[S390] sclp: remove unnecessary sendmask check
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last, *skip;
330
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
333 #endif
334
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
346 int on_list;
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
349
350 #ifdef CONFIG_SMP
351 /*
352 * the part of load.weight contributed by tasks
353 */
354 unsigned long task_weight;
355
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
363
364 /*
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
370 */
371 u64 load_avg;
372 u64 load_period;
373 u64 load_stamp, load_last, load_unacc_exec_time;
374
375 unsigned long load_contribution;
376 #endif
377 #endif
378 };
379
380 /* Real-Time classes' related field in a runqueue: */
381 struct rt_rq {
382 struct rt_prio_array active;
383 unsigned long rt_nr_running;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 struct {
386 int curr; /* highest queued rt task prio */
387 #ifdef CONFIG_SMP
388 int next; /* next highest */
389 #endif
390 } highest_prio;
391 #endif
392 #ifdef CONFIG_SMP
393 unsigned long rt_nr_migratory;
394 unsigned long rt_nr_total;
395 int overloaded;
396 struct plist_head pushable_tasks;
397 #endif
398 int rt_throttled;
399 u64 rt_time;
400 u64 rt_runtime;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock;
403
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted;
406
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
410 #endif
411 };
412
413 #ifdef CONFIG_SMP
414
415 /*
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
422 */
423 struct root_domain {
424 atomic_t refcount;
425 struct rcu_head rcu;
426 cpumask_var_t span;
427 cpumask_var_t online;
428
429 /*
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
433 cpumask_var_t rto_mask;
434 atomic_t rto_count;
435 struct cpupri cpupri;
436 };
437
438 /*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
442 static struct root_domain def_root_domain;
443
444 #endif /* CONFIG_SMP */
445
446 /*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
453 struct rq {
454 /* runqueue lock: */
455 raw_spinlock_t lock;
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464 unsigned long last_load_update_tick;
465 #ifdef CONFIG_NO_HZ
466 u64 nohz_stamp;
467 unsigned char nohz_balance_kick;
468 #endif
469 int skip_clock_update;
470
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
477 struct rt_rq rt;
478
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
482 #endif
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list;
485 #endif
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
495 struct task_struct *curr, *idle, *stop;
496 unsigned long next_balance;
497 struct mm_struct *prev_mm;
498
499 u64 clock;
500 u64 clock_task;
501
502 atomic_t nr_iowait;
503
504 #ifdef CONFIG_SMP
505 struct root_domain *rd;
506 struct sched_domain *sd;
507
508 unsigned long cpu_power;
509
510 unsigned char idle_at_tick;
511 /* For active balancing */
512 int post_schedule;
513 int active_balance;
514 int push_cpu;
515 struct cpu_stop_work active_balance_work;
516 /* cpu of this runqueue: */
517 int cpu;
518 int online;
519
520 unsigned long avg_load_per_task;
521
522 u64 rt_avg;
523 u64 age_stamp;
524 u64 idle_stamp;
525 u64 avg_idle;
526 #endif
527
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530 #endif
531
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
536 #ifdef CONFIG_SCHED_HRTICK
537 #ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540 #endif
541 struct hrtimer hrtick_timer;
542 #endif
543
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
549
550 /* sys_sched_yield() stats */
551 unsigned int yld_count;
552
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
557
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
561 #endif
562
563 #ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565 #endif
566 };
567
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
569
570
571 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
572
573 static inline int cpu_of(struct rq *rq)
574 {
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
580 }
581
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
587 /*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602
603 #ifdef CONFIG_CGROUP_SCHED
604
605 /*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613 static inline struct task_group *task_group(struct task_struct *p)
614 {
615 struct task_group *tg;
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619 lockdep_is_held(&p->pi_lock));
620 tg = container_of(css, struct task_group, css);
621
622 return autogroup_task_group(p, tg);
623 }
624
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627 {
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631 #endif
632
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636 #endif
637 }
638
639 #else /* CONFIG_CGROUP_SCHED */
640
641 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642 static inline struct task_group *task_group(struct task_struct *p)
643 {
644 return NULL;
645 }
646
647 #endif /* CONFIG_CGROUP_SCHED */
648
649 static void update_rq_clock_task(struct rq *rq, s64 delta);
650
651 static void update_rq_clock(struct rq *rq)
652 {
653 s64 delta;
654
655 if (rq->skip_clock_update > 0)
656 return;
657
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
661 }
662
663 /*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
668 #else
669 # define const_debug static const
670 #endif
671
672 /**
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
675 *
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
678 */
679 int runqueue_is_locked(int cpu)
680 {
681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
682 }
683
684 /*
685 * Debugging: various feature bits
686 */
687
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
690
691 enum {
692 #include "sched_features.h"
693 };
694
695 #undef SCHED_FEAT
696
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
699
700 const_debug unsigned int sysctl_sched_features =
701 #include "sched_features.h"
702 0;
703
704 #undef SCHED_FEAT
705
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
708 #name ,
709
710 static __read_mostly char *sched_feat_names[] = {
711 #include "sched_features.h"
712 NULL
713 };
714
715 #undef SCHED_FEAT
716
717 static int sched_feat_show(struct seq_file *m, void *v)
718 {
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
725 }
726 seq_puts(m, "\n");
727
728 return 0;
729 }
730
731 static ssize_t
732 sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
734 {
735 char buf[64];
736 char *cmp;
737 int neg = 0;
738 int i;
739
740 if (cnt > 63)
741 cnt = 63;
742
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
745
746 buf[cnt] = 0;
747 cmp = strstrip(buf);
748
749 if (strncmp(cmp, "NO_", 3) == 0) {
750 neg = 1;
751 cmp += 3;
752 }
753
754 for (i = 0; sched_feat_names[i]; i++) {
755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
767 *ppos += cnt;
768
769 return cnt;
770 }
771
772 static int sched_feat_open(struct inode *inode, struct file *filp)
773 {
774 return single_open(filp, sched_feat_show, NULL);
775 }
776
777 static const struct file_operations sched_feat_fops = {
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
783 };
784
785 static __init int sched_init_debug(void)
786 {
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791 }
792 late_initcall(sched_init_debug);
793
794 #endif
795
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
797
798 /*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802 const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
804 /*
805 * period over which we average the RT time consumption, measured
806 * in ms.
807 *
808 * default: 1s
809 */
810 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
811
812 /*
813 * period over which we measure -rt task cpu usage in us.
814 * default: 1s
815 */
816 unsigned int sysctl_sched_rt_period = 1000000;
817
818 static __read_mostly int scheduler_running;
819
820 /*
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
823 */
824 int sysctl_sched_rt_runtime = 950000;
825
826 static inline u64 global_rt_period(void)
827 {
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
829 }
830
831 static inline u64 global_rt_runtime(void)
832 {
833 if (sysctl_sched_rt_runtime < 0)
834 return RUNTIME_INF;
835
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
837 }
838
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
841 #endif
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
844 #endif
845
846 static inline int task_current(struct rq *rq, struct task_struct *p)
847 {
848 return rq->curr == p;
849 }
850
851 static inline int task_running(struct rq *rq, struct task_struct *p)
852 {
853 #ifdef CONFIG_SMP
854 return p->on_cpu;
855 #else
856 return task_current(rq, p);
857 #endif
858 }
859
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 {
863 #ifdef CONFIG_SMP
864 /*
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
868 */
869 next->on_cpu = 1;
870 #endif
871 }
872
873 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874 {
875 #ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883 #endif
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887 #endif
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
895 raw_spin_unlock_irq(&rq->lock);
896 }
897
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
907 next->on_cpu = 1;
908 #endif
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq->lock);
911 #else
912 raw_spin_unlock(&rq->lock);
913 #endif
914 }
915
916 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
917 {
918 #ifdef CONFIG_SMP
919 /*
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
925 prev->on_cpu = 0;
926 #endif
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
929 #endif
930 }
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
932
933 /*
934 * __task_rq_lock - lock the rq @p resides on.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 struct rq *rq;
940
941 lockdep_assert_held(&p->pi_lock);
942
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
954 */
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(p->pi_lock)
957 __acquires(rq->lock)
958 {
959 struct rq *rq;
960
961 for (;;) {
962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
969 }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
974 {
975 raw_spin_unlock(&rq->lock);
976 }
977
978 static inline void
979 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
980 __releases(rq->lock)
981 __releases(p->pi_lock)
982 {
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
985 }
986
987 /*
988 * this_rq_lock - lock this runqueue and disable interrupts.
989 */
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
992 {
993 struct rq *rq;
994
995 local_irq_disable();
996 rq = this_rq();
997 raw_spin_lock(&rq->lock);
998
999 return rq;
1000 }
1001
1002 #ifdef CONFIG_SCHED_HRTICK
1003 /*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
1013
1014 /*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019 static inline int hrtick_enabled(struct rq *rq)
1020 {
1021 if (!sched_feat(HRTICK))
1022 return 0;
1023 if (!cpu_active(cpu_of(rq)))
1024 return 0;
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026 }
1027
1028 static void hrtick_clear(struct rq *rq)
1029 {
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032 }
1033
1034 /*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039 {
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
1044 raw_spin_lock(&rq->lock);
1045 update_rq_clock(rq);
1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047 raw_spin_unlock(&rq->lock);
1048
1049 return HRTIMER_NORESTART;
1050 }
1051
1052 #ifdef CONFIG_SMP
1053 /*
1054 * called from hardirq (IPI) context
1055 */
1056 static void __hrtick_start(void *arg)
1057 {
1058 struct rq *rq = arg;
1059
1060 raw_spin_lock(&rq->lock);
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
1063 raw_spin_unlock(&rq->lock);
1064 }
1065
1066 /*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071 static void hrtick_start(struct rq *rq, u64 delay)
1072 {
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1075
1076 hrtimer_set_expires(timer, time);
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 rq->hrtick_csd_pending = 1;
1083 }
1084 }
1085
1086 static int
1087 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088 {
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
1098 hrtick_clear(cpu_rq(cpu));
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103 }
1104
1105 static __init void init_hrtick(void)
1106 {
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108 }
1109 #else
1110 /*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115 static void hrtick_start(struct rq *rq, u64 delay)
1116 {
1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118 HRTIMER_MODE_REL_PINNED, 0);
1119 }
1120
1121 static inline void init_hrtick(void)
1122 {
1123 }
1124 #endif /* CONFIG_SMP */
1125
1126 static void init_rq_hrtick(struct rq *rq)
1127 {
1128 #ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
1130
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134 #endif
1135
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
1138 }
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq *rq)
1141 {
1142 }
1143
1144 static inline void init_rq_hrtick(struct rq *rq)
1145 {
1146 }
1147
1148 static inline void init_hrtick(void)
1149 {
1150 }
1151 #endif /* CONFIG_SCHED_HRTICK */
1152
1153 /*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160 #ifdef CONFIG_SMP
1161
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 #endif
1165
1166 static void resched_task(struct task_struct *p)
1167 {
1168 int cpu;
1169
1170 assert_raw_spin_locked(&task_rq(p)->lock);
1171
1172 if (test_tsk_need_resched(p))
1173 return;
1174
1175 set_tsk_need_resched(p);
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185 }
1186
1187 static void resched_cpu(int cpu)
1188 {
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1193 return;
1194 resched_task(cpu_curr(cpu));
1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
1196 }
1197
1198 #ifdef CONFIG_NO_HZ
1199 /*
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1202 *
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1206 */
1207 int get_nohz_timer_target(void)
1208 {
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1212
1213 rcu_read_lock();
1214 for_each_domain(cpu, sd) {
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1219 }
1220 }
1221 }
1222 unlock:
1223 rcu_read_unlock();
1224 return cpu;
1225 }
1226 /*
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1235 */
1236 void wake_up_idle_cpu(int cpu)
1237 {
1238 struct rq *rq = cpu_rq(cpu);
1239
1240 if (cpu == smp_processor_id())
1241 return;
1242
1243 /*
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1249 */
1250 if (rq->curr != rq->idle)
1251 return;
1252
1253 /*
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1257 */
1258 set_tsk_need_resched(rq->idle);
1259
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1264 }
1265
1266 #endif /* CONFIG_NO_HZ */
1267
1268 static u64 sched_avg_period(void)
1269 {
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1271 }
1272
1273 static void sched_avg_update(struct rq *rq)
1274 {
1275 s64 period = sched_avg_period();
1276
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
1278 /*
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1282 */
1283 asm("" : "+rm" (rq->age_stamp));
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1286 }
1287 }
1288
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290 {
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1293 }
1294
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct *p)
1297 {
1298 assert_raw_spin_locked(&task_rq(p)->lock);
1299 set_tsk_need_resched(p);
1300 }
1301
1302 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303 {
1304 }
1305
1306 static void sched_avg_update(struct rq *rq)
1307 {
1308 }
1309 #endif /* CONFIG_SMP */
1310
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1313 #else
1314 # define WMULT_CONST (1UL << 32)
1315 #endif
1316
1317 #define WMULT_SHIFT 32
1318
1319 /*
1320 * Shift right and round:
1321 */
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1323
1324 /*
1325 * delta *= weight / lw
1326 */
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1330 {
1331 u64 tmp;
1332
1333 tmp = (u64)delta_exec * weight;
1334
1335 if (!lw->inv_weight) {
1336 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1337 lw->inv_weight = 1;
1338 else
1339 lw->inv_weight = WMULT_CONST / lw->weight;
1340 }
1341
1342 /*
1343 * Check whether we'd overflow the 64-bit multiplication:
1344 */
1345 if (unlikely(tmp > WMULT_CONST))
1346 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1347 WMULT_SHIFT/2);
1348 else
1349 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1350
1351 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1352 }
1353
1354 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1355 {
1356 lw->weight += inc;
1357 lw->inv_weight = 0;
1358 }
1359
1360 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1361 {
1362 lw->weight -= dec;
1363 lw->inv_weight = 0;
1364 }
1365
1366 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1367 {
1368 lw->weight = w;
1369 lw->inv_weight = 0;
1370 }
1371
1372 /*
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1377 * scaled version of the new time slice allocation that they receive on time
1378 * slice expiry etc.
1379 */
1380
1381 #define WEIGHT_IDLEPRIO 3
1382 #define WMULT_IDLEPRIO 1431655765
1383
1384 /*
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1389 *
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
1395 */
1396 static const int prio_to_weight[40] = {
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
1405 };
1406
1407 /*
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1409 *
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1413 */
1414 static const u32 prio_to_wmult[40] = {
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1423 };
1424
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431 };
1432
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1437 #else
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1441 #endif
1442
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444 {
1445 update_load_add(&rq->load, load);
1446 }
1447
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449 {
1450 update_load_sub(&rq->load, load);
1451 }
1452
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1455
1456 /*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 {
1462 struct task_group *parent, *child;
1463 int ret;
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467 down:
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475 up:
1476 continue;
1477 }
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
1486 out_unlock:
1487 rcu_read_unlock();
1488
1489 return ret;
1490 }
1491
1492 static int tg_nop(struct task_group *tg, void *data)
1493 {
1494 return 0;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_SMP
1499 /* Used instead of source_load when we know the type == 0 */
1500 static unsigned long weighted_cpuload(const int cpu)
1501 {
1502 return cpu_rq(cpu)->load.weight;
1503 }
1504
1505 /*
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 *
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1511 */
1512 static unsigned long source_load(int cpu, int type)
1513 {
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1516
1517 if (type == 0 || !sched_feat(LB_BIAS))
1518 return total;
1519
1520 return min(rq->cpu_load[type-1], total);
1521 }
1522
1523 /*
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1526 */
1527 static unsigned long target_load(int cpu, int type)
1528 {
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long total = weighted_cpuload(cpu);
1531
1532 if (type == 0 || !sched_feat(LB_BIAS))
1533 return total;
1534
1535 return max(rq->cpu_load[type-1], total);
1536 }
1537
1538 static unsigned long power_of(int cpu)
1539 {
1540 return cpu_rq(cpu)->cpu_power;
1541 }
1542
1543 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1544
1545 static unsigned long cpu_avg_load_per_task(int cpu)
1546 {
1547 struct rq *rq = cpu_rq(cpu);
1548 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1549
1550 if (nr_running)
1551 rq->avg_load_per_task = rq->load.weight / nr_running;
1552 else
1553 rq->avg_load_per_task = 0;
1554
1555 return rq->avg_load_per_task;
1556 }
1557
1558 #ifdef CONFIG_FAIR_GROUP_SCHED
1559
1560 /*
1561 * Compute the cpu's hierarchical load factor for each task group.
1562 * This needs to be done in a top-down fashion because the load of a child
1563 * group is a fraction of its parents load.
1564 */
1565 static int tg_load_down(struct task_group *tg, void *data)
1566 {
1567 unsigned long load;
1568 long cpu = (long)data;
1569
1570 if (!tg->parent) {
1571 load = cpu_rq(cpu)->load.weight;
1572 } else {
1573 load = tg->parent->cfs_rq[cpu]->h_load;
1574 load *= tg->se[cpu]->load.weight;
1575 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1576 }
1577
1578 tg->cfs_rq[cpu]->h_load = load;
1579
1580 return 0;
1581 }
1582
1583 static void update_h_load(long cpu)
1584 {
1585 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1586 }
1587
1588 #endif
1589
1590 #ifdef CONFIG_PREEMPT
1591
1592 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1593
1594 /*
1595 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1596 * way at the expense of forcing extra atomic operations in all
1597 * invocations. This assures that the double_lock is acquired using the
1598 * same underlying policy as the spinlock_t on this architecture, which
1599 * reduces latency compared to the unfair variant below. However, it
1600 * also adds more overhead and therefore may reduce throughput.
1601 */
1602 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1603 __releases(this_rq->lock)
1604 __acquires(busiest->lock)
1605 __acquires(this_rq->lock)
1606 {
1607 raw_spin_unlock(&this_rq->lock);
1608 double_rq_lock(this_rq, busiest);
1609
1610 return 1;
1611 }
1612
1613 #else
1614 /*
1615 * Unfair double_lock_balance: Optimizes throughput at the expense of
1616 * latency by eliminating extra atomic operations when the locks are
1617 * already in proper order on entry. This favors lower cpu-ids and will
1618 * grant the double lock to lower cpus over higher ids under contention,
1619 * regardless of entry order into the function.
1620 */
1621 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1622 __releases(this_rq->lock)
1623 __acquires(busiest->lock)
1624 __acquires(this_rq->lock)
1625 {
1626 int ret = 0;
1627
1628 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 raw_spin_unlock(&this_rq->lock);
1631 raw_spin_lock(&busiest->lock);
1632 raw_spin_lock_nested(&this_rq->lock,
1633 SINGLE_DEPTH_NESTING);
1634 ret = 1;
1635 } else
1636 raw_spin_lock_nested(&busiest->lock,
1637 SINGLE_DEPTH_NESTING);
1638 }
1639 return ret;
1640 }
1641
1642 #endif /* CONFIG_PREEMPT */
1643
1644 /*
1645 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1646 */
1647 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1648 {
1649 if (unlikely(!irqs_disabled())) {
1650 /* printk() doesn't work good under rq->lock */
1651 raw_spin_unlock(&this_rq->lock);
1652 BUG_ON(1);
1653 }
1654
1655 return _double_lock_balance(this_rq, busiest);
1656 }
1657
1658 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1659 __releases(busiest->lock)
1660 {
1661 raw_spin_unlock(&busiest->lock);
1662 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1663 }
1664
1665 /*
1666 * double_rq_lock - safely lock two runqueues
1667 *
1668 * Note this does not disable interrupts like task_rq_lock,
1669 * you need to do so manually before calling.
1670 */
1671 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1672 __acquires(rq1->lock)
1673 __acquires(rq2->lock)
1674 {
1675 BUG_ON(!irqs_disabled());
1676 if (rq1 == rq2) {
1677 raw_spin_lock(&rq1->lock);
1678 __acquire(rq2->lock); /* Fake it out ;) */
1679 } else {
1680 if (rq1 < rq2) {
1681 raw_spin_lock(&rq1->lock);
1682 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1683 } else {
1684 raw_spin_lock(&rq2->lock);
1685 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1686 }
1687 }
1688 }
1689
1690 /*
1691 * double_rq_unlock - safely unlock two runqueues
1692 *
1693 * Note this does not restore interrupts like task_rq_unlock,
1694 * you need to do so manually after calling.
1695 */
1696 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1697 __releases(rq1->lock)
1698 __releases(rq2->lock)
1699 {
1700 raw_spin_unlock(&rq1->lock);
1701 if (rq1 != rq2)
1702 raw_spin_unlock(&rq2->lock);
1703 else
1704 __release(rq2->lock);
1705 }
1706
1707 #else /* CONFIG_SMP */
1708
1709 /*
1710 * double_rq_lock - safely lock two runqueues
1711 *
1712 * Note this does not disable interrupts like task_rq_lock,
1713 * you need to do so manually before calling.
1714 */
1715 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1716 __acquires(rq1->lock)
1717 __acquires(rq2->lock)
1718 {
1719 BUG_ON(!irqs_disabled());
1720 BUG_ON(rq1 != rq2);
1721 raw_spin_lock(&rq1->lock);
1722 __acquire(rq2->lock); /* Fake it out ;) */
1723 }
1724
1725 /*
1726 * double_rq_unlock - safely unlock two runqueues
1727 *
1728 * Note this does not restore interrupts like task_rq_unlock,
1729 * you need to do so manually after calling.
1730 */
1731 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1732 __releases(rq1->lock)
1733 __releases(rq2->lock)
1734 {
1735 BUG_ON(rq1 != rq2);
1736 raw_spin_unlock(&rq1->lock);
1737 __release(rq2->lock);
1738 }
1739
1740 #endif
1741
1742 static void calc_load_account_idle(struct rq *this_rq);
1743 static void update_sysctl(void);
1744 static int get_update_sysctl_factor(void);
1745 static void update_cpu_load(struct rq *this_rq);
1746
1747 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1748 {
1749 set_task_rq(p, cpu);
1750 #ifdef CONFIG_SMP
1751 /*
1752 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1753 * successfuly executed on another CPU. We must ensure that updates of
1754 * per-task data have been completed by this moment.
1755 */
1756 smp_wmb();
1757 task_thread_info(p)->cpu = cpu;
1758 #endif
1759 }
1760
1761 static const struct sched_class rt_sched_class;
1762
1763 #define sched_class_highest (&stop_sched_class)
1764 #define for_each_class(class) \
1765 for (class = sched_class_highest; class; class = class->next)
1766
1767 #include "sched_stats.h"
1768
1769 static void inc_nr_running(struct rq *rq)
1770 {
1771 rq->nr_running++;
1772 }
1773
1774 static void dec_nr_running(struct rq *rq)
1775 {
1776 rq->nr_running--;
1777 }
1778
1779 static void set_load_weight(struct task_struct *p)
1780 {
1781 /*
1782 * SCHED_IDLE tasks get minimal weight:
1783 */
1784 if (p->policy == SCHED_IDLE) {
1785 p->se.load.weight = WEIGHT_IDLEPRIO;
1786 p->se.load.inv_weight = WMULT_IDLEPRIO;
1787 return;
1788 }
1789
1790 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1791 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1792 }
1793
1794 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1795 {
1796 update_rq_clock(rq);
1797 sched_info_queued(p);
1798 p->sched_class->enqueue_task(rq, p, flags);
1799 }
1800
1801 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1802 {
1803 update_rq_clock(rq);
1804 sched_info_dequeued(p);
1805 p->sched_class->dequeue_task(rq, p, flags);
1806 }
1807
1808 /*
1809 * activate_task - move a task to the runqueue.
1810 */
1811 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1812 {
1813 if (task_contributes_to_load(p))
1814 rq->nr_uninterruptible--;
1815
1816 enqueue_task(rq, p, flags);
1817 inc_nr_running(rq);
1818 }
1819
1820 /*
1821 * deactivate_task - remove a task from the runqueue.
1822 */
1823 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1824 {
1825 if (task_contributes_to_load(p))
1826 rq->nr_uninterruptible++;
1827
1828 dequeue_task(rq, p, flags);
1829 dec_nr_running(rq);
1830 }
1831
1832 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1833
1834 /*
1835 * There are no locks covering percpu hardirq/softirq time.
1836 * They are only modified in account_system_vtime, on corresponding CPU
1837 * with interrupts disabled. So, writes are safe.
1838 * They are read and saved off onto struct rq in update_rq_clock().
1839 * This may result in other CPU reading this CPU's irq time and can
1840 * race with irq/account_system_vtime on this CPU. We would either get old
1841 * or new value with a side effect of accounting a slice of irq time to wrong
1842 * task when irq is in progress while we read rq->clock. That is a worthy
1843 * compromise in place of having locks on each irq in account_system_time.
1844 */
1845 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1846 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1847
1848 static DEFINE_PER_CPU(u64, irq_start_time);
1849 static int sched_clock_irqtime;
1850
1851 void enable_sched_clock_irqtime(void)
1852 {
1853 sched_clock_irqtime = 1;
1854 }
1855
1856 void disable_sched_clock_irqtime(void)
1857 {
1858 sched_clock_irqtime = 0;
1859 }
1860
1861 #ifndef CONFIG_64BIT
1862 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1863
1864 static inline void irq_time_write_begin(void)
1865 {
1866 __this_cpu_inc(irq_time_seq.sequence);
1867 smp_wmb();
1868 }
1869
1870 static inline void irq_time_write_end(void)
1871 {
1872 smp_wmb();
1873 __this_cpu_inc(irq_time_seq.sequence);
1874 }
1875
1876 static inline u64 irq_time_read(int cpu)
1877 {
1878 u64 irq_time;
1879 unsigned seq;
1880
1881 do {
1882 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1883 irq_time = per_cpu(cpu_softirq_time, cpu) +
1884 per_cpu(cpu_hardirq_time, cpu);
1885 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1886
1887 return irq_time;
1888 }
1889 #else /* CONFIG_64BIT */
1890 static inline void irq_time_write_begin(void)
1891 {
1892 }
1893
1894 static inline void irq_time_write_end(void)
1895 {
1896 }
1897
1898 static inline u64 irq_time_read(int cpu)
1899 {
1900 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1901 }
1902 #endif /* CONFIG_64BIT */
1903
1904 /*
1905 * Called before incrementing preempt_count on {soft,}irq_enter
1906 * and before decrementing preempt_count on {soft,}irq_exit.
1907 */
1908 void account_system_vtime(struct task_struct *curr)
1909 {
1910 unsigned long flags;
1911 s64 delta;
1912 int cpu;
1913
1914 if (!sched_clock_irqtime)
1915 return;
1916
1917 local_irq_save(flags);
1918
1919 cpu = smp_processor_id();
1920 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1921 __this_cpu_add(irq_start_time, delta);
1922
1923 irq_time_write_begin();
1924 /*
1925 * We do not account for softirq time from ksoftirqd here.
1926 * We want to continue accounting softirq time to ksoftirqd thread
1927 * in that case, so as not to confuse scheduler with a special task
1928 * that do not consume any time, but still wants to run.
1929 */
1930 if (hardirq_count())
1931 __this_cpu_add(cpu_hardirq_time, delta);
1932 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1933 __this_cpu_add(cpu_softirq_time, delta);
1934
1935 irq_time_write_end();
1936 local_irq_restore(flags);
1937 }
1938 EXPORT_SYMBOL_GPL(account_system_vtime);
1939
1940 static void update_rq_clock_task(struct rq *rq, s64 delta)
1941 {
1942 s64 irq_delta;
1943
1944 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1945
1946 /*
1947 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1948 * this case when a previous update_rq_clock() happened inside a
1949 * {soft,}irq region.
1950 *
1951 * When this happens, we stop ->clock_task and only update the
1952 * prev_irq_time stamp to account for the part that fit, so that a next
1953 * update will consume the rest. This ensures ->clock_task is
1954 * monotonic.
1955 *
1956 * It does however cause some slight miss-attribution of {soft,}irq
1957 * time, a more accurate solution would be to update the irq_time using
1958 * the current rq->clock timestamp, except that would require using
1959 * atomic ops.
1960 */
1961 if (irq_delta > delta)
1962 irq_delta = delta;
1963
1964 rq->prev_irq_time += irq_delta;
1965 delta -= irq_delta;
1966 rq->clock_task += delta;
1967
1968 if (irq_delta && sched_feat(NONIRQ_POWER))
1969 sched_rt_avg_update(rq, irq_delta);
1970 }
1971
1972 static int irqtime_account_hi_update(void)
1973 {
1974 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1975 unsigned long flags;
1976 u64 latest_ns;
1977 int ret = 0;
1978
1979 local_irq_save(flags);
1980 latest_ns = this_cpu_read(cpu_hardirq_time);
1981 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1982 ret = 1;
1983 local_irq_restore(flags);
1984 return ret;
1985 }
1986
1987 static int irqtime_account_si_update(void)
1988 {
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1991 u64 latest_ns;
1992 int ret = 0;
1993
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_softirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1997 ret = 1;
1998 local_irq_restore(flags);
1999 return ret;
2000 }
2001
2002 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2003
2004 #define sched_clock_irqtime (0)
2005
2006 static void update_rq_clock_task(struct rq *rq, s64 delta)
2007 {
2008 rq->clock_task += delta;
2009 }
2010
2011 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2012
2013 #include "sched_idletask.c"
2014 #include "sched_fair.c"
2015 #include "sched_rt.c"
2016 #include "sched_autogroup.c"
2017 #include "sched_stoptask.c"
2018 #ifdef CONFIG_SCHED_DEBUG
2019 # include "sched_debug.c"
2020 #endif
2021
2022 void sched_set_stop_task(int cpu, struct task_struct *stop)
2023 {
2024 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2025 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2026
2027 if (stop) {
2028 /*
2029 * Make it appear like a SCHED_FIFO task, its something
2030 * userspace knows about and won't get confused about.
2031 *
2032 * Also, it will make PI more or less work without too
2033 * much confusion -- but then, stop work should not
2034 * rely on PI working anyway.
2035 */
2036 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2037
2038 stop->sched_class = &stop_sched_class;
2039 }
2040
2041 cpu_rq(cpu)->stop = stop;
2042
2043 if (old_stop) {
2044 /*
2045 * Reset it back to a normal scheduling class so that
2046 * it can die in pieces.
2047 */
2048 old_stop->sched_class = &rt_sched_class;
2049 }
2050 }
2051
2052 /*
2053 * __normal_prio - return the priority that is based on the static prio
2054 */
2055 static inline int __normal_prio(struct task_struct *p)
2056 {
2057 return p->static_prio;
2058 }
2059
2060 /*
2061 * Calculate the expected normal priority: i.e. priority
2062 * without taking RT-inheritance into account. Might be
2063 * boosted by interactivity modifiers. Changes upon fork,
2064 * setprio syscalls, and whenever the interactivity
2065 * estimator recalculates.
2066 */
2067 static inline int normal_prio(struct task_struct *p)
2068 {
2069 int prio;
2070
2071 if (task_has_rt_policy(p))
2072 prio = MAX_RT_PRIO-1 - p->rt_priority;
2073 else
2074 prio = __normal_prio(p);
2075 return prio;
2076 }
2077
2078 /*
2079 * Calculate the current priority, i.e. the priority
2080 * taken into account by the scheduler. This value might
2081 * be boosted by RT tasks, or might be boosted by
2082 * interactivity modifiers. Will be RT if the task got
2083 * RT-boosted. If not then it returns p->normal_prio.
2084 */
2085 static int effective_prio(struct task_struct *p)
2086 {
2087 p->normal_prio = normal_prio(p);
2088 /*
2089 * If we are RT tasks or we were boosted to RT priority,
2090 * keep the priority unchanged. Otherwise, update priority
2091 * to the normal priority:
2092 */
2093 if (!rt_prio(p->prio))
2094 return p->normal_prio;
2095 return p->prio;
2096 }
2097
2098 /**
2099 * task_curr - is this task currently executing on a CPU?
2100 * @p: the task in question.
2101 */
2102 inline int task_curr(const struct task_struct *p)
2103 {
2104 return cpu_curr(task_cpu(p)) == p;
2105 }
2106
2107 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2108 const struct sched_class *prev_class,
2109 int oldprio)
2110 {
2111 if (prev_class != p->sched_class) {
2112 if (prev_class->switched_from)
2113 prev_class->switched_from(rq, p);
2114 p->sched_class->switched_to(rq, p);
2115 } else if (oldprio != p->prio)
2116 p->sched_class->prio_changed(rq, p, oldprio);
2117 }
2118
2119 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2120 {
2121 const struct sched_class *class;
2122
2123 if (p->sched_class == rq->curr->sched_class) {
2124 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2125 } else {
2126 for_each_class(class) {
2127 if (class == rq->curr->sched_class)
2128 break;
2129 if (class == p->sched_class) {
2130 resched_task(rq->curr);
2131 break;
2132 }
2133 }
2134 }
2135
2136 /*
2137 * A queue event has occurred, and we're going to schedule. In
2138 * this case, we can save a useless back to back clock update.
2139 */
2140 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2141 rq->skip_clock_update = 1;
2142 }
2143
2144 #ifdef CONFIG_SMP
2145 /*
2146 * Is this task likely cache-hot:
2147 */
2148 static int
2149 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2150 {
2151 s64 delta;
2152
2153 if (p->sched_class != &fair_sched_class)
2154 return 0;
2155
2156 if (unlikely(p->policy == SCHED_IDLE))
2157 return 0;
2158
2159 /*
2160 * Buddy candidates are cache hot:
2161 */
2162 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2163 (&p->se == cfs_rq_of(&p->se)->next ||
2164 &p->se == cfs_rq_of(&p->se)->last))
2165 return 1;
2166
2167 if (sysctl_sched_migration_cost == -1)
2168 return 1;
2169 if (sysctl_sched_migration_cost == 0)
2170 return 0;
2171
2172 delta = now - p->se.exec_start;
2173
2174 return delta < (s64)sysctl_sched_migration_cost;
2175 }
2176
2177 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2178 {
2179 #ifdef CONFIG_SCHED_DEBUG
2180 /*
2181 * We should never call set_task_cpu() on a blocked task,
2182 * ttwu() will sort out the placement.
2183 */
2184 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2185 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2186
2187 #ifdef CONFIG_LOCKDEP
2188 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2189 lockdep_is_held(&task_rq(p)->lock)));
2190 #endif
2191 #endif
2192
2193 trace_sched_migrate_task(p, new_cpu);
2194
2195 if (task_cpu(p) != new_cpu) {
2196 p->se.nr_migrations++;
2197 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2198 }
2199
2200 __set_task_cpu(p, new_cpu);
2201 }
2202
2203 struct migration_arg {
2204 struct task_struct *task;
2205 int dest_cpu;
2206 };
2207
2208 static int migration_cpu_stop(void *data);
2209
2210 /*
2211 * wait_task_inactive - wait for a thread to unschedule.
2212 *
2213 * If @match_state is nonzero, it's the @p->state value just checked and
2214 * not expected to change. If it changes, i.e. @p might have woken up,
2215 * then return zero. When we succeed in waiting for @p to be off its CPU,
2216 * we return a positive number (its total switch count). If a second call
2217 * a short while later returns the same number, the caller can be sure that
2218 * @p has remained unscheduled the whole time.
2219 *
2220 * The caller must ensure that the task *will* unschedule sometime soon,
2221 * else this function might spin for a *long* time. This function can't
2222 * be called with interrupts off, or it may introduce deadlock with
2223 * smp_call_function() if an IPI is sent by the same process we are
2224 * waiting to become inactive.
2225 */
2226 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2227 {
2228 unsigned long flags;
2229 int running, on_rq;
2230 unsigned long ncsw;
2231 struct rq *rq;
2232
2233 for (;;) {
2234 /*
2235 * We do the initial early heuristics without holding
2236 * any task-queue locks at all. We'll only try to get
2237 * the runqueue lock when things look like they will
2238 * work out!
2239 */
2240 rq = task_rq(p);
2241
2242 /*
2243 * If the task is actively running on another CPU
2244 * still, just relax and busy-wait without holding
2245 * any locks.
2246 *
2247 * NOTE! Since we don't hold any locks, it's not
2248 * even sure that "rq" stays as the right runqueue!
2249 * But we don't care, since "task_running()" will
2250 * return false if the runqueue has changed and p
2251 * is actually now running somewhere else!
2252 */
2253 while (task_running(rq, p)) {
2254 if (match_state && unlikely(p->state != match_state))
2255 return 0;
2256 cpu_relax();
2257 }
2258
2259 /*
2260 * Ok, time to look more closely! We need the rq
2261 * lock now, to be *sure*. If we're wrong, we'll
2262 * just go back and repeat.
2263 */
2264 rq = task_rq_lock(p, &flags);
2265 trace_sched_wait_task(p);
2266 running = task_running(rq, p);
2267 on_rq = p->on_rq;
2268 ncsw = 0;
2269 if (!match_state || p->state == match_state)
2270 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2271 task_rq_unlock(rq, p, &flags);
2272
2273 /*
2274 * If it changed from the expected state, bail out now.
2275 */
2276 if (unlikely(!ncsw))
2277 break;
2278
2279 /*
2280 * Was it really running after all now that we
2281 * checked with the proper locks actually held?
2282 *
2283 * Oops. Go back and try again..
2284 */
2285 if (unlikely(running)) {
2286 cpu_relax();
2287 continue;
2288 }
2289
2290 /*
2291 * It's not enough that it's not actively running,
2292 * it must be off the runqueue _entirely_, and not
2293 * preempted!
2294 *
2295 * So if it was still runnable (but just not actively
2296 * running right now), it's preempted, and we should
2297 * yield - it could be a while.
2298 */
2299 if (unlikely(on_rq)) {
2300 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2301
2302 set_current_state(TASK_UNINTERRUPTIBLE);
2303 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2304 continue;
2305 }
2306
2307 /*
2308 * Ahh, all good. It wasn't running, and it wasn't
2309 * runnable, which means that it will never become
2310 * running in the future either. We're all done!
2311 */
2312 break;
2313 }
2314
2315 return ncsw;
2316 }
2317
2318 /***
2319 * kick_process - kick a running thread to enter/exit the kernel
2320 * @p: the to-be-kicked thread
2321 *
2322 * Cause a process which is running on another CPU to enter
2323 * kernel-mode, without any delay. (to get signals handled.)
2324 *
2325 * NOTE: this function doesn't have to take the runqueue lock,
2326 * because all it wants to ensure is that the remote task enters
2327 * the kernel. If the IPI races and the task has been migrated
2328 * to another CPU then no harm is done and the purpose has been
2329 * achieved as well.
2330 */
2331 void kick_process(struct task_struct *p)
2332 {
2333 int cpu;
2334
2335 preempt_disable();
2336 cpu = task_cpu(p);
2337 if ((cpu != smp_processor_id()) && task_curr(p))
2338 smp_send_reschedule(cpu);
2339 preempt_enable();
2340 }
2341 EXPORT_SYMBOL_GPL(kick_process);
2342 #endif /* CONFIG_SMP */
2343
2344 #ifdef CONFIG_SMP
2345 /*
2346 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2347 */
2348 static int select_fallback_rq(int cpu, struct task_struct *p)
2349 {
2350 int dest_cpu;
2351 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2352
2353 /* Look for allowed, online CPU in same node. */
2354 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2355 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2356 return dest_cpu;
2357
2358 /* Any allowed, online CPU? */
2359 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2360 if (dest_cpu < nr_cpu_ids)
2361 return dest_cpu;
2362
2363 /* No more Mr. Nice Guy. */
2364 dest_cpu = cpuset_cpus_allowed_fallback(p);
2365 /*
2366 * Don't tell them about moving exiting tasks or
2367 * kernel threads (both mm NULL), since they never
2368 * leave kernel.
2369 */
2370 if (p->mm && printk_ratelimit()) {
2371 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2372 task_pid_nr(p), p->comm, cpu);
2373 }
2374
2375 return dest_cpu;
2376 }
2377
2378 /*
2379 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2380 */
2381 static inline
2382 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2383 {
2384 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2385
2386 /*
2387 * In order not to call set_task_cpu() on a blocking task we need
2388 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2389 * cpu.
2390 *
2391 * Since this is common to all placement strategies, this lives here.
2392 *
2393 * [ this allows ->select_task() to simply return task_cpu(p) and
2394 * not worry about this generic constraint ]
2395 */
2396 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2397 !cpu_online(cpu)))
2398 cpu = select_fallback_rq(task_cpu(p), p);
2399
2400 return cpu;
2401 }
2402
2403 static void update_avg(u64 *avg, u64 sample)
2404 {
2405 s64 diff = sample - *avg;
2406 *avg += diff >> 3;
2407 }
2408 #endif
2409
2410 static void
2411 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2412 {
2413 #ifdef CONFIG_SCHEDSTATS
2414 struct rq *rq = this_rq();
2415
2416 #ifdef CONFIG_SMP
2417 int this_cpu = smp_processor_id();
2418
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2422 } else {
2423 struct sched_domain *sd;
2424
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 rcu_read_lock();
2427 for_each_domain(this_cpu, sd) {
2428 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2429 schedstat_inc(sd, ttwu_wake_remote);
2430 break;
2431 }
2432 }
2433 rcu_read_unlock();
2434 }
2435 #endif /* CONFIG_SMP */
2436
2437 schedstat_inc(rq, ttwu_count);
2438 schedstat_inc(p, se.statistics.nr_wakeups);
2439
2440 if (wake_flags & WF_SYNC)
2441 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2442
2443 if (cpu != task_cpu(p))
2444 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2445
2446 #endif /* CONFIG_SCHEDSTATS */
2447 }
2448
2449 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2450 {
2451 activate_task(rq, p, en_flags);
2452 p->on_rq = 1;
2453
2454 /* if a worker is waking up, notify workqueue */
2455 if (p->flags & PF_WQ_WORKER)
2456 wq_worker_waking_up(p, cpu_of(rq));
2457 }
2458
2459 /*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462 static void
2463 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2464 {
2465 trace_sched_wakeup(p, true);
2466 check_preempt_curr(rq, p, wake_flags);
2467
2468 p->state = TASK_RUNNING;
2469 #ifdef CONFIG_SMP
2470 if (p->sched_class->task_woken)
2471 p->sched_class->task_woken(rq, p);
2472
2473 if (unlikely(rq->idle_stamp)) {
2474 u64 delta = rq->clock - rq->idle_stamp;
2475 u64 max = 2*sysctl_sched_migration_cost;
2476
2477 if (delta > max)
2478 rq->avg_idle = max;
2479 else
2480 update_avg(&rq->avg_idle, delta);
2481 rq->idle_stamp = 0;
2482 }
2483 #endif
2484 }
2485
2486 static void
2487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2488 {
2489 #ifdef CONFIG_SMP
2490 if (p->sched_contributes_to_load)
2491 rq->nr_uninterruptible--;
2492 #endif
2493
2494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2495 ttwu_do_wakeup(rq, p, wake_flags);
2496 }
2497
2498 /*
2499 * Called in case the task @p isn't fully descheduled from its runqueue,
2500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2501 * since all we need to do is flip p->state to TASK_RUNNING, since
2502 * the task is still ->on_rq.
2503 */
2504 static int ttwu_remote(struct task_struct *p, int wake_flags)
2505 {
2506 struct rq *rq;
2507 int ret = 0;
2508
2509 rq = __task_rq_lock(p);
2510 if (p->on_rq) {
2511 ttwu_do_wakeup(rq, p, wake_flags);
2512 ret = 1;
2513 }
2514 __task_rq_unlock(rq);
2515
2516 return ret;
2517 }
2518
2519 #ifdef CONFIG_SMP
2520 static void sched_ttwu_pending(void)
2521 {
2522 struct rq *rq = this_rq();
2523 struct task_struct *list = xchg(&rq->wake_list, NULL);
2524
2525 if (!list)
2526 return;
2527
2528 raw_spin_lock(&rq->lock);
2529
2530 while (list) {
2531 struct task_struct *p = list;
2532 list = list->wake_entry;
2533 ttwu_do_activate(rq, p, 0);
2534 }
2535
2536 raw_spin_unlock(&rq->lock);
2537 }
2538
2539 void scheduler_ipi(void)
2540 {
2541 sched_ttwu_pending();
2542 }
2543
2544 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2545 {
2546 struct rq *rq = cpu_rq(cpu);
2547 struct task_struct *next = rq->wake_list;
2548
2549 for (;;) {
2550 struct task_struct *old = next;
2551
2552 p->wake_entry = next;
2553 next = cmpxchg(&rq->wake_list, old, p);
2554 if (next == old)
2555 break;
2556 }
2557
2558 if (!next)
2559 smp_send_reschedule(cpu);
2560 }
2561 #endif
2562
2563 static void ttwu_queue(struct task_struct *p, int cpu)
2564 {
2565 struct rq *rq = cpu_rq(cpu);
2566
2567 #if defined(CONFIG_SMP)
2568 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2569 ttwu_queue_remote(p, cpu);
2570 return;
2571 }
2572 #endif
2573
2574 raw_spin_lock(&rq->lock);
2575 ttwu_do_activate(rq, p, 0);
2576 raw_spin_unlock(&rq->lock);
2577 }
2578
2579 /**
2580 * try_to_wake_up - wake up a thread
2581 * @p: the thread to be awakened
2582 * @state: the mask of task states that can be woken
2583 * @wake_flags: wake modifier flags (WF_*)
2584 *
2585 * Put it on the run-queue if it's not already there. The "current"
2586 * thread is always on the run-queue (except when the actual
2587 * re-schedule is in progress), and as such you're allowed to do
2588 * the simpler "current->state = TASK_RUNNING" to mark yourself
2589 * runnable without the overhead of this.
2590 *
2591 * Returns %true if @p was woken up, %false if it was already running
2592 * or @state didn't match @p's state.
2593 */
2594 static int
2595 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2596 {
2597 unsigned long flags;
2598 int cpu, success = 0;
2599
2600 smp_wmb();
2601 raw_spin_lock_irqsave(&p->pi_lock, flags);
2602 if (!(p->state & state))
2603 goto out;
2604
2605 success = 1; /* we're going to change ->state */
2606 cpu = task_cpu(p);
2607
2608 if (p->on_rq && ttwu_remote(p, wake_flags))
2609 goto stat;
2610
2611 #ifdef CONFIG_SMP
2612 /*
2613 * If the owning (remote) cpu is still in the middle of schedule() with
2614 * this task as prev, wait until its done referencing the task.
2615 */
2616 while (p->on_cpu) {
2617 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2618 /*
2619 * If called from interrupt context we could have landed in the
2620 * middle of schedule(), in this case we should take care not
2621 * to spin on ->on_cpu if p is current, since that would
2622 * deadlock.
2623 */
2624 if (p == current) {
2625 ttwu_queue(p, cpu);
2626 goto stat;
2627 }
2628 #endif
2629 cpu_relax();
2630 }
2631 /*
2632 * Pairs with the smp_wmb() in finish_lock_switch().
2633 */
2634 smp_rmb();
2635
2636 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2637 p->state = TASK_WAKING;
2638
2639 if (p->sched_class->task_waking)
2640 p->sched_class->task_waking(p);
2641
2642 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2643 if (task_cpu(p) != cpu)
2644 set_task_cpu(p, cpu);
2645 #endif /* CONFIG_SMP */
2646
2647 ttwu_queue(p, cpu);
2648 stat:
2649 ttwu_stat(p, cpu, wake_flags);
2650 out:
2651 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2652
2653 return success;
2654 }
2655
2656 /**
2657 * try_to_wake_up_local - try to wake up a local task with rq lock held
2658 * @p: the thread to be awakened
2659 *
2660 * Put @p on the run-queue if it's not already there. The caller must
2661 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2662 * the current task.
2663 */
2664 static void try_to_wake_up_local(struct task_struct *p)
2665 {
2666 struct rq *rq = task_rq(p);
2667
2668 BUG_ON(rq != this_rq());
2669 BUG_ON(p == current);
2670 lockdep_assert_held(&rq->lock);
2671
2672 if (!raw_spin_trylock(&p->pi_lock)) {
2673 raw_spin_unlock(&rq->lock);
2674 raw_spin_lock(&p->pi_lock);
2675 raw_spin_lock(&rq->lock);
2676 }
2677
2678 if (!(p->state & TASK_NORMAL))
2679 goto out;
2680
2681 if (!p->on_rq)
2682 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2683
2684 ttwu_do_wakeup(rq, p, 0);
2685 ttwu_stat(p, smp_processor_id(), 0);
2686 out:
2687 raw_spin_unlock(&p->pi_lock);
2688 }
2689
2690 /**
2691 * wake_up_process - Wake up a specific process
2692 * @p: The process to be woken up.
2693 *
2694 * Attempt to wake up the nominated process and move it to the set of runnable
2695 * processes. Returns 1 if the process was woken up, 0 if it was already
2696 * running.
2697 *
2698 * It may be assumed that this function implies a write memory barrier before
2699 * changing the task state if and only if any tasks are woken up.
2700 */
2701 int wake_up_process(struct task_struct *p)
2702 {
2703 return try_to_wake_up(p, TASK_ALL, 0);
2704 }
2705 EXPORT_SYMBOL(wake_up_process);
2706
2707 int wake_up_state(struct task_struct *p, unsigned int state)
2708 {
2709 return try_to_wake_up(p, state, 0);
2710 }
2711
2712 /*
2713 * Perform scheduler related setup for a newly forked process p.
2714 * p is forked by current.
2715 *
2716 * __sched_fork() is basic setup used by init_idle() too:
2717 */
2718 static void __sched_fork(struct task_struct *p)
2719 {
2720 p->on_rq = 0;
2721
2722 p->se.on_rq = 0;
2723 p->se.exec_start = 0;
2724 p->se.sum_exec_runtime = 0;
2725 p->se.prev_sum_exec_runtime = 0;
2726 p->se.nr_migrations = 0;
2727 p->se.vruntime = 0;
2728 INIT_LIST_HEAD(&p->se.group_node);
2729
2730 #ifdef CONFIG_SCHEDSTATS
2731 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2732 #endif
2733
2734 INIT_LIST_HEAD(&p->rt.run_list);
2735
2736 #ifdef CONFIG_PREEMPT_NOTIFIERS
2737 INIT_HLIST_HEAD(&p->preempt_notifiers);
2738 #endif
2739 }
2740
2741 /*
2742 * fork()/clone()-time setup:
2743 */
2744 void sched_fork(struct task_struct *p)
2745 {
2746 unsigned long flags;
2747 int cpu = get_cpu();
2748
2749 __sched_fork(p);
2750 /*
2751 * We mark the process as running here. This guarantees that
2752 * nobody will actually run it, and a signal or other external
2753 * event cannot wake it up and insert it on the runqueue either.
2754 */
2755 p->state = TASK_RUNNING;
2756
2757 /*
2758 * Revert to default priority/policy on fork if requested.
2759 */
2760 if (unlikely(p->sched_reset_on_fork)) {
2761 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2762 p->policy = SCHED_NORMAL;
2763 p->normal_prio = p->static_prio;
2764 }
2765
2766 if (PRIO_TO_NICE(p->static_prio) < 0) {
2767 p->static_prio = NICE_TO_PRIO(0);
2768 p->normal_prio = p->static_prio;
2769 set_load_weight(p);
2770 }
2771
2772 /*
2773 * We don't need the reset flag anymore after the fork. It has
2774 * fulfilled its duty:
2775 */
2776 p->sched_reset_on_fork = 0;
2777 }
2778
2779 /*
2780 * Make sure we do not leak PI boosting priority to the child.
2781 */
2782 p->prio = current->normal_prio;
2783
2784 if (!rt_prio(p->prio))
2785 p->sched_class = &fair_sched_class;
2786
2787 if (p->sched_class->task_fork)
2788 p->sched_class->task_fork(p);
2789
2790 /*
2791 * The child is not yet in the pid-hash so no cgroup attach races,
2792 * and the cgroup is pinned to this child due to cgroup_fork()
2793 * is ran before sched_fork().
2794 *
2795 * Silence PROVE_RCU.
2796 */
2797 raw_spin_lock_irqsave(&p->pi_lock, flags);
2798 set_task_cpu(p, cpu);
2799 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2800
2801 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2802 if (likely(sched_info_on()))
2803 memset(&p->sched_info, 0, sizeof(p->sched_info));
2804 #endif
2805 #if defined(CONFIG_SMP)
2806 p->on_cpu = 0;
2807 #endif
2808 #ifdef CONFIG_PREEMPT
2809 /* Want to start with kernel preemption disabled. */
2810 task_thread_info(p)->preempt_count = 1;
2811 #endif
2812 #ifdef CONFIG_SMP
2813 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2814 #endif
2815
2816 put_cpu();
2817 }
2818
2819 /*
2820 * wake_up_new_task - wake up a newly created task for the first time.
2821 *
2822 * This function will do some initial scheduler statistics housekeeping
2823 * that must be done for every newly created context, then puts the task
2824 * on the runqueue and wakes it.
2825 */
2826 void wake_up_new_task(struct task_struct *p)
2827 {
2828 unsigned long flags;
2829 struct rq *rq;
2830
2831 raw_spin_lock_irqsave(&p->pi_lock, flags);
2832 #ifdef CONFIG_SMP
2833 /*
2834 * Fork balancing, do it here and not earlier because:
2835 * - cpus_allowed can change in the fork path
2836 * - any previously selected cpu might disappear through hotplug
2837 */
2838 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2839 #endif
2840
2841 rq = __task_rq_lock(p);
2842 activate_task(rq, p, 0);
2843 p->on_rq = 1;
2844 trace_sched_wakeup_new(p, true);
2845 check_preempt_curr(rq, p, WF_FORK);
2846 #ifdef CONFIG_SMP
2847 if (p->sched_class->task_woken)
2848 p->sched_class->task_woken(rq, p);
2849 #endif
2850 task_rq_unlock(rq, p, &flags);
2851 }
2852
2853 #ifdef CONFIG_PREEMPT_NOTIFIERS
2854
2855 /**
2856 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2857 * @notifier: notifier struct to register
2858 */
2859 void preempt_notifier_register(struct preempt_notifier *notifier)
2860 {
2861 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2862 }
2863 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2864
2865 /**
2866 * preempt_notifier_unregister - no longer interested in preemption notifications
2867 * @notifier: notifier struct to unregister
2868 *
2869 * This is safe to call from within a preemption notifier.
2870 */
2871 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2872 {
2873 hlist_del(&notifier->link);
2874 }
2875 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2876
2877 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2878 {
2879 struct preempt_notifier *notifier;
2880 struct hlist_node *node;
2881
2882 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2883 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2884 }
2885
2886 static void
2887 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2888 struct task_struct *next)
2889 {
2890 struct preempt_notifier *notifier;
2891 struct hlist_node *node;
2892
2893 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2894 notifier->ops->sched_out(notifier, next);
2895 }
2896
2897 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2898
2899 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2900 {
2901 }
2902
2903 static void
2904 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2905 struct task_struct *next)
2906 {
2907 }
2908
2909 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2910
2911 /**
2912 * prepare_task_switch - prepare to switch tasks
2913 * @rq: the runqueue preparing to switch
2914 * @prev: the current task that is being switched out
2915 * @next: the task we are going to switch to.
2916 *
2917 * This is called with the rq lock held and interrupts off. It must
2918 * be paired with a subsequent finish_task_switch after the context
2919 * switch.
2920 *
2921 * prepare_task_switch sets up locking and calls architecture specific
2922 * hooks.
2923 */
2924 static inline void
2925 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2926 struct task_struct *next)
2927 {
2928 sched_info_switch(prev, next);
2929 perf_event_task_sched_out(prev, next);
2930 fire_sched_out_preempt_notifiers(prev, next);
2931 prepare_lock_switch(rq, next);
2932 prepare_arch_switch(next);
2933 trace_sched_switch(prev, next);
2934 }
2935
2936 /**
2937 * finish_task_switch - clean up after a task-switch
2938 * @rq: runqueue associated with task-switch
2939 * @prev: the thread we just switched away from.
2940 *
2941 * finish_task_switch must be called after the context switch, paired
2942 * with a prepare_task_switch call before the context switch.
2943 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2944 * and do any other architecture-specific cleanup actions.
2945 *
2946 * Note that we may have delayed dropping an mm in context_switch(). If
2947 * so, we finish that here outside of the runqueue lock. (Doing it
2948 * with the lock held can cause deadlocks; see schedule() for
2949 * details.)
2950 */
2951 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2952 __releases(rq->lock)
2953 {
2954 struct mm_struct *mm = rq->prev_mm;
2955 long prev_state;
2956
2957 rq->prev_mm = NULL;
2958
2959 /*
2960 * A task struct has one reference for the use as "current".
2961 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2962 * schedule one last time. The schedule call will never return, and
2963 * the scheduled task must drop that reference.
2964 * The test for TASK_DEAD must occur while the runqueue locks are
2965 * still held, otherwise prev could be scheduled on another cpu, die
2966 * there before we look at prev->state, and then the reference would
2967 * be dropped twice.
2968 * Manfred Spraul <manfred@colorfullife.com>
2969 */
2970 prev_state = prev->state;
2971 finish_arch_switch(prev);
2972 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2973 local_irq_disable();
2974 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2975 perf_event_task_sched_in(current);
2976 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2977 local_irq_enable();
2978 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2979 finish_lock_switch(rq, prev);
2980
2981 fire_sched_in_preempt_notifiers(current);
2982 if (mm)
2983 mmdrop(mm);
2984 if (unlikely(prev_state == TASK_DEAD)) {
2985 /*
2986 * Remove function-return probe instances associated with this
2987 * task and put them back on the free list.
2988 */
2989 kprobe_flush_task(prev);
2990 put_task_struct(prev);
2991 }
2992 }
2993
2994 #ifdef CONFIG_SMP
2995
2996 /* assumes rq->lock is held */
2997 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2998 {
2999 if (prev->sched_class->pre_schedule)
3000 prev->sched_class->pre_schedule(rq, prev);
3001 }
3002
3003 /* rq->lock is NOT held, but preemption is disabled */
3004 static inline void post_schedule(struct rq *rq)
3005 {
3006 if (rq->post_schedule) {
3007 unsigned long flags;
3008
3009 raw_spin_lock_irqsave(&rq->lock, flags);
3010 if (rq->curr->sched_class->post_schedule)
3011 rq->curr->sched_class->post_schedule(rq);
3012 raw_spin_unlock_irqrestore(&rq->lock, flags);
3013
3014 rq->post_schedule = 0;
3015 }
3016 }
3017
3018 #else
3019
3020 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3021 {
3022 }
3023
3024 static inline void post_schedule(struct rq *rq)
3025 {
3026 }
3027
3028 #endif
3029
3030 /**
3031 * schedule_tail - first thing a freshly forked thread must call.
