);
3298
3299 wait.flags |= WQ_FLAG_EXCLUSIVE;
3300 __add_wait_queue_tail(&x->wait, &wait);
3301 do {
3302 if (signal_pending(current)) {
3303 ret = -ERESTARTSYS;
3304 __remove_wait_queue(&x->wait, &wait);
3305 goto out;
3306 }
3307 __set_current_state(TASK_INTERRUPTIBLE);
3308 spin_unlock_irq(&x->wait.lock);
3309 schedule();
3310 spin_lock_irq(&x->wait.lock);
3311 } while (!x->done);
3312 __remove_wait_queue(&x->wait, &wait);
3313 }
3314 x->done--;
3315 out:
3316 spin_unlock_irq(&x->wait.lock);
3317
3318 return ret;
3319 }
3320 EXPORT_SYMBOL(wait_for_completion_interruptible);
3321
3322 unsigned long fastcall __sched
3323 wait_for_completion_interruptible_timeout(struct completion *x,
3324 unsigned long timeout)
3325 {
3326 might_sleep();
3327
3328 spin_lock_irq(&x->wait.lock);
3329 if (!x->done) {
3330 DECLARE_WAITQUEUE(wait, current);
3331
3332 wait.flags |= WQ_FLAG_EXCLUSIVE;
3333 __add_wait_queue_tail(&x->wait, &wait);
3334 do {
3335 if (signal_pending(current)) {
3336 timeout = -ERESTARTSYS;
3337 __remove_wait_queue(&x->wait, &wait);
3338 goto out;
3339 }
3340 __set_current_state(TASK_INTERRUPTIBLE);
3341 spin_unlock_irq(&x->wait.lock);
3342 timeout = schedule_timeout(timeout);
3343 spin_lock_irq(&x->wait.lock);
3344 if (!timeout) {
3345 __remove_wait_queue(&x->wait, &wait);
3346 goto out;
3347 }
3348 } while (!x->done);
3349 __remove_wait_queue(&x->wait, &wait);
3350 }
3351 x->done--;
3352 out:
3353 spin_unlock_irq(&x->wait.lock);
3354 return timeout;
3355 }
3356 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3357
3358
3359 #define SLEEP_ON_VAR \
3360 unsigned long flags; \
3361 wait_queue_t wait; \
3362 init_waitqueue_entry(&wait, current);
3363
3364 #define SLEEP_ON_HEAD \
3365 spin_lock_irqsave(&q->lock,flags); \
3366 __add_wait_queue(q, &wait); \
3367 spin_unlock(&q->lock);
3368
3369 #define SLEEP_ON_TAIL \
3370 spin_lock_irq(&q->lock); \
3371 __remove_wait_queue(q, &wait); \
3372 spin_unlock_irqrestore(&q->lock, flags);
3373
3374 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3375 {
3376 SLEEP_ON_VAR
3377
3378 current->state = TASK_INTERRUPTIBLE;
3379
3380 SLEEP_ON_HEAD
3381 schedule();
3382 SLEEP_ON_TAIL
3383 }
3384
3385 EXPORT_SYMBOL(interruptible_sleep_on);
3386
3387 long fastcall __sched
3388 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3389 {
3390 SLEEP_ON_VAR
3391
3392 current->state = TASK_INTERRUPTIBLE;
3393
3394 SLEEP_ON_HEAD
3395 timeout = schedule_timeout(timeout);
3396 SLEEP_ON_TAIL
3397
3398 return timeout;
3399 }
3400
3401 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3402
3403 void fastcall __sched sleep_on(wait_queue_head_t *q)
3404 {
3405 SLEEP_ON_VAR
3406
3407 current->state = TASK_UNINTERRUPTIBLE;
3408
3409 SLEEP_ON_HEAD
3410 schedule();
3411 SLEEP_ON_TAIL
3412 }
3413
3414 EXPORT_SYMBOL(sleep_on);
3415
3416 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3417 {
3418 SLEEP_ON_VAR
3419
3420 current->state = TASK_UNINTERRUPTIBLE;
3421
3422 SLEEP_ON_HEAD
3423 timeout = schedule_timeout(timeout);
3424 SLEEP_ON_TAIL
3425
3426 return timeout;
3427 }
3428
3429 EXPORT_SYMBOL(sleep_on_timeout);
3430
3431 void set_user_nice(task_t *p, long nice)
3432 {
3433 unsigned long flags;
3434 prio_array_t *array;
3435 runqueue_t *rq;
3436 int old_prio, new_prio, delta;
3437
3438 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3439 return;
3440 /*
3441 * We have to be careful, if called from sys_setpriority(),
3442 * the task might be in the middle of scheduling on another CPU.
3443 */
3444 rq = task_rq_lock(p, &flags);
3445 /*
3446 * The RT priorities are set via sched_setscheduler(), but we still
3447 * allow the 'normal' nice value to be set - but as expected
3448 * it wont have any effect on scheduling until the task is
3449 * not SCHED_NORMAL:
3450 */
3451 if (rt_task(p)) {
3452 p->static_prio = NICE_TO_PRIO(nice);
3453 goto out_unlock;
3454 }
3455 array = p->array;
3456 if (array)
3457 dequeue_task(p, array);
3458
3459 old_prio = p->prio;
3460 new_prio = NICE_TO_PRIO(nice);
3461 delta = new_prio - old_prio;
3462 p->static_prio = NICE_TO_PRIO(nice);
3463 p->prio += delta;
3464
3465 if (array) {
3466 enqueue_task(p, array);
3467 /*
3468 * If the task increased its priority or is running and
3469 * lowered its priority, then reschedule its CPU:
3470 */
3471 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3472 resched_task(rq->curr);
3473 }
3474 out_unlock:
3475 task_rq_unlock(rq, &flags);
3476 }
3477
3478 EXPORT_SYMBOL(set_user_nice);
3479
3480 /*
3481 * can_nice - check if a task can reduce its nice value
3482 * @p: task
3483 * @nice: nice value
3484 */
3485 int can_nice(const task_t *p, const int nice)
3486 {
3487 /* convert nice value [19,-20] to rlimit style value [1,40] */
3488 int nice_rlim = 20 - nice;
3489 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3490 capable(CAP_SYS_NICE));
3491 }
3492
3493 #ifdef __ARCH_WANT_SYS_NICE
3494
3495 /*
3496 * sys_nice - change the priority of the current process.
3497 * @increment: priority increment
3498 *
3499 * sys_setpriority is a more generic, but much slower function that
3500 * does similar things.
3501 */
3502 asmlinkage long sys_nice(int increment)
3503 {
3504 int retval;
3505 long nice;
3506
3507 /*
3508 * Setpriority might change our priority at the same moment.
3509 * We don't have to worry. Conceptually one call occurs first
3510 * and we have a single winner.
3511 */
3512 if (increment < -40)
3513 increment = -40;
3514 if (increment > 40)
3515 increment = 40;
3516
3517 nice = PRIO_TO_NICE(current->static_prio) + increment;
3518 if (nice < -20)
3519 nice = -20;
3520 if (nice > 19)
3521 nice = 19;
3522
3523 if (increment < 0 && !can_nice(current, nice))
3524 return -EPERM;
3525
3526 retval = security_task_setnice(current, nice);
3527 if (retval)
3528 return retval;
3529
3530 set_user_nice(current, nice);
3531 return 0;
3532 }
3533
3534 #endif
3535
3536 /**
3537 * task_prio - return the priority value of a given task.
3538 * @p: the task in question.
3539 *
3540 * This is the priority value as seen by users in /proc.
3541 * RT tasks are offset by -200. Normal tasks are centered
3542 * around 0, value goes from -16 to +15.
3543 */
3544 int task_prio(const task_t *p)
3545 {
3546 return p->prio - MAX_RT_PRIO;
3547 }
3548
3549 /**
3550 * task_nice - return the nice value of a given task.
3551 * @p: the task in question.
3552 */
3553 int task_nice(const task_t *p)
3554 {
3555 return TASK_NICE(p);
3556 }
3557 EXPORT_SYMBOL_GPL(task_nice);
3558
3559 /**
3560 * idle_cpu - is a given cpu idle currently?
3561 * @cpu: the processor in question.
3562 */
3563 int idle_cpu(int cpu)
3564 {
3565 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3566 }
3567
3568 EXPORT_SYMBOL_GPL(idle_cpu);
3569
3570 /**
3571 * idle_task - return the idle task for a given cpu.
3572 * @cpu: the processor in question.
3573 */
3574 task_t *idle_task(int cpu)
3575 {
3576 return cpu_rq(cpu)->idle;
3577 }
3578
3579 /**
3580 * find_process_by_pid - find a process with a matching PID value.
3581 * @pid: the pid in question.
3582 */
3583 static inline task_t *find_process_by_pid(pid_t pid)
3584 {
3585 return pid ? find_task_by_pid(pid) : current;
3586 }
3587
3588 /* Actually do priority change: must hold rq lock. */
3589 static void __setscheduler(struct task_struct *p, int policy, int prio)
3590 {
3591 BUG_ON(p->array);
3592 p->policy = policy;
3593 p->rt_priority = prio;
3594 if (policy != SCHED_NORMAL)
3595 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3596 else
3597 p->prio = p->static_prio;
3598 }
3599
3600 /**
3601 * sched_setscheduler - change the scheduling policy and/or RT priority of
3602 * a thread.
