Merge branch 'core-watchdog-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19
20 #include <linux/blkdev.h>
21 #include <linux/kprobes.h>
22 #include <linux/mmu_context.h>
23 #include <linux/module.h>
24 #include <linux/nmi.h>
25 #include <linux/prefetch.h>
26 #include <linux/profile.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29
30 #include <asm/switch_to.h>
31 #include <asm/tlb.h>
32 #ifdef CONFIG_PARAVIRT
33 #include <asm/paravirt.h>
34 #endif
35
36 #include "sched.h"
37 #include "../workqueue_internal.h"
38 #include "../smpboot.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/sched.h>
42
43 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
44
45 /*
46 * Debugging: various feature bits
47 */
48
49 #define SCHED_FEAT(name, enabled) \
50 (1UL << __SCHED_FEAT_##name) * enabled |
51
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 0;
55
56 #undef SCHED_FEAT
57
58 /*
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
61 */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63
64 /*
65 * period over which we average the RT time consumption, measured
66 * in ms.
67 *
68 * default: 1s
69 */
70 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
71
72 /*
73 * period over which we measure -rt task CPU usage in us.
74 * default: 1s
75 */
76 unsigned int sysctl_sched_rt_period = 1000000;
77
78 __read_mostly int scheduler_running;
79
80 /*
81 * part of the period that we allow rt tasks to run in us.
82 * default: 0.95s
83 */
84 int sysctl_sched_rt_runtime = 950000;
85
86 /* CPUs with isolated domains */
87 cpumask_var_t cpu_isolated_map;
88
89 /*
90 * __task_rq_lock - lock the rq @p resides on.
91 */
92 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 __acquires(rq->lock)
94 {
95 struct rq *rq;
96
97 lockdep_assert_held(&p->pi_lock);
98
99 for (;;) {
100 rq = task_rq(p);
101 raw_spin_lock(&rq->lock);
102 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
103 rq_pin_lock(rq, rf);
104 return rq;
105 }
106 raw_spin_unlock(&rq->lock);
107
108 while (unlikely(task_on_rq_migrating(p)))
109 cpu_relax();
110 }
111 }
112
113 /*
114 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
115 */
116 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
117 __acquires(p->pi_lock)
118 __acquires(rq->lock)
119 {
120 struct rq *rq;
121
122 for (;;) {
123 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
124 rq = task_rq(p);
125 raw_spin_lock(&rq->lock);
126 /*
127 * move_queued_task() task_rq_lock()
128 *
129 * ACQUIRE (rq->lock)
130 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
131 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
132 * [S] ->cpu = new_cpu [L] task_rq()
133 * [L] ->on_rq
134 * RELEASE (rq->lock)
135 *
136 * If we observe the old cpu in task_rq_lock, the acquire of
137 * the old rq->lock will fully serialize against the stores.
138 *
139 * If we observe the new CPU in task_rq_lock, the acquire will
140 * pair with the WMB to ensure we must then also see migrating.
141 */
142 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
143 rq_pin_lock(rq, rf);
144 return rq;
145 }
146 raw_spin_unlock(&rq->lock);
147 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
148
149 while (unlikely(task_on_rq_migrating(p)))
150 cpu_relax();
151 }
152 }
153
154 /*
155 * RQ-clock updating methods:
156 */
157
158 static void update_rq_clock_task(struct rq *rq, s64 delta)
159 {
160 /*
161 * In theory, the compile should just see 0 here, and optimize out the call
162 * to sched_rt_avg_update. But I don't trust it...
163 */
164 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
165 s64 steal = 0, irq_delta = 0;
166 #endif
167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
168 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
169
170 /*
171 * Since irq_time is only updated on {soft,}irq_exit, we might run into
172 * this case when a previous update_rq_clock() happened inside a
173 * {soft,}irq region.
174 *
175 * When this happens, we stop ->clock_task and only update the
176 * prev_irq_time stamp to account for the part that fit, so that a next
177 * update will consume the rest. This ensures ->clock_task is
178 * monotonic.
179 *
180 * It does however cause some slight miss-attribution of {soft,}irq
181 * time, a more accurate solution would be to update the irq_time using
182 * the current rq->clock timestamp, except that would require using
183 * atomic ops.
184 */
185 if (irq_delta > delta)
186 irq_delta = delta;
187
188 rq->prev_irq_time += irq_delta;
189 delta -= irq_delta;
190 #endif
191 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
192 if (static_key_false((&paravirt_steal_rq_enabled))) {
193 steal = paravirt_steal_clock(cpu_of(rq));
194 steal -= rq->prev_steal_time_rq;
195
196 if (unlikely(steal > delta))
197 steal = delta;
198
199 rq->prev_steal_time_rq += steal;
200 delta -= steal;
201 }
202 #endif
203
204 rq->clock_task += delta;
205
206 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
207 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
208 sched_rt_avg_update(rq, irq_delta + steal);
209 #endif
210 }
211
212 void update_rq_clock(struct rq *rq)
213 {
214 s64 delta;
215
216 lockdep_assert_held(&rq->lock);
217
218 if (rq->clock_update_flags & RQCF_ACT_SKIP)
219 return;
220
221 #ifdef CONFIG_SCHED_DEBUG
222 if (sched_feat(WARN_DOUBLE_CLOCK))
223 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
224 rq->clock_update_flags |= RQCF_UPDATED;
225 #endif
226
227 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
228 if (delta < 0)
229 return;
230 rq->clock += delta;
231 update_rq_clock_task(rq, delta);
232 }
233
234
235 #ifdef CONFIG_SCHED_HRTICK
236 /*
237 * Use HR-timers to deliver accurate preemption points.
238 */
239
240 static void hrtick_clear(struct rq *rq)
241 {
242 if (hrtimer_active(&rq->hrtick_timer))
243 hrtimer_cancel(&rq->hrtick_timer);
244 }
245
246 /*
247 * High-resolution timer tick.
248 * Runs from hardirq context with interrupts disabled.
249 */
250 static enum hrtimer_restart hrtick(struct hrtimer *timer)
251 {
252 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
253 struct rq_flags rf;
254
255 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
256
257 rq_lock(rq, &rf);
258 update_rq_clock(rq);
259 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
260 rq_unlock(rq, &rf);
261
262 return HRTIMER_NORESTART;
263 }
264
265 #ifdef CONFIG_SMP
266
267 static void __hrtick_restart(struct rq *rq)
268 {
269 struct hrtimer *timer = &rq->hrtick_timer;
270
271 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
272 }
273
274 /*
275 * called from hardirq (IPI) context
276 */
277 static void __hrtick_start(void *arg)
278 {
279 struct rq *rq = arg;
280 struct rq_flags rf;
281
282 rq_lock(rq, &rf);
283 __hrtick_restart(rq);
284 rq->hrtick_csd_pending = 0;
285 rq_unlock(rq, &rf);
286 }
287
288 /*
289 * Called to set the hrtick timer state.
290 *
291 * called with rq->lock held and irqs disabled
292 */
293 void hrtick_start(struct rq *rq, u64 delay)
294 {
295 struct hrtimer *timer = &rq->hrtick_timer;
296 ktime_t time;
297 s64 delta;
298
299 /*
300 * Don't schedule slices shorter than 10000ns, that just
301 * doesn't make sense and can cause timer DoS.
302 */
303 delta = max_t(s64, delay, 10000LL);
304 time = ktime_add_ns(timer->base->get_time(), delta);
305
306 hrtimer_set_expires(timer, time);
307
308 if (rq == this_rq()) {
309 __hrtick_restart(rq);
310 } else if (!rq->hrtick_csd_pending) {
311 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
312 rq->hrtick_csd_pending = 1;
313 }
314 }
315
316 #else
317 /*
318 * Called to set the hrtick timer state.
319 *
320 * called with rq->lock held and irqs disabled
321 */
322 void hrtick_start(struct rq *rq, u64 delay)
323 {
324 /*
325 * Don't schedule slices shorter than 10000ns, that just
326 * doesn't make sense. Rely on vruntime for fairness.
327 */
328 delay = max_t(u64, delay, 10000LL);
329 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
330 HRTIMER_MODE_REL_PINNED);
331 }
332 #endif /* CONFIG_SMP */
333
334 static void init_rq_hrtick(struct rq *rq)
335 {
336 #ifdef CONFIG_SMP
337 rq->hrtick_csd_pending = 0;
338
339 rq->hrtick_csd.flags = 0;
340 rq->hrtick_csd.func = __hrtick_start;
341 rq->hrtick_csd.info = rq;
342 #endif
343
344 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
345 rq->hrtick_timer.function = hrtick;
346 }
347 #else /* CONFIG_SCHED_HRTICK */
348 static inline void hrtick_clear(struct rq *rq)
349 {
350 }
351
352 static inline void init_rq_hrtick(struct rq *rq)
353 {
354 }
355 #endif /* CONFIG_SCHED_HRTICK */
356
357 /*
358 * cmpxchg based fetch_or, macro so it works for different integer types
359 */
360 #define fetch_or(ptr, mask) \
361 ({ \
362 typeof(ptr) _ptr = (ptr); \
363 typeof(mask) _mask = (mask); \
364 typeof(*_ptr) _old, _val = *_ptr; \
365 \
366 for (;;) { \
367 _old = cmpxchg(_ptr, _val, _val | _mask); \
368 if (_old == _val) \
369 break; \
370 _val = _old; \
371 } \
372 _old; \
373 })
374
375 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
376 /*
377 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
378 * this avoids any races wrt polling state changes and thereby avoids
379 * spurious IPIs.
380 */
381 static bool set_nr_and_not_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
385 }
386
387 /*
388 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
389 *
390 * If this returns true, then the idle task promises to call
391 * sched_ttwu_pending() and reschedule soon.
392 */
393 static bool set_nr_if_polling(struct task_struct *p)
394 {
395 struct thread_info *ti = task_thread_info(p);
396 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
397
398 for (;;) {
399 if (!(val & _TIF_POLLING_NRFLAG))
400 return false;
401 if (val & _TIF_NEED_RESCHED)
402 return true;
403 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
404 if (old == val)
405 break;
406 val = old;
407 }
408 return true;
409 }
410
411 #else
412 static bool set_nr_and_not_polling(struct task_struct *p)
413 {
414 set_tsk_need_resched(p);
415 return true;
416 }
417
418 #ifdef CONFIG_SMP
419 static bool set_nr_if_polling(struct task_struct *p)
420 {
421 return false;
422 }
423 #endif
424 #endif
425
426 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
427 {
428 struct wake_q_node *node = &task->wake_q;
429
430 /*
431 * Atomically grab the task, if ->wake_q is !nil already it means
432 * its already queued (either by us or someone else) and will get the
433 * wakeup due to that.
434 *
435 * This cmpxchg() implies a full barrier, which pairs with the write
436 * barrier implied by the wakeup in wake_up_q().
437 */
438 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
439 return;
440
441 get_task_struct(task);
442
443 /*
444 * The head is context local, there can be no concurrency.
445 */
446 *head->lastp = node;
447 head->lastp = &node->next;
448 }
449
450 void wake_up_q(struct wake_q_head *head)
451 {
452 struct wake_q_node *node = head->first;
453
454 while (node != WAKE_Q_TAIL) {
455 struct task_struct *task;
456
457 task = container_of(node, struct task_struct, wake_q);
458 BUG_ON(!task);
459 /* Task can safely be re-inserted now: */
460 node = node->next;
461 task->wake_q.next = NULL;
462
463 /*
464 * wake_up_process() implies a wmb() to pair with the queueing
465 * in wake_q_add() so as not to miss wakeups.
466 */
467 wake_up_process(task);
468 put_task_struct(task);
469 }
470 }
471
472 /*
473 * resched_curr - mark rq's current task 'to be rescheduled now'.
474 *
475 * On UP this means the setting of the need_resched flag, on SMP it
476 * might also involve a cross-CPU call to trigger the scheduler on
477 * the target CPU.