3032 * @prev: the thread we just switched away from.
3033 */
3034 asmlinkage void schedule_tail(struct task_struct *prev)
3035 __releases(rq->lock)
3036 {
3037 struct rq *rq = this_rq();
3038
3039 finish_task_switch(rq, prev);
3040
3041 /*
3042 * FIXME: do we need to worry about rq being invalidated by the
3043 * task_switch?
3044 */
3045 post_schedule(rq);
3046
3047 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3048 /* In this case, finish_task_switch does not reenable preemption */
3049 preempt_enable();
3050 #endif
3051 if (current->set_child_tid)
3052 put_user(task_pid_vnr(current), current->set_child_tid);
3053 }
3054
3055 /*
3056 * context_switch - switch to the new MM and the new
3057 * thread's register state.
3058 */
3059 static inline void
3060 context_switch(struct rq *rq, struct task_struct *prev,
3061 struct task_struct *next)
3062 {
3063 struct mm_struct *mm, *oldmm;
3064
3065 prepare_task_switch(rq, prev, next);
3066
3067 mm = next->mm;
3068 oldmm = prev->active_mm;
3069 /*
3070 * For paravirt, this is coupled with an exit in switch_to to
3071 * combine the page table reload and the switch backend into
3072 * one hypercall.
3073 */
3074 arch_start_context_switch(prev);
3075
3076 if (!mm) {
3077 next->active_mm = oldmm;
3078 atomic_inc(&oldmm->mm_count);
3079 enter_lazy_tlb(oldmm, next);
3080 } else
3081 switch_mm(oldmm, mm, next);
3082
3083 if (!prev->mm) {
3084 prev->active_mm = NULL;
3085 rq->prev_mm = oldmm;
3086 }
3087 /*
3088 * Since the runqueue lock will be released by the next
3089 * task (which is an invalid locking op but in the case
3090 * of the scheduler it's an obvious special-case), so we
3091 * do an early lockdep release here:
3092 */
3093 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3094 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3095 #endif
3096
3097 /* Here we just switch the register state and the stack. */
3098 switch_to(prev, next, prev);
3099
3100 barrier();
3101 /*
3102 * this_rq must be evaluated again because prev may have moved
3103 * CPUs since it called schedule(), thus the 'rq' on its stack
3104 * frame will be invalid.
3105 */
3106 finish_task_switch(this_rq(), prev);
3107 }
3108
3109 /*
3110 * nr_running, nr_uninterruptible and nr_context_switches:
3111 *
3112 * externally visible scheduler statistics: current number of runnable
3113 * threads, current number of uninterruptible-sleeping threads, total
3114 * number of context switches performed since bootup.
3115 */
3116 unsigned long nr_running(void)
3117 {
3118 unsigned long i, sum = 0;
3119
3120 for_each_online_cpu(i)
3121 sum += cpu_rq(i)->nr_running;
3122
3123 return sum;
3124 }
3125
3126 unsigned long nr_uninterruptible(void)
3127 {
3128 unsigned long i, sum = 0;
3129
3130 for_each_possible_cpu(i)
3131 sum += cpu_rq(i)->nr_uninterruptible;
3132
3133 /*
3134 * Since we read the counters lockless, it might be slightly
3135 * inaccurate. Do not allow it to go below zero though:
3136 */
3137 if (unlikely((long)sum < 0))
3138 sum = 0;
3139
3140 return sum;
3141 }
3142
3143 unsigned long long nr_context_switches(void)
3144 {
3145 int i;
3146 unsigned long long sum = 0;
3147
3148 for_each_possible_cpu(i)
3149 sum += cpu_rq(i)->nr_switches;
3150
3151 return sum;
3152 }
3153
3154 unsigned long nr_iowait(void)
3155 {
3156 unsigned long i, sum = 0;
3157
3158 for_each_possible_cpu(i)
3159 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3160
3161 return sum;
3162 }
3163
3164 unsigned long nr_iowait_cpu(int cpu)
3165 {
3166 struct rq *this = cpu_rq(cpu);
3167 return atomic_read(&this->nr_iowait);
3168 }
3169
3170 unsigned long this_cpu_load(void)
3171 {
3172 struct rq *this = this_rq();
3173 return this->cpu_load[0];
3174 }
3175
3176
3177 /* Variables and functions for calc_load */
3178 static atomic_long_t calc_load_tasks;
3179 static unsigned long calc_load_update;
3180 unsigned long avenrun[3];
3181 EXPORT_SYMBOL(avenrun);
3182
3183 static long calc_load_fold_active(struct rq *this_rq)
3184 {
3185 long nr_active, delta = 0;
3186
3187 nr_active = this_rq->nr_running;
3188 nr_active += (long) this_rq->nr_uninterruptible;
3189
3190 if (nr_active != this_rq->calc_load_active) {
3191 delta = nr_active - this_rq->calc_load_active;
3192 this_rq->calc_load_active = nr_active;
3193 }
3194
3195 return delta;
3196 }
3197
3198 static unsigned long
3199 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3200 {
3201 load *= exp;
3202 load += active * (FIXED_1 - exp);
3203 load += 1UL << (FSHIFT - 1);
3204 return load >> FSHIFT;
3205 }
3206
3207 #ifdef CONFIG_NO_HZ
3208 /*
3209 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3210 *
3211 * When making the ILB scale, we should try to pull this in as well.
3212 */
3213 static atomic_long_t calc_load_tasks_idle;
3214
3215 static void calc_load_account_idle(struct rq *this_rq)
3216 {
3217 long delta;
3218
3219 delta = calc_load_fold_active(this_rq);
3220 if (delta)
3221 atomic_long_add(delta, &calc_load_tasks_idle);
3222 }
3223
3224 static long calc_load_fold_idle(void)
3225 {
3226 long delta = 0;
3227
3228 /*
3229 * Its got a race, we don't care...
3230 */
3231 if (atomic_long_read(&calc_load_tasks_idle))
3232 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3233
3234 return delta;
3235 }
3236
3237 /**
3238 * fixed_power_int - compute: x^n, in O(log n) time
3239 *
3240 * @x: base of the power
3241 * @frac_bits: fractional bits of @x
3242 * @n: power to raise @x to.
3243 *
3244 * By exploiting the relation between the definition of the natural power
3245 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3246 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3247 * (where: n_i \elem {0, 1}, the binary vector representing n),
3248 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3249 * of course trivially computable in O(log_2 n), the length of our binary
3250 * vector.
3251 */
3252 static unsigned long
3253 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3254 {
3255 unsigned long result = 1UL << frac_bits;
3256
3257 if (n) for (;;) {
3258 if (n & 1) {
3259 result *= x;
3260 result += 1UL << (frac_bits - 1);
3261 result >>= frac_bits;
3262 }
3263 n >>= 1;
3264 if (!n)
3265 break;
3266 x *= x;
3267 x += 1UL << (frac_bits - 1);
3268 x >>= frac_bits;
3269 }
3270
3271 return result;
3272 }
3273
3274 /*
3275 * a1 = a0 * e + a * (1 - e)
3276 *
3277 * a2 = a1 * e + a * (1 - e)
3278 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3279 * = a0 * e^2 + a * (1 - e) * (1 + e)
3280 *
3281 * a3 = a2 * e + a * (1 - e)
3282 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3283 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3284 *
3285 * ...
3286 *
3287 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3288 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3289 * = a0 * e^n + a * (1 - e^n)
3290 *
3291 * [1] application of the geometric series:
3292 *
3293 * n 1 - x^(n+1)
3294 * S_n := \Sum x^i = -------------
3295 * i=0 1 - x
3296 */
3297 static unsigned long
3298 calc_load_n(unsigned long load, unsigned long exp,
3299 unsigned long active, unsigned int n)
3300 {
3301
3302 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3303 }
3304
3305 /*
3306 * NO_HZ can leave us missing all per-cpu ticks calling
3307 * calc_load_account_active(), but since an idle CPU folds its delta into
3308 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3309 * in the pending idle delta if our idle period crossed a load cycle boundary.
3310 *
3311 * Once we've updated the global active value, we need to apply the exponential
3312 * weights adjusted to the number of cycles missed.
3313 */
3314 static void calc_global_nohz(unsigned long ticks)
3315 {
3316 long delta, active, n;
3317
3318 if (time_before(jiffies, calc_load_update))
3319 return;
3320
3321 /*
3322 * If we crossed a calc_load_update boundary, make sure to fold
3323 * any pending idle changes, the respective CPUs might have
3324 * missed the tick driven calc_load_account_active() update
3325 * due to NO_HZ.
3326 */
3327 delta = calc_load_fold_idle();
3328 if (delta)
3329 atomic_long_add(delta, &calc_load_tasks);
3330
3331 /*
3332 * If we were idle for multiple load cycles, apply them.
3333 */
3334 if (ticks >= LOAD_FREQ) {
3335 n = ticks / LOAD_FREQ;
3336
3337 active = atomic_long_read(&calc_load_tasks);
3338 active = active > 0 ? active * FIXED_1 : 0;
3339
3340 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3341 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3342 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3343
3344 calc_load_update += n * LOAD_FREQ;
3345 }
3346
3347 /*
3348 * Its possible the remainder of the above division also crosses
3349 * a LOAD_FREQ period, the regular check in calc_global_load()
3350 * which comes after this will take care of that.
3351 *
3352 * Consider us being 11 ticks before a cycle completion, and us
3353 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3354 * age us 4 cycles, and the test in calc_global_load() will
3355 * pick up the final one.
3356 */
3357 }
3358 #else
3359 static void calc_load_account_idle(struct rq *this_rq)
3360 {
3361 }
3362
3363 static inline long calc_load_fold_idle(void)
3364 {
3365 return 0;
3366 }
3367
3368 static void calc_global_nohz(unsigned long ticks)
3369 {
3370 }
3371 #endif
3372
3373 /**
3374 * get_avenrun - get the load average array
3375 * @loads: pointer to dest load array
3376 * @offset: offset to add
3377 * @shift: shift count to shift the result left
3378 *
3379 * These values are estimates at best, so no need for locking.
3380 */
3381 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3382 {
3383 loads[0] = (avenrun[0] + offset) << shift;
3384 loads[1] = (avenrun[1] + offset) << shift;
3385 loads[2] = (avenrun[2] + offset) << shift;
3386 }
3387
3388 /*
3389 * calc_load - update the avenrun load estimates 10 ticks after the
3390 * CPUs have updated calc_load_tasks.
3391 */
3392 void calc_global_load(unsigned long ticks)
3393 {
3394 long active;
3395
3396 calc_global_nohz(ticks);
3397
3398 if (time_before(jiffies, calc_load_update + 10))
3399 return;
3400
3401 active = atomic_long_read(&calc_load_tasks);
3402 active = active > 0 ? active * FIXED_1 : 0;
3403
3404 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3405 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3406 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3407
3408 calc_load_update += LOAD_FREQ;
3409 }
3410
3411 /*
3412 * Called from update_cpu_load() to periodically update this CPU's
3413 * active count.
3414 */
3415 static void calc_load_account_active(struct rq *this_rq)
3416 {
3417 long delta;
3418
3419 if (time_before(jiffies, this_rq->calc_load_update))
3420 return;
3421
3422 delta = calc_load_fold_active(this_rq);
3423 delta += calc_load_fold_idle();
3424 if (delta)
3425 atomic_long_add(delta, &calc_load_tasks);
3426
3427 this_rq->calc_load_update += LOAD_FREQ;
3428 }
3429
3430 /*
3431 * The exact cpuload at various idx values, calculated at every tick would be
3432 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3433 *
3434 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3435 * on nth tick when cpu may be busy, then we have:
3436 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3437 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3438 *
3439 * decay_load_missed() below does efficient calculation of
3440 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3441 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3442 *
3443 * The calculation is approximated on a 128 point scale.
3444 * degrade_zero_ticks is the number of ticks after which load at any
3445 * particular idx is approximated to be zero.
3446 * degrade_factor is a precomputed table, a row for each load idx.
3447 * Each column corresponds to degradation factor for a power of two ticks,
3448 * based on 128 point scale.
3449 * Example:
3450 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3451 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3452 *
3453 * With this power of 2 load factors, we can degrade the load n times
3454 * by looking at 1 bits in n and doing as many mult/shift instead of
3455 * n mult/shifts needed by the exact degradation.
3456 */
3457 #define DEGRADE_SHIFT 7
3458 static const unsigned char
3459 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3460 static const unsigned char
3461 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3462 {0, 0, 0, 0, 0, 0, 0, 0},
3463 {64, 32, 8, 0, 0, 0, 0, 0},
3464 {96, 72, 40, 12, 1, 0, 0},
3465 {112, 98, 75, 43, 15, 1, 0},
3466 {120, 112, 98, 76, 45, 16, 2} };
3467
3468 /*
3469 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3470 * would be when CPU is idle and so we just decay the old load without
3471 * adding any new load.
3472 */
3473 static unsigned long
3474 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3475 {
3476 int j = 0;
3477
3478 if (!missed_updates)
3479 return load;
3480
3481 if (missed_updates >= degrade_zero_ticks[idx])
3482 return 0;
3483
3484 if (idx == 1)
3485 return load >> missed_updates;
3486
3487 while (missed_updates) {
3488 if (missed_updates % 2)
3489 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3490
3491 missed_updates >>= 1;
3492 j++;
3493 }
3494 return load;
3495 }
3496
3497 /*
3498 * Update rq->cpu_load[] statistics. This function is usually called every
3499 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3500 * every tick. We fix it up based on jiffies.
3501 */
3502 static void update_cpu_load(struct rq *this_rq)
3503 {
3504 unsigned long this_load = this_rq->load.weight;
3505 unsigned long curr_jiffies = jiffies;
3506 unsigned long pending_updates;
3507 int i, scale;
3508
3509 this_rq->nr_load_updates++;
3510
3511 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3512 if (curr_jiffies == this_rq->last_load_update_tick)
3513 return;
3514
3515 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3516 this_rq->last_load_update_tick = curr_jiffies;
3517
3518 /* Update our load: */
3519 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3520 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3521 unsigned long old_load, new_load;
3522
3523 /* scale is effectively 1 << i now, and >> i divides by scale */
3524
3525 old_load = this_rq->cpu_load[i];
3526 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3527 new_load = this_load;
3528 /*
3529 * Round up the averaging division if load is increasing. This
3530 * prevents us from getting stuck on 9 if the load is 10, for
3531 * example.
3532 */
3533 if (new_load > old_load)
3534 new_load += scale - 1;
3535
3536 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3537 }
3538
3539 sched_avg_update(this_rq);
3540 }
3541
3542 static void update_cpu_load_active(struct rq *this_rq)
3543 {
3544 update_cpu_load(this_rq);
3545
3546 calc_load_account_active(this_rq);
3547 }
3548
3549 #ifdef CONFIG_SMP
3550
3551 /*
3552 * sched_exec - execve() is a valuable balancing opportunity, because at
3553 * this point the task has the smallest effective memory and cache footprint.
3554 */
3555 void sched_exec(void)
3556 {
3557 struct task_struct *p = current;
3558 unsigned long flags;
3559 int dest_cpu;
3560
3561 raw_spin_lock_irqsave(&p->pi_lock, flags);
3562 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3563 if (dest_cpu == smp_processor_id())
3564 goto unlock;
3565
3566 if (likely(cpu_active(dest_cpu))) {
3567 struct migration_arg arg = { p, dest_cpu };
3568
3569 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3570 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3571 return;
3572 }
3573 unlock:
3574 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3575 }
3576
3577 #endif
3578
3579 DEFINE_PER_CPU(struct kernel_stat, kstat);
3580
3581 EXPORT_PER_CPU_SYMBOL(kstat);
3582
3583 /*
3584 * Return any ns on the sched_clock that have not yet been accounted in
3585 * @p in case that task is currently running.
3586 *
3587 * Called with task_rq_lock() held on @rq.
3588 */
3589 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3590 {
3591 u64 ns = 0;
3592
3593 if (task_current(rq, p)) {
3594 update_rq_clock(rq);
3595 ns = rq->clock_task - p->se.exec_start;
3596 if ((s64)ns < 0)
3597 ns = 0;
3598 }
3599
3600 return ns;
3601 }
3602
3603 unsigned long long task_delta_exec(struct task_struct *p)
3604 {
3605 unsigned long flags;
3606 struct rq *rq;
3607 u64 ns = 0;
3608
3609 rq = task_rq_lock(p, &flags);
3610 ns = do_task_delta_exec(p, rq);
3611 task_rq_unlock(rq, p, &flags);
3612
3613 return ns;
3614 }
3615
3616 /*
3617 * Return accounted runtime for the task.
3618 * In case the task is currently running, return the runtime plus current's
3619 * pending runtime that have not been accounted yet.
3620 */
3621 unsigned long long task_sched_runtime(struct task_struct *p)
3622 {
3623 unsigned long flags;
3624 struct rq *rq;
3625 u64 ns = 0;
3626
3627 rq = task_rq_lock(p, &flags);
3628 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3629 task_rq_unlock(rq, p, &flags);
3630
3631 return ns;
3632 }
3633
3634 /*
3635 * Return sum_exec_runtime for the thread group.
3636 * In case the task is currently running, return the sum plus current's
3637 * pending runtime that have not been accounted yet.
3638 *
3639 * Note that the thread group might have other running tasks as well,
3640 * so the return value not includes other pending runtime that other
3641 * running tasks might have.
3642 */
3643 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3644 {
3645 struct task_cputime totals;
3646 unsigned long flags;
3647 struct rq *rq;
3648 u64 ns;
3649
3650 rq = task_rq_lock(p, &flags);
3651 thread_group_cputime(p, &totals);
3652 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3653 task_rq_unlock(rq, p, &flags);
3654
3655 return ns;
3656 }
3657
3658 /*
3659 * Account user cpu time to a process.
3660 * @p: the process that the cpu time gets accounted to
3661 * @cputime: the cpu time spent in user space since the last update
3662 * @cputime_scaled: cputime scaled by cpu frequency
3663 */
3664 void account_user_time(struct task_struct *p, cputime_t cputime,
3665 cputime_t cputime_scaled)
3666 {
3667 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3668 cputime64_t tmp;
3669
3670 /* Add user time to process. */
3671 p->utime = cputime_add(p->utime, cputime);
3672 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3673 account_group_user_time(p, cputime);
3674
3675 /* Add user time to cpustat. */
3676 tmp = cputime_to_cputime64(cputime);
3677 if (TASK_NICE(p) > 0)
3678 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3679 else
3680 cpustat->user = cputime64_add(cpustat->user, tmp);
3681
3682 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3683 /* Account for user time used */
3684 acct_update_integrals(p);
3685 }
3686
3687 /*
3688 * Account guest cpu time to a process.
3689 * @p: the process that the cpu time gets accounted to
3690 * @cputime: the cpu time spent in virtual machine since the last update
3691 * @cputime_scaled: cputime scaled by cpu frequency
3692 */
3693 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3694 cputime_t cputime_scaled)
3695 {
3696 cputime64_t tmp;
3697 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3698
3699 tmp = cputime_to_cputime64(cputime);
3700
3701 /* Add guest time to process. */
3702 p->utime = cputime_add(p->utime, cputime);
3703 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3704 account_group_user_time(p, cputime);
3705 p->gtime = cputime_add(p->gtime, cputime);
3706
3707 /* Add guest time to cpustat. */
3708 if (TASK_NICE(p) > 0) {
3709 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3710 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3711 } else {
3712 cpustat->user = cputime64_add(cpustat->user, tmp);
3713 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3714 }
3715 }
3716
3717 /*
3718 * Account system cpu time to a process and desired cpustat field
3719 * @p: the process that the cpu time gets accounted to
3720 * @cputime: the cpu time spent in kernel space since the last update
3721 * @cputime_scaled: cputime scaled by cpu frequency
3722 * @target_cputime64: pointer to cpustat field that has to be updated
3723 */
3724 static inline
3725 void __account_system_time(struct task_struct *p, cputime_t cputime,
3726 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3727 {
3728 cputime64_t tmp = cputime_to_cputime64(cputime);
3729
3730 /* Add system time to process. */
3731 p->stime = cputime_add(p->stime, cputime);
3732 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3733 account_group_system_time(p, cputime);
3734
3735 /* Add system time to cpustat. */
3736 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3737 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3738
3739 /* Account for system time used */
3740 acct_update_integrals(p);
3741 }
3742
3743 /*
3744 * Account system cpu time to a process.
3745 * @p: the process that the cpu time gets accounted to
3746 * @hardirq_offset: the offset to subtract from hardirq_count()
3747 * @cputime: the cpu time spent in kernel space since the last update
3748 * @cputime_scaled: cputime scaled by cpu frequency
3749 */
3750 void account_system_time(struct task_struct *p, int hardirq_offset,
3751 cputime_t cputime, cputime_t cputime_scaled)
3752 {
3753 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3754 cputime64_t *target_cputime64;
3755
3756 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3757 account_guest_time(p, cputime, cputime_scaled);
3758 return;
3759 }
3760
3761 if (hardirq_count() - hardirq_offset)
3762 target_cputime64 = &cpustat->irq;
3763 else if (in_serving_softirq())
3764 target_cputime64 = &cpustat->softirq;
3765 else
3766 target_cputime64 = &cpustat->system;
3767
3768 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3769 }
3770
3771 /*
3772 * Account for involuntary wait time.
3773 * @cputime: the cpu time spent in involuntary wait
3774 */
3775 void account_steal_time(cputime_t cputime)
3776 {
3777 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3778 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3779
3780 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3781 }
3782
3783 /*
3784 * Account for idle time.
3785 * @cputime: the cpu time spent in idle wait
3786 */
3787 void account_idle_time(cputime_t cputime)
3788 {
3789 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3790 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3791 struct rq *rq = this_rq();
3792
3793 if (atomic_read(&rq->nr_iowait) > 0)
3794 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3795 else
3796 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3797 }
3798
3799 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3800
3801 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3802 /*
3803 * Account a tick to a process and cpustat
3804 * @p: the process that the cpu time gets accounted to
3805 * @user_tick: is the tick from userspace
3806 * @rq: the pointer to rq
3807 *
3808 * Tick demultiplexing follows the order
3809 * - pending hardirq update
3810 * - pending softirq update
3811 * - user_time
3812 * - idle_time
3813 * - system time
3814 * - check for guest_time
3815 * - else account as system_time
3816 *
3817 * Check for hardirq is done both for system and user time as there is
3818 * no timer going off while we are on hardirq and hence we may never get an
3819 * opportunity to update it solely in system time.
3820 * p->stime and friends are only updated on system time and not on irq
3821 * softirq as those do not count in task exec_runtime any more.
3822 */
3823 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3824 struct rq *rq)
3825 {
3826 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3827 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3828 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3829
3830 if (irqtime_account_hi_update()) {
3831 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3832 } else if (irqtime_account_si_update()) {
3833 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3834 } else if (this_cpu_ksoftirqd() == p) {
3835 /*
3836 * ksoftirqd time do not get accounted in cpu_softirq_time.
3837 * So, we have to handle it separately here.
3838 * Also, p->stime needs to be updated for ksoftirqd.
3839 */
3840 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3841 &cpustat->softirq);
3842 } else if (user_tick) {
3843 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3844 } else if (p == rq->idle) {
3845 account_idle_time(cputime_one_jiffy);
3846 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3847 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3848 } else {
3849 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3850 &cpustat->system);
3851 }
3852 }
3853
3854 static void irqtime_account_idle_ticks(int ticks)
3855 {
3856 int i;
3857 struct rq *rq = this_rq();
3858
3859 for (i = 0; i < ticks; i++)
3860 irqtime_account_process_tick(current, 0, rq);
3861 }
3862 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3863 static void irqtime_account_idle_ticks(int ticks) {}
3864 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3865 struct rq *rq) {}
3866 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3867
3868 /*
3869 * Account a single tick of cpu time.
3870 * @p: the process that the cpu time gets accounted to
3871 * @user_tick: indicates if the tick is a user or a system tick
3872 */
3873 void account_process_tick(struct task_struct *p, int user_tick)
3874 {
3875 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3876 struct rq *rq = this_rq();
3877
3878 if (sched_clock_irqtime) {
3879 irqtime_account_process_tick(p, user_tick, rq);
3880 return;
3881 }
3882
3883 if (user_tick)
3884 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3885 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3886 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3887 one_jiffy_scaled);
3888 else
3889 account_idle_time(cputime_one_jiffy);
3890 }
3891
3892 /*
3893 * Account multiple ticks of steal time.
3894 * @p: the process from which the cpu time has been stolen
3895 * @ticks: number of stolen ticks
3896 */
3897 void account_steal_ticks(unsigned long ticks)
3898 {
3899 account_steal_time(jiffies_to_cputime(ticks));
3900 }
3901
3902 /*
3903 * Account multiple ticks of idle time.
3904 * @ticks: number of stolen ticks
3905 */
3906 void account_idle_ticks(unsigned long ticks)
3907 {
3908
3909 if (sched_clock_irqtime) {
3910 irqtime_account_idle_ticks(ticks);
3911 return;
3912 }
3913
3914 account_idle_time(jiffies_to_cputime(ticks));
3915 }
3916
3917 #endif
3918
3919 /*
3920 * Use precise platform statistics if available:
3921 */
3922 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3923 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3924 {
3925 *ut = p->utime;
3926 *st = p->stime;
3927 }
3928
3929 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3930 {
3931 struct task_cputime cputime;
3932
3933 thread_group_cputime(p, &cputime);
3934
3935 *ut = cputime.utime;
3936 *st = cputime.stime;
3937 }
3938 #else
3939
3940 #ifndef nsecs_to_cputime
3941 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3942 #endif
3943
3944 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3945 {
3946 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3947
3948 /*
3949 * Use CFS's precise accounting:
3950 */
3951 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3952
3953 if (total) {
3954 u64 temp = rtime;
3955
3956 temp *= utime;
3957 do_div(temp, total);
3958 utime = (cputime_t)temp;
3959 } else
3960 utime = rtime;
3961
3962 /*
3963 * Compare with previous values, to keep monotonicity:
3964 */
3965 p->prev_utime = max(p->prev_utime, utime);
3966 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3967
3968 *ut = p->prev_utime;
3969 *st = p->prev_stime;
3970 }
3971
3972 /*
3973 * Must be called with siglock held.
3974 */
3975 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3976 {
3977 struct signal_struct *sig = p->signal;
3978 struct task_cputime cputime;
3979 cputime_t rtime, utime, total;
3980
3981 thread_group_cputime(p, &cputime);
3982
3983 total = cputime_add(cputime.utime, cputime.stime);
3984 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3985
3986 if (total) {
3987 u64 temp = rtime;
3988
3989 temp *= cputime.utime;
3990 do_div(temp, total);
3991 utime = (cputime_t)temp;
3992 } else
3993 utime = rtime;
3994
3995 sig->prev_utime = max(sig->prev_utime, utime);
3996 sig->prev_stime = max(sig->prev_stime,
3997 cputime_sub(rtime, sig->prev_utime));
3998
3999 *ut = sig->prev_utime;
4000 *st = sig->prev_stime;
4001 }
4002 #endif
4003
4004 /*
4005 * This function gets called by the timer code, with HZ frequency.
4006 * We call it with interrupts disabled.
4007 */
4008 void scheduler_tick(void)
4009 {
4010 int cpu = smp_processor_id();
4011 struct rq *rq = cpu_rq(cpu);
4012 struct task_struct *curr = rq->curr;
4013
4014 sched_clock_tick();
4015
4016 raw_spin_lock(&rq->lock);
4017 update_rq_clock(rq);
4018 update_cpu_load_active(rq);
4019 curr->sched_class->task_tick(rq, curr, 0);
4020 raw_spin_unlock(&rq->lock);
4021
4022 perf_event_task_tick();
4023
4024 #ifdef CONFIG_SMP
4025 rq->idle_at_tick = idle_cpu(cpu);
4026 trigger_load_balance(rq, cpu);
4027 #endif
4028 }
4029
4030 notrace unsigned long get_parent_ip(unsigned long addr)
4031 {
4032 if (in_lock_functions(addr)) {
4033 addr = CALLER_ADDR2;
4034 if (in_lock_functions(addr))
4035 addr = CALLER_ADDR3;
4036 }
4037 return addr;
4038 }
4039
4040 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4041 defined(CONFIG_PREEMPT_TRACER))
4042
4043 void __kprobes add_preempt_count(int val)
4044 {
4045 #ifdef CONFIG_DEBUG_PREEMPT
4046 /*
4047 * Underflow?
4048 */
4049 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4050 return;
4051 #endif
4052 preempt_count() += val;
4053 #ifdef CONFIG_DEBUG_PREEMPT
4054 /*
4055 * Spinlock count overflowing soon?
4056 */
4057 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4058 PREEMPT_MASK - 10);
4059 #endif
4060 if (preempt_count() == val)
4061 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4062 }
4063 EXPORT_SYMBOL(add_preempt_count);
4064
4065 void __kprobes sub_preempt_count(int val)
4066 {
4067 #ifdef CONFIG_DEBUG_PREEMPT
4068 /*
4069 * Underflow?
4070 */
4071 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4072 return;
4073 /*
4074 * Is the spinlock portion underflowing?
4075 */
4076 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4077 !(preempt_count() & PREEMPT_MASK)))
4078 return;
4079 #endif
4080
4081 if (preempt_count() == val)
4082 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4083 preempt_count() -= val;
4084 }
4085 EXPORT_SYMBOL(sub_preempt_count);
4086
4087 #endif
4088
4089 /*
4090 * Print scheduling while atomic bug:
4091 */
4092 static noinline void __schedule_bug(struct task_struct *prev)
4093 {
4094 struct pt_regs *regs = get_irq_regs();
4095
4096 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4097 prev->comm, prev->pid, preempt_count());
4098
4099 debug_show_held_locks(prev);
4100 print_modules();
4101 if (irqs_disabled())
4102 print_irqtrace_events(prev);
4103
4104 if (regs)
4105 show_regs(regs);
4106 else
4107 dump_stack();
4108 }
4109
4110 /*
4111 * Various schedule()-time debugging checks and statistics:
4112 */
4113 static inline void schedule_debug(struct task_struct *prev)
4114 {
4115 /*
4116 * Test if we are atomic. Since do_exit() needs to call into
4117 * schedule() atomically, we ignore that path for now.
4118 * Otherwise, whine if we are scheduling when we should not be.
4119 */
4120 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4121 __schedule_bug(prev);
4122
4123 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4124
4125 schedstat_inc(this_rq(), sched_count);
4126 }
4127
4128 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4129 {
4130 if (prev->on_rq || rq->skip_clock_update < 0)
4131 update_rq_clock(rq);
4132 prev->sched_class->put_prev_task(rq, prev);
4133 }
4134
4135 /*
4136 * Pick up the highest-prio task:
4137 */
4138 static inline struct task_struct *
4139 pick_next_task(struct rq *rq)
4140 {
4141 const struct sched_class *class;
4142 struct task_struct *p;
4143
4144 /*
4145 * Optimization: we know that if all tasks are in
4146 * the fair class we can call that function directly:
4147 */
4148 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4149 p = fair_sched_class.pick_next_task(rq);
4150 if (likely(p))
4151 return p;
4152 }
4153
4154 for_each_class(class) {
4155 p = class->pick_next_task(rq);
4156 if (p)
4157 return p;
4158 }
4159
4160 BUG(); /* the idle class will always have a runnable task */
4161 }
4162
4163 /*
4164 * schedule() is the main scheduler function.
4165 */
4166 asmlinkage void __sched schedule(void)
4167 {
4168 struct task_struct *prev, *next;
4169 unsigned long *switch_count;
4170 struct rq *rq;
4171 int cpu;
4172
4173 need_resched:
4174 preempt_disable();
4175 cpu = smp_processor_id();
4176 rq = cpu_rq(cpu);
4177 rcu_note_context_switch(cpu);
4178 prev = rq->curr;
4179
4180 schedule_debug(prev);
4181
4182 if (sched_feat(HRTICK))
4183 hrtick_clear(rq);
4184
4185 raw_spin_lock_irq(&rq->lock);
4186
4187 switch_count = &prev->nivcsw;
4188 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4189 if (unlikely(signal_pending_state(prev->state, prev))) {
4190 prev->state = TASK_RUNNING;
4191 } else {
4192 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4193 prev->on_rq = 0;
4194
4195 /*
4196 * If a worker went to sleep, notify and ask workqueue
4197 * whether it wants to wake up a task to maintain
4198 * concurrency.
4199 */
4200 if (prev->flags & PF_WQ_WORKER) {
4201 struct task_struct *to_wakeup;
4202
4203 to_wakeup = wq_worker_sleeping(prev, cpu);
4204 if (to_wakeup)
4205 try_to_wake_up_local(to_wakeup);
4206 }
4207
4208 /*
4209 * If we are going to sleep and we have plugged IO
4210 * queued, make sure to submit it to avoid deadlocks.
4211 */
4212 if (blk_needs_flush_plug(prev)) {
4213 raw_spin_unlock(&rq->lock);
4214 blk_schedule_flush_plug(prev);
4215 raw_spin_lock(&rq->lock);
4216 }
4217 }
4218 switch_count = &prev->nvcsw;
4219 }
4220
4221 pre_schedule(rq, prev);
4222
4223 if (unlikely(!rq->nr_running))
4224 idle_balance(cpu, rq);
4225
4226 put_prev_task(rq, prev);
4227 next = pick_next_task(rq);
4228 clear_tsk_need_resched(prev);
4229 rq->skip_clock_update = 0;
4230
4231 if (likely(prev != next)) {
4232 rq->nr_switches++;
4233 rq->curr = next;
4234 ++*switch_count;
4235
4236 context_switch(rq, prev, next); /* unlocks the rq */
4237 /*
4238 * The context switch have flipped the stack from under us
4239 * and restored the local variables which were saved when
4240 * this task called schedule() in the past. prev == current
4241 * is still correct, but it can be moved to another cpu/rq.
4242 */
4243 cpu = smp_processor_id();
4244 rq = cpu_rq(cpu);
4245 } else
4246 raw_spin_unlock_irq(&rq->lock);
4247
4248 post_schedule(rq);
4249
4250 preempt_enable_no_resched();
4251 if (need_resched())
4252 goto need_resched;
4253 }
4254 EXPORT_SYMBOL(schedule);
4255
4256 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4257
4258 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4259 {
4260 bool ret = false;
4261
4262 rcu_read_lock();
4263 if (lock->owner != owner)
4264 goto fail;
4265
4266 /*
4267 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4268 * lock->owner still matches owner, if that fails, owner might
4269 * point to free()d memory, if it still matches, the rcu_read_lock()
4270 * ensures the memory stays valid.
4271 */
4272 barrier();
4273
4274 ret = owner->on_cpu;
4275 fail:
4276 rcu_read_unlock();
4277
4278 return ret;
4279 }
4280
4281 /*
4282 * Look out! "owner" is an entirely speculative pointer
4283 * access and not reliable.
4284 */
4285 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4286 {
4287 if (!sched_feat(OWNER_SPIN))
4288 return 0;
4289
4290 while (owner_running(lock, owner)) {
4291 if (need_resched())
4292 return 0;
4293
4294 arch_mutex_cpu_relax();
4295 }
4296
4297 /*
4298 * If the owner changed to another task there is likely
4299 * heavy contention, stop spinning.
4300 */
4301 if (lock->owner)
4302 return 0;
4303
4304 return 1;
4305 }
4306 #endif
4307
4308 #ifdef CONFIG_PREEMPT
4309 /*
4310 * this is the entry point to schedule() from in-kernel preemption
4311 * off of preempt_enable. Kernel preemptions off return from interrupt
4312 * occur there and call schedule directly.
4313 */
4314 asmlinkage void __sched notrace preempt_schedule(void)
4315 {
4316 struct thread_info *ti = current_thread_info();
4317
4318 /*
4319 * If there is a non-zero preempt_count or interrupts are disabled,
4320 * we do not want to preempt the current task. Just return..
4321 */
4322 if (likely(ti->preempt_count || irqs_disabled()))
4323 return;
4324
4325 do {
4326 add_preempt_count_notrace(PREEMPT_ACTIVE);
4327 schedule();
4328 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4329
4330 /*
4331 * Check again in case we missed a preemption opportunity
4332 * between schedule and now.
4333 */
4334 barrier();
4335 } while (need_resched());
4336 }
4337 EXPORT_SYMBOL(preempt_schedule);
4338
4339 /*
4340 * this is the entry point to schedule() from kernel preemption
4341 * off of irq context.
4342 * Note, that this is called and return with irqs disabled. This will
4343 * protect us against recursive calling from irq.
4344 */
4345 asmlinkage void __sched preempt_schedule_irq(void)
4346 {
4347 struct thread_info *ti = current_thread_info();
4348
4349 /* Catch callers which need to be fixed */
4350 BUG_ON(ti->preempt_count || !irqs_disabled());
4351
4352 do {
4353 add_preempt_count(PREEMPT_ACTIVE);
4354 local_irq_enable();
4355 schedule();
4356 local_irq_disable();
4357 sub_preempt_count(PREEMPT_ACTIVE);
4358
4359 /*
4360 * Check again in case we missed a preemption opportunity
4361 * between schedule and now.
4362 */
4363 barrier();
4364 } while (need_resched());
4365 }
4366
4367 #endif /* CONFIG_PREEMPT */
4368
4369 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4370 void *key)
4371 {
4372 return try_to_wake_up(curr->private, mode, wake_flags);
4373 }
4374 EXPORT_SYMBOL(default_wake_function);
4375
4376 /*
4377 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4378 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4379 * number) then we wake all the non-exclusive tasks and one exclusive task.
4380 *
4381 * There are circumstances in which we can try to wake a task which has already
4382 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4383 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4384 */
4385 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4386 int nr_exclusive, int wake_flags, void *key)
4387 {
4388 wait_queue_t *curr, *next;
4389
4390 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4391 unsigned flags = curr->flags;
4392
4393 if (curr->func(curr, mode, wake_flags, key) &&
4394 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4395 break;
4396 }
4397 }
4398
4399 /**
4400 * __wake_up - wake up threads blocked on a waitqueue.
4401 * @q: the waitqueue
4402 * @mode: which threads
4403 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4404 * @key: is directly passed to the wakeup function
4405 *
4406 * It may be assumed that this function implies a write memory barrier before
4407 * changing the task state if and only if any tasks are woken up.
4408 */
4409 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4410 int nr_exclusive, void *key)
4411 {
4412 unsigned long flags;
4413
4414 spin_lock_irqsave(&q->lock, flags);
4415 __wake_up_common(q, mode, nr_exclusive, 0, key);
4416 spin_unlock_irqrestore(&q->lock, flags);
4417 }
4418 EXPORT_SYMBOL(__wake_up);
4419
4420 /*
4421 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4422 */
4423 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4424 {
4425 __wake_up_common(q, mode, 1, 0, NULL);
4426 }
4427 EXPORT_SYMBOL_GPL(__wake_up_locked);
4428
4429 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4430 {
4431 __wake_up_common(q, mode, 1, 0, key);
4432 }
4433 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4434
4435 /**
4436 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4437 * @q: the waitqueue
4438 * @mode: which threads
4439 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4440 * @key: opaque value to be passed to wakeup targets
4441 *
4442 * The sync wakeup differs that the waker knows that it will schedule
4443 * away soon, so while the target thread will be woken up, it will not
4444 * be migrated to another CPU - ie. the two threads are 'synchronized'
4445 * with each other. This can prevent needless bouncing between CPUs.
4446 *
4447 * On UP it can prevent extra preemption.
4448 *
4449 * It may be assumed that this function implies a write memory barrier before
4450 * changing the task state if and only if any tasks are woken up.
4451 */
4452 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4453 int nr_exclusive, void *key)
4454 {
4455 unsigned long flags;
4456 int wake_flags = WF_SYNC;
4457
4458 if (unlikely(!q))
4459 return;
4460
4461 if (unlikely(!nr_exclusive))
4462 wake_flags = 0;
4463
4464 spin_lock_irqsave(&q->lock, flags);
4465 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4466 spin_unlock_irqrestore(&q->lock, flags);
4467 }
4468 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4469
4470 /*
4471 * __wake_up_sync - see __wake_up_sync_key()
4472 */
4473 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4474 {
4475 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4476 }
4477 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4478
4479 /**
4480 * complete: - signals a single thread waiting on this completion
4481 * @x: holds the state of this particular completion
4482 *
4483 * This will wake up a single thread waiting on this completion. Threads will be
4484 * awakened in the same order in which they were queued.
4485 *
4486 * See also complete_all(), wait_for_completion() and related routines.
4487 *
4488 * It may be assumed that this function implies a write memory barrier before
4489 * changing the task state if and only if any tasks are woken up.
4490 */
4491 void complete(struct completion *x)
4492 {
4493 unsigned long flags;
4494
4495 spin_lock_irqsave(&x->wait.lock, flags);
4496 x->done++;
4497 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4498 spin_unlock_irqrestore(&x->wait.lock, flags);
4499 }
4500 EXPORT_SYMBOL(complete);
4501
4502 /**
4503 * complete_all: - signals all threads waiting on this completion
4504 * @x: holds the state of this particular completion
4505 *
4506 * This will wake up all threads waiting on this particular completion event.
4507 *
4508 * It may be assumed that this function implies a write memory barrier before
4509 * changing the task state if and only if any tasks are woken up.
4510 */
4511 void complete_all(struct completion *x)
4512 {
4513 unsigned long flags;
4514
4515 spin_lock_irqsave(&x->wait.lock, flags);
4516 x->done += UINT_MAX/2;
4517 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4518 spin_unlock_irqrestore(&x->wait.lock, flags);
4519 }
4520 EXPORT_SYMBOL(complete_all);
4521
4522 static inline long __sched
4523 do_wait_for_common(struct completion *x, long timeout, int state)
4524 {
4525 if (!x->done) {
4526 DECLARE_WAITQUEUE(wait, current);
4527
4528 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4529 do {
4530 if (signal_pending_state(state, current)) {
4531 timeout = -ERESTARTSYS;
4532 break;
4533 }
4534 __set_current_state(state);
4535 spin_unlock_irq(&x->wait.lock);
4536 timeout = schedule_timeout(timeout);
4537 spin_lock_irq(&x->wait.lock);
4538 } while (!x->done && timeout);
4539 __remove_wait_queue(&x->wait, &wait);
4540 if (!x->done)
4541 return timeout;
4542 }
4543 x->done--;
4544 return timeout ?: 1;
4545 }
4546
4547 static long __sched
4548 wait_for_common(struct completion *x, long timeout, int state)
4549 {
4550 might_sleep();
4551
4552 spin_lock_irq(&x->wait.lock);
4553 timeout = do_wait_for_common(x, timeout, state);
4554 spin_unlock_irq(&x->wait.lock);
4555 return timeout;
4556 }
4557
4558 /**
4559 * wait_for_completion: - waits for completion of a task
4560 * @x: holds the state of this particular completion
4561 *
4562 * This waits to be signaled for completion of a specific task. It is NOT
4563 * interruptible and there is no timeout.
4564 *
4565 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4566 * and interrupt capability. Also see complete().
4567 */
4568 void __sched wait_for_completion(struct completion *x)
4569 {
4570 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4571 }
4572 EXPORT_SYMBOL(wait_for_completion);
4573
4574 /**
4575 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4576 * @x: holds the state of this particular completion
4577 * @timeout: timeout value in jiffies
4578 *
4579 * This waits for either a completion of a specific task to be signaled or for a
4580 * specified timeout to expire. The timeout is in jiffies. It is not
4581 * interruptible.
4582 */
4583 unsigned long __sched
4584 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4585 {
4586 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4587 }
4588 EXPORT_SYMBOL(wait_for_completion_timeout);
4589
4590 /**
4591 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4592 * @x: holds the state of this particular completion
4593 *
4594 * This waits for completion of a specific task to be signaled. It is
4595 * interruptible.
4596 */
4597 int __sched wait_for_completion_interruptible(struct completion *x)
4598 {
4599 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4600 if (t == -ERESTARTSYS)
4601 return t;
4602 return 0;
4603 }
4604 EXPORT_SYMBOL(wait_for_completion_interruptible);
4605
4606 /**
4607 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4608 * @x: holds the state of this particular completion
4609 * @timeout: timeout value in jiffies
4610 *
4611 * This waits for either a completion of a specific task to be signaled or for a
4612 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4613 */
4614 long __sched
4615 wait_for_completion_interruptible_timeout(struct completion *x,
4616 unsigned long timeout)
4617 {
4618 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4619 }
4620 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4621
4622 /**
4623 * wait_for_completion_killable: - waits for completion of a task (killable)
4624 * @x: holds the state of this particular completion
4625 *
4626 * This waits to be signaled for completion of a specific task. It can be
4627 * interrupted by a kill signal.
4628 */
4629 int __sched wait_for_completion_killable(struct completion *x)
4630 {
4631 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4632 if (t == -ERESTARTSYS)
4633 return t;
4634 return 0;
4635 }
4636 EXPORT_SYMBOL(wait_for_completion_killable);
4637
4638 /**
4639 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4640 * @x: holds the state of this particular completion
4641 * @timeout: timeout value in jiffies
4642 *
4643 * This waits for either a completion of a specific task to be
4644 * signaled or for a specified timeout to expire. It can be
4645 * interrupted by a kill signal. The timeout is in jiffies.
4646 */
4647 long __sched
4648 wait_for_completion_killable_timeout(struct completion *x,
4649 unsigned long timeout)
4650 {
4651 return wait_for_common(x, timeout, TASK_KILLABLE);
4652 }
4653 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4654
4655 /**
4656 * try_wait_for_completion - try to decrement a completion without blocking
4657 * @x: completion structure
4658 *
4659 * Returns: 0 if a decrement cannot be done without blocking
4660 * 1 if a decrement succeeded.
4661 *
4662 * If a completion is being used as a counting completion,
4663 * attempt to decrement the counter without blocking. This
4664 * enables us to avoid waiting if the resource the completion
4665 * is protecting is not available.
4666 */
4667 bool try_wait_for_completion(struct completion *x)
4668 {
4669 unsigned long flags;
4670 int ret = 1;
4671
4672 spin_lock_irqsave(&x->wait.lock, flags);
4673 if (!x->done)
4674 ret = 0;
4675 else
4676 x->done--;
4677 spin_unlock_irqrestore(&x->wait.lock, flags);
4678 return ret;
4679 }
4680 EXPORT_SYMBOL(try_wait_for_completion);
4681
4682 /**
4683 * completion_done - Test to see if a completion has any waiters
4684 * @x: completion structure
4685 *
4686 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4687 * 1 if there are no waiters.
4688 *
4689 */
4690 bool completion_done(struct completion *x)
4691 {
4692 unsigned long flags;
4693 int ret = 1;
4694
4695 spin_lock_irqsave(&x->wait.lock, flags);
4696 if (!x->done)
4697 ret = 0;
4698 spin_unlock_irqrestore(&x->wait.lock, flags);
4699 return ret;
4700 }
4701 EXPORT_SYMBOL(completion_done);
4702
4703 static long __sched
4704 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4705 {
4706 unsigned long flags;
4707 wait_queue_t wait;
4708
4709 init_waitqueue_entry(&wait, current);
4710
4711 __set_current_state(state);
4712
4713 spin_lock_irqsave(&q->lock, flags);
4714 __add_wait_queue(q, &wait);
4715 spin_unlock(&q->lock);
4716 timeout = schedule_timeout(timeout);
4717 spin_lock_irq(&q->lock);
4718 __remove_wait_queue(q, &wait);
4719 spin_unlock_irqrestore(&q->lock, flags);
4720
4721 return timeout;
4722 }
4723
4724 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4725 {
4726 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4727 }
4728 EXPORT_SYMBOL(interruptible_sleep_on);
4729
4730 long __sched
4731 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4732 {
4733 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4734 }
4735 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4736
4737 void __sched sleep_on(wait_queue_head_t *q)
4738 {
4739 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4740 }
4741 EXPORT_SYMBOL(sleep_on);
4742
4743 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4744 {
4745 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4746 }
4747 EXPORT_SYMBOL(sleep_on_timeout);
4748
4749 #ifdef CONFIG_RT_MUTEXES
4750
4751 /*
4752 * rt_mutex_setprio - set the current priority of a task
4753 * @p: task
4754 * @prio: prio value (kernel-internal form)
4755 *
4756 * This function changes the 'effective' priority of a task. It does
4757 * not touch ->normal_prio like __setscheduler().
4758 *
4759 * Used by the rt_mutex code to implement priority inheritance logic.
4760 */
4761 void rt_mutex_setprio(struct task_struct *p, int prio)
4762 {
4763 int oldprio, on_rq, running;
4764 struct rq *rq;
4765 const struct sched_class *prev_class;
4766
4767 BUG_ON(prio < 0 || prio > MAX_PRIO);
4768
4769 rq = __task_rq_lock(p);
4770
4771 trace_sched_pi_setprio(p, prio);
4772 oldprio = p->prio;
4773 prev_class = p->sched_class;
4774 on_rq = p->on_rq;
4775 running = task_current(rq, p);
4776 if (on_rq)
4777 dequeue_task(rq, p, 0);
4778 if (running)
4779 p->sched_class->put_prev_task(rq, p);
4780
4781 if (rt_prio(prio))
4782 p->sched_class = &rt_sched_class;
4783 else
4784 p->sched_class = &fair_sched_class;
4785
4786 p->prio = prio;
4787
4788 if (running)
4789 p->sched_class->set_curr_task(rq);
4790 if (on_rq)
4791 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4792
4793 check_class_changed(rq, p, prev_class, oldprio);
4794 __task_rq_unlock(rq);
4795 }
4796
4797 #endif
4798
4799 void set_user_nice(struct task_struct *p, long nice)
4800 {
4801 int old_prio, delta, on_rq;
4802 unsigned long flags;
4803 struct rq *rq;
4804
4805 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4806 return;
4807 /*
4808 * We have to be careful, if called from sys_setpriority(),
4809 * the task might be in the middle of scheduling on another CPU.
4810 */
4811 rq = task_rq_lock(p, &flags);
4812 /*
4813 * The RT priorities are set via sched_setscheduler(), but we still
4814 * allow the 'normal' nice value to be set - but as expected
4815 * it wont have any effect on scheduling until the task is
4816 * SCHED_FIFO/SCHED_RR:
4817 */
4818 if (task_has_rt_policy(p)) {
4819 p->static_prio = NICE_TO_PRIO(nice);
4820 goto out_unlock;
4821 }
4822 on_rq = p->on_rq;
4823 if (on_rq)
4824 dequeue_task(rq, p, 0);
4825
4826 p->static_prio = NICE_TO_PRIO(nice);
4827 set_load_weight(p);
4828 old_prio = p->prio;
4829 p->prio = effective_prio(p);
4830 delta = p->prio - old_prio;
4831
4832 if (on_rq) {
4833 enqueue_task(rq, p, 0);
4834 /*
4835 * If the task increased its priority or is running and
4836 * lowered its priority, then reschedule its CPU:
4837 */
4838 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4839 resched_task(rq->curr);
4840 }
4841 out_unlock:
4842 task_rq_unlock(rq, p, &flags);
4843 }
4844 EXPORT_SYMBOL(set_user_nice);
4845
4846 /*
4847 * can_nice - check if a task can reduce its nice value
4848 * @p: task
4849 * @nice: nice value
4850 */
4851 int can_nice(const struct task_struct *p, const int nice)
4852 {
4853 /* convert nice value [19,-20] to rlimit style value [1,40] */
4854 int nice_rlim = 20 - nice;
4855
4856 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4857 capable(CAP_SYS_NICE));
4858 }
4859
4860 #ifdef __ARCH_WANT_SYS_NICE
4861
4862 /*
4863 * sys_nice - change the priority of the current process.
4864 * @increment: priority increment
4865 *
4866 * sys_setpriority is a more generic, but much slower function that
4867 * does similar things.
4868 */
4869 SYSCALL_DEFINE1(nice, int, increment)
4870 {
4871 long nice, retval;
4872
4873 /*
4874 * Setpriority might change our priority at the same moment.
4875 * We don't have to worry. Conceptually one call occurs first
4876 * and we have a single winner.
4877 */
4878 if (increment < -40)
4879 increment = -40;
4880 if (increment > 40)
4881 increment = 40;
4882
4883 nice = TASK_NICE(current) + increment;
4884 if (nice < -20)
4885 nice = -20;
4886 if (nice > 19)
4887 nice = 19;
4888
4889 if (increment < 0 && !can_nice(current, nice))
4890 return -EPERM;
4891
4892 retval = security_task_setnice(current, nice);
4893 if (retval)
4894 return retval;
4895
4896 set_user_nice(current, nice);
4897 return 0;
4898 }
4899
4900 #endif
4901
4902 /**
4903 * task_prio - return the priority value of a given task.
4904 * @p: the task in question.
4905 *
4906 * This is the priority value as seen by users in /proc.
4907 * RT tasks are offset by -200. Normal tasks are centered
4908 * around 0, value goes from -16 to +15.
4909 */
4910 int task_prio(const struct task_struct *p)
4911 {
4912 return p->prio - MAX_RT_PRIO;
4913 }
4914
4915 /**
4916 * task_nice - return the nice value of a given task.
4917 * @p: the task in question.
4918 */
4919 int task_nice(const struct task_struct *p)
4920 {
4921 return TASK_NICE(p);
4922 }
4923 EXPORT_SYMBOL(task_nice);
4924
4925 /**
4926 * idle_cpu - is a given cpu idle currently?
4927 * @cpu: the processor in question.
4928 */
4929 int idle_cpu(int cpu)
4930 {
4931 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4932 }
4933
4934 /**
4935 * idle_task - return the idle task for a given cpu.
4936 * @cpu: the processor in question.
4937 */
4938 struct task_struct *idle_task(int cpu)
4939 {
4940 return cpu_rq(cpu)->idle;
4941 }
4942
4943 /**
4944 * find_process_by_pid - find a process with a matching PID value.
4945 * @pid: the pid in question.
4946 */
4947 static struct task_struct *find_process_by_pid(pid_t pid)
4948 {
4949 return pid ? find_task_by_vpid(pid) : current;
4950 }
4951
4952 /* Actually do priority change: must hold rq lock. */
4953 static void
4954 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4955 {
4956 p->policy = policy;
4957 p->rt_priority = prio;
4958 p->normal_prio = normal_prio(p);
4959 /* we are holding p->pi_lock already */
4960 p->prio = rt_mutex_getprio(p);
4961 if (rt_prio(p->prio))
4962 p->sched_class = &rt_sched_class;
4963 else
4964 p->sched_class = &fair_sched_class;
4965 set_load_weight(p);
4966 }
4967
4968 /*
4969 * check the target process has a UID that matches the current process's
4970 */
4971 static bool check_same_owner(struct task_struct *p)
4972 {
4973 const struct cred *cred = current_cred(), *pcred;
4974 bool match;
4975
4976 rcu_read_lock();
4977 pcred = __task_cred(p);
4978 if (cred->user->user_ns == pcred->user->user_ns)
4979 match = (cred->euid == pcred->euid ||
4980 cred->euid == pcred->uid);
4981 else
4982 match = false;
4983 rcu_read_unlock();
4984 return match;
4985 }
4986
4987 static int __sched_setscheduler(struct task_struct *p, int policy,
4988 const struct sched_param *param, bool user)
4989 {
4990 int retval, oldprio, oldpolicy = -1, on_rq, running;
4991 unsigned long flags;
4992 const struct sched_class *prev_class;
4993 struct rq *rq;
4994 int reset_on_fork;
4995
4996 /* may grab non-irq protected spin_locks */
4997 BUG_ON(in_interrupt());
4998 recheck:
4999 /* double check policy once rq lock held */
5000 if (policy < 0) {
5001 reset_on_fork = p->sched_reset_on_fork;
5002 policy = oldpolicy = p->policy;
5003 } else {
5004 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5005 policy &= ~SCHED_RESET_ON_FORK;
5006
5007 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5008 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5009 policy != SCHED_IDLE)
5010 return -EINVAL;
5011 }
5012
5013 /*
5014 * Valid priorities for SCHED_FIFO and SCHED_RR are
5015 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5016 * SCHED_BATCH and SCHED_IDLE is 0.
5017 */
5018 if (param->sched_priority < 0 ||
5019 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5020 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5021 return -EINVAL;
5022 if (rt_policy(policy) != (param->sched_priority != 0))
5023 return -EINVAL;
5024
5025 /*
5026 * Allow unprivileged RT tasks to decrease priority:
5027 */
5028 if (user && !capable(CAP_SYS_NICE)) {
5029 if (rt_policy(policy)) {
5030 unsigned long rlim_rtprio =
5031 task_rlimit(p, RLIMIT_RTPRIO);
5032
5033 /* can't set/change the rt policy */
5034 if (policy != p->policy && !rlim_rtprio)
5035 return -EPERM;
5036
5037 /* can't increase priority */
5038 if (param->sched_priority > p->rt_priority &&
5039 param->sched_priority > rlim_rtprio)
5040 return -EPERM;
5041 }
5042
5043 /*
5044 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5045 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5046 */
5047 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5048 if (!can_nice(p, TASK_NICE(p)))
5049 return -EPERM;
5050 }
5051
5052 /* can't change other user's priorities */
5053 if (!check_same_owner(p))
5054 return -EPERM;
5055
5056 /* Normal users shall not reset the sched_reset_on_fork flag */
5057 if (p->sched_reset_on_fork && !reset_on_fork)
5058 return -EPERM;
5059 }
5060
5061 if (user) {
5062 retval = security_task_setscheduler(p);
5063 if (retval)
5064 return retval;
5065 }
5066
5067 /*
5068 * make sure no PI-waiters arrive (or leave) while we are
5069 * changing the priority of the task:
5070 *
5071 * To be able to change p->policy safely, the appropriate
5072 * runqueue lock must be held.
5073 */
5074 rq = task_rq_lock(p, &flags);
5075
5076 /*
5077 * Changing the policy of the stop threads its a very bad idea
5078 */
5079 if (p == rq->stop) {
5080 task_rq_unlock(rq, p, &flags);
5081 return -EINVAL;
5082 }
5083
5084 /*
5085 * If not changing anything there's no need to proceed further:
5086 */
5087 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5088 param->sched_priority == p->rt_priority))) {
5089
5090 __task_rq_unlock(rq);
5091 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5092 return 0;
5093 }
5094
5095 #ifdef CONFIG_RT_GROUP_SCHED
5096 if (user) {
5097 /*
5098 * Do not allow realtime tasks into groups that have no runtime
5099 * assigned.
5100 */
5101 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5102 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5103 !task_group_is_autogroup(task_group(p))) {
5104 task_rq_unlock(rq, p, &flags);
5105 return -EPERM;
5106 }
5107 }
5108 #endif
5109
5110 /* recheck policy now with rq lock held */
5111 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5112 policy = oldpolicy = -1;
5113 task_rq_unlock(rq, p, &flags);
5114 goto recheck;
5115 }
5116 on_rq = p->on_rq;
5117 running = task_current(rq, p);
5118 if (on_rq)
5119 deactivate_task(rq, p, 0);
5120 if (running)
5121 p->sched_class->put_prev_task(rq, p);
5122
5123 p->sched_reset_on_fork = reset_on_fork;
5124
5125 oldprio = p->prio;
5126 prev_class = p->sched_class;
5127 __setscheduler(rq, p, policy, param->sched_priority);
5128
5129 if (running)
5130 p->sched_class->set_curr_task(rq);
5131 if (on_rq)
5132 activate_task(rq, p, 0);
5133
5134 check_class_changed(rq, p, prev_class, oldprio);
5135 task_rq_unlock(rq, p, &flags);
5136
5137 rt_mutex_adjust_pi(p);
5138
5139 return 0;
5140 }
5141
5142 /**
5143 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5144 * @p: the task in question.
5145 * @policy: new policy.
5146 * @param: structure containing the new RT priority.
5147 *
5148 * NOTE that the task may be already dead.
5149 */
5150 int sched_setscheduler(struct task_struct *p, int policy,
5151 const struct sched_param *param)
5152 {
5153 return __sched_setscheduler(p, policy, param, true);
5154 }
5155 EXPORT_SYMBOL_GPL(sched_setscheduler);
5156
5157 /**
5158 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5159 * @p: the task in question.
5160 * @policy: new policy.
5161 * @param: structure containing the new RT priority.
5162 *
5163 * Just like sched_setscheduler, only don't bother checking if the
5164 * current context has permission. For example, this is needed in
5165 * stop_machine(): we create temporary high priority worker threads,
5166 * but our caller might not have that capability.
5167 */
5168 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5169 const struct sched_param *param)
5170 {
5171 return __sched_setscheduler(p, policy, param, false);
5172 }
5173
5174 static int
5175 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5176 {
5177 struct sched_param lparam;
5178 struct task_struct *p;
5179 int retval;
5180
5181 if (!param || pid < 0)
5182 return -EINVAL;
5183 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5184 return -EFAULT;
5185
5186 rcu_read_lock();
5187 retval = -ESRCH;
5188 p = find_process_by_pid(pid);
5189 if (p != NULL)
5190 retval = sched_setscheduler(p, policy, &lparam);
5191 rcu_read_unlock();
5192
5193 return retval;
5194 }
5195
5196 /**
5197 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5198 * @pid: the pid in question.
5199 * @policy: new policy.
5200 * @param: structure containing the new RT priority.
5201 */
5202 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5203 struct sched_param __user *, param)
5204 {
5205 /* negative values for policy are not valid */
5206 if (policy < 0)
5207 return -EINVAL;
5208
5209 return do_sched_setscheduler(pid, policy, param);
5210 }
5211
5212 /**
5213 * sys_sched_setparam - set/change the RT priority of a thread
5214 * @pid: the pid in question.
5215 * @param: structure containing the new RT priority.
5216 */
5217 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5218 {
5219 return do_sched_setscheduler(pid, -1, param);
5220 }
5221
5222 /**
5223 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5224 * @pid: the pid in question.
5225 */
5226 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5227 {
5228 struct task_struct *p;
5229 int retval;
5230
5231 if (pid < 0)
5232 return -EINVAL;
5233
5234 retval = -ESRCH;
5235 rcu_read_lock();
5236 p = find_process_by_pid(pid);
5237 if (p) {
5238 retval = security_task_getscheduler(p);
5239 if (!retval)
5240 retval = p->policy
5241 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5242 }
5243 rcu_read_unlock();
5244 return retval;
5245 }
5246
5247 /**
5248 * sys_sched_getparam - get the RT priority of a thread
5249 * @pid: the pid in question.
5250 * @param: structure containing the RT priority.
5251 */
5252 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5253 {
5254 struct sched_param lp;
5255 struct task_struct *p;
5256 int retval;
5257
5258 if (!param || pid < 0)
5259 return -EINVAL;
5260
5261 rcu_read_lock();
5262 p = find_process_by_pid(pid);
5263 retval = -ESRCH;
5264 if (!p)
5265 goto out_unlock;
5266
5267 retval = security_task_getscheduler(p);
5268 if (retval)
5269 goto out_unlock;
5270
5271 lp.sched_priority = p->rt_priority;
5272 rcu_read_unlock();
5273
5274 /*
5275 * This one might sleep, we cannot do it with a spinlock held ...
5276 */
5277 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5278
5279 return retval;
5280
5281 out_unlock:
5282 rcu_read_unlock();
5283 return retval;
5284 }
5285
5286 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5287 {
5288 cpumask_var_t cpus_allowed, new_mask;
5289 struct task_struct *p;
5290 int retval;
5291
5292 get_online_cpus();
5293 rcu_read_lock();
5294
5295 p = find_process_by_pid(pid);
5296 if (!p) {
5297 rcu_read_unlock();
5298 put_online_cpus();
5299 return -ESRCH;
5300 }
5301
5302 /* Prevent p going away */
5303 get_task_struct(p);
5304 rcu_read_unlock();
5305
5306 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5307 retval = -ENOMEM;
5308 goto out_put_task;
5309 }
5310 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5311 retval = -ENOMEM;
5312 goto out_free_cpus_allowed;
5313 }
5314 retval = -EPERM;
5315 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5316 goto out_unlock;
5317
5318 retval = security_task_setscheduler(p);
5319 if (retval)
5320 goto out_unlock;
5321
5322 cpuset_cpus_allowed(p, cpus_allowed);
5323 cpumask_and(new_mask, in_mask, cpus_allowed);
5324 again:
5325 retval = set_cpus_allowed_ptr(p, new_mask);
5326
5327 if (!retval) {
5328 cpuset_cpus_allowed(p, cpus_allowed);
5329 if (!cpumask_subset(new_mask, cpus_allowed)) {
5330 /*
5331 * We must have raced with a concurrent cpuset
5332 * update. Just reset the cpus_allowed to the
5333 * cpuset's cpus_allowed
5334 */
5335 cpumask_copy(new_mask, cpus_allowed);
5336 goto again;
5337 }
5338 }
5339 out_unlock:
5340 free_cpumask_var(new_mask);
5341 out_free_cpus_allowed:
5342 free_cpumask_var(cpus_allowed);
5343 out_put_task:
5344 put_task_struct(p);
5345 put_online_cpus();
5346 return retval;
5347 }
5348
5349 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5350 struct cpumask *new_mask)
5351 {
5352 if (len < cpumask_size())
5353 cpumask_clear(new_mask);
5354 else if (len > cpumask_size())
5355 len = cpumask_size();
5356
5357 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5358 }
5359
5360 /**
5361 * sys_sched_setaffinity - set the cpu affinity of a process
5362 * @pid: pid of the process
5363 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5364 * @user_mask_ptr: user-space pointer to the new cpu mask
5365 */
5366 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5367 unsigned long __user *, user_mask_ptr)
5368 {
5369 cpumask_var_t new_mask;
5370 int retval;
5371
5372 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5373 return -ENOMEM;
5374
5375 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5376 if (retval == 0)
5377 retval = sched_setaffinity(pid, new_mask);
5378 free_cpumask_var(new_mask);
5379 return retval;
5380 }
5381
5382 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5383 {
5384 struct task_struct *p;
5385 unsigned long flags;
5386 int retval;
5387
5388 get_online_cpus();
5389 rcu_read_lock();
5390
5391 retval = -ESRCH;
5392 p = find_process_by_pid(pid);
5393 if (!p)
5394 goto out_unlock;
5395
5396 retval = security_task_getscheduler(p);
5397 if (retval)
5398 goto out_unlock;
5399
5400 raw_spin_lock_irqsave(&p->pi_lock, flags);
5401 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5402 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5403
5404 out_unlock:
5405 rcu_read_unlock();
5406 put_online_cpus();
5407
5408 return retval;
5409 }
5410
5411 /**
5412 * sys_sched_getaffinity - get the cpu affinity of a process
5413 * @pid: pid of the process
5414 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5415 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5416 */
5417 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5418 unsigned long __user *, user_mask_ptr)
5419 {
5420 int ret;
5421 cpumask_var_t mask;
5422
5423 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5424 return -EINVAL;
5425 if (len & (sizeof(unsigned long)-1))
5426 return -EINVAL;
5427
5428 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5429 return -ENOMEM;
5430
5431 ret = sched_getaffinity(pid, mask);
5432 if (ret == 0) {
5433 size_t retlen = min_t(size_t, len, cpumask_size());
5434
5435 if (copy_to_user(user_mask_ptr, mask, retlen))
5436 ret = -EFAULT;
5437 else
5438 ret = retlen;
5439 }
5440 free_cpumask_var(mask);
5441
5442 return ret;
5443 }
5444
5445 /**
5446 * sys_sched_yield - yield the current processor to other threads.
5447 *
5448 * This function yields the current CPU to other tasks. If there are no
5449 * other threads running on this CPU then this function will return.
5450 */
5451 SYSCALL_DEFINE0(sched_yield)
5452 {
5453 struct rq *rq = this_rq_lock();
5454
5455 schedstat_inc(rq, yld_count);
5456 current->sched_class->yield_task(rq);
5457
5458 /*
5459 * Since we are going to call schedule() anyway, there's
5460 * no need to preempt or enable interrupts:
5461 */
5462 __release(rq->lock);
5463 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5464 do_raw_spin_unlock(&rq->lock);
5465 preempt_enable_no_resched();
5466
5467 schedule();
5468
5469 return 0;
5470 }
5471
5472 static inline int should_resched(void)
5473 {
5474 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5475 }
5476
5477 static void __cond_resched(void)
5478 {
5479 add_preempt_count(PREEMPT_ACTIVE);
5480 schedule();
5481 sub_preempt_count(PREEMPT_ACTIVE);
5482 }
5483
5484 int __sched _cond_resched(void)
5485 {
5486 if (should_resched()) {
5487 __cond_resched();
5488 return 1;
5489 }
5490 return 0;
5491 }
5492 EXPORT_SYMBOL(_cond_resched);
5493
5494 /*
5495 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5496 * call schedule, and on return reacquire the lock.
5497 *
5498 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5499 * operations here to prevent schedule() from being called twice (once via
5500 * spin_unlock(), once by hand).
5501 */
5502 int __cond_resched_lock(spinlock_t *lock)
5503 {
5504 int resched = should_resched();
5505 int ret = 0;
5506
5507 lockdep_assert_held(lock);
5508
5509 if (spin_needbreak(lock) || resched) {
5510 spin_unlock(lock);
5511 if (resched)
5512 __cond_resched();
5513 else
5514 cpu_relax();
5515 ret = 1;
5516 spin_lock(lock);
5517 }
5518 return ret;
5519 }
5520 EXPORT_SYMBOL(__cond_resched_lock);
5521
5522 int __sched __cond_resched_softirq(void)
5523 {
5524 BUG_ON(!in_softirq());
5525
5526 if (should_resched()) {
5527 local_bh_enable();
5528 __cond_resched();
5529 local_bh_disable();
5530 return 1;
5531 }
5532 return 0;
5533 }
5534 EXPORT_SYMBOL(__cond_resched_softirq);
5535
5536 /**
5537 * yield - yield the current processor to other threads.
5538 *
5539 * This is a shortcut for kernel-space yielding - it marks the
5540 * thread runnable and calls sys_sched_yield().
5541 */
5542 void __sched yield(void)
5543 {
5544 set_current_state(TASK_RUNNING);
5545 sys_sched_yield();
5546 }
5547 EXPORT_SYMBOL(yield);
5548
5549 /**
5550 * yield_to - yield the current processor to another thread in
5551 * your thread group, or accelerate that thread toward the
5552 * processor it's on.
5553 * @p: target task
5554 * @preempt: whether task preemption is allowed or not
5555 *
5556 * It's the caller's job to ensure that the target task struct
5557 * can't go away on us before we can do any checks.
5558 *
5559 * Returns true if we indeed boosted the target task.
5560 */
5561 bool __sched yield_to(struct task_struct *p, bool preempt)
5562 {
5563 struct task_struct *curr = current;
5564 struct rq *rq, *p_rq;
5565 unsigned long flags;
5566 bool yielded = 0;
5567
5568 local_irq_save(flags);
5569 rq = this_rq();
5570
5571 again:
5572 p_rq = task_rq(p);
5573 double_rq_lock(rq, p_rq);
5574 while (task_rq(p) != p_rq) {
5575 double_rq_unlock(rq, p_rq);
5576 goto again;
5577 }
5578
5579 if (!curr->sched_class->yield_to_task)
5580 goto out;
5581
5582 if (curr->sched_class != p->sched_class)
5583 goto out;
5584
5585 if (task_running(p_rq, p) || p->state)
5586 goto out;
5587
5588 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5589 if (yielded) {
5590 schedstat_inc(rq, yld_count);
5591 /*
5592 * Make p's CPU reschedule; pick_next_entity takes care of
5593 * fairness.
5594 */
5595 if (preempt && rq != p_rq)
5596 resched_task(p_rq->curr);
5597 }
5598
5599 out:
5600 double_rq_unlock(rq, p_rq);
5601 local_irq_restore(flags);
5602
5603 if (yielded)
5604 schedule();
5605
5606 return yielded;
5607 }
5608 EXPORT_SYMBOL_GPL(yield_to);
5609
5610 /*
5611 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5612 * that process accounting knows that this is a task in IO wait state.
5613 */
5614 void __sched io_schedule(void)
5615 {
5616 struct rq *rq = raw_rq();
5617
5618 delayacct_blkio_start();
5619 atomic_inc(&rq->nr_iowait);
5620 blk_flush_plug(current);
5621 current->in_iowait = 1;
5622 schedule();
5623 current->in_iowait = 0;
5624 atomic_dec(&rq->nr_iowait);
5625 delayacct_blkio_end();
5626 }
5627 EXPORT_SYMBOL(io_schedule);
5628
5629 long __sched io_schedule_timeout(long timeout)
5630 {
5631 struct rq *rq = raw_rq();
5632 long ret;
5633
5634 delayacct_blkio_start();
5635 atomic_inc(&rq->nr_iowait);
5636 blk_flush_plug(current);
5637 current->in_iowait = 1;
5638 ret = schedule_timeout(timeout);
5639 current->in_iowait = 0;
5640 atomic_dec(&rq->nr_iowait);
5641 delayacct_blkio_end();
5642 return ret;
5643 }
5644
5645 /**
5646 * sys_sched_get_priority_max - return maximum RT priority.
5647 * @policy: scheduling class.
5648 *
5649 * this syscall returns the maximum rt_priority that can be used
5650 * by a given scheduling class.
5651 */
5652 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5653 {
5654 int ret = -EINVAL;
5655
5656 switch (policy) {
5657 case SCHED_FIFO:
5658 case SCHED_RR:
5659 ret = MAX_USER_RT_PRIO-1;
5660 break;
5661 case SCHED_NORMAL:
5662 case SCHED_BATCH:
5663 case SCHED_IDLE:
5664 ret = 0;
5665 break;
5666 }
5667 return ret;
5668 }
5669
5670 /**
5671 * sys_sched_get_priority_min - return minimum RT priority.
5672 * @policy: scheduling class.
5673 *
5674 * this syscall returns the minimum rt_priority that can be used
5675 * by a given scheduling class.
5676 */
5677 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5678 {
5679 int ret = -EINVAL;
5680
5681 switch (policy) {
5682 case SCHED_FIFO:
5683 case SCHED_RR:
5684 ret = 1;
5685 break;
5686 case SCHED_NORMAL:
5687 case SCHED_BATCH:
5688 case SCHED_IDLE:
5689 ret = 0;
5690 }
5691 return ret;
5692 }
5693
5694 /**
5695 * sys_sched_rr_get_interval - return the default timeslice of a process.
5696 * @pid: pid of the process.
5697 * @interval: userspace pointer to the timeslice value.
5698 *
5699 * this syscall writes the default timeslice value of a given process
5700 * into the user-space timespec buffer. A value of '0' means infinity.
5701 */
5702 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5703 struct timespec __user *, interval)
5704 {
5705 struct task_struct *p;
5706 unsigned int time_slice;
5707 unsigned long flags;
5708 struct rq *rq;
5709 int retval;
5710 struct timespec t;
5711
5712 if (pid < 0)
5713 return -EINVAL;
5714
5715 retval = -ESRCH;
5716 rcu_read_lock();
5717 p = find_process_by_pid(pid);
5718 if (!p)
5719 goto out_unlock;
5720
5721 retval = security_task_getscheduler(p);
5722 if (retval)
5723 goto out_unlock;
5724
5725 rq = task_rq_lock(p, &flags);
5726 time_slice = p->sched_class->get_rr_interval(rq, p);
5727 task_rq_unlock(rq, p, &flags);
5728
5729 rcu_read_unlock();
5730 jiffies_to_timespec(time_slice, &t);
5731 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5732 return retval;
5733
5734 out_unlock:
5735 rcu_read_unlock();
5736 return retval;
5737 }
5738
5739 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5740
5741 void sched_show_task(struct task_struct *p)
5742 {
5743 unsigned long free = 0;
5744 unsigned state;
5745
5746 state = p->state ? __ffs(p->state) + 1 : 0;
5747 printk(KERN_INFO "%-15.15s %c", p->comm,
5748 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5749 #if BITS_PER_LONG == 32
5750 if (state == TASK_RUNNING)
5751 printk(KERN_CONT " running ");
5752 else
5753 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5754 #else
5755 if (state == TASK_RUNNING)
5756 printk(KERN_CONT " running task ");
5757 else
5758 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5759 #endif
5760 #ifdef CONFIG_DEBUG_STACK_USAGE
5761 free = stack_not_used(p);
5762 #endif
5763 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5764 task_pid_nr(p), task_pid_nr(p->real_parent),
5765 (unsigned long)task_thread_info(p)->flags);
5766
5767 show_stack(p, NULL);
5768 }
5769
5770 void show_state_filter(unsigned long state_filter)
5771 {
5772 struct task_struct *g, *p;
5773
5774 #if BITS_PER_LONG == 32
5775 printk(KERN_INFO
5776 " task PC stack pid father\n");
5777 #else
5778 printk(KERN_INFO
5779 " task PC stack pid father\n");
5780 #endif
5781 read_lock(&tasklist_lock);
5782 do_each_thread(g, p) {
5783 /*
5784 * reset the NMI-timeout, listing all files on a slow
5785 * console might take a lot of time:
5786 */
5787 touch_nmi_watchdog();
5788 if (!state_filter || (p->state & state_filter))
5789 sched_show_task(p);
5790 } while_each_thread(g, p);
5791
5792 touch_all_softlockup_watchdogs();
5793
5794 #ifdef CONFIG_SCHED_DEBUG
5795 sysrq_sched_debug_show();
5796 #endif
5797 read_unlock(&tasklist_lock);
5798 /*
5799 * Only show locks if all tasks are dumped:
5800 */
5801 if (!state_filter)
5802 debug_show_all_locks();
5803 }
5804
5805 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5806 {
5807 idle->sched_class = &idle_sched_class;
5808 }
5809
5810 /**
5811 * init_idle - set up an idle thread for a given CPU
5812 * @idle: task in question
5813 * @cpu: cpu the idle task belongs to
5814 *
5815 * NOTE: this function does not set the idle thread's NEED_RESCHED
5816 * flag, to make booting more robust.
5817 */
5818 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5819 {
5820 struct rq *rq = cpu_rq(cpu);
5821 unsigned long flags;
5822
5823 raw_spin_lock_irqsave(&rq->lock, flags);
5824
5825 __sched_fork(idle);
5826 idle->state = TASK_RUNNING;
5827 idle->se.exec_start = sched_clock();
5828
5829 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5830 /*
5831 * We're having a chicken and egg problem, even though we are
5832 * holding rq->lock, the cpu isn't yet set to this cpu so the
5833 * lockdep check in task_group() will fail.
5834 *
5835 * Similar case to sched_fork(). / Alternatively we could
5836 * use task_rq_lock() here and obtain the other rq->lock.
5837 *
5838 * Silence PROVE_RCU
5839 */
5840 rcu_read_lock();
5841 __set_task_cpu(idle, cpu);
5842 rcu_read_unlock();
5843
5844 rq->curr = rq->idle = idle;
5845 #if defined(CONFIG_SMP)
5846 idle->on_cpu = 1;
5847 #endif
5848 raw_spin_unlock_irqrestore(&rq->lock, flags);
5849
5850 /* Set the preempt count _outside_ the spinlocks! */
5851 task_thread_info(idle)->preempt_count = 0;
5852
5853 /*
5854 * The idle tasks have their own, simple scheduling class:
5855 */
5856 idle->sched_class = &idle_sched_class;
5857 ftrace_graph_init_idle_task(idle, cpu);
5858 }
5859
5860 /*
5861 * In a system that switches off the HZ timer nohz_cpu_mask
5862 * indicates which cpus entered this state. This is used
5863 * in the rcu update to wait only for active cpus. For system
5864 * which do not switch off the HZ timer nohz_cpu_mask should
5865 * always be CPU_BITS_NONE.
5866 */
5867 cpumask_var_t nohz_cpu_mask;
5868
5869 /*
5870 * Increase the granularity value when there are more CPUs,
5871 * because with more CPUs the 'effective latency' as visible
5872 * to users decreases. But the relationship is not linear,
5873 * so pick a second-best guess by going with the log2 of the
5874 * number of CPUs.
5875 *
5876 * This idea comes from the SD scheduler of Con Kolivas:
5877 */
5878 static int get_update_sysctl_factor(void)
5879 {
5880 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5881 unsigned int factor;
5882
5883 switch (sysctl_sched_tunable_scaling) {
5884 case SCHED_TUNABLESCALING_NONE:
5885 factor = 1;
5886 break;
5887 case SCHED_TUNABLESCALING_LINEAR:
5888 factor = cpus;
5889 break;
5890 case SCHED_TUNABLESCALING_LOG:
5891 default:
5892 factor = 1 + ilog2(cpus);
5893 break;
5894 }
5895
5896 return factor;
5897 }
5898
5899 static void update_sysctl(void)
5900 {
5901 unsigned int factor = get_update_sysctl_factor();
5902
5903 #define SET_SYSCTL(name) \
5904 (sysctl_##name = (factor) * normalized_sysctl_##name)
5905 SET_SYSCTL(sched_min_granularity);
5906 SET_SYSCTL(sched_latency);
5907 SET_SYSCTL(sched_wakeup_granularity);
5908 #undef SET_SYSCTL
5909 }
5910
5911 static inline void sched_init_granularity(void)
5912 {
5913 update_sysctl();
5914 }
5915
5916 #ifdef CONFIG_SMP
5917 /*
5918 * This is how migration works:
5919 *
5920 * 1) we invoke migration_cpu_stop() on the target CPU using
5921 * stop_one_cpu().
5922 * 2) stopper starts to run (implicitly forcing the migrated thread
5923 * off the CPU)
5924 * 3) it checks whether the migrated task is still in the wrong runqueue.
5925 * 4) if it's in the wrong runqueue then the migration thread removes
5926 * it and puts it into the right queue.
5927 * 5) stopper completes and stop_one_cpu() returns and the migration
5928 * is done.
5929 */
5930
5931 /*
5932 * Change a given task's CPU affinity. Migrate the thread to a
5933 * proper CPU and schedule it away if the CPU it's executing on
5934 * is removed from the allowed bitmask.
5935 *
5936 * NOTE: the caller must have a valid reference to the task, the
5937 * task must not exit() & deallocate itself prematurely. The
5938 * call is not atomic; no spinlocks may be held.
5939 */
5940 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5941 {
5942 unsigned long flags;
5943 struct rq *rq;
5944 unsigned int dest_cpu;
5945 int ret = 0;
5946
5947 rq = task_rq_lock(p, &flags);
5948
5949 if (cpumask_equal(&p->cpus_allowed, new_mask))
5950 goto out;
5951
5952 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5953 ret = -EINVAL;
5954 goto out;
5955 }
5956
5957 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5958 ret = -EINVAL;
5959 goto out;
5960 }
5961
5962 if (p->sched_class->set_cpus_allowed)
5963 p->sched_class->set_cpus_allowed(p, new_mask);
5964 else {
5965 cpumask_copy(&p->cpus_allowed, new_mask);
5966 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5967 }
5968
5969 /* Can the task run on the task's current CPU? If so, we're done */
5970 if (cpumask_test_cpu(task_cpu(p), new_mask))
5971 goto out;
5972
5973 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5974 if (p->on_rq) {
5975 struct migration_arg arg = { p, dest_cpu };
5976 /* Need help from migration thread: drop lock and wait. */
5977 task_rq_unlock(rq, p, &flags);
5978 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5979 tlb_migrate_finish(p->mm);
5980 return 0;
5981 }
5982 out:
5983 task_rq_unlock(rq, p, &flags);
5984
5985 return ret;
5986 }
5987 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5988
5989 /*
5990 * Move (not current) task off this cpu, onto dest cpu. We're doing
5991 * this because either it can't run here any more (set_cpus_allowed()
5992 * away from this CPU, or CPU going down), or because we're
5993 * attempting to rebalance this task on exec (sched_exec).
5994 *
5995 * So we race with normal scheduler movements, but that's OK, as long
5996 * as the task is no longer on this CPU.
5997 *
5998 * Returns non-zero if task was successfully migrated.
5999 */
6000 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6001 {
6002 struct rq *rq_dest, *rq_src;
6003 int ret = 0;
6004
6005 if (unlikely(!cpu_active(dest_cpu)))
6006 return ret;
6007
6008 rq_src = cpu_rq(src_cpu);
6009 rq_dest = cpu_rq(dest_cpu);
6010
6011 raw_spin_lock(&p->pi_lock);
6012 double_rq_lock(rq_src, rq_dest);
6013 /* Already moved. */
6014 if (task_cpu(p) != src_cpu)
6015 goto done;
6016 /* Affinity changed (again). */
6017 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6018 goto fail;
6019
6020 /*
6021 * If we're not on a rq, the next wake-up will ensure we're
6022 * placed properly.
6023 */
6024 if (p->on_rq) {
6025 deactivate_task(rq_src, p, 0);
6026 set_task_cpu(p, dest_cpu);
6027 activate_task(rq_dest, p, 0);
6028 check_preempt_curr(rq_dest, p, 0);
6029 }
6030 done:
6031 ret = 1;
6032 fail:
6033 double_rq_unlock(rq_src, rq_dest);
6034 raw_spin_unlock(&p->pi_lock);
6035 return ret;
6036 }
6037
6038 /*
6039 * migration_cpu_stop - this will be executed by a highprio stopper thread
6040 * and performs thread migration by bumping thread off CPU then
6041 * 'pushing' onto another runqueue.
6042 */
6043 static int migration_cpu_stop(void *data)
6044 {
6045 struct migration_arg *arg = data;
6046
6047 /*
6048 * The original target cpu might have gone down and we might
6049 * be on another cpu but it doesn't matter.
6050 */
6051 local_irq_disable();
6052 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6053 local_irq_enable();
6054 return 0;
6055 }
6056
6057 #ifdef CONFIG_HOTPLUG_CPU
6058
6059 /*
6060 * Ensures that the idle task is using init_mm right before its cpu goes
6061 * offline.
6062 */
6063 void idle_task_exit(void)
6064 {
6065 struct mm_struct *mm = current->active_mm;
6066
6067 BUG_ON(cpu_online(smp_processor_id()));
6068
6069 if (mm != &init_mm)
6070 switch_mm(mm, &init_mm, current);
6071 mmdrop(mm);
6072 }
6073
6074 /*
6075 * While a dead CPU has no uninterruptible tasks queued at this point,
6076 * it might still have a nonzero ->nr_uninterruptible counter, because
6077 * for performance reasons the counter is not stricly tracking tasks to
6078 * their home CPUs. So we just add the counter to another CPU's counter,
6079 * to keep the global sum constant after CPU-down:
6080 */
6081 static void migrate_nr_uninterruptible(struct rq *rq_src)
6082 {
6083 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6084
6085 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6086 rq_src->nr_uninterruptible = 0;
6087 }
6088
6089 /*
6090 * remove the tasks which were accounted by rq from calc_load_tasks.
6091 */
6092 static void calc_global_load_remove(struct rq *rq)
6093 {
6094 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6095 rq->calc_load_active = 0;
6096 }
6097
6098 /*
6099 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6100 * try_to_wake_up()->select_task_rq().
6101 *
6102 * Called with rq->lock held even though we'er in stop_machine() and
6103 * there's no concurrency possible, we hold the required locks anyway
6104 * because of lock validation efforts.
6105 */
6106 static void migrate_tasks(unsigned int dead_cpu)
6107 {
6108 struct rq *rq = cpu_rq(dead_cpu);
6109 struct task_struct *next, *stop = rq->stop;
6110 int dest_cpu;
6111
6112 /*
6113 * Fudge the rq selection such that the below task selection loop
6114 * doesn't get stuck on the currently eligible stop task.
6115 *
6116 * We're currently inside stop_machine() and the rq is either stuck
6117 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6118 * either way we should never end up calling schedule() until we're
6119 * done here.
6120 */
6121 rq->stop = NULL;
6122
6123 for ( ; ; ) {
6124 /*
6125 * There's this thread running, bail when that's the only
6126 * remaining thread.
6127 */
6128 if (rq->nr_running == 1)
6129 break;
6130
6131 next = pick_next_task(rq);
6132 BUG_ON(!next);
6133 next->sched_class->put_prev_task(rq, next);
6134
6135 /* Find suitable destination for @next, with force if needed. */
6136 dest_cpu = select_fallback_rq(dead_cpu, next);
6137 raw_spin_unlock(&rq->lock);
6138
6139 __migrate_task(next, dead_cpu, dest_cpu);
6140
6141 raw_spin_lock(&rq->lock);
6142 }
6143
6144 rq->stop = stop;
6145 }
6146
6147 #endif /* CONFIG_HOTPLUG_CPU */
6148
6149 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6150
6151 static struct ctl_table sd_ctl_dir[] = {
6152 {
6153 .procname = "sched_domain",
6154 .mode = 0555,
6155 },
6156 {}
6157 };
6158
6159 static struct ctl_table sd_ctl_root[] = {
6160 {
6161 .procname = "kernel",
6162 .mode = 0555,
6163 .child = sd_ctl_dir,
6164 },
6165 {}
6166 };
6167
6168 static struct ctl_table *sd_alloc_ctl_entry(int n)
6169 {
6170 struct ctl_table *entry =
6171 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6172
6173 return entry;
6174 }
6175
6176 static void sd_free_ctl_entry(struct ctl_table **tablep)
6177 {
6178 struct ctl_table *entry;
6179
6180 /*
6181 * In the intermediate directories, both the child directory and
6182 * procname are dynamically allocated and could fail but the mode
6183 * will always be set. In the lowest directory the names are
6184 * static strings and all have proc handlers.
6185 */
6186 for (entry = *tablep; entry->mode; entry++) {
6187 if (entry->child)
6188 sd_free_ctl_entry(&entry->child);
6189 if (entry->proc_handler == NULL)
6190 kfree(entry->procname);
6191 }
6192
6193 kfree(*tablep);
6194 *tablep = NULL;
6195 }
6196
6197 static void
6198 set_table_entry(struct ctl_table *entry,
6199 const char *procname, void *data, int maxlen,
6200 mode_t mode, proc_handler *proc_handler)
6201 {
6202 entry->procname = procname;
6203 entry->data = data;
6204 entry->maxlen = maxlen;
6205 entry->mode = mode;
6206 entry->proc_handler = proc_handler;
6207 }
6208
6209 static struct ctl_table *
6210 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6211 {
6212 struct ctl_table *table = sd_alloc_ctl_entry(13);
6213
6214 if (table == NULL)
6215 return NULL;
6216
6217 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6218 sizeof(long), 0644, proc_doulongvec_minmax);
6219 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6220 sizeof(long), 0644, proc_doulongvec_minmax);
6221 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6222 sizeof(int), 0644, proc_dointvec_minmax);
6223 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6224 sizeof(int), 0644, proc_dointvec_minmax);
6225 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6226 sizeof(int), 0644, proc_dointvec_minmax);
6227 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6228 sizeof(int), 0644, proc_dointvec_minmax);
6229 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6230 sizeof(int), 0644, proc_dointvec_minmax);
6231 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6232 sizeof(int), 0644, proc_dointvec_minmax);
6233 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6234 sizeof(int), 0644, proc_dointvec_minmax);
6235 set_table_entry(&table[9], "cache_nice_tries",
6236 &sd->cache_nice_tries,
6237 sizeof(int), 0644, proc_dointvec_minmax);
6238 set_table_entry(&table[10], "flags", &sd->flags,
6239 sizeof(int), 0644, proc_dointvec_minmax);
6240 set_table_entry(&table[11], "name", sd->name,
6241 CORENAME_MAX_SIZE, 0444, proc_dostring);
6242 /* &table[12] is terminator */
6243
6244 return table;
6245 }
6246
6247 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6248 {
6249 struct ctl_table *entry, *table;
6250 struct sched_domain *sd;
6251 int domain_num = 0, i;
6252 char buf[32];
6253
6254 for_each_domain(cpu, sd)
6255 domain_num++;
6256 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6257 if (table == NULL)
6258 return NULL;
6259
6260 i = 0;
6261 for_each_domain(cpu, sd) {
6262 snprintf(buf, 32, "domain%d", i);
6263 entry->procname = kstrdup(buf, GFP_KERNEL);
6264 entry->mode = 0555;
6265 entry->child = sd_alloc_ctl_domain_table(sd);
6266 entry++;
6267 i++;
6268 }
6269 return table;
6270 }
6271
6272 static struct ctl_table_header *sd_sysctl_header;
6273 static void register_sched_domain_sysctl(void)
6274 {
6275 int i, cpu_num = num_possible_cpus();
6276 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6277 char buf[32];
6278
6279 WARN_ON(sd_ctl_dir[0].child);
6280 sd_ctl_dir[0].child = entry;
6281
6282 if (entry == NULL)
6283 return;
6284
6285 for_each_possible_cpu(i) {
6286 snprintf(buf, 32, "cpu%d", i);
6287 entry->procname = kstrdup(buf, GFP_KERNEL);
6288 entry->mode = 0555;
6289 entry->child = sd_alloc_ctl_cpu_table(i);
6290 entry++;
6291 }
6292
6293 WARN_ON(sd_sysctl_header);
6294 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6295 }
6296
6297 /* may be called multiple times per register */
6298 static void unregister_sched_domain_sysctl(void)
6299 {
6300 if (sd_sysctl_header)
6301 unregister_sysctl_table(sd_sysctl_header);
6302 sd_sysctl_header = NULL;
6303 if (sd_ctl_dir[0].child)
6304 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6305 }
6306 #else
6307 static void register_sched_domain_sysctl(void)
6308 {
6309 }
6310 static void unregister_sched_domain_sysctl(void)
6311 {
6312 }
6313 #endif
6314
6315 static void set_rq_online(struct rq *rq)
6316 {
6317 if (!rq->online) {
6318 const struct sched_class *class;
6319
6320 cpumask_set_cpu(rq->cpu, rq->rd->online);
6321 rq->online = 1;
6322
6323 for_each_class(class) {
6324 if (class->rq_online)
6325 class->rq_online(rq);
6326 }
6327 }
6328 }
6329
6330 static void set_rq_offline(struct rq *rq)
6331 {
6332 if (rq->online) {
6333 const struct sched_class *class;
6334
6335 for_each_class(class) {
6336 if (class->rq_offline)
6337 class->rq_offline(rq);
6338 }
6339
6340 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6341 rq->online = 0;
6342 }
6343 }
6344
6345 /*
6346 * migration_call - callback that gets triggered when a CPU is added.
6347 * Here we can start up the necessary migration thread for the new CPU.
6348 */
6349 static int __cpuinit
6350 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6351 {
6352 int cpu = (long)hcpu;
6353 unsigned long flags;
6354 struct rq *rq = cpu_rq(cpu);
6355
6356 switch (action & ~CPU_TASKS_FROZEN) {
6357
6358 case CPU_UP_PREPARE:
6359 rq->calc_load_update = calc_load_update;
6360 break;
6361
6362 case CPU_ONLINE:
6363 /* Update our root-domain */
6364 raw_spin_lock_irqsave(&rq->lock, flags);
6365 if (rq->rd) {
6366 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6367
6368 set_rq_online(rq);
6369 }
6370 raw_spin_unlock_irqrestore(&rq->lock, flags);
6371 break;
6372
6373 #ifdef CONFIG_HOTPLUG_CPU
6374 case CPU_DYING:
6375 sched_ttwu_pending();
6376 /* Update our root-domain */
6377 raw_spin_lock_irqsave(&rq->lock, flags);
6378 if (rq->rd) {
6379 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6380 set_rq_offline(rq);
6381 }
6382 migrate_tasks(cpu);
6383 BUG_ON(rq->nr_running != 1); /* the migration thread */
6384 raw_spin_unlock_irqrestore(&rq->lock, flags);
6385
6386 migrate_nr_uninterruptible(rq);
6387 calc_global_load_remove(rq);
6388 break;
6389 #endif
6390 }
6391
6392 update_max_interval();
6393
6394 return NOTIFY_OK;
6395 }
6396
6397 /*
6398 * Register at high priority so that task migration (migrate_all_tasks)
6399 * happens before everything else. This has to be lower priority than
6400 * the notifier in the perf_event subsystem, though.
6401 */
6402 static struct notifier_block __cpuinitdata migration_notifier = {
6403 .notifier_call = migration_call,
6404 .priority = CPU_PRI_MIGRATION,
6405 };
6406
6407 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6408 unsigned long action, void *hcpu)
6409 {
6410 switch (action & ~CPU_TASKS_FROZEN) {
6411 case CPU_ONLINE:
6412 case CPU_DOWN_FAILED:
6413 set_cpu_active((long)hcpu, true);
6414 return NOTIFY_OK;
6415 default:
6416 return NOTIFY_DONE;
6417 }
6418 }
6419
6420 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6421 unsigned long action, void *hcpu)
6422 {
6423 switch (action & ~CPU_TASKS_FROZEN) {
6424 case CPU_DOWN_PREPARE:
6425 set_cpu_active((long)hcpu, false);
6426 return NOTIFY_OK;
6427 default:
6428 return NOTIFY_DONE;
6429 }
6430 }
6431
6432 static int __init migration_init(void)
6433 {
6434 void *cpu = (void *)(long)smp_processor_id();
6435 int err;
6436
6437 /* Initialize migration for the boot CPU */
6438 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6439 BUG_ON(err == NOTIFY_BAD);
6440 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6441 register_cpu_notifier(&migration_notifier);
6442
6443 /* Register cpu active notifiers */
6444 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6445 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6446
6447 return 0;
6448 }
6449 early_initcall(migration_init);
6450 #endif
6451
6452 #ifdef CONFIG_SMP
6453
6454 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6455
6456 #ifdef CONFIG_SCHED_DEBUG
6457
6458 static __read_mostly int sched_domain_debug_enabled;
6459
6460 static int __init sched_domain_debug_setup(char *str)
6461 {
6462 sched_domain_debug_enabled = 1;
6463
6464 return 0;
6465 }
6466 early_param("sched_debug", sched_domain_debug_setup);
6467
6468 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6469 struct cpumask *groupmask)
6470 {
6471 struct sched_group *group = sd->groups;
6472 char str[256];
6473
6474 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6475 cpumask_clear(groupmask);
6476
6477 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6478
6479 if (!(sd->flags & SD_LOAD_BALANCE)) {
6480 printk("does not load-balance\n");
6481 if (sd->parent)
6482 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6483 " has parent");
6484 return -1;
6485 }
6486
6487 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6488
6489 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6490 printk(KERN_ERR "ERROR: domain->span does not contain "
6491 "CPU%d\n", cpu);
6492 }
6493 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6494 printk(KERN_ERR "ERROR: domain->groups does not contain"
6495 " CPU%d\n", cpu);
6496 }
6497
6498 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6499 do {
6500 if (!group) {
6501 printk("\n");
6502 printk(KERN_ERR "ERROR: group is NULL\n");
6503 break;
6504 }
6505
6506 if (!group->cpu_power) {
6507 printk(KERN_CONT "\n");
6508 printk(KERN_ERR "ERROR: domain->cpu_power not "
6509 "set\n");
6510 break;
6511 }
6512
6513 if (!cpumask_weight(sched_group_cpus(group))) {
6514 printk(KERN_CONT "\n");
6515 printk(KERN_ERR "ERROR: empty group\n");
6516 break;
6517 }
6518
6519 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6520 printk(KERN_CONT "\n");
6521 printk(KERN_ERR "ERROR: repeated CPUs\n");
6522 break;
6523 }
6524
6525 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6526
6527 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6528
6529 printk(KERN_CONT " %s", str);
6530 if (group->cpu_power != SCHED_LOAD_SCALE) {
6531 printk(KERN_CONT " (cpu_power = %d)",
6532 group->cpu_power);
6533 }
6534
6535 group = group->next;
6536 } while (group != sd->groups);
6537 printk(KERN_CONT "\n");
6538
6539 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6540 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6541
6542 if (sd->parent &&
6543 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6544 printk(KERN_ERR "ERROR: parent span is not a superset "
6545 "of domain->span\n");
6546 return 0;
6547 }
6548
6549 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6550 {
6551 int level = 0;
6552
6553 if (!sched_domain_debug_enabled)
6554 return;
6555
6556 if (!sd) {
6557 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6558 return;
6559 }
6560
6561 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6562
6563 for (;;) {
6564 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6565 break;
6566 level++;
6567 sd = sd->parent;
6568 if (!sd)
6569 break;
6570 }
6571 }
6572 #else /* !CONFIG_SCHED_DEBUG */
6573 # define sched_domain_debug(sd, cpu) do { } while (0)
6574 #endif /* CONFIG_SCHED_DEBUG */
6575
6576 static int sd_degenerate(struct sched_domain *sd)
6577 {
6578 if (cpumask_weight(sched_domain_span(sd)) == 1)
6579 return 1;
6580
6581 /* Following flags need at least 2 groups */
6582 if (sd->flags & (SD_LOAD_BALANCE |
6583 SD_BALANCE_NEWIDLE |
6584 SD_BALANCE_FORK |
6585 SD_BALANCE_EXEC |
6586 SD_SHARE_CPUPOWER |
6587 SD_SHARE_PKG_RESOURCES)) {
6588 if (sd->groups != sd->groups->next)
6589 return 0;
6590 }
6591
6592 /* Following flags don't use groups */
6593 if (sd->flags & (SD_WAKE_AFFINE))
6594 return 0;
6595
6596 return 1;
6597 }
6598
6599 static int
6600 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6601 {
6602 unsigned long cflags = sd->flags, pflags = parent->flags;
6603
6604 if (sd_degenerate(parent))
6605 return 1;
6606
6607 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6608 return 0;
6609
6610 /* Flags needing groups don't count if only 1 group in parent */
6611 if (parent->groups == parent->groups->next) {
6612 pflags &= ~(SD_LOAD_BALANCE |
6613 SD_BALANCE_NEWIDLE |
6614 SD_BALANCE_FORK |
6615 SD_BALANCE_EXEC |
6616 SD_SHARE_CPUPOWER |
6617 SD_SHARE_PKG_RESOURCES);
6618 if (nr_node_ids == 1)
6619 pflags &= ~SD_SERIALIZE;
6620 }
6621 if (~cflags & pflags)
6622 return 0;
6623
6624 return 1;
6625 }
6626
6627 static void free_rootdomain(struct rcu_head *rcu)
6628 {
6629 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6630
6631 cpupri_cleanup(&rd->cpupri);
6632 free_cpumask_var(rd->rto_mask);
6633 free_cpumask_var(rd->online);
6634 free_cpumask_var(rd->span);
6635 kfree(rd);
6636 }
6637
6638 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6639 {
6640 struct root_domain *old_rd = NULL;
6641 unsigned long flags;
6642
6643 raw_spin_lock_irqsave(&rq->lock, flags);
6644
6645 if (rq->rd) {
6646 old_rd = rq->rd;
6647
6648 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6649 set_rq_offline(rq);
6650
6651 cpumask_clear_cpu(rq->cpu, old_rd->span);
6652
6653 /*
6654 * If we dont want to free the old_rt yet then
6655 * set old_rd to NULL to skip the freeing later
6656 * in this function:
6657 */
6658 if (!atomic_dec_and_test(&old_rd->refcount))
6659 old_rd = NULL;
6660 }
6661
6662 atomic_inc(&rd->refcount);
6663 rq->rd = rd;
6664
6665 cpumask_set_cpu(rq->cpu, rd->span);
6666 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6667 set_rq_online(rq);
6668
6669 raw_spin_unlock_irqrestore(&rq->lock, flags);
6670
6671 if (old_rd)
6672 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6673 }
6674
6675 static int init_rootdomain(struct root_domain *rd)
6676 {
6677 memset(rd, 0, sizeof(*rd));
6678
6679 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6680 goto out;
6681 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6682 goto free_span;
6683 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6684 goto free_online;
6685
6686 if (cpupri_init(&rd->cpupri) != 0)
6687 goto free_rto_mask;
6688 return 0;
6689
6690 free_rto_mask:
6691 free_cpumask_var(rd->rto_mask);
6692 free_online:
6693 free_cpumask_var(rd->online);
6694 free_span:
6695 free_cpumask_var(rd->span);
6696 out:
6697 return -ENOMEM;
6698 }
6699
6700 static void init_defrootdomain(void)
6701 {
6702 init_rootdomain(&def_root_domain);
6703
6704 atomic_set(&def_root_domain.refcount, 1);
6705 }
6706
6707 static struct root_domain *alloc_rootdomain(void)
6708 {
6709 struct root_domain *rd;
6710
6711 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6712 if (!rd)
6713 return NULL;
6714
6715 if (init_rootdomain(rd) != 0) {
6716 kfree(rd);
6717 return NULL;
6718 }
6719
6720 return rd;
6721 }
6722
6723 static void free_sched_domain(struct rcu_head *rcu)
6724 {
6725 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6726 if (atomic_dec_and_test(&sd->groups->ref))
6727 kfree(sd->groups);
6728 kfree(sd);
6729 }
6730
6731 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6732 {
6733 call_rcu(&sd->rcu, free_sched_domain);
6734 }
6735
6736 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6737 {
6738 for (; sd; sd = sd->parent)
6739 destroy_sched_domain(sd, cpu);
6740 }
6741
6742 /*
6743 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6744 * hold the hotplug lock.
6745 */
6746 static void
6747 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6748 {
6749 struct rq *rq = cpu_rq(cpu);
6750 struct sched_domain *tmp;
6751
6752 /* Remove the sched domains which do not contribute to scheduling. */
6753 for (tmp = sd; tmp; ) {
6754 struct sched_domain *parent = tmp->parent;
6755 if (!parent)
6756 break;
6757
6758 if (sd_parent_degenerate(tmp, parent)) {
6759 tmp->parent = parent->parent;
6760 if (parent->parent)
6761 parent->parent->child = tmp;
6762 destroy_sched_domain(parent, cpu);
6763 } else
6764 tmp = tmp->parent;
6765 }
6766
6767 if (sd && sd_degenerate(sd)) {
6768 tmp = sd;
6769 sd = sd->parent;
6770 destroy_sched_domain(tmp, cpu);
6771 if (sd)
6772 sd->child = NULL;
6773 }
6774
6775 sched_domain_debug(sd, cpu);
6776
6777 rq_attach_root(rq, rd);
6778 tmp = rq->sd;
6779 rcu_assign_pointer(rq->sd, sd);
6780 destroy_sched_domains(tmp, cpu);
6781 }
6782
6783 /* cpus with isolated domains */
6784 static cpumask_var_t cpu_isolated_map;
6785
6786 /* Setup the mask of cpus configured for isolated domains */
6787 static int __init isolated_cpu_setup(char *str)
6788 {
6789 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6790 cpulist_parse(str, cpu_isolated_map);
6791 return 1;
6792 }
6793
6794 __setup("isolcpus=", isolated_cpu_setup);
6795
6796 #define SD_NODES_PER_DOMAIN 16
6797
6798 #ifdef CONFIG_NUMA
6799
6800 /**
6801 * find_next_best_node - find the next node to include in a sched_domain
6802 * @node: node whose sched_domain we're building
6803 * @used_nodes: nodes already in the sched_domain
6804 *
6805 * Find the next node to include in a given scheduling domain. Simply
6806 * finds the closest node not already in the @used_nodes map.
6807 *
6808 * Should use nodemask_t.
6809 */
6810 static int find_next_best_node(int node, nodemask_t *used_nodes)
6811 {
6812 int i, n, val, min_val, best_node = -1;
6813
6814 min_val = INT_MAX;
6815
6816 for (i = 0; i < nr_node_ids; i++) {
6817 /* Start at @node */
6818 n = (node + i) % nr_node_ids;
6819
6820 if (!nr_cpus_node(n))
6821 continue;
6822
6823 /* Skip already used nodes */
6824 if (node_isset(n, *used_nodes))
6825 continue;
6826
6827 /* Simple min distance search */
6828 val = node_distance(node, n);
6829
6830 if (val < min_val) {
6831 min_val = val;
6832 best_node = n;
6833 }
6834 }
6835
6836 if (best_node != -1)
6837 node_set(best_node, *used_nodes);
6838 return best_node;
6839 }
6840
6841 /**
6842 * sched_domain_node_span - get a cpumask for a node's sched_domain
6843 * @node: node whose cpumask we're constructing
6844 * @span: resulting cpumask
6845 *
6846 * Given a node, construct a good cpumask for its sched_domain to span. It
6847 * should be one that prevents unnecessary balancing, but also spreads tasks
6848 * out optimally.
6849 */
6850 static void sched_domain_node_span(int node, struct cpumask *span)
6851 {
6852 nodemask_t used_nodes;
6853 int i;
6854
6855 cpumask_clear(span);
6856 nodes_clear(used_nodes);
6857
6858 cpumask_or(span, span, cpumask_of_node(node));
6859 node_set(node, used_nodes);
6860
6861 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6862 int next_node = find_next_best_node(node, &used_nodes);
6863 if (next_node < 0)
6864 break;
6865 cpumask_or(span, span, cpumask_of_node(next_node));
6866 }
6867 }
6868
6869 static const struct cpumask *cpu_node_mask(int cpu)
6870 {
6871 lockdep_assert_held(&sched_domains_mutex);
6872
6873 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6874
6875 return sched_domains_tmpmask;
6876 }
6877
6878 static const struct cpumask *cpu_allnodes_mask(int cpu)
6879 {
6880 return cpu_possible_mask;
6881 }
6882 #endif /* CONFIG_NUMA */
6883
6884 static const struct cpumask *cpu_cpu_mask(int cpu)
6885 {
6886 return cpumask_of_node(cpu_to_node(cpu));
6887 }
6888
6889 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6890
6891 struct sd_data {
6892 struct sched_domain **__percpu sd;
6893 struct sched_group **__percpu sg;
6894 };
6895
6896 struct s_data {
6897 struct sched_domain ** __percpu sd;
6898 struct root_domain *rd;
6899 };
6900
6901 enum s_alloc {
6902 sa_rootdomain,
6903 sa_sd,
6904 sa_sd_storage,
6905 sa_none,
6906 };
6907
6908 struct sched_domain_topology_level;
6909
6910 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6911 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6912
6913 struct sched_domain_topology_level {
6914 sched_domain_init_f init;
6915 sched_domain_mask_f mask;
6916 struct sd_data data;
6917 };
6918
6919 /*
6920 * Assumes the sched_domain tree is fully constructed
6921 */
6922 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6923 {
6924 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6925 struct sched_domain *child = sd->child;
6926
6927 if (child)
6928 cpu = cpumask_first(sched_domain_span(child));
6929
6930 if (sg)
6931 *sg = *per_cpu_ptr(sdd->sg, cpu);
6932
6933 return cpu;
6934 }
6935
6936 /*
6937 * build_sched_groups takes the cpumask we wish to span, and a pointer
6938 * to a function which identifies what group(along with sched group) a CPU
6939 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6940 * (due to the fact that we keep track of groups covered with a struct cpumask).
6941 *
6942 * build_sched_groups will build a circular linked list of the groups
6943 * covered by the given span, and will set each group's ->cpumask correctly,
6944 * and ->cpu_power to 0.
6945 */
6946 static void
6947 build_sched_groups(struct sched_domain *sd)
6948 {
6949 struct sched_group *first = NULL, *last = NULL;
6950 struct sd_data *sdd = sd->private;
6951 const struct cpumask *span = sched_domain_span(sd);
6952 struct cpumask *covered;
6953 int i;
6954
6955 lockdep_assert_held(&sched_domains_mutex);
6956 covered = sched_domains_tmpmask;
6957
6958 cpumask_clear(covered);
6959
6960 for_each_cpu(i, span) {
6961 struct sched_group *sg;
6962 int group = get_group(i, sdd, &sg);
6963 int j;
6964
6965 if (cpumask_test_cpu(i, covered))
6966 continue;
6967
6968 cpumask_clear(sched_group_cpus(sg));
6969 sg->cpu_power = 0;
6970
6971 for_each_cpu(j, span) {
6972 if (get_group(j, sdd, NULL) != group)
6973 continue;
6974
6975 cpumask_set_cpu(j, covered);
6976 cpumask_set_cpu(j, sched_group_cpus(sg));
6977 }
6978
6979 if (!first)
6980 first = sg;
6981 if (last)
6982 last->next = sg;
6983 last = sg;
6984 }
6985 last->next = first;
6986 }
6987
6988 /*
6989 * Initialize sched groups cpu_power.
6990 *
6991 * cpu_power indicates the capacity of sched group, which is used while
6992 * distributing the load between different sched groups in a sched domain.
6993 * Typically cpu_power for all the groups in a sched domain will be same unless
6994 * there are asymmetries in the topology. If there are asymmetries, group
6995 * having more cpu_power will pickup more load compared to the group having
6996 * less cpu_power.
6997 */
6998 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6999 {
7000 WARN_ON(!sd || !sd->groups);
7001
7002 if (cpu != group_first_cpu(sd->groups))
7003 return;
7004
7005 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7006
7007 update_group_power(sd, cpu);
7008 }
7009
7010 /*
7011 * Initializers for schedule domains
7012 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7013 */
7014
7015 #ifdef CONFIG_SCHED_DEBUG
7016 # define SD_INIT_NAME(sd, type) sd->name = #type
7017 #else
7018 # define SD_INIT_NAME(sd, type) do { } while (0)
7019 #endif
7020
7021 #define SD_INIT_FUNC(type) \
7022 static noinline struct sched_domain * \
7023 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7024 { \
7025 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7026 *sd = SD_##type##_INIT; \
7027 SD_INIT_NAME(sd, type); \
7028 sd->private = &tl->data; \
7029 return sd; \
7030 }
7031
7032 SD_INIT_FUNC(CPU)
7033 #ifdef CONFIG_NUMA
7034 SD_INIT_FUNC(ALLNODES)
7035 SD_INIT_FUNC(NODE)
7036 #endif
7037 #ifdef CONFIG_SCHED_SMT
7038 SD_INIT_FUNC(SIBLING)
7039 #endif
7040 #ifdef CONFIG_SCHED_MC
7041 SD_INIT_FUNC(MC)
7042 #endif
7043 #ifdef CONFIG_SCHED_BOOK
7044 SD_INIT_FUNC(BOOK)
7045 #endif
7046
7047 static int default_relax_domain_level = -1;
7048 int sched_domain_level_max;
7049
7050 static int __init setup_relax_domain_level(char *str)
7051 {
7052 unsigned long val;
7053
7054 val = simple_strtoul(str, NULL, 0);
7055 if (val < sched_domain_level_max)
7056 default_relax_domain_level = val;
7057
7058 return 1;
7059 }
7060 __setup("relax_domain_level=", setup_relax_domain_level);
7061
7062 static void set_domain_attribute(struct sched_domain *sd,
7063 struct sched_domain_attr *attr)
7064 {
7065 int request;
7066
7067 if (!attr || attr->relax_domain_level < 0) {
7068 if (default_relax_domain_level < 0)
7069 return;
7070 else
7071 request = default_relax_domain_level;
7072 } else
7073 request = attr->relax_domain_level;
7074 if (request < sd->level) {
7075 /* turn off idle balance on this domain */
7076 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7077 } else {
7078 /* turn on idle balance on this domain */
7079 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7080 }
7081 }
7082
7083 static void __sdt_free(const struct cpumask *cpu_map);
7084 static int __sdt_alloc(const struct cpumask *cpu_map);
7085
7086 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7087 const struct cpumask *cpu_map)
7088 {
7089 switch (what) {
7090 case sa_rootdomain:
7091 if (!atomic_read(&d->rd->refcount))
7092 free_rootdomain(&d->rd->rcu); /* fall through */
7093 case sa_sd:
7094 free_percpu(d->sd); /* fall through */
7095 case sa_sd_storage:
7096 __sdt_free(cpu_map); /* fall through */
7097 case sa_none:
7098 break;
7099 }
7100 }
7101
7102 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7103 const struct cpumask *cpu_map)
7104 {
7105 memset(d, 0, sizeof(*d));
7106
7107 if (__sdt_alloc(cpu_map))
7108 return sa_sd_storage;
7109 d->sd = alloc_percpu(struct sched_domain *);
7110 if (!d->sd)
7111 return sa_sd_storage;
7112 d->rd = alloc_rootdomain();
7113 if (!d->rd)
7114 return sa_sd;
7115 return sa_rootdomain;
7116 }
7117
7118 /*
7119 * NULL the sd_data elements we've used to build the sched_domain and
7120 * sched_group structure so that the subsequent __free_domain_allocs()
7121 * will not free the data we're using.
7122 */
7123 static void claim_allocations(int cpu, struct sched_domain *sd)
7124 {
7125 struct sd_data *sdd = sd->private;
7126 struct sched_group *sg = sd->groups;
7127
7128 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7129 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7130
7131 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7132 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7133 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7134 }
7135 }
7136
7137 #ifdef CONFIG_SCHED_SMT
7138 static const struct cpumask *cpu_smt_mask(int cpu)
7139 {
7140 return topology_thread_cpumask(cpu);
7141 }
7142 #endif
7143
7144 /*
7145 * Topology list, bottom-up.
7146 */
7147 static struct sched_domain_topology_level default_topology[] = {
7148 #ifdef CONFIG_SCHED_SMT
7149 { sd_init_SIBLING, cpu_smt_mask, },
7150 #endif
7151 #ifdef CONFIG_SCHED_MC
7152 { sd_init_MC, cpu_coregroup_mask, },
7153 #endif
7154 #ifdef CONFIG_SCHED_BOOK
7155 { sd_init_BOOK, cpu_book_mask, },
7156 #endif
7157 { sd_init_CPU, cpu_cpu_mask, },
7158 #ifdef CONFIG_NUMA
7159 { sd_init_NODE, cpu_node_mask, },
7160 { sd_init_ALLNODES, cpu_allnodes_mask, },
7161 #endif
7162 { NULL, },
7163 };
7164
7165 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7166
7167 static int __sdt_alloc(const struct cpumask *cpu_map)
7168 {
7169 struct sched_domain_topology_level *tl;
7170 int j;
7171
7172 for (tl = sched_domain_topology; tl->init; tl++) {
7173 struct sd_data *sdd = &tl->data;
7174
7175 sdd->sd = alloc_percpu(struct sched_domain *);
7176 if (!sdd->sd)
7177 return -ENOMEM;
7178
7179 sdd->sg = alloc_percpu(struct sched_group *);
7180 if (!sdd->sg)
7181 return -ENOMEM;
7182
7183 for_each_cpu(j, cpu_map) {
7184 struct sched_domain *sd;
7185 struct sched_group *sg;
7186
7187 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7188 GFP_KERNEL, cpu_to_node(j));
7189 if (!sd)
7190 return -ENOMEM;
7191
7192 *per_cpu_ptr(sdd->sd, j) = sd;
7193
7194 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7195 GFP_KERNEL, cpu_to_node(j));
7196 if (!sg)
7197 return -ENOMEM;
7198
7199 *per_cpu_ptr(sdd->sg, j) = sg;
7200 }
7201 }
7202
7203 return 0;
7204 }
7205
7206 static void __sdt_free(const struct cpumask *cpu_map)
7207 {
7208 struct sched_domain_topology_level *tl;
7209 int j;
7210
7211 for (tl = sched_domain_topology; tl->init; tl++) {
7212 struct sd_data *sdd = &tl->data;
7213
7214 for_each_cpu(j, cpu_map) {
7215 kfree(*per_cpu_ptr(sdd->sd, j));
7216 kfree(*per_cpu_ptr(sdd->sg, j));
7217 }
7218 free_percpu(sdd->sd);
7219 free_percpu(sdd->sg);
7220 }
7221 }
7222
7223 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7224 struct s_data *d, const struct cpumask *cpu_map,
7225 struct sched_domain_attr *attr, struct sched_domain *child,
7226 int cpu)
7227 {
7228 struct sched_domain *sd = tl->init(tl, cpu);
7229 if (!sd)
7230 return child;
7231
7232 set_domain_attribute(sd, attr);
7233 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7234 if (child) {
7235 sd->level = child->level + 1;
7236 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7237 child->parent = sd;
7238 }
7239 sd->child = child;
7240
7241 return sd;
7242 }
7243
7244 /*
7245 * Build sched domains for a given set of cpus and attach the sched domains
7246 * to the individual cpus
7247 */
7248 static int build_sched_domains(const struct cpumask *cpu_map,
7249 struct sched_domain_attr *attr)
7250 {
7251 enum s_alloc alloc_state = sa_none;
7252 struct sched_domain *sd;
7253 struct s_data d;
7254 int i, ret = -ENOMEM;
7255
7256 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7257 if (alloc_state != sa_rootdomain)
7258 goto error;
7259
7260 /* Set up domains for cpus specified by the cpu_map. */
7261 for_each_cpu(i, cpu_map) {
7262 struct sched_domain_topology_level *tl;
7263
7264 sd = NULL;
7265 for (tl = sched_domain_topology; tl->init; tl++)
7266 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7267
7268 while (sd->child)
7269 sd = sd->child;
7270
7271 *per_cpu_ptr(d.sd, i) = sd;
7272 }
7273
7274 /* Build the groups for the domains */
7275 for_each_cpu(i, cpu_map) {
7276 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7277 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7278 get_group(i, sd->private, &sd->groups);
7279 atomic_inc(&sd->groups->ref);
7280
7281 if (i != cpumask_first(sched_domain_span(sd)))
7282 continue;
7283
7284 build_sched_groups(sd);
7285 }
7286 }
7287
7288 /* Calculate CPU power for physical packages and nodes */
7289 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7290 if (!cpumask_test_cpu(i, cpu_map))
7291 continue;
7292
7293 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7294 claim_allocations(i, sd);
7295 init_sched_groups_power(i, sd);
7296 }
7297 }
7298
7299 /* Attach the domains */
7300 rcu_read_lock();
7301 for_each_cpu(i, cpu_map) {
7302 sd = *per_cpu_ptr(d.sd, i);
7303 cpu_attach_domain(sd, d.rd, i);
7304 }
7305 rcu_read_unlock();
7306
7307 ret = 0;
7308 error:
7309 __free_domain_allocs(&d, alloc_state, cpu_map);
7310 return ret;
7311 }
7312
7313 static cpumask_var_t *doms_cur; /* current sched domains */
7314 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7315 static struct sched_domain_attr *dattr_cur;
7316 /* attribues of custom domains in 'doms_cur' */
7317
7318 /*
7319 * Special case: If a kmalloc of a doms_cur partition (array of
7320 * cpumask) fails, then fallback to a single sched domain,
7321 * as determined by the single cpumask fallback_doms.
7322 */
7323 static cpumask_var_t fallback_doms;
7324
7325 /*
7326 * arch_update_cpu_topology lets virtualized architectures update the
7327 * cpu core maps. It is supposed to return 1 if the topology changed
7328 * or 0 if it stayed the same.
7329 */
7330 int __attribute__((weak)) arch_update_cpu_topology(void)
7331 {
7332 return 0;
7333 }
7334
7335 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7336 {
7337 int i;
7338 cpumask_var_t *doms;
7339
7340 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7341 if (!doms)
7342 return NULL;
7343 for (i = 0; i < ndoms; i++) {
7344 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7345 free_sched_domains(doms, i);
7346 return NULL;
7347 }
7348 }
7349 return doms;
7350 }
7351
7352 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7353 {
7354 unsigned int i;
7355 for (i = 0; i < ndoms; i++)
7356 free_cpumask_var(doms[i]);
7357 kfree(doms);
7358 }
7359
7360 /*
7361 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7362 * For now this just excludes isolated cpus, but could be used to
7363 * exclude other special cases in the future.
7364 */
7365 static int init_sched_domains(const struct cpumask *cpu_map)
7366 {
7367 int err;
7368
7369 arch_update_cpu_topology();
7370 ndoms_cur = 1;
7371 doms_cur = alloc_sched_domains(ndoms_cur);
7372 if (!doms_cur)
7373 doms_cur = &fallback_doms;
7374 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7375 dattr_cur = NULL;
7376 err = build_sched_domains(doms_cur[0], NULL);
7377 register_sched_domain_sysctl();
7378
7379 return err;
7380 }
7381
7382 /*
7383 * Detach sched domains from a group of cpus specified in cpu_map
7384 * These cpus will now be attached to the NULL domain
7385 */
7386 static void detach_destroy_domains(const struct cpumask *cpu_map)
7387 {
7388 int i;
7389
7390 rcu_read_lock();
7391 for_each_cpu(i, cpu_map)
7392 cpu_attach_domain(NULL, &def_root_domain, i);
7393 rcu_read_unlock();
7394 }
7395
7396 /* handle null as "default" */
7397 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7398 struct sched_domain_attr *new, int idx_new)
7399 {
7400 struct sched_domain_attr tmp;
7401
7402 /* fast path */
7403 if (!new && !cur)
7404 return 1;
7405
7406 tmp = SD_ATTR_INIT;
7407 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7408 new ? (new + idx_new) : &tmp,
7409 sizeof(struct sched_domain_attr));
7410 }
7411
7412 /*
7413 * Partition sched domains as specified by the 'ndoms_new'
7414 * cpumasks in the array doms_new[] of cpumasks. This compares
7415 * doms_new[] to the current sched domain partitioning, doms_cur[].
7416 * It destroys each deleted domain and builds each new domain.
7417 *
7418 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7419 * The masks don't intersect (don't overlap.) We should setup one
7420 * sched domain for each mask. CPUs not in any of the cpumasks will
7421 * not be load balanced. If the same cpumask appears both in the
7422 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7423 * it as it is.
7424 *
7425 * The passed in 'doms_new' should be allocated using
7426 * alloc_sched_domains. This routine takes ownership of it and will
7427 * free_sched_domains it when done with it. If the caller failed the
7428 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7429 * and partition_sched_domains() will fallback to the single partition
7430 * 'fallback_doms', it also forces the domains to be rebuilt.
7431 *
7432 * If doms_new == NULL it will be replaced with cpu_online_mask.
7433 * ndoms_new == 0 is a special case for destroying existing domains,
7434 * and it will not create the default domain.
7435 *
7436 * Call with hotplug lock held
7437 */
7438 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7439 struct sched_domain_attr *dattr_new)
7440 {
7441 int i, j, n;
7442 int new_topology;
7443
7444 mutex_lock(&sched_domains_mutex);
7445
7446 /* always unregister in case we don't destroy any domains */
7447 unregister_sched_domain_sysctl();
7448
7449 /* Let architecture update cpu core mappings. */
7450 new_topology = arch_update_cpu_topology();
7451
7452 n = doms_new ? ndoms_new : 0;
7453
7454 /* Destroy deleted domains */
7455 for (i = 0; i < ndoms_cur; i++) {
7456 for (j = 0; j < n && !new_topology; j++) {
7457 if (cpumask_equal(doms_cur[i], doms_new[j])
7458 && dattrs_equal(dattr_cur, i, dattr_new, j))
7459 goto match1;
7460 }
7461 /* no match - a current sched domain not in new doms_new[] */
7462 detach_destroy_domains(doms_cur[i]);
7463 match1:
7464 ;
7465 }
7466
7467 if (doms_new == NULL) {
7468 ndoms_cur = 0;
7469 doms_new = &fallback_doms;
7470 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7471 WARN_ON_ONCE(dattr_new);
7472 }
7473
7474 /* Build new domains */
7475 for (i = 0; i < ndoms_new; i++) {
7476 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7477 if (cpumask_equal(doms_new[i], doms_cur[j])
7478 && dattrs_equal(dattr_new, i, dattr_cur, j))
7479 goto match2;
7480 }
7481 /* no match - add a new doms_new */
7482 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7483 match2:
7484 ;
7485 }
7486
7487 /* Remember the new sched domains */
7488 if (doms_cur != &fallback_doms)
7489 free_sched_domains(doms_cur, ndoms_cur);
7490 kfree(dattr_cur); /* kfree(NULL) is safe */
7491 doms_cur = doms_new;
7492 dattr_cur = dattr_new;
7493 ndoms_cur = ndoms_new;
7494
7495 register_sched_domain_sysctl();
7496
7497 mutex_unlock(&sched_domains_mutex);
7498 }
7499
7500 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7501 static void reinit_sched_domains(void)
7502 {
7503 get_online_cpus();
7504
7505 /* Destroy domains first to force the rebuild */
7506 partition_sched_domains(0, NULL, NULL);
7507
7508 rebuild_sched_domains();
7509 put_online_cpus();
7510 }
7511
7512 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7513 {
7514 unsigned int level = 0;
7515
7516 if (sscanf(buf, "%u", &level) != 1)
7517 return -EINVAL;
7518
7519 /*
7520 * level is always be positive so don't check for
7521 * level < POWERSAVINGS_BALANCE_NONE which is 0
7522 * What happens on 0 or 1 byte write,
7523 * need to check for count as well?
7524 */
7525
7526 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7527 return -EINVAL;
7528
7529 if (smt)
7530 sched_smt_power_savings = level;
7531 else
7532 sched_mc_power_savings = level;
7533
7534 reinit_sched_domains();
7535
7536 return count;
7537 }
7538
7539 #ifdef CONFIG_SCHED_MC
7540 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7541 struct sysdev_class_attribute *attr,
7542 char *page)
7543 {
7544 return sprintf(page, "%u\n", sched_mc_power_savings);
7545 }
7546 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7547 struct sysdev_class_attribute *attr,
7548 const char *buf, size_t count)
7549 {
7550 return sched_power_savings_store(buf, count, 0);
7551 }
7552 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7553 sched_mc_power_savings_show,
7554 sched_mc_power_savings_store);
7555 #endif
7556
7557 #ifdef CONFIG_SCHED_SMT
7558 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7559 struct sysdev_class_attribute *attr,
7560 char *page)
7561 {
7562 return sprintf(page, "%u\n", sched_smt_power_savings);
7563 }
7564 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7565 struct sysdev_class_attribute *attr,
7566 const char *buf, size_t count)
7567 {
7568 return sched_power_savings_store(buf, count, 1);
7569 }
7570 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7571 sched_smt_power_savings_show,
7572 sched_smt_power_savings_store);
7573 #endif
7574
7575 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7576 {
7577 int err = 0;
7578
7579 #ifdef CONFIG_SCHED_SMT
7580 if (smt_capable())
7581 err = sysfs_create_file(&cls->kset.kobj,
7582 &attr_sched_smt_power_savings.attr);
7583 #endif
7584 #ifdef CONFIG_SCHED_MC
7585 if (!err && mc_capable())
7586 err = sysfs_create_file(&cls->kset.kobj,
7587 &attr_sched_mc_power_savings.attr);
7588 #endif
7589 return err;
7590 }
7591 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7592
7593 /*
7594 * Update cpusets according to cpu_active mask. If cpusets are
7595 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7596 * around partition_sched_domains().
7597 */
7598 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7599 void *hcpu)
7600 {
7601 switch (action & ~CPU_TASKS_FROZEN) {
7602 case CPU_ONLINE:
7603 case CPU_DOWN_FAILED:
7604 cpuset_update_active_cpus();
7605 return NOTIFY_OK;
7606 default:
7607 return NOTIFY_DONE;
7608 }
7609 }
7610
7611 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7612 void *hcpu)
7613 {
7614 switch (action & ~CPU_TASKS_FROZEN) {
7615 case CPU_DOWN_PREPARE:
7616 cpuset_update_active_cpus();
7617 return NOTIFY_OK;
7618 default:
7619 return NOTIFY_DONE;
7620 }
7621 }
7622
7623 static int update_runtime(struct notifier_block *nfb,
7624 unsigned long action, void *hcpu)
7625 {
7626 int cpu = (int)(long)hcpu;
7627
7628 switch (action) {
7629 case CPU_DOWN_PREPARE:
7630 case CPU_DOWN_PREPARE_FROZEN:
7631 disable_runtime(cpu_rq(cpu));
7632 return NOTIFY_OK;
7633
7634 case CPU_DOWN_FAILED:
7635 case CPU_DOWN_FAILED_FROZEN:
7636 case CPU_ONLINE:
7637 case CPU_ONLINE_FROZEN:
7638 enable_runtime(cpu_rq(cpu));
7639 return NOTIFY_OK;
7640
7641 default:
7642 return NOTIFY_DONE;
7643 }
7644 }
7645
7646 void __init sched_init_smp(void)
7647 {
7648 cpumask_var_t non_isolated_cpus;
7649
7650 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7651 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7652
7653 get_online_cpus();
7654 mutex_lock(&sched_domains_mutex);
7655 init_sched_domains(cpu_active_mask);
7656 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7657 if (cpumask_empty(non_isolated_cpus))
7658 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7659 mutex_unlock(&sched_domains_mutex);
7660 put_online_cpus();
7661
7662 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7663 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7664
7665 /* RT runtime code needs to handle some hotplug events */
7666 hotcpu_notifier(update_runtime, 0);
7667
7668 init_hrtick();
7669
7670 /* Move init over to a non-isolated CPU */
7671 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7672 BUG();
7673 sched_init_granularity();
7674 free_cpumask_var(non_isolated_cpus);
7675
7676 init_sched_rt_class();
7677 }
7678 #else
7679 void __init sched_init_smp(void)
7680 {
7681 sched_init_granularity();
7682 }
7683 #endif /* CONFIG_SMP */
7684
7685 const_debug unsigned int sysctl_timer_migration = 1;
7686
7687 int in_sched_functions(unsigned long addr)
7688 {
7689 return in_lock_functions(addr) ||
7690 (addr >= (unsigned long)__sched_text_start
7691 && addr < (unsigned long)__sched_text_end);
7692 }
7693
7694 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7695 {
7696 cfs_rq->tasks_timeline = RB_ROOT;
7697 INIT_LIST_HEAD(&cfs_rq->tasks);
7698 #ifdef CONFIG_FAIR_GROUP_SCHED
7699 cfs_rq->rq = rq;
7700 /* allow initial update_cfs_load() to truncate */
7701 #ifdef CONFIG_SMP
7702 cfs_rq->load_stamp = 1;
7703 #endif
7704 #endif
7705 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7706 }
7707
7708 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7709 {
7710 struct rt_prio_array *array;
7711 int i;
7712
7713 array = &rt_rq->active;
7714 for (i = 0; i < MAX_RT_PRIO; i++) {
7715 INIT_LIST_HEAD(array->queue + i);
7716 __clear_bit(i, array->bitmap);
7717 }
7718 /* delimiter for bitsearch: */
7719 __set_bit(MAX_RT_PRIO, array->bitmap);
7720
7721 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7722 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7723 #ifdef CONFIG_SMP
7724 rt_rq->highest_prio.next = MAX_RT_PRIO;
7725 #endif
7726 #endif
7727 #ifdef CONFIG_SMP
7728 rt_rq->rt_nr_migratory = 0;
7729 rt_rq->overloaded = 0;
7730 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7731 #endif
7732
7733 rt_rq->rt_time = 0;
7734 rt_rq->rt_throttled = 0;
7735 rt_rq->rt_runtime = 0;
7736 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7737
7738 #ifdef CONFIG_RT_GROUP_SCHED
7739 rt_rq->rt_nr_boosted = 0;
7740 rt_rq->rq = rq;
7741 #endif
7742 }
7743
7744 #ifdef CONFIG_FAIR_GROUP_SCHED
7745 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7746 struct sched_entity *se, int cpu,
7747 struct sched_entity *parent)
7748 {
7749 struct rq *rq = cpu_rq(cpu);
7750 tg->cfs_rq[cpu] = cfs_rq;
7751 init_cfs_rq(cfs_rq, rq);
7752 cfs_rq->tg = tg;
7753
7754 tg->se[cpu] = se;
7755 /* se could be NULL for root_task_group */
7756 if (!se)
7757 return;
7758
7759 if (!parent)
7760 se->cfs_rq = &rq->cfs;
7761 else
7762 se->cfs_rq = parent->my_q;
7763
7764 se->my_q = cfs_rq;
7765 update_load_set(&se->load, 0);
7766 se->parent = parent;
7767 }
7768 #endif
7769
7770 #ifdef CONFIG_RT_GROUP_SCHED
7771 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7772 struct sched_rt_entity *rt_se, int cpu,
7773 struct sched_rt_entity *parent)
7774 {
7775 struct rq *rq = cpu_rq(cpu);
7776
7777 tg->rt_rq[cpu] = rt_rq;
7778 init_rt_rq(rt_rq, rq);
7779 rt_rq->tg = tg;
7780 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7781
7782 tg->rt_se[cpu] = rt_se;
7783 if (!rt_se)
7784 return;
7785
7786 if (!parent)
7787 rt_se->rt_rq = &rq->rt;
7788 else
7789 rt_se->rt_rq = parent->my_q;
7790
7791 rt_se->my_q = rt_rq;
7792 rt_se->parent = parent;
7793 INIT_LIST_HEAD(&rt_se->run_list);
7794 }
7795 #endif
7796
7797 void __init sched_init(void)
7798 {
7799 int i, j;
7800 unsigned long alloc_size = 0, ptr;
7801
7802 #ifdef CONFIG_FAIR_GROUP_SCHED
7803 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7804 #endif
7805 #ifdef CONFIG_RT_GROUP_SCHED
7806 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7807 #endif
7808 #ifdef CONFIG_CPUMASK_OFFSTACK
7809 alloc_size += num_possible_cpus() * cpumask_size();
7810 #endif
7811 if (alloc_size) {
7812 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7813
7814 #ifdef CONFIG_FAIR_GROUP_SCHED
7815 root_task_group.se = (struct sched_entity **)ptr;
7816 ptr += nr_cpu_ids * sizeof(void **);
7817
7818 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7819 ptr += nr_cpu_ids * sizeof(void **);
7820
7821 #endif /* CONFIG_FAIR_GROUP_SCHED */
7822 #ifdef CONFIG_RT_GROUP_SCHED
7823 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7824 ptr += nr_cpu_ids * sizeof(void **);
7825
7826 root_task_group.rt_rq = (struct rt_rq **)ptr;
7827 ptr += nr_cpu_ids * sizeof(void **);
7828
7829 #endif /* CONFIG_RT_GROUP_SCHED */
7830 #ifdef CONFIG_CPUMASK_OFFSTACK
7831 for_each_possible_cpu(i) {
7832 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7833 ptr += cpumask_size();
7834 }
7835 #endif /* CONFIG_CPUMASK_OFFSTACK */
7836 }
7837
7838 #ifdef CONFIG_SMP
7839 init_defrootdomain();
7840 #endif
7841
7842 init_rt_bandwidth(&def_rt_bandwidth,
7843 global_rt_period(), global_rt_runtime());
7844
7845 #ifdef CONFIG_RT_GROUP_SCHED
7846 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7847 global_rt_period(), global_rt_runtime());
7848 #endif /* CONFIG_RT_GROUP_SCHED */
7849
7850 #ifdef CONFIG_CGROUP_SCHED
7851 list_add(&root_task_group.list, &task_groups);
7852 INIT_LIST_HEAD(&root_task_group.children);
7853 autogroup_init(&init_task);
7854 #endif /* CONFIG_CGROUP_SCHED */
7855
7856 for_each_possible_cpu(i) {
7857 struct rq *rq;
7858
7859 rq = cpu_rq(i);
7860 raw_spin_lock_init(&rq->lock);
7861 rq->nr_running = 0;
7862 rq->calc_load_active = 0;
7863 rq->calc_load_update = jiffies + LOAD_FREQ;
7864 init_cfs_rq(&rq->cfs, rq);
7865 init_rt_rq(&rq->rt, rq);
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 root_task_group.shares = root_task_group_load;
7868 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7869 /*
7870 * How much cpu bandwidth does root_task_group get?
7871 *
7872 * In case of task-groups formed thr' the cgroup filesystem, it
7873 * gets 100% of the cpu resources in the system. This overall
7874 * system cpu resource is divided among the tasks of
7875 * root_task_group and its child task-groups in a fair manner,
7876 * based on each entity's (task or task-group's) weight
7877 * (se->load.weight).
7878 *
7879 * In other words, if root_task_group has 10 tasks of weight
7880 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7881 * then A0's share of the cpu resource is:
7882 *
7883 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7884 *
7885 * We achieve this by letting root_task_group's tasks sit
7886 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7887 */
7888 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7889 #endif /* CONFIG_FAIR_GROUP_SCHED */
7890
7891 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7892 #ifdef CONFIG_RT_GROUP_SCHED
7893 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7894 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7895 #endif
7896
7897 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7898 rq->cpu_load[j] = 0;
7899
7900 rq->last_load_update_tick = jiffies;
7901
7902 #ifdef CONFIG_SMP
7903 rq->sd = NULL;
7904 rq->rd = NULL;
7905 rq->cpu_power = SCHED_LOAD_SCALE;
7906 rq->post_schedule = 0;
7907 rq->active_balance = 0;
7908 rq->next_balance = jiffies;
7909 rq->push_cpu = 0;
7910 rq->cpu = i;
7911 rq->online = 0;
7912 rq->idle_stamp = 0;
7913 rq->avg_idle = 2*sysctl_sched_migration_cost;
7914 rq_attach_root(rq, &def_root_domain);
7915 #ifdef CONFIG_NO_HZ
7916 rq->nohz_balance_kick = 0;
7917 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7918 #endif
7919 #endif
7920 init_rq_hrtick(rq);
7921 atomic_set(&rq->nr_iowait, 0);
7922 }
7923
7924 set_load_weight(&init_task);
7925
7926 #ifdef CONFIG_PREEMPT_NOTIFIERS
7927 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7928 #endif
7929
7930 #ifdef CONFIG_SMP
7931 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7932 #endif
7933
7934 #ifdef CONFIG_RT_MUTEXES
7935 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7936 #endif
7937
7938 /*
7939 * The boot idle thread does lazy MMU switching as well:
7940 */
7941 atomic_inc(&init_mm.mm_count);
7942 enter_lazy_tlb(&init_mm, current);
7943
7944 /*
7945 * Make us the idle thread. Technically, schedule() should not be
7946 * called from this thread, however somewhere below it might be,
7947 * but because we are the idle thread, we just pick up running again
7948 * when this runqueue becomes "idle".
7949 */
7950 init_idle(current, smp_processor_id());
7951
7952 calc_load_update = jiffies + LOAD_FREQ;
7953
7954 /*
7955 * During early bootup we pretend to be a normal task:
7956 */
7957 current->sched_class = &fair_sched_class;
7958
7959 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7960 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7961 #ifdef CONFIG_SMP
7962 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7963 #ifdef CONFIG_NO_HZ
7964 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7965 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7966 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7967 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7968 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7969 #endif
7970 /* May be allocated at isolcpus cmdline parse time */
7971 if (cpu_isolated_map == NULL)
7972 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7973 #endif /* SMP */
7974
7975 scheduler_running = 1;
7976 }
7977
7978 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7979 static inline int preempt_count_equals(int preempt_offset)
7980 {
7981 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7982
7983 return (nested == preempt_offset);
7984 }
7985
7986 void __might_sleep(const char *file, int line, int preempt_offset)
7987 {
7988 #ifdef in_atomic
7989 static unsigned long prev_jiffy; /* ratelimiting */
7990
7991 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7992 system_state != SYSTEM_RUNNING || oops_in_progress)
7993 return;
7994 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7995 return;
7996 prev_jiffy = jiffies;
7997
7998 printk(KERN_ERR
7999 "BUG: sleeping function called from invalid context at %s:%d\n",
8000 file, line);
8001 printk(KERN_ERR
8002 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8003 in_atomic(), irqs_disabled(),
8004 current->pid, current->comm);
8005
8006 debug_show_held_locks(current);
8007 if (irqs_disabled())
8008 print_irqtrace_events(current);
8009 dump_stack();
8010 #endif
8011 }
8012 EXPORT_SYMBOL(__might_sleep);
8013 #endif
8014
8015 #ifdef CONFIG_MAGIC_SYSRQ
8016 static void normalize_task(struct rq *rq, struct task_struct *p)
8017 {
8018 const struct sched_class *prev_class = p->sched_class;
8019 int old_prio = p->prio;
8020 int on_rq;
8021
8022 on_rq = p->on_rq;
8023 if (on_rq)
8024 deactivate_task(rq, p, 0);
8025 __setscheduler(rq, p, SCHED_NORMAL, 0);
8026 if (on_rq) {
8027 activate_task(rq, p, 0);
8028 resched_task(rq->curr);
8029 }
8030
8031 check_class_changed(rq, p, prev_class, old_prio);
8032 }
8033
8034 void normalize_rt_tasks(void)
8035 {
8036 struct task_struct *g, *p;
8037 unsigned long flags;
8038 struct rq *rq;
8039
8040 read_lock_irqsave(&tasklist_lock, flags);
8041 do_each_thread(g, p) {
8042 /*
8043 * Only normalize user tasks:
8044 */
8045 if (!p->mm)
8046 continue;
8047
8048 p->se.exec_start = 0;
8049 #ifdef CONFIG_SCHEDSTATS
8050 p->se.statistics.wait_start = 0;
8051 p->se.statistics.sleep_start = 0;
8052 p->se.statistics.block_start = 0;
8053 #endif
8054
8055 if (!rt_task(p)) {
8056 /*
8057 * Renice negative nice level userspace
8058 * tasks back to 0:
8059 */
8060 if (TASK_NICE(p) < 0 && p->mm)
8061 set_user_nice(p, 0);
8062 continue;
8063 }
8064
8065 raw_spin_lock(&p->pi_lock);
8066 rq = __task_rq_lock(p);
8067
8068 normalize_task(rq, p);
8069
8070 __task_rq_unlock(rq);
8071 raw_spin_unlock(&p->pi_lock);
8072 } while_each_thread(g, p);
8073
8074 read_unlock_irqrestore(&tasklist_lock, flags);
8075 }
8076
8077 #endif /* CONFIG_MAGIC_SYSRQ */
8078
8079 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8080 /*
8081 * These functions are only useful for the IA64 MCA handling, or kdb.
8082 *
8083 * They can only be called when the whole system has been
8084 * stopped - every CPU needs to be quiescent, and no scheduling
8085 * activity can take place. Using them for anything else would
8086 * be a serious bug, and as a result, they aren't even visible
8087 * under any other configuration.
8088 */
8089
8090 /**
8091 * curr_task - return the current task for a given cpu.
8092 * @cpu: the processor in question.
8093 *
8094 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8095 */
8096 struct task_struct *curr_task(int cpu)
8097 {
8098 return cpu_curr(cpu);
8099 }
8100
8101 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8102
8103 #ifdef CONFIG_IA64
8104 /**
8105 * set_curr_task - set the current task for a given cpu.
8106 * @cpu: the processor in question.
8107 * @p: the task pointer to set.
8108 *
8109 * Description: This function must only be used when non-maskable interrupts
8110 * are serviced on a separate stack. It allows the architecture to switch the
8111 * notion of the current task on a cpu in a non-blocking manner. This function
8112 * must be called with all CPU's synchronized, and interrupts disabled, the
8113 * and caller must save the original value of the current task (see
8114 * curr_task() above) and restore that value before reenabling interrupts and
8115 * re-starting the system.
8116 *
8117 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8118 */
8119 void set_curr_task(int cpu, struct task_struct *p)
8120 {
8121 cpu_curr(cpu) = p;
8122 }
8123
8124 #endif
8125
8126 #ifdef CONFIG_FAIR_GROUP_SCHED
8127 static void free_fair_sched_group(struct task_group *tg)
8128 {
8129 int i;
8130
8131 for_each_possible_cpu(i) {
8132 if (tg->cfs_rq)
8133 kfree(tg->cfs_rq[i]);
8134 if (tg->se)
8135 kfree(tg->se[i]);
8136 }
8137
8138 kfree(tg->cfs_rq);
8139 kfree(tg->se);
8140 }
8141
8142 static
8143 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8144 {
8145 struct cfs_rq *cfs_rq;
8146 struct sched_entity *se;
8147 int i;
8148
8149 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8150 if (!tg->cfs_rq)
8151 goto err;
8152 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8153 if (!tg->se)
8154 goto err;
8155
8156 tg->shares = NICE_0_LOAD;
8157
8158 for_each_possible_cpu(i) {
8159 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8160 GFP_KERNEL, cpu_to_node(i));
8161 if (!cfs_rq)
8162 goto err;
8163
8164 se = kzalloc_node(sizeof(struct sched_entity),
8165 GFP_KERNEL, cpu_to_node(i));
8166 if (!se)
8167 goto err_free_rq;
8168
8169 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8170 }
8171
8172 return 1;
8173
8174 err_free_rq:
8175 kfree(cfs_rq);
8176 err:
8177 return 0;
8178 }
8179
8180 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8181 {
8182 struct rq *rq = cpu_rq(cpu);
8183 unsigned long flags;
8184
8185 /*
8186 * Only empty task groups can be destroyed; so we can speculatively
8187 * check on_list without danger of it being re-added.
8188 */
8189 if (!tg->cfs_rq[cpu]->on_list)
8190 return;
8191
8192 raw_spin_lock_irqsave(&rq->lock, flags);
8193 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8194 raw_spin_unlock_irqrestore(&rq->lock, flags);
8195 }
8196 #else /* !CONFG_FAIR_GROUP_SCHED */
8197 static inline void free_fair_sched_group(struct task_group *tg)
8198 {
8199 }
8200
8201 static inline
8202 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8203 {
8204 return 1;
8205 }
8206
8207 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8208 {
8209 }
8210 #endif /* CONFIG_FAIR_GROUP_SCHED */
8211
8212 #ifdef CONFIG_RT_GROUP_SCHED
8213 static void free_rt_sched_group(struct task_group *tg)
8214 {
8215 int i;
8216
8217 destroy_rt_bandwidth(&tg->rt_bandwidth);
8218
8219 for_each_possible_cpu(i) {
8220 if (tg->rt_rq)
8221 kfree(tg->rt_rq[i]);
8222 if (tg->rt_se)
8223 kfree(tg->rt_se[i]);
8224 }
8225
8226 kfree(tg->rt_rq);
8227 kfree(tg->rt_se);
8228 }
8229
8230 static
8231 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8232 {
8233 struct rt_rq *rt_rq;
8234 struct sched_rt_entity *rt_se;
8235 int i;
8236
8237 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8238 if (!tg->rt_rq)
8239 goto err;
8240 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8241 if (!tg->rt_se)
8242 goto err;
8243
8244 init_rt_bandwidth(&tg->rt_bandwidth,
8245 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8246
8247 for_each_possible_cpu(i) {
8248 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8249 GFP_KERNEL, cpu_to_node(i));
8250 if (!rt_rq)
8251 goto err;
8252
8253 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8254 GFP_KERNEL, cpu_to_node(i));
8255 if (!rt_se)
8256 goto err_free_rq;
8257
8258 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8259 }
8260
8261 return 1;
8262
8263 err_free_rq:
8264 kfree(rt_rq);
8265 err:
8266 return 0;
8267 }
8268 #else /* !CONFIG_RT_GROUP_SCHED */
8269 static inline void free_rt_sched_group(struct task_group *tg)
8270 {
8271 }
8272
8273 static inline
8274 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8275 {
8276 return 1;
8277 }
8278 #endif /* CONFIG_RT_GROUP_SCHED */
8279
8280 #ifdef CONFIG_CGROUP_SCHED
8281 static void free_sched_group(struct task_group *tg)
8282 {
8283 free_fair_sched_group(tg);
8284 free_rt_sched_group(tg);
8285 autogroup_free(tg);
8286 kfree(tg);
8287 }
8288
8289 /* allocate runqueue etc for a new task group */
8290 struct task_group *sched_create_group(struct task_group *parent)
8291 {
8292 struct task_group *tg;
8293 unsigned long flags;
8294
8295 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8296 if (!tg)
8297 return ERR_PTR(-ENOMEM);
8298
8299 if (!alloc_fair_sched_group(tg, parent))
8300 goto err;
8301
8302 if (!alloc_rt_sched_group(tg, parent))
8303 goto err;
8304
8305 spin_lock_irqsave(&task_group_lock, flags);
8306 list_add_rcu(&tg->list, &task_groups);
8307
8308 WARN_ON(!parent); /* root should already exist */
8309
8310 tg->parent = parent;
8311 INIT_LIST_HEAD(&tg->children);
8312 list_add_rcu(&tg->siblings, &parent->children);
8313 spin_unlock_irqrestore(&task_group_lock, flags);
8314
8315 return tg;
8316
8317 err:
8318 free_sched_group(tg);
8319 return ERR_PTR(-ENOMEM);
8320 }
8321
8322 /* rcu callback to free various structures associated with a task group */
8323 static void free_sched_group_rcu(struct rcu_head *rhp)
8324 {
8325 /* now it should be safe to free those cfs_rqs */
8326 free_sched_group(container_of(rhp, struct task_group, rcu));
8327 }
8328
8329 /* Destroy runqueue etc associated with a task group */
8330 void sched_destroy_group(struct task_group *tg)
8331 {
8332 unsigned long flags;
8333 int i;
8334
8335 /* end participation in shares distribution */
8336 for_each_possible_cpu(i)
8337 unregister_fair_sched_group(tg, i);
8338
8339 spin_lock_irqsave(&task_group_lock, flags);
8340 list_del_rcu(&tg->list);
8341 list_del_rcu(&tg->siblings);
8342 spin_unlock_irqrestore(&task_group_lock, flags);
8343
8344 /* wait for possible concurrent references to cfs_rqs complete */
8345 call_rcu(&tg->rcu, free_sched_group_rcu);
8346 }
8347
8348 /* change task's runqueue when it moves between groups.
8349 * The caller of this function should have put the task in its new group
8350 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8351 * reflect its new group.
8352 */
8353 void sched_move_task(struct task_struct *tsk)
8354 {
8355 int on_rq, running;
8356 unsigned long flags;
8357 struct rq *rq;
8358
8359 rq = task_rq_lock(tsk, &flags);
8360
8361 running = task_current(rq, tsk);
8362 on_rq = tsk->on_rq;
8363
8364 if (on_rq)
8365 dequeue_task(rq, tsk, 0);
8366 if (unlikely(running))
8367 tsk->sched_class->put_prev_task(rq, tsk);
8368
8369 #ifdef CONFIG_FAIR_GROUP_SCHED
8370 if (tsk->sched_class->task_move_group)
8371 tsk->sched_class->task_move_group(tsk, on_rq);
8372 else
8373 #endif
8374 set_task_rq(tsk, task_cpu(tsk));
8375
8376 if (unlikely(running))
8377 tsk->sched_class->set_curr_task(rq);
8378 if (on_rq)
8379 enqueue_task(rq, tsk, 0);
8380
8381 task_rq_unlock(rq, tsk, &flags);
8382 }
8383 #endif /* CONFIG_CGROUP_SCHED */
8384
8385 #ifdef CONFIG_FAIR_GROUP_SCHED
8386 static DEFINE_MUTEX(shares_mutex);
8387
8388 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8389 {
8390 int i;
8391 unsigned long flags;
8392
8393 /*
8394 * We can't change the weight of the root cgroup.
8395 */
8396 if (!tg->se[0])
8397 return -EINVAL;
8398
8399 if (shares < MIN_SHARES)
8400 shares = MIN_SHARES;
8401 else if (shares > MAX_SHARES)
8402 shares = MAX_SHARES;
8403
8404 mutex_lock(&shares_mutex);
8405 if (tg->shares == shares)
8406 goto done;
8407
8408 tg->shares = shares;
8409 for_each_possible_cpu(i) {
8410 struct rq *rq = cpu_rq(i);
8411 struct sched_entity *se;
8412
8413 se = tg->se[i];
8414 /* Propagate contribution to hierarchy */
8415 raw_spin_lock_irqsave(&rq->lock, flags);
8416 for_each_sched_entity(se)
8417 update_cfs_shares(group_cfs_rq(se));
8418 raw_spin_unlock_irqrestore(&rq->lock, flags);
8419 }
8420
8421 done:
8422 mutex_unlock(&shares_mutex);
8423 return 0;
8424 }
8425
8426 unsigned long sched_group_shares(struct task_group *tg)
8427 {
8428 return tg->shares;
8429 }
8430 #endif
8431
8432 #ifdef CONFIG_RT_GROUP_SCHED
8433 /*
8434 * Ensure that the real time constraints are schedulable.
8435 */
8436 static DEFINE_MUTEX(rt_constraints_mutex);
8437
8438 static unsigned long to_ratio(u64 period, u64 runtime)
8439 {
8440 if (runtime == RUNTIME_INF)
8441 return 1ULL << 20;
8442
8443 return div64_u64(runtime << 20, period);
8444 }
8445
8446 /* Must be called with tasklist_lock held */
8447 static inline int tg_has_rt_tasks(struct task_group *tg)
8448 {
8449 struct task_struct *g, *p;
8450
8451 do_each_thread(g, p) {
8452 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8453 return 1;
8454 } while_each_thread(g, p);
8455
8456 return 0;
8457 }
8458
8459 struct rt_schedulable_data {
8460 struct task_group *tg;
8461 u64 rt_period;
8462 u64 rt_runtime;
8463 };
8464
8465 static int tg_schedulable(struct task_group *tg, void *data)
8466 {
8467 struct rt_schedulable_data *d = data;
8468 struct task_group *child;
8469 unsigned long total, sum = 0;
8470 u64 period, runtime;
8471
8472 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8473 runtime = tg->rt_bandwidth.rt_runtime;
8474
8475 if (tg == d->tg) {
8476 period = d->rt_period;
8477 runtime = d->rt_runtime;
8478 }
8479
8480 /*
8481 * Cannot have more runtime than the period.
8482 */
8483 if (runtime > period && runtime != RUNTIME_INF)
8484 return -EINVAL;
8485
8486 /*
8487 * Ensure we don't starve existing RT tasks.
8488 */
8489 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8490 return -EBUSY;
8491
8492 total = to_ratio(period, runtime);
8493
8494 /*
8495 * Nobody can have more than the global setting allows.
8496 */
8497 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8498 return -EINVAL;
8499
8500 /*
8501 * The sum of our children's runtime should not exceed our own.
8502 */
8503 list_for_each_entry_rcu(child, &tg->children, siblings) {
8504 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8505 runtime = child->rt_bandwidth.rt_runtime;
8506
8507 if (child == d->tg) {
8508 period = d->rt_period;
8509 runtime = d->rt_runtime;
8510 }
8511
8512 sum += to_ratio(period, runtime);
8513 }
8514
8515 if (sum > total)
8516 return -EINVAL;
8517
8518 return 0;
8519 }
8520
8521 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8522 {
8523 struct rt_schedulable_data data = {
8524 .tg = tg,
8525 .rt_period = period,
8526 .rt_runtime = runtime,
8527 };
8528
8529 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8530 }
8531
8532 static int tg_set_bandwidth(struct task_group *tg,
8533 u64 rt_period, u64 rt_runtime)
8534 {
8535 int i, err = 0;
8536
8537 mutex_lock(&rt_constraints_mutex);
8538 read_lock(&tasklist_lock);
8539 err = __rt_schedulable(tg, rt_period, rt_runtime);
8540 if (err)
8541 goto unlock;
8542
8543 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8544 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8545 tg->rt_bandwidth.rt_runtime = rt_runtime;
8546
8547 for_each_possible_cpu(i) {
8548 struct rt_rq *rt_rq = tg->rt_rq[i];
8549
8550 raw_spin_lock(&rt_rq->rt_runtime_lock);
8551 rt_rq->rt_runtime = rt_runtime;
8552 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8553 }
8554 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8555 unlock:
8556 read_unlock(&tasklist_lock);
8557 mutex_unlock(&rt_constraints_mutex);
8558
8559 return err;
8560 }
8561
8562 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8563 {
8564 u64 rt_runtime, rt_period;
8565
8566 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8567 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8568 if (rt_runtime_us < 0)
8569 rt_runtime = RUNTIME_INF;
8570
8571 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8572 }
8573
8574 long sched_group_rt_runtime(struct task_group *tg)
8575 {
8576 u64 rt_runtime_us;
8577
8578 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8579 return -1;
8580
8581 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8582 do_div(rt_runtime_us, NSEC_PER_USEC);
8583 return rt_runtime_us;
8584 }
8585
8586 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8587 {
8588 u64 rt_runtime, rt_period;
8589
8590 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8591 rt_runtime = tg->rt_bandwidth.rt_runtime;
8592
8593 if (rt_period == 0)
8594 return -EINVAL;
8595
8596 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8597 }
8598
8599 long sched_group_rt_period(struct task_group *tg)
8600 {
8601 u64 rt_period_us;
8602
8603 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8604 do_div(rt_period_us, NSEC_PER_USEC);
8605 return rt_period_us;
8606 }
8607
8608 static int sched_rt_global_constraints(void)
8609 {
8610 u64 runtime, period;
8611 int ret = 0;
8612
8613 if (sysctl_sched_rt_period <= 0)
8614 return -EINVAL;
8615
8616 runtime = global_rt_runtime();
8617 period = global_rt_period();
8618
8619 /*
8620 * Sanity check on the sysctl variables.
8621 */
8622 if (runtime > period && runtime != RUNTIME_INF)
8623 return -EINVAL;
8624
8625 mutex_lock(&rt_constraints_mutex);
8626 read_lock(&tasklist_lock);
8627 ret = __rt_schedulable(NULL, 0, 0);
8628 read_unlock(&tasklist_lock);
8629 mutex_unlock(&rt_constraints_mutex);
8630
8631 return ret;
8632 }
8633
8634 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8635 {
8636 /* Don't accept realtime tasks when there is no way for them to run */
8637 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8638 return 0;
8639
8640 return 1;
8641 }
8642
8643 #else /* !CONFIG_RT_GROUP_SCHED */
8644 static int sched_rt_global_constraints(void)
8645 {
8646 unsigned long flags;
8647 int i;
8648
8649 if (sysctl_sched_rt_period <= 0)
8650 return -EINVAL;
8651
8652 /*
8653 * There's always some RT tasks in the root group
8654 * -- migration, kstopmachine etc..
8655 */
8656 if (sysctl_sched_rt_runtime == 0)
8657 return -EBUSY;
8658
8659 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8660 for_each_possible_cpu(i) {
8661 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8662
8663 raw_spin_lock(&rt_rq->rt_runtime_lock);
8664 rt_rq->rt_runtime = global_rt_runtime();
8665 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8666 }
8667 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8668
8669 return 0;
8670 }
8671 #endif /* CONFIG_RT_GROUP_SCHED */
8672
8673 int sched_rt_handler(struct ctl_table *table, int write,
8674 void __user *buffer, size_t *lenp,
8675 loff_t *ppos)
8676 {
8677 int ret;
8678 int old_period, old_runtime;
8679 static DEFINE_MUTEX(mutex);
8680
8681 mutex_lock(&mutex);
8682 old_period = sysctl_sched_rt_period;
8683 old_runtime = sysctl_sched_rt_runtime;
8684
8685 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8686
8687 if (!ret && write) {
8688 ret = sched_rt_global_constraints();
8689 if (ret) {
8690 sysctl_sched_rt_period = old_period;
8691 sysctl_sched_rt_runtime = old_runtime;
8692 } else {
8693 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8694 def_rt_bandwidth.rt_period =
8695 ns_to_ktime(global_rt_period());
8696 }
8697 }
8698 mutex_unlock(&mutex);
8699
8700 return ret;
8701 }
8702
8703 #ifdef CONFIG_CGROUP_SCHED
8704
8705 /* return corresponding task_group object of a cgroup */
8706 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8707 {
8708 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8709 struct task_group, css);
8710 }
8711
8712 static struct cgroup_subsys_state *
8713 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8714 {
8715 struct task_group *tg, *parent;
8716
8717 if (!cgrp->parent) {
8718 /* This is early initialization for the top cgroup */
8719 return &root_task_group.css;
8720 }
8721
8722 parent = cgroup_tg(cgrp->parent);
8723 tg = sched_create_group(parent);
8724 if (IS_ERR(tg))
8725 return ERR_PTR(-ENOMEM);
8726
8727 return &tg->css;
8728 }
8729
8730 static void
8731 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8732 {
8733 struct task_group *tg = cgroup_tg(cgrp);
8734
8735 sched_destroy_group(tg);
8736 }
8737
8738 static int
8739 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8740 {
8741 #ifdef CONFIG_RT_GROUP_SCHED
8742 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8743 return -EINVAL;
8744 #else
8745 /* We don't support RT-tasks being in separate groups */
8746 if (tsk->sched_class != &fair_sched_class)
8747 return -EINVAL;
8748 #endif
8749 return 0;
8750 }
8751
8752 static int
8753 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8754 struct task_struct *tsk, bool threadgroup)
8755 {
8756 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8757 if (retval)
8758 return retval;
8759 if (threadgroup) {
8760 struct task_struct *c;
8761 rcu_read_lock();
8762 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8763 retval = cpu_cgroup_can_attach_task(cgrp, c);
8764 if (retval) {
8765 rcu_read_unlock();
8766 return retval;
8767 }
8768 }
8769 rcu_read_unlock();
8770 }
8771 return 0;
8772 }
8773
8774 static void
8775 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8776 struct cgroup *old_cont, struct task_struct *tsk,
8777 bool threadgroup)
8778 {
8779 sched_move_task(tsk);
8780 if (threadgroup) {
8781 struct task_struct *c;
8782 rcu_read_lock();
8783 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8784 sched_move_task(c);
8785 }
8786 rcu_read_unlock();
8787 }
8788 }
8789
8790 static void
8791 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8792 struct cgroup *old_cgrp, struct task_struct *task)
8793 {
8794 /*
8795 * cgroup_exit() is called in the copy_process() failure path.
8796 * Ignore this case since the task hasn't ran yet, this avoids
8797 * trying to poke a half freed task state from generic code.
8798 */
8799 if (!(task->flags & PF_EXITING))
8800 return;
8801
8802 sched_move_task(task);
8803 }
8804
8805 #ifdef CONFIG_FAIR_GROUP_SCHED
8806 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8807 u64 shareval)
8808 {
8809 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8810 }
8811
8812 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8813 {
8814 struct task_group *tg = cgroup_tg(cgrp);
8815
8816 return (u64) tg->shares;
8817 }
8818 #endif /* CONFIG_FAIR_GROUP_SCHED */
8819
8820 #ifdef CONFIG_RT_GROUP_SCHED
8821 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8822 s64 val)
8823 {
8824 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8825 }
8826
8827 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8828 {
8829 return sched_group_rt_runtime(cgroup_tg(cgrp));
8830 }
8831
8832 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8833 u64 rt_period_us)
8834 {
8835 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8836 }
8837
8838 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8839 {
8840 return sched_group_rt_period(cgroup_tg(cgrp));
8841 }
8842 #endif /* CONFIG_RT_GROUP_SCHED */
8843
8844 static struct cftype cpu_files[] = {
8845 #ifdef CONFIG_FAIR_GROUP_SCHED
8846 {
8847 .name = "shares",
8848 .read_u64 = cpu_shares_read_u64,
8849 .write_u64 = cpu_shares_write_u64,
8850 },
8851 #endif
8852 #ifdef CONFIG_RT_GROUP_SCHED
8853 {
8854 .name = "rt_runtime_us",
8855 .read_s64 = cpu_rt_runtime_read,
8856 .write_s64 = cpu_rt_runtime_write,
8857 },
8858 {
8859 .name = "rt_period_us",
8860 .read_u64 = cpu_rt_period_read_uint,
8861 .write_u64 = cpu_rt_period_write_uint,
8862 },
8863 #endif
8864 };
8865
8866 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8867 {
8868 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8869 }
8870
8871 struct cgroup_subsys cpu_cgroup_subsys = {
8872 .name = "cpu",
8873 .create = cpu_cgroup_create,
8874 .destroy = cpu_cgroup_destroy,
8875 .can_attach = cpu_cgroup_can_attach,
8876 .attach = cpu_cgroup_attach,
8877 .exit = cpu_cgroup_exit,
8878 .populate = cpu_cgroup_populate,
8879 .subsys_id = cpu_cgroup_subsys_id,
8880 .early_init = 1,
8881 };
8882
8883 #endif /* CONFIG_CGROUP_SCHED */
8884
8885 #ifdef CONFIG_CGROUP_CPUACCT
8886
8887 /*
8888 * CPU accounting code for task groups.
8889 *
8890 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8891 * (balbir@in.ibm.com).
8892 */
8893
8894 /* track cpu usage of a group of tasks and its child groups */
8895 struct cpuacct {
8896 struct cgroup_subsys_state css;
8897 /* cpuusage holds pointer to a u64-type object on every cpu */
8898 u64 __percpu *cpuusage;
8899 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8900 struct cpuacct *parent;
8901 };
8902
8903 struct cgroup_subsys cpuacct_subsys;
8904
8905 /* return cpu accounting group corresponding to this container */
8906 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8907 {
8908 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8909 struct cpuacct, css);
8910 }
8911
8912 /* return cpu accounting group to which this task belongs */
8913 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8914 {
8915 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8916 struct cpuacct, css);
8917 }
8918
8919 /* create a new cpu accounting group */
8920 static struct cgroup_subsys_state *cpuacct_create(
8921 struct cgroup_subsys *ss, struct cgroup *cgrp)
8922 {
8923 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8924 int i;
8925
8926 if (!ca)
8927 goto out;
8928
8929 ca->cpuusage = alloc_percpu(u64);
8930 if (!ca->cpuusage)
8931 goto out_free_ca;
8932
8933 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8934 if (percpu_counter_init(&ca->cpustat[i], 0))
8935 goto out_free_counters;
8936
8937 if (cgrp->parent)
8938 ca->parent = cgroup_ca(cgrp->parent);
8939
8940 return &ca->css;
8941
8942 out_free_counters:
8943 while (--i >= 0)
8944 percpu_counter_destroy(&ca->cpustat[i]);
8945 free_percpu(ca->cpuusage);
8946 out_free_ca:
8947 kfree(ca);
8948 out:
8949 return ERR_PTR(-ENOMEM);
8950 }
8951
8952 /* destroy an existing cpu accounting group */
8953 static void
8954 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8955 {
8956 struct cpuacct *ca = cgroup_ca(cgrp);
8957 int i;
8958
8959 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8960 percpu_counter_destroy(&ca->cpustat[i]);
8961 free_percpu(ca->cpuusage);
8962 kfree(ca);
8963 }
8964
8965 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8966 {
8967 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8968 u64 data;
8969
8970 #ifndef CONFIG_64BIT
8971 /*
8972 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8973 */
8974 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8975 data = *cpuusage;
8976 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8977 #else
8978 data = *cpuusage;
8979 #endif
8980
8981 return data;
8982 }
8983
8984 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8985 {
8986 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8987
8988 #ifndef CONFIG_64BIT
8989 /*
8990 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8991 */
8992 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8993 *cpuusage = val;
8994 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8995 #else
8996 *cpuusage = val;
8997 #endif
8998 }
8999
9000 /* return total cpu usage (in nanoseconds) of a group */
9001 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9002 {
9003 struct cpuacct *ca = cgroup_ca(cgrp);
9004 u64 totalcpuusage = 0;
9005 int i;
9006
9007 for_each_present_cpu(i)
9008 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9009
9010 return totalcpuusage;
9011 }
9012
9013 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9014 u64 reset)
9015 {
9016 struct cpuacct *ca = cgroup_ca(cgrp);
9017 int err = 0;
9018 int i;
9019
9020 if (reset) {
9021 err = -EINVAL;
9022 goto out;
9023 }
9024
9025 for_each_present_cpu(i)
9026 cpuacct_cpuusage_write(ca, i, 0);
9027
9028 out:
9029 return err;
9030 }
9031
9032 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9033 struct seq_file *m)
9034 {
9035 struct cpuacct *ca = cgroup_ca(cgroup);
9036 u64 percpu;
9037 int i;
9038
9039 for_each_present_cpu(i) {
9040 percpu = cpuacct_cpuusage_read(ca, i);
9041 seq_printf(m, "%llu ", (unsigned long long) percpu);
9042 }
9043 seq_printf(m, "\n");
9044 return 0;
9045 }
9046
9047 static const char *cpuacct_stat_desc[] = {
9048 [CPUACCT_STAT_USER] = "user",
9049 [CPUACCT_STAT_SYSTEM] = "system",
9050 };
9051
9052 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9053 struct cgroup_map_cb *cb)
9054 {
9055 struct cpuacct *ca = cgroup_ca(cgrp);
9056 int i;
9057
9058 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9059 s64 val = percpu_counter_read(&ca->cpustat[i]);
9060 val = cputime64_to_clock_t(val);
9061 cb->fill(cb, cpuacct_stat_desc[i], val);
9062 }
9063 return 0;
9064 }
9065
9066 static struct cftype files[] = {
9067 {
9068 .name = "usage",
9069 .read_u64 = cpuusage_read,
9070 .write_u64 = cpuusage_write,
9071 },
9072 {
9073 .name = "usage_percpu",
9074 .read_seq_string = cpuacct_percpu_seq_read,
9075 },
9076 {
9077 .name = "stat",
9078 .read_map = cpuacct_stats_show,
9079 },
9080 };
9081
9082 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9083 {
9084 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9085 }
9086
9087 /*
9088 * charge this task's execution time to its accounting group.
9089 *
9090 * called with rq->lock held.
9091 */
9092 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9093 {
9094 struct cpuacct *ca;
9095 int cpu;
9096
9097 if (unlikely(!cpuacct_subsys.active))
9098 return;
9099
9100 cpu = task_cpu(tsk);
9101
9102 rcu_read_lock();
9103
9104 ca = task_ca(tsk);
9105
9106 for (; ca; ca = ca->parent) {
9107 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9108 *cpuusage += cputime;
9109 }
9110
9111 rcu_read_unlock();
9112 }
9113
9114 /*
9115 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9116 * in cputime_t units. As a result, cpuacct_update_stats calls
9117 * percpu_counter_add with values large enough to always overflow the
9118 * per cpu batch limit causing bad SMP scalability.
9119 *
9120 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9121 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9122 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9123 */
9124 #ifdef CONFIG_SMP
9125 #define CPUACCT_BATCH \
9126 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9127 #else
9128 #define CPUACCT_BATCH 0
9129 #endif
9130
9131 /*
9132 * Charge the system/user time to the task's accounting group.
9133 */
9134 static void cpuacct_update_stats(struct task_struct *tsk,
9135 enum cpuacct_stat_index idx, cputime_t val)
9136 {
9137 struct cpuacct *ca;
9138 int batch = CPUACCT_BATCH;
9139
9140 if (unlikely(!cpuacct_subsys.active))
9141 return;
9142
9143 rcu_read_lock();
9144 ca = task_ca(tsk);
9145
9146 do {
9147 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9148 ca = ca->parent;
9149 } while (ca);
9150 rcu_read_unlock();
9151 }
9152
9153 struct cgroup_subsys cpuacct_subsys = {
9154 .name = "cpuacct",
9155 .create = cpuacct_create,
9156 .destroy = cpuacct_destroy,
9157 .populate = cpuacct_populate,
9158 .subsys_id = cpuacct_subsys_id,
9159 };
9160 #endif /* CONFIG_CGROUP_CPUACCT */
9161