fs: sdfat: Update to version 2.3.0
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 return container_of(rt_se, struct task_struct, rt);
103 }
104
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 return rt_rq->rq;
108 }
109
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 return rt_se->rt_rq;
113 }
114
115 void free_rt_sched_group(struct task_group *tg)
116 {
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131 }
132
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136 {
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158 }
159
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194 err_free_rq:
195 kfree(rt_rq);
196 err:
197 return 0;
198 }
199
200 #else /* CONFIG_RT_GROUP_SCHED */
201
202 #define rt_entity_is_task(rt_se) (1)
203
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 return container_of(rt_se, struct task_struct, rt);
207 }
208
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 return container_of(rt_rq, struct rq, rt);
212 }
213
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220 }
221
222 void free_rt_sched_group(struct task_group *tg) { }
223
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229
230 #ifdef CONFIG_SMP
231
232 static inline int rt_overloaded(struct rq *rq)
233 {
234 return atomic_read(&rq->rd->rto_count);
235 }
236
237 static inline void rt_set_overload(struct rq *rq)
238 {
239 if (!rq->online)
240 return;
241
242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
249 */
250 wmb();
251 atomic_inc(&rq->rd->rto_count);
252 }
253
254 static inline void rt_clear_overload(struct rq *rq)
255 {
256 if (!rq->online)
257 return;
258
259 /* the order here really doesn't matter */
260 atomic_dec(&rq->rd->rto_count);
261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
262 }
263
264 static void update_rt_migration(struct rt_rq *rt_rq)
265 {
266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 if (!rt_rq->overloaded) {
268 rt_set_overload(rq_of_rt_rq(rt_rq));
269 rt_rq->overloaded = 1;
270 }
271 } else if (rt_rq->overloaded) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq));
273 rt_rq->overloaded = 0;
274 }
275 }
276
277 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
278 {
279 struct task_struct *p;
280
281 if (!rt_entity_is_task(rt_se))
282 return;
283
284 p = rt_task_of(rt_se);
285 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
286
287 rt_rq->rt_nr_total++;
288 if (p->nr_cpus_allowed > 1)
289 rt_rq->rt_nr_migratory++;
290
291 update_rt_migration(rt_rq);
292 }
293
294 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
295 {
296 struct task_struct *p;
297
298 if (!rt_entity_is_task(rt_se))
299 return;
300
301 p = rt_task_of(rt_se);
302 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
303
304 rt_rq->rt_nr_total--;
305 if (p->nr_cpus_allowed > 1)
306 rt_rq->rt_nr_migratory--;
307
308 update_rt_migration(rt_rq);
309 }
310
311 static inline int has_pushable_tasks(struct rq *rq)
312 {
313 return !plist_head_empty(&rq->rt.pushable_tasks);
314 }
315
316 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
317 {
318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 plist_node_init(&p->pushable_tasks, p->prio);
320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
321
322 /* Update the highest prio pushable task */
323 if (p->prio < rq->rt.highest_prio.next)
324 rq->rt.highest_prio.next = p->prio;
325 }
326
327 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
328 {
329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
330
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq)) {
333 p = plist_first_entry(&rq->rt.pushable_tasks,
334 struct task_struct, pushable_tasks);
335 rq->rt.highest_prio.next = p->prio;
336 } else
337 rq->rt.highest_prio.next = MAX_RT_PRIO;
338 }
339
340 #else
341
342 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
343 {
344 }
345
346 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347 {
348 }
349
350 static inline
351 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352 {
353 }
354
355 static inline
356 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
357 {
358 }
359
360 #endif /* CONFIG_SMP */
361
362 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
363 {
364 return !list_empty(&rt_se->run_list);
365 }
366
367 #ifdef CONFIG_RT_GROUP_SCHED
368
369 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
370 {
371 if (!rt_rq->tg)
372 return RUNTIME_INF;
373
374 return rt_rq->rt_runtime;
375 }
376
377 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
378 {
379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
380 }
381
382 typedef struct task_group *rt_rq_iter_t;
383
384 static inline struct task_group *next_task_group(struct task_group *tg)
385 {
386 do {
387 tg = list_entry_rcu(tg->list.next,
388 typeof(struct task_group), list);
389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
390
391 if (&tg->list == &task_groups)
392 tg = NULL;
393
394 return tg;
395 }
396
397 #define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
401
402 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
403 {
404 list_add_rcu(&rt_rq->leaf_rt_rq_list,
405 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
406 }
407
408 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
409 {
410 list_del_rcu(&rt_rq->leaf_rt_rq_list);
411 }
412
413 #define for_each_leaf_rt_rq(rt_rq, rq) \
414 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
415
416 #define for_each_sched_rt_entity(rt_se) \
417 for (; rt_se; rt_se = rt_se->parent)
418
419 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
420 {
421 return rt_se->my_q;
422 }
423
424 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
425 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
426
427 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
428 {
429 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
430 struct sched_rt_entity *rt_se;
431
432 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
433
434 rt_se = rt_rq->tg->rt_se[cpu];
435
436 if (rt_rq->rt_nr_running) {
437 if (rt_se && !on_rt_rq(rt_se))
438 enqueue_rt_entity(rt_se, false);
439 if (rt_rq->highest_prio.curr < curr->prio)
440 resched_task(curr);
441 }
442 }
443
444 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
445 {
446 struct sched_rt_entity *rt_se;
447 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
448
449 rt_se = rt_rq->tg->rt_se[cpu];
450
451 if (rt_se && on_rt_rq(rt_se))
452 dequeue_rt_entity(rt_se);
453 }
454
455 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
456 {
457 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
458 }
459
460 static int rt_se_boosted(struct sched_rt_entity *rt_se)
461 {
462 struct rt_rq *rt_rq = group_rt_rq(rt_se);
463 struct task_struct *p;
464
465 if (rt_rq)
466 return !!rt_rq->rt_nr_boosted;
467
468 p = rt_task_of(rt_se);
469 return p->prio != p->normal_prio;
470 }
471
472 #ifdef CONFIG_SMP
473 static inline const struct cpumask *sched_rt_period_mask(void)
474 {
475 return cpu_rq(smp_processor_id())->rd->span;
476 }
477 #else
478 static inline const struct cpumask *sched_rt_period_mask(void)
479 {
480 return cpu_online_mask;
481 }
482 #endif
483
484 static inline
485 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
486 {
487 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
488 }
489
490 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
491 {
492 return &rt_rq->tg->rt_bandwidth;
493 }
494
495 #else /* !CONFIG_RT_GROUP_SCHED */
496
497 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
498 {
499 return rt_rq->rt_runtime;
500 }
501
502 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
503 {
504 return ktime_to_ns(def_rt_bandwidth.rt_period);
505 }
506
507 typedef struct rt_rq *rt_rq_iter_t;
508
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
511
512 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
513 {
514 }
515
516 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
517 {
518 }
519
520 #define for_each_leaf_rt_rq(rt_rq, rq) \
521 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
522
523 #define for_each_sched_rt_entity(rt_se) \
524 for (; rt_se; rt_se = NULL)
525
526 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527 {
528 return NULL;
529 }
530
531 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532 {
533 if (rt_rq->rt_nr_running)
534 resched_task(rq_of_rt_rq(rt_rq)->curr);
535 }
536
537 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
538 {
539 }
540
541 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
542 {
543 return rt_rq->rt_throttled;
544 }
545
546 static inline const struct cpumask *sched_rt_period_mask(void)
547 {
548 return cpu_online_mask;
549 }
550
551 static inline
552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554 return &cpu_rq(cpu)->rt;
555 }
556
557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559 return &def_rt_bandwidth;
560 }
561
562 #endif /* CONFIG_RT_GROUP_SCHED */
563
564 #ifdef CONFIG_SMP
565 /*
566 * We ran out of runtime, see if we can borrow some from our neighbours.
567 */
568 static int do_balance_runtime(struct rt_rq *rt_rq)
569 {
570 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
571 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
572 int i, weight, more = 0;
573 u64 rt_period;
574
575 weight = cpumask_weight(rd->span);
576
577 raw_spin_lock(&rt_b->rt_runtime_lock);
578 rt_period = ktime_to_ns(rt_b->rt_period);
579 for_each_cpu(i, rd->span) {
580 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
581 s64 diff;
582
583 if (iter == rt_rq)
584 continue;
585
586 raw_spin_lock(&iter->rt_runtime_lock);
587 /*
588 * Either all rqs have inf runtime and there's nothing to steal
589 * or __disable_runtime() below sets a specific rq to inf to
590 * indicate its been disabled and disalow stealing.
591 */
592 if (iter->rt_runtime == RUNTIME_INF)
593 goto next;
594
595 /*
596 * From runqueues with spare time, take 1/n part of their
597 * spare time, but no more than our period.
598 */
599 diff = iter->rt_runtime - iter->rt_time;
600 if (diff > 0) {
601 diff = div_u64((u64)diff, weight);
602 if (rt_rq->rt_runtime + diff > rt_period)
603 diff = rt_period - rt_rq->rt_runtime;
604 iter->rt_runtime -= diff;
605 rt_rq->rt_runtime += diff;
606 more = 1;
607 if (rt_rq->rt_runtime == rt_period) {
608 raw_spin_unlock(&iter->rt_runtime_lock);
609 break;
610 }
611 }
612 next:
613 raw_spin_unlock(&iter->rt_runtime_lock);
614 }
615 raw_spin_unlock(&rt_b->rt_runtime_lock);
616
617 return more;
618 }
619
620 /*
621 * Ensure this RQ takes back all the runtime it lend to its neighbours.
622 */
623 static void __disable_runtime(struct rq *rq)
624 {
625 struct root_domain *rd = rq->rd;
626 rt_rq_iter_t iter;
627 struct rt_rq *rt_rq;
628
629 if (unlikely(!scheduler_running))
630 return;
631
632 for_each_rt_rq(rt_rq, iter, rq) {
633 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
634 s64 want;
635 int i;
636
637 raw_spin_lock(&rt_b->rt_runtime_lock);
638 raw_spin_lock(&rt_rq->rt_runtime_lock);
639 /*
640 * Either we're all inf and nobody needs to borrow, or we're
641 * already disabled and thus have nothing to do, or we have
642 * exactly the right amount of runtime to take out.
643 */
644 if (rt_rq->rt_runtime == RUNTIME_INF ||
645 rt_rq->rt_runtime == rt_b->rt_runtime)
646 goto balanced;
647 raw_spin_unlock(&rt_rq->rt_runtime_lock);
648
649 /*
650 * Calculate the difference between what we started out with
651 * and what we current have, that's the amount of runtime
652 * we lend and now have to reclaim.
653 */
654 want = rt_b->rt_runtime - rt_rq->rt_runtime;
655
656 /*
657 * Greedy reclaim, take back as much as we can.
658 */
659 for_each_cpu(i, rd->span) {
660 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
661 s64 diff;
662
663 /*
664 * Can't reclaim from ourselves or disabled runqueues.
665 */
666 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
667 continue;
668
669 raw_spin_lock(&iter->rt_runtime_lock);
670 if (want > 0) {
671 diff = min_t(s64, iter->rt_runtime, want);
672 iter->rt_runtime -= diff;
673 want -= diff;
674 } else {
675 iter->rt_runtime -= want;
676 want -= want;
677 }
678 raw_spin_unlock(&iter->rt_runtime_lock);
679
680 if (!want)
681 break;
682 }
683
684 raw_spin_lock(&rt_rq->rt_runtime_lock);
685 /*
686 * We cannot be left wanting - that would mean some runtime
687 * leaked out of the system.
688 */
689 BUG_ON(want);
690 balanced:
691 /*
692 * Disable all the borrow logic by pretending we have inf
693 * runtime - in which case borrowing doesn't make sense.
694 */
695 rt_rq->rt_runtime = RUNTIME_INF;
696 rt_rq->rt_throttled = 0;
697 raw_spin_unlock(&rt_rq->rt_runtime_lock);
698 raw_spin_unlock(&rt_b->rt_runtime_lock);
699 }
700 }
701
702 static void __enable_runtime(struct rq *rq)
703 {
704 rt_rq_iter_t iter;
705 struct rt_rq *rt_rq;
706
707 if (unlikely(!scheduler_running))
708 return;
709
710 /*
711 * Reset each runqueue's bandwidth settings
712 */
713 for_each_rt_rq(rt_rq, iter, rq) {
714 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
715
716 raw_spin_lock(&rt_b->rt_runtime_lock);
717 raw_spin_lock(&rt_rq->rt_runtime_lock);
718 rt_rq->rt_runtime = rt_b->rt_runtime;
719 rt_rq->rt_time = 0;
720 rt_rq->rt_throttled = 0;
721 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722 raw_spin_unlock(&rt_b->rt_runtime_lock);
723 }
724 }
725
726 static int balance_runtime(struct rt_rq *rt_rq)
727 {
728 int more = 0;
729
730 if (!sched_feat(RT_RUNTIME_SHARE))
731 return more;
732
733 if (rt_rq->rt_time > rt_rq->rt_runtime) {
734 raw_spin_unlock(&rt_rq->rt_runtime_lock);
735 more = do_balance_runtime(rt_rq);
736 raw_spin_lock(&rt_rq->rt_runtime_lock);
737 }
738
739 return more;
740 }
741 #else /* !CONFIG_SMP */
742 static inline int balance_runtime(struct rt_rq *rt_rq)
743 {
744 return 0;
745 }
746 #endif /* CONFIG_SMP */
747
748 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
749 {
750 int i, idle = 1, throttled = 0;
751 const struct cpumask *span;
752
753 span = sched_rt_period_mask();
754 #ifdef CONFIG_RT_GROUP_SCHED
755 /*
756 * FIXME: isolated CPUs should really leave the root task group,
757 * whether they are isolcpus or were isolated via cpusets, lest
758 * the timer run on a CPU which does not service all runqueues,
759 * potentially leaving other CPUs indefinitely throttled. If
760 * isolation is really required, the user will turn the throttle
761 * off to kill the perturbations it causes anyway. Meanwhile,
762 * this maintains functionality for boot and/or troubleshooting.
763 */
764 if (rt_b == &root_task_group.rt_bandwidth)
765 span = cpu_online_mask;
766 #endif
767 for_each_cpu(i, span) {
768 int enqueue = 0;
769 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
770 struct rq *rq = rq_of_rt_rq(rt_rq);
771
772 raw_spin_lock(&rq->lock);
773 if (rt_rq->rt_time) {
774 u64 runtime;
775
776 raw_spin_lock(&rt_rq->rt_runtime_lock);
777 if (rt_rq->rt_throttled)
778 balance_runtime(rt_rq);
779 runtime = rt_rq->rt_runtime;
780 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
781 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
782 rt_rq->rt_throttled = 0;
783 enqueue = 1;
784
785 /*
786 * Force a clock update if the CPU was idle,
787 * lest wakeup -> unthrottle time accumulate.
788 */
789 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
790 rq->skip_clock_update = -1;
791 }
792 if (rt_rq->rt_time || rt_rq->rt_nr_running)
793 idle = 0;
794 raw_spin_unlock(&rt_rq->rt_runtime_lock);
795 } else if (rt_rq->rt_nr_running) {
796 idle = 0;
797 if (!rt_rq_throttled(rt_rq))
798 enqueue = 1;
799 }
800 if (rt_rq->rt_throttled)
801 throttled = 1;
802
803 if (enqueue)
804 sched_rt_rq_enqueue(rt_rq);
805 raw_spin_unlock(&rq->lock);
806 }
807
808 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
809 return 1;
810
811 return idle;
812 }
813
814 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
815 {
816 #ifdef CONFIG_RT_GROUP_SCHED
817 struct rt_rq *rt_rq = group_rt_rq(rt_se);
818
819 if (rt_rq)
820 return rt_rq->highest_prio.curr;
821 #endif
822
823 return rt_task_of(rt_se)->prio;
824 }
825
826 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
827 {
828 u64 runtime = sched_rt_runtime(rt_rq);
829
830 if (rt_rq->rt_throttled)
831 return rt_rq_throttled(rt_rq);
832
833 if (runtime >= sched_rt_period(rt_rq))
834 return 0;
835
836 balance_runtime(rt_rq);
837 runtime = sched_rt_runtime(rt_rq);
838 if (runtime == RUNTIME_INF)
839 return 0;
840
841 if (rt_rq->rt_time > runtime) {
842 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
843
844 /*
845 * Don't actually throttle groups that have no runtime assigned
846 * but accrue some time due to boosting.
847 */
848 if (likely(rt_b->rt_runtime)) {
849 static bool once = false;
850
851 rt_rq->rt_throttled = 1;
852
853 if (!once) {
854 once = true;
855 printk_deferred("sched: RT throttling activated on %s(%d)\n",
856 current->comm, current->pid);
857 }
858 } else {
859 /*
860 * In case we did anyway, make it go away,
861 * replenishment is a joke, since it will replenish us
862 * with exactly 0 ns.
863 */
864 rt_rq->rt_time = 0;
865 }
866
867 if (rt_rq_throttled(rt_rq)) {
868 sched_rt_rq_dequeue(rt_rq);
869 return 1;
870 }
871 }
872
873 return 0;
874 }
875
876 /*
877 * Update the current task's runtime statistics. Skip current tasks that
878 * are not in our scheduling class.
879 */
880 static void update_curr_rt(struct rq *rq)
881 {
882 struct task_struct *curr = rq->curr;
883 struct sched_rt_entity *rt_se = &curr->rt;
884 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
885 u64 delta_exec;
886
887 if (curr->sched_class != &rt_sched_class)
888 return;
889
890 delta_exec = rq->clock_task - curr->se.exec_start;
891 if (unlikely((s64)delta_exec <= 0))
892 return;
893
894 schedstat_set(curr->se.statistics.exec_max,
895 max(curr->se.statistics.exec_max, delta_exec));
896
897 curr->se.sum_exec_runtime += delta_exec;
898 account_group_exec_runtime(curr, delta_exec);
899
900 curr->se.exec_start = rq->clock_task;
901 cpuacct_charge(curr, delta_exec);
902
903 sched_rt_avg_update(rq, delta_exec);
904
905 if (!rt_bandwidth_enabled())
906 return;
907
908 for_each_sched_rt_entity(rt_se) {
909 rt_rq = rt_rq_of_se(rt_se);
910
911 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
912 raw_spin_lock(&rt_rq->rt_runtime_lock);
913 rt_rq->rt_time += delta_exec;
914 if (sched_rt_runtime_exceeded(rt_rq))
915 resched_task(curr);
916 raw_spin_unlock(&rt_rq->rt_runtime_lock);
917 }
918 }
919 }
920
921 #if defined CONFIG_SMP
922
923 static void
924 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
925 {
926 struct rq *rq = rq_of_rt_rq(rt_rq);
927
928 if (rq->online && prio < prev_prio)
929 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
930 }
931
932 static void
933 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
934 {
935 struct rq *rq = rq_of_rt_rq(rt_rq);
936
937 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
938 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
939 }
940
941 #else /* CONFIG_SMP */
942
943 static inline
944 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
945 static inline
946 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
947
948 #endif /* CONFIG_SMP */
949
950 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
951 static void
952 inc_rt_prio(struct rt_rq *rt_rq, int prio)
953 {
954 int prev_prio = rt_rq->highest_prio.curr;
955
956 if (prio < prev_prio)
957 rt_rq->highest_prio.curr = prio;
958
959 inc_rt_prio_smp(rt_rq, prio, prev_prio);
960 }
961
962 static void
963 dec_rt_prio(struct rt_rq *rt_rq, int prio)
964 {
965 int prev_prio = rt_rq->highest_prio.curr;
966
967 if (rt_rq->rt_nr_running) {
968
969 WARN_ON(prio < prev_prio);
970
971 /*
972 * This may have been our highest task, and therefore
973 * we may have some recomputation to do
974 */
975 if (prio == prev_prio) {
976 struct rt_prio_array *array = &rt_rq->active;
977
978 rt_rq->highest_prio.curr =
979 sched_find_first_bit(array->bitmap);
980 }
981
982 } else
983 rt_rq->highest_prio.curr = MAX_RT_PRIO;
984
985 dec_rt_prio_smp(rt_rq, prio, prev_prio);
986 }
987
988 #else
989
990 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
991 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
992
993 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
994
995 #ifdef CONFIG_RT_GROUP_SCHED
996
997 static void
998 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
999 {
1000 if (rt_se_boosted(rt_se))
1001 rt_rq->rt_nr_boosted++;
1002
1003 if (rt_rq->tg)
1004 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1005 }
1006
1007 static void
1008 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1009 {
1010 if (rt_se_boosted(rt_se))
1011 rt_rq->rt_nr_boosted--;
1012
1013 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1014 }
1015
1016 #else /* CONFIG_RT_GROUP_SCHED */
1017
1018 static void
1019 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1020 {
1021 start_rt_bandwidth(&def_rt_bandwidth);
1022 }
1023
1024 static inline
1025 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1026
1027 #endif /* CONFIG_RT_GROUP_SCHED */
1028
1029 static inline
1030 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1031 {
1032 int prio = rt_se_prio(rt_se);
1033
1034 WARN_ON(!rt_prio(prio));
1035 rt_rq->rt_nr_running++;
1036
1037 inc_rt_prio(rt_rq, prio);
1038 inc_rt_migration(rt_se, rt_rq);
1039 inc_rt_group(rt_se, rt_rq);
1040 }
1041
1042 static inline
1043 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1044 {
1045 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1046 WARN_ON(!rt_rq->rt_nr_running);
1047 rt_rq->rt_nr_running--;
1048
1049 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1050 dec_rt_migration(rt_se, rt_rq);
1051 dec_rt_group(rt_se, rt_rq);
1052 }
1053
1054 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1055 {
1056 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1057 struct rt_prio_array *array = &rt_rq->active;
1058 struct rt_rq *group_rq = group_rt_rq(rt_se);
1059 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1060
1061 /*
1062 * Don't enqueue the group if its throttled, or when empty.
1063 * The latter is a consequence of the former when a child group
1064 * get throttled and the current group doesn't have any other
1065 * active members.
1066 */
1067 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1068 return;
1069
1070 if (!rt_rq->rt_nr_running)
1071 list_add_leaf_rt_rq(rt_rq);
1072
1073 if (head)
1074 list_add(&rt_se->run_list, queue);
1075 else
1076 list_add_tail(&rt_se->run_list, queue);
1077 __set_bit(rt_se_prio(rt_se), array->bitmap);
1078
1079 inc_rt_tasks(rt_se, rt_rq);
1080 }
1081
1082 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1083 {
1084 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1085 struct rt_prio_array *array = &rt_rq->active;
1086
1087 list_del_init(&rt_se->run_list);
1088 if (list_empty(array->queue + rt_se_prio(rt_se)))
1089 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1090
1091 dec_rt_tasks(rt_se, rt_rq);
1092 if (!rt_rq->rt_nr_running)
1093 list_del_leaf_rt_rq(rt_rq);
1094 }
1095
1096 /*
1097 * Because the prio of an upper entry depends on the lower
1098 * entries, we must remove entries top - down.
1099 */
1100 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1101 {
1102 struct sched_rt_entity *back = NULL;
1103
1104 for_each_sched_rt_entity(rt_se) {
1105 rt_se->back = back;
1106 back = rt_se;
1107 }
1108
1109 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1110 if (on_rt_rq(rt_se))
1111 __dequeue_rt_entity(rt_se);
1112 }
1113 }
1114
1115 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1116 {
1117 dequeue_rt_stack(rt_se);
1118 for_each_sched_rt_entity(rt_se)
1119 __enqueue_rt_entity(rt_se, head);
1120 }
1121
1122 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1123 {
1124 dequeue_rt_stack(rt_se);
1125
1126 for_each_sched_rt_entity(rt_se) {
1127 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1128
1129 if (rt_rq && rt_rq->rt_nr_running)
1130 __enqueue_rt_entity(rt_se, false);
1131 }
1132 }
1133
1134 /*
1135 * Adding/removing a task to/from a priority array:
1136 */
1137 static void
1138 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1139 {
1140 struct sched_rt_entity *rt_se = &p->rt;
1141
1142 if (flags & ENQUEUE_WAKEUP)
1143 rt_se->timeout = 0;
1144
1145 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1146
1147 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1148 enqueue_pushable_task(rq, p);
1149
1150 inc_nr_running(rq);
1151 }
1152
1153 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1154 {
1155 struct sched_rt_entity *rt_se = &p->rt;
1156
1157 update_curr_rt(rq);
1158 dequeue_rt_entity(rt_se);
1159
1160 dequeue_pushable_task(rq, p);
1161
1162 dec_nr_running(rq);
1163 }
1164
1165 /*
1166 * Put task to the head or the end of the run list without the overhead of
1167 * dequeue followed by enqueue.
1168 */
1169 static void
1170 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1171 {
1172 if (on_rt_rq(rt_se)) {
1173 struct rt_prio_array *array = &rt_rq->active;
1174 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1175
1176 if (head)
1177 list_move(&rt_se->run_list, queue);
1178 else
1179 list_move_tail(&rt_se->run_list, queue);
1180 }
1181 }
1182
1183 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1184 {
1185 struct sched_rt_entity *rt_se = &p->rt;
1186 struct rt_rq *rt_rq;
1187
1188 for_each_sched_rt_entity(rt_se) {
1189 rt_rq = rt_rq_of_se(rt_se);
1190 requeue_rt_entity(rt_rq, rt_se, head);
1191 }
1192 }
1193
1194 static void yield_task_rt(struct rq *rq)
1195 {
1196 requeue_task_rt(rq, rq->curr, 0);
1197 }
1198
1199 #ifdef CONFIG_SMP
1200 static int find_lowest_rq(struct task_struct *task);
1201
1202 static int
1203 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1204 {
1205 struct task_struct *curr;
1206 struct rq *rq;
1207 int cpu;
1208
1209 cpu = task_cpu(p);
1210
1211 if (p->nr_cpus_allowed == 1)
1212 goto out;
1213
1214 /* For anything but wake ups, just return the task_cpu */
1215 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1216 goto out;
1217
1218 rq = cpu_rq(cpu);
1219
1220 rcu_read_lock();
1221 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1222
1223 /*
1224 * If the current task on @p's runqueue is an RT task, then
1225 * try to see if we can wake this RT task up on another
1226 * runqueue. Otherwise simply start this RT task
1227 * on its current runqueue.
1228 *
1229 * We want to avoid overloading runqueues. If the woken
1230 * task is a higher priority, then it will stay on this CPU
1231 * and the lower prio task should be moved to another CPU.
1232 * Even though this will probably make the lower prio task
1233 * lose its cache, we do not want to bounce a higher task
1234 * around just because it gave up its CPU, perhaps for a
1235 * lock?
1236 *
1237 * For equal prio tasks, we just let the scheduler sort it out.
1238 *
1239 * Otherwise, just let it ride on the affined RQ and the
1240 * post-schedule router will push the preempted task away
1241 *
1242 * This test is optimistic, if we get it wrong the load-balancer
1243 * will have to sort it out.
1244 */
1245 if (curr && unlikely(rt_task(curr)) &&
1246 (curr->nr_cpus_allowed < 2 ||
1247 curr->prio <= p->prio) &&
1248 (p->nr_cpus_allowed > 1)) {
1249 int target = find_lowest_rq(p);
1250
1251 if (target != -1)
1252 cpu = target;
1253 }
1254 rcu_read_unlock();
1255
1256 out:
1257 return cpu;
1258 }
1259
1260 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1261 {
1262 if (rq->curr->nr_cpus_allowed == 1)
1263 return;
1264
1265 if (p->nr_cpus_allowed != 1
1266 && cpupri_find(&rq->rd->cpupri, p, NULL))
1267 return;
1268
1269 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1270 return;
1271
1272 /*
1273 * There appears to be other cpus that can accept
1274 * current and none to run 'p', so lets reschedule
1275 * to try and push current away:
1276 */
1277 requeue_task_rt(rq, p, 1);
1278 resched_task(rq->curr);
1279 }
1280
1281 #endif /* CONFIG_SMP */
1282
1283 /*
1284 * Preempt the current task with a newly woken task if needed:
1285 */
1286 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1287 {
1288 if (p->prio < rq->curr->prio) {
1289 resched_task(rq->curr);
1290 return;
1291 }
1292
1293 #ifdef CONFIG_SMP
1294 /*
1295 * If:
1296 *
1297 * - the newly woken task is of equal priority to the current task
1298 * - the newly woken task is non-migratable while current is migratable
1299 * - current will be preempted on the next reschedule
1300 *
1301 * we should check to see if current can readily move to a different
1302 * cpu. If so, we will reschedule to allow the push logic to try
1303 * to move current somewhere else, making room for our non-migratable
1304 * task.
1305 */
1306 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1307 check_preempt_equal_prio(rq, p);
1308 #endif
1309 }
1310
1311 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1312 struct rt_rq *rt_rq)
1313 {
1314 struct rt_prio_array *array = &rt_rq->active;
1315 struct sched_rt_entity *next = NULL;
1316 struct list_head *queue;
1317 int idx;
1318
1319 idx = sched_find_first_bit(array->bitmap);
1320 BUG_ON(idx >= MAX_RT_PRIO);
1321
1322 queue = array->queue + idx;
1323 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1324
1325 return next;
1326 }
1327
1328 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1329 {
1330 struct sched_rt_entity *rt_se;
1331 struct task_struct *p;
1332 struct rt_rq *rt_rq;
1333
1334 rt_rq = &rq->rt;
1335
1336 if (!rt_rq->rt_nr_running)
1337 return NULL;
1338
1339 if (rt_rq_throttled(rt_rq))
1340 return NULL;
1341
1342 do {
1343 rt_se = pick_next_rt_entity(rq, rt_rq);
1344 BUG_ON(!rt_se);
1345 rt_rq = group_rt_rq(rt_se);
1346 } while (rt_rq);
1347
1348 p = rt_task_of(rt_se);
1349 p->se.exec_start = rq->clock_task;
1350
1351 return p;
1352 }
1353
1354 static struct task_struct *pick_next_task_rt(struct rq *rq)
1355 {
1356 struct task_struct *p = _pick_next_task_rt(rq);
1357
1358 /* The running task is never eligible for pushing */
1359 if (p)
1360 dequeue_pushable_task(rq, p);
1361
1362 #ifdef CONFIG_SMP
1363 /*
1364 * We detect this state here so that we can avoid taking the RQ
1365 * lock again later if there is no need to push
1366 */
1367 rq->post_schedule = has_pushable_tasks(rq);
1368 #endif
1369
1370 return p;
1371 }
1372
1373 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1374 {
1375 update_curr_rt(rq);
1376
1377 /*
1378 * The previous task needs to be made eligible for pushing
1379 * if it is still active
1380 */
1381 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1382 enqueue_pushable_task(rq, p);
1383 }
1384
1385 #ifdef CONFIG_SMP
1386
1387 /* Only try algorithms three times */
1388 #define RT_MAX_TRIES 3
1389
1390 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1391 {
1392 if (!task_running(rq, p) &&
1393 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1394 return 1;
1395 return 0;
1396 }
1397
1398 /* Return the second highest RT task, NULL otherwise */
1399 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1400 {
1401 struct task_struct *next = NULL;
1402 struct sched_rt_entity *rt_se;
1403 struct rt_prio_array *array;
1404 struct rt_rq *rt_rq;
1405 int idx;
1406
1407 for_each_leaf_rt_rq(rt_rq, rq) {
1408 array = &rt_rq->active;
1409 idx = sched_find_first_bit(array->bitmap);
1410 next_idx:
1411 if (idx >= MAX_RT_PRIO)
1412 continue;
1413 if (next && next->prio <= idx)
1414 continue;
1415 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1416 struct task_struct *p;
1417
1418 if (!rt_entity_is_task(rt_se))
1419 continue;
1420
1421 p = rt_task_of(rt_se);
1422 if (pick_rt_task(rq, p, cpu)) {
1423 next = p;
1424 break;
1425 }
1426 }
1427 if (!next) {
1428 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1429 goto next_idx;
1430 }
1431 }
1432
1433 return next;
1434 }
1435
1436 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1437
1438 static int find_lowest_rq(struct task_struct *task)
1439 {
1440 struct sched_domain *sd;
1441 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1442 int this_cpu = smp_processor_id();
1443 int cpu = task_cpu(task);
1444
1445 /* Make sure the mask is initialized first */
1446 if (unlikely(!lowest_mask))
1447 return -1;
1448
1449 if (task->nr_cpus_allowed == 1)
1450 return -1; /* No other targets possible */
1451
1452 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1453 return -1; /* No targets found */
1454
1455 /*
1456 * At this point we have built a mask of cpus representing the
1457 * lowest priority tasks in the system. Now we want to elect
1458 * the best one based on our affinity and topology.
1459 *
1460 * We prioritize the last cpu that the task executed on since
1461 * it is most likely cache-hot in that location.
1462 */
1463 if (cpumask_test_cpu(cpu, lowest_mask))
1464 return cpu;
1465
1466 /*
1467 * Otherwise, we consult the sched_domains span maps to figure
1468 * out which cpu is logically closest to our hot cache data.
1469 */
1470 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1471 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1472
1473 rcu_read_lock();
1474 for_each_domain(cpu, sd) {
1475 if (sd->flags & SD_WAKE_AFFINE) {
1476 int best_cpu;
1477
1478 /*
1479 * "this_cpu" is cheaper to preempt than a
1480 * remote processor.
1481 */
1482 if (this_cpu != -1 &&
1483 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1484 rcu_read_unlock();
1485 return this_cpu;
1486 }
1487
1488 best_cpu = cpumask_first_and(lowest_mask,
1489 sched_domain_span(sd));
1490 if (best_cpu < nr_cpu_ids) {
1491 rcu_read_unlock();
1492 return best_cpu;
1493 }
1494 }
1495 }
1496 rcu_read_unlock();
1497
1498 /*
1499 * And finally, if there were no matches within the domains
1500 * just give the caller *something* to work with from the compatible
1501 * locations.
1502 */
1503 if (this_cpu != -1)
1504 return this_cpu;
1505
1506 cpu = cpumask_any(lowest_mask);
1507 if (cpu < nr_cpu_ids)
1508 return cpu;
1509 return -1;
1510 }
1511
1512 /* Will lock the rq it finds */
1513 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1514 {
1515 struct rq *lowest_rq = NULL;
1516 int tries;
1517 int cpu;
1518
1519 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1520 cpu = find_lowest_rq(task);
1521
1522 if ((cpu == -1) || (cpu == rq->cpu))
1523 break;
1524
1525 lowest_rq = cpu_rq(cpu);
1526
1527 /* if the prio of this runqueue changed, try again */
1528 if (double_lock_balance(rq, lowest_rq)) {
1529 /*
1530 * We had to unlock the run queue. In
1531 * the mean time, task could have
1532 * migrated already or had its affinity changed.
1533 * Also make sure that it wasn't scheduled on its rq.
1534 */
1535 if (unlikely(task_rq(task) != rq ||
1536 !cpumask_test_cpu(lowest_rq->cpu,
1537 tsk_cpus_allowed(task)) ||
1538 task_running(rq, task) ||
1539 !task->on_rq)) {
1540
1541 double_unlock_balance(rq, lowest_rq);
1542 lowest_rq = NULL;
1543 break;
1544 }
1545 }
1546
1547 /* If this rq is still suitable use it. */
1548 if (lowest_rq->rt.highest_prio.curr > task->prio)
1549 break;
1550
1551 /* try again */
1552 double_unlock_balance(rq, lowest_rq);
1553 lowest_rq = NULL;
1554 }
1555
1556 return lowest_rq;
1557 }
1558
1559 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1560 {
1561 struct task_struct *p;
1562
1563 if (!has_pushable_tasks(rq))
1564 return NULL;
1565
1566 p = plist_first_entry(&rq->rt.pushable_tasks,
1567 struct task_struct, pushable_tasks);
1568
1569 BUG_ON(rq->cpu != task_cpu(p));
1570 BUG_ON(task_current(rq, p));
1571 BUG_ON(p->nr_cpus_allowed <= 1);
1572
1573 BUG_ON(!p->on_rq);
1574 BUG_ON(!rt_task(p));
1575
1576 return p;
1577 }
1578
1579 /*
1580 * If the current CPU has more than one RT task, see if the non
1581 * running task can migrate over to a CPU that is running a task
1582 * of lesser priority.
1583 */
1584 static int push_rt_task(struct rq *rq)
1585 {
1586 struct task_struct *next_task;
1587 struct rq *lowest_rq;
1588 int ret = 0;
1589
1590 if (!rq->rt.overloaded)
1591 return 0;
1592
1593 next_task = pick_next_pushable_task(rq);
1594 if (!next_task)
1595 return 0;
1596
1597 retry:
1598 if (unlikely(next_task == rq->curr)) {
1599 WARN_ON(1);
1600 return 0;
1601 }
1602
1603 /*
1604 * It's possible that the next_task slipped in of
1605 * higher priority than current. If that's the case
1606 * just reschedule current.
1607 */
1608 if (unlikely(next_task->prio < rq->curr->prio)) {
1609 resched_task(rq->curr);
1610 return 0;
1611 }
1612
1613 /* We might release rq lock */
1614 get_task_struct(next_task);
1615
1616 /* find_lock_lowest_rq locks the rq if found */
1617 lowest_rq = find_lock_lowest_rq(next_task, rq);
1618 if (!lowest_rq) {
1619 struct task_struct *task;
1620 /*
1621 * find_lock_lowest_rq releases rq->lock
1622 * so it is possible that next_task has migrated.
1623 *
1624 * We need to make sure that the task is still on the same
1625 * run-queue and is also still the next task eligible for
1626 * pushing.
1627 */
1628 task = pick_next_pushable_task(rq);
1629 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1630 /*
1631 * The task hasn't migrated, and is still the next
1632 * eligible task, but we failed to find a run-queue
1633 * to push it to. Do not retry in this case, since
1634 * other cpus will pull from us when ready.
1635 */
1636 goto out;
1637 }
1638
1639 if (!task)
1640 /* No more tasks, just exit */
1641 goto out;
1642
1643 /*
1644 * Something has shifted, try again.
1645 */
1646 put_task_struct(next_task);
1647 next_task = task;
1648 goto retry;
1649 }
1650
1651 deactivate_task(rq, next_task, 0);
1652 set_task_cpu(next_task, lowest_rq->cpu);
1653 activate_task(lowest_rq, next_task, 0);
1654 ret = 1;
1655
1656 resched_task(lowest_rq->curr);
1657
1658 double_unlock_balance(rq, lowest_rq);
1659
1660 out:
1661 put_task_struct(next_task);
1662
1663 return ret;
1664 }
1665
1666 static void push_rt_tasks(struct rq *rq)
1667 {
1668 /* push_rt_task will return true if it moved an RT */
1669 while (push_rt_task(rq))
1670 ;
1671 }
1672
1673 static int pull_rt_task(struct rq *this_rq)
1674 {
1675 int this_cpu = this_rq->cpu, ret = 0, cpu;
1676 struct task_struct *p;
1677 struct rq *src_rq;
1678
1679 if (likely(!rt_overloaded(this_rq)))
1680 return 0;
1681
1682 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1683 if (this_cpu == cpu)
1684 continue;
1685
1686 src_rq = cpu_rq(cpu);
1687
1688 /*
1689 * Don't bother taking the src_rq->lock if the next highest
1690 * task is known to be lower-priority than our current task.
1691 * This may look racy, but if this value is about to go
1692 * logically higher, the src_rq will push this task away.
1693 * And if its going logically lower, we do not care
1694 */
1695 if (src_rq->rt.highest_prio.next >=
1696 this_rq->rt.highest_prio.curr)
1697 continue;
1698
1699 /*
1700 * We can potentially drop this_rq's lock in
1701 * double_lock_balance, and another CPU could
1702 * alter this_rq
1703 */
1704 double_lock_balance(this_rq, src_rq);
1705
1706 /*
1707 * Are there still pullable RT tasks?
1708 */
1709 if (src_rq->rt.rt_nr_running <= 1)
1710 goto skip;
1711
1712 p = pick_next_highest_task_rt(src_rq, this_cpu);
1713
1714 /*
1715 * Do we have an RT task that preempts
1716 * the to-be-scheduled task?
1717 */
1718 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1719 WARN_ON(p == src_rq->curr);
1720 WARN_ON(!p->on_rq);
1721
1722 /*
1723 * There's a chance that p is higher in priority
1724 * than what's currently running on its cpu.
1725 * This is just that p is wakeing up and hasn't
1726 * had a chance to schedule. We only pull
1727 * p if it is lower in priority than the
1728 * current task on the run queue
1729 */
1730 if (p->prio < src_rq->curr->prio)
1731 goto skip;
1732
1733 ret = 1;
1734
1735 deactivate_task(src_rq, p, 0);
1736 set_task_cpu(p, this_cpu);
1737 activate_task(this_rq, p, 0);
1738 /*
1739 * We continue with the search, just in
1740 * case there's an even higher prio task
1741 * in another runqueue. (low likelihood
1742 * but possible)
1743 */
1744 }
1745 skip:
1746 double_unlock_balance(this_rq, src_rq);
1747 }
1748
1749 return ret;
1750 }
1751
1752 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1753 {
1754 /* Try to pull RT tasks here if we lower this rq's prio */
1755 if (rq->rt.highest_prio.curr > prev->prio)
1756 pull_rt_task(rq);
1757 }
1758
1759 static void post_schedule_rt(struct rq *rq)
1760 {
1761 push_rt_tasks(rq);
1762 }
1763
1764 /*
1765 * If we are not running and we are not going to reschedule soon, we should
1766 * try to push tasks away now
1767 */
1768 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1769 {
1770 if (!task_running(rq, p) &&
1771 !test_tsk_need_resched(rq->curr) &&
1772 has_pushable_tasks(rq) &&
1773 p->nr_cpus_allowed > 1 &&
1774 rt_task(rq->curr) &&
1775 (rq->curr->nr_cpus_allowed < 2 ||
1776 rq->curr->prio <= p->prio))
1777 push_rt_tasks(rq);
1778 }
1779
1780 static void set_cpus_allowed_rt(struct task_struct *p,
1781 const struct cpumask *new_mask)
1782 {
1783 struct rq *rq;
1784 int weight;
1785
1786 BUG_ON(!rt_task(p));
1787
1788 if (!p->on_rq)
1789 return;
1790
1791 weight = cpumask_weight(new_mask);
1792
1793 /*
1794 * Only update if the process changes its state from whether it
1795 * can migrate or not.
1796 */
1797 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1798 return;
1799
1800 rq = task_rq(p);
1801
1802 /*
1803 * The process used to be able to migrate OR it can now migrate
1804 */
1805 if (weight <= 1) {
1806 if (!task_current(rq, p))
1807 dequeue_pushable_task(rq, p);
1808 BUG_ON(!rq->rt.rt_nr_migratory);
1809 rq->rt.rt_nr_migratory--;
1810 } else {
1811 if (!task_current(rq, p))
1812 enqueue_pushable_task(rq, p);
1813 rq->rt.rt_nr_migratory++;
1814 }
1815
1816 update_rt_migration(&rq->rt);
1817 }
1818
1819 /* Assumes rq->lock is held */
1820 static void rq_online_rt(struct rq *rq)
1821 {
1822 if (rq->rt.overloaded)
1823 rt_set_overload(rq);
1824
1825 __enable_runtime(rq);
1826
1827 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1828 }
1829
1830 /* Assumes rq->lock is held */
1831 static void rq_offline_rt(struct rq *rq)
1832 {
1833 if (rq->rt.overloaded)
1834 rt_clear_overload(rq);
1835
1836 __disable_runtime(rq);
1837
1838 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1839 }
1840
1841 /*
1842 * When switch from the rt queue, we bring ourselves to a position
1843 * that we might want to pull RT tasks from other runqueues.
1844 */
1845 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1846 {
1847 /*
1848 * If there are other RT tasks then we will reschedule
1849 * and the scheduling of the other RT tasks will handle
1850 * the balancing. But if we are the last RT task
1851 * we may need to handle the pulling of RT tasks
1852 * now.
1853 */
1854 if (!p->on_rq || rq->rt.rt_nr_running)
1855 return;
1856
1857 if (pull_rt_task(rq))
1858 resched_task(rq->curr);
1859 }
1860
1861 void init_sched_rt_class(void)
1862 {
1863 unsigned int i;
1864
1865 for_each_possible_cpu(i) {
1866 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1867 GFP_KERNEL, cpu_to_node(i));
1868 }
1869 }
1870 #endif /* CONFIG_SMP */
1871
1872 /*
1873 * When switching a task to RT, we may overload the runqueue
1874 * with RT tasks. In this case we try to push them off to
1875 * other runqueues.
1876 */
1877 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1878 {
1879 int check_resched = 1;
1880
1881 /*
1882 * If we are already running, then there's nothing
1883 * that needs to be done. But if we are not running
1884 * we may need to preempt the current running task.
1885 * If that current running task is also an RT task
1886 * then see if we can move to another run queue.
1887 */
1888 if (p->on_rq && rq->curr != p) {
1889 #ifdef CONFIG_SMP
1890 if (rq->rt.overloaded && push_rt_task(rq) &&
1891 /* Don't resched if we changed runqueues */
1892 rq != task_rq(p))
1893 check_resched = 0;
1894 #endif /* CONFIG_SMP */
1895 if (check_resched && p->prio < rq->curr->prio)
1896 resched_task(rq->curr);
1897 }
1898 }
1899
1900 /*
1901 * Priority of the task has changed. This may cause
1902 * us to initiate a push or pull.
1903 */
1904 static void
1905 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1906 {
1907 if (!p->on_rq)
1908 return;
1909
1910 if (rq->curr == p) {
1911 #ifdef CONFIG_SMP
1912 /*
1913 * If our priority decreases while running, we
1914 * may need to pull tasks to this runqueue.
1915 */
1916 if (oldprio < p->prio)
1917 pull_rt_task(rq);
1918 /*
1919 * If there's a higher priority task waiting to run
1920 * then reschedule. Note, the above pull_rt_task
1921 * can release the rq lock and p could migrate.
1922 * Only reschedule if p is still on the same runqueue.
1923 */
1924 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1925 resched_task(p);
1926 #else
1927 /* For UP simply resched on drop of prio */
1928 if (oldprio < p->prio)
1929 resched_task(p);
1930 #endif /* CONFIG_SMP */
1931 } else {
1932 /*
1933 * This task is not running, but if it is
1934 * greater than the current running task
1935 * then reschedule.
1936 */
1937 if (p->prio < rq->curr->prio)
1938 resched_task(rq->curr);
1939 }
1940 }
1941
1942 static void watchdog(struct rq *rq, struct task_struct *p)
1943 {
1944 unsigned long soft, hard;
1945
1946 /* max may change after cur was read, this will be fixed next tick */
1947 soft = task_rlimit(p, RLIMIT_RTTIME);
1948 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1949
1950 if (soft != RLIM_INFINITY) {
1951 unsigned long next;
1952
1953 if (p->rt.watchdog_stamp != jiffies) {
1954 p->rt.timeout++;
1955 p->rt.watchdog_stamp = jiffies;
1956 }
1957
1958 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1959 if (p->rt.timeout > next)
1960 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1961 }
1962 }
1963
1964 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1965 {
1966 struct sched_rt_entity *rt_se = &p->rt;
1967
1968 update_curr_rt(rq);
1969
1970 watchdog(rq, p);
1971
1972 /*
1973 * RR tasks need a special form of timeslice management.
1974 * FIFO tasks have no timeslices.
1975 */
1976 if (p->policy != SCHED_RR)
1977 return;
1978
1979 if (--p->rt.time_slice)
1980 return;
1981
1982 p->rt.time_slice = sched_rr_timeslice;
1983
1984 /*
1985 * Requeue to the end of queue if we (and all of our ancestors) are the
1986 * only element on the queue
1987 */
1988 for_each_sched_rt_entity(rt_se) {
1989 if (rt_se->run_list.prev != rt_se->run_list.next) {
1990 requeue_task_rt(rq, p, 0);
1991 set_tsk_need_resched(p);
1992 return;
1993 }
1994 }
1995 }
1996
1997 static void set_curr_task_rt(struct rq *rq)
1998 {
1999 struct task_struct *p = rq->curr;
2000
2001 p->se.exec_start = rq->clock_task;
2002
2003 /* The running task is never eligible for pushing */
2004 dequeue_pushable_task(rq, p);
2005 }
2006
2007 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2008 {
2009 /*
2010 * Time slice is 0 for SCHED_FIFO tasks
2011 */
2012 if (task->policy == SCHED_RR)
2013 return sched_rr_timeslice;
2014 else
2015 return 0;
2016 }
2017
2018 const struct sched_class rt_sched_class = {
2019 .next = &fair_sched_class,
2020 .enqueue_task = enqueue_task_rt,
2021 .dequeue_task = dequeue_task_rt,
2022 .yield_task = yield_task_rt,
2023
2024 .check_preempt_curr = check_preempt_curr_rt,
2025
2026 .pick_next_task = pick_next_task_rt,
2027 .put_prev_task = put_prev_task_rt,
2028
2029 #ifdef CONFIG_SMP
2030 .select_task_rq = select_task_rq_rt,
2031
2032 .set_cpus_allowed = set_cpus_allowed_rt,
2033 .rq_online = rq_online_rt,
2034 .rq_offline = rq_offline_rt,
2035 .pre_schedule = pre_schedule_rt,
2036 .post_schedule = post_schedule_rt,
2037 .task_woken = task_woken_rt,
2038 .switched_from = switched_from_rt,
2039 #endif
2040
2041 .set_curr_task = set_curr_task_rt,
2042 .task_tick = task_tick_rt,
2043
2044 .get_rr_interval = get_rr_interval_rt,
2045
2046 .prio_changed = prio_changed_rt,
2047 .switched_to = switched_to_rt,
2048 };
2049
2050 #ifdef CONFIG_SCHED_DEBUG
2051 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2052
2053 void print_rt_stats(struct seq_file *m, int cpu)
2054 {
2055 rt_rq_iter_t iter;
2056 struct rt_rq *rt_rq;
2057
2058 rcu_read_lock();
2059 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2060 print_rt_rq(m, cpu, rt_rq);
2061 rcu_read_unlock();
2062 }
2063 #endif /* CONFIG_SCHED_DEBUG */