3603 * @p: the task in question.
3604 * @policy: new policy.
3605 * @param: structure containing the new RT priority.
3606 */
3607 int sched_setscheduler(struct task_struct *p, int policy,
3608 struct sched_param *param)
3609 {
3610 int retval;
3611 int oldprio, oldpolicy = -1;
3612 prio_array_t *array;
3613 unsigned long flags;
3614 runqueue_t *rq;
3615
3616 recheck:
3617 /* double check policy once rq lock held */
3618 if (policy < 0)
3619 policy = oldpolicy = p->policy;
3620 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3621 policy != SCHED_NORMAL)
3622 return -EINVAL;
3623 /*
3624 * Valid priorities for SCHED_FIFO and SCHED_RR are
3625 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3626 */
3627 if (param->sched_priority < 0 ||
3628 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3629 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3630 return -EINVAL;
3631 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3632 return -EINVAL;
3633
3634 /*
3635 * Allow unprivileged RT tasks to decrease priority:
3636 */
3637 if (!capable(CAP_SYS_NICE)) {
3638 /* can't change policy */
3639 if (policy != p->policy &&
3640 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3641 return -EPERM;
3642 /* can't increase priority */
3643 if (policy != SCHED_NORMAL &&
3644 param->sched_priority > p->rt_priority &&
3645 param->sched_priority >
3646 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3647 return -EPERM;
3648 /* can't change other user's priorities */
3649 if ((current->euid != p->euid) &&
3650 (current->euid != p->uid))
3651 return -EPERM;
3652 }
3653
3654 retval = security_task_setscheduler(p, policy, param);
3655 if (retval)
3656 return retval;
3657 /*
3658 * To be able to change p->policy safely, the apropriate
3659 * runqueue lock must be held.
3660 */
3661 rq = task_rq_lock(p, &flags);
3662 /* recheck policy now with rq lock held */
3663 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3664 policy = oldpolicy = -1;
3665 task_rq_unlock(rq, &flags);
3666 goto recheck;
3667 }
3668 array = p->array;
3669 if (array)
3670 deactivate_task(p, rq);
3671 oldprio = p->prio;
3672 __setscheduler(p, policy, param->sched_priority);
3673 if (array) {
3674 __activate_task(p, rq);
3675 /*
3676 * Reschedule if we are currently running on this runqueue and
3677 * our priority decreased, or if we are not currently running on
3678 * this runqueue and our priority is higher than the current's
3679 */
3680 if (task_running(rq, p)) {
3681 if (p->prio > oldprio)
3682 resched_task(rq->curr);
3683 } else if (TASK_PREEMPTS_CURR(p, rq))
3684 resched_task(rq->curr);
3685 }
3686 task_rq_unlock(rq, &flags);
3687 return 0;
3688 }
3689 EXPORT_SYMBOL_GPL(sched_setscheduler);
3690
3691 static int
3692 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3693 {
3694 int retval;
3695 struct sched_param lparam;
3696 struct task_struct *p;
3697
3698 if (!param || pid < 0)
3699 return -EINVAL;
3700 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3701 return -EFAULT;
3702 read_lock_irq(&tasklist_lock);
3703 p = find_process_by_pid(pid);
3704 if (!p) {
3705 read_unlock_irq(&tasklist_lock);
3706 return -ESRCH;
3707 }
3708 retval = sched_setscheduler(p, policy, &lparam);
3709 read_unlock_irq(&tasklist_lock);
3710 return retval;
3711 }
3712
3713 /**
3714 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3715 * @pid: the pid in question.
3716 * @policy: new policy.
3717 * @param: structure containing the new RT priority.
3718 */
3719 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3720 struct sched_param __user *param)
3721 {
3722 return do_sched_setscheduler(pid, policy, param);
3723 }
3724
3725 /**
3726 * sys_sched_setparam - set/change the RT priority of a thread
3727 * @pid: the pid in question.
3728 * @param: structure containing the new RT priority.
3729 */
3730 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3731 {
3732 return do_sched_setscheduler(pid, -1, param);
3733 }
3734
3735 /**
3736 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3737 * @pid: the pid in question.
3738 */
3739 asmlinkage long sys_sched_getscheduler(pid_t pid)
3740 {
3741 int retval = -EINVAL;
3742 task_t *p;
3743
3744 if (pid < 0)
3745 goto out_nounlock;
3746
3747 retval = -ESRCH;
3748 read_lock(&tasklist_lock);
3749 p = find_process_by_pid(pid);
3750 if (p) {
3751 retval = security_task_getscheduler(p);
3752 if (!retval)
3753 retval = p->policy;
3754 }
3755 read_unlock(&tasklist_lock);
3756
3757 out_nounlock:
3758 return retval;
3759 }
3760
3761 /**
3762 * sys_sched_getscheduler - get the RT priority of a thread
3763 * @pid: the pid in question.
3764 * @param: structure containing the RT priority.
3765 */
3766 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3767 {
3768 struct sched_param lp;
3769 int retval = -EINVAL;
3770 task_t *p;
3771
3772 if (!param || pid < 0)
3773 goto out_nounlock;
3774
3775 read_lock(&tasklist_lock);
3776 p = find_process_by_pid(pid);
3777 retval = -ESRCH;
3778 if (!p)
3779 goto out_unlock;
3780
3781 retval = security_task_getscheduler(p);
3782 if (retval)
3783 goto out_unlock;
3784
3785 lp.sched_priority = p->rt_priority;
3786 read_unlock(&tasklist_lock);
3787
3788 /*
3789 * This one might sleep, we cannot do it with a spinlock held ...
3790 */
3791 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3792
3793 out_nounlock:
3794 return retval;
3795
3796 out_unlock:
3797 read_unlock(&tasklist_lock);
3798 return retval;
3799 }
3800
3801 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3802 {
3803 task_t *p;
3804 int retval;
3805 cpumask_t cpus_allowed;
3806
3807 lock_cpu_hotplug();
3808 read_lock(&tasklist_lock);
3809
3810 p = find_process_by_pid(pid);
3811 if (!p) {
3812 read_unlock(&tasklist_lock);
3813 unlock_cpu_hotplug();
3814 return -ESRCH;
3815 }
3816
3817 /*
3818 * It is not safe to call set_cpus_allowed with the
3819 * tasklist_lock held. We will bump the task_struct's
3820 * usage count and then drop tasklist_lock.
3821 */
3822 get_task_struct(p);
3823 read_unlock(&tasklist_lock);
3824
3825 retval = -EPERM;
3826 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3827 !capable(CAP_SYS_NICE))
3828 goto out_unlock;
3829
3830 cpus_allowed = cpuset_cpus_allowed(p);
3831 cpus_and(new_mask, new_mask, cpus_allowed);
3832 retval = set_cpus_allowed(p, new_mask);
3833
3834 out_unlock:
3835 put_task_struct(p);
3836 unlock_cpu_hotplug();
3837 return retval;
3838 }
3839
3840 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3841 cpumask_t *new_mask)
3842 {
3843 if (len < sizeof(cpumask_t)) {
3844 memset(new_mask, 0, sizeof(cpumask_t));
3845 } else if (len > sizeof(cpumask_t)) {
3846 len = sizeof(cpumask_t);
3847 }
3848 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3849 }
3850
3851 /**
3852 * sys_sched_setaffinity - set the cpu affinity of a process
3853 * @pid: pid of the process
3854 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3855 * @user_mask_ptr: user-space pointer to the new cpu mask
3856 */
3857 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3858 unsigned long __user *user_mask_ptr)
3859 {
3860 cpumask_t new_mask;
3861 int retval;
3862
3863 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3864 if (retval)
3865 return retval;
3866
3867 return sched_setaffinity(pid, new_mask);
3868 }
3869
3870 /*
3871 * Represents all cpu's present in the system
3872 * In systems capable of hotplug, this map could dynamically grow
3873 * as new cpu's are detected in the system via any platform specific
3874 * method, such as ACPI for e.g.
3875 */
3876
3877 cpumask_t cpu_present_map;
3878 EXPORT_SYMBOL(cpu_present_map);
3879
3880 #ifndef CONFIG_SMP
3881 cpumask_t cpu_online_map = CPU_MASK_ALL;
3882 EXPORT_SYMBOL_GPL(cpu_online_map);
3883 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3884 #endif
3885
3886 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3887 {
3888 int retval;
3889 task_t *p;
3890
3891 lock_cpu_hotplug();
3892 read_lock(&tasklist_lock);
3893
3894 retval = -ESRCH;
3895 p = find_process_by_pid(pid);
3896 if (!p)
3897 goto out_unlock;
3898
3899 retval = 0;
3900 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3901
3902 out_unlock:
3903 read_unlock(&tasklist_lock);
3904 unlock_cpu_hotplug();
3905 if (retval)
3906 return retval;
3907
3908 return 0;
3909 }
3910
3911 /**
3912 * sys_sched_getaffinity - get the cpu affinity of a process
3913 * @pid: pid of the process
3914 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3915 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3916 */
3917 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3918 unsigned long __user *user_mask_ptr)
3919 {
3920 int ret;
3921 cpumask_t mask;
3922
3923 if (len < sizeof(cpumask_t))
3924 return -EINVAL;
3925
3926 ret = sched_getaffinity(pid, &mask);
3927 if (ret < 0)
3928 return ret;
3929
3930 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3931 return -EFAULT;
3932
3933 return sizeof(cpumask_t);
3934 }
3935
3936 /**
3937 * sys_sched_yield - yield the current processor to other threads.
3938 *
3939 * this function yields the current CPU by moving the calling thread
3940 * to the expired array. If there are no other threads running on this
3941 * CPU then this function will return.
3942 */
3943 asmlinkage long sys_sched_yield(void)
3944 {
3945 runqueue_t *rq = this_rq_lock();
3946 prio_array_t *array = current->array;
3947 prio_array_t *target = rq->expired;
3948
3949 schedstat_inc(rq, yld_cnt);
3950 /*
3951 * We implement yielding by moving the task into the expired
3952 * queue.
3953 *
3954 * (special rule: RT tasks will just roundrobin in the active
3955 * array.)
3956 */
3957 if (rt_task(current))
3958 target = rq->active;
3959
3960 if (array->nr_active == 1) {
3961 schedstat_inc(rq, yld_act_empty);
3962 if (!rq->expired->nr_active)
3963 schedstat_inc(rq, yld_both_empty);
3964 } else if (!rq->expired->nr_active)
3965 schedstat_inc(rq, yld_exp_empty);
3966
3967 if (array != target) {
3968 dequeue_task(current, array);
3969 enqueue_task(current, target);
3970 } else
3971 /*
3972 * requeue_task is cheaper so perform that if possible.
3973 */
3974 requeue_task(current, array);
3975
3976 /*
3977 * Since we are going to call schedule() anyway, there's
3978 * no need to preempt or enable interrupts:
3979 */
3980 __release(rq->lock);
3981 _raw_spin_unlock(&rq->lock);
3982 preempt_enable_no_resched();
3983
3984 schedule();
3985
3986 return 0;
3987 }
3988
3989 static inline void __cond_resched(void)
3990 {
3991 /*
3992 * The BKS might be reacquired before we have dropped
3993 * PREEMPT_ACTIVE, which could trigger a second
3994 * cond_resched() call.
3995 */
3996 if (unlikely(preempt_count()))
3997 return;
3998 do {
3999 add_preempt_count(PREEMPT_ACTIVE);
4000 schedule();
4001 sub_preempt_count(PREEMPT_ACTIVE);
4002 } while (need_resched());
4003 }
4004
4005 int __sched cond_resched(void)
4006 {
4007 if (need_resched()) {
4008 __cond_resched();
4009 return 1;
4010 }
4011 return 0;
4012 }
4013
4014 EXPORT_SYMBOL(cond_resched);
4015
4016 /*
4017 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4018 * call schedule, and on return reacquire the lock.
4019 *
4020 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4021 * operations here to prevent schedule() from being called twice (once via
4022 * spin_unlock(), once by hand).
4023 */
4024 int cond_resched_lock(spinlock_t *lock)
4025 {
4026 int ret = 0;
4027
4028 if (need_lockbreak(lock)) {
4029 spin_unlock(lock);
4030 cpu_relax();
4031 ret = 1;
4032 spin_lock(lock);
4033 }
4034 if (need_resched()) {
4035 _raw_spin_unlock(lock);
4036 preempt_enable_no_resched();
4037 __cond_resched();
4038 ret = 1;
4039 spin_lock(lock);
4040 }
4041 return ret;
4042 }
4043
4044 EXPORT_SYMBOL(cond_resched_lock);
4045
4046 int __sched cond_resched_softirq(void)
4047 {
4048 BUG_ON(!in_softirq());
4049
4050 if (need_resched()) {
4051 __local_bh_enable();
4052 __cond_resched();
4053 local_bh_disable();
4054 return 1;
4055 }
4056 return 0;
4057 }
4058
4059 EXPORT_SYMBOL(cond_resched_softirq);
4060
4061
4062 /**
4063 * yield - yield the current processor to other threads.
4064 *
4065 * this is a shortcut for kernel-space yielding - it marks the
4066 * thread runnable and calls sys_sched_yield().
4067 */
4068 void __sched yield(void)
4069 {
4070 set_current_state(TASK_RUNNING);
4071 sys_sched_yield();
4072 }
4073
4074 EXPORT_SYMBOL(yield);
4075
4076 /*
4077 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4078 * that process accounting knows that this is a task in IO wait state.
4079 *
4080 * But don't do that if it is a deliberate, throttling IO wait (this task
4081 * has set its backing_dev_info: the queue against which it should throttle)
4082 */
4083 void __sched io_schedule(void)
4084 {
4085 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4086
4087 atomic_inc(&rq->nr_iowait);
4088 schedule();
4089 atomic_dec(&rq->nr_iowait);
4090 }
4091
4092 EXPORT_SYMBOL(io_schedule);
4093
4094 long __sched io_schedule_timeout(long timeout)
4095 {
4096 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4097 long ret;
4098
4099 atomic_inc(&rq->nr_iowait);
4100 ret = schedule_timeout(timeout);
4101 atomic_dec(&rq->nr_iowait);
4102 return ret;
4103 }
4104
4105 /**
4106 * sys_sched_get_priority_max - return maximum RT priority.
4107 * @policy: scheduling class.
4108 *
4109 * this syscall returns the maximum rt_priority that can be used
4110 * by a given scheduling class.
4111 */
4112 asmlinkage long sys_sched_get_priority_max(int policy)
4113 {
4114 int ret = -EINVAL;
4115
4116 switch (policy) {
4117 case SCHED_FIFO:
4118 case SCHED_RR:
4119 ret = MAX_USER_RT_PRIO-1;
4120 break;
4121 case SCHED_NORMAL:
4122 ret = 0;
4123 break;
4124 }
4125 return ret;
4126 }
4127
4128 /**
4129 * sys_sched_get_priority_min - return minimum RT priority.
4130 * @policy: scheduling class.
4131 *
4132 * this syscall returns the minimum rt_priority that can be used
4133 * by a given scheduling class.
4134 */
4135 asmlinkage long sys_sched_get_priority_min(int policy)
4136 {
4137 int ret = -EINVAL;
4138
4139 switch (policy) {
4140 case SCHED_FIFO:
4141 case SCHED_RR:
4142 ret = 1;
4143 break;
4144 case SCHED_NORMAL:
4145 ret = 0;
4146 }
4147 return ret;
4148 }
4149
4150 /**
4151 * sys_sched_rr_get_interval - return the default timeslice of a process.
4152 * @pid: pid of the process.
4153 * @interval: userspace pointer to the timeslice value.
4154 *
4155 * this syscall writes the default timeslice value of a given process
4156 * into the user-space timespec buffer. A value of '0' means infinity.
4157 */
4158 asmlinkage
4159 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4160 {
4161 int retval = -EINVAL;
4162 struct timespec t;
4163 task_t *p;
4164
4165 if (pid < 0)
4166 goto out_nounlock;
4167
4168 retval = -ESRCH;
4169 read_lock(&tasklist_lock);
4170 p = find_process_by_pid(pid);
4171 if (!p)
4172 goto out_unlock;
4173
4174 retval = security_task_getscheduler(p);
4175 if (retval)
4176 goto out_unlock;
4177
4178 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4179 0 : task_timeslice(p), &t);
4180 read_unlock(&tasklist_lock);
4181 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4182 out_nounlock:
4183 return retval;
4184 out_unlock:
4185 read_unlock(&tasklist_lock);
4186 return retval;
4187 }
4188
4189 static inline struct task_struct *eldest_child(struct task_struct *p)
4190 {
4191 if (list_empty(&p->children)) return NULL;
4192 return list_entry(p->children.next,struct task_struct,sibling);
4193 }
4194
4195 static inline struct task_struct *older_sibling(struct task_struct *p)
4196 {
4197 if (p->sibling.prev==&p->parent->children) return NULL;
4198 return list_entry(p->sibling.prev,struct task_struct,sibling);
4199 }
4200
4201 static inline struct task_struct *younger_sibling(struct task_struct *p)
4202 {
4203 if (p->sibling.next==&p->parent->children) return NULL;
4204 return list_entry(p->sibling.next,struct task_struct,sibling);
4205 }
4206
4207 static void show_task(task_t *p)
4208 {
4209 task_t *relative;
4210 unsigned state;
4211 unsigned long free = 0;
4212 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4213
4214 printk("%-13.13s ", p->comm);
4215 state = p->state ? __ffs(p->state) + 1 : 0;
4216 if (state < ARRAY_SIZE(stat_nam))
4217 printk(stat_nam[state]);
4218 else
4219 printk("?");
4220 #if (BITS_PER_LONG == 32)
4221 if (state == TASK_RUNNING)
4222 printk(" running ");
4223 else
4224 printk(" %08lX ", thread_saved_pc(p));
4225 #else
4226 if (state == TASK_RUNNING)
4227 printk(" running task ");
4228 else
4229 printk(" %016lx ", thread_saved_pc(p));
4230 #endif
4231 #ifdef CONFIG_DEBUG_STACK_USAGE
4232 {
4233 unsigned long *n = (unsigned long *) (p->thread_info+1);
4234 while (!*n)
4235 n++;
4236 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4237 }
4238 #endif
4239 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4240 if ((relative = eldest_child(p)))
4241 printk("%5d ", relative->pid);
4242 else
4243 printk(" ");
4244 if ((relative = younger_sibling(p)))
4245 printk("%7d", relative->pid);
4246 else
4247 printk(" ");
4248 if ((relative = older_sibling(p)))
4249 printk(" %5d", relative->pid);
4250 else
4251 printk(" ");
4252 if (!p->mm)
4253 printk(" (L-TLB)\n");
4254 else
4255 printk(" (NOTLB)\n");
4256
4257 if (state != TASK_RUNNING)
4258 show_stack(p, NULL);
4259 }
4260
4261 void show_state(void)
4262 {
4263 task_t *g, *p;
4264
4265 #if (BITS_PER_LONG == 32)
4266 printk("\n"
4267 " sibling\n");
4268 printk(" task PC pid father child younger older\n");
4269 #else
4270 printk("\n"
4271 " sibling\n");
4272 printk(" task PC pid father child younger older\n");
4273 #endif
4274 read_lock(&tasklist_lock);
4275 do_each_thread(g, p) {
4276 /*
4277 * reset the NMI-timeout, listing all files on a slow
4278 * console might take alot of time:
4279 */
4280 touch_nmi_watchdog();
4281 show_task(p);
4282 } while_each_thread(g, p);
4283
4284 read_unlock(&tasklist_lock);
4285 }
4286
4287 /**
4288 * init_idle - set up an idle thread for a given CPU
4289 * @idle: task in question
4290 * @cpu: cpu the idle task belongs to
4291 *
4292 * NOTE: this function does not set the idle thread's NEED_RESCHED
4293 * flag, to make booting more robust.
4294 */
4295 void __devinit init_idle(task_t *idle, int cpu)
4296 {
4297 runqueue_t *rq = cpu_rq(cpu);
4298 unsigned long flags;
4299
4300 idle->sleep_avg = 0;
4301 idle->array = NULL;
4302 idle->prio = MAX_PRIO;
4303 idle->state = TASK_RUNNING;
4304 idle->cpus_allowed = cpumask_of_cpu(cpu);
4305 set_task_cpu(idle, cpu);
4306
4307 spin_lock_irqsave(&rq->lock, flags);
4308 rq->curr = rq->idle = idle;
4309 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4310 idle->oncpu = 1;
4311 #endif
4312 spin_unlock_irqrestore(&rq->lock, flags);
4313
4314 /* Set the preempt count _outside_ the spinlocks! */
4315 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4316 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4317 #else
4318 idle->thread_info->preempt_count = 0;
4319 #endif
4320 }
4321
4322 /*
4323 * In a system that switches off the HZ timer nohz_cpu_mask
4324 * indicates which cpus entered this state. This is used
4325 * in the rcu update to wait only for active cpus. For system
4326 * which do not switch off the HZ timer nohz_cpu_mask should
4327 * always be CPU_MASK_NONE.
4328 */
4329 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4330
4331 #ifdef CONFIG_SMP
4332 /*
4333 * This is how migration works:
4334 *
4335 * 1) we queue a migration_req_t structure in the source CPU's
4336 * runqueue and wake up that CPU's migration thread.
4337 * 2) we down() the locked semaphore => thread blocks.
4338 * 3) migration thread wakes up (implicitly it forces the migrated
4339 * thread off the CPU)
4340 * 4) it gets the migration request and checks whether the migrated
4341 * task is still in the wrong runqueue.
4342 * 5) if it's in the wrong runqueue then the migration thread removes
4343 * it and puts it into the right queue.
4344 * 6) migration thread up()s the semaphore.
4345 * 7) we wake up and the migration is done.
4346 */
4347
4348 /*
4349 * Change a given task's CPU affinity. Migrate the thread to a
4350 * proper CPU and schedule it away if the CPU it's executing on
4351 * is removed from the allowed bitmask.
4352 *
4353 * NOTE: the caller must have a valid reference to the task, the
4354 * task must not exit() & deallocate itself prematurely. The
4355 * call is not atomic; no spinlocks may be held.
4356 */
4357 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4358 {
4359 unsigned long flags;
4360 int ret = 0;
4361 migration_req_t req;
4362 runqueue_t *rq;
4363
4364 rq = task_rq_lock(p, &flags);
4365 if (!cpus_intersects(new_mask, cpu_online_map)) {
4366 ret = -EINVAL;
4367 goto out;
4368 }
4369
4370 p->cpus_allowed = new_mask;
4371 /* Can the task run on the task's current CPU? If so, we're done */
4372 if (cpu_isset(task_cpu(p), new_mask))
4373 goto out;
4374
4375 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4376 /* Need help from migration thread: drop lock and wait. */
4377 task_rq_unlock(rq, &flags);
4378 wake_up_process(rq->migration_thread);
4379 wait_for_completion(&req.done);
4380 tlb_migrate_finish(p->mm);
4381 return 0;
4382 }
4383 out:
4384 task_rq_unlock(rq, &flags);
4385 return ret;
4386 }
4387
4388 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4389
4390 /*
4391 * Move (not current) task off this cpu, onto dest cpu. We're doing
4392 * this because either it can't run here any more (set_cpus_allowed()
4393 * away from this CPU, or CPU going down), or because we're
4394 * attempting to rebalance this task on exec (sched_exec).
4395 *
4396 * So we race with normal scheduler movements, but that's OK, as long
4397 * as the task is no longer on this CPU.
4398 */
4399 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4400 {
4401 runqueue_t *rq_dest, *rq_src;
4402
4403 if (unlikely(cpu_is_offline(dest_cpu)))
4404 return;
4405
4406 rq_src = cpu_rq(src_cpu);
4407 rq_dest = cpu_rq(dest_cpu);
4408
4409 double_rq_lock(rq_src, rq_dest);
4410 /* Already moved. */
4411 if (task_cpu(p) != src_cpu)
4412 goto out;
4413 /* Affinity changed (again). */
4414 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4415 goto out;
4416
4417 set_task_cpu(p, dest_cpu);
4418 if (p->array) {
4419 /*
4420 * Sync timestamp with rq_dest's before activating.
4421 * The same thing could be achieved by doing this step
4422 * afterwards, and pretending it was a local activate.
4423 * This way is cleaner and logically correct.
4424 */
4425 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4426 + rq_dest->timestamp_last_tick;
4427 deactivate_task(p, rq_src);
4428 activate_task(p, rq_dest, 0);
4429 if (TASK_PREEMPTS_CURR(p, rq_dest))
4430 resched_task(rq_dest->curr);
4431 }
4432
4433 out:
4434 double_rq_unlock(rq_src, rq_dest);
4435 }
4436
4437 /*
4438 * migration_thread - this is a highprio system thread that performs
4439 * thread migration by bumping thread off CPU then 'pushing' onto
4440 * another runqueue.
4441 */
4442 static int migration_thread(void *data)
4443 {
4444 runqueue_t *rq;
4445 int cpu = (long)data;
4446
4447 rq = cpu_rq(cpu);
4448 BUG_ON(rq->migration_thread != current);
4449
4450 set_current_state(TASK_INTERRUPTIBLE);
4451 while (!kthread_should_stop()) {
4452 struct list_head *head;
4453 migration_req_t *req;
4454
4455 try_to_freeze();
4456
4457 spin_lock_irq(&rq->lock);
4458
4459 if (cpu_is_offline(cpu)) {
4460 spin_unlock_irq(&rq->lock);
4461 goto wait_to_die;
4462 }
4463
4464 if (rq->active_balance) {
4465 active_load_balance(rq, cpu);
4466 rq->active_balance = 0;
4467 }
4468
4469 head = &rq->migration_queue;
4470
4471 if (list_empty(head)) {
4472 spin_unlock_irq(&rq->lock);
4473 schedule();
4474 set_current_state(TASK_INTERRUPTIBLE);
4475 continue;
4476 }
4477 req = list_entry(head->next, migration_req_t, list);
4478 list_del_init(head->next);
4479
4480 spin_unlock(&rq->lock);
4481 __migrate_task(req->task, cpu, req->dest_cpu);
4482 local_irq_enable();
4483
4484 complete(&req->done);
4485 }
4486 __set_current_state(TASK_RUNNING);
4487 return 0;
4488
4489 wait_to_die:
4490 /* Wait for kthread_stop */
4491 set_current_state(TASK_INTERRUPTIBLE);
4492 while (!kthread_should_stop()) {
4493 schedule();
4494 set_current_state(TASK_INTERRUPTIBLE);
4495 }
4496 __set_current_state(TASK_RUNNING);
4497 return 0;
4498 }
4499
4500 #ifdef CONFIG_HOTPLUG_CPU
4501 /* Figure out where task on dead CPU should go, use force if neccessary. */
4502 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4503 {
4504 int dest_cpu;
4505 cpumask_t mask;
4506
4507 /* On same node? */
4508 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4509 cpus_and(mask, mask, tsk->cpus_allowed);
4510 dest_cpu = any_online_cpu(mask);
4511
4512 /* On any allowed CPU? */
4513 if (dest_cpu == NR_CPUS)
4514 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4515
4516 /* No more Mr. Nice Guy. */
4517 if (dest_cpu == NR_CPUS) {
4518 cpus_setall(tsk->cpus_allowed);
4519 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4520
4521 /*
4522 * Don't tell them about moving exiting tasks or
4523 * kernel threads (both mm NULL), since they never
4524 * leave kernel.
4525 */
4526 if (tsk->mm && printk_ratelimit())
4527 printk(KERN_INFO "process %d (%s) no "
4528 "longer affine to cpu%d\n",
4529 tsk->pid, tsk->comm, dead_cpu);
4530 }
4531 __migrate_task(tsk, dead_cpu, dest_cpu);
4532 }
4533
4534 /*
4535 * While a dead CPU has no uninterruptible tasks queued at this point,
4536 * it might still have a nonzero ->nr_uninterruptible counter, because
4537 * for performance reasons the counter is not stricly tracking tasks to
4538 * their home CPUs. So we just add the counter to another CPU's counter,
4539 * to keep the global sum constant after CPU-down:
4540 */
4541 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4542 {
4543 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4544 unsigned long flags;
4545
4546 local_irq_save(flags);
4547 double_rq_lock(rq_src, rq_dest);
4548 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4549 rq_src->nr_uninterruptible = 0;
4550 double_rq_unlock(rq_src, rq_dest);
4551 local_irq_restore(flags);
4552 }
4553
4554 /* Run through task list and migrate tasks from the dead cpu. */
4555 static void migrate_live_tasks(int src_cpu)
4556 {
4557 struct task_struct *tsk, *t;
4558
4559 write_lock_irq(&tasklist_lock);
4560
4561 do_each_thread(t, tsk) {
4562 if (tsk == current)
4563 continue;
4564
4565 if (task_cpu(tsk) == src_cpu)
4566 move_task_off_dead_cpu(src_cpu, tsk);
4567 } while_each_thread(t, tsk);
4568
4569 write_unlock_irq(&tasklist_lock);
4570 }
4571
4572 /* Schedules idle task to be the next runnable task on current CPU.
4573 * It does so by boosting its priority to highest possible and adding it to
4574 * the _front_ of runqueue. Used by CPU offline code.
4575 */
4576 void sched_idle_next(void)
4577 {
4578 int cpu = smp_processor_id();
4579 runqueue_t *rq = this_rq();
4580 struct task_struct *p = rq->idle;
4581 unsigned long flags;
4582
4583 /* cpu has to be offline */
4584 BUG_ON(cpu_online(cpu));
4585
4586 /* Strictly not necessary since rest of the CPUs are stopped by now
4587 * and interrupts disabled on current cpu.
4588 */
4589 spin_lock_irqsave(&rq->lock, flags);
4590
4591 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4592 /* Add idle task to _front_ of it's priority queue */
4593 __activate_idle_task(p, rq);
4594
4595 spin_unlock_irqrestore(&rq->lock, flags);
4596 }
4597
4598 /* Ensures that the idle task is using init_mm right before its cpu goes
4599 * offline.
4600 */
4601 void idle_task_exit(void)
4602 {
4603 struct mm_struct *mm = current->active_mm;
4604
4605 BUG_ON(cpu_online(smp_processor_id()));
4606
4607 if (mm != &init_mm)
4608 switch_mm(mm, &init_mm, current);
4609 mmdrop(mm);
4610 }
4611
4612 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4613 {
4614 struct runqueue *rq = cpu_rq(dead_cpu);
4615
4616 /* Must be exiting, otherwise would be on tasklist. */
4617 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4618
4619 /* Cannot have done final schedule yet: would have vanished. */
4620 BUG_ON(tsk->flags & PF_DEAD);
4621
4622 get_task_struct(tsk);
4623
4624 /*
4625 * Drop lock around migration; if someone else moves it,
4626 * that's OK. No task can be added to this CPU, so iteration is
4627 * fine.
4628 */
4629 spin_unlock_irq(&rq->lock);
4630 move_task_off_dead_cpu(dead_cpu, tsk);
4631 spin_lock_irq(&rq->lock);
4632
4633 put_task_struct(tsk);
4634 }
4635
4636 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4637 static void migrate_dead_tasks(unsigned int dead_cpu)
4638 {
4639 unsigned arr, i;
4640 struct runqueue *rq = cpu_rq(dead_cpu);
4641
4642 for (arr = 0; arr < 2; arr++) {
4643 for (i = 0; i < MAX_PRIO; i++) {
4644 struct list_head *list = &rq->arrays[arr].queue[i];
4645 while (!list_empty(list))
4646 migrate_dead(dead_cpu,
4647 list_entry(list->next, task_t,
4648 run_list));
4649 }
4650 }
4651 }
4652 #endif /* CONFIG_HOTPLUG_CPU */
4653
4654 /*
4655 * migration_call - callback that gets triggered when a CPU is added.
4656 * Here we can start up the necessary migration thread for the new CPU.
4657 */
4658 static int migration_call(struct notifier_block *nfb, unsigned long action,
4659 void *hcpu)
4660 {
4661 int cpu = (long)hcpu;
4662 struct task_struct *p;
4663 struct runqueue *rq;
4664 unsigned long flags;
4665
4666 switch (action) {
4667 case CPU_UP_PREPARE:
4668 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4669 if (IS_ERR(p))
4670 return NOTIFY_BAD;
4671 p->flags |= PF_NOFREEZE;
4672 kthread_bind(p, cpu);
4673 /* Must be high prio: stop_machine expects to yield to it. */
4674 rq = task_rq_lock(p, &flags);
4675 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4676 task_rq_unlock(rq, &flags);
4677 cpu_rq(cpu)->migration_thread = p;
4678 break;
4679 case CPU_ONLINE:
4680 /* Strictly unneccessary, as first user will wake it. */
4681 wake_up_process(cpu_rq(cpu)->migration_thread);
4682 break;
4683 #ifdef CONFIG_HOTPLUG_CPU
4684 case CPU_UP_CANCELED:
4685 /* Unbind it from offline cpu so it can run. Fall thru. */
4686 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4687 kthread_stop(cpu_rq(cpu)->migration_thread);
4688 cpu_rq(cpu)->migration_thread = NULL;
4689 break;
4690 case CPU_DEAD:
4691 migrate_live_tasks(cpu);
4692 rq = cpu_rq(cpu);
4693 kthread_stop(rq->migration_thread);
4694 rq->migration_thread = NULL;
4695 /* Idle task back to normal (off runqueue, low prio) */
4696 rq = task_rq_lock(rq->idle, &flags);
4697 deactivate_task(rq->idle, rq);
4698 rq->idle->static_prio = MAX_PRIO;
4699 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4700 migrate_dead_tasks(cpu);
4701 task_rq_unlock(rq, &flags);
4702 migrate_nr_uninterruptible(rq);
4703 BUG_ON(rq->nr_running != 0);
4704
4705 /* No need to migrate the tasks: it was best-effort if
4706 * they didn't do lock_cpu_hotplug(). Just wake up
4707 * the requestors. */
4708 spin_lock_irq(&rq->lock);
4709 while (!list_empty(&rq->migration_queue)) {
4710 migration_req_t *req;
4711 req = list_entry(rq->migration_queue.next,
4712 migration_req_t, list);
4713 list_del_init(&req->list);
4714 complete(&req->done);
4715 }
4716 spin_unlock_irq(&rq->lock);
4717 break;
4718 #endif
4719 }
4720 return NOTIFY_OK;
4721 }
4722
4723 /* Register at highest priority so that task migration (migrate_all_tasks)
4724 * happens before everything else.
4725 */
4726 static struct notifier_block __devinitdata migration_notifier = {
4727 .notifier_call = migration_call,
4728 .priority = 10
4729 };
4730
4731 int __init migration_init(void)
4732 {
4733 void *cpu = (void *)(long)smp_processor_id();
4734 /* Start one for boot CPU. */
4735 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4736 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4737 register_cpu_notifier(&migration_notifier);
4738 return 0;
4739 }
4740 #endif
4741
4742 #ifdef CONFIG_SMP
4743 #undef SCHED_DOMAIN_DEBUG
4744 #ifdef SCHED_DOMAIN_DEBUG
4745 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4746 {
4747 int level = 0;
4748
4749 if (!sd) {
4750 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4751 return;
4752 }
4753
4754 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4755
4756 do {
4757 int i;
4758 char str[NR_CPUS];
4759 struct sched_group *group = sd->groups;
4760 cpumask_t groupmask;
4761
4762 cpumask_scnprintf(str, NR_CPUS, sd->span);
4763 cpus_clear(groupmask);
4764
4765 printk(KERN_DEBUG);
4766 for (i = 0; i < level + 1; i++)
4767 printk(" ");
4768 printk("domain %d: ", level);
4769
4770 if (!(sd->flags & SD_LOAD_BALANCE)) {
4771 printk("does not load-balance\n");
4772 if (sd->parent)
4773 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4774 break;
4775 }
4776
4777 printk("span %s\n", str);
4778
4779 if (!cpu_isset(cpu, sd->span))
4780 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4781 if (!cpu_isset(cpu, group->cpumask))
4782 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4783
4784 printk(KERN_DEBUG);
4785 for (i = 0; i < level + 2; i++)
4786 printk(" ");
4787 printk("groups:");
4788 do {
4789 if (!group) {
4790 printk("\n");
4791 printk(KERN_ERR "ERROR: group is NULL\n");
4792 break;
4793 }
4794
4795 if (!group->cpu_power) {
4796 printk("\n");
4797 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4798 }
4799
4800 if (!cpus_weight(group->cpumask)) {
4801 printk("\n");
4802 printk(KERN_ERR "ERROR: empty group\n");
4803 }
4804
4805 if (cpus_intersects(groupmask, group->cpumask)) {
4806 printk("\n");
4807 printk(KERN_ERR "ERROR: repeated CPUs\n");
4808 }
4809
4810 cpus_or(groupmask, groupmask, group->cpumask);
4811
4812 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4813 printk(" %s", str);
4814
4815 group = group->next;
4816 } while (group != sd->groups);
4817 printk("\n");
4818
4819 if (!cpus_equal(sd->span, groupmask))
4820 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4821
4822 level++;
4823 sd = sd->parent;
4824
4825 if (sd) {
4826 if (!cpus_subset(groupmask, sd->span))
4827 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4828 }
4829
4830 } while (sd);
4831 }
4832 #else
4833 #define sched_domain_debug(sd, cpu) {}
4834 #endif
4835
4836 static int sd_degenerate(struct sched_domain *sd)
4837 {
4838 if (cpus_weight(sd->span) == 1)
4839 return 1;
4840
4841 /* Following flags need at least 2 groups */
4842 if (sd->flags & (SD_LOAD_BALANCE |
4843 SD_BALANCE_NEWIDLE |
4844 SD_BALANCE_FORK |
4845 SD_BALANCE_EXEC)) {
4846 if (sd->groups != sd->groups->next)
4847 return 0;
4848 }
4849
4850 /* Following flags don't use groups */
4851 if (sd->flags & (SD_WAKE_IDLE |
4852 SD_WAKE_AFFINE |
4853 SD_WAKE_BALANCE))
4854 return 0;
4855
4856 return 1;
4857 }
4858
4859 static int sd_parent_degenerate(struct sched_domain *sd,
4860 struct sched_domain *parent)
4861 {
4862 unsigned long cflags = sd->flags, pflags = parent->flags;
4863
4864 if (sd_degenerate(parent))
4865 return 1;
4866
4867 if (!cpus_equal(sd->span, parent->span))
4868 return 0;
4869
4870 /* Does parent contain flags not in child? */
4871 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4872 if (cflags & SD_WAKE_AFFINE)
4873 pflags &= ~SD_WAKE_BALANCE;
4874 /* Flags needing groups don't count if only 1 group in parent */
4875 if (parent->groups == parent->groups->next) {
4876 pflags &= ~(SD_LOAD_BALANCE |
4877 SD_BALANCE_NEWIDLE |
4878 SD_BALANCE_FORK |
4879 SD_BALANCE_EXEC);
4880 }
4881 if (~cflags & pflags)
4882 return 0;
4883
4884 return 1;
4885 }
4886
4887 /*
4888 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4889 * hold the hotplug lock.
4890 */
4891 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4892 {
4893 runqueue_t *rq = cpu_rq(cpu);
4894 struct sched_domain *tmp;
4895
4896 /* Remove the sched domains which do not contribute to scheduling. */
4897 for (tmp = sd; tmp; tmp = tmp->parent) {
4898 struct sched_domain *parent = tmp->parent;
4899 if (!parent)
4900 break;
4901 if (sd_parent_degenerate(tmp, parent))
4902 tmp->parent = parent->parent;
4903 }
4904
4905 if (sd && sd_degenerate(sd))
4906 sd = sd->parent;
4907
4908 sched_domain_debug(sd, cpu);
4909
4910 rcu_assign_pointer(rq->sd, sd);
4911 }
4912
4913 /* cpus with isolated domains */
4914 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4915
4916 /* Setup the mask of cpus configured for isolated domains */
4917 static int __init isolated_cpu_setup(char *str)
4918 {
4919 int ints[NR_CPUS], i;
4920
4921 str = get_options(str, ARRAY_SIZE(ints), ints);
4922 cpus_clear(cpu_isolated_map);
4923 for (i = 1; i <= ints[0]; i++)
4924 if (ints[i] < NR_CPUS)
4925 cpu_set(ints[i], cpu_isolated_map);
4926 return 1;
4927 }
4928
4929 __setup ("isolcpus=", isolated_cpu_setup);
4930
4931 /*
4932 * init_sched_build_groups takes an array of groups, the cpumask we wish
4933 * to span, and a pointer to a function which identifies what group a CPU
4934 * belongs to. The return value of group_fn must be a valid index into the
4935 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4936 * keep track of groups covered with a cpumask_t).
4937 *
4938 * init_sched_build_groups will build a circular linked list of the groups
4939 * covered by the given span, and will set each group's ->cpumask correctly,
4940 * and ->cpu_power to 0.
4941 */
4942 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4943 int (*group_fn)(int cpu))
4944 {
4945 struct sched_group *first = NULL, *last = NULL;
4946 cpumask_t covered = CPU_MASK_NONE;
4947 int i;
4948
4949 for_each_cpu_mask(i, span) {
4950 int group = group_fn(i);
4951 struct sched_group *sg = &groups[group];
4952 int j;
4953
4954 if (cpu_isset(i, covered))
4955 continue;
4956
4957 sg->cpumask = CPU_MASK_NONE;
4958 sg->cpu_power = 0;
4959
4960 for_each_cpu_mask(j, span) {
4961 if (group_fn(j) != group)
4962 continue;
4963
4964 cpu_set(j, covered);
4965 cpu_set(j, sg->cpumask);
4966 }
4967 if (!first)
4968 first = sg;
4969 if (last)
4970 last->next = sg;
4971 last = sg;
4972 }
4973 last->next = first;
4974 }
4975
4976 #define SD_NODES_PER_DOMAIN 16
4977
4978 #ifdef CONFIG_NUMA
4979 /**
4980 * find_next_best_node - find the next node to include in a sched_domain
4981 * @node: node whose sched_domain we're building
4982 * @used_nodes: nodes already in the sched_domain
4983 *
4984 * Find the next node to include in a given scheduling domain. Simply
4985 * finds the closest node not already in the @used_nodes map.
4986 *
4987 * Should use nodemask_t.
4988 */
4989 static int find_next_best_node(int node, unsigned long *used_nodes)
4990 {
4991 int i, n, val, min_val, best_node = 0;
4992
4993 min_val = INT_MAX;
4994
4995 for (i = 0; i < MAX_NUMNODES; i++) {
4996 /* Start at @node */
4997 n = (node + i) % MAX_NUMNODES;
4998
4999 if (!nr_cpus_node(n))
5000 continue;
5001
5002 /* Skip already used nodes */
5003 if (test_bit(n, used_nodes))
5004 continue;
5005
5006 /* Simple min distance search */
5007 val = node_distance(node, n);
5008
5009 if (val < min_val) {
5010 min_val = val;
5011 best_node = n;
5012 }
5013 }
5014
5015 set_bit(best_node, used_nodes);
5016 return best_node;
5017 }
5018
5019 /**
5020 * sched_domain_node_span - get a cpumask for a node's sched_domain
5021 * @node: node whose cpumask we're constructing
5022 * @size: number of nodes to include in this span
5023 *
5024 * Given a node, construct a good cpumask for its sched_domain to span. It
5025 * should be one that prevents unnecessary balancing, but also spreads tasks
5026 * out optimally.
5027 */
5028 static cpumask_t sched_domain_node_span(int node)
5029 {
5030 int i;
5031 cpumask_t span, nodemask;
5032 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5033
5034 cpus_clear(span);
5035 bitmap_zero(used_nodes, MAX_NUMNODES);
5036
5037 nodemask = node_to_cpumask(node);
5038 cpus_or(span, span, nodemask);
5039 set_bit(node, used_nodes);
5040
5041 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5042 int next_node = find_next_best_node(node, used_nodes);
5043 nodemask = node_to_cpumask(next_node);
5044 cpus_or(span, span, nodemask);
5045 }
5046
5047 return span;
5048 }
5049 #endif
5050
5051 /*
5052 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5053 * can switch it on easily if needed.
5054 */
5055 #ifdef CONFIG_SCHED_SMT
5056 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5057 static struct sched_group sched_group_cpus[NR_CPUS];
5058 static int cpu_to_cpu_group(int cpu)
5059 {
5060 return cpu;
5061 }
5062 #endif
5063
5064 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5065 static struct sched_group sched_group_phys[NR_CPUS];
5066 static int cpu_to_phys_group(int cpu)
5067 {
5068 #ifdef CONFIG_SCHED_SMT
5069 return first_cpu(cpu_sibling_map[cpu]);
5070 #else
5071 return cpu;
5072 #endif
5073 }
5074
5075 #ifdef CONFIG_NUMA
5076 /*
5077 * The init_sched_build_groups can't handle what we want to do with node
5078 * groups, so roll our own. Now each node has its own list of groups which
5079 * gets dynamically allocated.
5080 */
5081 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5082 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5083
5084 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5085 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5086
5087 static int cpu_to_allnodes_group(int cpu)
5088 {
5089 return cpu_to_node(cpu);
5090 }
5091 #endif
5092
5093 /*
5094 * Build sched domains for a given set of cpus and attach the sched domains
5095 * to the individual cpus
5096 */
5097 void build_sched_domains(const cpumask_t *cpu_map)
5098 {
5099 int i;
5100 #ifdef CONFIG_NUMA
5101 struct sched_group **sched_group_nodes = NULL;
5102 struct sched_group *sched_group_allnodes = NULL;
5103
5104 /*
5105 * Allocate the per-node list of sched groups
5106 */
5107 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5108 GFP_ATOMIC);
5109 if (!sched_group_nodes) {
5110 printk(KERN_WARNING "Can not alloc sched group node list\n");
5111 return;
5112 }
5113 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5114 #endif
5115
5116 /*
5117 * Set up domains for cpus specified by the cpu_map.
5118 */
5119 for_each_cpu_mask(i, *cpu_map) {
5120 int group;
5121 struct sched_domain *sd = NULL, *p;
5122 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5123
5124 cpus_and(nodemask, nodemask, *cpu_map);
5125
5126 #ifdef CONFIG_NUMA
5127 if (cpus_weight(*cpu_map)
5128 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5129 if (!sched_group_allnodes) {
5130 sched_group_allnodes
5131 = kmalloc(sizeof(struct sched_group)
5132 * MAX_NUMNODES,
5133 GFP_KERNEL);
5134 if (!sched_group_allnodes) {
5135 printk(KERN_WARNING
5136 "Can not alloc allnodes sched group\n");
5137 break;
5138 }
5139 sched_group_allnodes_bycpu[i]
5140 = sched_group_allnodes;
5141 }
5142 sd = &per_cpu(allnodes_domains, i);
5143 *sd = SD_ALLNODES_INIT;
5144 sd->span = *cpu_map;
5145 group = cpu_to_allnodes_group(i);
5146 sd->groups = &sched_group_allnodes[group];
5147 p = sd;
5148 } else
5149 p = NULL;
5150
5151 sd = &per_cpu(node_domains, i);
5152 *sd = SD_NODE_INIT;
5153 sd->span = sched_domain_node_span(cpu_to_node(i));
5154 sd->parent = p;
5155 cpus_and(sd->span, sd->span, *cpu_map);
5156 #endif
5157
5158 p = sd;
5159 sd = &per_cpu(phys_domains, i);
5160 group = cpu_to_phys_group(i);
5161 *sd = SD_CPU_INIT;
5162 sd->span = nodemask;
5163 sd->parent = p;
5164 sd->groups = &sched_group_phys[group];
5165
5166 #ifdef CONFIG_SCHED_SMT
5167 p = sd;
5168 sd = &per_cpu(cpu_domains, i);
5169 group = cpu_to_cpu_group(i);
5170 *sd = SD_SIBLING_INIT;
5171 sd->span = cpu_sibling_map[i];
5172 cpus_and(sd->span, sd->span, *cpu_map);
5173 sd->parent = p;
5174 sd->groups = &sched_group_cpus[group];
5175 #endif
5176 }
5177
5178 #ifdef CONFIG_SCHED_SMT
5179 /* Set up CPU (sibling) groups */
5180 for_each_cpu_mask(i, *cpu_map) {
5181 cpumask_t this_sibling_map = cpu_sibling_map[i];
5182 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5183 if (i != first_cpu(this_sibling_map))
5184 continue;
5185
5186 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5187 &cpu_to_cpu_group);
5188 }
5189 #endif
5190
5191 /* Set up physical groups */
5192 for (i = 0; i < MAX_NUMNODES; i++) {
5193 cpumask_t nodemask = node_to_cpumask(i);
5194
5195 cpus_and(nodemask, nodemask, *cpu_map);
5196 if (cpus_empty(nodemask))
5197 continue;
5198
5199 init_sched_build_groups(sched_group_phys, nodemask,
5200 &cpu_to_phys_group);
5201 }
5202
5203 #ifdef CONFIG_NUMA
5204 /* Set up node groups */
5205 if (sched_group_allnodes)
5206 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5207 &cpu_to_allnodes_group);
5208
5209 for (i = 0; i < MAX_NUMNODES; i++) {
5210 /* Set up node groups */
5211 struct sched_group *sg, *prev;
5212 cpumask_t nodemask = node_to_cpumask(i);
5213 cpumask_t domainspan;
5214 cpumask_t covered = CPU_MASK_NONE;
5215 int j;
5216
5217 cpus_and(nodemask, nodemask, *cpu_map);
5218 if (cpus_empty(nodemask)) {
5219 sched_group_nodes[i] = NULL;
5220 continue;
5221 }
5222
5223 domainspan = sched_domain_node_span(i);
5224 cpus_and(domainspan, domainspan, *cpu_map);
5225
5226 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5227 sched_group_nodes[i] = sg;
5228 for_each_cpu_mask(j, nodemask) {
5229 struct sched_domain *sd;
5230 sd = &per_cpu(node_domains, j);
5231 sd->groups = sg;
5232 if (sd->groups == NULL) {
5233 /* Turn off balancing if we have no groups */
5234 sd->flags = 0;
5235 }
5236 }
5237 if (!sg) {
5238 printk(KERN_WARNING
5239 "Can not alloc domain group for node %d\n", i);
5240 continue;
5241 }
5242 sg->cpu_power = 0;
5243 sg->cpumask = nodemask;
5244 cpus_or(covered, covered, nodemask);
5245 prev = sg;
5246
5247 for (j = 0; j < MAX_NUMNODES; j++) {
5248 cpumask_t tmp, notcovered;
5249 int n = (i + j) % MAX_NUMNODES;
5250
5251 cpus_complement(notcovered, covered);
5252 cpus_and(tmp, notcovered, *cpu_map);
5253 cpus_and(tmp, tmp, domainspan);
5254 if (cpus_empty(tmp))
5255 break;
5256
5257 nodemask = node_to_cpumask(n);
5258 cpus_and(tmp, tmp, nodemask);
5259 if (cpus_empty(tmp))
5260 continue;
5261
5262 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5263 if (!sg) {
5264 printk(KERN_WARNING
5265 "Can not alloc domain group for node %d\n", j);
5266 break;
5267 }
5268 sg->cpu_power = 0;
5269 sg->cpumask = tmp;
5270 cpus_or(covered, covered, tmp);
5271 prev->next = sg;
5272 prev = sg;
5273 }
5274 prev->next = sched_group_nodes[i];
5275 }
5276 #endif
5277
5278 /* Calculate CPU power for physical packages and nodes */
5279 for_each_cpu_mask(i, *cpu_map) {
5280 int power;
5281 struct sched_domain *sd;
5282 #ifdef CONFIG_SCHED_SMT
5283 sd = &per_cpu(cpu_domains, i);
5284 power = SCHED_LOAD_SCALE;
5285 sd->groups->cpu_power = power;
5286 #endif
5287
5288 sd = &per_cpu(phys_domains, i);
5289 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5290 (cpus_weight(sd->groups->cpumask)-1) / 10;
5291 sd->groups->cpu_power = power;
5292
5293 #ifdef CONFIG_NUMA
5294 sd = &per_cpu(allnodes_domains, i);
5295 if (sd->groups) {
5296 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5297 (cpus_weight(sd->groups->cpumask)-1) / 10;
5298 sd->groups->cpu_power = power;
5299 }
5300 #endif
5301 }
5302
5303 #ifdef CONFIG_NUMA
5304 for (i = 0; i < MAX_NUMNODES; i++) {
5305 struct sched_group *sg = sched_group_nodes[i];
5306 int j;
5307
5308 if (sg == NULL)
5309 continue;
5310 next_sg:
5311 for_each_cpu_mask(j, sg->cpumask) {
5312 struct sched_domain *sd;
5313 int power;
5314
5315 sd = &per_cpu(phys_domains, j);
5316 if (j != first_cpu(sd->groups->cpumask)) {
5317 /*
5318 * Only add "power" once for each
5319 * physical package.
5320 */
5321 continue;
5322 }
5323 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5324 (cpus_weight(sd->groups->cpumask)-1) / 10;
5325
5326 sg->cpu_power += power;
5327 }
5328 sg = sg->next;
5329 if (sg != sched_group_nodes[i])
5330 goto next_sg;
5331 }
5332 #endif
5333
5334 /* Attach the domains */
5335 for_each_cpu_mask(i, *cpu_map) {
5336 struct sched_domain *sd;
5337 #ifdef CONFIG_SCHED_SMT
5338 sd = &per_cpu(cpu_domains, i);
5339 #else
5340 sd = &per_cpu(phys_domains, i);
5341 #endif
5342 cpu_attach_domain(sd, i);
5343 }
5344 }
5345 /*
5346 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5347 */
5348 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5349 {
5350 cpumask_t cpu_default_map;
5351
5352 /*
5353 * Setup mask for cpus without special case scheduling requirements.
5354 * For now this just excludes isolated cpus, but could be used to
5355 * exclude other special cases in the future.
5356 */
5357 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5358
5359 build_sched_domains(&cpu_default_map);
5360 }
5361
5362 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5363 {
5364 #ifdef CONFIG_NUMA
5365 int i;
5366 int cpu;
5367
5368 for_each_cpu_mask(cpu, *cpu_map) {
5369 struct sched_group *sched_group_allnodes
5370 = sched_group_allnodes_bycpu[cpu];
5371 struct sched_group **sched_group_nodes
5372 = sched_group_nodes_bycpu[cpu];
5373
5374 if (sched_group_allnodes) {
5375 kfree(sched_group_allnodes);
5376 sched_group_allnodes_bycpu[cpu] = NULL;
5377 }
5378
5379 if (!sched_group_nodes)
5380 continue;
5381
5382 for (i = 0; i < MAX_NUMNODES; i++) {
5383 cpumask_t nodemask = node_to_cpumask(i);
5384 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5385
5386 cpus_and(nodemask, nodemask, *cpu_map);
5387 if (cpus_empty(nodemask))
5388 continue;
5389
5390 if (sg == NULL)
5391 continue;
5392 sg = sg->next;
5393 next_sg:
5394 oldsg = sg;
5395 sg = sg->next;
5396 kfree(oldsg);
5397 if (oldsg != sched_group_nodes[i])
5398 goto next_sg;
5399 }
5400 kfree(sched_group_nodes);
5401 sched_group_nodes_bycpu[cpu] = NULL;
5402 }
5403 #endif
5404 }
5405
5406 /*
5407 * Detach sched domains from a group of cpus specified in cpu_map
5408 * These cpus will now be attached to the NULL domain
5409 */
5410 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5411 {
5412 int i;
5413
5414 for_each_cpu_mask(i, *cpu_map)
5415 cpu_attach_domain(NULL, i);
5416 synchronize_sched();
5417 arch_destroy_sched_domains(cpu_map);
5418 }
5419
5420 /*
5421 * Partition sched domains as specified by the cpumasks below.
5422 * This attaches all cpus from the cpumasks to the NULL domain,
5423 * waits for a RCU quiescent period, recalculates sched
5424 * domain information and then attaches them back to the
5425 * correct sched domains
5426 * Call with hotplug lock held
5427 */
5428 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5429 {
5430 cpumask_t change_map;
5431
5432 cpus_and(*partition1, *partition1, cpu_online_map);
5433 cpus_and(*partition2, *partition2, cpu_online_map);
5434 cpus_or(change_map, *partition1, *partition2);
5435
5436 /* Detach sched domains from all of the affected cpus */
5437 detach_destroy_domains(&change_map);
5438 if (!cpus_empty(*partition1))
5439 build_sched_domains(partition1);
5440 if (!cpus_empty(*partition2))
5441 build_sched_domains(partition2);
5442 }
5443
5444 #ifdef CONFIG_HOTPLUG_CPU
5445 /*
5446 * Force a reinitialization of the sched domains hierarchy. The domains
5447 * and groups cannot be updated in place without racing with the balancing
5448 * code, so we temporarily attach all running cpus to the NULL domain
5449 * which will prevent rebalancing while the sched domains are recalculated.
5450 */
5451 static int update_sched_domains(struct notifier_block *nfb,
5452 unsigned long action, void *hcpu)
5453 {
5454 switch (action) {
5455 case CPU_UP_PREPARE:
5456 case CPU_DOWN_PREPARE:
5457 detach_destroy_domains(&cpu_online_map);
5458 return NOTIFY_OK;
5459
5460 case CPU_UP_CANCELED:
5461 case CPU_DOWN_FAILED:
5462 case CPU_ONLINE:
5463 case CPU_DEAD:
5464 /*
5465 * Fall through and re-initialise the domains.
5466 */
5467 break;
5468 default:
5469 return NOTIFY_DONE;
5470 }
5471
5472 /* The hotplug lock is already held by cpu_up/cpu_down */
5473 arch_init_sched_domains(&cpu_online_map);
5474
5475 return NOTIFY_OK;
5476 }
5477 #endif
5478
5479 void __init sched_init_smp(void)
5480 {
5481 lock_cpu_hotplug();
5482 arch_init_sched_domains(&cpu_online_map);
5483 unlock_cpu_hotplug();
5484 /* XXX: Theoretical race here - CPU may be hotplugged now */
5485 hotcpu_notifier(update_sched_domains, 0);
5486 }
5487 #else
5488 void __init sched_init_smp(void)
5489 {
5490 }
5491 #endif /* CONFIG_SMP */
5492
5493 int in_sched_functions(unsigned long addr)
5494 {
5495 /* Linker adds these: start and end of __sched functions */
5496 extern char __sched_text_start[], __sched_text_end[];
5497 return in_lock_functions(addr) ||
5498 (addr >= (unsigned long)__sched_text_start
5499 && addr < (unsigned long)__sched_text_end);
5500 }
5501
5502 void __init sched_init(void)
5503 {
5504 runqueue_t *rq;
5505 int i, j, k;
5506
5507 for (i = 0; i < NR_CPUS; i++) {
5508 prio_array_t *array;
5509
5510 rq = cpu_rq(i);
5511 spin_lock_init(&rq->lock);
5512 rq->nr_running = 0;
5513 rq->active = rq->arrays;
5514 rq->expired = rq->arrays + 1;
5515 rq->best_expired_prio = MAX_PRIO;
5516
5517 #ifdef CONFIG_SMP
5518 rq->sd = NULL;
5519 for (j = 1; j < 3; j++)
5520 rq->cpu_load[j] = 0;
5521 rq->active_balance = 0;
5522 rq->push_cpu = 0;
5523 rq->migration_thread = NULL;
5524 INIT_LIST_HEAD(&rq->migration_queue);
5525 #endif
5526 atomic_set(&rq->nr_iowait, 0);
5527
5528 for (j = 0; j < 2; j++) {
5529 array = rq->arrays + j;
5530 for (k = 0; k < MAX_PRIO; k++) {
5531 INIT_LIST_HEAD(array->queue + k);
5532 __clear_bit(k, array->bitmap);
5533 }
5534 // delimiter for bitsearch
5535 __set_bit(MAX_PRIO, array->bitmap);
5536 }
5537 }
5538
5539 /*
5540 * The boot idle thread does lazy MMU switching as well:
5541 */
5542 atomic_inc(&init_mm.mm_count);
5543 enter_lazy_tlb(&init_mm, current);
5544
5545 /*
5546 * Make us the idle thread. Technically, schedule() should not be
5547 * called from this thread, however somewhere below it might be,
5548 * but because we are the idle thread, we just pick up running again
5549 * when this runqueue becomes "idle".
5550 */
5551 init_idle(current, smp_processor_id());
5552 }
5553
5554 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5555 void __might_sleep(char *file, int line)
5556 {
5557 #if defined(in_atomic)
5558 static unsigned long prev_jiffy; /* ratelimiting */
5559
5560 if ((in_atomic() || irqs_disabled()) &&
5561 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5562 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5563 return;
5564 prev_jiffy = jiffies;
5565 printk(KERN_ERR "Debug: sleeping function called from invalid"
5566 " context at %s:%d\n", file, line);
5567 printk("in_atomic():%d, irqs_disabled():%d\n",
5568 in_atomic(), irqs_disabled());
5569 dump_stack();
5570 }
5571 #endif
5572 }
5573 EXPORT_SYMBOL(__might_sleep);
5574 #endif
5575
5576 #ifdef CONFIG_MAGIC_SYSRQ
5577 void normalize_rt_tasks(void)
5578 {
5579 struct task_struct *p;
5580 prio_array_t *array;
5581 unsigned long flags;
5582 runqueue_t *rq;
5583
5584 read_lock_irq(&tasklist_lock);
5585 for_each_process (p) {
5586 if (!rt_task(p))
5587 continue;
5588
5589 rq = task_rq_lock(p, &flags);
5590
5591 array = p->array;
5592 if (array)
5593 deactivate_task(p, task_rq(p));
5594 __setscheduler(p, SCHED_NORMAL, 0);
5595 if (array) {
5596 __activate_task(p, task_rq(p));
5597 resched_task(rq->curr);
5598 }
5599
5600 task_rq_unlock(rq, &flags);
5601 }
5602 read_unlock_irq(&tasklist_lock);
5603 }
5604
5605 #endif /* CONFIG_MAGIC_SYSRQ */
5606
5607 #ifdef CONFIG_IA64
5608 /*
5609 * These functions are only useful for the IA64 MCA handling.
5610 *
5611 * They can only be called when the whole system has been
5612 * stopped - every CPU needs to be quiescent, and no scheduling
5613 * activity can take place. Using them for anything else would
5614 * be a serious bug, and as a result, they aren't even visible
5615 * under any other configuration.
5616 */
5617
5618 /**
5619 * curr_task - return the current task for a given cpu.
5620 * @cpu: the processor in question.
5621 *
5622 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5623 */
5624 task_t *curr_task(int cpu)
5625 {
5626 return cpu_curr(cpu);
5627 }
5628
5629 /**
5630 * set_curr_task - set the current task for a given cpu.
5631 * @cpu: the processor in question.
5632 * @p: the task pointer to set.
5633 *
5634 * Description: This function must only be used when non-maskable interrupts
5635 * are serviced on a separate stack. It allows the architecture to switch the
5636 * notion of the current task on a cpu in a non-blocking manner. This function
5637 * must be called with all CPU's synchronized, and interrupts disabled, the
5638 * and caller must save the original value of the current task (see
5639 * curr_task() above) and restore that value before reenabling interrupts and
5640 * re-starting the system.
5641 *
5642 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5643 */
5644 void set_curr_task(int cpu, task_t *p)
5645 {
5646 cpu_curr(cpu) = p;
5647 }
5648
5649 #endif