478 */
479 void resched_curr(struct rq *rq)
480 {
481 struct task_struct *curr = rq->curr;
482 int cpu;
483
484 lockdep_assert_held(&rq->lock);
485
486 if (test_tsk_need_resched(curr))
487 return;
488
489 cpu = cpu_of(rq);
490
491 if (cpu == smp_processor_id()) {
492 set_tsk_need_resched(curr);
493 set_preempt_need_resched();
494 return;
495 }
496
497 if (set_nr_and_not_polling(curr))
498 smp_send_reschedule(cpu);
499 else
500 trace_sched_wake_idle_without_ipi(cpu);
501 }
502
503 void resched_cpu(int cpu)
504 {
505 struct rq *rq = cpu_rq(cpu);
506 unsigned long flags;
507
508 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
509 return;
510 resched_curr(rq);
511 raw_spin_unlock_irqrestore(&rq->lock, flags);
512 }
513
514 #ifdef CONFIG_SMP
515 #ifdef CONFIG_NO_HZ_COMMON
516 /*
517 * In the semi idle case, use the nearest busy CPU for migrating timers
518 * from an idle CPU. This is good for power-savings.
519 *
520 * We don't do similar optimization for completely idle system, as
521 * selecting an idle CPU will add more delays to the timers than intended
522 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
523 */
524 int get_nohz_timer_target(void)
525 {
526 int i, cpu = smp_processor_id();
527 struct sched_domain *sd;
528
529 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
530 return cpu;
531
532 rcu_read_lock();
533 for_each_domain(cpu, sd) {
534 for_each_cpu(i, sched_domain_span(sd)) {
535 if (cpu == i)
536 continue;
537
538 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
539 cpu = i;
540 goto unlock;
541 }
542 }
543 }
544
545 if (!is_housekeeping_cpu(cpu))
546 cpu = housekeeping_any_cpu();
547 unlock:
548 rcu_read_unlock();
549 return cpu;
550 }
551
552 /*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
569 if (set_nr_and_not_polling(rq->idle))
570 smp_send_reschedule(cpu);
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
573 }
574
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
583 if (cpu_is_offline(cpu))
584 return true; /* Don't try to wake offline CPUs. */
585 if (tick_nohz_full_cpu(cpu)) {
586 if (cpu != smp_processor_id() ||
587 tick_nohz_tick_stopped())
588 tick_nohz_full_kick_cpu(cpu);
589 return true;
590 }
591
592 return false;
593 }
594
595 /*
596 * Wake up the specified CPU. If the CPU is going offline, it is the
597 * caller's responsibility to deal with the lost wakeup, for example,
598 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
599 */
600 void wake_up_nohz_cpu(int cpu)
601 {
602 if (!wake_up_full_nohz_cpu(cpu))
603 wake_up_idle_cpu(cpu);
604 }
605
606 static inline bool got_nohz_idle_kick(void)
607 {
608 int cpu = smp_processor_id();
609
610 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
611 return false;
612
613 if (idle_cpu(cpu) && !need_resched())
614 return true;
615
616 /*
617 * We can't run Idle Load Balance on this CPU for this time so we
618 * cancel it and clear NOHZ_BALANCE_KICK
619 */
620 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
621 return false;
622 }
623
624 #else /* CONFIG_NO_HZ_COMMON */
625
626 static inline bool got_nohz_idle_kick(void)
627 {
628 return false;
629 }
630
631 #endif /* CONFIG_NO_HZ_COMMON */
632
633 #ifdef CONFIG_NO_HZ_FULL
634 bool sched_can_stop_tick(struct rq *rq)
635 {
636 int fifo_nr_running;
637
638 /* Deadline tasks, even if single, need the tick */
639 if (rq->dl.dl_nr_running)
640 return false;
641
642 /*
643 * If there are more than one RR tasks, we need the tick to effect the
644 * actual RR behaviour.
645 */
646 if (rq->rt.rr_nr_running) {
647 if (rq->rt.rr_nr_running == 1)
648 return true;
649 else
650 return false;
651 }
652
653 /*
654 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
655 * forced preemption between FIFO tasks.
656 */
657 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
658 if (fifo_nr_running)
659 return true;
660
661 /*
662 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
663 * if there's more than one we need the tick for involuntary
664 * preemption.
665 */
666 if (rq->nr_running > 1)
667 return false;
668
669 return true;
670 }
671 #endif /* CONFIG_NO_HZ_FULL */
672
673 void sched_avg_update(struct rq *rq)
674 {
675 s64 period = sched_avg_period();
676
677 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
678 /*
679 * Inline assembly required to prevent the compiler
680 * optimising this loop into a divmod call.
681 * See __iter_div_u64_rem() for another example of this.
682 */
683 asm("" : "+rm" (rq->age_stamp));
684 rq->age_stamp += period;
685 rq->rt_avg /= 2;
686 }
687 }
688
689 #endif /* CONFIG_SMP */
690
691 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
692 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 /*
694 * Iterate task_group tree rooted at *from, calling @down when first entering a
695 * node and @up when leaving it for the final time.
696 *
697 * Caller must hold rcu_lock or sufficient equivalent.
698 */
699 int walk_tg_tree_from(struct task_group *from,
700 tg_visitor down, tg_visitor up, void *data)
701 {
702 struct task_group *parent, *child;
703 int ret;
704
705 parent = from;
706
707 down:
708 ret = (*down)(parent, data);
709 if (ret)
710 goto out;
711 list_for_each_entry_rcu(child, &parent->children, siblings) {
712 parent = child;
713 goto down;
714
715 up:
716 continue;
717 }
718 ret = (*up)(parent, data);
719 if (ret || parent == from)
720 goto out;
721
722 child = parent;
723 parent = parent->parent;
724 if (parent)
725 goto up;
726 out:
727 return ret;
728 }
729
730 int tg_nop(struct task_group *tg, void *data)
731 {
732 return 0;
733 }
734 #endif
735
736 static void set_load_weight(struct task_struct *p)
737 {
738 int prio = p->static_prio - MAX_RT_PRIO;
739 struct load_weight *load = &p->se.load;
740
741 /*
742 * SCHED_IDLE tasks get minimal weight:
743 */
744 if (idle_policy(p->policy)) {
745 load->weight = scale_load(WEIGHT_IDLEPRIO);
746 load->inv_weight = WMULT_IDLEPRIO;
747 return;
748 }
749
750 load->weight = scale_load(sched_prio_to_weight[prio]);
751 load->inv_weight = sched_prio_to_wmult[prio];
752 }
753
754 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 if (!(flags & ENQUEUE_NOCLOCK))
757 update_rq_clock(rq);
758
759 if (!(flags & ENQUEUE_RESTORE))
760 sched_info_queued(rq, p);
761
762 p->sched_class->enqueue_task(rq, p, flags);
763 }
764
765 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 if (!(flags & DEQUEUE_NOCLOCK))
768 update_rq_clock(rq);
769
770 if (!(flags & DEQUEUE_SAVE))
771 sched_info_dequeued(rq, p);
772
773 p->sched_class->dequeue_task(rq, p, flags);
774 }
775
776 void activate_task(struct rq *rq, struct task_struct *p, int flags)
777 {
778 if (task_contributes_to_load(p))
779 rq->nr_uninterruptible--;
780
781 enqueue_task(rq, p, flags);
782 }
783
784 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
785 {
786 if (task_contributes_to_load(p))
787 rq->nr_uninterruptible++;
788
789 dequeue_task(rq, p, flags);
790 }
791
792 /*
793 * __normal_prio - return the priority that is based on the static prio
794 */
795 static inline int __normal_prio(struct task_struct *p)
796 {
797 return p->static_prio;
798 }
799
800 /*
801 * Calculate the expected normal priority: i.e. priority
802 * without taking RT-inheritance into account. Might be
803 * boosted by interactivity modifiers. Changes upon fork,
804 * setprio syscalls, and whenever the interactivity
805 * estimator recalculates.
806 */
807 static inline int normal_prio(struct task_struct *p)
808 {
809 int prio;
810
811 if (task_has_dl_policy(p))
812 prio = MAX_DL_PRIO-1;
813 else if (task_has_rt_policy(p))
814 prio = MAX_RT_PRIO-1 - p->rt_priority;
815 else
816 prio = __normal_prio(p);
817 return prio;
818 }
819
820 /*
821 * Calculate the current priority, i.e. the priority
822 * taken into account by the scheduler. This value might
823 * be boosted by RT tasks, or might be boosted by
824 * interactivity modifiers. Will be RT if the task got
825 * RT-boosted. If not then it returns p->normal_prio.
826 */
827 static int effective_prio(struct task_struct *p)
828 {
829 p->normal_prio = normal_prio(p);
830 /*
831 * If we are RT tasks or we were boosted to RT priority,
832 * keep the priority unchanged. Otherwise, update priority
833 * to the normal priority:
834 */
835 if (!rt_prio(p->prio))
836 return p->normal_prio;
837 return p->prio;
838 }
839
840 /**
841 * task_curr - is this task currently executing on a CPU?
842 * @p: the task in question.
843 *
844 * Return: 1 if the task is currently executing. 0 otherwise.
845 */
846 inline int task_curr(const struct task_struct *p)
847 {
848 return cpu_curr(task_cpu(p)) == p;
849 }
850
851 /*
852 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
853 * use the balance_callback list if you want balancing.
854 *
855 * this means any call to check_class_changed() must be followed by a call to
856 * balance_callback().
857 */
858 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
859 const struct sched_class *prev_class,
860 int oldprio)
861 {
862 if (prev_class != p->sched_class) {
863 if (prev_class->switched_from)
864 prev_class->switched_from(rq, p);
865
866 p->sched_class->switched_to(rq, p);
867 } else if (oldprio != p->prio || dl_task(p))
868 p->sched_class->prio_changed(rq, p, oldprio);
869 }
870
871 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
872 {
873 const struct sched_class *class;
874
875 if (p->sched_class == rq->curr->sched_class) {
876 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
877 } else {
878 for_each_class(class) {
879 if (class == rq->curr->sched_class)
880 break;
881 if (class == p->sched_class) {
882 resched_curr(rq);
883 break;
884 }
885 }
886 }
887
888 /*
889 * A queue event has occurred, and we're going to schedule. In
890 * this case, we can save a useless back to back clock update.
891 */
892 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
893 rq_clock_skip_update(rq, true);
894 }
895
896 #ifdef CONFIG_SMP
897 /*
898 * This is how migration works:
899 *
900 * 1) we invoke migration_cpu_stop() on the target CPU using
901 * stop_one_cpu().
902 * 2) stopper starts to run (implicitly forcing the migrated thread
903 * off the CPU)
904 * 3) it checks whether the migrated task is still in the wrong runqueue.
905 * 4) if it's in the wrong runqueue then the migration thread removes
906 * it and puts it into the right queue.
907 * 5) stopper completes and stop_one_cpu() returns and the migration
908 * is done.
909 */
910
911 /*
912 * move_queued_task - move a queued task to new rq.
913 *
914 * Returns (locked) new rq. Old rq's lock is released.
915 */
916 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
917 struct task_struct *p, int new_cpu)
918 {
919 lockdep_assert_held(&rq->lock);
920
921 p->on_rq = TASK_ON_RQ_MIGRATING;
922 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
923 set_task_cpu(p, new_cpu);
924 rq_unlock(rq, rf);
925
926 rq = cpu_rq(new_cpu);
927
928 rq_lock(rq, rf);
929 BUG_ON(task_cpu(p) != new_cpu);
930 enqueue_task(rq, p, 0);
931 p->on_rq = TASK_ON_RQ_QUEUED;
932 check_preempt_curr(rq, p, 0);
933
934 return rq;
935 }
936
937 struct migration_arg {
938 struct task_struct *task;
939 int dest_cpu;
940 };
941
942 /*
943 * Move (not current) task off this CPU, onto the destination CPU. We're doing
944 * this because either it can't run here any more (set_cpus_allowed()
945 * away from this CPU, or CPU going down), or because we're
946 * attempting to rebalance this task on exec (sched_exec).
947 *
948 * So we race with normal scheduler movements, but that's OK, as long
949 * as the task is no longer on this CPU.
950 */
951 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
952 struct task_struct *p, int dest_cpu)
953 {
954 if (p->flags & PF_KTHREAD) {
955 if (unlikely(!cpu_online(dest_cpu)))
956 return rq;
957 } else {
958 if (unlikely(!cpu_active(dest_cpu)))
959 return rq;
960 }
961
962 /* Affinity changed (again). */
963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
964 return rq;
965
966 update_rq_clock(rq);
967 rq = move_queued_task(rq, rf, p, dest_cpu);
968
969 return rq;
970 }
971
972 /*
973 * migration_cpu_stop - this will be executed by a highprio stopper thread
974 * and performs thread migration by bumping thread off CPU then
975 * 'pushing' onto another runqueue.
976 */
977 static int migration_cpu_stop(void *data)
978 {
979 struct migration_arg *arg = data;
980 struct task_struct *p = arg->task;
981 struct rq *rq = this_rq();
982 struct rq_flags rf;
983
984 /*
985 * The original target CPU might have gone down and we might
986 * be on another CPU but it doesn't matter.
987 */
988 local_irq_disable();
989 /*
990 * We need to explicitly wake pending tasks before running
991 * __migrate_task() such that we will not miss enforcing cpus_allowed
992 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
993 */
994 sched_ttwu_pending();
995
996 raw_spin_lock(&p->pi_lock);
997 rq_lock(rq, &rf);
998 /*
999 * If task_rq(p) != rq, it cannot be migrated here, because we're
1000 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1001 * we're holding p->pi_lock.
1002 */
1003 if (task_rq(p) == rq) {
1004 if (task_on_rq_queued(p))
1005 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1006 else
1007 p->wake_cpu = arg->dest_cpu;
1008 }
1009 rq_unlock(rq, &rf);
1010 raw_spin_unlock(&p->pi_lock);
1011
1012 local_irq_enable();
1013 return 0;
1014 }
1015
1016 /*
1017 * sched_class::set_cpus_allowed must do the below, but is not required to
1018 * actually call this function.
1019 */
1020 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1021 {
1022 cpumask_copy(&p->cpus_allowed, new_mask);
1023 p->nr_cpus_allowed = cpumask_weight(new_mask);
1024 }
1025
1026 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1027 {
1028 struct rq *rq = task_rq(p);
1029 bool queued, running;
1030
1031 lockdep_assert_held(&p->pi_lock);
1032
1033 queued = task_on_rq_queued(p);
1034 running = task_current(rq, p);
1035
1036 if (queued) {
1037 /*
1038 * Because __kthread_bind() calls this on blocked tasks without
1039 * holding rq->lock.
1040 */
1041 lockdep_assert_held(&rq->lock);
1042 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1043 }
1044 if (running)
1045 put_prev_task(rq, p);
1046
1047 p->sched_class->set_cpus_allowed(p, new_mask);
1048
1049 if (queued)
1050 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1051 if (running)
1052 set_curr_task(rq, p);
1053 }
1054
1055 /*
1056 * Change a given task's CPU affinity. Migrate the thread to a
1057 * proper CPU and schedule it away if the CPU it's executing on
1058 * is removed from the allowed bitmask.
1059 *
1060 * NOTE: the caller must have a valid reference to the task, the
1061 * task must not exit() & deallocate itself prematurely. The
1062 * call is not atomic; no spinlocks may be held.
1063 */
1064 static int __set_cpus_allowed_ptr(struct task_struct *p,
1065 const struct cpumask *new_mask, bool check)
1066 {
1067 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1068 unsigned int dest_cpu;
1069 struct rq_flags rf;
1070 struct rq *rq;
1071 int ret = 0;
1072
1073 rq = task_rq_lock(p, &rf);
1074 update_rq_clock(rq);
1075
1076 if (p->flags & PF_KTHREAD) {
1077 /*
1078 * Kernel threads are allowed on online && !active CPUs
1079 */
1080 cpu_valid_mask = cpu_online_mask;
1081 }
1082
1083 /*
1084 * Must re-check here, to close a race against __kthread_bind(),
1085 * sched_setaffinity() is not guaranteed to observe the flag.
1086 */
1087 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
1092 if (cpumask_equal(&p->cpus_allowed, new_mask))
1093 goto out;
1094
1095 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1096 ret = -EINVAL;
1097 goto out;
1098 }
1099
1100 do_set_cpus_allowed(p, new_mask);
1101
1102 if (p->flags & PF_KTHREAD) {
1103 /*
1104 * For kernel threads that do indeed end up on online &&
1105 * !active we want to ensure they are strict per-CPU threads.
1106 */
1107 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1108 !cpumask_intersects(new_mask, cpu_active_mask) &&
1109 p->nr_cpus_allowed != 1);
1110 }
1111
1112 /* Can the task run on the task's current CPU? If so, we're done */
1113 if (cpumask_test_cpu(task_cpu(p), new_mask))
1114 goto out;
1115
1116 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1117 if (task_running(rq, p) || p->state == TASK_WAKING) {
1118 struct migration_arg arg = { p, dest_cpu };
1119 /* Need help from migration thread: drop lock and wait. */
1120 task_rq_unlock(rq, p, &rf);
1121 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1122 tlb_migrate_finish(p->mm);
1123 return 0;
1124 } else if (task_on_rq_queued(p)) {
1125 /*
1126 * OK, since we're going to drop the lock immediately
1127 * afterwards anyway.
1128 */
1129 rq = move_queued_task(rq, &rf, p, dest_cpu);
1130 }
1131 out:
1132 task_rq_unlock(rq, p, &rf);
1133
1134 return ret;
1135 }
1136
1137 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1138 {
1139 return __set_cpus_allowed_ptr(p, new_mask, false);
1140 }
1141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1142
1143 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1144 {
1145 #ifdef CONFIG_SCHED_DEBUG
1146 /*
1147 * We should never call set_task_cpu() on a blocked task,
1148 * ttwu() will sort out the placement.
1149 */
1150 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1151 !p->on_rq);
1152
1153 /*
1154 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1155 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1156 * time relying on p->on_rq.
1157 */
1158 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1159 p->sched_class == &fair_sched_class &&
1160 (p->on_rq && !task_on_rq_migrating(p)));
1161
1162 #ifdef CONFIG_LOCKDEP
1163 /*
1164 * The caller should hold either p->pi_lock or rq->lock, when changing
1165 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1166 *
1167 * sched_move_task() holds both and thus holding either pins the cgroup,
1168 * see task_group().
1169 *
1170 * Furthermore, all task_rq users should acquire both locks, see
1171 * task_rq_lock().
1172 */
1173 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1174 lockdep_is_held(&task_rq(p)->lock)));
1175 #endif
1176 /*
1177 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1178 */
1179 WARN_ON_ONCE(!cpu_online(new_cpu));
1180 #endif
1181
1182 trace_sched_migrate_task(p, new_cpu);
1183
1184 if (task_cpu(p) != new_cpu) {
1185 if (p->sched_class->migrate_task_rq)
1186 p->sched_class->migrate_task_rq(p);
1187 p->se.nr_migrations++;
1188 perf_event_task_migrate(p);
1189 }
1190
1191 __set_task_cpu(p, new_cpu);
1192 }
1193
1194 static void __migrate_swap_task(struct task_struct *p, int cpu)
1195 {
1196 if (task_on_rq_queued(p)) {
1197 struct rq *src_rq, *dst_rq;
1198 struct rq_flags srf, drf;
1199
1200 src_rq = task_rq(p);
1201 dst_rq = cpu_rq(cpu);
1202
1203 rq_pin_lock(src_rq, &srf);
1204 rq_pin_lock(dst_rq, &drf);
1205
1206 p->on_rq = TASK_ON_RQ_MIGRATING;
1207 deactivate_task(src_rq, p, 0);
1208 set_task_cpu(p, cpu);
1209 activate_task(dst_rq, p, 0);
1210 p->on_rq = TASK_ON_RQ_QUEUED;
1211 check_preempt_curr(dst_rq, p, 0);
1212
1213 rq_unpin_lock(dst_rq, &drf);
1214 rq_unpin_lock(src_rq, &srf);
1215
1216 } else {
1217 /*
1218 * Task isn't running anymore; make it appear like we migrated
1219 * it before it went to sleep. This means on wakeup we make the
1220 * previous CPU our target instead of where it really is.
1221 */
1222 p->wake_cpu = cpu;
1223 }
1224 }
1225
1226 struct migration_swap_arg {
1227 struct task_struct *src_task, *dst_task;
1228 int src_cpu, dst_cpu;
1229 };
1230
1231 static int migrate_swap_stop(void *data)
1232 {
1233 struct migration_swap_arg *arg = data;
1234 struct rq *src_rq, *dst_rq;
1235 int ret = -EAGAIN;
1236
1237 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1238 return -EAGAIN;
1239
1240 src_rq = cpu_rq(arg->src_cpu);
1241 dst_rq = cpu_rq(arg->dst_cpu);
1242
1243 double_raw_lock(&arg->src_task->pi_lock,
1244 &arg->dst_task->pi_lock);
1245 double_rq_lock(src_rq, dst_rq);
1246
1247 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1248 goto unlock;
1249
1250 if (task_cpu(arg->src_task) != arg->src_cpu)
1251 goto unlock;
1252
1253 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1254 goto unlock;
1255
1256 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1257 goto unlock;
1258
1259 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1260 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1261
1262 ret = 0;
1263
1264 unlock:
1265 double_rq_unlock(src_rq, dst_rq);
1266 raw_spin_unlock(&arg->dst_task->pi_lock);
1267 raw_spin_unlock(&arg->src_task->pi_lock);
1268
1269 return ret;
1270 }
1271
1272 /*
1273 * Cross migrate two tasks
1274 */
1275 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1276 {
1277 struct migration_swap_arg arg;
1278 int ret = -EINVAL;
1279
1280 arg = (struct migration_swap_arg){
1281 .src_task = cur,
1282 .src_cpu = task_cpu(cur),
1283 .dst_task = p,
1284 .dst_cpu = task_cpu(p),
1285 };
1286
1287 if (arg.src_cpu == arg.dst_cpu)
1288 goto out;
1289
1290 /*
1291 * These three tests are all lockless; this is OK since all of them
1292 * will be re-checked with proper locks held further down the line.
1293 */
1294 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1295 goto out;
1296
1297 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1298 goto out;
1299
1300 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1301 goto out;
1302
1303 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1304 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1305
1306 out:
1307 return ret;
1308 }
1309
1310 /*
1311 * wait_task_inactive - wait for a thread to unschedule.
1312 *
1313 * If @match_state is nonzero, it's the @p->state value just checked and
1314 * not expected to change. If it changes, i.e. @p might have woken up,
1315 * then return zero. When we succeed in waiting for @p to be off its CPU,
1316 * we return a positive number (its total switch count). If a second call
1317 * a short while later returns the same number, the caller can be sure that
1318 * @p has remained unscheduled the whole time.
1319 *
1320 * The caller must ensure that the task *will* unschedule sometime soon,
1321 * else this function might spin for a *long* time. This function can't
1322 * be called with interrupts off, or it may introduce deadlock with
1323 * smp_call_function() if an IPI is sent by the same process we are
1324 * waiting to become inactive.
1325 */
1326 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1327 {
1328 int running, queued;
1329 struct rq_flags rf;
1330 unsigned long ncsw;
1331 struct rq *rq;
1332
1333 for (;;) {
1334 /*
1335 * We do the initial early heuristics without holding
1336 * any task-queue locks at all. We'll only try to get
1337 * the runqueue lock when things look like they will
1338 * work out!
1339 */
1340 rq = task_rq(p);
1341
1342 /*
1343 * If the task is actively running on another CPU
1344 * still, just relax and busy-wait without holding
1345 * any locks.
1346 *
1347 * NOTE! Since we don't hold any locks, it's not
1348 * even sure that "rq" stays as the right runqueue!
1349 * But we don't care, since "task_running()" will
1350 * return false if the runqueue has changed and p
1351 * is actually now running somewhere else!
1352 */
1353 while (task_running(rq, p)) {
1354 if (match_state && unlikely(p->state != match_state))
1355 return 0;
1356 cpu_relax();
1357 }
1358
1359 /*
1360 * Ok, time to look more closely! We need the rq
1361 * lock now, to be *sure*. If we're wrong, we'll
1362 * just go back and repeat.
1363 */
1364 rq = task_rq_lock(p, &rf);
1365 trace_sched_wait_task(p);
1366 running = task_running(rq, p);
1367 queued = task_on_rq_queued(p);
1368 ncsw = 0;
1369 if (!match_state || p->state == match_state)
1370 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1371 task_rq_unlock(rq, p, &rf);
1372
1373 /*
1374 * If it changed from the expected state, bail out now.
1375 */
1376 if (unlikely(!ncsw))
1377 break;
1378
1379 /*
1380 * Was it really running after all now that we
1381 * checked with the proper locks actually held?
1382 *
1383 * Oops. Go back and try again..
1384 */
1385 if (unlikely(running)) {
1386 cpu_relax();
1387 continue;
1388 }
1389
1390 /*
1391 * It's not enough that it's not actively running,
1392 * it must be off the runqueue _entirely_, and not
1393 * preempted!
1394 *
1395 * So if it was still runnable (but just not actively
1396 * running right now), it's preempted, and we should
1397 * yield - it could be a while.
1398 */
1399 if (unlikely(queued)) {
1400 ktime_t to = NSEC_PER_SEC / HZ;
1401
1402 set_current_state(TASK_UNINTERRUPTIBLE);
1403 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1404 continue;
1405 }
1406
1407 /*
1408 * Ahh, all good. It wasn't running, and it wasn't
1409 * runnable, which means that it will never become
1410 * running in the future either. We're all done!
1411 */
1412 break;
1413 }
1414
1415 return ncsw;
1416 }
1417
1418 /***
1419 * kick_process - kick a running thread to enter/exit the kernel
1420 * @p: the to-be-kicked thread
1421 *
1422 * Cause a process which is running on another CPU to enter
1423 * kernel-mode, without any delay. (to get signals handled.)
1424 *
1425 * NOTE: this function doesn't have to take the runqueue lock,
1426 * because all it wants to ensure is that the remote task enters
1427 * the kernel. If the IPI races and the task has been migrated
1428 * to another CPU then no harm is done and the purpose has been
1429 * achieved as well.
1430 */
1431 void kick_process(struct task_struct *p)
1432 {
1433 int cpu;
1434
1435 preempt_disable();
1436 cpu = task_cpu(p);
1437 if ((cpu != smp_processor_id()) && task_curr(p))
1438 smp_send_reschedule(cpu);
1439 preempt_enable();
1440 }
1441 EXPORT_SYMBOL_GPL(kick_process);
1442
1443 /*
1444 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1445 *
1446 * A few notes on cpu_active vs cpu_online:
1447 *
1448 * - cpu_active must be a subset of cpu_online
1449 *
1450 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1451 * see __set_cpus_allowed_ptr(). At this point the newly online
1452 * CPU isn't yet part of the sched domains, and balancing will not
1453 * see it.
1454 *
1455 * - on CPU-down we clear cpu_active() to mask the sched domains and
1456 * avoid the load balancer to place new tasks on the to be removed
1457 * CPU. Existing tasks will remain running there and will be taken
1458 * off.
1459 *
1460 * This means that fallback selection must not select !active CPUs.
1461 * And can assume that any active CPU must be online. Conversely
1462 * select_task_rq() below may allow selection of !active CPUs in order
1463 * to satisfy the above rules.
1464 */
1465 static int select_fallback_rq(int cpu, struct task_struct *p)
1466 {
1467 int nid = cpu_to_node(cpu);
1468 const struct cpumask *nodemask = NULL;
1469 enum { cpuset, possible, fail } state = cpuset;
1470 int dest_cpu;
1471
1472 /*
1473 * If the node that the CPU is on has been offlined, cpu_to_node()
1474 * will return -1. There is no CPU on the node, and we should
1475 * select the CPU on the other node.
1476 */
1477 if (nid != -1) {
1478 nodemask = cpumask_of_node(nid);
1479
1480 /* Look for allowed, online CPU in same node. */
1481 for_each_cpu(dest_cpu, nodemask) {
1482 if (!cpu_active(dest_cpu))
1483 continue;
1484 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1485 return dest_cpu;
1486 }
1487 }
1488
1489 for (;;) {
1490 /* Any allowed, online CPU? */
1491 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1492 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1493 continue;
1494 if (!cpu_online(dest_cpu))
1495 continue;
1496 goto out;
1497 }
1498
1499 /* No more Mr. Nice Guy. */
1500 switch (state) {
1501 case cpuset:
1502 if (IS_ENABLED(CONFIG_CPUSETS)) {
1503 cpuset_cpus_allowed_fallback(p);
1504 state = possible;
1505 break;
1506 }
1507 /* Fall-through */
1508 case possible:
1509 do_set_cpus_allowed(p, cpu_possible_mask);
1510 state = fail;
1511 break;
1512
1513 case fail:
1514 BUG();
1515 break;
1516 }
1517 }
1518
1519 out:
1520 if (state != cpuset) {
1521 /*
1522 * Don't tell them about moving exiting tasks or
1523 * kernel threads (both mm NULL), since they never
1524 * leave kernel.
1525 */
1526 if (p->mm && printk_ratelimit()) {
1527 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1528 task_pid_nr(p), p->comm, cpu);
1529 }
1530 }
1531
1532 return dest_cpu;
1533 }
1534
1535 /*
1536 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1537 */
1538 static inline
1539 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1540 {
1541 lockdep_assert_held(&p->pi_lock);
1542
1543 if (p->nr_cpus_allowed > 1)
1544 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1545 else
1546 cpu = cpumask_any(&p->cpus_allowed);
1547
1548 /*
1549 * In order not to call set_task_cpu() on a blocking task we need
1550 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1551 * CPU.
1552 *
1553 * Since this is common to all placement strategies, this lives here.
1554 *
1555 * [ this allows ->select_task() to simply return task_cpu(p) and
1556 * not worry about this generic constraint ]
1557 */
1558 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1559 !cpu_online(cpu)))
1560 cpu = select_fallback_rq(task_cpu(p), p);
1561
1562 return cpu;
1563 }
1564
1565 static void update_avg(u64 *avg, u64 sample)
1566 {
1567 s64 diff = sample - *avg;
1568 *avg += diff >> 3;
1569 }
1570
1571 void sched_set_stop_task(int cpu, struct task_struct *stop)
1572 {
1573 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1574 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1575
1576 if (stop) {
1577 /*
1578 * Make it appear like a SCHED_FIFO task, its something
1579 * userspace knows about and won't get confused about.
1580 *
1581 * Also, it will make PI more or less work without too
1582 * much confusion -- but then, stop work should not
1583 * rely on PI working anyway.
1584 */
1585 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1586
1587 stop->sched_class = &stop_sched_class;
1588 }
1589
1590 cpu_rq(cpu)->stop = stop;
1591
1592 if (old_stop) {
1593 /*
1594 * Reset it back to a normal scheduling class so that
1595 * it can die in pieces.
1596 */
1597 old_stop->sched_class = &rt_sched_class;
1598 }
1599 }
1600
1601 #else
1602
1603 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1604 const struct cpumask *new_mask, bool check)
1605 {
1606 return set_cpus_allowed_ptr(p, new_mask);
1607 }
1608
1609 #endif /* CONFIG_SMP */
1610
1611 static void
1612 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1613 {
1614 struct rq *rq;
1615
1616 if (!schedstat_enabled())
1617 return;
1618
1619 rq = this_rq();
1620
1621 #ifdef CONFIG_SMP
1622 if (cpu == rq->cpu) {
1623 schedstat_inc(rq->ttwu_local);
1624 schedstat_inc(p->se.statistics.nr_wakeups_local);
1625 } else {
1626 struct sched_domain *sd;
1627
1628 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1629 rcu_read_lock();
1630 for_each_domain(rq->cpu, sd) {
1631 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1632 schedstat_inc(sd->ttwu_wake_remote);
1633 break;
1634 }
1635 }
1636 rcu_read_unlock();
1637 }
1638
1639 if (wake_flags & WF_MIGRATED)
1640 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1641 #endif /* CONFIG_SMP */
1642
1643 schedstat_inc(rq->ttwu_count);
1644 schedstat_inc(p->se.statistics.nr_wakeups);
1645
1646 if (wake_flags & WF_SYNC)
1647 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1648 }
1649
1650 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1651 {
1652 activate_task(rq, p, en_flags);
1653 p->on_rq = TASK_ON_RQ_QUEUED;
1654
1655 /* If a worker is waking up, notify the workqueue: */
1656 if (p->flags & PF_WQ_WORKER)
1657 wq_worker_waking_up(p, cpu_of(rq));
1658 }
1659
1660 /*
1661 * Mark the task runnable and perform wakeup-preemption.
1662 */
1663 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1664 struct rq_flags *rf)
1665 {
1666 check_preempt_curr(rq, p, wake_flags);
1667 p->state = TASK_RUNNING;
1668 trace_sched_wakeup(p);
1669
1670 #ifdef CONFIG_SMP
1671 if (p->sched_class->task_woken) {
1672 /*
1673 * Our task @p is fully woken up and running; so its safe to
1674 * drop the rq->lock, hereafter rq is only used for statistics.
1675 */
1676 rq_unpin_lock(rq, rf);
1677 p->sched_class->task_woken(rq, p);
1678 rq_repin_lock(rq, rf);
1679 }
1680
1681 if (rq->idle_stamp) {
1682 u64 delta = rq_clock(rq) - rq->idle_stamp;
1683 u64 max = 2*rq->max_idle_balance_cost;
1684
1685 update_avg(&rq->avg_idle, delta);
1686
1687 if (rq->avg_idle > max)
1688 rq->avg_idle = max;
1689
1690 rq->idle_stamp = 0;
1691 }
1692 #endif
1693 }
1694
1695 static void
1696 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1697 struct rq_flags *rf)
1698 {
1699 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1700
1701 lockdep_assert_held(&rq->lock);
1702
1703 #ifdef CONFIG_SMP
1704 if (p->sched_contributes_to_load)
1705 rq->nr_uninterruptible--;
1706
1707 if (wake_flags & WF_MIGRATED)
1708 en_flags |= ENQUEUE_MIGRATED;
1709 #endif
1710
1711 ttwu_activate(rq, p, en_flags);
1712 ttwu_do_wakeup(rq, p, wake_flags, rf);
1713 }
1714
1715 /*
1716 * Called in case the task @p isn't fully descheduled from its runqueue,
1717 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1718 * since all we need to do is flip p->state to TASK_RUNNING, since
1719 * the task is still ->on_rq.
1720 */
1721 static int ttwu_remote(struct task_struct *p, int wake_flags)
1722 {
1723 struct rq_flags rf;
1724 struct rq *rq;
1725 int ret = 0;
1726
1727 rq = __task_rq_lock(p, &rf);
1728 if (task_on_rq_queued(p)) {
1729 /* check_preempt_curr() may use rq clock */
1730 update_rq_clock(rq);
1731 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1732 ret = 1;
1733 }
1734 __task_rq_unlock(rq, &rf);
1735
1736 return ret;
1737 }
1738
1739 #ifdef CONFIG_SMP
1740 void sched_ttwu_pending(void)
1741 {
1742 struct rq *rq = this_rq();
1743 struct llist_node *llist = llist_del_all(&rq->wake_list);
1744 struct task_struct *p, *t;
1745 struct rq_flags rf;
1746
1747 if (!llist)
1748 return;
1749
1750 rq_lock_irqsave(rq, &rf);
1751 update_rq_clock(rq);
1752
1753 llist_for_each_entry_safe(p, t, llist, wake_entry)
1754 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1755
1756 rq_unlock_irqrestore(rq, &rf);
1757 }
1758
1759 void scheduler_ipi(void)
1760 {
1761 /*
1762 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1763 * TIF_NEED_RESCHED remotely (for the first time) will also send
1764 * this IPI.
1765 */
1766 preempt_fold_need_resched();
1767
1768 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1769 return;
1770
1771 /*
1772 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1773 * traditionally all their work was done from the interrupt return
1774 * path. Now that we actually do some work, we need to make sure
1775 * we do call them.
1776 *
1777 * Some archs already do call them, luckily irq_enter/exit nest
1778 * properly.
1779 *
1780 * Arguably we should visit all archs and update all handlers,
1781 * however a fair share of IPIs are still resched only so this would
1782 * somewhat pessimize the simple resched case.
1783 */
1784 irq_enter();
1785 sched_ttwu_pending();
1786
1787 /*
1788 * Check if someone kicked us for doing the nohz idle load balance.
1789 */
1790 if (unlikely(got_nohz_idle_kick())) {
1791 this_rq()->idle_balance = 1;
1792 raise_softirq_irqoff(SCHED_SOFTIRQ);
1793 }
1794 irq_exit();
1795 }
1796
1797 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1798 {
1799 struct rq *rq = cpu_rq(cpu);
1800
1801 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1802
1803 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1804 if (!set_nr_if_polling(rq->idle))
1805 smp_send_reschedule(cpu);
1806 else
1807 trace_sched_wake_idle_without_ipi(cpu);
1808 }
1809 }
1810
1811 void wake_up_if_idle(int cpu)
1812 {
1813 struct rq *rq = cpu_rq(cpu);
1814 struct rq_flags rf;
1815
1816 rcu_read_lock();
1817
1818 if (!is_idle_task(rcu_dereference(rq->curr)))
1819 goto out;
1820
1821 if (set_nr_if_polling(rq->idle)) {
1822 trace_sched_wake_idle_without_ipi(cpu);
1823 } else {
1824 rq_lock_irqsave(rq, &rf);
1825 if (is_idle_task(rq->curr))
1826 smp_send_reschedule(cpu);
1827 /* Else CPU is not idle, do nothing here: */
1828 rq_unlock_irqrestore(rq, &rf);
1829 }
1830
1831 out:
1832 rcu_read_unlock();
1833 }
1834
1835 bool cpus_share_cache(int this_cpu, int that_cpu)
1836 {
1837 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1838 }
1839 #endif /* CONFIG_SMP */
1840
1841 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1842 {
1843 struct rq *rq = cpu_rq(cpu);
1844 struct rq_flags rf;
1845
1846 #if defined(CONFIG_SMP)
1847 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1848 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1849 ttwu_queue_remote(p, cpu, wake_flags);
1850 return;
1851 }
1852 #endif
1853
1854 rq_lock(rq, &rf);
1855 update_rq_clock(rq);
1856 ttwu_do_activate(rq, p, wake_flags, &rf);
1857 rq_unlock(rq, &rf);
1858 }
1859
1860 /*
1861 * Notes on Program-Order guarantees on SMP systems.
1862 *
1863 * MIGRATION
1864 *
1865 * The basic program-order guarantee on SMP systems is that when a task [t]
1866 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1867 * execution on its new CPU [c1].
1868 *
1869 * For migration (of runnable tasks) this is provided by the following means:
1870 *
1871 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1872 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1873 * rq(c1)->lock (if not at the same time, then in that order).
1874 * C) LOCK of the rq(c1)->lock scheduling in task
1875 *
1876 * Transitivity guarantees that B happens after A and C after B.
1877 * Note: we only require RCpc transitivity.
1878 * Note: the CPU doing B need not be c0 or c1
1879 *
1880 * Example:
1881 *
1882 * CPU0 CPU1 CPU2
1883 *
1884 * LOCK rq(0)->lock
1885 * sched-out X
1886 * sched-in Y
1887 * UNLOCK rq(0)->lock
1888 *
1889 * LOCK rq(0)->lock // orders against CPU0
1890 * dequeue X
1891 * UNLOCK rq(0)->lock
1892 *
1893 * LOCK rq(1)->lock
1894 * enqueue X
1895 * UNLOCK rq(1)->lock
1896 *
1897 * LOCK rq(1)->lock // orders against CPU2
1898 * sched-out Z
1899 * sched-in X
1900 * UNLOCK rq(1)->lock
1901 *
1902 *
1903 * BLOCKING -- aka. SLEEP + WAKEUP
1904 *
1905 * For blocking we (obviously) need to provide the same guarantee as for
1906 * migration. However the means are completely different as there is no lock
1907 * chain to provide order. Instead we do:
1908 *
1909 * 1) smp_store_release(X->on_cpu, 0)
1910 * 2) smp_cond_load_acquire(!X->on_cpu)
1911 *
1912 * Example:
1913 *
1914 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1915 *
1916 * LOCK rq(0)->lock LOCK X->pi_lock
1917 * dequeue X
1918 * sched-out X
1919 * smp_store_release(X->on_cpu, 0);
1920 *
1921 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1922 * X->state = WAKING
1923 * set_task_cpu(X,2)
1924 *
1925 * LOCK rq(2)->lock
1926 * enqueue X
1927 * X->state = RUNNING
1928 * UNLOCK rq(2)->lock
1929 *
1930 * LOCK rq(2)->lock // orders against CPU1
1931 * sched-out Z
1932 * sched-in X
1933 * UNLOCK rq(2)->lock
1934 *
1935 * UNLOCK X->pi_lock
1936 * UNLOCK rq(0)->lock
1937 *
1938 *
1939 * However; for wakeups there is a second guarantee we must provide, namely we
1940 * must observe the state that lead to our wakeup. That is, not only must our
1941 * task observe its own prior state, it must also observe the stores prior to
1942 * its wakeup.
1943 *
1944 * This means that any means of doing remote wakeups must order the CPU doing
1945 * the wakeup against the CPU the task is going to end up running on. This,
1946 * however, is already required for the regular Program-Order guarantee above,
1947 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1948 *
1949 */
1950
1951 /**
1952 * try_to_wake_up - wake up a thread
1953 * @p: the thread to be awakened
1954 * @state: the mask of task states that can be woken
1955 * @wake_flags: wake modifier flags (WF_*)
1956 *
1957 * If (@state & @p->state) @p->state = TASK_RUNNING.
1958 *
1959 * If the task was not queued/runnable, also place it back on a runqueue.
1960 *
1961 * Atomic against schedule() which would dequeue a task, also see
1962 * set_current_state().
1963 *
1964 * Return: %true if @p->state changes (an actual wakeup was done),
1965 * %false otherwise.
1966 */
1967 static int
1968 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1969 {
1970 unsigned long flags;
1971 int cpu, success = 0;
1972
1973 /*
1974 * If we are going to wake up a thread waiting for CONDITION we
1975 * need to ensure that CONDITION=1 done by the caller can not be
1976 * reordered with p->state check below. This pairs with mb() in
1977 * set_current_state() the waiting thread does.
1978 */
1979 raw_spin_lock_irqsave(&p->pi_lock, flags);
1980 smp_mb__after_spinlock();
1981 if (!(p->state & state))
1982 goto out;
1983
1984 trace_sched_waking(p);
1985
1986 /* We're going to change ->state: */
1987 success = 1;
1988 cpu = task_cpu(p);
1989
1990 /*
1991 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1992 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1993 * in smp_cond_load_acquire() below.
1994 *
1995 * sched_ttwu_pending() try_to_wake_up()
1996 * [S] p->on_rq = 1; [L] P->state
1997 * UNLOCK rq->lock -----.
1998 * \
1999 * +--- RMB
2000 * schedule() /
2001 * LOCK rq->lock -----'
2002 * UNLOCK rq->lock
2003 *
2004 * [task p]
2005 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2006 *
2007 * Pairs with the UNLOCK+LOCK on rq->lock from the
2008 * last wakeup of our task and the schedule that got our task
2009 * current.
2010 */
2011 smp_rmb();
2012 if (p->on_rq && ttwu_remote(p, wake_flags))
2013 goto stat;
2014
2015 #ifdef CONFIG_SMP
2016 /*
2017 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2018 * possible to, falsely, observe p->on_cpu == 0.
2019 *
2020 * One must be running (->on_cpu == 1) in order to remove oneself
2021 * from the runqueue.
2022 *
2023 * [S] ->on_cpu = 1; [L] ->on_rq
2024 * UNLOCK rq->lock
2025 * RMB
2026 * LOCK rq->lock
2027 * [S] ->on_rq = 0; [L] ->on_cpu
2028 *
2029 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2030 * from the consecutive calls to schedule(); the first switching to our
2031 * task, the second putting it to sleep.
2032 */
2033 smp_rmb();
2034
2035 /*
2036 * If the owning (remote) CPU is still in the middle of schedule() with
2037 * this task as prev, wait until its done referencing the task.
2038 *
2039 * Pairs with the smp_store_release() in finish_lock_switch().
2040 *
2041 * This ensures that tasks getting woken will be fully ordered against
2042 * their previous state and preserve Program Order.
2043 */
2044 smp_cond_load_acquire(&p->on_cpu, !VAL);
2045
2046 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2047 p->state = TASK_WAKING;
2048
2049 if (p->in_iowait) {
2050 delayacct_blkio_end();
2051 atomic_dec(&task_rq(p)->nr_iowait);
2052 }
2053
2054 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2055 if (task_cpu(p) != cpu) {
2056 wake_flags |= WF_MIGRATED;
2057 set_task_cpu(p, cpu);
2058 }
2059
2060 #else /* CONFIG_SMP */
2061
2062 if (p->in_iowait) {
2063 delayacct_blkio_end();
2064 atomic_dec(&task_rq(p)->nr_iowait);
2065 }
2066
2067 #endif /* CONFIG_SMP */
2068
2069 ttwu_queue(p, cpu, wake_flags);
2070 stat:
2071 ttwu_stat(p, cpu, wake_flags);
2072 out:
2073 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2074
2075 return success;
2076 }
2077
2078 /**
2079 * try_to_wake_up_local - try to wake up a local task with rq lock held
2080 * @p: the thread to be awakened
2081 * @rf: request-queue flags for pinning
2082 *
2083 * Put @p on the run-queue if it's not already there. The caller must
2084 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2085 * the current task.
2086 */
2087 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2088 {
2089 struct rq *rq = task_rq(p);
2090
2091 if (WARN_ON_ONCE(rq != this_rq()) ||
2092 WARN_ON_ONCE(p == current))
2093 return;
2094
2095 lockdep_assert_held(&rq->lock);
2096
2097 if (!raw_spin_trylock(&p->pi_lock)) {
2098 /*
2099 * This is OK, because current is on_cpu, which avoids it being
2100 * picked for load-balance and preemption/IRQs are still
2101 * disabled avoiding further scheduler activity on it and we've
2102 * not yet picked a replacement task.
2103 */
2104 rq_unlock(rq, rf);
2105 raw_spin_lock(&p->pi_lock);
2106 rq_relock(rq, rf);
2107 }
2108
2109 if (!(p->state & TASK_NORMAL))
2110 goto out;
2111
2112 trace_sched_waking(p);
2113
2114 if (!task_on_rq_queued(p)) {
2115 if (p->in_iowait) {
2116 delayacct_blkio_end();
2117 atomic_dec(&rq->nr_iowait);
2118 }
2119 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2120 }
2121
2122 ttwu_do_wakeup(rq, p, 0, rf);
2123 ttwu_stat(p, smp_processor_id(), 0);
2124 out:
2125 raw_spin_unlock(&p->pi_lock);
2126 }
2127
2128 /**
2129 * wake_up_process - Wake up a specific process
2130 * @p: The process to be woken up.
2131 *
2132 * Attempt to wake up the nominated process and move it to the set of runnable
2133 * processes.
2134 *
2135 * Return: 1 if the process was woken up, 0 if it was already running.
2136 *
2137 * It may be assumed that this function implies a write memory barrier before
2138 * changing the task state if and only if any tasks are woken up.
2139 */
2140 int wake_up_process(struct task_struct *p)
2141 {
2142 return try_to_wake_up(p, TASK_NORMAL, 0);
2143 }
2144 EXPORT_SYMBOL(wake_up_process);
2145
2146 int wake_up_state(struct task_struct *p, unsigned int state)
2147 {
2148 return try_to_wake_up(p, state, 0);
2149 }
2150
2151 /*
2152 * Perform scheduler related setup for a newly forked process p.
2153 * p is forked by current.
2154 *
2155 * __sched_fork() is basic setup used by init_idle() too:
2156 */
2157 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2158 {
2159 p->on_rq = 0;
2160
2161 p->se.on_rq = 0;
2162 p->se.exec_start = 0;
2163 p->se.sum_exec_runtime = 0;
2164 p->se.prev_sum_exec_runtime = 0;
2165 p->se.nr_migrations = 0;
2166 p->se.vruntime = 0;
2167 INIT_LIST_HEAD(&p->se.group_node);
2168
2169 #ifdef CONFIG_FAIR_GROUP_SCHED
2170 p->se.cfs_rq = NULL;
2171 #endif
2172
2173 #ifdef CONFIG_SCHEDSTATS
2174 /* Even if schedstat is disabled, there should not be garbage */
2175 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2176 #endif
2177
2178 RB_CLEAR_NODE(&p->dl.rb_node);
2179 init_dl_task_timer(&p->dl);
2180 init_dl_inactive_task_timer(&p->dl);
2181 __dl_clear_params(p);
2182
2183 INIT_LIST_HEAD(&p->rt.run_list);
2184 p->rt.timeout = 0;
2185 p->rt.time_slice = sched_rr_timeslice;
2186 p->rt.on_rq = 0;
2187 p->rt.on_list = 0;
2188
2189 #ifdef CONFIG_PREEMPT_NOTIFIERS
2190 INIT_HLIST_HEAD(&p->preempt_notifiers);
2191 #endif
2192
2193 #ifdef CONFIG_NUMA_BALANCING
2194 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2195 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2196 p->mm->numa_scan_seq = 0;
2197 }
2198
2199 if (clone_flags & CLONE_VM)
2200 p->numa_preferred_nid = current->numa_preferred_nid;
2201 else
2202 p->numa_preferred_nid = -1;
2203
2204 p->node_stamp = 0ULL;
2205 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2206 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2207 p->numa_work.next = &p->numa_work;
2208 p->numa_faults = NULL;
2209 p->last_task_numa_placement = 0;
2210 p->last_sum_exec_runtime = 0;
2211
2212 p->numa_group = NULL;
2213 #endif /* CONFIG_NUMA_BALANCING */
2214 }
2215
2216 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2217
2218 #ifdef CONFIG_NUMA_BALANCING
2219
2220 void set_numabalancing_state(bool enabled)
2221 {
2222 if (enabled)
2223 static_branch_enable(&sched_numa_balancing);
2224 else
2225 static_branch_disable(&sched_numa_balancing);
2226 }
2227
2228 #ifdef CONFIG_PROC_SYSCTL
2229 int sysctl_numa_balancing(struct ctl_table *table, int write,
2230 void __user *buffer, size_t *lenp, loff_t *ppos)
2231 {
2232 struct ctl_table t;
2233 int err;
2234 int state = static_branch_likely(&sched_numa_balancing);
2235
2236 if (write && !capable(CAP_SYS_ADMIN))
2237 return -EPERM;
2238
2239 t = *table;
2240 t.data = &state;
2241 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2242 if (err < 0)
2243 return err;
2244 if (write)
2245 set_numabalancing_state(state);
2246 return err;
2247 }
2248 #endif
2249 #endif
2250
2251 #ifdef CONFIG_SCHEDSTATS
2252
2253 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2254 static bool __initdata __sched_schedstats = false;
2255
2256 static void set_schedstats(bool enabled)
2257 {
2258 if (enabled)
2259 static_branch_enable(&sched_schedstats);
2260 else
2261 static_branch_disable(&sched_schedstats);
2262 }
2263
2264 void force_schedstat_enabled(void)
2265 {
2266 if (!schedstat_enabled()) {
2267 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2268 static_branch_enable(&sched_schedstats);
2269 }
2270 }
2271
2272 static int __init setup_schedstats(char *str)
2273 {
2274 int ret = 0;
2275 if (!str)
2276 goto out;
2277
2278 /*
2279 * This code is called before jump labels have been set up, so we can't
2280 * change the static branch directly just yet. Instead set a temporary
2281 * variable so init_schedstats() can do it later.
2282 */
2283 if (!strcmp(str, "enable")) {
2284 __sched_schedstats = true;
2285 ret = 1;
2286 } else if (!strcmp(str, "disable")) {
2287 __sched_schedstats = false;
2288 ret = 1;
2289 }
2290 out:
2291 if (!ret)
2292 pr_warn("Unable to parse schedstats=\n");
2293
2294 return ret;
2295 }
2296 __setup("schedstats=", setup_schedstats);
2297
2298 static void __init init_schedstats(void)
2299 {
2300 set_schedstats(__sched_schedstats);
2301 }
2302
2303 #ifdef CONFIG_PROC_SYSCTL
2304 int sysctl_schedstats(struct ctl_table *table, int write,
2305 void __user *buffer, size_t *lenp, loff_t *ppos)
2306 {
2307 struct ctl_table t;
2308 int err;
2309 int state = static_branch_likely(&sched_schedstats);
2310
2311 if (write && !capable(CAP_SYS_ADMIN))
2312 return -EPERM;
2313
2314 t = *table;
2315 t.data = &state;
2316 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2317 if (err < 0)
2318 return err;
2319 if (write)
2320 set_schedstats(state);
2321 return err;
2322 }
2323 #endif /* CONFIG_PROC_SYSCTL */
2324 #else /* !CONFIG_SCHEDSTATS */
2325 static inline void init_schedstats(void) {}
2326 #endif /* CONFIG_SCHEDSTATS */
2327
2328 /*
2329 * fork()/clone()-time setup:
2330 */
2331 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2332 {
2333 unsigned long flags;
2334 int cpu = get_cpu();
2335
2336 __sched_fork(clone_flags, p);
2337 /*
2338 * We mark the process as NEW here. This guarantees that
2339 * nobody will actually run it, and a signal or other external
2340 * event cannot wake it up and insert it on the runqueue either.
2341 */
2342 p->state = TASK_NEW;
2343
2344 /*
2345 * Make sure we do not leak PI boosting priority to the child.
2346 */
2347 p->prio = current->normal_prio;
2348
2349 /*
2350 * Revert to default priority/policy on fork if requested.
2351 */
2352 if (unlikely(p->sched_reset_on_fork)) {
2353 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2354 p->policy = SCHED_NORMAL;
2355 p->static_prio = NICE_TO_PRIO(0);
2356 p->rt_priority = 0;
2357 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2358 p->static_prio = NICE_TO_PRIO(0);
2359
2360 p->prio = p->normal_prio = __normal_prio(p);
2361 set_load_weight(p);
2362
2363 /*
2364 * We don't need the reset flag anymore after the fork. It has
2365 * fulfilled its duty:
2366 */
2367 p->sched_reset_on_fork = 0;
2368 }
2369
2370 if (dl_prio(p->prio)) {
2371 put_cpu();
2372 return -EAGAIN;
2373 } else if (rt_prio(p->prio)) {
2374 p->sched_class = &rt_sched_class;
2375 } else {
2376 p->sched_class = &fair_sched_class;
2377 }
2378
2379 init_entity_runnable_average(&p->se);
2380
2381 /*
2382 * The child is not yet in the pid-hash so no cgroup attach races,
2383 * and the cgroup is pinned to this child due to cgroup_fork()
2384 * is ran before sched_fork().
2385 *
2386 * Silence PROVE_RCU.
2387 */
2388 raw_spin_lock_irqsave(&p->pi_lock, flags);
2389 /*
2390 * We're setting the CPU for the first time, we don't migrate,
2391 * so use __set_task_cpu().
2392 */
2393 __set_task_cpu(p, cpu);
2394 if (p->sched_class->task_fork)
2395 p->sched_class->task_fork(p);
2396 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2397
2398 #ifdef CONFIG_SCHED_INFO
2399 if (likely(sched_info_on()))
2400 memset(&p->sched_info, 0, sizeof(p->sched_info));
2401 #endif
2402 #if defined(CONFIG_SMP)
2403 p->on_cpu = 0;
2404 #endif
2405 init_task_preempt_count(p);
2406 #ifdef CONFIG_SMP
2407 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2408 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2409 #endif
2410
2411 put_cpu();
2412 return 0;
2413 }
2414
2415 unsigned long to_ratio(u64 period, u64 runtime)
2416 {
2417 if (runtime == RUNTIME_INF)
2418 return BW_UNIT;
2419
2420 /*
2421 * Doing this here saves a lot of checks in all
2422 * the calling paths, and returning zero seems
2423 * safe for them anyway.
2424 */
2425 if (period == 0)
2426 return 0;
2427
2428 return div64_u64(runtime << BW_SHIFT, period);
2429 }
2430
2431 /*
2432 * wake_up_new_task - wake up a newly created task for the first time.
2433 *
2434 * This function will do some initial scheduler statistics housekeeping
2435 * that must be done for every newly created context, then puts the task
2436 * on the runqueue and wakes it.
2437 */
2438 void wake_up_new_task(struct task_struct *p)
2439 {
2440 struct rq_flags rf;
2441 struct rq *rq;
2442
2443 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2444 p->state = TASK_RUNNING;
2445 #ifdef CONFIG_SMP
2446 /*
2447 * Fork balancing, do it here and not earlier because:
2448 * - cpus_allowed can change in the fork path
2449 * - any previously selected CPU might disappear through hotplug
2450 *
2451 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2452 * as we're not fully set-up yet.
2453 */
2454 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2455 #endif
2456 rq = __task_rq_lock(p, &rf);
2457 update_rq_clock(rq);
2458 post_init_entity_util_avg(&p->se);
2459
2460 activate_task(rq, p, ENQUEUE_NOCLOCK);
2461 p->on_rq = TASK_ON_RQ_QUEUED;
2462 trace_sched_wakeup_new(p);
2463 check_preempt_curr(rq, p, WF_FORK);
2464 #ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken) {
2466 /*
2467 * Nothing relies on rq->lock after this, so its fine to
2468 * drop it.
2469 */
2470 rq_unpin_lock(rq, &rf);
2471 p->sched_class->task_woken(rq, p);
2472 rq_repin_lock(rq, &rf);
2473 }
2474 #endif
2475 task_rq_unlock(rq, p, &rf);
2476 }
2477
2478 #ifdef CONFIG_PREEMPT_NOTIFIERS
2479
2480 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2481
2482 void preempt_notifier_inc(void)
2483 {
2484 static_key_slow_inc(&preempt_notifier_key);
2485 }
2486 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2487
2488 void preempt_notifier_dec(void)
2489 {
2490 static_key_slow_dec(&preempt_notifier_key);
2491 }
2492 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2493
2494 /**
2495 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2496 * @notifier: notifier struct to register
2497 */
2498 void preempt_notifier_register(struct preempt_notifier *notifier)
2499 {
2500 if (!static_key_false(&preempt_notifier_key))
2501 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2502
2503 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2504 }
2505 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2506
2507 /**
2508 * preempt_notifier_unregister - no longer interested in preemption notifications
2509 * @notifier: notifier struct to unregister
2510 *
2511 * This is *not* safe to call from within a preemption notifier.
2512 */
2513 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2514 {
2515 hlist_del(&notifier->link);
2516 }
2517 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2518
2519 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2520 {
2521 struct preempt_notifier *notifier;
2522
2523 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2524 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2525 }
2526
2527 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2528 {
2529 if (static_key_false(&preempt_notifier_key))
2530 __fire_sched_in_preempt_notifiers(curr);
2531 }
2532
2533 static void
2534 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 struct task_struct *next)
2536 {
2537 struct preempt_notifier *notifier;
2538
2539 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2540 notifier->ops->sched_out(notifier, next);
2541 }
2542
2543 static __always_inline void
2544 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 struct task_struct *next)
2546 {
2547 if (static_key_false(&preempt_notifier_key))
2548 __fire_sched_out_preempt_notifiers(curr, next);
2549 }
2550
2551 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2552
2553 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2554 {
2555 }
2556
2557 static inline void
2558 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2559 struct task_struct *next)
2560 {
2561 }
2562
2563 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2564
2565 /**
2566 * prepare_task_switch - prepare to switch tasks
2567 * @rq: the runqueue preparing to switch
2568 * @prev: the current task that is being switched out
2569 * @next: the task we are going to switch to.
2570 *
2571 * This is called with the rq lock held and interrupts off. It must
2572 * be paired with a subsequent finish_task_switch after the context
2573 * switch.
2574 *
2575 * prepare_task_switch sets up locking and calls architecture specific
2576 * hooks.
2577 */
2578 static inline void
2579 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2580 struct task_struct *next)
2581 {
2582 sched_info_switch(rq, prev, next);
2583 perf_event_task_sched_out(prev, next);
2584 fire_sched_out_preempt_notifiers(prev, next);
2585 prepare_lock_switch(rq, next);
2586 prepare_arch_switch(next);
2587 }
2588
2589 /**
2590 * finish_task_switch - clean up after a task-switch
2591 * @prev: the thread we just switched away from.
2592 *
2593 * finish_task_switch must be called after the context switch, paired
2594 * with a prepare_task_switch call before the context switch.
2595 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2596 * and do any other architecture-specific cleanup actions.
2597 *
2598 * Note that we may have delayed dropping an mm in context_switch(). If
2599 * so, we finish that here outside of the runqueue lock. (Doing it
2600 * with the lock held can cause deadlocks; see schedule() for
2601 * details.)
2602 *
2603 * The context switch have flipped the stack from under us and restored the
2604 * local variables which were saved when this task called schedule() in the
2605 * past. prev == current is still correct but we need to recalculate this_rq
2606 * because prev may have moved to another CPU.
2607 */
2608 static struct rq *finish_task_switch(struct task_struct *prev)
2609 __releases(rq->lock)
2610 {
2611 struct rq *rq = this_rq();
2612 struct mm_struct *mm = rq->prev_mm;
2613 long prev_state;
2614
2615 /*
2616 * The previous task will have left us with a preempt_count of 2
2617 * because it left us after:
2618 *
2619 * schedule()
2620 * preempt_disable(); // 1
2621 * __schedule()
2622 * raw_spin_lock_irq(&rq->lock) // 2
2623 *
2624 * Also, see FORK_PREEMPT_COUNT.
2625 */
2626 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2627 "corrupted preempt_count: %s/%d/0x%x\n",
2628 current->comm, current->pid, preempt_count()))
2629 preempt_count_set(FORK_PREEMPT_COUNT);
2630
2631 rq->prev_mm = NULL;
2632
2633 /*
2634 * A task struct has one reference for the use as "current".
2635 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2636 * schedule one last time. The schedule call will never return, and
2637 * the scheduled task must drop that reference.
2638 *
2639 * We must observe prev->state before clearing prev->on_cpu (in
2640 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2641 * running on another CPU and we could rave with its RUNNING -> DEAD
2642 * transition, resulting in a double drop.
2643 */
2644 prev_state = prev->state;
2645 vtime_task_switch(prev);
2646 perf_event_task_sched_in(prev, current);
2647 /*
2648 * The membarrier system call requires a full memory barrier
2649 * after storing to rq->curr, before going back to user-space.
2650 *
2651 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2652 * up adding a full barrier to switch_mm(), or we should figure
2653 * out if a smp_mb__after_unlock_lock is really the proper API
2654 * to use.
2655 */
2656 smp_mb__after_unlock_lock();
2657 finish_lock_switch(rq, prev);
2658 finish_arch_post_lock_switch();
2659
2660 fire_sched_in_preempt_notifiers(current);
2661 if (mm)
2662 mmdrop(mm);
2663 if (unlikely(prev_state == TASK_DEAD)) {
2664 if (prev->sched_class->task_dead)
2665 prev->sched_class->task_dead(prev);
2666
2667 /*
2668 * Remove function-return probe instances associated with this
2669 * task and put them back on the free list.
2670 */
2671 kprobe_flush_task(prev);
2672
2673 /* Task is done with its stack. */
2674 put_task_stack(prev);
2675
2676 put_task_struct(prev);
2677 }
2678
2679 tick_nohz_task_switch();
2680 return rq;
2681 }
2682
2683 #ifdef CONFIG_SMP
2684
2685 /* rq->lock is NOT held, but preemption is disabled */
2686 static void __balance_callback(struct rq *rq)
2687 {
2688 struct callback_head *head, *next;
2689 void (*func)(struct rq *rq);
2690 unsigned long flags;
2691
2692 raw_spin_lock_irqsave(&rq->lock, flags);
2693 head = rq->balance_callback;
2694 rq->balance_callback = NULL;
2695 while (head) {
2696 func = (void (*)(struct rq *))head->func;
2697 next = head->next;
2698 head->next = NULL;
2699 head = next;
2700
2701 func(rq);
2702 }
2703 raw_spin_unlock_irqrestore(&rq->lock, flags);
2704 }
2705
2706 static inline void balance_callback(struct rq *rq)
2707 {
2708 if (unlikely(rq->balance_callback))
2709 __balance_callback(rq);
2710 }
2711
2712 #else
2713
2714 static inline void balance_callback(struct rq *rq)
2715 {
2716 }
2717
2718 #endif
2719
2720 /**
2721 * schedule_tail - first thing a freshly forked thread must call.
2722 * @prev: the thread we just switched away from.
2723 */
2724 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2725 __releases(rq->lock)
2726 {
2727 struct rq *rq;
2728
2729 /*
2730 * New tasks start with FORK_PREEMPT_COUNT, see there and
2731 * finish_task_switch() for details.
2732 *
2733 * finish_task_switch() will drop rq->lock() and lower preempt_count
2734 * and the preempt_enable() will end up enabling preemption (on
2735 * PREEMPT_COUNT kernels).
2736 */
2737
2738 rq = finish_task_switch(prev);
2739 balance_callback(rq);
2740 preempt_enable();
2741
2742 if (current->set_child_tid)
2743 put_user(task_pid_vnr(current), current->set_child_tid);
2744 }
2745
2746 /*
2747 * context_switch - switch to the new MM and the new thread's register state.
2748 */
2749 static __always_inline struct rq *
2750 context_switch(struct rq *rq, struct task_struct *prev,
2751 struct task_struct *next, struct rq_flags *rf)
2752 {
2753 struct mm_struct *mm, *oldmm;
2754
2755 prepare_task_switch(rq, prev, next);
2756
2757 mm = next->mm;
2758 oldmm = prev->active_mm;
2759 /*
2760 * For paravirt, this is coupled with an exit in switch_to to
2761 * combine the page table reload and the switch backend into
2762 * one hypercall.
2763 */
2764 arch_start_context_switch(prev);
2765
2766 if (!mm) {
2767 next->active_mm = oldmm;
2768 mmgrab(oldmm);
2769 enter_lazy_tlb(oldmm, next);
2770 } else
2771 switch_mm_irqs_off(oldmm, mm, next);
2772
2773 if (!prev->mm) {
2774 prev->active_mm = NULL;
2775 rq->prev_mm = oldmm;
2776 }
2777
2778 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2779
2780 /*
2781 * Since the runqueue lock will be released by the next
2782 * task (which is an invalid locking op but in the case
2783 * of the scheduler it's an obvious special-case), so we
2784 * do an early lockdep release here:
2785 */
2786 rq_unpin_lock(rq, rf);
2787 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2788
2789 /* Here we just switch the register state and the stack. */
2790 switch_to(prev, next, prev);
2791 barrier();
2792
2793 return finish_task_switch(prev);
2794 }
2795
2796 /*
2797 * nr_running and nr_context_switches:
2798 *
2799 * externally visible scheduler statistics: current number of runnable
2800 * threads, total number of context switches performed since bootup.
2801 */
2802 unsigned long nr_running(void)
2803 {
2804 unsigned long i, sum = 0;
2805
2806 for_each_online_cpu(i)
2807 sum += cpu_rq(i)->nr_running;
2808
2809 return sum;
2810 }
2811
2812 /*
2813 * Check if only the current task is running on the CPU.
2814 *
2815 * Caution: this function does not check that the caller has disabled
2816 * preemption, thus the result might have a time-of-check-to-time-of-use
2817 * race. The caller is responsible to use it correctly, for example:
2818 *
2819 * - from a non-preemptable section (of course)
2820 *
2821 * - from a thread that is bound to a single CPU
2822 *
2823 * - in a loop with very short iterations (e.g. a polling loop)
2824 */
2825 bool single_task_running(void)
2826 {
2827 return raw_rq()->nr_running == 1;
2828 }
2829 EXPORT_SYMBOL(single_task_running);
2830
2831 unsigned long long nr_context_switches(void)
2832 {
2833 int i;
2834 unsigned long long sum = 0;
2835
2836 for_each_possible_cpu(i)
2837 sum += cpu_rq(i)->nr_switches;
2838
2839 return sum;
2840 }
2841
2842 /*
2843 * IO-wait accounting, and how its mostly bollocks (on SMP).
2844 *
2845 * The idea behind IO-wait account is to account the idle time that we could
2846 * have spend running if it were not for IO. That is, if we were to improve the
2847 * storage performance, we'd have a proportional reduction in IO-wait time.
2848 *
2849 * This all works nicely on UP, where, when a task blocks on IO, we account
2850 * idle time as IO-wait, because if the storage were faster, it could've been
2851 * running and we'd not be idle.
2852 *
2853 * This has been extended to SMP, by doing the same for each CPU. This however
2854 * is broken.
2855 *
2856 * Imagine for instance the case where two tasks block on one CPU, only the one
2857 * CPU will have IO-wait accounted, while the other has regular idle. Even
2858 * though, if the storage were faster, both could've ran at the same time,
2859 * utilising both CPUs.
2860 *
2861 * This means, that when looking globally, the current IO-wait accounting on
2862 * SMP is a lower bound, by reason of under accounting.
2863 *
2864 * Worse, since the numbers are provided per CPU, they are sometimes
2865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2866 * associated with any one particular CPU, it can wake to another CPU than it
2867 * blocked on. This means the per CPU IO-wait number is meaningless.
2868 *
2869 * Task CPU affinities can make all that even more 'interesting'.
2870 */
2871
2872 unsigned long nr_iowait(void)
2873 {
2874 unsigned long i, sum = 0;
2875
2876 for_each_possible_cpu(i)
2877 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2878
2879 return sum;
2880 }
2881
2882 /*
2883 * Consumers of these two interfaces, like for example the cpufreq menu
2884 * governor are using nonsensical data. Boosting frequency for a CPU that has
2885 * IO-wait which might not even end up running the task when it does become
2886 * runnable.
2887 */
2888
2889 unsigned long nr_iowait_cpu(int cpu)
2890 {
2891 struct rq *this = cpu_rq(cpu);
2892 return atomic_read(&this->nr_iowait);
2893 }
2894
2895 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2896 {
2897 struct rq *rq = this_rq();
2898 *nr_waiters = atomic_read(&rq->nr_iowait);
2899 *load = rq->load.weight;
2900 }
2901
2902 #ifdef CONFIG_SMP
2903
2904 /*
2905 * sched_exec - execve() is a valuable balancing opportunity, because at
2906 * this point the task has the smallest effective memory and cache footprint.
2907 */
2908 void sched_exec(void)
2909 {
2910 struct task_struct *p = current;
2911 unsigned long flags;
2912 int dest_cpu;
2913
2914 raw_spin_lock_irqsave(&p->pi_lock, flags);
2915 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2916 if (dest_cpu == smp_processor_id())
2917 goto unlock;
2918
2919 if (likely(cpu_active(dest_cpu))) {
2920 struct migration_arg arg = { p, dest_cpu };
2921
2922 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2923 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2924 return;
2925 }
2926 unlock:
2927 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2928 }
2929
2930 #endif
2931
2932 DEFINE_PER_CPU(struct kernel_stat, kstat);
2933 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2934
2935 EXPORT_PER_CPU_SYMBOL(kstat);
2936 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2937
2938 /*
2939 * The function fair_sched_class.update_curr accesses the struct curr
2940 * and its field curr->exec_start; when called from task_sched_runtime(),
2941 * we observe a high rate of cache misses in practice.
2942 * Prefetching this data results in improved performance.
2943 */
2944 static inline void prefetch_curr_exec_start(struct task_struct *p)
2945 {
2946 #ifdef CONFIG_FAIR_GROUP_SCHED
2947 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2948 #else
2949 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2950 #endif
2951 prefetch(curr);
2952 prefetch(&curr->exec_start);
2953 }
2954
2955 /*
2956 * Return accounted runtime for the task.
2957 * In case the task is currently running, return the runtime plus current's
2958 * pending runtime that have not been accounted yet.
2959 */
2960 unsigned long long task_sched_runtime(struct task_struct *p)
2961 {
2962 struct rq_flags rf;
2963 struct rq *rq;
2964 u64 ns;
2965
2966 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2967 /*
2968 * 64-bit doesn't need locks to atomically read a 64bit value.
2969 * So we have a optimization chance when the task's delta_exec is 0.
2970 * Reading ->on_cpu is racy, but this is ok.
2971 *
2972 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2973 * If we race with it entering CPU, unaccounted time is 0. This is
2974 * indistinguishable from the read occurring a few cycles earlier.
2975 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2976 * been accounted, so we're correct here as well.
2977 */
2978 if (!p->on_cpu || !task_on_rq_queued(p))
2979 return p->se.sum_exec_runtime;
2980 #endif
2981
2982 rq = task_rq_lock(p, &rf);
2983 /*
2984 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2985 * project cycles that may never be accounted to this
2986 * thread, breaking clock_gettime().
2987 */
2988 if (task_current(rq, p) && task_on_rq_queued(p)) {
2989 prefetch_curr_exec_start(p);
2990 update_rq_clock(rq);
2991 p->sched_class->update_curr(rq);
2992 }
2993 ns = p->se.sum_exec_runtime;
2994 task_rq_unlock(rq, p, &rf);
2995
2996 return ns;
2997 }
2998
2999 /*
3000 * This function gets called by the timer code, with HZ frequency.
3001 * We call it with interrupts disabled.
3002 */
3003 void scheduler_tick(void)
3004 {
3005 int cpu = smp_processor_id();
3006 struct rq *rq = cpu_rq(cpu);
3007 struct task_struct *curr = rq->curr;
3008 struct rq_flags rf;
3009
3010 sched_clock_tick();
3011
3012 rq_lock(rq, &rf);
3013
3014 update_rq_clock(rq);
3015 curr->sched_class->task_tick(rq, curr, 0);
3016 cpu_load_update_active(rq);
3017 calc_global_load_tick(rq);
3018
3019 rq_unlock(rq, &rf);
3020
3021 perf_event_task_tick();
3022
3023 #ifdef CONFIG_SMP
3024 rq->idle_balance = idle_cpu(cpu);
3025 trigger_load_balance(rq);
3026 #endif
3027 rq_last_tick_reset(rq);
3028 }
3029
3030 #ifdef CONFIG_NO_HZ_FULL
3031 /**
3032 * scheduler_tick_max_deferment
3033 *
3034 * Keep at least one tick per second when a single
3035 * active task is running because the scheduler doesn't
3036 * yet completely support full dynticks environment.
3037 *
3038 * This makes sure that uptime, CFS vruntime, load
3039 * balancing, etc... continue to move forward, even
3040 * with a very low granularity.
3041 *
3042 * Return: Maximum deferment in nanoseconds.
3043 */
3044 u64 scheduler_tick_max_deferment(void)
3045 {
3046 struct rq *rq = this_rq();
3047 unsigned long next, now = READ_ONCE(jiffies);
3048
3049 next = rq->last_sched_tick + HZ;
3050
3051 if (time_before_eq(next, now))
3052 return 0;
3053
3054 return jiffies_to_nsecs(next - now);
3055 }
3056 #endif
3057
3058 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3059 defined(CONFIG_PREEMPT_TRACER))
3060 /*
3061 * If the value passed in is equal to the current preempt count
3062 * then we just disabled preemption. Start timing the latency.
3063 */
3064 static inline void preempt_latency_start(int val)
3065 {
3066 if (preempt_count() == val) {
3067 unsigned long ip = get_lock_parent_ip();
3068 #ifdef CONFIG_DEBUG_PREEMPT
3069 current->preempt_disable_ip = ip;
3070 #endif
3071 trace_preempt_off(CALLER_ADDR0, ip);
3072 }
3073 }
3074
3075 void preempt_count_add(int val)
3076 {
3077 #ifdef CONFIG_DEBUG_PREEMPT
3078 /*
3079 * Underflow?
3080 */
3081 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3082 return;
3083 #endif
3084 __preempt_count_add(val);
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086 /*
3087 * Spinlock count overflowing soon?
3088 */
3089 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3090 PREEMPT_MASK - 10);
3091 #endif
3092 preempt_latency_start(val);
3093 }
3094 EXPORT_SYMBOL(preempt_count_add);
3095 NOKPROBE_SYMBOL(preempt_count_add);
3096
3097 /*
3098 * If the value passed in equals to the current preempt count
3099 * then we just enabled preemption. Stop timing the latency.
3100 */
3101 static inline void preempt_latency_stop(int val)
3102 {
3103 if (preempt_count() == val)
3104 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3105 }
3106
3107 void preempt_count_sub(int val)
3108 {
3109 #ifdef CONFIG_DEBUG_PREEMPT
3110 /*
3111 * Underflow?
3112 */
3113 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3114 return;
3115 /*
3116 * Is the spinlock portion underflowing?
3117 */
3118 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3119 !(preempt_count() & PREEMPT_MASK)))
3120 return;
3121 #endif
3122
3123 preempt_latency_stop(val);
3124 __preempt_count_sub(val);
3125 }
3126 EXPORT_SYMBOL(preempt_count_sub);
3127 NOKPROBE_SYMBOL(preempt_count_sub);
3128
3129 #else
3130 static inline void preempt_latency_start(int val) { }
3131 static inline void preempt_latency_stop(int val) { }
3132 #endif
3133
3134 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3135 {
3136 #ifdef CONFIG_DEBUG_PREEMPT
3137 return p->preempt_disable_ip;
3138 #else
3139 return 0;
3140 #endif
3141 }
3142
3143 /*
3144 * Print scheduling while atomic bug:
3145 */
3146 static noinline void __schedule_bug(struct task_struct *prev)
3147 {
3148 /* Save this before calling printk(), since that will clobber it */
3149 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3150
3151 if (oops_in_progress)
3152 return;
3153
3154 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3155 prev->comm, prev->pid, preempt_count());
3156
3157 debug_show_held_locks(prev);
3158 print_modules();
3159 if (irqs_disabled())
3160 print_irqtrace_events(prev);
3161 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3162 && in_atomic_preempt_off()) {
3163 pr_err("Preemption disabled at:");
3164 print_ip_sym(preempt_disable_ip);
3165 pr_cont("\n");
3166 }
3167 if (panic_on_warn)
3168 panic("scheduling while atomic\n");
3169
3170 dump_stack();
3171 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3172 }
3173
3174 /*
3175 * Various schedule()-time debugging checks and statistics:
3176 */
3177 static inline void schedule_debug(struct task_struct *prev)
3178 {
3179 #ifdef CONFIG_SCHED_STACK_END_CHECK
3180 if (task_stack_end_corrupted(prev))
3181 panic("corrupted stack end detected inside scheduler\n");
3182 #endif
3183
3184 if (unlikely(in_atomic_preempt_off())) {
3185 __schedule_bug(prev);
3186 preempt_count_set(PREEMPT_DISABLED);
3187 }
3188 rcu_sleep_check();
3189
3190 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3191
3192 schedstat_inc(this_rq()->sched_count);
3193 }
3194
3195 /*
3196 * Pick up the highest-prio task:
3197 */
3198 static inline struct task_struct *
3199 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3200 {
3201 const struct sched_class *class;
3202 struct task_struct *p;
3203
3204 /*
3205 * Optimization: we know that if all tasks are in the fair class we can
3206 * call that function directly, but only if the @prev task wasn't of a
3207 * higher scheduling class, because otherwise those loose the
3208 * opportunity to pull in more work from other CPUs.
3209 */
3210 if (likely((prev->sched_class == &idle_sched_class ||
3211 prev->sched_class == &fair_sched_class) &&
3212 rq->nr_running == rq->cfs.h_nr_running)) {
3213
3214 p = fair_sched_class.pick_next_task(rq, prev, rf);
3215 if (unlikely(p == RETRY_TASK))
3216 goto again;
3217
3218 /* Assumes fair_sched_class->next == idle_sched_class */
3219 if (unlikely(!p))
3220 p = idle_sched_class.pick_next_task(rq, prev, rf);
3221
3222 return p;
3223 }
3224
3225 again:
3226 for_each_class(class) {
3227 p = class->pick_next_task(rq, prev, rf);
3228 if (p) {
3229 if (unlikely(p == RETRY_TASK))
3230 goto again;
3231 return p;
3232 }
3233 }
3234
3235 /* The idle class should always have a runnable task: */
3236 BUG();
3237 }
3238
3239 /*
3240 * __schedule() is the main scheduler function.
3241 *
3242 * The main means of driving the scheduler and thus entering this function are:
3243 *
3244 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3245 *
3246 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3247 * paths. For example, see arch/x86/entry_64.S.
3248 *
3249 * To drive preemption between tasks, the scheduler sets the flag in timer
3250 * interrupt handler scheduler_tick().
3251 *
3252 * 3. Wakeups don't really cause entry into schedule(). They add a
3253 * task to the run-queue and that's it.
3254 *
3255 * Now, if the new task added to the run-queue preempts the current
3256 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3257 * called on the nearest possible occasion:
3258 *
3259 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3260 *
3261 * - in syscall or exception context, at the next outmost
3262 * preempt_enable(). (this might be as soon as the wake_up()'s
3263 * spin_unlock()!)
3264 *
3265 * - in IRQ context, return from interrupt-handler to
3266 * preemptible context
3267 *
3268 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3269 * then at the next:
3270 *
3271 * - cond_resched() call
3272 * - explicit schedule() call
3273 * - return from syscall or exception to user-space
3274 * - return from interrupt-handler to user-space
3275 *
3276 * WARNING: must be called with preemption disabled!
3277 */
3278 static void __sched notrace __schedule(bool preempt)
3279 {
3280 struct task_struct *prev, *next;
3281 unsigned long *switch_count;
3282 struct rq_flags rf;
3283 struct rq *rq;
3284 int cpu;
3285
3286 cpu = smp_processor_id();
3287 rq = cpu_rq(cpu);
3288 prev = rq->curr;
3289
3290 schedule_debug(prev);
3291
3292 if (sched_feat(HRTICK))
3293 hrtick_clear(rq);
3294
3295 local_irq_disable();
3296 rcu_note_context_switch(preempt);
3297
3298 /*
3299 * