ARM: 7630/1: mmc: mmci: Fixup and cleanup code for DMA handling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125 static int get_update_sysctl_factor(void)
126 {
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144 }
145
146 static void update_sysctl(void)
147 {
148 unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
158 void sched_init_granularity(void)
159 {
160 update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST (~0UL)
165 #else
166 # define WMULT_CONST (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT 32
170
171 /*
172 * Shift right and round:
173 */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177 * delta *= weight / lw
178 */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182 {
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se) (!se->my_q)
235
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 return grp->my_q;
263 }
264
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
267
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 if (!cfs_rq->on_list) {
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 }
285
286 cfs_rq->on_list = 1;
287 /* We should have no load, but we need to update last_decay. */
288 update_cfs_rq_blocked_load(cfs_rq, 0);
289 }
290 }
291
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298 }
299
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312 }
313
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 return se->parent;
317 }
318
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328 }
329
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360 }
361
362 #else /* !CONFIG_FAIR_GROUP_SCHED */
363
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 return container_of(se, struct task_struct, se);
367 }
368
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 return container_of(cfs_rq, struct rq, cfs);
372 }
373
374 #define entity_is_task(se) 1
375
376 #define for_each_sched_entity(se) \
377 for (; se; se = NULL)
378
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 return &task_rq(p)->cfs;
382 }
383
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390 }
391
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 return NULL;
396 }
397
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 return 1;
413 }
414
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 return NULL;
418 }
419
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424
425 #endif /* CONFIG_FAIR_GROUP_SCHED */
426
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429
430 /**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
434 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
435 {
436 s64 delta = (s64)(vruntime - min_vruntime);
437 if (delta > 0)
438 min_vruntime = vruntime;
439
440 return min_vruntime;
441 }
442
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450 }
451
452 static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454 {
455 return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
470 if (!cfs_rq->curr)
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline unsigned long
597 calc_delta_fair(unsigned long delta, struct sched_entity *se)
598 {
599 if (unlikely(se->load.weight != NICE_0_LOAD))
600 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
601
602 return delta;
603 }
604
605 /*
606 * The idea is to set a period in which each task runs once.
607 *
608 * When there are too many tasks (sched_nr_latency) we have to stretch
609 * this period because otherwise the slices get too small.
610 *
611 * p = (nr <= nl) ? l : l*nr/nl
612 */
613 static u64 __sched_period(unsigned long nr_running)
614 {
615 u64 period = sysctl_sched_latency;
616 unsigned long nr_latency = sched_nr_latency;
617
618 if (unlikely(nr_running > nr_latency)) {
619 period = sysctl_sched_min_granularity;
620 period *= nr_running;
621 }
622
623 return period;
624 }
625
626 /*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
630 * s = p*P[w/rw]
631 */
632 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
635
636 for_each_sched_entity(se) {
637 struct load_weight *load;
638 struct load_weight lw;
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
642
643 if (unlikely(!se->on_rq)) {
644 lw = cfs_rq->load;
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
649 slice = calc_delta_mine(slice, se->load.weight, load);
650 }
651 return slice;
652 }
653
654 /*
655 * We calculate the vruntime slice of a to be inserted task
656 *
657 * vs = s/w
658 */
659 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 {
661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
662 }
663
664 /*
665 * Update the current task's runtime statistics. Skip current tasks that
666 * are not in our scheduling class.
667 */
668 static inline void
669 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 unsigned long delta_exec)
671 {
672 unsigned long delta_exec_weighted;
673
674 schedstat_set(curr->statistics.exec_max,
675 max((u64)delta_exec, curr->statistics.exec_max));
676
677 curr->sum_exec_runtime += delta_exec;
678 schedstat_add(cfs_rq, exec_clock, delta_exec);
679 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
680
681 curr->vruntime += delta_exec_weighted;
682 update_min_vruntime(cfs_rq);
683 }
684
685 static void update_curr(struct cfs_rq *cfs_rq)
686 {
687 struct sched_entity *curr = cfs_rq->curr;
688 u64 now = rq_of(cfs_rq)->clock_task;
689 unsigned long delta_exec;
690
691 if (unlikely(!curr))
692 return;
693
694 /*
695 * Get the amount of time the current task was running
696 * since the last time we changed load (this cannot
697 * overflow on 32 bits):
698 */
699 delta_exec = (unsigned long)(now - curr->exec_start);
700 if (!delta_exec)
701 return;
702
703 __update_curr(cfs_rq, curr, delta_exec);
704 curr->exec_start = now;
705
706 if (entity_is_task(curr)) {
707 struct task_struct *curtask = task_of(curr);
708
709 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
710 cpuacct_charge(curtask, delta_exec);
711 account_group_exec_runtime(curtask, delta_exec);
712 }
713
714 account_cfs_rq_runtime(cfs_rq, delta_exec);
715 }
716
717 static inline void
718 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
721 }
722
723 /*
724 * Task is being enqueued - update stats:
725 */
726 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 /*
729 * Are we enqueueing a waiting task? (for current tasks
730 * a dequeue/enqueue event is a NOP)
731 */
732 if (se != cfs_rq->curr)
733 update_stats_wait_start(cfs_rq, se);
734 }
735
736 static void
737 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 {
739 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 rq_of(cfs_rq)->clock - se->statistics.wait_start);
744 #ifdef CONFIG_SCHEDSTATS
745 if (entity_is_task(se)) {
746 trace_sched_stat_wait(task_of(se),
747 rq_of(cfs_rq)->clock - se->statistics.wait_start);
748 }
749 #endif
750 schedstat_set(se->statistics.wait_start, 0);
751 }
752
753 static inline void
754 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 /*
757 * Mark the end of the wait period if dequeueing a
758 * waiting task:
759 */
760 if (se != cfs_rq->curr)
761 update_stats_wait_end(cfs_rq, se);
762 }
763
764 /*
765 * We are picking a new current task - update its stats:
766 */
767 static inline void
768 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
769 {
770 /*
771 * We are starting a new run period:
772 */
773 se->exec_start = rq_of(cfs_rq)->clock_task;
774 }
775
776 /**************************************************
777 * Scheduling class queueing methods:
778 */
779
780 #ifdef CONFIG_NUMA_BALANCING
781 /*
782 * numa task sample period in ms
783 */
784 unsigned int sysctl_numa_balancing_scan_period_min = 100;
785 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
787
788 /* Portion of address space to scan in MB */
789 unsigned int sysctl_numa_balancing_scan_size = 256;
790
791 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792 unsigned int sysctl_numa_balancing_scan_delay = 1000;
793
794 static void task_numa_placement(struct task_struct *p)
795 {
796 int seq;
797
798 if (!p->mm) /* for example, ksmd faulting in a user's mm */
799 return;
800 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
801 if (p->numa_scan_seq == seq)
802 return;
803 p->numa_scan_seq = seq;
804
805 /* FIXME: Scheduling placement policy hints go here */
806 }
807
808 /*
809 * Got a PROT_NONE fault for a page on @node.
810 */
811 void task_numa_fault(int node, int pages, bool migrated)
812 {
813 struct task_struct *p = current;
814
815 if (!sched_feat_numa(NUMA))
816 return;
817
818 /* FIXME: Allocate task-specific structure for placement policy here */
819
820 /*
821 * If pages are properly placed (did not migrate) then scan slower.
822 * This is reset periodically in case of phase changes
823 */
824 if (!migrated)
825 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
826 p->numa_scan_period + jiffies_to_msecs(10));
827
828 task_numa_placement(p);
829 }
830
831 static void reset_ptenuma_scan(struct task_struct *p)
832 {
833 ACCESS_ONCE(p->mm->numa_scan_seq)++;
834 p->mm->numa_scan_offset = 0;
835 }
836
837 /*
838 * The expensive part of numa migration is done from task_work context.
839 * Triggered from task_tick_numa().
840 */
841 void task_numa_work(struct callback_head *work)
842 {
843 unsigned long migrate, next_scan, now = jiffies;
844 struct task_struct *p = current;
845 struct mm_struct *mm = p->mm;
846 struct vm_area_struct *vma;
847 unsigned long start, end;
848 long pages;
849
850 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
851
852 work->next = work; /* protect against double add */
853 /*
854 * Who cares about NUMA placement when they're dying.
855 *
856 * NOTE: make sure not to dereference p->mm before this check,
857 * exit_task_work() happens _after_ exit_mm() so we could be called
858 * without p->mm even though we still had it when we enqueued this
859 * work.
860 */
861 if (p->flags & PF_EXITING)
862 return;
863
864 /*
865 * We do not care about task placement until a task runs on a node
866 * other than the first one used by the address space. This is
867 * largely because migrations are driven by what CPU the task
868 * is running on. If it's never scheduled on another node, it'll
869 * not migrate so why bother trapping the fault.
870 */
871 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
872 mm->first_nid = numa_node_id();
873 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
874 /* Are we running on a new node yet? */
875 if (numa_node_id() == mm->first_nid &&
876 !sched_feat_numa(NUMA_FORCE))
877 return;
878
879 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
880 }
881
882 /*
883 * Reset the scan period if enough time has gone by. Objective is that
884 * scanning will be reduced if pages are properly placed. As tasks
885 * can enter different phases this needs to be re-examined. Lacking
886 * proper tracking of reference behaviour, this blunt hammer is used.
887 */
888 migrate = mm->numa_next_reset;
889 if (time_after(now, migrate)) {
890 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
891 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
892 xchg(&mm->numa_next_reset, next_scan);
893 }
894
895 /*
896 * Enforce maximal scan/migration frequency..
897 */
898 migrate = mm->numa_next_scan;
899 if (time_before(now, migrate))
900 return;
901
902 if (p->numa_scan_period == 0)
903 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
904
905 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
906 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
907 return;
908
909 /*
910 * Do not set pte_numa if the current running node is rate-limited.
911 * This loses statistics on the fault but if we are unwilling to
912 * migrate to this node, it is less likely we can do useful work
913 */
914 if (migrate_ratelimited(numa_node_id()))
915 return;
916
917 start = mm->numa_scan_offset;
918 pages = sysctl_numa_balancing_scan_size;
919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
920 if (!pages)
921 return;
922
923 down_read(&mm->mmap_sem);
924 vma = find_vma(mm, start);
925 if (!vma) {
926 reset_ptenuma_scan(p);
927 start = 0;
928 vma = mm->mmap;
929 }
930 for (; vma; vma = vma->vm_next) {
931 if (!vma_migratable(vma))
932 continue;
933
934 /* Skip small VMAs. They are not likely to be of relevance */
935 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
936 continue;
937
938 do {
939 start = max(start, vma->vm_start);
940 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
941 end = min(end, vma->vm_end);
942 pages -= change_prot_numa(vma, start, end);
943
944 start = end;
945 if (pages <= 0)
946 goto out;
947 } while (end != vma->vm_end);
948 }
949
950 out:
951 /*
952 * It is possible to reach the end of the VMA list but the last few VMAs are
953 * not guaranteed to the vma_migratable. If they are not, we would find the
954 * !migratable VMA on the next scan but not reset the scanner to the start
955 * so check it now.
956 */
957 if (vma)
958 mm->numa_scan_offset = start;
959 else
960 reset_ptenuma_scan(p);
961 up_read(&mm->mmap_sem);
962 }
963
964 /*
965 * Drive the periodic memory faults..
966 */
967 void task_tick_numa(struct rq *rq, struct task_struct *curr)
968 {
969 struct callback_head *work = &curr->numa_work;
970 u64 period, now;
971
972 /*
973 * We don't care about NUMA placement if we don't have memory.
974 */
975 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
976 return;
977
978 /*
979 * Using runtime rather than walltime has the dual advantage that
980 * we (mostly) drive the selection from busy threads and that the
981 * task needs to have done some actual work before we bother with
982 * NUMA placement.
983 */
984 now = curr->se.sum_exec_runtime;
985 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
986
987 if (now - curr->node_stamp > period) {
988 if (!curr->node_stamp)
989 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
990 curr->node_stamp = now;
991
992 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
993 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
994 task_work_add(curr, work, true);
995 }
996 }
997 }
998 #else
999 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1000 {
1001 }
1002 #endif /* CONFIG_NUMA_BALANCING */
1003
1004 static void
1005 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1006 {
1007 update_load_add(&cfs_rq->load, se->load.weight);
1008 if (!parent_entity(se))
1009 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1010 #ifdef CONFIG_SMP
1011 if (entity_is_task(se))
1012 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1013 #endif
1014 cfs_rq->nr_running++;
1015 }
1016
1017 static void
1018 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1019 {
1020 update_load_sub(&cfs_rq->load, se->load.weight);
1021 if (!parent_entity(se))
1022 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1023 if (entity_is_task(se))
1024 list_del_init(&se->group_node);
1025 cfs_rq->nr_running--;
1026 }
1027
1028 #ifdef CONFIG_FAIR_GROUP_SCHED
1029 # ifdef CONFIG_SMP
1030 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1031 {
1032 long tg_weight;
1033
1034 /*
1035 * Use this CPU's actual weight instead of the last load_contribution
1036 * to gain a more accurate current total weight. See
1037 * update_cfs_rq_load_contribution().
1038 */
1039 tg_weight = atomic64_read(&tg->load_avg);
1040 tg_weight -= cfs_rq->tg_load_contrib;
1041 tg_weight += cfs_rq->load.weight;
1042
1043 return tg_weight;
1044 }
1045
1046 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1047 {
1048 long tg_weight, load, shares;
1049
1050 tg_weight = calc_tg_weight(tg, cfs_rq);
1051 load = cfs_rq->load.weight;
1052
1053 shares = (tg->shares * load);
1054 if (tg_weight)
1055 shares /= tg_weight;
1056
1057 if (shares < MIN_SHARES)
1058 shares = MIN_SHARES;
1059 if (shares > tg->shares)
1060 shares = tg->shares;
1061
1062 return shares;
1063 }
1064 # else /* CONFIG_SMP */
1065 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1066 {
1067 return tg->shares;
1068 }
1069 # endif /* CONFIG_SMP */
1070 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1071 unsigned long weight)
1072 {
1073 if (se->on_rq) {
1074 /* commit outstanding execution time */
1075 if (cfs_rq->curr == se)
1076 update_curr(cfs_rq);
1077 account_entity_dequeue(cfs_rq, se);
1078 }
1079
1080 update_load_set(&se->load, weight);
1081
1082 if (se->on_rq)
1083 account_entity_enqueue(cfs_rq, se);
1084 }
1085
1086 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1087
1088 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1089 {
1090 struct task_group *tg;
1091 struct sched_entity *se;
1092 long shares;
1093
1094 tg = cfs_rq->tg;
1095 se = tg->se[cpu_of(rq_of(cfs_rq))];
1096 if (!se || throttled_hierarchy(cfs_rq))
1097 return;
1098 #ifndef CONFIG_SMP
1099 if (likely(se->load.weight == tg->shares))
1100 return;
1101 #endif
1102 shares = calc_cfs_shares(cfs_rq, tg);
1103
1104 reweight_entity(cfs_rq_of(se), se, shares);
1105 }
1106 #else /* CONFIG_FAIR_GROUP_SCHED */
1107 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1108 {
1109 }
1110 #endif /* CONFIG_FAIR_GROUP_SCHED */
1111
1112 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1113 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1114 /*
1115 * We choose a half-life close to 1 scheduling period.
1116 * Note: The tables below are dependent on this value.
1117 */
1118 #define LOAD_AVG_PERIOD 32
1119 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1120 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1121
1122 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1123 static const u32 runnable_avg_yN_inv[] = {
1124 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1125 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1126 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1127 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1128 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1129 0x85aac367, 0x82cd8698,
1130 };
1131
1132 /*
1133 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1134 * over-estimates when re-combining.
1135 */
1136 static const u32 runnable_avg_yN_sum[] = {
1137 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1138 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1139 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1140 };
1141
1142 /*
1143 * Approximate:
1144 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1145 */
1146 static __always_inline u64 decay_load(u64 val, u64 n)
1147 {
1148 unsigned int local_n;
1149
1150 if (!n)
1151 return val;
1152 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1153 return 0;
1154
1155 /* after bounds checking we can collapse to 32-bit */
1156 local_n = n;
1157
1158 /*
1159 * As y^PERIOD = 1/2, we can combine
1160 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1161 * With a look-up table which covers k^n (n<PERIOD)
1162 *
1163 * To achieve constant time decay_load.
1164 */
1165 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1166 val >>= local_n / LOAD_AVG_PERIOD;
1167 local_n %= LOAD_AVG_PERIOD;
1168 }
1169
1170 val *= runnable_avg_yN_inv[local_n];
1171 /* We don't use SRR here since we always want to round down. */
1172 return val >> 32;
1173 }
1174
1175 /*
1176 * For updates fully spanning n periods, the contribution to runnable
1177 * average will be: \Sum 1024*y^n
1178 *
1179 * We can compute this reasonably efficiently by combining:
1180 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1181 */
1182 static u32 __compute_runnable_contrib(u64 n)
1183 {
1184 u32 contrib = 0;
1185
1186 if (likely(n <= LOAD_AVG_PERIOD))
1187 return runnable_avg_yN_sum[n];
1188 else if (unlikely(n >= LOAD_AVG_MAX_N))
1189 return LOAD_AVG_MAX;
1190
1191 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1192 do {
1193 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1194 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1195
1196 n -= LOAD_AVG_PERIOD;
1197 } while (n > LOAD_AVG_PERIOD);
1198
1199 contrib = decay_load(contrib, n);
1200 return contrib + runnable_avg_yN_sum[n];
1201 }
1202
1203 /*
1204 * We can represent the historical contribution to runnable average as the
1205 * coefficients of a geometric series. To do this we sub-divide our runnable
1206 * history into segments of approximately 1ms (1024us); label the segment that
1207 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1208 *
1209 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1210 * p0 p1 p2
1211 * (now) (~1ms ago) (~2ms ago)
1212 *
1213 * Let u_i denote the fraction of p_i that the entity was runnable.
1214 *
1215 * We then designate the fractions u_i as our co-efficients, yielding the
1216 * following representation of historical load:
1217 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1218 *
1219 * We choose y based on the with of a reasonably scheduling period, fixing:
1220 * y^32 = 0.5
1221 *
1222 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1223 * approximately half as much as the contribution to load within the last ms
1224 * (u_0).
1225 *
1226 * When a period "rolls over" and we have new u_0`, multiplying the previous
1227 * sum again by y is sufficient to update:
1228 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1229 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1230 */
1231 static __always_inline int __update_entity_runnable_avg(u64 now,
1232 struct sched_avg *sa,
1233 int runnable)
1234 {
1235 u64 delta, periods;
1236 u32 runnable_contrib;
1237 int delta_w, decayed = 0;
1238
1239 delta = now - sa->last_runnable_update;
1240 /*
1241 * This should only happen when time goes backwards, which it
1242 * unfortunately does during sched clock init when we swap over to TSC.
1243 */
1244 if ((s64)delta < 0) {
1245 sa->last_runnable_update = now;
1246 return 0;
1247 }
1248
1249 /*
1250 * Use 1024ns as the unit of measurement since it's a reasonable
1251 * approximation of 1us and fast to compute.
1252 */
1253 delta >>= 10;
1254 if (!delta)
1255 return 0;
1256 sa->last_runnable_update = now;
1257
1258 /* delta_w is the amount already accumulated against our next period */
1259 delta_w = sa->runnable_avg_period % 1024;
1260 if (delta + delta_w >= 1024) {
1261 /* period roll-over */
1262 decayed = 1;
1263
1264 /*
1265 * Now that we know we're crossing a period boundary, figure
1266 * out how much from delta we need to complete the current
1267 * period and accrue it.
1268 */
1269 delta_w = 1024 - delta_w;
1270 if (runnable)
1271 sa->runnable_avg_sum += delta_w;
1272 sa->runnable_avg_period += delta_w;
1273
1274 delta -= delta_w;
1275
1276 /* Figure out how many additional periods this update spans */
1277 periods = delta / 1024;
1278 delta %= 1024;
1279
1280 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1281 periods + 1);
1282 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1283 periods + 1);
1284
1285 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1286 runnable_contrib = __compute_runnable_contrib(periods);
1287 if (runnable)
1288 sa->runnable_avg_sum += runnable_contrib;
1289 sa->runnable_avg_period += runnable_contrib;
1290 }
1291
1292 /* Remainder of delta accrued against u_0` */
1293 if (runnable)
1294 sa->runnable_avg_sum += delta;
1295 sa->runnable_avg_period += delta;
1296
1297 return decayed;
1298 }
1299
1300 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1301 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1302 {
1303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1304 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1305
1306 decays -= se->avg.decay_count;
1307 if (!decays)
1308 return 0;
1309
1310 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1311 se->avg.decay_count = 0;
1312
1313 return decays;
1314 }
1315
1316 #ifdef CONFIG_FAIR_GROUP_SCHED
1317 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1318 int force_update)
1319 {
1320 struct task_group *tg = cfs_rq->tg;
1321 s64 tg_contrib;
1322
1323 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1324 tg_contrib -= cfs_rq->tg_load_contrib;
1325
1326 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1327 atomic64_add(tg_contrib, &tg->load_avg);
1328 cfs_rq->tg_load_contrib += tg_contrib;
1329 }
1330 }
1331
1332 /*
1333 * Aggregate cfs_rq runnable averages into an equivalent task_group
1334 * representation for computing load contributions.
1335 */
1336 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1337 struct cfs_rq *cfs_rq)
1338 {
1339 struct task_group *tg = cfs_rq->tg;
1340 long contrib;
1341
1342 /* The fraction of a cpu used by this cfs_rq */
1343 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1344 sa->runnable_avg_period + 1);
1345 contrib -= cfs_rq->tg_runnable_contrib;
1346
1347 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1348 atomic_add(contrib, &tg->runnable_avg);
1349 cfs_rq->tg_runnable_contrib += contrib;
1350 }
1351 }
1352
1353 static inline void __update_group_entity_contrib(struct sched_entity *se)
1354 {
1355 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1356 struct task_group *tg = cfs_rq->tg;
1357 int runnable_avg;
1358
1359 u64 contrib;
1360
1361 contrib = cfs_rq->tg_load_contrib * tg->shares;
1362 se->avg.load_avg_contrib = div64_u64(contrib,
1363 atomic64_read(&tg->load_avg) + 1);
1364
1365 /*
1366 * For group entities we need to compute a correction term in the case
1367 * that they are consuming <1 cpu so that we would contribute the same
1368 * load as a task of equal weight.
1369 *
1370 * Explicitly co-ordinating this measurement would be expensive, but
1371 * fortunately the sum of each cpus contribution forms a usable
1372 * lower-bound on the true value.
1373 *
1374 * Consider the aggregate of 2 contributions. Either they are disjoint
1375 * (and the sum represents true value) or they are disjoint and we are
1376 * understating by the aggregate of their overlap.
1377 *
1378 * Extending this to N cpus, for a given overlap, the maximum amount we
1379 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1380 * cpus that overlap for this interval and w_i is the interval width.
1381 *
1382 * On a small machine; the first term is well-bounded which bounds the
1383 * total error since w_i is a subset of the period. Whereas on a
1384 * larger machine, while this first term can be larger, if w_i is the
1385 * of consequential size guaranteed to see n_i*w_i quickly converge to
1386 * our upper bound of 1-cpu.
1387 */
1388 runnable_avg = atomic_read(&tg->runnable_avg);
1389 if (runnable_avg < NICE_0_LOAD) {
1390 se->avg.load_avg_contrib *= runnable_avg;
1391 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1392 }
1393 }
1394 #else
1395 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1396 int force_update) {}
1397 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1398 struct cfs_rq *cfs_rq) {}
1399 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1400 #endif
1401
1402 static inline void __update_task_entity_contrib(struct sched_entity *se)
1403 {
1404 u32 contrib;
1405
1406 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1407 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1408 contrib /= (se->avg.runnable_avg_period + 1);
1409 se->avg.load_avg_contrib = scale_load(contrib);
1410 }
1411
1412 /* Compute the current contribution to load_avg by se, return any delta */
1413 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1414 {
1415 long old_contrib = se->avg.load_avg_contrib;
1416
1417 if (entity_is_task(se)) {
1418 __update_task_entity_contrib(se);
1419 } else {
1420 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1421 __update_group_entity_contrib(se);
1422 }
1423
1424 return se->avg.load_avg_contrib - old_contrib;
1425 }
1426
1427 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1428 long load_contrib)
1429 {
1430 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1431 cfs_rq->blocked_load_avg -= load_contrib;
1432 else
1433 cfs_rq->blocked_load_avg = 0;
1434 }
1435
1436 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1437
1438 /* Update a sched_entity's runnable average */
1439 static inline void update_entity_load_avg(struct sched_entity *se,
1440 int update_cfs_rq)
1441 {
1442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1443 long contrib_delta;
1444 u64 now;
1445
1446 /*
1447 * For a group entity we need to use their owned cfs_rq_clock_task() in
1448 * case they are the parent of a throttled hierarchy.
1449 */
1450 if (entity_is_task(se))
1451 now = cfs_rq_clock_task(cfs_rq);
1452 else
1453 now = cfs_rq_clock_task(group_cfs_rq(se));
1454
1455 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1456 return;
1457
1458 contrib_delta = __update_entity_load_avg_contrib(se);
1459
1460 if (!update_cfs_rq)
1461 return;
1462
1463 if (se->on_rq)
1464 cfs_rq->runnable_load_avg += contrib_delta;
1465 else
1466 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1467 }
1468
1469 /*
1470 * Decay the load contributed by all blocked children and account this so that
1471 * their contribution may appropriately discounted when they wake up.
1472 */
1473 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1474 {
1475 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1476 u64 decays;
1477
1478 decays = now - cfs_rq->last_decay;
1479 if (!decays && !force_update)
1480 return;
1481
1482 if (atomic64_read(&cfs_rq->removed_load)) {
1483 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1484 subtract_blocked_load_contrib(cfs_rq, removed_load);
1485 }
1486
1487 if (decays) {
1488 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1489 decays);
1490 atomic64_add(decays, &cfs_rq->decay_counter);
1491 cfs_rq->last_decay = now;
1492 }
1493
1494 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1495 }
1496
1497 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1498 {
1499 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1500 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1501 }
1502
1503 /* Add the load generated by se into cfs_rq's child load-average */
1504 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1505 struct sched_entity *se,
1506 int wakeup)
1507 {
1508 /*
1509 * We track migrations using entity decay_count <= 0, on a wake-up
1510 * migration we use a negative decay count to track the remote decays
1511 * accumulated while sleeping.
1512 */
1513 if (unlikely(se->avg.decay_count <= 0)) {
1514 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1515 if (se->avg.decay_count) {
1516 /*
1517 * In a wake-up migration we have to approximate the
1518 * time sleeping. This is because we can't synchronize
1519 * clock_task between the two cpus, and it is not
1520 * guaranteed to be read-safe. Instead, we can
1521 * approximate this using our carried decays, which are
1522 * explicitly atomically readable.
1523 */
1524 se->avg.last_runnable_update -= (-se->avg.decay_count)
1525 << 20;
1526 update_entity_load_avg(se, 0);
1527 /* Indicate that we're now synchronized and on-rq */
1528 se->avg.decay_count = 0;
1529 }
1530 wakeup = 0;
1531 } else {
1532 __synchronize_entity_decay(se);
1533 }
1534
1535 /* migrated tasks did not contribute to our blocked load */
1536 if (wakeup) {
1537 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1538 update_entity_load_avg(se, 0);
1539 }
1540
1541 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1542 /* we force update consideration on load-balancer moves */
1543 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1544 }
1545
1546 /*
1547 * Remove se's load from this cfs_rq child load-average, if the entity is
1548 * transitioning to a blocked state we track its projected decay using
1549 * blocked_load_avg.
1550 */
1551 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1552 struct sched_entity *se,
1553 int sleep)
1554 {
1555 update_entity_load_avg(se, 1);
1556 /* we force update consideration on load-balancer moves */
1557 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1558
1559 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1560 if (sleep) {
1561 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1562 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1563 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1564 }
1565 #else
1566 static inline void update_entity_load_avg(struct sched_entity *se,
1567 int update_cfs_rq) {}
1568 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1569 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1570 struct sched_entity *se,
1571 int wakeup) {}
1572 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1573 struct sched_entity *se,
1574 int sleep) {}
1575 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1576 int force_update) {}
1577 #endif
1578
1579 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1580 {
1581 #ifdef CONFIG_SCHEDSTATS
1582 struct task_struct *tsk = NULL;
1583
1584 if (entity_is_task(se))
1585 tsk = task_of(se);
1586
1587 if (se->statistics.sleep_start) {
1588 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1589
1590 if ((s64)delta < 0)
1591 delta = 0;
1592
1593 if (unlikely(delta > se->statistics.sleep_max))
1594 se->statistics.sleep_max = delta;
1595
1596 se->statistics.sleep_start = 0;
1597 se->statistics.sum_sleep_runtime += delta;
1598
1599 if (tsk) {
1600 account_scheduler_latency(tsk, delta >> 10, 1);
1601 trace_sched_stat_sleep(tsk, delta);
1602 }
1603 }
1604 if (se->statistics.block_start) {
1605 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1606
1607 if ((s64)delta < 0)
1608 delta = 0;
1609
1610 if (unlikely(delta > se->statistics.block_max))
1611 se->statistics.block_max = delta;
1612
1613 se->statistics.block_start = 0;
1614 se->statistics.sum_sleep_runtime += delta;
1615
1616 if (tsk) {
1617 if (tsk->in_iowait) {
1618 se->statistics.iowait_sum += delta;
1619 se->statistics.iowait_count++;
1620 trace_sched_stat_iowait(tsk, delta);
1621 }
1622
1623 trace_sched_stat_blocked(tsk, delta);
1624
1625 /*
1626 * Blocking time is in units of nanosecs, so shift by
1627 * 20 to get a milliseconds-range estimation of the
1628 * amount of time that the task spent sleeping:
1629 */
1630 if (unlikely(prof_on == SLEEP_PROFILING)) {
1631 profile_hits(SLEEP_PROFILING,
1632 (void *)get_wchan(tsk),
1633 delta >> 20);
1634 }
1635 account_scheduler_latency(tsk, delta >> 10, 0);
1636 }
1637 }
1638 #endif
1639 }
1640
1641 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1642 {
1643 #ifdef CONFIG_SCHED_DEBUG
1644 s64 d = se->vruntime - cfs_rq->min_vruntime;
1645
1646 if (d < 0)
1647 d = -d;
1648
1649 if (d > 3*sysctl_sched_latency)
1650 schedstat_inc(cfs_rq, nr_spread_over);
1651 #endif
1652 }
1653
1654 static void
1655 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1656 {
1657 u64 vruntime = cfs_rq->min_vruntime;
1658
1659 /*
1660 * The 'current' period is already promised to the current tasks,
1661 * however the extra weight of the new task will slow them down a
1662 * little, place the new task so that it fits in the slot that
1663 * stays open at the end.
1664 */
1665 if (initial && sched_feat(START_DEBIT))
1666 vruntime += sched_vslice(cfs_rq, se);
1667
1668 /* sleeps up to a single latency don't count. */
1669 if (!initial) {
1670 unsigned long thresh = sysctl_sched_latency;
1671
1672 /*
1673 * Halve their sleep time's effect, to allow
1674 * for a gentler effect of sleepers:
1675 */
1676 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1677 thresh >>= 1;
1678
1679 vruntime -= thresh;
1680 }
1681
1682 /* ensure we never gain time by being placed backwards. */
1683 vruntime = max_vruntime(se->vruntime, vruntime);
1684
1685 se->vruntime = vruntime;
1686 }
1687
1688 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1689
1690 static void
1691 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1692 {
1693 /*
1694 * Update the normalized vruntime before updating min_vruntime
1695 * through callig update_curr().
1696 */
1697 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1698 se->vruntime += cfs_rq->min_vruntime;
1699
1700 /*
1701 * Update run-time statistics of the 'current'.
1702 */
1703 update_curr(cfs_rq);
1704 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1705 account_entity_enqueue(cfs_rq, se);
1706 update_cfs_shares(cfs_rq);
1707
1708 if (flags & ENQUEUE_WAKEUP) {
1709 place_entity(cfs_rq, se, 0);
1710 enqueue_sleeper(cfs_rq, se);
1711 }
1712
1713 update_stats_enqueue(cfs_rq, se);
1714 check_spread(cfs_rq, se);
1715 if (se != cfs_rq->curr)
1716 __enqueue_entity(cfs_rq, se);
1717 se->on_rq = 1;
1718
1719 if (cfs_rq->nr_running == 1) {
1720 list_add_leaf_cfs_rq(cfs_rq);
1721 check_enqueue_throttle(cfs_rq);
1722 }
1723 }
1724
1725 static void __clear_buddies_last(struct sched_entity *se)
1726 {
1727 for_each_sched_entity(se) {
1728 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1729 if (cfs_rq->last == se)
1730 cfs_rq->last = NULL;
1731 else
1732 break;
1733 }
1734 }
1735
1736 static void __clear_buddies_next(struct sched_entity *se)
1737 {
1738 for_each_sched_entity(se) {
1739 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1740 if (cfs_rq->next == se)
1741 cfs_rq->next = NULL;
1742 else
1743 break;
1744 }
1745 }
1746
1747 static void __clear_buddies_skip(struct sched_entity *se)
1748 {
1749 for_each_sched_entity(se) {
1750 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1751 if (cfs_rq->skip == se)
1752 cfs_rq->skip = NULL;
1753 else
1754 break;
1755 }
1756 }
1757
1758 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1759 {
1760 if (cfs_rq->last == se)
1761 __clear_buddies_last(se);
1762
1763 if (cfs_rq->next == se)
1764 __clear_buddies_next(se);
1765
1766 if (cfs_rq->skip == se)
1767 __clear_buddies_skip(se);
1768 }
1769
1770 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1771
1772 static void
1773 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1774 {
1775 /*
1776 * Update run-time statistics of the 'current'.
1777 */
1778 update_curr(cfs_rq);
1779 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1780
1781 update_stats_dequeue(cfs_rq, se);
1782 if (flags & DEQUEUE_SLEEP) {
1783 #ifdef CONFIG_SCHEDSTATS
1784 if (entity_is_task(se)) {
1785 struct task_struct *tsk = task_of(se);
1786
1787 if (tsk->state & TASK_INTERRUPTIBLE)
1788 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1789 if (tsk->state & TASK_UNINTERRUPTIBLE)
1790 se->statistics.block_start = rq_of(cfs_rq)->clock;
1791 }
1792 #endif
1793 }
1794
1795 clear_buddies(cfs_rq, se);
1796
1797 if (se != cfs_rq->curr)
1798 __dequeue_entity(cfs_rq, se);
1799 se->on_rq = 0;
1800 account_entity_dequeue(cfs_rq, se);
1801
1802 /*
1803 * Normalize the entity after updating the min_vruntime because the
1804 * update can refer to the ->curr item and we need to reflect this
1805 * movement in our normalized position.
1806 */
1807 if (!(flags & DEQUEUE_SLEEP))
1808 se->vruntime -= cfs_rq->min_vruntime;
1809
1810 /* return excess runtime on last dequeue */
1811 return_cfs_rq_runtime(cfs_rq);
1812
1813 update_min_vruntime(cfs_rq);
1814 update_cfs_shares(cfs_rq);
1815 }
1816
1817 /*
1818 * Preempt the current task with a newly woken task if needed:
1819 */
1820 static void
1821 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1822 {
1823 unsigned long ideal_runtime, delta_exec;
1824 struct sched_entity *se;
1825 s64 delta;
1826
1827 ideal_runtime = sched_slice(cfs_rq, curr);
1828 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1829 if (delta_exec > ideal_runtime) {
1830 resched_task(rq_of(cfs_rq)->curr);
1831 /*
1832 * The current task ran long enough, ensure it doesn't get
1833 * re-elected due to buddy favours.
1834 */
1835 clear_buddies(cfs_rq, curr);
1836 return;
1837 }
1838
1839 /*
1840 * Ensure that a task that missed wakeup preemption by a
1841 * narrow margin doesn't have to wait for a full slice.
1842 * This also mitigates buddy induced latencies under load.
1843 */
1844 if (delta_exec < sysctl_sched_min_granularity)
1845 return;
1846
1847 se = __pick_first_entity(cfs_rq);
1848 delta = curr->vruntime - se->vruntime;
1849
1850 if (delta < 0)
1851 return;
1852
1853 if (delta > ideal_runtime)
1854 resched_task(rq_of(cfs_rq)->curr);
1855 }
1856
1857 static void
1858 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1859 {
1860 /* 'current' is not kept within the tree. */
1861 if (se->on_rq) {
1862 /*
1863 * Any task has to be enqueued before it get to execute on
1864 * a CPU. So account for the time it spent waiting on the
1865 * runqueue.
1866 */
1867 update_stats_wait_end(cfs_rq, se);
1868 __dequeue_entity(cfs_rq, se);
1869 }
1870
1871 update_stats_curr_start(cfs_rq, se);
1872 cfs_rq->curr = se;
1873 #ifdef CONFIG_SCHEDSTATS
1874 /*
1875 * Track our maximum slice length, if the CPU's load is at
1876 * least twice that of our own weight (i.e. dont track it
1877 * when there are only lesser-weight tasks around):
1878 */
1879 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1880 se->statistics.slice_max = max(se->statistics.slice_max,
1881 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1882 }
1883 #endif
1884 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1885 }
1886
1887 static int
1888 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1889
1890 /*
1891 * Pick the next process, keeping these things in mind, in this order:
1892 * 1) keep things fair between processes/task groups
1893 * 2) pick the "next" process, since someone really wants that to run
1894 * 3) pick the "last" process, for cache locality
1895 * 4) do not run the "skip" process, if something else is available
1896 */
1897 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1898 {
1899 struct sched_entity *se = __pick_first_entity(cfs_rq);
1900 struct sched_entity *left = se;
1901
1902 /*
1903 * Avoid running the skip buddy, if running something else can
1904 * be done without getting too unfair.
1905 */
1906 if (cfs_rq->skip == se) {
1907 struct sched_entity *second = __pick_next_entity(se);
1908 if (second && wakeup_preempt_entity(second, left) < 1)
1909 se = second;
1910 }
1911
1912 /*
1913 * Prefer last buddy, try to return the CPU to a preempted task.
1914 */
1915 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1916 se = cfs_rq->last;
1917
1918 /*
1919 * Someone really wants this to run. If it's not unfair, run it.
1920 */
1921 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1922 se = cfs_rq->next;
1923
1924 clear_buddies(cfs_rq, se);
1925
1926 return se;
1927 }
1928
1929 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1930
1931 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1932 {
1933 /*
1934 * If still on the runqueue then deactivate_task()
1935 * was not called and update_curr() has to be done:
1936 */
1937 if (prev->on_rq)
1938 update_curr(cfs_rq);
1939
1940 /* throttle cfs_rqs exceeding runtime */
1941 check_cfs_rq_runtime(cfs_rq);
1942
1943 check_spread(cfs_rq, prev);
1944 if (prev->on_rq) {
1945 update_stats_wait_start(cfs_rq, prev);
1946 /* Put 'current' back into the tree. */
1947 __enqueue_entity(cfs_rq, prev);
1948 /* in !on_rq case, update occurred at dequeue */
1949 update_entity_load_avg(prev, 1);
1950 }
1951 cfs_rq->curr = NULL;
1952 }
1953
1954 static void
1955 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1956 {
1957 /*
1958 * Update run-time statistics of the 'current'.
1959 */
1960 update_curr(cfs_rq);
1961
1962 /*
1963 * Ensure that runnable average is periodically updated.
1964 */
1965 update_entity_load_avg(curr, 1);
1966 update_cfs_rq_blocked_load(cfs_rq, 1);
1967
1968 #ifdef CONFIG_SCHED_HRTICK
1969 /*
1970 * queued ticks are scheduled to match the slice, so don't bother
1971 * validating it and just reschedule.
1972 */
1973 if (queued) {
1974 resched_task(rq_of(cfs_rq)->curr);
1975 return;
1976 }
1977 /*
1978 * don't let the period tick interfere with the hrtick preemption
1979 */
1980 if (!sched_feat(DOUBLE_TICK) &&
1981 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1982 return;
1983 #endif
1984
1985 if (cfs_rq->nr_running > 1)
1986 check_preempt_tick(cfs_rq, curr);
1987 }
1988
1989
1990 /**************************************************
1991 * CFS bandwidth control machinery
1992 */
1993
1994 #ifdef CONFIG_CFS_BANDWIDTH
1995
1996 #ifdef HAVE_JUMP_LABEL
1997 static struct static_key __cfs_bandwidth_used;
1998
1999 static inline bool cfs_bandwidth_used(void)
2000 {
2001 return static_key_false(&__cfs_bandwidth_used);
2002 }
2003
2004 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2005 {
2006 /* only need to count groups transitioning between enabled/!enabled */
2007 if (enabled && !was_enabled)
2008 static_key_slow_inc(&__cfs_bandwidth_used);
2009 else if (!enabled && was_enabled)
2010 static_key_slow_dec(&__cfs_bandwidth_used);
2011 }
2012 #else /* HAVE_JUMP_LABEL */
2013 static bool cfs_bandwidth_used(void)
2014 {
2015 return true;
2016 }
2017
2018 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2019 #endif /* HAVE_JUMP_LABEL */
2020
2021 /*
2022 * default period for cfs group bandwidth.
2023 * default: 0.1s, units: nanoseconds
2024 */
2025 static inline u64 default_cfs_period(void)
2026 {
2027 return 100000000ULL;
2028 }
2029
2030 static inline u64 sched_cfs_bandwidth_slice(void)
2031 {
2032 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2033 }
2034
2035 /*
2036 * Replenish runtime according to assigned quota and update expiration time.
2037 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2038 * additional synchronization around rq->lock.
2039 *
2040 * requires cfs_b->lock
2041 */
2042 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2043 {
2044 u64 now;
2045
2046 if (cfs_b->quota == RUNTIME_INF)
2047 return;
2048
2049 now = sched_clock_cpu(smp_processor_id());
2050 cfs_b->runtime = cfs_b->quota;
2051 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2052 }
2053
2054 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2055 {
2056 return &tg->cfs_bandwidth;
2057 }
2058
2059 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2060 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2061 {
2062 if (unlikely(cfs_rq->throttle_count))
2063 return cfs_rq->throttled_clock_task;
2064
2065 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2066 }
2067
2068 /* returns 0 on failure to allocate runtime */
2069 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2070 {
2071 struct task_group *tg = cfs_rq->tg;
2072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2073 u64 amount = 0, min_amount, expires;
2074
2075 /* note: this is a positive sum as runtime_remaining <= 0 */
2076 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2077
2078 raw_spin_lock(&cfs_b->lock);
2079 if (cfs_b->quota == RUNTIME_INF)
2080 amount = min_amount;
2081 else {
2082 /*
2083 * If the bandwidth pool has become inactive, then at least one
2084 * period must have elapsed since the last consumption.
2085 * Refresh the global state and ensure bandwidth timer becomes
2086 * active.
2087 */
2088 if (!cfs_b->timer_active) {
2089 __refill_cfs_bandwidth_runtime(cfs_b);
2090 __start_cfs_bandwidth(cfs_b);
2091 }
2092
2093 if (cfs_b->runtime > 0) {
2094 amount = min(cfs_b->runtime, min_amount);
2095 cfs_b->runtime -= amount;
2096 cfs_b->idle = 0;
2097 }
2098 }
2099 expires = cfs_b->runtime_expires;
2100 raw_spin_unlock(&cfs_b->lock);
2101
2102 cfs_rq->runtime_remaining += amount;
2103 /*
2104 * we may have advanced our local expiration to account for allowed
2105 * spread between our sched_clock and the one on which runtime was
2106 * issued.
2107 */
2108 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2109 cfs_rq->runtime_expires = expires;
2110
2111 return cfs_rq->runtime_remaining > 0;
2112 }
2113
2114 /*
2115 * Note: This depends on the synchronization provided by sched_clock and the
2116 * fact that rq->clock snapshots this value.
2117 */
2118 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2119 {
2120 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2121 struct rq *rq = rq_of(cfs_rq);
2122
2123 /* if the deadline is ahead of our clock, nothing to do */
2124 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2125 return;
2126
2127 if (cfs_rq->runtime_remaining < 0)
2128 return;
2129
2130 /*
2131 * If the local deadline has passed we have to consider the
2132 * possibility that our sched_clock is 'fast' and the global deadline
2133 * has not truly expired.
2134 *
2135 * Fortunately we can check determine whether this the case by checking
2136 * whether the global deadline has advanced.
2137 */
2138
2139 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2140 /* extend local deadline, drift is bounded above by 2 ticks */
2141 cfs_rq->runtime_expires += TICK_NSEC;
2142 } else {
2143 /* global deadline is ahead, expiration has passed */
2144 cfs_rq->runtime_remaining = 0;
2145 }
2146 }
2147
2148 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2149 unsigned long delta_exec)
2150 {
2151 /* dock delta_exec before expiring quota (as it could span periods) */
2152 cfs_rq->runtime_remaining -= delta_exec;
2153 expire_cfs_rq_runtime(cfs_rq);
2154
2155 if (likely(cfs_rq->runtime_remaining > 0))
2156 return;
2157
2158 /*
2159 * if we're unable to extend our runtime we resched so that the active
2160 * hierarchy can be throttled
2161 */
2162 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2163 resched_task(rq_of(cfs_rq)->curr);
2164 }
2165
2166 static __always_inline
2167 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2168 {
2169 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2170 return;
2171
2172 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2173 }
2174
2175 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2176 {
2177 return cfs_bandwidth_used() && cfs_rq->throttled;
2178 }
2179
2180 /* check whether cfs_rq, or any parent, is throttled */
2181 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2182 {
2183 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2184 }
2185
2186 /*
2187 * Ensure that neither of the group entities corresponding to src_cpu or
2188 * dest_cpu are members of a throttled hierarchy when performing group
2189 * load-balance operations.
2190 */
2191 static inline int throttled_lb_pair(struct task_group *tg,
2192 int src_cpu, int dest_cpu)
2193 {
2194 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2195
2196 src_cfs_rq = tg->cfs_rq[src_cpu];
2197 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2198
2199 return throttled_hierarchy(src_cfs_rq) ||
2200 throttled_hierarchy(dest_cfs_rq);
2201 }
2202
2203 /* updated child weight may affect parent so we have to do this bottom up */
2204 static int tg_unthrottle_up(struct task_group *tg, void *data)
2205 {
2206 struct rq *rq = data;
2207 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2208
2209 cfs_rq->throttle_count--;
2210 #ifdef CONFIG_SMP
2211 if (!cfs_rq->throttle_count) {
2212 /* adjust cfs_rq_clock_task() */
2213 cfs_rq->throttled_clock_task_time += rq->clock_task -
2214 cfs_rq->throttled_clock_task;
2215 }
2216 #endif
2217
2218 return 0;
2219 }
2220
2221 static int tg_throttle_down(struct task_group *tg, void *data)
2222 {
2223 struct rq *rq = data;
2224 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2225
2226 /* group is entering throttled state, stop time */
2227 if (!cfs_rq->throttle_count)
2228 cfs_rq->throttled_clock_task = rq->clock_task;
2229 cfs_rq->throttle_count++;
2230
2231 return 0;
2232 }
2233
2234 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2235 {
2236 struct rq *rq = rq_of(cfs_rq);
2237 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2238 struct sched_entity *se;
2239 long task_delta, dequeue = 1;
2240
2241 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2242
2243 /* freeze hierarchy runnable averages while throttled */
2244 rcu_read_lock();
2245 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2246 rcu_read_unlock();
2247
2248 task_delta = cfs_rq->h_nr_running;
2249 for_each_sched_entity(se) {
2250 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2251 /* throttled entity or throttle-on-deactivate */
2252 if (!se->on_rq)
2253 break;
2254
2255 if (dequeue)
2256 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2257 qcfs_rq->h_nr_running -= task_delta;
2258
2259 if (qcfs_rq->load.weight)
2260 dequeue = 0;
2261 }
2262
2263 if (!se)
2264 rq->nr_running -= task_delta;
2265
2266 cfs_rq->throttled = 1;
2267 cfs_rq->throttled_clock = rq->clock;
2268 raw_spin_lock(&cfs_b->lock);
2269 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2270 raw_spin_unlock(&cfs_b->lock);
2271 }
2272
2273 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2274 {
2275 struct rq *rq = rq_of(cfs_rq);
2276 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2277 struct sched_entity *se;
2278 int enqueue = 1;
2279 long task_delta;
2280
2281 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2282
2283 cfs_rq->throttled = 0;
2284 raw_spin_lock(&cfs_b->lock);
2285 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2286 list_del_rcu(&cfs_rq->throttled_list);
2287 raw_spin_unlock(&cfs_b->lock);
2288
2289 update_rq_clock(rq);
2290 /* update hierarchical throttle state */
2291 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2292
2293 if (!cfs_rq->load.weight)
2294 return;
2295
2296 task_delta = cfs_rq->h_nr_running;
2297 for_each_sched_entity(se) {
2298 if (se->on_rq)
2299 enqueue = 0;
2300
2301 cfs_rq = cfs_rq_of(se);
2302 if (enqueue)
2303 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2304 cfs_rq->h_nr_running += task_delta;
2305
2306 if (cfs_rq_throttled(cfs_rq))
2307 break;
2308 }
2309
2310 if (!se)
2311 rq->nr_running += task_delta;
2312
2313 /* determine whether we need to wake up potentially idle cpu */
2314 if (rq->curr == rq->idle && rq->cfs.nr_running)
2315 resched_task(rq->curr);
2316 }
2317
2318 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2319 u64 remaining, u64 expires)
2320 {
2321 struct cfs_rq *cfs_rq;
2322 u64 runtime = remaining;
2323
2324 rcu_read_lock();
2325 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2326 throttled_list) {
2327 struct rq *rq = rq_of(cfs_rq);
2328
2329 raw_spin_lock(&rq->lock);
2330 if (!cfs_rq_throttled(cfs_rq))
2331 goto next;
2332
2333 runtime = -cfs_rq->runtime_remaining + 1;
2334 if (runtime > remaining)
2335 runtime = remaining;
2336 remaining -= runtime;
2337
2338 cfs_rq->runtime_remaining += runtime;
2339 cfs_rq->runtime_expires = expires;
2340
2341 /* we check whether we're throttled above */
2342 if (cfs_rq->runtime_remaining > 0)
2343 unthrottle_cfs_rq(cfs_rq);
2344
2345 next:
2346 raw_spin_unlock(&rq->lock);
2347
2348 if (!remaining)
2349 break;
2350 }
2351 rcu_read_unlock();
2352
2353 return remaining;
2354 }
2355
2356 /*
2357 * Responsible for refilling a task_group's bandwidth and unthrottling its
2358 * cfs_rqs as appropriate. If there has been no activity within the last
2359 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2360 * used to track this state.
2361 */
2362 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2363 {
2364 u64 runtime, runtime_expires;
2365 int idle = 1, throttled;
2366
2367 raw_spin_lock(&cfs_b->lock);
2368 /* no need to continue the timer with no bandwidth constraint */
2369 if (cfs_b->quota == RUNTIME_INF)
2370 goto out_unlock;
2371
2372 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2373 /* idle depends on !throttled (for the case of a large deficit) */
2374 idle = cfs_b->idle && !throttled;
2375 cfs_b->nr_periods += overrun;
2376
2377 /* if we're going inactive then everything else can be deferred */
2378 if (idle)
2379 goto out_unlock;
2380
2381 __refill_cfs_bandwidth_runtime(cfs_b);
2382
2383 if (!throttled) {
2384 /* mark as potentially idle for the upcoming period */
2385 cfs_b->idle = 1;
2386 goto out_unlock;
2387 }
2388
2389 /* account preceding periods in which throttling occurred */
2390 cfs_b->nr_throttled += overrun;
2391
2392 /*
2393 * There are throttled entities so we must first use the new bandwidth
2394 * to unthrottle them before making it generally available. This
2395 * ensures that all existing debts will be paid before a new cfs_rq is
2396 * allowed to run.
2397 */
2398 runtime = cfs_b->runtime;
2399 runtime_expires = cfs_b->runtime_expires;
2400 cfs_b->runtime = 0;
2401
2402 /*
2403 * This check is repeated as we are holding onto the new bandwidth
2404 * while we unthrottle. This can potentially race with an unthrottled
2405 * group trying to acquire new bandwidth from the global pool.
2406 */
2407 while (throttled && runtime > 0) {
2408 raw_spin_unlock(&cfs_b->lock);
2409 /* we can't nest cfs_b->lock while distributing bandwidth */
2410 runtime = distribute_cfs_runtime(cfs_b, runtime,
2411 runtime_expires);
2412 raw_spin_lock(&cfs_b->lock);
2413
2414 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2415 }
2416
2417 /* return (any) remaining runtime */
2418 cfs_b->runtime = runtime;
2419 /*
2420 * While we are ensured activity in the period following an
2421 * unthrottle, this also covers the case in which the new bandwidth is
2422 * insufficient to cover the existing bandwidth deficit. (Forcing the
2423 * timer to remain active while there are any throttled entities.)
2424 */
2425 cfs_b->idle = 0;
2426 out_unlock:
2427 if (idle)
2428 cfs_b->timer_active = 0;
2429 raw_spin_unlock(&cfs_b->lock);
2430
2431 return idle;
2432 }
2433
2434 /* a cfs_rq won't donate quota below this amount */
2435 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2436 /* minimum remaining period time to redistribute slack quota */
2437 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2438 /* how long we wait to gather additional slack before distributing */
2439 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2440
2441 /* are we near the end of the current quota period? */
2442 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2443 {
2444 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2445 u64 remaining;
2446
2447 /* if the call-back is running a quota refresh is already occurring */
2448 if (hrtimer_callback_running(refresh_timer))
2449 return 1;
2450
2451 /* is a quota refresh about to occur? */
2452 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2453 if (remaining < min_expire)
2454 return 1;
2455
2456 return 0;
2457 }
2458
2459 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2460 {
2461 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2462
2463 /* if there's a quota refresh soon don't bother with slack */
2464 if (runtime_refresh_within(cfs_b, min_left))
2465 return;
2466
2467 start_bandwidth_timer(&cfs_b->slack_timer,
2468 ns_to_ktime(cfs_bandwidth_slack_period));
2469 }
2470
2471 /* we know any runtime found here is valid as update_curr() precedes return */
2472 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2473 {
2474 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2475 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2476
2477 if (slack_runtime <= 0)
2478 return;
2479
2480 raw_spin_lock(&cfs_b->lock);
2481 if (cfs_b->quota != RUNTIME_INF &&
2482 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2483 cfs_b->runtime += slack_runtime;
2484
2485 /* we are under rq->lock, defer unthrottling using a timer */
2486 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2487 !list_empty(&cfs_b->throttled_cfs_rq))
2488 start_cfs_slack_bandwidth(cfs_b);
2489 }
2490 raw_spin_unlock(&cfs_b->lock);
2491
2492 /* even if it's not valid for return we don't want to try again */
2493 cfs_rq->runtime_remaining -= slack_runtime;
2494 }
2495
2496 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2497 {
2498 if (!cfs_bandwidth_used())
2499 return;
2500
2501 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2502 return;
2503
2504 __return_cfs_rq_runtime(cfs_rq);
2505 }
2506
2507 /*
2508 * This is done with a timer (instead of inline with bandwidth return) since
2509 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2510 */
2511 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2512 {
2513 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2514 u64 expires;
2515
2516 /* confirm we're still not at a refresh boundary */
2517 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2518 return;
2519
2520 raw_spin_lock(&cfs_b->lock);
2521 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2522 runtime = cfs_b->runtime;
2523 cfs_b->runtime = 0;
2524 }
2525 expires = cfs_b->runtime_expires;
2526 raw_spin_unlock(&cfs_b->lock);
2527
2528 if (!runtime)
2529 return;
2530
2531 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2532
2533 raw_spin_lock(&cfs_b->lock);
2534 if (expires == cfs_b->runtime_expires)
2535 cfs_b->runtime = runtime;
2536 raw_spin_unlock(&cfs_b->lock);
2537 }
2538
2539 /*
2540 * When a group wakes up we want to make sure that its quota is not already
2541 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2542 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2543 */
2544 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2545 {
2546 if (!cfs_bandwidth_used())
2547 return;
2548
2549 /* an active group must be handled by the update_curr()->put() path */
2550 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2551 return;
2552
2553 /* ensure the group is not already throttled */
2554 if (cfs_rq_throttled(cfs_rq))
2555 return;
2556
2557 /* update runtime allocation */
2558 account_cfs_rq_runtime(cfs_rq, 0);
2559 if (cfs_rq->runtime_remaining <= 0)
2560 throttle_cfs_rq(cfs_rq);
2561 }
2562
2563 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2564 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2565 {
2566 if (!cfs_bandwidth_used())
2567 return;
2568
2569 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2570 return;
2571
2572 /*
2573 * it's possible for a throttled entity to be forced into a running
2574 * state (e.g. set_curr_task), in this case we're finished.
2575 */
2576 if (cfs_rq_throttled(cfs_rq))
2577 return;
2578
2579 throttle_cfs_rq(cfs_rq);
2580 }
2581
2582 static inline u64 default_cfs_period(void);
2583 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2584 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2585
2586 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2587 {
2588 struct cfs_bandwidth *cfs_b =
2589 container_of(timer, struct cfs_bandwidth, slack_timer);
2590 do_sched_cfs_slack_timer(cfs_b);
2591
2592 return HRTIMER_NORESTART;
2593 }
2594
2595 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2596 {
2597 struct cfs_bandwidth *cfs_b =
2598 container_of(timer, struct cfs_bandwidth, period_timer);
2599 ktime_t now;
2600 int overrun;
2601 int idle = 0;
2602
2603 for (;;) {
2604 now = hrtimer_cb_get_time(timer);
2605 overrun = hrtimer_forward(timer, now, cfs_b->period);
2606
2607 if (!overrun)
2608 break;
2609
2610 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2611 }
2612
2613 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2614 }
2615
2616 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2617 {
2618 raw_spin_lock_init(&cfs_b->lock);
2619 cfs_b->runtime = 0;
2620 cfs_b->quota = RUNTIME_INF;
2621 cfs_b->period = ns_to_ktime(default_cfs_period());
2622
2623 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2624 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2625 cfs_b->period_timer.function = sched_cfs_period_timer;
2626 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2627 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2628 }
2629
2630 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2631 {
2632 cfs_rq->runtime_enabled = 0;
2633 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2634 }
2635
2636 /* requires cfs_b->lock, may release to reprogram timer */
2637 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2638 {
2639 /*
2640 * The timer may be active because we're trying to set a new bandwidth
2641 * period or because we're racing with the tear-down path
2642 * (timer_active==0 becomes visible before the hrtimer call-back
2643 * terminates). In either case we ensure that it's re-programmed
2644 */
2645 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2646 raw_spin_unlock(&cfs_b->lock);
2647 /* ensure cfs_b->lock is available while we wait */
2648 hrtimer_cancel(&cfs_b->period_timer);
2649
2650 raw_spin_lock(&cfs_b->lock);
2651 /* if someone else restarted the timer then we're done */
2652 if (cfs_b->timer_active)
2653 return;
2654 }
2655
2656 cfs_b->timer_active = 1;
2657 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2658 }
2659
2660 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2661 {
2662 hrtimer_cancel(&cfs_b->period_timer);
2663 hrtimer_cancel(&cfs_b->slack_timer);
2664 }
2665
2666 static void unthrottle_offline_cfs_rqs(struct rq *rq)
2667 {
2668 struct cfs_rq *cfs_rq;
2669
2670 for_each_leaf_cfs_rq(rq, cfs_rq) {
2671 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2672
2673 if (!cfs_rq->runtime_enabled)
2674 continue;
2675
2676 /*
2677 * clock_task is not advancing so we just need to make sure
2678 * there's some valid quota amount
2679 */
2680 cfs_rq->runtime_remaining = cfs_b->quota;
2681 if (cfs_rq_throttled(cfs_rq))
2682 unthrottle_cfs_rq(cfs_rq);
2683 }
2684 }
2685
2686 #else /* CONFIG_CFS_BANDWIDTH */
2687 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2688 {
2689 return rq_of(cfs_rq)->clock_task;
2690 }
2691
2692 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2693 unsigned long delta_exec) {}
2694 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2695 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2696 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2697
2698 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2699 {
2700 return 0;
2701 }
2702
2703 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2704 {
2705 return 0;
2706 }
2707
2708 static inline int throttled_lb_pair(struct task_group *tg,
2709 int src_cpu, int dest_cpu)
2710 {
2711 return 0;
2712 }
2713
2714 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2715
2716 #ifdef CONFIG_FAIR_GROUP_SCHED
2717 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2718 #endif
2719
2720 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2721 {
2722 return NULL;
2723 }
2724 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2725 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2726
2727 #endif /* CONFIG_CFS_BANDWIDTH */
2728
2729 /**************************************************
2730 * CFS operations on tasks:
2731 */
2732
2733 #ifdef CONFIG_SCHED_HRTICK
2734 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2735 {
2736 struct sched_entity *se = &p->se;
2737 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2738
2739 WARN_ON(task_rq(p) != rq);
2740
2741 if (cfs_rq->nr_running > 1) {
2742 u64 slice = sched_slice(cfs_rq, se);
2743 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2744 s64 delta = slice - ran;
2745
2746 if (delta < 0) {
2747 if (rq->curr == p)
2748 resched_task(p);
2749 return;
2750 }
2751
2752 /*
2753 * Don't schedule slices shorter than 10000ns, that just
2754 * doesn't make sense. Rely on vruntime for fairness.
2755 */
2756 if (rq->curr != p)
2757 delta = max_t(s64, 10000LL, delta);
2758
2759 hrtick_start(rq, delta);
2760 }
2761 }
2762
2763 /*
2764 * called from enqueue/dequeue and updates the hrtick when the
2765 * current task is from our class and nr_running is low enough
2766 * to matter.
2767 */
2768 static void hrtick_update(struct rq *rq)
2769 {
2770 struct task_struct *curr = rq->curr;
2771
2772 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2773 return;
2774
2775 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2776 hrtick_start_fair(rq, curr);
2777 }
2778 #else /* !CONFIG_SCHED_HRTICK */
2779 static inline void
2780 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2781 {
2782 }
2783
2784 static inline void hrtick_update(struct rq *rq)
2785 {
2786 }
2787 #endif
2788
2789 /*
2790 * The enqueue_task method is called before nr_running is
2791 * increased. Here we update the fair scheduling stats and
2792 * then put the task into the rbtree:
2793 */
2794 static void
2795 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2796 {
2797 struct cfs_rq *cfs_rq;
2798 struct sched_entity *se = &p->se;
2799
2800 for_each_sched_entity(se) {
2801 if (se->on_rq)
2802 break;
2803 cfs_rq = cfs_rq_of(se);
2804 enqueue_entity(cfs_rq, se, flags);
2805
2806 /*
2807 * end evaluation on encountering a throttled cfs_rq
2808 *
2809 * note: in the case of encountering a throttled cfs_rq we will
2810 * post the final h_nr_running increment below.
2811 */
2812 if (cfs_rq_throttled(cfs_rq))
2813 break;
2814 cfs_rq->h_nr_running++;
2815
2816 flags = ENQUEUE_WAKEUP;
2817 }
2818
2819 for_each_sched_entity(se) {
2820 cfs_rq = cfs_rq_of(se);
2821 cfs_rq->h_nr_running++;
2822
2823 if (cfs_rq_throttled(cfs_rq))
2824 break;
2825
2826 update_cfs_shares(cfs_rq);
2827 update_entity_load_avg(se, 1);
2828 }
2829
2830 if (!se) {
2831 update_rq_runnable_avg(rq, rq->nr_running);
2832 inc_nr_running(rq);
2833 }
2834 hrtick_update(rq);
2835 }
2836
2837 static void set_next_buddy(struct sched_entity *se);
2838
2839 /*
2840 * The dequeue_task method is called before nr_running is
2841 * decreased. We remove the task from the rbtree and
2842 * update the fair scheduling stats:
2843 */
2844 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2845 {
2846 struct cfs_rq *cfs_rq;
2847 struct sched_entity *se = &p->se;
2848 int task_sleep = flags & DEQUEUE_SLEEP;
2849
2850 for_each_sched_entity(se) {
2851 cfs_rq = cfs_rq_of(se);
2852 dequeue_entity(cfs_rq, se, flags);
2853
2854 /*
2855 * end evaluation on encountering a throttled cfs_rq
2856 *
2857 * note: in the case of encountering a throttled cfs_rq we will
2858 * post the final h_nr_running decrement below.
2859 */
2860 if (cfs_rq_throttled(cfs_rq))
2861 break;
2862 cfs_rq->h_nr_running--;
2863
2864 /* Don't dequeue parent if it has other entities besides us */
2865 if (cfs_rq->load.weight) {
2866 /*
2867 * Bias pick_next to pick a task from this cfs_rq, as
2868 * p is sleeping when it is within its sched_slice.
2869 */
2870 if (task_sleep && parent_entity(se))
2871 set_next_buddy(parent_entity(se));
2872
2873 /* avoid re-evaluating load for this entity */
2874 se = parent_entity(se);
2875 break;
2876 }
2877 flags |= DEQUEUE_SLEEP;
2878 }
2879
2880 for_each_sched_entity(se) {
2881 cfs_rq = cfs_rq_of(se);
2882 cfs_rq->h_nr_running--;
2883
2884 if (cfs_rq_throttled(cfs_rq))
2885 break;
2886
2887 update_cfs_shares(cfs_rq);
2888 update_entity_load_avg(se, 1);
2889 }
2890
2891 if (!se) {
2892 dec_nr_running(rq);
2893 update_rq_runnable_avg(rq, 1);
2894 }
2895 hrtick_update(rq);
2896 }
2897
2898 #ifdef CONFIG_SMP
2899 /* Used instead of source_load when we know the type == 0 */
2900 static unsigned long weighted_cpuload(const int cpu)
2901 {
2902 return cpu_rq(cpu)->load.weight;
2903 }
2904
2905 /*
2906 * Return a low guess at the load of a migration-source cpu weighted
2907 * according to the scheduling class and "nice" value.
2908 *
2909 * We want to under-estimate the load of migration sources, to
2910 * balance conservatively.
2911 */
2912 static unsigned long source_load(int cpu, int type)
2913 {
2914 struct rq *rq = cpu_rq(cpu);
2915 unsigned long total = weighted_cpuload(cpu);
2916
2917 if (type == 0 || !sched_feat(LB_BIAS))
2918 return total;
2919
2920 return min(rq->cpu_load[type-1], total);
2921 }
2922
2923 /*
2924 * Return a high guess at the load of a migration-target cpu weighted
2925 * according to the scheduling class and "nice" value.
2926 */
2927 static unsigned long target_load(int cpu, int type)
2928 {
2929 struct rq *rq = cpu_rq(cpu);
2930 unsigned long total = weighted_cpuload(cpu);
2931
2932 if (type == 0 || !sched_feat(LB_BIAS))
2933 return total;
2934
2935 return max(rq->cpu_load[type-1], total);
2936 }
2937
2938 static unsigned long power_of(int cpu)
2939 {
2940 return cpu_rq(cpu)->cpu_power;
2941 }
2942
2943 static unsigned long cpu_avg_load_per_task(int cpu)
2944 {
2945 struct rq *rq = cpu_rq(cpu);
2946 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2947
2948 if (nr_running)
2949 return rq->load.weight / nr_running;
2950
2951 return 0;
2952 }
2953
2954
2955 static void task_waking_fair(struct task_struct *p)
2956 {
2957 struct sched_entity *se = &p->se;
2958 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2959 u64 min_vruntime;
2960
2961 #ifndef CONFIG_64BIT
2962 u64 min_vruntime_copy;
2963
2964 do {
2965 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2966 smp_rmb();
2967 min_vruntime = cfs_rq->min_vruntime;
2968 } while (min_vruntime != min_vruntime_copy);
2969 #else
2970 min_vruntime = cfs_rq->min_vruntime;
2971 #endif
2972
2973 se->vruntime -= min_vruntime;
2974 }
2975
2976 #ifdef CONFIG_FAIR_GROUP_SCHED
2977 /*
2978 * effective_load() calculates the load change as seen from the root_task_group
2979 *
2980 * Adding load to a group doesn't make a group heavier, but can cause movement
2981 * of group shares between cpus. Assuming the shares were perfectly aligned one
2982 * can calculate the shift in shares.
2983 *
2984 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2985 * on this @cpu and results in a total addition (subtraction) of @wg to the
2986 * total group weight.
2987 *
2988 * Given a runqueue weight distribution (rw_i) we can compute a shares
2989 * distribution (s_i) using:
2990 *
2991 * s_i = rw_i / \Sum rw_j (1)
2992 *
2993 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2994 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2995 * shares distribution (s_i):
2996 *
2997 * rw_i = { 2, 4, 1, 0 }
2998 * s_i = { 2/7, 4/7, 1/7, 0 }
2999 *
3000 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3001 * task used to run on and the CPU the waker is running on), we need to
3002 * compute the effect of waking a task on either CPU and, in case of a sync
3003 * wakeup, compute the effect of the current task going to sleep.
3004 *
3005 * So for a change of @wl to the local @cpu with an overall group weight change
3006 * of @wl we can compute the new shares distribution (s'_i) using:
3007 *
3008 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3009 *
3010 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3011 * differences in waking a task to CPU 0. The additional task changes the
3012 * weight and shares distributions like:
3013 *
3014 * rw'_i = { 3, 4, 1, 0 }
3015 * s'_i = { 3/8, 4/8, 1/8, 0 }
3016 *
3017 * We can then compute the difference in effective weight by using:
3018 *
3019 * dw_i = S * (s'_i - s_i) (3)
3020 *
3021 * Where 'S' is the group weight as seen by its parent.
3022 *
3023 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3024 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3025 * 4/7) times the weight of the group.
3026 */
3027 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3028 {
3029 struct sched_entity *se = tg->se[cpu];
3030
3031 if (!tg->parent) /* the trivial, non-cgroup case */
3032 return wl;
3033
3034 for_each_sched_entity(se) {
3035 long w, W;
3036
3037 tg = se->my_q->tg;
3038
3039 /*
3040 * W = @wg + \Sum rw_j
3041 */
3042 W = wg + calc_tg_weight(tg, se->my_q);
3043
3044 /*
3045 * w = rw_i + @wl
3046 */
3047 w = se->my_q->load.weight + wl;
3048
3049 /*
3050 * wl = S * s'_i; see (2)
3051 */
3052 if (W > 0 && w < W)
3053 wl = (w * tg->shares) / W;
3054 else
3055 wl = tg->shares;
3056
3057 /*
3058 * Per the above, wl is the new se->load.weight value; since
3059 * those are clipped to [MIN_SHARES, ...) do so now. See
3060 * calc_cfs_shares().
3061 */
3062 if (wl < MIN_SHARES)
3063 wl = MIN_SHARES;
3064
3065 /*
3066 * wl = dw_i = S * (s'_i - s_i); see (3)
3067 */
3068 wl -= se->load.weight;
3069
3070 /*
3071 * Recursively apply this logic to all parent groups to compute
3072 * the final effective load change on the root group. Since
3073 * only the @tg group gets extra weight, all parent groups can
3074 * only redistribute existing shares. @wl is the shift in shares
3075 * resulting from this level per the above.
3076 */
3077 wg = 0;
3078 }
3079
3080 return wl;
3081 }
3082 #else
3083
3084 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3085 unsigned long wl, unsigned long wg)
3086 {
3087 return wl;
3088 }
3089
3090 #endif
3091
3092 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3093 {
3094 s64 this_load, load;
3095 int idx, this_cpu, prev_cpu;
3096 unsigned long tl_per_task;
3097 struct task_group *tg;
3098 unsigned long weight;
3099 int balanced;
3100
3101 idx = sd->wake_idx;
3102 this_cpu = smp_processor_id();
3103 prev_cpu = task_cpu(p);
3104 load = source_load(prev_cpu, idx);
3105 this_load = target_load(this_cpu, idx);
3106
3107 /*
3108 * If sync wakeup then subtract the (maximum possible)
3109 * effect of the currently running task from the load
3110 * of the current CPU:
3111 */
3112 if (sync) {
3113 tg = task_group(current);
3114 weight = current->se.load.weight;
3115
3116 this_load += effective_load(tg, this_cpu, -weight, -weight);
3117 load += effective_load(tg, prev_cpu, 0, -weight);
3118 }
3119
3120 tg = task_group(p);
3121 weight = p->se.load.weight;
3122
3123 /*
3124 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3125 * due to the sync cause above having dropped this_load to 0, we'll
3126 * always have an imbalance, but there's really nothing you can do
3127 * about that, so that's good too.
3128 *
3129 * Otherwise check if either cpus are near enough in load to allow this
3130 * task to be woken on this_cpu.
3131 */
3132 if (this_load > 0) {
3133 s64 this_eff_load, prev_eff_load;
3134
3135 this_eff_load = 100;
3136 this_eff_load *= power_of(prev_cpu);
3137 this_eff_load *= this_load +
3138 effective_load(tg, this_cpu, weight, weight);
3139
3140 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3141 prev_eff_load *= power_of(this_cpu);
3142 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3143
3144 balanced = this_eff_load <= prev_eff_load;
3145 } else
3146 balanced = true;
3147
3148 /*
3149 * If the currently running task will sleep within
3150 * a reasonable amount of time then attract this newly
3151 * woken task:
3152 */
3153 if (sync && balanced)
3154 return 1;
3155
3156 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3157 tl_per_task = cpu_avg_load_per_task(this_cpu);
3158
3159 if (balanced ||
3160 (this_load <= load &&
3161 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3162 /*
3163 * This domain has SD_WAKE_AFFINE and
3164 * p is cache cold in this domain, and
3165 * there is no bad imbalance.
3166 */
3167 schedstat_inc(sd, ttwu_move_affine);
3168 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3169
3170 return 1;
3171 }
3172 return 0;
3173 }
3174
3175 /*
3176 * find_idlest_group finds and returns the least busy CPU group within the
3177 * domain.
3178 */
3179 static struct sched_group *
3180 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3181 int this_cpu, int load_idx)
3182 {
3183 struct sched_group *idlest = NULL, *group = sd->groups;
3184 unsigned long min_load = ULONG_MAX, this_load = 0;
3185 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3186
3187 do {
3188 unsigned long load, avg_load;
3189 int local_group;
3190 int i;
3191
3192 /* Skip over this group if it has no CPUs allowed */
3193 if (!cpumask_intersects(sched_group_cpus(group),
3194 tsk_cpus_allowed(p)))
3195 continue;
3196
3197 local_group = cpumask_test_cpu(this_cpu,
3198 sched_group_cpus(group));
3199
3200 /* Tally up the load of all CPUs in the group */
3201 avg_load = 0;
3202
3203 for_each_cpu(i, sched_group_cpus(group)) {
3204 /* Bias balancing toward cpus of our domain */
3205 if (local_group)
3206 load = source_load(i, load_idx);
3207 else
3208 load = target_load(i, load_idx);
3209
3210 avg_load += load;
3211 }
3212
3213 /* Adjust by relative CPU power of the group */
3214 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3215
3216 if (local_group) {
3217 this_load = avg_load;
3218 } else if (avg_load < min_load) {
3219 min_load = avg_load;
3220 idlest = group;
3221 }
3222 } while (group = group->next, group != sd->groups);
3223
3224 if (!idlest || 100*this_load < imbalance*min_load)
3225 return NULL;
3226 return idlest;
3227 }
3228
3229 /*
3230 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3231 */
3232 static int
3233 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3234 {
3235 unsigned long load, min_load = ULONG_MAX;
3236 int idlest = -1;
3237 int i;
3238
3239 /* Traverse only the allowed CPUs */
3240 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3241 load = weighted_cpuload(i);
3242
3243 if (load < min_load || (load == min_load && i == this_cpu)) {
3244 min_load = load;
3245 idlest = i;
3246 }
3247 }
3248
3249 return idlest;
3250 }
3251
3252 /*
3253 * Try and locate an idle CPU in the sched_domain.
3254 */
3255 static int select_idle_sibling(struct task_struct *p, int target)
3256 {
3257 int cpu = smp_processor_id();
3258 int prev_cpu = task_cpu(p);
3259 struct sched_domain *sd;
3260 struct sched_group *sg;
3261 int i;
3262
3263 /*
3264 * If the task is going to be woken-up on this cpu and if it is
3265 * already idle, then it is the right target.
3266 */
3267 if (target == cpu && idle_cpu(cpu))
3268 return cpu;
3269
3270 /*
3271 * If the task is going to be woken-up on the cpu where it previously
3272 * ran and if it is currently idle, then it the right target.
3273 */
3274 if (target == prev_cpu && idle_cpu(prev_cpu))
3275 return prev_cpu;
3276
3277 /*
3278 * Otherwise, iterate the domains and find an elegible idle cpu.
3279 */
3280 sd = rcu_dereference(per_cpu(sd_llc, target));
3281 for_each_lower_domain(sd) {
3282 sg = sd->groups;
3283 do {
3284 if (!cpumask_intersects(sched_group_cpus(sg),
3285 tsk_cpus_allowed(p)))
3286 goto next;
3287
3288 for_each_cpu(i, sched_group_cpus(sg)) {
3289 if (!idle_cpu(i))
3290 goto next;
3291 }
3292
3293 target = cpumask_first_and(sched_group_cpus(sg),
3294 tsk_cpus_allowed(p));
3295 goto done;
3296 next:
3297 sg = sg->next;
3298 } while (sg != sd->groups);
3299 }
3300 done:
3301 return target;
3302 }
3303
3304 /*
3305 * sched_balance_self: balance the current task (running on cpu) in domains
3306 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3307 * SD_BALANCE_EXEC.
3308 *
3309 * Balance, ie. select the least loaded group.
3310 *
3311 * Returns the target CPU number, or the same CPU if no balancing is needed.
3312 *
3313 * preempt must be disabled.
3314 */
3315 static int
3316 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3317 {
3318 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3319 int cpu = smp_processor_id();
3320 int prev_cpu = task_cpu(p);
3321 int new_cpu = cpu;
3322 int want_affine = 0;
3323 int sync = wake_flags & WF_SYNC;
3324
3325 if (p->nr_cpus_allowed == 1)
3326 return prev_cpu;
3327
3328 if (sd_flag & SD_BALANCE_WAKE) {
3329 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3330 want_affine = 1;
3331 new_cpu = prev_cpu;
3332 }
3333
3334 rcu_read_lock();
3335 for_each_domain(cpu, tmp) {
3336 if (!(tmp->flags & SD_LOAD_BALANCE))
3337 continue;
3338
3339 /*
3340 * If both cpu and prev_cpu are part of this domain,
3341 * cpu is a valid SD_WAKE_AFFINE target.
3342 */
3343 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3344 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3345 affine_sd = tmp;
3346 break;
3347 }
3348
3349 if (tmp->flags & sd_flag)
3350 sd = tmp;
3351 }
3352
3353 if (affine_sd) {
3354 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3355 prev_cpu = cpu;
3356
3357 new_cpu = select_idle_sibling(p, prev_cpu);
3358 goto unlock;
3359 }
3360
3361 while (sd) {
3362 int load_idx = sd->forkexec_idx;
3363 struct sched_group *group;
3364 int weight;
3365
3366 if (!(sd->flags & sd_flag)) {
3367 sd = sd->child;
3368 continue;
3369 }
3370
3371 if (sd_flag & SD_BALANCE_WAKE)
3372 load_idx = sd->wake_idx;
3373
3374 group = find_idlest_group(sd, p, cpu, load_idx);
3375 if (!group) {
3376 sd = sd->child;
3377 continue;
3378 }
3379
3380 new_cpu = find_idlest_cpu(group, p, cpu);
3381 if (new_cpu == -1 || new_cpu == cpu) {
3382 /* Now try balancing at a lower domain level of cpu */
3383 sd = sd->child;
3384 continue;
3385 }
3386
3387 /* Now try balancing at a lower domain level of new_cpu */
3388 cpu = new_cpu;
3389 weight = sd->span_weight;
3390 sd = NULL;
3391 for_each_domain(cpu, tmp) {
3392 if (weight <= tmp->span_weight)
3393 break;
3394 if (tmp->flags & sd_flag)
3395 sd = tmp;
3396 }
3397 /* while loop will break here if sd == NULL */
3398 }
3399 unlock:
3400 rcu_read_unlock();
3401
3402 return new_cpu;
3403 }
3404
3405 /*
3406 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3407 * removed when useful for applications beyond shares distribution (e.g.
3408 * load-balance).
3409 */
3410 #ifdef CONFIG_FAIR_GROUP_SCHED
3411 /*
3412 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3413 * cfs_rq_of(p) references at time of call are still valid and identify the
3414 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3415 * other assumptions, including the state of rq->lock, should be made.
3416 */
3417 static void
3418 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3419 {
3420 struct sched_entity *se = &p->se;
3421 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3422
3423 /*
3424 * Load tracking: accumulate removed load so that it can be processed
3425 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3426 * to blocked load iff they have a positive decay-count. It can never
3427 * be negative here since on-rq tasks have decay-count == 0.
3428 */
3429 if (se->avg.decay_count) {
3430 se->avg.decay_count = -__synchronize_entity_decay(se);
3431 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3432 }
3433 }
3434 #endif
3435 #endif /* CONFIG_SMP */
3436
3437 static unsigned long
3438 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3439 {
3440 unsigned long gran = sysctl_sched_wakeup_granularity;
3441
3442 /*
3443 * Since its curr running now, convert the gran from real-time
3444 * to virtual-time in his units.
3445 *
3446 * By using 'se' instead of 'curr' we penalize light tasks, so
3447 * they get preempted easier. That is, if 'se' < 'curr' then
3448 * the resulting gran will be larger, therefore penalizing the
3449 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3450 * be smaller, again penalizing the lighter task.
3451 *
3452 * This is especially important for buddies when the leftmost
3453 * task is higher priority than the buddy.
3454 */
3455 return calc_delta_fair(gran, se);
3456 }
3457
3458 /*
3459 * Should 'se' preempt 'curr'.
3460 *
3461 * |s1
3462 * |s2
3463 * |s3
3464 * g
3465 * |<--->|c
3466 *
3467 * w(c, s1) = -1
3468 * w(c, s2) = 0
3469 * w(c, s3) = 1
3470 *
3471 */
3472 static int
3473 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3474 {
3475 s64 gran, vdiff = curr->vruntime - se->vruntime;
3476
3477 if (vdiff <= 0)
3478 return -1;
3479
3480 gran = wakeup_gran(curr, se);
3481 if (vdiff > gran)
3482 return 1;
3483
3484 return 0;
3485 }
3486
3487 static void set_last_buddy(struct sched_entity *se)
3488 {
3489 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3490 return;
3491
3492 for_each_sched_entity(se)
3493 cfs_rq_of(se)->last = se;
3494 }
3495
3496 static void set_next_buddy(struct sched_entity *se)
3497 {
3498 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3499 return;
3500
3501 for_each_sched_entity(se)
3502 cfs_rq_of(se)->next = se;
3503 }
3504
3505 static void set_skip_buddy(struct sched_entity *se)
3506 {
3507 for_each_sched_entity(se)
3508 cfs_rq_of(se)->skip = se;
3509 }
3510
3511 /*
3512 * Preempt the current task with a newly woken task if needed:
3513 */
3514 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3515 {
3516 struct task_struct *curr = rq->curr;
3517 struct sched_entity *se = &curr->se, *pse = &p->se;
3518 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3519 int scale = cfs_rq->nr_running >= sched_nr_latency;
3520 int next_buddy_marked = 0;
3521
3522 if (unlikely(se == pse))
3523 return;
3524
3525 /*
3526 * This is possible from callers such as move_task(), in which we
3527 * unconditionally check_prempt_curr() after an enqueue (which may have
3528 * lead to a throttle). This both saves work and prevents false
3529 * next-buddy nomination below.
3530 */
3531 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3532 return;
3533
3534 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3535 set_next_buddy(pse);
3536 next_buddy_marked = 1;
3537 }
3538
3539 /*
3540 * We can come here with TIF_NEED_RESCHED already set from new task
3541 * wake up path.
3542 *
3543 * Note: this also catches the edge-case of curr being in a throttled
3544 * group (e.g. via set_curr_task), since update_curr() (in the
3545 * enqueue of curr) will have resulted in resched being set. This
3546 * prevents us from potentially nominating it as a false LAST_BUDDY
3547 * below.
3548 */
3549 if (test_tsk_need_resched(curr))
3550 return;
3551
3552 /* Idle tasks are by definition preempted by non-idle tasks. */
3553 if (unlikely(curr->policy == SCHED_IDLE) &&
3554 likely(p->policy != SCHED_IDLE))
3555 goto preempt;
3556
3557 /*
3558 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3559 * is driven by the tick):
3560 */
3561 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3562 return;
3563
3564 find_matching_se(&se, &pse);
3565 update_curr(cfs_rq_of(se));
3566 BUG_ON(!pse);
3567 if (wakeup_preempt_entity(se, pse) == 1) {
3568 /*
3569 * Bias pick_next to pick the sched entity that is
3570 * triggering this preemption.
3571 */
3572 if (!next_buddy_marked)
3573 set_next_buddy(pse);
3574 goto preempt;
3575 }
3576
3577 return;
3578
3579 preempt:
3580 resched_task(curr);
3581 /*
3582 * Only set the backward buddy when the current task is still
3583 * on the rq. This can happen when a wakeup gets interleaved
3584 * with schedule on the ->pre_schedule() or idle_balance()
3585 * point, either of which can * drop the rq lock.
3586 *
3587 * Also, during early boot the idle thread is in the fair class,
3588 * for obvious reasons its a bad idea to schedule back to it.
3589 */
3590 if (unlikely(!se->on_rq || curr == rq->idle))
3591 return;
3592
3593 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3594 set_last_buddy(se);
3595 }
3596
3597 static struct task_struct *pick_next_task_fair(struct rq *rq)
3598 {
3599 struct task_struct *p;
3600 struct cfs_rq *cfs_rq = &rq->cfs;
3601 struct sched_entity *se;
3602
3603 if (!cfs_rq->nr_running)
3604 return NULL;
3605
3606 do {
3607 se = pick_next_entity(cfs_rq);
3608 set_next_entity(cfs_rq, se);
3609 cfs_rq = group_cfs_rq(se);
3610 } while (cfs_rq);
3611
3612 p = task_of(se);
3613 if (hrtick_enabled(rq))
3614 hrtick_start_fair(rq, p);
3615
3616 return p;
3617 }
3618
3619 /*
3620 * Account for a descheduled task:
3621 */
3622 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3623 {
3624 struct sched_entity *se = &prev->se;
3625 struct cfs_rq *cfs_rq;
3626
3627 for_each_sched_entity(se) {
3628 cfs_rq = cfs_rq_of(se);
3629 put_prev_entity(cfs_rq, se);
3630 }
3631 }
3632
3633 /*
3634 * sched_yield() is very simple
3635 *
3636 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3637 */
3638 static void yield_task_fair(struct rq *rq)
3639 {
3640 struct task_struct *curr = rq->curr;
3641 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3642 struct sched_entity *se = &curr->se;
3643
3644 /*
3645 * Are we the only task in the tree?
3646 */
3647 if (unlikely(rq->nr_running == 1))
3648 return;
3649
3650 clear_buddies(cfs_rq, se);
3651
3652 if (curr->policy != SCHED_BATCH) {
3653 update_rq_clock(rq);
3654 /*
3655 * Update run-time statistics of the 'current'.
3656 */
3657 update_curr(cfs_rq);
3658 /*
3659 * Tell update_rq_clock() that we've just updated,
3660 * so we don't do microscopic update in schedule()
3661 * and double the fastpath cost.
3662 */
3663 rq->skip_clock_update = 1;
3664 }
3665
3666 set_skip_buddy(se);
3667 }
3668
3669 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3670 {
3671 struct sched_entity *se = &p->se;
3672
3673 /* throttled hierarchies are not runnable */
3674 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3675 return false;
3676
3677 /* Tell the scheduler that we'd really like pse to run next. */
3678 set_next_buddy(se);
3679
3680 yield_task_fair(rq);
3681
3682 return true;
3683 }
3684
3685 #ifdef CONFIG_SMP
3686 /**************************************************
3687 * Fair scheduling class load-balancing methods.
3688 *
3689 * BASICS
3690 *
3691 * The purpose of load-balancing is to achieve the same basic fairness the
3692 * per-cpu scheduler provides, namely provide a proportional amount of compute
3693 * time to each task. This is expressed in the following equation:
3694 *
3695 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3696 *
3697 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3698 * W_i,0 is defined as:
3699 *
3700 * W_i,0 = \Sum_j w_i,j (2)
3701 *
3702 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3703 * is derived from the nice value as per prio_to_weight[].
3704 *
3705 * The weight average is an exponential decay average of the instantaneous
3706 * weight:
3707 *
3708 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3709 *
3710 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3711 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3712 * can also include other factors [XXX].
3713 *
3714 * To achieve this balance we define a measure of imbalance which follows
3715 * directly from (1):
3716 *
3717 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3718 *
3719 * We them move tasks around to minimize the imbalance. In the continuous
3720 * function space it is obvious this converges, in the discrete case we get
3721 * a few fun cases generally called infeasible weight scenarios.
3722 *
3723 * [XXX expand on:
3724 * - infeasible weights;
3725 * - local vs global optima in the discrete case. ]
3726 *
3727 *
3728 * SCHED DOMAINS
3729 *
3730 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3731 * for all i,j solution, we create a tree of cpus that follows the hardware
3732 * topology where each level pairs two lower groups (or better). This results
3733 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3734 * tree to only the first of the previous level and we decrease the frequency
3735 * of load-balance at each level inv. proportional to the number of cpus in
3736 * the groups.
3737 *
3738 * This yields:
3739 *
3740 * log_2 n 1 n
3741 * \Sum { --- * --- * 2^i } = O(n) (5)
3742 * i = 0 2^i 2^i
3743 * `- size of each group
3744 * | | `- number of cpus doing load-balance
3745 * | `- freq
3746 * `- sum over all levels
3747 *
3748 * Coupled with a limit on how many tasks we can migrate every balance pass,
3749 * this makes (5) the runtime complexity of the balancer.
3750 *
3751 * An important property here is that each CPU is still (indirectly) connected
3752 * to every other cpu in at most O(log n) steps:
3753 *
3754 * The adjacency matrix of the resulting graph is given by:
3755 *
3756 * log_2 n
3757 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3758 * k = 0
3759 *
3760 * And you'll find that:
3761 *
3762 * A^(log_2 n)_i,j != 0 for all i,j (7)
3763 *
3764 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3765 * The task movement gives a factor of O(m), giving a convergence complexity
3766 * of:
3767 *
3768 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3769 *
3770 *
3771 * WORK CONSERVING
3772 *
3773 * In order to avoid CPUs going idle while there's still work to do, new idle
3774 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3775 * tree itself instead of relying on other CPUs to bring it work.
3776 *
3777 * This adds some complexity to both (5) and (8) but it reduces the total idle
3778 * time.
3779 *
3780 * [XXX more?]
3781 *
3782 *
3783 * CGROUPS
3784 *
3785 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3786 *
3787 * s_k,i
3788 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3789 * S_k
3790 *
3791 * Where
3792 *
3793 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3794 *
3795 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3796 *
3797 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3798 * property.
3799 *
3800 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3801 * rewrite all of this once again.]
3802 */
3803
3804 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3805
3806 #define LBF_ALL_PINNED 0x01
3807 #define LBF_NEED_BREAK 0x02
3808 #define LBF_SOME_PINNED 0x04
3809
3810 struct lb_env {
3811 struct sched_domain *sd;
3812
3813 struct rq *src_rq;
3814 int src_cpu;
3815
3816 int dst_cpu;
3817 struct rq *dst_rq;
3818
3819 struct cpumask *dst_grpmask;
3820 int new_dst_cpu;
3821 enum cpu_idle_type idle;
3822 long imbalance;
3823 /* The set of CPUs under consideration for load-balancing */
3824 struct cpumask *cpus;
3825
3826 unsigned int flags;
3827
3828 unsigned int loop;
3829 unsigned int loop_break;
3830 unsigned int loop_max;
3831 };
3832
3833 /*
3834 * move_task - move a task from one runqueue to another runqueue.
3835 * Both runqueues must be locked.
3836 */
3837 static void move_task(struct task_struct *p, struct lb_env *env)
3838 {
3839 deactivate_task(env->src_rq, p, 0);
3840 set_task_cpu(p, env->dst_cpu);
3841 activate_task(env->dst_rq, p, 0);
3842 check_preempt_curr(env->dst_rq, p, 0);
3843 }
3844
3845 /*
3846 * Is this task likely cache-hot:
3847 */
3848 static int
3849 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3850 {
3851 s64 delta;
3852
3853 if (p->sched_class != &fair_sched_class)
3854 return 0;
3855
3856 if (unlikely(p->policy == SCHED_IDLE))
3857 return 0;
3858
3859 /*
3860 * Buddy candidates are cache hot:
3861 */
3862 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3863 (&p->se == cfs_rq_of(&p->se)->next ||
3864 &p->se == cfs_rq_of(&p->se)->last))
3865 return 1;
3866
3867 if (sysctl_sched_migration_cost == -1)
3868 return 1;
3869 if (sysctl_sched_migration_cost == 0)
3870 return 0;
3871
3872 delta = now - p->se.exec_start;
3873
3874 return delta < (s64)sysctl_sched_migration_cost;
3875 }
3876
3877 /*
3878 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3879 */
3880 static
3881 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3882 {
3883 int tsk_cache_hot = 0;
3884 /*
3885 * We do not migrate tasks that are:
3886 * 1) running (obviously), or
3887 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3888 * 3) are cache-hot on their current CPU.
3889 */
3890 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3891 int new_dst_cpu;
3892
3893 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3894
3895 /*
3896 * Remember if this task can be migrated to any other cpu in
3897 * our sched_group. We may want to revisit it if we couldn't
3898 * meet load balance goals by pulling other tasks on src_cpu.
3899 *
3900 * Also avoid computing new_dst_cpu if we have already computed
3901 * one in current iteration.
3902 */
3903 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3904 return 0;
3905
3906 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3907 tsk_cpus_allowed(p));
3908 if (new_dst_cpu < nr_cpu_ids) {
3909 env->flags |= LBF_SOME_PINNED;
3910 env->new_dst_cpu = new_dst_cpu;
3911 }
3912 return 0;
3913 }
3914
3915 /* Record that we found atleast one task that could run on dst_cpu */
3916 env->flags &= ~LBF_ALL_PINNED;
3917
3918 if (task_running(env->src_rq, p)) {
3919 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3920 return 0;
3921 }
3922
3923 /*
3924 * Aggressive migration if:
3925 * 1) task is cache cold, or
3926 * 2) too many balance attempts have failed.
3927 */
3928
3929 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3930 if (!tsk_cache_hot ||
3931 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3932 #ifdef CONFIG_SCHEDSTATS
3933 if (tsk_cache_hot) {
3934 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3935 schedstat_inc(p, se.statistics.nr_forced_migrations);
3936 }
3937 #endif
3938 return 1;
3939 }
3940
3941 if (tsk_cache_hot) {
3942 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3943 return 0;
3944 }
3945 return 1;
3946 }
3947
3948 /*
3949 * move_one_task tries to move exactly one task from busiest to this_rq, as
3950 * part of active balancing operations within "domain".
3951 * Returns 1 if successful and 0 otherwise.
3952 *
3953 * Called with both runqueues locked.
3954 */
3955 static int move_one_task(struct lb_env *env)
3956 {
3957 struct task_struct *p, *n;
3958
3959 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3960 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3961 continue;
3962
3963 if (!can_migrate_task(p, env))
3964 continue;
3965
3966 move_task(p, env);
3967 /*
3968 * Right now, this is only the second place move_task()
3969 * is called, so we can safely collect move_task()
3970 * stats here rather than inside move_task().
3971 */
3972 schedstat_inc(env->sd, lb_gained[env->idle]);
3973 return 1;
3974 }
3975 return 0;
3976 }
3977
3978 static unsigned long task_h_load(struct task_struct *p);
3979
3980 static const unsigned int sched_nr_migrate_break = 32;
3981
3982 /*
3983 * move_tasks tries to move up to imbalance weighted load from busiest to
3984 * this_rq, as part of a balancing operation within domain "sd".
3985 * Returns 1 if successful and 0 otherwise.
3986 *
3987 * Called with both runqueues locked.
3988 */
3989 static int move_tasks(struct lb_env *env)
3990 {
3991 struct list_head *tasks = &env->src_rq->cfs_tasks;
3992 struct task_struct *p;
3993 unsigned long load;
3994 int pulled = 0;
3995
3996 if (env->imbalance <= 0)
3997 return 0;
3998
3999 while (!list_empty(tasks)) {
4000 p = list_first_entry(tasks, struct task_struct, se.group_node);
4001
4002 env->loop++;
4003 /* We've more or less seen every task there is, call it quits */
4004 if (env->loop > env->loop_max)
4005 break;
4006
4007 /* take a breather every nr_migrate tasks */
4008 if (env->loop > env->loop_break) {
4009 env->loop_break += sched_nr_migrate_break;
4010 env->flags |= LBF_NEED_BREAK;
4011 break;
4012 }
4013
4014 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4015 goto next;
4016
4017 load = task_h_load(p);
4018
4019 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4020 goto next;
4021
4022 if ((load / 2) > env->imbalance)
4023 goto next;
4024
4025 if (!can_migrate_task(p, env))
4026 goto next;
4027
4028 move_task(p, env);
4029 pulled++;
4030 env->imbalance -= load;
4031
4032 #ifdef CONFIG_PREEMPT
4033 /*
4034 * NEWIDLE balancing is a source of latency, so preemptible
4035 * kernels will stop after the first task is pulled to minimize
4036 * the critical section.
4037 */
4038 if (env->idle == CPU_NEWLY_IDLE)
4039 break;
4040 #endif
4041
4042 /*
4043 * We only want to steal up to the prescribed amount of
4044 * weighted load.
4045 */
4046 if (env->imbalance <= 0)
4047 break;
4048
4049 continue;
4050 next:
4051 list_move_tail(&p->se.group_node, tasks);
4052 }
4053
4054 /*
4055 * Right now, this is one of only two places move_task() is called,
4056 * so we can safely collect move_task() stats here rather than
4057 * inside move_task().
4058 */
4059 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4060
4061 return pulled;
4062 }
4063
4064 #ifdef CONFIG_FAIR_GROUP_SCHED
4065 /*
4066 * update tg->load_weight by folding this cpu's load_avg
4067 */
4068 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4069 {
4070 struct sched_entity *se = tg->se[cpu];
4071 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4072
4073 /* throttled entities do not contribute to load */
4074 if (throttled_hierarchy(cfs_rq))
4075 return;
4076
4077 update_cfs_rq_blocked_load(cfs_rq, 1);
4078
4079 if (se) {
4080 update_entity_load_avg(se, 1);
4081 /*
4082 * We pivot on our runnable average having decayed to zero for
4083 * list removal. This generally implies that all our children
4084 * have also been removed (modulo rounding error or bandwidth
4085 * control); however, such cases are rare and we can fix these
4086 * at enqueue.
4087 *
4088 * TODO: fix up out-of-order children on enqueue.
4089 */
4090 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4091 list_del_leaf_cfs_rq(cfs_rq);
4092 } else {
4093 struct rq *rq = rq_of(cfs_rq);
4094 update_rq_runnable_avg(rq, rq->nr_running);
4095 }
4096 }
4097
4098 static void update_blocked_averages(int cpu)
4099 {
4100 struct rq *rq = cpu_rq(cpu);
4101 struct cfs_rq *cfs_rq;
4102 unsigned long flags;
4103
4104 raw_spin_lock_irqsave(&rq->lock, flags);
4105 update_rq_clock(rq);
4106 /*
4107 * Iterates the task_group tree in a bottom up fashion, see
4108 * list_add_leaf_cfs_rq() for details.
4109 */
4110 for_each_leaf_cfs_rq(rq, cfs_rq) {
4111 /*
4112 * Note: We may want to consider periodically releasing
4113 * rq->lock about these updates so that creating many task
4114 * groups does not result in continually extending hold time.
4115 */
4116 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4117 }
4118
4119 raw_spin_unlock_irqrestore(&rq->lock, flags);
4120 }
4121
4122 /*
4123 * Compute the cpu's hierarchical load factor for each task group.
4124 * This needs to be done in a top-down fashion because the load of a child
4125 * group is a fraction of its parents load.
4126 */
4127 static int tg_load_down(struct task_group *tg, void *data)
4128 {
4129 unsigned long load;
4130 long cpu = (long)data;
4131
4132 if (!tg->parent) {
4133 load = cpu_rq(cpu)->load.weight;
4134 } else {
4135 load = tg->parent->cfs_rq[cpu]->h_load;
4136 load *= tg->se[cpu]->load.weight;
4137 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4138 }
4139
4140 tg->cfs_rq[cpu]->h_load = load;
4141
4142 return 0;
4143 }
4144
4145 static void update_h_load(long cpu)
4146 {
4147 struct rq *rq = cpu_rq(cpu);
4148 unsigned long now = jiffies;
4149
4150 if (rq->h_load_throttle == now)
4151 return;
4152
4153 rq->h_load_throttle = now;
4154
4155 rcu_read_lock();
4156 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4157 rcu_read_unlock();
4158 }
4159
4160 static unsigned long task_h_load(struct task_struct *p)
4161 {
4162 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4163 unsigned long load;
4164
4165 load = p->se.load.weight;
4166 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4167
4168 return load;
4169 }
4170 #else
4171 static inline void update_blocked_averages(int cpu)
4172 {
4173 }
4174
4175 static inline void update_h_load(long cpu)
4176 {
4177 }
4178
4179 static unsigned long task_h_load(struct task_struct *p)
4180 {
4181 return p->se.load.weight;
4182 }
4183 #endif
4184
4185 /********** Helpers for find_busiest_group ************************/
4186 /*
4187 * sd_lb_stats - Structure to store the statistics of a sched_domain
4188 * during load balancing.
4189 */
4190 struct sd_lb_stats {
4191 struct sched_group *busiest; /* Busiest group in this sd */
4192 struct sched_group *this; /* Local group in this sd */
4193 unsigned long total_load; /* Total load of all groups in sd */
4194 unsigned long total_pwr; /* Total power of all groups in sd */
4195 unsigned long avg_load; /* Average load across all groups in sd */
4196
4197 /** Statistics of this group */
4198 unsigned long this_load;
4199 unsigned long this_load_per_task;
4200 unsigned long this_nr_running;
4201 unsigned long this_has_capacity;
4202 unsigned int this_idle_cpus;
4203
4204 /* Statistics of the busiest group */
4205 unsigned int busiest_idle_cpus;
4206 unsigned long max_load;
4207 unsigned long busiest_load_per_task;
4208 unsigned long busiest_nr_running;
4209 unsigned long busiest_group_capacity;
4210 unsigned long busiest_has_capacity;
4211 unsigned int busiest_group_weight;
4212
4213 int group_imb; /* Is there imbalance in this sd */
4214 };
4215
4216 /*
4217 * sg_lb_stats - stats of a sched_group required for load_balancing
4218 */
4219 struct sg_lb_stats {
4220 unsigned long avg_load; /*Avg load across the CPUs of the group */
4221 unsigned long group_load; /* Total load over the CPUs of the group */
4222 unsigned long sum_nr_running; /* Nr tasks running in the group */
4223 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4224 unsigned long group_capacity;
4225 unsigned long idle_cpus;
4226 unsigned long group_weight;
4227 int group_imb; /* Is there an imbalance in the group ? */
4228 int group_has_capacity; /* Is there extra capacity in the group? */
4229 };
4230
4231 /**
4232 * get_sd_load_idx - Obtain the load index for a given sched domain.
4233 * @sd: The sched_domain whose load_idx is to be obtained.
4234 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4235 */
4236 static inline int get_sd_load_idx(struct sched_domain *sd,
4237 enum cpu_idle_type idle)
4238 {
4239 int load_idx;
4240
4241 switch (idle) {
4242 case CPU_NOT_IDLE:
4243 load_idx = sd->busy_idx;
4244 break;
4245
4246 case CPU_NEWLY_IDLE:
4247 load_idx = sd->newidle_idx;
4248 break;
4249 default:
4250 load_idx = sd->idle_idx;
4251 break;
4252 }
4253
4254 return load_idx;
4255 }
4256
4257 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4258 {
4259 return SCHED_POWER_SCALE;
4260 }
4261
4262 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4263 {
4264 return default_scale_freq_power(sd, cpu);
4265 }
4266
4267 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4268 {
4269 unsigned long weight = sd->span_weight;
4270 unsigned long smt_gain = sd->smt_gain;
4271
4272 smt_gain /= weight;
4273
4274 return smt_gain;
4275 }
4276
4277 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4278 {
4279 return default_scale_smt_power(sd, cpu);
4280 }
4281
4282 unsigned long scale_rt_power(int cpu)
4283 {
4284 struct rq *rq = cpu_rq(cpu);
4285 u64 total, available, age_stamp, avg;
4286
4287 /*
4288 * Since we're reading these variables without serialization make sure
4289 * we read them once before doing sanity checks on them.
4290 */
4291 age_stamp = ACCESS_ONCE(rq->age_stamp);
4292 avg = ACCESS_ONCE(rq->rt_avg);
4293
4294 total = sched_avg_period() + (rq->clock - age_stamp);
4295
4296 if (unlikely(total < avg)) {
4297 /* Ensures that power won't end up being negative */
4298 available = 0;
4299 } else {
4300 available = total - avg;
4301 }
4302
4303 if (unlikely((s64)total < SCHED_POWER_SCALE))
4304 total = SCHED_POWER_SCALE;
4305
4306 total >>= SCHED_POWER_SHIFT;
4307
4308 return div_u64(available, total);
4309 }
4310
4311 static void update_cpu_power(struct sched_domain *sd, int cpu)
4312 {
4313 unsigned long weight = sd->span_weight;
4314 unsigned long power = SCHED_POWER_SCALE;
4315 struct sched_group *sdg = sd->groups;
4316
4317 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4318 if (sched_feat(ARCH_POWER))
4319 power *= arch_scale_smt_power(sd, cpu);
4320 else
4321 power *= default_scale_smt_power(sd, cpu);
4322
4323 power >>= SCHED_POWER_SHIFT;
4324 }
4325
4326 sdg->sgp->power_orig = power;
4327
4328 if (sched_feat(ARCH_POWER))
4329 power *= arch_scale_freq_power(sd, cpu);
4330 else
4331 power *= default_scale_freq_power(sd, cpu);
4332
4333 power >>= SCHED_POWER_SHIFT;
4334
4335 power *= scale_rt_power(cpu);
4336 power >>= SCHED_POWER_SHIFT;
4337
4338 if (!power)
4339 power = 1;
4340
4341 cpu_rq(cpu)->cpu_power = power;
4342 sdg->sgp->power = power;
4343 }
4344
4345 void update_group_power(struct sched_domain *sd, int cpu)
4346 {
4347 struct sched_domain *child = sd->child;
4348 struct sched_group *group, *sdg = sd->groups;
4349 unsigned long power;
4350 unsigned long interval;
4351
4352 interval = msecs_to_jiffies(sd->balance_interval);
4353 interval = clamp(interval, 1UL, max_load_balance_interval);
4354 sdg->sgp->next_update = jiffies + interval;
4355
4356 if (!child) {
4357 update_cpu_power(sd, cpu);
4358 return;
4359 }
4360
4361 power = 0;
4362
4363 if (child->flags & SD_OVERLAP) {
4364 /*
4365 * SD_OVERLAP domains cannot assume that child groups
4366 * span the current group.
4367 */
4368
4369 for_each_cpu(cpu, sched_group_cpus(sdg))
4370 power += power_of(cpu);
4371 } else {
4372 /*
4373 * !SD_OVERLAP domains can assume that child groups
4374 * span the current group.
4375 */
4376
4377 group = child->groups;
4378 do {
4379 power += group->sgp->power;
4380 group = group->next;
4381 } while (group != child->groups);
4382 }
4383
4384 sdg->sgp->power_orig = sdg->sgp->power = power;
4385 }
4386
4387 /*
4388 * Try and fix up capacity for tiny siblings, this is needed when
4389 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4390 * which on its own isn't powerful enough.
4391 *
4392 * See update_sd_pick_busiest() and check_asym_packing().
4393 */
4394 static inline int
4395 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4396 {
4397 /*
4398 * Only siblings can have significantly less than SCHED_POWER_SCALE
4399 */
4400 if (!(sd->flags & SD_SHARE_CPUPOWER))
4401 return 0;
4402
4403 /*
4404 * If ~90% of the cpu_power is still there, we're good.
4405 */
4406 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4407 return 1;
4408
4409 return 0;
4410 }
4411
4412 /**
4413 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4414 * @env: The load balancing environment.
4415 * @group: sched_group whose statistics are to be updated.
4416 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4417 * @local_group: Does group contain this_cpu.
4418 * @balance: Should we balance.
4419 * @sgs: variable to hold the statistics for this group.
4420 */
4421 static inline void update_sg_lb_stats(struct lb_env *env,
4422 struct sched_group *group, int load_idx,
4423 int local_group, int *balance, struct sg_lb_stats *sgs)
4424 {
4425 unsigned long nr_running, max_nr_running, min_nr_running;
4426 unsigned long load, max_cpu_load, min_cpu_load;
4427 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4428 unsigned long avg_load_per_task = 0;
4429 int i;
4430
4431 if (local_group)
4432 balance_cpu = group_balance_cpu(group);
4433
4434 /* Tally up the load of all CPUs in the group */
4435 max_cpu_load = 0;
4436 min_cpu_load = ~0UL;
4437 max_nr_running = 0;
4438 min_nr_running = ~0UL;
4439
4440 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4441 struct rq *rq = cpu_rq(i);
4442
4443 nr_running = rq->nr_running;
4444
4445 /* Bias balancing toward cpus of our domain */
4446 if (local_group) {
4447 if (idle_cpu(i) && !first_idle_cpu &&
4448 cpumask_test_cpu(i, sched_group_mask(group))) {
4449 first_idle_cpu = 1;
4450 balance_cpu = i;
4451 }
4452
4453 load = target_load(i, load_idx);
4454 } else {
4455 load = source_load(i, load_idx);
4456 if (load > max_cpu_load)
4457 max_cpu_load = load;
4458 if (min_cpu_load > load)
4459 min_cpu_load = load;
4460
4461 if (nr_running > max_nr_running)
4462 max_nr_running = nr_running;
4463 if (min_nr_running > nr_running)
4464 min_nr_running = nr_running;
4465 }
4466
4467 sgs->group_load += load;
4468 sgs->sum_nr_running += nr_running;
4469 sgs->sum_weighted_load += weighted_cpuload(i);
4470 if (idle_cpu(i))
4471 sgs->idle_cpus++;
4472 }
4473
4474 /*
4475 * First idle cpu or the first cpu(busiest) in this sched group
4476 * is eligible for doing load balancing at this and above
4477 * domains. In the newly idle case, we will allow all the cpu's
4478 * to do the newly idle load balance.
4479 */
4480 if (local_group) {
4481 if (env->idle != CPU_NEWLY_IDLE) {
4482 if (balance_cpu != env->dst_cpu) {
4483 *balance = 0;
4484 return;
4485 }
4486 update_group_power(env->sd, env->dst_cpu);
4487 } else if (time_after_eq(jiffies, group->sgp->next_update))
4488 update_group_power(env->sd, env->dst_cpu);
4489 }
4490
4491 /* Adjust by relative CPU power of the group */
4492 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4493
4494 /*
4495 * Consider the group unbalanced when the imbalance is larger
4496 * than the average weight of a task.
4497 *
4498 * APZ: with cgroup the avg task weight can vary wildly and
4499 * might not be a suitable number - should we keep a
4500 * normalized nr_running number somewhere that negates
4501 * the hierarchy?
4502 */
4503 if (sgs->sum_nr_running)
4504 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4505
4506 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4507 (max_nr_running - min_nr_running) > 1)
4508 sgs->group_imb = 1;
4509
4510 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4511 SCHED_POWER_SCALE);
4512 if (!sgs->group_capacity)
4513 sgs->group_capacity = fix_small_capacity(env->sd, group);
4514 sgs->group_weight = group->group_weight;
4515
4516 if (sgs->group_capacity > sgs->sum_nr_running)
4517 sgs->group_has_capacity = 1;
4518 }
4519
4520 /**
4521 * update_sd_pick_busiest - return 1 on busiest group
4522 * @env: The load balancing environment.
4523 * @sds: sched_domain statistics
4524 * @sg: sched_group candidate to be checked for being the busiest
4525 * @sgs: sched_group statistics
4526 *
4527 * Determine if @sg is a busier group than the previously selected
4528 * busiest group.
4529 */
4530 static bool update_sd_pick_busiest(struct lb_env *env,
4531 struct sd_lb_stats *sds,
4532 struct sched_group *sg,
4533 struct sg_lb_stats *sgs)
4534 {
4535 if (sgs->avg_load <= sds->max_load)
4536 return false;
4537
4538 if (sgs->sum_nr_running > sgs->group_capacity)
4539 return true;
4540
4541 if (sgs->group_imb)
4542 return true;
4543
4544 /*
4545 * ASYM_PACKING needs to move all the work to the lowest
4546 * numbered CPUs in the group, therefore mark all groups
4547 * higher than ourself as busy.
4548 */
4549 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4550 env->dst_cpu < group_first_cpu(sg)) {
4551 if (!sds->busiest)
4552 return true;
4553
4554 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4555 return true;
4556 }
4557
4558 return false;
4559 }
4560
4561 /**
4562 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4563 * @env: The load balancing environment.
4564 * @balance: Should we balance.
4565 * @sds: variable to hold the statistics for this sched_domain.
4566 */
4567 static inline void update_sd_lb_stats(struct lb_env *env,
4568 int *balance, struct sd_lb_stats *sds)
4569 {
4570 struct sched_domain *child = env->sd->child;
4571 struct sched_group *sg = env->sd->groups;
4572 struct sg_lb_stats sgs;
4573 int load_idx, prefer_sibling = 0;
4574
4575 if (child && child->flags & SD_PREFER_SIBLING)
4576 prefer_sibling = 1;
4577
4578 load_idx = get_sd_load_idx(env->sd, env->idle);
4579
4580 do {
4581 int local_group;
4582
4583 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4584 memset(&sgs, 0, sizeof(sgs));
4585 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4586
4587 if (local_group && !(*balance))
4588 return;
4589
4590 sds->total_load += sgs.group_load;
4591 sds->total_pwr += sg->sgp->power;
4592
4593 /*
4594 * In case the child domain prefers tasks go to siblings
4595 * first, lower the sg capacity to one so that we'll try
4596 * and move all the excess tasks away. We lower the capacity
4597 * of a group only if the local group has the capacity to fit
4598 * these excess tasks, i.e. nr_running < group_capacity. The
4599 * extra check prevents the case where you always pull from the
4600 * heaviest group when it is already under-utilized (possible
4601 * with a large weight task outweighs the tasks on the system).
4602 */
4603 if (prefer_sibling && !local_group && sds->this_has_capacity)
4604 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4605
4606 if (local_group) {
4607 sds->this_load = sgs.avg_load;
4608 sds->this = sg;
4609 sds->this_nr_running = sgs.sum_nr_running;
4610 sds->this_load_per_task = sgs.sum_weighted_load;
4611 sds->this_has_capacity = sgs.group_has_capacity;
4612 sds->this_idle_cpus = sgs.idle_cpus;
4613 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4614 sds->max_load = sgs.avg_load;
4615 sds->busiest = sg;
4616 sds->busiest_nr_running = sgs.sum_nr_running;
4617 sds->busiest_idle_cpus = sgs.idle_cpus;
4618 sds->busiest_group_capacity = sgs.group_capacity;
4619 sds->busiest_load_per_task = sgs.sum_weighted_load;
4620 sds->busiest_has_capacity = sgs.group_has_capacity;
4621 sds->busiest_group_weight = sgs.group_weight;
4622 sds->group_imb = sgs.group_imb;
4623 }
4624
4625 sg = sg->next;
4626 } while (sg != env->sd->groups);
4627 }
4628
4629 /**
4630 * check_asym_packing - Check to see if the group is packed into the
4631 * sched doman.
4632 *
4633 * This is primarily intended to used at the sibling level. Some
4634 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4635 * case of POWER7, it can move to lower SMT modes only when higher
4636 * threads are idle. When in lower SMT modes, the threads will
4637 * perform better since they share less core resources. Hence when we
4638 * have idle threads, we want them to be the higher ones.
4639 *
4640 * This packing function is run on idle threads. It checks to see if
4641 * the busiest CPU in this domain (core in the P7 case) has a higher
4642 * CPU number than the packing function is being run on. Here we are
4643 * assuming lower CPU number will be equivalent to lower a SMT thread
4644 * number.
4645 *
4646 * Returns 1 when packing is required and a task should be moved to
4647 * this CPU. The amount of the imbalance is returned in *imbalance.
4648 *
4649 * @env: The load balancing environment.
4650 * @sds: Statistics of the sched_domain which is to be packed
4651 */
4652 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4653 {
4654 int busiest_cpu;
4655
4656 if (!(env->sd->flags & SD_ASYM_PACKING))
4657 return 0;
4658
4659 if (!sds->busiest)
4660 return 0;
4661
4662 busiest_cpu = group_first_cpu(sds->busiest);
4663 if (env->dst_cpu > busiest_cpu)
4664 return 0;
4665
4666 env->imbalance = DIV_ROUND_CLOSEST(
4667 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4668
4669 return 1;
4670 }
4671
4672 /**
4673 * fix_small_imbalance - Calculate the minor imbalance that exists
4674 * amongst the groups of a sched_domain, during
4675 * load balancing.
4676 * @env: The load balancing environment.
4677 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4678 */
4679 static inline
4680 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4681 {
4682 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4683 unsigned int imbn = 2;
4684 unsigned long scaled_busy_load_per_task;
4685
4686 if (sds->this_nr_running) {
4687 sds->this_load_per_task /= sds->this_nr_running;
4688 if (sds->busiest_load_per_task >
4689 sds->this_load_per_task)
4690 imbn = 1;
4691 } else {
4692 sds->this_load_per_task =
4693 cpu_avg_load_per_task(env->dst_cpu);
4694 }
4695
4696 scaled_busy_load_per_task = sds->busiest_load_per_task
4697 * SCHED_POWER_SCALE;
4698 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4699
4700 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4701 (scaled_busy_load_per_task * imbn)) {
4702 env->imbalance = sds->busiest_load_per_task;
4703 return;
4704 }
4705
4706 /*
4707 * OK, we don't have enough imbalance to justify moving tasks,
4708 * however we may be able to increase total CPU power used by
4709 * moving them.
4710 */
4711
4712 pwr_now += sds->busiest->sgp->power *
4713 min(sds->busiest_load_per_task, sds->max_load);
4714 pwr_now += sds->this->sgp->power *
4715 min(sds->this_load_per_task, sds->this_load);
4716 pwr_now /= SCHED_POWER_SCALE;
4717
4718 /* Amount of load we'd subtract */
4719 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4720 sds->busiest->sgp->power;
4721 if (sds->max_load > tmp)
4722 pwr_move += sds->busiest->sgp->power *
4723 min(sds->busiest_load_per_task, sds->max_load - tmp);
4724
4725 /* Amount of load we'd add */
4726 if (sds->max_load * sds->busiest->sgp->power <
4727 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4728 tmp = (sds->max_load * sds->busiest->sgp->power) /
4729 sds->this->sgp->power;
4730 else
4731 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4732 sds->this->sgp->power;
4733 pwr_move += sds->this->sgp->power *
4734 min(sds->this_load_per_task, sds->this_load + tmp);
4735 pwr_move /= SCHED_POWER_SCALE;
4736
4737 /* Move if we gain throughput */
4738 if (pwr_move > pwr_now)
4739 env->imbalance = sds->busiest_load_per_task;
4740 }
4741
4742 /**
4743 * calculate_imbalance - Calculate the amount of imbalance present within the
4744 * groups of a given sched_domain during load balance.
4745 * @env: load balance environment
4746 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4747 */
4748 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4749 {
4750 unsigned long max_pull, load_above_capacity = ~0UL;
4751
4752 sds->busiest_load_per_task /= sds->busiest_nr_running;
4753 if (sds->group_imb) {
4754 sds->busiest_load_per_task =
4755 min(sds->busiest_load_per_task, sds->avg_load);
4756 }
4757
4758 /*
4759 * In the presence of smp nice balancing, certain scenarios can have
4760 * max load less than avg load(as we skip the groups at or below
4761 * its cpu_power, while calculating max_load..)
4762 */
4763 if (sds->max_load < sds->avg_load) {
4764 env->imbalance = 0;
4765 return fix_small_imbalance(env, sds);
4766 }
4767
4768 if (!sds->group_imb) {
4769 /*
4770 * Don't want to pull so many tasks that a group would go idle.
4771 */
4772 load_above_capacity = (sds->busiest_nr_running -
4773 sds->busiest_group_capacity);
4774
4775 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4776
4777 load_above_capacity /= sds->busiest->sgp->power;
4778 }
4779
4780 /*
4781 * We're trying to get all the cpus to the average_load, so we don't
4782 * want to push ourselves above the average load, nor do we wish to
4783 * reduce the max loaded cpu below the average load. At the same time,
4784 * we also don't want to reduce the group load below the group capacity
4785 * (so that we can implement power-savings policies etc). Thus we look
4786 * for the minimum possible imbalance.
4787 * Be careful of negative numbers as they'll appear as very large values
4788 * with unsigned longs.
4789 */
4790 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4791
4792 /* How much load to actually move to equalise the imbalance */
4793 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4794 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4795 / SCHED_POWER_SCALE;
4796
4797 /*
4798 * if *imbalance is less than the average load per runnable task
4799 * there is no guarantee that any tasks will be moved so we'll have
4800 * a think about bumping its value to force at least one task to be
4801 * moved
4802 */
4803 if (env->imbalance < sds->busiest_load_per_task)
4804 return fix_small_imbalance(env, sds);
4805
4806 }
4807
4808 /******* find_busiest_group() helpers end here *********************/
4809
4810 /**
4811 * find_busiest_group - Returns the busiest group within the sched_domain
4812 * if there is an imbalance. If there isn't an imbalance, and
4813 * the user has opted for power-savings, it returns a group whose
4814 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4815 * such a group exists.
4816 *
4817 * Also calculates the amount of weighted load which should be moved
4818 * to restore balance.
4819 *
4820 * @env: The load balancing environment.
4821 * @balance: Pointer to a variable indicating if this_cpu
4822 * is the appropriate cpu to perform load balancing at this_level.
4823 *
4824 * Returns: - the busiest group if imbalance exists.
4825 * - If no imbalance and user has opted for power-savings balance,
4826 * return the least loaded group whose CPUs can be
4827 * put to idle by rebalancing its tasks onto our group.
4828 */
4829 static struct sched_group *
4830 find_busiest_group(struct lb_env *env, int *balance)
4831 {
4832 struct sd_lb_stats sds;
4833
4834 memset(&sds, 0, sizeof(sds));
4835
4836 /*
4837 * Compute the various statistics relavent for load balancing at
4838 * this level.
4839 */
4840 update_sd_lb_stats(env, balance, &sds);
4841
4842 /*
4843 * this_cpu is not the appropriate cpu to perform load balancing at
4844 * this level.
4845 */
4846 if (!(*balance))
4847 goto ret;
4848
4849 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4850 check_asym_packing(env, &sds))
4851 return sds.busiest;
4852
4853 /* There is no busy sibling group to pull tasks from */
4854 if (!sds.busiest || sds.busiest_nr_running == 0)
4855 goto out_balanced;
4856
4857 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4858
4859 /*
4860 * If the busiest group is imbalanced the below checks don't
4861 * work because they assumes all things are equal, which typically
4862 * isn't true due to cpus_allowed constraints and the like.
4863 */
4864 if (sds.group_imb)
4865 goto force_balance;
4866
4867 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4868 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4869 !sds.busiest_has_capacity)
4870 goto force_balance;
4871
4872 /*
4873 * If the local group is more busy than the selected busiest group
4874 * don't try and pull any tasks.
4875 */
4876 if (sds.this_load >= sds.max_load)
4877 goto out_balanced;
4878
4879 /*
4880 * Don't pull any tasks if this group is already above the domain
4881 * average load.
4882 */
4883 if (sds.this_load >= sds.avg_load)
4884 goto out_balanced;
4885
4886 if (env->idle == CPU_IDLE) {
4887 /*
4888 * This cpu is idle. If the busiest group load doesn't
4889 * have more tasks than the number of available cpu's and
4890 * there is no imbalance between this and busiest group
4891 * wrt to idle cpu's, it is balanced.
4892 */
4893 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4894 sds.busiest_nr_running <= sds.busiest_group_weight)
4895 goto out_balanced;
4896 } else {
4897 /*
4898 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4899 * imbalance_pct to be conservative.
4900 */
4901 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4902 goto out_balanced;
4903 }
4904
4905 force_balance:
4906 /* Looks like there is an imbalance. Compute it */
4907 calculate_imbalance(env, &sds);
4908 return sds.busiest;
4909
4910 out_balanced:
4911 ret:
4912 env->imbalance = 0;
4913 return NULL;
4914 }
4915
4916 /*
4917 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4918 */
4919 static struct rq *find_busiest_queue(struct lb_env *env,
4920 struct sched_group *group)
4921 {
4922 struct rq *busiest = NULL, *rq;
4923 unsigned long max_load = 0;
4924 int i;
4925
4926 for_each_cpu(i, sched_group_cpus(group)) {
4927 unsigned long power = power_of(i);
4928 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4929 SCHED_POWER_SCALE);
4930 unsigned long wl;
4931
4932 if (!capacity)
4933 capacity = fix_small_capacity(env->sd, group);
4934
4935 if (!cpumask_test_cpu(i, env->cpus))
4936 continue;
4937
4938 rq = cpu_rq(i);
4939 wl = weighted_cpuload(i);
4940
4941 /*
4942 * When comparing with imbalance, use weighted_cpuload()
4943 * which is not scaled with the cpu power.
4944 */
4945 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4946 continue;
4947
4948 /*
4949 * For the load comparisons with the other cpu's, consider
4950 * the weighted_cpuload() scaled with the cpu power, so that
4951 * the load can be moved away from the cpu that is potentially
4952 * running at a lower capacity.
4953 */
4954 wl = (wl * SCHED_POWER_SCALE) / power;
4955
4956 if (wl > max_load) {
4957 max_load = wl;
4958 busiest = rq;
4959 }
4960 }
4961
4962 return busiest;
4963 }
4964
4965 /*
4966 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4967 * so long as it is large enough.
4968 */
4969 #define MAX_PINNED_INTERVAL 512
4970
4971 /* Working cpumask for load_balance and load_balance_newidle. */
4972 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4973
4974 static int need_active_balance(struct lb_env *env)
4975 {
4976 struct sched_domain *sd = env->sd;
4977
4978 if (env->idle == CPU_NEWLY_IDLE) {
4979
4980 /*
4981 * ASYM_PACKING needs to force migrate tasks from busy but
4982 * higher numbered CPUs in order to pack all tasks in the
4983 * lowest numbered CPUs.
4984 */
4985 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4986 return 1;
4987 }
4988
4989 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4990 }
4991
4992 static int active_load_balance_cpu_stop(void *data);
4993
4994 /*
4995 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4996 * tasks if there is an imbalance.
4997 */
4998 static int load_balance(int this_cpu, struct rq *this_rq,
4999 struct sched_domain *sd, enum cpu_idle_type idle,
5000 int *balance)
5001 {
5002 int ld_moved, cur_ld_moved, active_balance = 0;
5003 int lb_iterations, max_lb_iterations;
5004 struct sched_group *group;
5005 struct rq *busiest;
5006 unsigned long flags;
5007 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5008
5009 struct lb_env env = {
5010 .sd = sd,
5011 .dst_cpu = this_cpu,
5012 .dst_rq = this_rq,
5013 .dst_grpmask = sched_group_cpus(sd->groups),
5014 .idle = idle,
5015 .loop_break = sched_nr_migrate_break,
5016 .cpus = cpus,
5017 };
5018
5019 cpumask_copy(cpus, cpu_active_mask);
5020 max_lb_iterations = cpumask_weight(env.dst_grpmask);
5021
5022 schedstat_inc(sd, lb_count[idle]);
5023
5024 redo:
5025 group = find_busiest_group(&env, balance);
5026
5027 if (*balance == 0)
5028 goto out_balanced;
5029
5030 if (!group) {
5031 schedstat_inc(sd, lb_nobusyg[idle]);
5032 goto out_balanced;
5033 }
5034
5035 busiest = find_busiest_queue(&env, group);
5036 if (!busiest) {
5037 schedstat_inc(sd, lb_nobusyq[idle]);
5038 goto out_balanced;
5039 }
5040
5041 BUG_ON(busiest == env.dst_rq);
5042
5043 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5044
5045 ld_moved = 0;
5046 lb_iterations = 1;
5047 if (busiest->nr_running > 1) {
5048 /*
5049 * Attempt to move tasks. If find_busiest_group has found
5050 * an imbalance but busiest->nr_running <= 1, the group is
5051 * still unbalanced. ld_moved simply stays zero, so it is
5052 * correctly treated as an imbalance.
5053 */
5054 env.flags |= LBF_ALL_PINNED;
5055 env.src_cpu = busiest->cpu;
5056 env.src_rq = busiest;
5057 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5058
5059 update_h_load(env.src_cpu);
5060 more_balance:
5061 local_irq_save(flags);
5062 double_rq_lock(env.dst_rq, busiest);
5063
5064 /*
5065 * cur_ld_moved - load moved in current iteration
5066 * ld_moved - cumulative load moved across iterations
5067 */
5068 cur_ld_moved = move_tasks(&env);
5069 ld_moved += cur_ld_moved;
5070 double_rq_unlock(env.dst_rq, busiest);
5071 local_irq_restore(flags);
5072
5073 if (env.flags & LBF_NEED_BREAK) {
5074 env.flags &= ~LBF_NEED_BREAK;
5075 goto more_balance;
5076 }
5077
5078 /*
5079 * some other cpu did the load balance for us.
5080 */
5081 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5082 resched_cpu(env.dst_cpu);
5083
5084 /*
5085 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5086 * us and move them to an alternate dst_cpu in our sched_group
5087 * where they can run. The upper limit on how many times we
5088 * iterate on same src_cpu is dependent on number of cpus in our
5089 * sched_group.
5090 *
5091 * This changes load balance semantics a bit on who can move
5092 * load to a given_cpu. In addition to the given_cpu itself
5093 * (or a ilb_cpu acting on its behalf where given_cpu is
5094 * nohz-idle), we now have balance_cpu in a position to move
5095 * load to given_cpu. In rare situations, this may cause
5096 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5097 * _independently_ and at _same_ time to move some load to
5098 * given_cpu) causing exceess load to be moved to given_cpu.
5099 * This however should not happen so much in practice and
5100 * moreover subsequent load balance cycles should correct the
5101 * excess load moved.
5102 */
5103 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5104 lb_iterations++ < max_lb_iterations) {
5105
5106 env.dst_rq = cpu_rq(env.new_dst_cpu);
5107 env.dst_cpu = env.new_dst_cpu;
5108 env.flags &= ~LBF_SOME_PINNED;
5109 env.loop = 0;
5110 env.loop_break = sched_nr_migrate_break;
5111 /*
5112 * Go back to "more_balance" rather than "redo" since we
5113 * need to continue with same src_cpu.
5114 */
5115 goto more_balance;
5116 }
5117
5118 /* All tasks on this runqueue were pinned by CPU affinity */
5119 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5120 cpumask_clear_cpu(cpu_of(busiest), cpus);
5121 if (!cpumask_empty(cpus)) {
5122 env.loop = 0;
5123 env.loop_break = sched_nr_migrate_break;
5124 goto redo;
5125 }
5126 goto out_balanced;
5127 }
5128 }
5129
5130 if (!ld_moved) {
5131 schedstat_inc(sd, lb_failed[idle]);
5132 /*
5133 * Increment the failure counter only on periodic balance.
5134 * We do not want newidle balance, which can be very
5135 * frequent, pollute the failure counter causing
5136 * excessive cache_hot migrations and active balances.
5137 */
5138 if (idle != CPU_NEWLY_IDLE)
5139 sd->nr_balance_failed++;
5140
5141 if (need_active_balance(&env)) {
5142 raw_spin_lock_irqsave(&busiest->lock, flags);
5143
5144 /* don't kick the active_load_balance_cpu_stop,
5145 * if the curr task on busiest cpu can't be
5146 * moved to this_cpu
5147 */
5148 if (!cpumask_test_cpu(this_cpu,
5149 tsk_cpus_allowed(busiest->curr))) {
5150 raw_spin_unlock_irqrestore(&busiest->lock,
5151 flags);
5152 env.flags |= LBF_ALL_PINNED;
5153 goto out_one_pinned;
5154 }
5155
5156 /*
5157 * ->active_balance synchronizes accesses to
5158 * ->active_balance_work. Once set, it's cleared
5159 * only after active load balance is finished.
5160 */
5161 if (!busiest->active_balance) {
5162 busiest->active_balance = 1;
5163 busiest->push_cpu = this_cpu;
5164 active_balance = 1;
5165 }
5166 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5167
5168 if (active_balance) {
5169 stop_one_cpu_nowait(cpu_of(busiest),
5170 active_load_balance_cpu_stop, busiest,
5171 &busiest->active_balance_work);
5172 }
5173
5174 /*
5175 * We've kicked active balancing, reset the failure
5176 * counter.
5177 */
5178 sd->nr_balance_failed = sd->cache_nice_tries+1;
5179 }
5180 } else
5181 sd->nr_balance_failed = 0;
5182
5183 if (likely(!active_balance)) {
5184 /* We were unbalanced, so reset the balancing interval */
5185 sd->balance_interval = sd->min_interval;
5186 } else {
5187 /*
5188 * If we've begun active balancing, start to back off. This
5189 * case may not be covered by the all_pinned logic if there
5190 * is only 1 task on the busy runqueue (because we don't call
5191 * move_tasks).
5192 */
5193 if (sd->balance_interval < sd->max_interval)
5194 sd->balance_interval *= 2;
5195 }
5196
5197 goto out;
5198
5199 out_balanced:
5200 schedstat_inc(sd, lb_balanced[idle]);
5201
5202 sd->nr_balance_failed = 0;
5203
5204 out_one_pinned:
5205 /* tune up the balancing interval */
5206 if (((env.flags & LBF_ALL_PINNED) &&
5207 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5208 (sd->balance_interval < sd->max_interval))
5209 sd->balance_interval *= 2;
5210
5211 ld_moved = 0;
5212 out:
5213 return ld_moved;
5214 }
5215
5216 /*
5217 * idle_balance is called by schedule() if this_cpu is about to become
5218 * idle. Attempts to pull tasks from other CPUs.
5219 */
5220 void idle_balance(int this_cpu, struct rq *this_rq)
5221 {
5222 struct sched_domain *sd;
5223 int pulled_task = 0;
5224 unsigned long next_balance = jiffies + HZ;
5225
5226 this_rq->idle_stamp = this_rq->clock;
5227
5228 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5229 return;
5230
5231 update_rq_runnable_avg(this_rq, 1);
5232
5233 /*
5234 * Drop the rq->lock, but keep IRQ/preempt disabled.
5235 */
5236 raw_spin_unlock(&this_rq->lock);
5237
5238 update_blocked_averages(this_cpu);
5239 rcu_read_lock();
5240 for_each_domain(this_cpu, sd) {
5241 unsigned long interval;
5242 int balance = 1;
5243
5244 if (!(sd->flags & SD_LOAD_BALANCE))
5245 continue;
5246
5247 if (sd->flags & SD_BALANCE_NEWIDLE) {
5248 /* If we've pulled tasks over stop searching: */
5249 pulled_task = load_balance(this_cpu, this_rq,
5250 sd, CPU_NEWLY_IDLE, &balance);
5251 }
5252
5253 interval = msecs_to_jiffies(sd->balance_interval);
5254 if (time_after(next_balance, sd->last_balance + interval))
5255 next_balance = sd->last_balance + interval;
5256 if (pulled_task) {
5257 this_rq->idle_stamp = 0;
5258 break;
5259 }
5260 }
5261 rcu_read_unlock();
5262
5263 raw_spin_lock(&this_rq->lock);
5264
5265 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5266 /*
5267 * We are going idle. next_balance may be set based on
5268 * a busy processor. So reset next_balance.
5269 */
5270 this_rq->next_balance = next_balance;
5271 }
5272 }
5273
5274 /*
5275 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5276 * running tasks off the busiest CPU onto idle CPUs. It requires at
5277 * least 1 task to be running on each physical CPU where possible, and
5278 * avoids physical / logical imbalances.
5279 */
5280 static int active_load_balance_cpu_stop(void *data)
5281 {
5282 struct rq *busiest_rq = data;
5283 int busiest_cpu = cpu_of(busiest_rq);
5284 int target_cpu = busiest_rq->push_cpu;
5285 struct rq *target_rq = cpu_rq(target_cpu);
5286 struct sched_domain *sd;
5287
5288 raw_spin_lock_irq(&busiest_rq->lock);
5289
5290 /* make sure the requested cpu hasn't gone down in the meantime */
5291 if (unlikely(busiest_cpu != smp_processor_id() ||
5292 !busiest_rq->active_balance))
5293 goto out_unlock;
5294
5295 /* Is there any task to move? */
5296 if (busiest_rq->nr_running <= 1)
5297 goto out_unlock;
5298
5299 /*
5300 * This condition is "impossible", if it occurs
5301 * we need to fix it. Originally reported by
5302 * Bjorn Helgaas on a 128-cpu setup.
5303 */
5304 BUG_ON(busiest_rq == target_rq);
5305
5306 /* move a task from busiest_rq to target_rq */
5307 double_lock_balance(busiest_rq, target_rq);
5308
5309 /* Search for an sd spanning us and the target CPU. */
5310 rcu_read_lock();
5311 for_each_domain(target_cpu, sd) {
5312 if ((sd->flags & SD_LOAD_BALANCE) &&
5313 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5314 break;
5315 }
5316
5317 if (likely(sd)) {
5318 struct lb_env env = {
5319 .sd = sd,
5320 .dst_cpu = target_cpu,
5321 .dst_rq = target_rq,
5322 .src_cpu = busiest_rq->cpu,
5323 .src_rq = busiest_rq,
5324 .idle = CPU_IDLE,
5325 };
5326
5327 schedstat_inc(sd, alb_count);
5328
5329 if (move_one_task(&env))
5330 schedstat_inc(sd, alb_pushed);
5331 else
5332 schedstat_inc(sd, alb_failed);
5333 }
5334 rcu_read_unlock();
5335 double_unlock_balance(busiest_rq, target_rq);
5336 out_unlock:
5337 busiest_rq->active_balance = 0;
5338 raw_spin_unlock_irq(&busiest_rq->lock);
5339 return 0;
5340 }
5341
5342 #ifdef CONFIG_NO_HZ
5343 /*
5344 * idle load balancing details
5345 * - When one of the busy CPUs notice that there may be an idle rebalancing
5346 * needed, they will kick the idle load balancer, which then does idle
5347 * load balancing for all the idle CPUs.
5348 */
5349 static struct {
5350 cpumask_var_t idle_cpus_mask;
5351 atomic_t nr_cpus;
5352 unsigned long next_balance; /* in jiffy units */
5353 } nohz ____cacheline_aligned;
5354
5355 static inline int find_new_ilb(int call_cpu)
5356 {
5357 int ilb = cpumask_first(nohz.idle_cpus_mask);
5358
5359 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5360 return ilb;
5361
5362 return nr_cpu_ids;
5363 }
5364
5365 /*
5366 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5367 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5368 * CPU (if there is one).
5369 */
5370 static void nohz_balancer_kick(int cpu)
5371 {
5372 int ilb_cpu;
5373
5374 nohz.next_balance++;
5375
5376 ilb_cpu = find_new_ilb(cpu);
5377
5378 if (ilb_cpu >= nr_cpu_ids)
5379 return;
5380
5381 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5382 return;
5383 /*
5384 * Use smp_send_reschedule() instead of resched_cpu().
5385 * This way we generate a sched IPI on the target cpu which
5386 * is idle. And the softirq performing nohz idle load balance
5387 * will be run before returning from the IPI.
5388 */
5389 smp_send_reschedule(ilb_cpu);
5390 return;
5391 }
5392
5393 static inline void nohz_balance_exit_idle(int cpu)
5394 {
5395 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5396 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5397 atomic_dec(&nohz.nr_cpus);
5398 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5399 }
5400 }
5401
5402 static inline void set_cpu_sd_state_busy(void)
5403 {
5404 struct sched_domain *sd;
5405 int cpu = smp_processor_id();
5406
5407 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5408 return;
5409 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5410
5411 rcu_read_lock();
5412 for_each_domain(cpu, sd)
5413 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5414 rcu_read_unlock();
5415 }
5416
5417 void set_cpu_sd_state_idle(void)
5418 {
5419 struct sched_domain *sd;
5420 int cpu = smp_processor_id();
5421
5422 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5423 return;
5424 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5425
5426 rcu_read_lock();
5427 for_each_domain(cpu, sd)
5428 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5429 rcu_read_unlock();
5430 }
5431
5432 /*
5433 * This routine will record that the cpu is going idle with tick stopped.
5434 * This info will be used in performing idle load balancing in the future.
5435 */
5436 void nohz_balance_enter_idle(int cpu)
5437 {
5438 /*
5439 * If this cpu is going down, then nothing needs to be done.
5440 */
5441 if (!cpu_active(cpu))
5442 return;
5443
5444 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5445 return;
5446
5447 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5448 atomic_inc(&nohz.nr_cpus);
5449 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5450 }
5451
5452 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5453 unsigned long action, void *hcpu)
5454 {
5455 switch (action & ~CPU_TASKS_FROZEN) {
5456 case CPU_DYING:
5457 nohz_balance_exit_idle(smp_processor_id());
5458 return NOTIFY_OK;
5459 default:
5460 return NOTIFY_DONE;
5461 }
5462 }
5463 #endif
5464
5465 static DEFINE_SPINLOCK(balancing);
5466
5467 /*
5468 * Scale the max load_balance interval with the number of CPUs in the system.
5469 * This trades load-balance latency on larger machines for less cross talk.
5470 */
5471 void update_max_interval(void)
5472 {
5473 max_load_balance_interval = HZ*num_online_cpus()/10;
5474 }
5475
5476 /*
5477 * It checks each scheduling domain to see if it is due to be balanced,
5478 * and initiates a balancing operation if so.
5479 *
5480 * Balancing parameters are set up in arch_init_sched_domains.
5481 */
5482 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5483 {
5484 int balance = 1;
5485 struct rq *rq = cpu_rq(cpu);
5486 unsigned long interval;
5487 struct sched_domain *sd;
5488 /* Earliest time when we have to do rebalance again */
5489 unsigned long next_balance = jiffies + 60*HZ;
5490 int update_next_balance = 0;
5491 int need_serialize;
5492
5493 update_blocked_averages(cpu);
5494
5495 rcu_read_lock();
5496 for_each_domain(cpu, sd) {
5497 if (!(sd->flags & SD_LOAD_BALANCE))
5498 continue;
5499
5500 interval = sd->balance_interval;
5501 if (idle != CPU_IDLE)
5502 interval *= sd->busy_factor;
5503
5504 /* scale ms to jiffies */
5505 interval = msecs_to_jiffies(interval);
5506 interval = clamp(interval, 1UL, max_load_balance_interval);
5507
5508 need_serialize = sd->flags & SD_SERIALIZE;
5509
5510 if (need_serialize) {
5511 if (!spin_trylock(&balancing))
5512 goto out;
5513 }
5514
5515 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5516 if (load_balance(cpu, rq, sd, idle, &balance)) {
5517 /*
5518 * We've pulled tasks over so either we're no
5519 * longer idle.
5520 */
5521 idle = CPU_NOT_IDLE;
5522 }
5523 sd->last_balance = jiffies;
5524 }
5525 if (need_serialize)
5526 spin_unlock(&balancing);
5527 out:
5528 if (time_after(next_balance, sd->last_balance + interval)) {
5529 next_balance = sd->last_balance + interval;
5530 update_next_balance = 1;
5531 }
5532
5533 /*
5534 * Stop the load balance at this level. There is another
5535 * CPU in our sched group which is doing load balancing more
5536 * actively.
5537 */
5538 if (!balance)
5539 break;
5540 }
5541 rcu_read_unlock();
5542
5543 /*
5544 * next_balance will be updated only when there is a need.
5545 * When the cpu is attached to null domain for ex, it will not be
5546 * updated.
5547 */
5548 if (likely(update_next_balance))
5549 rq->next_balance = next_balance;
5550 }
5551
5552 #ifdef CONFIG_NO_HZ
5553 /*
5554 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5555 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5556 */
5557 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5558 {
5559 struct rq *this_rq = cpu_rq(this_cpu);
5560 struct rq *rq;
5561 int balance_cpu;
5562
5563 if (idle != CPU_IDLE ||
5564 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5565 goto end;
5566
5567 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5568 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5569 continue;
5570
5571 /*
5572 * If this cpu gets work to do, stop the load balancing
5573 * work being done for other cpus. Next load
5574 * balancing owner will pick it up.
5575 */
5576 if (need_resched())
5577 break;
5578
5579 rq = cpu_rq(balance_cpu);
5580
5581 raw_spin_lock_irq(&rq->lock);
5582 update_rq_clock(rq);
5583 update_idle_cpu_load(rq);
5584 raw_spin_unlock_irq(&rq->lock);
5585
5586 rebalance_domains(balance_cpu, CPU_IDLE);
5587
5588 if (time_after(this_rq->next_balance, rq->next_balance))
5589 this_rq->next_balance = rq->next_balance;
5590 }
5591 nohz.next_balance = this_rq->next_balance;
5592 end:
5593 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5594 }
5595
5596 /*
5597 * Current heuristic for kicking the idle load balancer in the presence
5598 * of an idle cpu is the system.
5599 * - This rq has more than one task.
5600 * - At any scheduler domain level, this cpu's scheduler group has multiple
5601 * busy cpu's exceeding the group's power.
5602 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5603 * domain span are idle.
5604 */
5605 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5606 {
5607 unsigned long now = jiffies;
5608 struct sched_domain *sd;
5609
5610 if (unlikely(idle_cpu(cpu)))
5611 return 0;
5612
5613 /*
5614 * We may be recently in ticked or tickless idle mode. At the first
5615 * busy tick after returning from idle, we will update the busy stats.
5616 */
5617 set_cpu_sd_state_busy();
5618 nohz_balance_exit_idle(cpu);
5619
5620 /*
5621 * None are in tickless mode and hence no need for NOHZ idle load
5622 * balancing.
5623 */
5624 if (likely(!atomic_read(&nohz.nr_cpus)))
5625 return 0;
5626
5627 if (time_before(now, nohz.next_balance))
5628 return 0;
5629
5630 if (rq->nr_running >= 2)
5631 goto need_kick;
5632
5633 rcu_read_lock();
5634 for_each_domain(cpu, sd) {
5635 struct sched_group *sg = sd->groups;
5636 struct sched_group_power *sgp = sg->sgp;
5637 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5638
5639 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5640 goto need_kick_unlock;
5641
5642 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5643 && (cpumask_first_and(nohz.idle_cpus_mask,
5644 sched_domain_span(sd)) < cpu))
5645 goto need_kick_unlock;
5646
5647 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5648 break;
5649 }
5650 rcu_read_unlock();
5651 return 0;
5652
5653 need_kick_unlock:
5654 rcu_read_unlock();
5655 need_kick:
5656 return 1;
5657 }
5658 #else
5659 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5660 #endif
5661
5662 /*
5663 * run_rebalance_domains is triggered when needed from the scheduler tick.
5664 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5665 */
5666 static void run_rebalance_domains(struct softirq_action *h)
5667 {
5668 int this_cpu = smp_processor_id();
5669 struct rq *this_rq = cpu_rq(this_cpu);
5670 enum cpu_idle_type idle = this_rq->idle_balance ?
5671 CPU_IDLE : CPU_NOT_IDLE;
5672
5673 rebalance_domains(this_cpu, idle);
5674
5675 /*
5676 * If this cpu has a pending nohz_balance_kick, then do the
5677 * balancing on behalf of the other idle cpus whose ticks are
5678 * stopped.
5679 */
5680 nohz_idle_balance(this_cpu, idle);
5681 }
5682
5683 static inline int on_null_domain(int cpu)
5684 {
5685 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5686 }
5687
5688 /*
5689 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5690 */
5691 void trigger_load_balance(struct rq *rq, int cpu)
5692 {
5693 /* Don't need to rebalance while attached to NULL domain */
5694 if (time_after_eq(jiffies, rq->next_balance) &&
5695 likely(!on_null_domain(cpu)))
5696 raise_softirq(SCHED_SOFTIRQ);
5697 #ifdef CONFIG_NO_HZ
5698 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5699 nohz_balancer_kick(cpu);
5700 #endif
5701 }
5702
5703 static void rq_online_fair(struct rq *rq)
5704 {
5705 update_sysctl();
5706 }
5707
5708 static void rq_offline_fair(struct rq *rq)
5709 {
5710 update_sysctl();
5711
5712 /* Ensure any throttled groups are reachable by pick_next_task */
5713 unthrottle_offline_cfs_rqs(rq);
5714 }
5715
5716 #endif /* CONFIG_SMP */
5717
5718 /*
5719 * scheduler tick hitting a task of our scheduling class:
5720 */
5721 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5722 {
5723 struct cfs_rq *cfs_rq;
5724 struct sched_entity *se = &curr->se;
5725
5726 for_each_sched_entity(se) {
5727 cfs_rq = cfs_rq_of(se);
5728 entity_tick(cfs_rq, se, queued);
5729 }
5730
5731 if (sched_feat_numa(NUMA))
5732 task_tick_numa(rq, curr);
5733
5734 update_rq_runnable_avg(rq, 1);
5735 }
5736
5737 /*
5738 * called on fork with the child task as argument from the parent's context
5739 * - child not yet on the tasklist
5740 * - preemption disabled
5741 */
5742 static void task_fork_fair(struct task_struct *p)
5743 {
5744 struct cfs_rq *cfs_rq;
5745 struct sched_entity *se = &p->se, *curr;
5746 int this_cpu = smp_processor_id();
5747 struct rq *rq = this_rq();
5748 unsigned long flags;
5749
5750 raw_spin_lock_irqsave(&rq->lock, flags);
5751
5752 update_rq_clock(rq);
5753
5754 cfs_rq = task_cfs_rq(current);
5755 curr = cfs_rq->curr;
5756
5757 if (unlikely(task_cpu(p) != this_cpu)) {
5758 rcu_read_lock();
5759 __set_task_cpu(p, this_cpu);
5760 rcu_read_unlock();
5761 }
5762
5763 update_curr(cfs_rq);
5764
5765 if (curr)
5766 se->vruntime = curr->vruntime;
5767 place_entity(cfs_rq, se, 1);
5768
5769 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5770 /*
5771 * Upon rescheduling, sched_class::put_prev_task() will place
5772 * 'current' within the tree based on its new key value.
5773 */
5774 swap(curr->vruntime, se->vruntime);
5775 resched_task(rq->curr);
5776 }
5777
5778 se->vruntime -= cfs_rq->min_vruntime;
5779
5780 raw_spin_unlock_irqrestore(&rq->lock, flags);
5781 }
5782
5783 /*
5784 * Priority of the task has changed. Check to see if we preempt
5785 * the current task.
5786 */
5787 static void
5788 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5789 {
5790 if (!p->se.on_rq)
5791 return;
5792
5793 /*
5794 * Reschedule if we are currently running on this runqueue and
5795 * our priority decreased, or if we are not currently running on
5796 * this runqueue and our priority is higher than the current's
5797 */
5798 if (rq->curr == p) {
5799 if (p->prio > oldprio)
5800 resched_task(rq->curr);
5801 } else
5802 check_preempt_curr(rq, p, 0);
5803 }
5804
5805 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5806 {
5807 struct sched_entity *se = &p->se;
5808 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5809
5810 /*
5811 * Ensure the task's vruntime is normalized, so that when its
5812 * switched back to the fair class the enqueue_entity(.flags=0) will
5813 * do the right thing.
5814 *
5815 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5816 * have normalized the vruntime, if it was !on_rq, then only when
5817 * the task is sleeping will it still have non-normalized vruntime.
5818 */
5819 if (!se->on_rq && p->state != TASK_RUNNING) {
5820 /*
5821 * Fix up our vruntime so that the current sleep doesn't
5822 * cause 'unlimited' sleep bonus.
5823 */
5824 place_entity(cfs_rq, se, 0);
5825 se->vruntime -= cfs_rq->min_vruntime;
5826 }
5827
5828 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5829 /*
5830 * Remove our load from contribution when we leave sched_fair
5831 * and ensure we don't carry in an old decay_count if we
5832 * switch back.
5833 */
5834 if (p->se.avg.decay_count) {
5835 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5836 __synchronize_entity_decay(&p->se);
5837 subtract_blocked_load_contrib(cfs_rq,
5838 p->se.avg.load_avg_contrib);
5839 }
5840 #endif
5841 }
5842
5843 /*
5844 * We switched to the sched_fair class.
5845 */
5846 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5847 {
5848 if (!p->se.on_rq)
5849 return;
5850
5851 /*
5852 * We were most likely switched from sched_rt, so
5853 * kick off the schedule if running, otherwise just see
5854 * if we can still preempt the current task.
5855 */
5856 if (rq->curr == p)
5857 resched_task(rq->curr);
5858 else
5859 check_preempt_curr(rq, p, 0);
5860 }
5861
5862 /* Account for a task changing its policy or group.
5863 *
5864 * This routine is mostly called to set cfs_rq->curr field when a task
5865 * migrates between groups/classes.
5866 */
5867 static void set_curr_task_fair(struct rq *rq)
5868 {
5869 struct sched_entity *se = &rq->curr->se;
5870
5871 for_each_sched_entity(se) {
5872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5873
5874 set_next_entity(cfs_rq, se);
5875 /* ensure bandwidth has been allocated on our new cfs_rq */
5876 account_cfs_rq_runtime(cfs_rq, 0);
5877 }
5878 }
5879
5880 void init_cfs_rq(struct cfs_rq *cfs_rq)
5881 {
5882 cfs_rq->tasks_timeline = RB_ROOT;
5883 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5884 #ifndef CONFIG_64BIT
5885 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5886 #endif
5887 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5888 atomic64_set(&cfs_rq->decay_counter, 1);
5889 atomic64_set(&cfs_rq->removed_load, 0);
5890 #endif
5891 }
5892
5893 #ifdef CONFIG_FAIR_GROUP_SCHED
5894 static void task_move_group_fair(struct task_struct *p, int on_rq)
5895 {
5896 struct cfs_rq *cfs_rq;
5897 /*
5898 * If the task was not on the rq at the time of this cgroup movement
5899 * it must have been asleep, sleeping tasks keep their ->vruntime
5900 * absolute on their old rq until wakeup (needed for the fair sleeper
5901 * bonus in place_entity()).
5902 *
5903 * If it was on the rq, we've just 'preempted' it, which does convert
5904 * ->vruntime to a relative base.
5905 *
5906 * Make sure both cases convert their relative position when migrating
5907 * to another cgroup's rq. This does somewhat interfere with the
5908 * fair sleeper stuff for the first placement, but who cares.
5909 */
5910 /*
5911 * When !on_rq, vruntime of the task has usually NOT been normalized.
5912 * But there are some cases where it has already been normalized:
5913 *
5914 * - Moving a forked child which is waiting for being woken up by
5915 * wake_up_new_task().
5916 * - Moving a task which has been woken up by try_to_wake_up() and
5917 * waiting for actually being woken up by sched_ttwu_pending().
5918 *
5919 * To prevent boost or penalty in the new cfs_rq caused by delta
5920 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5921 */
5922 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5923 on_rq = 1;
5924
5925 if (!on_rq)
5926 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5927 set_task_rq(p, task_cpu(p));
5928 if (!on_rq) {
5929 cfs_rq = cfs_rq_of(&p->se);
5930 p->se.vruntime += cfs_rq->min_vruntime;
5931 #ifdef CONFIG_SMP
5932 /*
5933 * migrate_task_rq_fair() will have removed our previous
5934 * contribution, but we must synchronize for ongoing future
5935 * decay.
5936 */
5937 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5938 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5939 #endif
5940 }
5941 }
5942
5943 void free_fair_sched_group(struct task_group *tg)
5944 {
5945 int i;
5946
5947 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5948
5949 for_each_possible_cpu(i) {
5950 if (tg->cfs_rq)
5951 kfree(tg->cfs_rq[i]);
5952 if (tg->se)
5953 kfree(tg->se[i]);
5954 }
5955
5956 kfree(tg->cfs_rq);
5957 kfree(tg->se);
5958 }
5959
5960 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5961 {
5962 struct cfs_rq *cfs_rq;
5963 struct sched_entity *se;
5964 int i;
5965
5966 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5967 if (!tg->cfs_rq)
5968 goto err;
5969 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5970 if (!tg->se)
5971 goto err;
5972
5973 tg->shares = NICE_0_LOAD;
5974
5975 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5976
5977 for_each_possible_cpu(i) {
5978 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5979 GFP_KERNEL, cpu_to_node(i));
5980 if (!cfs_rq)
5981 goto err;
5982
5983 se = kzalloc_node(sizeof(struct sched_entity),
5984 GFP_KERNEL, cpu_to_node(i));
5985 if (!se)
5986 goto err_free_rq;
5987
5988 init_cfs_rq(cfs_rq);
5989 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5990 }
5991
5992 return 1;
5993
5994 err_free_rq:
5995 kfree(cfs_rq);
5996 err:
5997 return 0;
5998 }
5999
6000 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6001 {
6002 struct rq *rq = cpu_rq(cpu);
6003 unsigned long flags;
6004
6005 /*
6006 * Only empty task groups can be destroyed; so we can speculatively
6007 * check on_list without danger of it being re-added.
6008 */
6009 if (!tg->cfs_rq[cpu]->on_list)
6010 return;
6011
6012 raw_spin_lock_irqsave(&rq->lock, flags);
6013 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6014 raw_spin_unlock_irqrestore(&rq->lock, flags);
6015 }
6016
6017 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6018 struct sched_entity *se, int cpu,
6019 struct sched_entity *parent)
6020 {
6021 struct rq *rq = cpu_rq(cpu);
6022
6023 cfs_rq->tg = tg;
6024 cfs_rq->rq = rq;
6025 init_cfs_rq_runtime(cfs_rq);
6026
6027 tg->cfs_rq[cpu] = cfs_rq;
6028 tg->se[cpu] = se;
6029
6030 /* se could be NULL for root_task_group */
6031 if (!se)
6032 return;
6033
6034 if (!parent)
6035 se->cfs_rq = &rq->cfs;
6036 else
6037 se->cfs_rq = parent->my_q;
6038
6039 se->my_q = cfs_rq;
6040 update_load_set(&se->load, 0);
6041 se->parent = parent;
6042 }
6043
6044 static DEFINE_MUTEX(shares_mutex);
6045
6046 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6047 {
6048 int i;
6049 unsigned long flags;
6050
6051 /*
6052 * We can't change the weight of the root cgroup.
6053 */
6054 if (!tg->se[0])
6055 return -EINVAL;
6056
6057 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6058
6059 mutex_lock(&shares_mutex);
6060 if (tg->shares == shares)
6061 goto done;
6062
6063 tg->shares = shares;
6064 for_each_possible_cpu(i) {
6065 struct rq *rq = cpu_rq(i);
6066 struct sched_entity *se;
6067
6068 se = tg->se[i];
6069 /* Propagate contribution to hierarchy */
6070 raw_spin_lock_irqsave(&rq->lock, flags);
6071 for_each_sched_entity(se)
6072 update_cfs_shares(group_cfs_rq(se));
6073 raw_spin_unlock_irqrestore(&rq->lock, flags);
6074 }
6075
6076 done:
6077 mutex_unlock(&shares_mutex);
6078 return 0;
6079 }
6080 #else /* CONFIG_FAIR_GROUP_SCHED */
6081
6082 void free_fair_sched_group(struct task_group *tg) { }
6083
6084 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6085 {
6086 return 1;
6087 }
6088
6089 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6090
6091 #endif /* CONFIG_FAIR_GROUP_SCHED */
6092
6093
6094 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6095 {
6096 struct sched_entity *se = &task->se;
6097 unsigned int rr_interval = 0;
6098
6099 /*
6100 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6101 * idle runqueue:
6102 */
6103 if (rq->cfs.load.weight)
6104 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6105
6106 return rr_interval;
6107 }
6108
6109 /*
6110 * All the scheduling class methods:
6111 */
6112 const struct sched_class fair_sched_class = {
6113 .next = &idle_sched_class,
6114 .enqueue_task = enqueue_task_fair,
6115 .dequeue_task = dequeue_task_fair,
6116 .yield_task = yield_task_fair,
6117 .yield_to_task = yield_to_task_fair,
6118
6119 .check_preempt_curr = check_preempt_wakeup,
6120
6121 .pick_next_task = pick_next_task_fair,
6122 .put_prev_task = put_prev_task_fair,
6123
6124 #ifdef CONFIG_SMP
6125 .select_task_rq = select_task_rq_fair,
6126 #ifdef CONFIG_FAIR_GROUP_SCHED
6127 .migrate_task_rq = migrate_task_rq_fair,
6128 #endif
6129 .rq_online = rq_online_fair,
6130 .rq_offline = rq_offline_fair,
6131
6132 .task_waking = task_waking_fair,
6133 #endif
6134
6135 .set_curr_task = set_curr_task_fair,
6136 .task_tick = task_tick_fair,
6137 .task_fork = task_fork_fair,
6138
6139 .prio_changed = prio_changed_fair,
6140 .switched_from = switched_from_fair,
6141 .switched_to = switched_to_fair,
6142
6143 .get_rr_interval = get_rr_interval_fair,
6144
6145 #ifdef CONFIG_FAIR_GROUP_SCHED
6146 .task_move_group = task_move_group_fair,
6147 #endif
6148 };
6149
6150 #ifdef CONFIG_SCHED_DEBUG
6151 void print_cfs_stats(struct seq_file *m, int cpu)
6152 {
6153 struct cfs_rq *cfs_rq;
6154
6155 rcu_read_lock();
6156 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6157 print_cfs_rq(m, cpu, cfs_rq);
6158 rcu_read_unlock();
6159 }
6160 #endif
6161
6162 __init void init_sched_fair_class(void)
6163 {
6164 #ifdef CONFIG_SMP
6165 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6166
6167 #ifdef CONFIG_NO_HZ
6168 nohz.next_balance = jiffies;
6169 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6170 cpu_notifier(sched_ilb_notifier, 0);
6171 #endif
6172 #endif /* SMP */
6173
6174 }