Merge 4.14.304 into android-4.14-q
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 #include "sched.h"
8
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11 #include "tune.h"
12
13 #include "walt.h"
14
15 int sched_rr_timeslice = RR_TIMESLICE;
16 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
17
18 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
19
20 struct rt_bandwidth def_rt_bandwidth;
21
22 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
23 {
24 struct rt_bandwidth *rt_b =
25 container_of(timer, struct rt_bandwidth, rt_period_timer);
26 int idle = 0;
27 int overrun;
28
29 raw_spin_lock(&rt_b->rt_runtime_lock);
30 for (;;) {
31 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
32 if (!overrun)
33 break;
34
35 raw_spin_unlock(&rt_b->rt_runtime_lock);
36 idle = do_sched_rt_period_timer(rt_b, overrun);
37 raw_spin_lock(&rt_b->rt_runtime_lock);
38 }
39 if (idle)
40 rt_b->rt_period_active = 0;
41 raw_spin_unlock(&rt_b->rt_runtime_lock);
42
43 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
44 }
45
46 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
47 {
48 rt_b->rt_period = ns_to_ktime(period);
49 rt_b->rt_runtime = runtime;
50
51 raw_spin_lock_init(&rt_b->rt_runtime_lock);
52
53 hrtimer_init(&rt_b->rt_period_timer,
54 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
55 rt_b->rt_period_timer.function = sched_rt_period_timer;
56 }
57
58 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
59 {
60 raw_spin_lock(&rt_b->rt_runtime_lock);
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
63 /*
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
70 */
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 }
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76
77 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
78 {
79 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
80 return;
81
82 do_start_rt_bandwidth(rt_b);
83 }
84
85 void init_rt_rq(struct rt_rq *rt_rq)
86 {
87 struct rt_prio_array *array;
88 int i;
89
90 array = &rt_rq->active;
91 for (i = 0; i < MAX_RT_PRIO; i++) {
92 INIT_LIST_HEAD(array->queue + i);
93 __clear_bit(i, array->bitmap);
94 }
95 /* delimiter for bitsearch: */
96 __set_bit(MAX_RT_PRIO, array->bitmap);
97
98 #if defined CONFIG_SMP
99 rt_rq->highest_prio.curr = MAX_RT_PRIO;
100 rt_rq->highest_prio.next = MAX_RT_PRIO;
101 rt_rq->rt_nr_migratory = 0;
102 rt_rq->overloaded = 0;
103 plist_head_init(&rt_rq->pushable_tasks);
104 #endif /* CONFIG_SMP */
105 /* We start is dequeued state, because no RT tasks are queued */
106 rt_rq->rt_queued = 0;
107
108 rt_rq->rt_time = 0;
109 rt_rq->rt_throttled = 0;
110 rt_rq->rt_runtime = 0;
111 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
112 }
113
114 #ifdef CONFIG_RT_GROUP_SCHED
115 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
116 {
117 hrtimer_cancel(&rt_b->rt_period_timer);
118 }
119
120 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
121
122 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
123 {
124 #ifdef CONFIG_SCHED_DEBUG
125 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
126 #endif
127 return container_of(rt_se, struct task_struct, rt);
128 }
129
130 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
131 {
132 return rt_rq->rq;
133 }
134
135 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
136 {
137 return rt_se->rt_rq;
138 }
139
140 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
141 {
142 struct rt_rq *rt_rq = rt_se->rt_rq;
143
144 return rt_rq->rq;
145 }
146
147 void free_rt_sched_group(struct task_group *tg)
148 {
149 int i;
150
151 if (tg->rt_se)
152 destroy_rt_bandwidth(&tg->rt_bandwidth);
153
154 for_each_possible_cpu(i) {
155 if (tg->rt_rq)
156 kfree(tg->rt_rq[i]);
157 if (tg->rt_se)
158 kfree(tg->rt_se[i]);
159 }
160
161 kfree(tg->rt_rq);
162 kfree(tg->rt_se);
163 }
164
165 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
166 struct sched_rt_entity *rt_se, int cpu,
167 struct sched_rt_entity *parent)
168 {
169 struct rq *rq = cpu_rq(cpu);
170
171 rt_rq->highest_prio.curr = MAX_RT_PRIO;
172 rt_rq->rt_nr_boosted = 0;
173 rt_rq->rq = rq;
174 rt_rq->tg = tg;
175
176 tg->rt_rq[cpu] = rt_rq;
177 tg->rt_se[cpu] = rt_se;
178
179 if (!rt_se)
180 return;
181
182 if (!parent)
183 rt_se->rt_rq = &rq->rt;
184 else
185 rt_se->rt_rq = parent->my_q;
186
187 rt_se->my_q = rt_rq;
188 rt_se->parent = parent;
189 INIT_LIST_HEAD(&rt_se->run_list);
190 }
191
192 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
193 {
194 struct rt_rq *rt_rq;
195 struct sched_rt_entity *rt_se;
196 int i;
197
198 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
199 if (!tg->rt_rq)
200 goto err;
201 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
202 if (!tg->rt_se)
203 goto err;
204
205 init_rt_bandwidth(&tg->rt_bandwidth,
206 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
207
208 for_each_possible_cpu(i) {
209 rt_rq = kzalloc_node(sizeof(struct rt_rq),
210 GFP_KERNEL, cpu_to_node(i));
211 if (!rt_rq)
212 goto err;
213
214 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
215 GFP_KERNEL, cpu_to_node(i));
216 if (!rt_se)
217 goto err_free_rq;
218
219 init_rt_rq(rt_rq);
220 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
221 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
222 }
223
224 return 1;
225
226 err_free_rq:
227 kfree(rt_rq);
228 err:
229 return 0;
230 }
231
232 #else /* CONFIG_RT_GROUP_SCHED */
233
234 #define rt_entity_is_task(rt_se) (1)
235
236 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
237 {
238 return container_of(rt_se, struct task_struct, rt);
239 }
240
241 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
242 {
243 return container_of(rt_rq, struct rq, rt);
244 }
245
246 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
247 {
248 struct task_struct *p = rt_task_of(rt_se);
249
250 return task_rq(p);
251 }
252
253 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
254 {
255 struct rq *rq = rq_of_rt_se(rt_se);
256
257 return &rq->rt;
258 }
259
260 void free_rt_sched_group(struct task_group *tg) { }
261
262 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
263 {
264 return 1;
265 }
266 #endif /* CONFIG_RT_GROUP_SCHED */
267
268 #ifdef CONFIG_SMP
269
270 static void pull_rt_task(struct rq *this_rq);
271
272 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
273 {
274 /* Try to pull RT tasks here if we lower this rq's prio */
275 return rq->rt.highest_prio.curr > prev->prio;
276 }
277
278 static inline int rt_overloaded(struct rq *rq)
279 {
280 return atomic_read(&rq->rd->rto_count);
281 }
282
283 static inline void rt_set_overload(struct rq *rq)
284 {
285 if (!rq->online)
286 return;
287
288 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
289 /*
290 * Make sure the mask is visible before we set
291 * the overload count. That is checked to determine
292 * if we should look at the mask. It would be a shame
293 * if we looked at the mask, but the mask was not
294 * updated yet.
295 *
296 * Matched by the barrier in pull_rt_task().
297 */
298 smp_wmb();
299 atomic_inc(&rq->rd->rto_count);
300 }
301
302 static inline void rt_clear_overload(struct rq *rq)
303 {
304 if (!rq->online)
305 return;
306
307 /* the order here really doesn't matter */
308 atomic_dec(&rq->rd->rto_count);
309 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
310 }
311
312 static void update_rt_migration(struct rt_rq *rt_rq)
313 {
314 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
315 if (!rt_rq->overloaded) {
316 rt_set_overload(rq_of_rt_rq(rt_rq));
317 rt_rq->overloaded = 1;
318 }
319 } else if (rt_rq->overloaded) {
320 rt_clear_overload(rq_of_rt_rq(rt_rq));
321 rt_rq->overloaded = 0;
322 }
323 }
324
325 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
326 {
327 struct task_struct *p;
328
329 if (!rt_entity_is_task(rt_se))
330 return;
331
332 p = rt_task_of(rt_se);
333 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
334
335 rt_rq->rt_nr_total++;
336 if (p->nr_cpus_allowed > 1)
337 rt_rq->rt_nr_migratory++;
338
339 update_rt_migration(rt_rq);
340 }
341
342 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
343 {
344 struct task_struct *p;
345
346 if (!rt_entity_is_task(rt_se))
347 return;
348
349 p = rt_task_of(rt_se);
350 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
351
352 rt_rq->rt_nr_total--;
353 if (p->nr_cpus_allowed > 1)
354 rt_rq->rt_nr_migratory--;
355
356 update_rt_migration(rt_rq);
357 }
358
359 static inline int has_pushable_tasks(struct rq *rq)
360 {
361 return !plist_head_empty(&rq->rt.pushable_tasks);
362 }
363
364 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
365 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
366
367 static void push_rt_tasks(struct rq *);
368 static void pull_rt_task(struct rq *);
369
370 static inline void queue_push_tasks(struct rq *rq)
371 {
372 if (!has_pushable_tasks(rq))
373 return;
374
375 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
376 }
377
378 static inline void queue_pull_task(struct rq *rq)
379 {
380 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
381 }
382
383 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
384 {
385 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
386 plist_node_init(&p->pushable_tasks, p->prio);
387 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
388
389 /* Update the highest prio pushable task */
390 if (p->prio < rq->rt.highest_prio.next)
391 rq->rt.highest_prio.next = p->prio;
392 }
393
394 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
395 {
396 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
397
398 /* Update the new highest prio pushable task */
399 if (has_pushable_tasks(rq)) {
400 p = plist_first_entry(&rq->rt.pushable_tasks,
401 struct task_struct, pushable_tasks);
402 rq->rt.highest_prio.next = p->prio;
403 } else
404 rq->rt.highest_prio.next = MAX_RT_PRIO;
405 }
406
407 #else
408
409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412
413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416
417 static inline
418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline
423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
427 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
428 {
429 return false;
430 }
431
432 static inline void pull_rt_task(struct rq *this_rq)
433 {
434 }
435
436 static inline void queue_push_tasks(struct rq *rq)
437 {
438 }
439 #endif /* CONFIG_SMP */
440
441 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
442 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
443
444 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
445 {
446 return rt_se->on_rq;
447 }
448
449 #ifdef CONFIG_RT_GROUP_SCHED
450
451 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
452 {
453 if (!rt_rq->tg)
454 return RUNTIME_INF;
455
456 return rt_rq->rt_runtime;
457 }
458
459 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
460 {
461 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
462 }
463
464 typedef struct task_group *rt_rq_iter_t;
465
466 static inline struct task_group *next_task_group(struct task_group *tg)
467 {
468 do {
469 tg = list_entry_rcu(tg->list.next,
470 typeof(struct task_group), list);
471 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
472
473 if (&tg->list == &task_groups)
474 tg = NULL;
475
476 return tg;
477 }
478
479 #define for_each_rt_rq(rt_rq, iter, rq) \
480 for (iter = container_of(&task_groups, typeof(*iter), list); \
481 (iter = next_task_group(iter)) && \
482 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
483
484 #define for_each_sched_rt_entity(rt_se) \
485 for (; rt_se; rt_se = rt_se->parent)
486
487 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
488 {
489 return rt_se->my_q;
490 }
491
492 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
493 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494
495 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
496 {
497 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
498 struct rq *rq = rq_of_rt_rq(rt_rq);
499 struct sched_rt_entity *rt_se;
500
501 int cpu = cpu_of(rq);
502
503 rt_se = rt_rq->tg->rt_se[cpu];
504
505 if (rt_rq->rt_nr_running) {
506 if (!rt_se)
507 enqueue_top_rt_rq(rt_rq);
508 else if (!on_rt_rq(rt_se))
509 enqueue_rt_entity(rt_se, 0);
510
511 if (rt_rq->highest_prio.curr < curr->prio)
512 resched_curr(rq);
513 }
514 }
515
516 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
517 {
518 struct sched_rt_entity *rt_se;
519 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
520
521 rt_se = rt_rq->tg->rt_se[cpu];
522
523 if (!rt_se)
524 dequeue_top_rt_rq(rt_rq);
525 else if (on_rt_rq(rt_se))
526 dequeue_rt_entity(rt_se, 0);
527 }
528
529 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
530 {
531 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
532 }
533
534 static int rt_se_boosted(struct sched_rt_entity *rt_se)
535 {
536 struct rt_rq *rt_rq = group_rt_rq(rt_se);
537 struct task_struct *p;
538
539 if (rt_rq)
540 return !!rt_rq->rt_nr_boosted;
541
542 p = rt_task_of(rt_se);
543 return p->prio != p->normal_prio;
544 }
545
546 #ifdef CONFIG_SMP
547 static inline const struct cpumask *sched_rt_period_mask(void)
548 {
549 return this_rq()->rd->span;
550 }
551 #else
552 static inline const struct cpumask *sched_rt_period_mask(void)
553 {
554 return cpu_online_mask;
555 }
556 #endif
557
558 static inline
559 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
560 {
561 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
562 }
563
564 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
565 {
566 return &rt_rq->tg->rt_bandwidth;
567 }
568
569 #else /* !CONFIG_RT_GROUP_SCHED */
570
571 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
572 {
573 return rt_rq->rt_runtime;
574 }
575
576 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
577 {
578 return ktime_to_ns(def_rt_bandwidth.rt_period);
579 }
580
581 typedef struct rt_rq *rt_rq_iter_t;
582
583 #define for_each_rt_rq(rt_rq, iter, rq) \
584 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
585
586 #define for_each_sched_rt_entity(rt_se) \
587 for (; rt_se; rt_se = NULL)
588
589 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
590 {
591 return NULL;
592 }
593
594 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
595 {
596 struct rq *rq = rq_of_rt_rq(rt_rq);
597
598 if (!rt_rq->rt_nr_running)
599 return;
600
601 enqueue_top_rt_rq(rt_rq);
602 resched_curr(rq);
603 }
604
605 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
606 {
607 dequeue_top_rt_rq(rt_rq);
608 }
609
610 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
611 {
612 return rt_rq->rt_throttled;
613 }
614
615 static inline const struct cpumask *sched_rt_period_mask(void)
616 {
617 return cpu_online_mask;
618 }
619
620 static inline
621 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
622 {
623 return &cpu_rq(cpu)->rt;
624 }
625
626 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
627 {
628 return &def_rt_bandwidth;
629 }
630
631 #endif /* CONFIG_RT_GROUP_SCHED */
632
633 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
634 {
635 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
636
637 return (hrtimer_active(&rt_b->rt_period_timer) ||
638 rt_rq->rt_time < rt_b->rt_runtime);
639 }
640
641 #ifdef CONFIG_SMP
642 /*
643 * We ran out of runtime, see if we can borrow some from our neighbours.
644 */
645 static void do_balance_runtime(struct rt_rq *rt_rq)
646 {
647 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
648 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
649 int i, weight;
650 u64 rt_period;
651
652 weight = cpumask_weight(rd->span);
653
654 raw_spin_lock(&rt_b->rt_runtime_lock);
655 rt_period = ktime_to_ns(rt_b->rt_period);
656 for_each_cpu(i, rd->span) {
657 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
658 s64 diff;
659
660 if (iter == rt_rq)
661 continue;
662
663 raw_spin_lock(&iter->rt_runtime_lock);
664 /*
665 * Either all rqs have inf runtime and there's nothing to steal
666 * or __disable_runtime() below sets a specific rq to inf to
667 * indicate its been disabled and disalow stealing.
668 */
669 if (iter->rt_runtime == RUNTIME_INF)
670 goto next;
671
672 /*
673 * From runqueues with spare time, take 1/n part of their
674 * spare time, but no more than our period.
675 */
676 diff = iter->rt_runtime - iter->rt_time;
677 if (diff > 0) {
678 diff = div_u64((u64)diff, weight);
679 if (rt_rq->rt_runtime + diff > rt_period)
680 diff = rt_period - rt_rq->rt_runtime;
681 iter->rt_runtime -= diff;
682 rt_rq->rt_runtime += diff;
683 if (rt_rq->rt_runtime == rt_period) {
684 raw_spin_unlock(&iter->rt_runtime_lock);
685 break;
686 }
687 }
688 next:
689 raw_spin_unlock(&iter->rt_runtime_lock);
690 }
691 raw_spin_unlock(&rt_b->rt_runtime_lock);
692 }
693
694 /*
695 * Ensure this RQ takes back all the runtime it lend to its neighbours.
696 */
697 static void __disable_runtime(struct rq *rq)
698 {
699 struct root_domain *rd = rq->rd;
700 rt_rq_iter_t iter;
701 struct rt_rq *rt_rq;
702
703 if (unlikely(!scheduler_running))
704 return;
705
706 for_each_rt_rq(rt_rq, iter, rq) {
707 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
708 s64 want;
709 int i;
710
711 raw_spin_lock(&rt_b->rt_runtime_lock);
712 raw_spin_lock(&rt_rq->rt_runtime_lock);
713 /*
714 * Either we're all inf and nobody needs to borrow, or we're
715 * already disabled and thus have nothing to do, or we have
716 * exactly the right amount of runtime to take out.
717 */
718 if (rt_rq->rt_runtime == RUNTIME_INF ||
719 rt_rq->rt_runtime == rt_b->rt_runtime)
720 goto balanced;
721 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722
723 /*
724 * Calculate the difference between what we started out with
725 * and what we current have, that's the amount of runtime
726 * we lend and now have to reclaim.
727 */
728 want = rt_b->rt_runtime - rt_rq->rt_runtime;
729
730 /*
731 * Greedy reclaim, take back as much as we can.
732 */
733 for_each_cpu(i, rd->span) {
734 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
735 s64 diff;
736
737 /*
738 * Can't reclaim from ourselves or disabled runqueues.
739 */
740 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
741 continue;
742
743 raw_spin_lock(&iter->rt_runtime_lock);
744 if (want > 0) {
745 diff = min_t(s64, iter->rt_runtime, want);
746 iter->rt_runtime -= diff;
747 want -= diff;
748 } else {
749 iter->rt_runtime -= want;
750 want -= want;
751 }
752 raw_spin_unlock(&iter->rt_runtime_lock);
753
754 if (!want)
755 break;
756 }
757
758 raw_spin_lock(&rt_rq->rt_runtime_lock);
759 /*
760 * We cannot be left wanting - that would mean some runtime
761 * leaked out of the system.
762 */
763 BUG_ON(want);
764 balanced:
765 /*
766 * Disable all the borrow logic by pretending we have inf
767 * runtime - in which case borrowing doesn't make sense.
768 */
769 rt_rq->rt_runtime = RUNTIME_INF;
770 rt_rq->rt_throttled = 0;
771 raw_spin_unlock(&rt_rq->rt_runtime_lock);
772 raw_spin_unlock(&rt_b->rt_runtime_lock);
773
774 /* Make rt_rq available for pick_next_task() */
775 sched_rt_rq_enqueue(rt_rq);
776 }
777 }
778
779 static void __enable_runtime(struct rq *rq)
780 {
781 rt_rq_iter_t iter;
782 struct rt_rq *rt_rq;
783
784 if (unlikely(!scheduler_running))
785 return;
786
787 /*
788 * Reset each runqueue's bandwidth settings
789 */
790 for_each_rt_rq(rt_rq, iter, rq) {
791 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
792
793 raw_spin_lock(&rt_b->rt_runtime_lock);
794 raw_spin_lock(&rt_rq->rt_runtime_lock);
795 rt_rq->rt_runtime = rt_b->rt_runtime;
796 rt_rq->rt_time = 0;
797 rt_rq->rt_throttled = 0;
798 raw_spin_unlock(&rt_rq->rt_runtime_lock);
799 raw_spin_unlock(&rt_b->rt_runtime_lock);
800 }
801 }
802
803 static void balance_runtime(struct rt_rq *rt_rq)
804 {
805 if (!sched_feat(RT_RUNTIME_SHARE))
806 return;
807
808 if (rt_rq->rt_time > rt_rq->rt_runtime) {
809 raw_spin_unlock(&rt_rq->rt_runtime_lock);
810 do_balance_runtime(rt_rq);
811 raw_spin_lock(&rt_rq->rt_runtime_lock);
812 }
813 }
814 #else /* !CONFIG_SMP */
815 static inline void balance_runtime(struct rt_rq *rt_rq) {}
816 #endif /* CONFIG_SMP */
817
818 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
819 {
820 int i, idle = 1, throttled = 0;
821 const struct cpumask *span;
822
823 span = sched_rt_period_mask();
824 #ifdef CONFIG_RT_GROUP_SCHED
825 /*
826 * FIXME: isolated CPUs should really leave the root task group,
827 * whether they are isolcpus or were isolated via cpusets, lest
828 * the timer run on a CPU which does not service all runqueues,
829 * potentially leaving other CPUs indefinitely throttled. If
830 * isolation is really required, the user will turn the throttle
831 * off to kill the perturbations it causes anyway. Meanwhile,
832 * this maintains functionality for boot and/or troubleshooting.
833 */
834 if (rt_b == &root_task_group.rt_bandwidth)
835 span = cpu_online_mask;
836 #endif
837 for_each_cpu(i, span) {
838 int enqueue = 0;
839 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
840 struct rq *rq = rq_of_rt_rq(rt_rq);
841 int skip;
842
843 /*
844 * When span == cpu_online_mask, taking each rq->lock
845 * can be time-consuming. Try to avoid it when possible.
846 */
847 raw_spin_lock(&rt_rq->rt_runtime_lock);
848 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
849 rt_rq->rt_runtime = rt_b->rt_runtime;
850 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
851 raw_spin_unlock(&rt_rq->rt_runtime_lock);
852 if (skip)
853 continue;
854
855 raw_spin_lock(&rq->lock);
856 update_rq_clock(rq);
857
858 if (rt_rq->rt_time) {
859 u64 runtime;
860
861 raw_spin_lock(&rt_rq->rt_runtime_lock);
862 if (rt_rq->rt_throttled)
863 balance_runtime(rt_rq);
864 runtime = rt_rq->rt_runtime;
865 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
866 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
867 rt_rq->rt_throttled = 0;
868 enqueue = 1;
869
870 /*
871 * When we're idle and a woken (rt) task is
872 * throttled check_preempt_curr() will set
873 * skip_update and the time between the wakeup
874 * and this unthrottle will get accounted as
875 * 'runtime'.
876 */
877 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
878 rq_clock_skip_update(rq, false);
879 }
880 if (rt_rq->rt_time || rt_rq->rt_nr_running)
881 idle = 0;
882 raw_spin_unlock(&rt_rq->rt_runtime_lock);
883 } else if (rt_rq->rt_nr_running) {
884 idle = 0;
885 if (!rt_rq_throttled(rt_rq))
886 enqueue = 1;
887 }
888 if (rt_rq->rt_throttled)
889 throttled = 1;
890
891 if (enqueue)
892 sched_rt_rq_enqueue(rt_rq);
893 raw_spin_unlock(&rq->lock);
894 }
895
896 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
897 return 1;
898
899 return idle;
900 }
901
902 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
903 {
904 #ifdef CONFIG_RT_GROUP_SCHED
905 struct rt_rq *rt_rq = group_rt_rq(rt_se);
906
907 if (rt_rq)
908 return rt_rq->highest_prio.curr;
909 #endif
910
911 return rt_task_of(rt_se)->prio;
912 }
913
914 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
915 {
916 u64 runtime = sched_rt_runtime(rt_rq);
917
918 if (rt_rq->rt_throttled)
919 return rt_rq_throttled(rt_rq);
920
921 if (runtime >= sched_rt_period(rt_rq))
922 return 0;
923
924 balance_runtime(rt_rq);
925 runtime = sched_rt_runtime(rt_rq);
926 if (runtime == RUNTIME_INF)
927 return 0;
928
929 if (rt_rq->rt_time > runtime) {
930 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
931
932 /*
933 * Don't actually throttle groups that have no runtime assigned
934 * but accrue some time due to boosting.
935 */
936 if (likely(rt_b->rt_runtime)) {
937 rt_rq->rt_throttled = 1;
938 printk_deferred_once("sched: RT throttling activated\n");
939 } else {
940 /*
941 * In case we did anyway, make it go away,
942 * replenishment is a joke, since it will replenish us
943 * with exactly 0 ns.
944 */
945 rt_rq->rt_time = 0;
946 }
947
948 if (rt_rq_throttled(rt_rq)) {
949 sched_rt_rq_dequeue(rt_rq);
950 return 1;
951 }
952 }
953
954 return 0;
955 }
956
957 /*
958 * Update the current task's runtime statistics. Skip current tasks that
959 * are not in our scheduling class.
960 */
961 static void update_curr_rt(struct rq *rq)
962 {
963 struct task_struct *curr = rq->curr;
964 struct sched_rt_entity *rt_se = &curr->rt;
965 u64 delta_exec;
966
967 if (curr->sched_class != &rt_sched_class)
968 return;
969
970 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
971 if (unlikely((s64)delta_exec <= 0))
972 return;
973
974 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
975 cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
976
977 schedstat_set(curr->se.statistics.exec_max,
978 max(curr->se.statistics.exec_max, delta_exec));
979
980 curr->se.sum_exec_runtime += delta_exec;
981 account_group_exec_runtime(curr, delta_exec);
982
983 curr->se.exec_start = rq_clock_task(rq);
984 cpuacct_charge(curr, delta_exec);
985
986 sched_rt_avg_update(rq, delta_exec);
987
988 if (!rt_bandwidth_enabled())
989 return;
990
991 for_each_sched_rt_entity(rt_se) {
992 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
993 int exceeded;
994
995 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
996 raw_spin_lock(&rt_rq->rt_runtime_lock);
997 rt_rq->rt_time += delta_exec;
998 exceeded = sched_rt_runtime_exceeded(rt_rq);
999 if (exceeded)
1000 resched_curr(rq);
1001 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1002 if (exceeded)
1003 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1004 }
1005 }
1006 }
1007
1008 static void
1009 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1010 {
1011 struct rq *rq = rq_of_rt_rq(rt_rq);
1012
1013 BUG_ON(&rq->rt != rt_rq);
1014
1015 if (!rt_rq->rt_queued)
1016 return;
1017
1018 BUG_ON(!rq->nr_running);
1019
1020 sub_nr_running(rq, rt_rq->rt_nr_running);
1021 rt_rq->rt_queued = 0;
1022 }
1023
1024 static void
1025 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1026 {
1027 struct rq *rq = rq_of_rt_rq(rt_rq);
1028
1029 BUG_ON(&rq->rt != rt_rq);
1030
1031 if (rt_rq->rt_queued)
1032 return;
1033 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1034 return;
1035
1036 add_nr_running(rq, rt_rq->rt_nr_running);
1037 rt_rq->rt_queued = 1;
1038 }
1039
1040 #if defined CONFIG_SMP
1041
1042 static void
1043 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1044 {
1045 struct rq *rq = rq_of_rt_rq(rt_rq);
1046
1047 #ifdef CONFIG_RT_GROUP_SCHED
1048 /*
1049 * Change rq's cpupri only if rt_rq is the top queue.
1050 */
1051 if (&rq->rt != rt_rq)
1052 return;
1053 #endif
1054 if (rq->online && prio < prev_prio)
1055 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1056 }
1057
1058 static void
1059 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1060 {
1061 struct rq *rq = rq_of_rt_rq(rt_rq);
1062
1063 #ifdef CONFIG_RT_GROUP_SCHED
1064 /*
1065 * Change rq's cpupri only if rt_rq is the top queue.
1066 */
1067 if (&rq->rt != rt_rq)
1068 return;
1069 #endif
1070 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1071 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1072 }
1073
1074 #else /* CONFIG_SMP */
1075
1076 static inline
1077 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1078 static inline
1079 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1080
1081 #endif /* CONFIG_SMP */
1082
1083 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1084 static void
1085 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1086 {
1087 int prev_prio = rt_rq->highest_prio.curr;
1088
1089 if (prio < prev_prio)
1090 rt_rq->highest_prio.curr = prio;
1091
1092 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1093 }
1094
1095 static void
1096 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1097 {
1098 int prev_prio = rt_rq->highest_prio.curr;
1099
1100 if (rt_rq->rt_nr_running) {
1101
1102 WARN_ON(prio < prev_prio);
1103
1104 /*
1105 * This may have been our highest task, and therefore
1106 * we may have some recomputation to do
1107 */
1108 if (prio == prev_prio) {
1109 struct rt_prio_array *array = &rt_rq->active;
1110
1111 rt_rq->highest_prio.curr =
1112 sched_find_first_bit(array->bitmap);
1113 }
1114
1115 } else
1116 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1117
1118 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1119 }
1120
1121 #else
1122
1123 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1124 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1125
1126 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1127
1128 #ifdef CONFIG_RT_GROUP_SCHED
1129
1130 static void
1131 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1132 {
1133 if (rt_se_boosted(rt_se))
1134 rt_rq->rt_nr_boosted++;
1135
1136 if (rt_rq->tg)
1137 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1138 }
1139
1140 static void
1141 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1142 {
1143 if (rt_se_boosted(rt_se))
1144 rt_rq->rt_nr_boosted--;
1145
1146 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1147 }
1148
1149 #else /* CONFIG_RT_GROUP_SCHED */
1150
1151 static void
1152 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1153 {
1154 start_rt_bandwidth(&def_rt_bandwidth);
1155 }
1156
1157 static inline
1158 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1159
1160 #endif /* CONFIG_RT_GROUP_SCHED */
1161
1162 static inline
1163 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1164 {
1165 struct rt_rq *group_rq = group_rt_rq(rt_se);
1166
1167 if (group_rq)
1168 return group_rq->rt_nr_running;
1169 else
1170 return 1;
1171 }
1172
1173 static inline
1174 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1175 {
1176 struct rt_rq *group_rq = group_rt_rq(rt_se);
1177 struct task_struct *tsk;
1178
1179 if (group_rq)
1180 return group_rq->rr_nr_running;
1181
1182 tsk = rt_task_of(rt_se);
1183
1184 return (tsk->policy == SCHED_RR) ? 1 : 0;
1185 }
1186
1187 static inline
1188 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1189 {
1190 int prio = rt_se_prio(rt_se);
1191
1192 WARN_ON(!rt_prio(prio));
1193 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1194 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1195
1196 inc_rt_prio(rt_rq, prio);
1197 inc_rt_migration(rt_se, rt_rq);
1198 inc_rt_group(rt_se, rt_rq);
1199 }
1200
1201 static inline
1202 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1203 {
1204 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1205 WARN_ON(!rt_rq->rt_nr_running);
1206 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1207 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1208
1209 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1210 dec_rt_migration(rt_se, rt_rq);
1211 dec_rt_group(rt_se, rt_rq);
1212 }
1213
1214 /*
1215 * Change rt_se->run_list location unless SAVE && !MOVE
1216 *
1217 * assumes ENQUEUE/DEQUEUE flags match
1218 */
1219 static inline bool move_entity(unsigned int flags)
1220 {
1221 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1222 return false;
1223
1224 return true;
1225 }
1226
1227 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1228 {
1229 list_del_init(&rt_se->run_list);
1230
1231 if (list_empty(array->queue + rt_se_prio(rt_se)))
1232 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1233
1234 rt_se->on_list = 0;
1235 }
1236
1237 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1238 {
1239 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1240 struct rt_prio_array *array = &rt_rq->active;
1241 struct rt_rq *group_rq = group_rt_rq(rt_se);
1242 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1243
1244 /*
1245 * Don't enqueue the group if its throttled, or when empty.
1246 * The latter is a consequence of the former when a child group
1247 * get throttled and the current group doesn't have any other
1248 * active members.
1249 */
1250 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1251 if (rt_se->on_list)
1252 __delist_rt_entity(rt_se, array);
1253 return;
1254 }
1255
1256 if (move_entity(flags)) {
1257 WARN_ON_ONCE(rt_se->on_list);
1258 if (flags & ENQUEUE_HEAD)
1259 list_add(&rt_se->run_list, queue);
1260 else
1261 list_add_tail(&rt_se->run_list, queue);
1262
1263 __set_bit(rt_se_prio(rt_se), array->bitmap);
1264 rt_se->on_list = 1;
1265 }
1266 rt_se->on_rq = 1;
1267
1268 inc_rt_tasks(rt_se, rt_rq);
1269 }
1270
1271 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1272 {
1273 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1274 struct rt_prio_array *array = &rt_rq->active;
1275
1276 if (move_entity(flags)) {
1277 WARN_ON_ONCE(!rt_se->on_list);
1278 __delist_rt_entity(rt_se, array);
1279 }
1280 rt_se->on_rq = 0;
1281
1282 dec_rt_tasks(rt_se, rt_rq);
1283 }
1284
1285 /*
1286 * Because the prio of an upper entry depends on the lower
1287 * entries, we must remove entries top - down.
1288 */
1289 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1290 {
1291 struct sched_rt_entity *back = NULL;
1292
1293 for_each_sched_rt_entity(rt_se) {
1294 rt_se->back = back;
1295 back = rt_se;
1296 }
1297
1298 dequeue_top_rt_rq(rt_rq_of_se(back));
1299
1300 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1301 if (on_rt_rq(rt_se))
1302 __dequeue_rt_entity(rt_se, flags);
1303 }
1304 }
1305
1306 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1307 {
1308 struct rq *rq = rq_of_rt_se(rt_se);
1309
1310 dequeue_rt_stack(rt_se, flags);
1311 for_each_sched_rt_entity(rt_se)
1312 __enqueue_rt_entity(rt_se, flags);
1313 enqueue_top_rt_rq(&rq->rt);
1314 }
1315
1316 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1317 {
1318 struct rq *rq = rq_of_rt_se(rt_se);
1319
1320 dequeue_rt_stack(rt_se, flags);
1321
1322 for_each_sched_rt_entity(rt_se) {
1323 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1324
1325 if (rt_rq && rt_rq->rt_nr_running)
1326 __enqueue_rt_entity(rt_se, flags);
1327 }
1328 enqueue_top_rt_rq(&rq->rt);
1329 }
1330
1331 /*
1332 * Adding/removing a task to/from a priority array:
1333 */
1334 static void
1335 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1336 {
1337 struct sched_rt_entity *rt_se = &p->rt;
1338
1339 schedtune_enqueue_task(p, cpu_of(rq));
1340
1341 if (flags & ENQUEUE_WAKEUP)
1342 rt_se->timeout = 0;
1343
1344 enqueue_rt_entity(rt_se, flags);
1345 walt_inc_cumulative_runnable_avg(rq, p);
1346
1347 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1348 enqueue_pushable_task(rq, p);
1349 }
1350
1351 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1352 {
1353 struct sched_rt_entity *rt_se = &p->rt;
1354
1355 schedtune_dequeue_task(p, cpu_of(rq));
1356
1357 update_curr_rt(rq);
1358 dequeue_rt_entity(rt_se, flags);
1359 walt_dec_cumulative_runnable_avg(rq, p);
1360
1361 dequeue_pushable_task(rq, p);
1362 }
1363
1364 /*
1365 * Put task to the head or the end of the run list without the overhead of
1366 * dequeue followed by enqueue.
1367 */
1368 static void
1369 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1370 {
1371 if (on_rt_rq(rt_se)) {
1372 struct rt_prio_array *array = &rt_rq->active;
1373 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1374
1375 if (head)
1376 list_move(&rt_se->run_list, queue);
1377 else
1378 list_move_tail(&rt_se->run_list, queue);
1379 }
1380 }
1381
1382 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1383 {
1384 struct sched_rt_entity *rt_se = &p->rt;
1385 struct rt_rq *rt_rq;
1386
1387 for_each_sched_rt_entity(rt_se) {
1388 rt_rq = rt_rq_of_se(rt_se);
1389 requeue_rt_entity(rt_rq, rt_se, head);
1390 }
1391 }
1392
1393 static void yield_task_rt(struct rq *rq)
1394 {
1395 requeue_task_rt(rq, rq->curr, 0);
1396 }
1397
1398 #ifdef CONFIG_SMP
1399 static int find_lowest_rq(struct task_struct *task);
1400
1401 static int
1402 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
1403 int sibling_count_hint)
1404 {
1405 struct task_struct *curr;
1406 struct rq *rq;
1407
1408 /* For anything but wake ups, just return the task_cpu */
1409 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1410 goto out;
1411
1412 rq = cpu_rq(cpu);
1413
1414 rcu_read_lock();
1415 curr = READ_ONCE(rq->curr); /* unlocked access */
1416
1417 /*
1418 * If the current task on @p's runqueue is an RT task, then
1419 * try to see if we can wake this RT task up on another
1420 * runqueue. Otherwise simply start this RT task
1421 * on its current runqueue.
1422 *
1423 * We want to avoid overloading runqueues. If the woken
1424 * task is a higher priority, then it will stay on this CPU
1425 * and the lower prio task should be moved to another CPU.
1426 * Even though this will probably make the lower prio task
1427 * lose its cache, we do not want to bounce a higher task
1428 * around just because it gave up its CPU, perhaps for a
1429 * lock?
1430 *
1431 * For equal prio tasks, we just let the scheduler sort it out.
1432 *
1433 * Otherwise, just let it ride on the affined RQ and the
1434 * post-schedule router will push the preempted task away
1435 *
1436 * This test is optimistic, if we get it wrong the load-balancer
1437 * will have to sort it out.
1438 */
1439 if (curr && unlikely(rt_task(curr)) &&
1440 (curr->nr_cpus_allowed < 2 ||
1441 curr->prio <= p->prio)) {
1442 int target = find_lowest_rq(p);
1443
1444 /*
1445 * Don't bother moving it if the destination CPU is
1446 * not running a lower priority task.
1447 */
1448 if (target != -1 &&
1449 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1450 cpu = target;
1451 }
1452 rcu_read_unlock();
1453
1454 out:
1455 return cpu;
1456 }
1457
1458 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1459 {
1460 /*
1461 * Current can't be migrated, useless to reschedule,
1462 * let's hope p can move out.
1463 */
1464 if (rq->curr->nr_cpus_allowed == 1 ||
1465 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1466 return;
1467
1468 /*
1469 * p is migratable, so let's not schedule it and
1470 * see if it is pushed or pulled somewhere else.
1471 */
1472 if (p->nr_cpus_allowed != 1
1473 && cpupri_find(&rq->rd->cpupri, p, NULL))
1474 return;
1475
1476 /*
1477 * There appears to be other cpus that can accept
1478 * current and none to run 'p', so lets reschedule
1479 * to try and push current away:
1480 */
1481 requeue_task_rt(rq, p, 1);
1482 resched_curr(rq);
1483 }
1484
1485 #endif /* CONFIG_SMP */
1486
1487 /*
1488 * Preempt the current task with a newly woken task if needed:
1489 */
1490 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1491 {
1492 if (p->prio < rq->curr->prio) {
1493 resched_curr(rq);
1494 return;
1495 }
1496
1497 #ifdef CONFIG_SMP
1498 /*
1499 * If:
1500 *
1501 * - the newly woken task is of equal priority to the current task
1502 * - the newly woken task is non-migratable while current is migratable
1503 * - current will be preempted on the next reschedule
1504 *
1505 * we should check to see if current can readily move to a different
1506 * cpu. If so, we will reschedule to allow the push logic to try
1507 * to move current somewhere else, making room for our non-migratable
1508 * task.
1509 */
1510 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1511 check_preempt_equal_prio(rq, p);
1512 #endif
1513 }
1514
1515 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1516 struct rt_rq *rt_rq)
1517 {
1518 struct rt_prio_array *array = &rt_rq->active;
1519 struct sched_rt_entity *next = NULL;
1520 struct list_head *queue;
1521 int idx;
1522
1523 idx = sched_find_first_bit(array->bitmap);
1524 BUG_ON(idx >= MAX_RT_PRIO);
1525
1526 queue = array->queue + idx;
1527 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1528
1529 return next;
1530 }
1531
1532 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1533 {
1534 struct sched_rt_entity *rt_se;
1535 struct task_struct *p;
1536 struct rt_rq *rt_rq = &rq->rt;
1537
1538 do {
1539 rt_se = pick_next_rt_entity(rq, rt_rq);
1540 BUG_ON(!rt_se);
1541 rt_rq = group_rt_rq(rt_se);
1542 } while (rt_rq);
1543
1544 p = rt_task_of(rt_se);
1545 p->se.exec_start = rq_clock_task(rq);
1546
1547 return p;
1548 }
1549
1550 extern int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running);
1551
1552 static struct task_struct *
1553 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1554 {
1555 struct task_struct *p;
1556 struct rt_rq *rt_rq = &rq->rt;
1557
1558 if (need_pull_rt_task(rq, prev)) {
1559 /*
1560 * This is OK, because current is on_cpu, which avoids it being
1561 * picked for load-balance and preemption/IRQs are still
1562 * disabled avoiding further scheduler activity on it and we're
1563 * being very careful to re-start the picking loop.
1564 */
1565 rq_unpin_lock(rq, rf);
1566 pull_rt_task(rq);
1567 rq_repin_lock(rq, rf);
1568 /*
1569 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1570 * means a dl or stop task can slip in, in which case we need
1571 * to re-start task selection.
1572 */
1573 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1574 rq->dl.dl_nr_running))
1575 return RETRY_TASK;
1576 }
1577
1578 /*
1579 * We may dequeue prev's rt_rq in put_prev_task().
1580 * So, we update time before rt_nr_running check.
1581 */
1582 if (prev->sched_class == &rt_sched_class)
1583 update_curr_rt(rq);
1584
1585 if (!rt_rq->rt_queued)
1586 return NULL;
1587
1588 put_prev_task(rq, prev);
1589
1590 p = _pick_next_task_rt(rq);
1591
1592 /* The running task is never eligible for pushing */
1593 dequeue_pushable_task(rq, p);
1594
1595 queue_push_tasks(rq);
1596
1597 if (p)
1598 update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), rt_rq,
1599 rq->curr->sched_class == &rt_sched_class);
1600
1601 return p;
1602 }
1603
1604 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1605 {
1606 update_curr_rt(rq);
1607
1608 update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 1);
1609
1610 /*
1611 * The previous task needs to be made eligible for pushing
1612 * if it is still active
1613 */
1614 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1615 enqueue_pushable_task(rq, p);
1616 }
1617
1618 #ifdef CONFIG_SMP
1619
1620 /* Only try algorithms three times */
1621 #define RT_MAX_TRIES 3
1622
1623 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1624 {
1625 if (!task_running(rq, p) &&
1626 cpumask_test_cpu(cpu, &p->cpus_allowed))
1627 return 1;
1628 return 0;
1629 }
1630
1631 /*
1632 * Return the highest pushable rq's task, which is suitable to be executed
1633 * on the cpu, NULL otherwise
1634 */
1635 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1636 {
1637 struct plist_head *head = &rq->rt.pushable_tasks;
1638 struct task_struct *p;
1639
1640 if (!has_pushable_tasks(rq))
1641 return NULL;
1642
1643 plist_for_each_entry(p, head, pushable_tasks) {
1644 if (pick_rt_task(rq, p, cpu))
1645 return p;
1646 }
1647
1648 return NULL;
1649 }
1650
1651 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1652
1653 static int find_lowest_rq(struct task_struct *task)
1654 {
1655 struct sched_domain *sd;
1656 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1657 int this_cpu = smp_processor_id();
1658 int cpu = task_cpu(task);
1659
1660 /* Make sure the mask is initialized first */
1661 if (unlikely(!lowest_mask))
1662 return -1;
1663
1664 if (task->nr_cpus_allowed == 1)
1665 return -1; /* No other targets possible */
1666
1667 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1668 return -1; /* No targets found */
1669
1670 /*
1671 * At this point we have built a mask of cpus representing the
1672 * lowest priority tasks in the system. Now we want to elect
1673 * the best one based on our affinity and topology.
1674 *
1675 * We prioritize the last cpu that the task executed on since
1676 * it is most likely cache-hot in that location.
1677 */
1678 if (cpumask_test_cpu(cpu, lowest_mask))
1679 return cpu;
1680
1681 /*
1682 * Otherwise, we consult the sched_domains span maps to figure
1683 * out which cpu is logically closest to our hot cache data.
1684 */
1685 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1686 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1687
1688 rcu_read_lock();
1689 for_each_domain(cpu, sd) {
1690 if (sd->flags & SD_WAKE_AFFINE) {
1691 int best_cpu;
1692
1693 /*
1694 * "this_cpu" is cheaper to preempt than a
1695 * remote processor.
1696 */
1697 if (this_cpu != -1 &&
1698 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1699 rcu_read_unlock();
1700 return this_cpu;
1701 }
1702
1703 best_cpu = cpumask_first_and(lowest_mask,
1704 sched_domain_span(sd));
1705 if (best_cpu < nr_cpu_ids) {
1706 rcu_read_unlock();
1707 return best_cpu;
1708 }
1709 }
1710 }
1711 rcu_read_unlock();
1712
1713 /*
1714 * And finally, if there were no matches within the domains
1715 * just give the caller *something* to work with from the compatible
1716 * locations.
1717 */
1718 if (this_cpu != -1)
1719 return this_cpu;
1720
1721 cpu = cpumask_any(lowest_mask);
1722 if (cpu < nr_cpu_ids)
1723 return cpu;
1724 return -1;
1725 }
1726
1727 /* Will lock the rq it finds */
1728 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1729 {
1730 struct rq *lowest_rq = NULL;
1731 int tries;
1732 int cpu;
1733
1734 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1735 cpu = find_lowest_rq(task);
1736
1737 if ((cpu == -1) || (cpu == rq->cpu))
1738 break;
1739
1740 lowest_rq = cpu_rq(cpu);
1741
1742 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1743 /*
1744 * Target rq has tasks of equal or higher priority,
1745 * retrying does not release any lock and is unlikely
1746 * to yield a different result.
1747 */
1748 lowest_rq = NULL;
1749 break;
1750 }
1751
1752 /* if the prio of this runqueue changed, try again */
1753 if (double_lock_balance(rq, lowest_rq)) {
1754 /*
1755 * We had to unlock the run queue. In
1756 * the mean time, task could have
1757 * migrated already or had its affinity changed.
1758 * Also make sure that it wasn't scheduled on its rq.
1759 */
1760 if (unlikely(task_rq(task) != rq ||
1761 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1762 task_running(rq, task) ||
1763 !rt_task(task) ||
1764 !task_on_rq_queued(task))) {
1765
1766 double_unlock_balance(rq, lowest_rq);
1767 lowest_rq = NULL;
1768 break;
1769 }
1770 }
1771
1772 /* If this rq is still suitable use it. */
1773 if (lowest_rq->rt.highest_prio.curr > task->prio)
1774 break;
1775
1776 /* try again */
1777 double_unlock_balance(rq, lowest_rq);
1778 lowest_rq = NULL;
1779 }
1780
1781 return lowest_rq;
1782 }
1783
1784 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1785 {
1786 struct task_struct *p;
1787
1788 if (!has_pushable_tasks(rq))
1789 return NULL;
1790
1791 p = plist_first_entry(&rq->rt.pushable_tasks,
1792 struct task_struct, pushable_tasks);
1793
1794 BUG_ON(rq->cpu != task_cpu(p));
1795 BUG_ON(task_current(rq, p));
1796 BUG_ON(p->nr_cpus_allowed <= 1);
1797
1798 BUG_ON(!task_on_rq_queued(p));
1799 BUG_ON(!rt_task(p));
1800
1801 return p;
1802 }
1803
1804 /*
1805 * If the current CPU has more than one RT task, see if the non
1806 * running task can migrate over to a CPU that is running a task
1807 * of lesser priority.
1808 */
1809 static int push_rt_task(struct rq *rq)
1810 {
1811 struct task_struct *next_task;
1812 struct rq *lowest_rq;
1813 int ret = 0;
1814
1815 if (!rq->rt.overloaded)
1816 return 0;
1817
1818 next_task = pick_next_pushable_task(rq);
1819 if (!next_task)
1820 return 0;
1821
1822 retry:
1823 if (unlikely(next_task == rq->curr)) {
1824 WARN_ON(1);
1825 return 0;
1826 }
1827
1828 /*
1829 * It's possible that the next_task slipped in of
1830 * higher priority than current. If that's the case
1831 * just reschedule current.
1832 */
1833 if (unlikely(next_task->prio < rq->curr->prio)) {
1834 resched_curr(rq);
1835 return 0;
1836 }
1837
1838 /* We might release rq lock */
1839 get_task_struct(next_task);
1840
1841 /* find_lock_lowest_rq locks the rq if found */
1842 lowest_rq = find_lock_lowest_rq(next_task, rq);
1843 if (!lowest_rq) {
1844 struct task_struct *task;
1845 /*
1846 * find_lock_lowest_rq releases rq->lock
1847 * so it is possible that next_task has migrated.
1848 *
1849 * We need to make sure that the task is still on the same
1850 * run-queue and is also still the next task eligible for
1851 * pushing.
1852 */
1853 task = pick_next_pushable_task(rq);
1854 if (task == next_task) {
1855 /*
1856 * The task hasn't migrated, and is still the next
1857 * eligible task, but we failed to find a run-queue
1858 * to push it to. Do not retry in this case, since
1859 * other cpus will pull from us when ready.
1860 */
1861 goto out;
1862 }
1863
1864 if (!task)
1865 /* No more tasks, just exit */
1866 goto out;
1867
1868 /*
1869 * Something has shifted, try again.
1870 */
1871 put_task_struct(next_task);
1872 next_task = task;
1873 goto retry;
1874 }
1875
1876 deactivate_task(rq, next_task, 0);
1877 next_task->on_rq = TASK_ON_RQ_MIGRATING;
1878 set_task_cpu(next_task, lowest_rq->cpu);
1879 next_task->on_rq = TASK_ON_RQ_QUEUED;
1880 activate_task(lowest_rq, next_task, 0);
1881 ret = 1;
1882
1883 resched_curr(lowest_rq);
1884
1885 double_unlock_balance(rq, lowest_rq);
1886
1887 out:
1888 put_task_struct(next_task);
1889
1890 return ret;
1891 }
1892
1893 static void push_rt_tasks(struct rq *rq)
1894 {
1895 /* push_rt_task will return true if it moved an RT */
1896 while (push_rt_task(rq))
1897 ;
1898 }
1899
1900 #ifdef HAVE_RT_PUSH_IPI
1901
1902 /*
1903 * When a high priority task schedules out from a CPU and a lower priority
1904 * task is scheduled in, a check is made to see if there's any RT tasks
1905 * on other CPUs that are waiting to run because a higher priority RT task
1906 * is currently running on its CPU. In this case, the CPU with multiple RT
1907 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1908 * up that may be able to run one of its non-running queued RT tasks.
1909 *
1910 * All CPUs with overloaded RT tasks need to be notified as there is currently
1911 * no way to know which of these CPUs have the highest priority task waiting
1912 * to run. Instead of trying to take a spinlock on each of these CPUs,
1913 * which has shown to cause large latency when done on machines with many
1914 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1915 * RT tasks waiting to run.
1916 *
1917 * Just sending an IPI to each of the CPUs is also an issue, as on large
1918 * count CPU machines, this can cause an IPI storm on a CPU, especially
1919 * if its the only CPU with multiple RT tasks queued, and a large number
1920 * of CPUs scheduling a lower priority task at the same time.
1921 *
1922 * Each root domain has its own irq work function that can iterate over
1923 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1924 * tassk must be checked if there's one or many CPUs that are lowering
1925 * their priority, there's a single irq work iterator that will try to
1926 * push off RT tasks that are waiting to run.
1927 *
1928 * When a CPU schedules a lower priority task, it will kick off the
1929 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1930 * As it only takes the first CPU that schedules a lower priority task
1931 * to start the process, the rto_start variable is incremented and if
1932 * the atomic result is one, then that CPU will try to take the rto_lock.
1933 * This prevents high contention on the lock as the process handles all
1934 * CPUs scheduling lower priority tasks.
1935 *
1936 * All CPUs that are scheduling a lower priority task will increment the
1937 * rt_loop_next variable. This will make sure that the irq work iterator
1938 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1939 * priority task, even if the iterator is in the middle of a scan. Incrementing
1940 * the rt_loop_next will cause the iterator to perform another scan.
1941 *
1942 */
1943 static int rto_next_cpu(struct root_domain *rd)
1944 {
1945 int next;
1946 int cpu;
1947
1948 /*
1949 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1950 * rt_next_cpu() will simply return the first CPU found in
1951 * the rto_mask.
1952 *
1953 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1954 * will return the next CPU found in the rto_mask.
1955 *
1956 * If there are no more CPUs left in the rto_mask, then a check is made
1957 * against rto_loop and rto_loop_next. rto_loop is only updated with
1958 * the rto_lock held, but any CPU may increment the rto_loop_next
1959 * without any locking.
1960 */
1961 for (;;) {
1962
1963 /* When rto_cpu is -1 this acts like cpumask_first() */
1964 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1965
1966 rd->rto_cpu = cpu;
1967
1968 if (cpu < nr_cpu_ids)
1969 return cpu;
1970
1971 rd->rto_cpu = -1;
1972
1973 /*
1974 * ACQUIRE ensures we see the @rto_mask changes
1975 * made prior to the @next value observed.
1976 *
1977 * Matches WMB in rt_set_overload().
1978 */
1979 next = atomic_read_acquire(&rd->rto_loop_next);
1980
1981 if (rd->rto_loop == next)
1982 break;
1983
1984 rd->rto_loop = next;
1985 }
1986
1987 return -1;
1988 }
1989
1990 static inline bool rto_start_trylock(atomic_t *v)
1991 {
1992 return !atomic_cmpxchg_acquire(v, 0, 1);
1993 }
1994
1995 static inline void rto_start_unlock(atomic_t *v)
1996 {
1997 atomic_set_release(v, 0);
1998 }
1999
2000 static void tell_cpu_to_push(struct rq *rq)
2001 {
2002 int cpu = -1;
2003
2004 /* Keep the loop going if the IPI is currently active */
2005 atomic_inc(&rq->rd->rto_loop_next);
2006
2007 /* Only one CPU can initiate a loop at a time */
2008 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2009 return;
2010
2011 raw_spin_lock(&rq->rd->rto_lock);
2012
2013 /*
2014 * The rto_cpu is updated under the lock, if it has a valid cpu
2015 * then the IPI is still running and will continue due to the
2016 * update to loop_next, and nothing needs to be done here.
2017 * Otherwise it is finishing up and an ipi needs to be sent.
2018 */
2019 if (rq->rd->rto_cpu < 0)
2020 cpu = rto_next_cpu(rq->rd);
2021
2022 raw_spin_unlock(&rq->rd->rto_lock);
2023
2024 rto_start_unlock(&rq->rd->rto_loop_start);
2025
2026 if (cpu >= 0) {
2027 /* Make sure the rd does not get freed while pushing */
2028 sched_get_rd(rq->rd);
2029 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2030 }
2031 }
2032
2033 /* Called from hardirq context */
2034 void rto_push_irq_work_func(struct irq_work *work)
2035 {
2036 struct root_domain *rd =
2037 container_of(work, struct root_domain, rto_push_work);
2038 struct rq *rq;
2039 int cpu;
2040
2041 rq = this_rq();
2042
2043 /*
2044 * We do not need to grab the lock to check for has_pushable_tasks.
2045 * When it gets updated, a check is made if a push is possible.
2046 */
2047 if (has_pushable_tasks(rq)) {
2048 raw_spin_lock(&rq->lock);
2049 push_rt_tasks(rq);
2050 raw_spin_unlock(&rq->lock);
2051 }
2052
2053 raw_spin_lock(&rd->rto_lock);
2054
2055 /* Pass the IPI to the next rt overloaded queue */
2056 cpu = rto_next_cpu(rd);
2057
2058 raw_spin_unlock(&rd->rto_lock);
2059
2060 if (cpu < 0) {
2061 sched_put_rd(rd);
2062 return;
2063 }
2064
2065 /* Try the next RT overloaded CPU */
2066 irq_work_queue_on(&rd->rto_push_work, cpu);
2067 }
2068 #endif /* HAVE_RT_PUSH_IPI */
2069
2070 static void pull_rt_task(struct rq *this_rq)
2071 {
2072 int this_cpu = this_rq->cpu, cpu;
2073 bool resched = false;
2074 struct task_struct *p;
2075 struct rq *src_rq;
2076 int rt_overload_count = rt_overloaded(this_rq);
2077
2078 if (likely(!rt_overload_count))
2079 return;
2080
2081 /*
2082 * Match the barrier from rt_set_overloaded; this guarantees that if we
2083 * see overloaded we must also see the rto_mask bit.
2084 */
2085 smp_rmb();
2086
2087 /* If we are the only overloaded CPU do nothing */
2088 if (rt_overload_count == 1 &&
2089 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2090 return;
2091
2092 #ifdef HAVE_RT_PUSH_IPI
2093 if (sched_feat(RT_PUSH_IPI)) {
2094 tell_cpu_to_push(this_rq);
2095 return;
2096 }
2097 #endif
2098
2099 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2100 if (this_cpu == cpu)
2101 continue;
2102
2103 src_rq = cpu_rq(cpu);
2104
2105 /*
2106 * Don't bother taking the src_rq->lock if the next highest
2107 * task is known to be lower-priority than our current task.
2108 * This may look racy, but if this value is about to go
2109 * logically higher, the src_rq will push this task away.
2110 * And if its going logically lower, we do not care
2111 */
2112 if (src_rq->rt.highest_prio.next >=
2113 this_rq->rt.highest_prio.curr)
2114 continue;
2115
2116 /*
2117 * We can potentially drop this_rq's lock in
2118 * double_lock_balance, and another CPU could
2119 * alter this_rq
2120 */
2121 double_lock_balance(this_rq, src_rq);
2122
2123 /*
2124 * We can pull only a task, which is pushable
2125 * on its rq, and no others.
2126 */
2127 p = pick_highest_pushable_task(src_rq, this_cpu);
2128
2129 /*
2130 * Do we have an RT task that preempts
2131 * the to-be-scheduled task?
2132 */
2133 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2134 WARN_ON(p == src_rq->curr);
2135 WARN_ON(!task_on_rq_queued(p));
2136
2137 /*
2138 * There's a chance that p is higher in priority
2139 * than what's currently running on its cpu.
2140 * This is just that p is wakeing up and hasn't
2141 * had a chance to schedule. We only pull
2142 * p if it is lower in priority than the
2143 * current task on the run queue
2144 */
2145 if (p->prio < src_rq->curr->prio)
2146 goto skip;
2147
2148 resched = true;
2149
2150 deactivate_task(src_rq, p, 0);
2151 p->on_rq = TASK_ON_RQ_MIGRATING;
2152 set_task_cpu(p, this_cpu);
2153 p->on_rq = TASK_ON_RQ_QUEUED;
2154 activate_task(this_rq, p, 0);
2155 /*
2156 * We continue with the search, just in
2157 * case there's an even higher prio task
2158 * in another runqueue. (low likelihood
2159 * but possible)
2160 */
2161 }
2162 skip:
2163 double_unlock_balance(this_rq, src_rq);
2164 }
2165
2166 if (resched)
2167 resched_curr(this_rq);
2168 }
2169
2170 /*
2171 * If we are not running and we are not going to reschedule soon, we should
2172 * try to push tasks away now
2173 */
2174 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2175 {
2176 if (!task_running(rq, p) &&
2177 !test_tsk_need_resched(rq->curr) &&
2178 p->nr_cpus_allowed > 1 &&
2179 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2180 (rq->curr->nr_cpus_allowed < 2 ||
2181 rq->curr->prio <= p->prio))
2182 push_rt_tasks(rq);
2183 }
2184
2185 /* Assumes rq->lock is held */
2186 static void rq_online_rt(struct rq *rq)
2187 {
2188 if (rq->rt.overloaded)
2189 rt_set_overload(rq);
2190
2191 __enable_runtime(rq);
2192
2193 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2194 }
2195
2196 /* Assumes rq->lock is held */
2197 static void rq_offline_rt(struct rq *rq)
2198 {
2199 if (rq->rt.overloaded)
2200 rt_clear_overload(rq);
2201
2202 __disable_runtime(rq);
2203
2204 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2205 }
2206
2207 /*
2208 * When switch from the rt queue, we bring ourselves to a position
2209 * that we might want to pull RT tasks from other runqueues.
2210 */
2211 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2212 {
2213 /*
2214 * If there are other RT tasks then we will reschedule
2215 * and the scheduling of the other RT tasks will handle
2216 * the balancing. But if we are the last RT task
2217 * we may need to handle the pulling of RT tasks
2218 * now.
2219 */
2220 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2221 return;
2222
2223 queue_pull_task(rq);
2224 }
2225
2226 void __init init_sched_rt_class(void)
2227 {
2228 unsigned int i;
2229
2230 for_each_possible_cpu(i) {
2231 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2232 GFP_KERNEL, cpu_to_node(i));
2233 }
2234 }
2235 #endif /* CONFIG_SMP */
2236
2237 /*
2238 * When switching a task to RT, we may overload the runqueue
2239 * with RT tasks. In this case we try to push them off to
2240 * other runqueues.
2241 */
2242 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2243 {
2244 /*
2245 * If we are already running, then there's nothing
2246 * that needs to be done. But if we are not running
2247 * we may need to preempt the current running task.
2248 * If that current running task is also an RT task
2249 * then see if we can move to another run queue.
2250 */
2251 if (task_on_rq_queued(p) && rq->curr != p) {
2252 #ifdef CONFIG_SMP
2253 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2254 queue_push_tasks(rq);
2255 #endif /* CONFIG_SMP */
2256 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2257 resched_curr(rq);
2258 }
2259 }
2260
2261 /*
2262 * Priority of the task has changed. This may cause
2263 * us to initiate a push or pull.
2264 */
2265 static void
2266 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2267 {
2268 if (!task_on_rq_queued(p))
2269 return;
2270
2271 if (rq->curr == p) {
2272 #ifdef CONFIG_SMP
2273 /*
2274 * If our priority decreases while running, we
2275 * may need to pull tasks to this runqueue.
2276 */
2277 if (oldprio < p->prio)
2278 queue_pull_task(rq);
2279
2280 /*
2281 * If there's a higher priority task waiting to run
2282 * then reschedule.
2283 */
2284 if (p->prio > rq->rt.highest_prio.curr)
2285 resched_curr(rq);
2286 #else
2287 /* For UP simply resched on drop of prio */
2288 if (oldprio < p->prio)
2289 resched_curr(rq);
2290 #endif /* CONFIG_SMP */
2291 } else {
2292 /*
2293 * This task is not running, but if it is
2294 * greater than the current running task
2295 * then reschedule.
2296 */
2297 if (p->prio < rq->curr->prio)
2298 resched_curr(rq);
2299 }
2300 }
2301
2302 #ifdef CONFIG_POSIX_TIMERS
2303 static void watchdog(struct rq *rq, struct task_struct *p)
2304 {
2305 unsigned long soft, hard;
2306
2307 /* max may change after cur was read, this will be fixed next tick */
2308 soft = task_rlimit(p, RLIMIT_RTTIME);
2309 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2310
2311 if (soft != RLIM_INFINITY) {
2312 unsigned long next;
2313
2314 if (p->rt.watchdog_stamp != jiffies) {
2315 p->rt.timeout++;
2316 p->rt.watchdog_stamp = jiffies;
2317 }
2318
2319 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2320 if (p->rt.timeout > next)
2321 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2322 }
2323 }
2324 #else
2325 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2326 #endif
2327
2328 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2329 {
2330 struct sched_rt_entity *rt_se = &p->rt;
2331
2332 update_curr_rt(rq);
2333 update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 1);
2334
2335 watchdog(rq, p);
2336
2337 /*
2338 * RR tasks need a special form of timeslice management.
2339 * FIFO tasks have no timeslices.
2340 */
2341 if (p->policy != SCHED_RR)
2342 return;
2343
2344 if (--p->rt.time_slice)
2345 return;
2346
2347 p->rt.time_slice = sched_rr_timeslice;
2348
2349 /*
2350 * Requeue to the end of queue if we (and all of our ancestors) are not
2351 * the only element on the queue
2352 */
2353 for_each_sched_rt_entity(rt_se) {
2354 if (rt_se->run_list.prev != rt_se->run_list.next) {
2355 requeue_task_rt(rq, p, 0);
2356 resched_curr(rq);
2357 return;
2358 }
2359 }
2360 }
2361
2362 static void set_curr_task_rt(struct rq *rq)
2363 {
2364 struct task_struct *p = rq->curr;
2365
2366 p->se.exec_start = rq_clock_task(rq);
2367
2368 /* The running task is never eligible for pushing */
2369 dequeue_pushable_task(rq, p);
2370 }
2371
2372 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2373 {
2374 /*
2375 * Time slice is 0 for SCHED_FIFO tasks
2376 */
2377 if (task->policy == SCHED_RR)
2378 return sched_rr_timeslice;
2379 else
2380 return 0;
2381 }
2382
2383 const struct sched_class rt_sched_class = {
2384 .next = &fair_sched_class,
2385 .enqueue_task = enqueue_task_rt,
2386 .dequeue_task = dequeue_task_rt,
2387 .yield_task = yield_task_rt,
2388
2389 .check_preempt_curr = check_preempt_curr_rt,
2390
2391 .pick_next_task = pick_next_task_rt,
2392 .put_prev_task = put_prev_task_rt,
2393
2394 #ifdef CONFIG_SMP
2395 .select_task_rq = select_task_rq_rt,
2396
2397 .set_cpus_allowed = set_cpus_allowed_common,
2398 .rq_online = rq_online_rt,
2399 .rq_offline = rq_offline_rt,
2400 .task_woken = task_woken_rt,
2401 .switched_from = switched_from_rt,
2402 #endif
2403
2404 .set_curr_task = set_curr_task_rt,
2405 .task_tick = task_tick_rt,
2406
2407 .get_rr_interval = get_rr_interval_rt,
2408
2409 .prio_changed = prio_changed_rt,
2410 .switched_to = switched_to_rt,
2411
2412 .update_curr = update_curr_rt,
2413 };
2414
2415 #ifdef CONFIG_RT_GROUP_SCHED
2416 /*
2417 * Ensure that the real time constraints are schedulable.
2418 */
2419 static DEFINE_MUTEX(rt_constraints_mutex);
2420
2421 /* Must be called with tasklist_lock held */
2422 static inline int tg_has_rt_tasks(struct task_group *tg)
2423 {
2424 struct task_struct *g, *p;
2425
2426 /*
2427 * Autogroups do not have RT tasks; see autogroup_create().
2428 */
2429 if (task_group_is_autogroup(tg))
2430 return 0;
2431
2432 for_each_process_thread(g, p) {
2433 if (rt_task(p) && task_group(p) == tg)
2434 return 1;
2435 }
2436
2437 return 0;
2438 }
2439
2440 struct rt_schedulable_data {
2441 struct task_group *tg;
2442 u64 rt_period;
2443 u64 rt_runtime;
2444 };
2445
2446 static int tg_rt_schedulable(struct task_group *tg, void *data)
2447 {
2448 struct rt_schedulable_data *d = data;
2449 struct task_group *child;
2450 unsigned long total, sum = 0;
2451 u64 period, runtime;
2452
2453 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2454 runtime = tg->rt_bandwidth.rt_runtime;
2455
2456 if (tg == d->tg) {
2457 period = d->rt_period;
2458 runtime = d->rt_runtime;
2459 }
2460
2461 /*
2462 * Cannot have more runtime than the period.
2463 */
2464 if (runtime > period && runtime != RUNTIME_INF)
2465 return -EINVAL;
2466
2467 /*
2468 * Ensure we don't starve existing RT tasks.
2469 */
2470 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2471 return -EBUSY;
2472
2473 total = to_ratio(period, runtime);
2474
2475 /*
2476 * Nobody can have more than the global setting allows.
2477 */
2478 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2479 return -EINVAL;
2480
2481 /*
2482 * The sum of our children's runtime should not exceed our own.
2483 */
2484 list_for_each_entry_rcu(child, &tg->children, siblings) {
2485 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2486 runtime = child->rt_bandwidth.rt_runtime;
2487
2488 if (child == d->tg) {
2489 period = d->rt_period;
2490 runtime = d->rt_runtime;
2491 }
2492
2493 sum += to_ratio(period, runtime);
2494 }
2495
2496 if (sum > total)
2497 return -EINVAL;
2498
2499 return 0;
2500 }
2501
2502 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2503 {
2504 int ret;
2505
2506 struct rt_schedulable_data data = {
2507 .tg = tg,
2508 .rt_period = period,
2509 .rt_runtime = runtime,
2510 };
2511
2512 rcu_read_lock();
2513 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2514 rcu_read_unlock();
2515
2516 return ret;
2517 }
2518
2519 static int tg_set_rt_bandwidth(struct task_group *tg,
2520 u64 rt_period, u64 rt_runtime)
2521 {
2522 int i, err = 0;
2523
2524 /*
2525 * Disallowing the root group RT runtime is BAD, it would disallow the
2526 * kernel creating (and or operating) RT threads.
2527 */
2528 if (tg == &root_task_group && rt_runtime == 0)
2529 return -EINVAL;
2530
2531 /* No period doesn't make any sense. */
2532 if (rt_period == 0)
2533 return -EINVAL;
2534
2535 mutex_lock(&rt_constraints_mutex);
2536 read_lock(&tasklist_lock);
2537 err = __rt_schedulable(tg, rt_period, rt_runtime);
2538 if (err)
2539 goto unlock;
2540
2541 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2542 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2543 tg->rt_bandwidth.rt_runtime = rt_runtime;
2544
2545 for_each_possible_cpu(i) {
2546 struct rt_rq *rt_rq = tg->rt_rq[i];
2547
2548 raw_spin_lock(&rt_rq->rt_runtime_lock);
2549 rt_rq->rt_runtime = rt_runtime;
2550 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2551 }
2552 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2553 unlock:
2554 read_unlock(&tasklist_lock);
2555 mutex_unlock(&rt_constraints_mutex);
2556
2557 return err;
2558 }
2559
2560 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2561 {
2562 u64 rt_runtime, rt_period;
2563
2564 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2565 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2566 if (rt_runtime_us < 0)
2567 rt_runtime = RUNTIME_INF;
2568 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2569 return -EINVAL;
2570
2571 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2572 }
2573
2574 long sched_group_rt_runtime(struct task_group *tg)
2575 {
2576 u64 rt_runtime_us;
2577
2578 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2579 return -1;
2580
2581 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2582 do_div(rt_runtime_us, NSEC_PER_USEC);
2583 return rt_runtime_us;
2584 }
2585
2586 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2587 {
2588 u64 rt_runtime, rt_period;
2589
2590 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2591 return -EINVAL;
2592
2593 rt_period = rt_period_us * NSEC_PER_USEC;
2594 rt_runtime = tg->rt_bandwidth.rt_runtime;
2595
2596 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2597 }
2598
2599 long sched_group_rt_period(struct task_group *tg)
2600 {
2601 u64 rt_period_us;
2602
2603 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2604 do_div(rt_period_us, NSEC_PER_USEC);
2605 return rt_period_us;
2606 }
2607
2608 static int sched_rt_global_constraints(void)
2609 {
2610 int ret = 0;
2611
2612 mutex_lock(&rt_constraints_mutex);
2613 read_lock(&tasklist_lock);
2614 ret = __rt_schedulable(NULL, 0, 0);
2615 read_unlock(&tasklist_lock);
2616 mutex_unlock(&rt_constraints_mutex);
2617
2618 return ret;
2619 }
2620
2621 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2622 {
2623 /* Don't accept realtime tasks when there is no way for them to run */
2624 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2625 return 0;
2626
2627 return 1;
2628 }
2629
2630 #else /* !CONFIG_RT_GROUP_SCHED */
2631 static int sched_rt_global_constraints(void)
2632 {
2633 unsigned long flags;
2634 int i;
2635
2636 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2637 for_each_possible_cpu(i) {
2638 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2639
2640 raw_spin_lock(&rt_rq->rt_runtime_lock);
2641 rt_rq->rt_runtime = global_rt_runtime();
2642 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2643 }
2644 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2645
2646 return 0;
2647 }
2648 #endif /* CONFIG_RT_GROUP_SCHED */
2649
2650 static int sched_rt_global_validate(void)
2651 {
2652 if (sysctl_sched_rt_period <= 0)
2653 return -EINVAL;
2654
2655 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2656 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2657 return -EINVAL;
2658
2659 return 0;
2660 }
2661
2662 static void sched_rt_do_global(void)
2663 {
2664 unsigned long flags;
2665
2666 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2667 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2668 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2669 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2670 }
2671
2672 int sched_rt_handler(struct ctl_table *table, int write,
2673 void __user *buffer, size_t *lenp,
2674 loff_t *ppos)
2675 {
2676 int old_period, old_runtime;
2677 static DEFINE_MUTEX(mutex);
2678 int ret;
2679
2680 mutex_lock(&mutex);
2681 old_period = sysctl_sched_rt_period;
2682 old_runtime = sysctl_sched_rt_runtime;
2683
2684 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2685
2686 if (!ret && write) {
2687 ret = sched_rt_global_validate();
2688 if (ret)
2689 goto undo;
2690
2691 ret = sched_dl_global_validate();
2692 if (ret)
2693 goto undo;
2694
2695 ret = sched_rt_global_constraints();
2696 if (ret)
2697 goto undo;
2698
2699 sched_rt_do_global();
2700 sched_dl_do_global();
2701 }
2702 if (0) {
2703 undo:
2704 sysctl_sched_rt_period = old_period;
2705 sysctl_sched_rt_runtime = old_runtime;
2706 }
2707 mutex_unlock(&mutex);
2708
2709 return ret;
2710 }
2711
2712 int sched_rr_handler(struct ctl_table *table, int write,
2713 void __user *buffer, size_t *lenp,
2714 loff_t *ppos)
2715 {
2716 int ret;
2717 static DEFINE_MUTEX(mutex);
2718
2719 mutex_lock(&mutex);
2720 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2721 /*
2722 * Make sure that internally we keep jiffies.
2723 * Also, writing zero resets the timeslice to default:
2724 */
2725 if (!ret && write) {
2726 sched_rr_timeslice =
2727 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2728 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2729 }
2730 mutex_unlock(&mutex);
2731 return ret;
2732 }
2733
2734 #ifdef CONFIG_SCHED_DEBUG
2735 void print_rt_stats(struct seq_file *m, int cpu)
2736 {
2737 rt_rq_iter_t iter;
2738 struct rt_rq *rt_rq;
2739
2740 rcu_read_lock();
2741 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2742 print_rt_rq(m, cpu, rt_rq);
2743 rcu_read_unlock();
2744 }
2745 #endif /* CONFIG_SCHED_DEBUG */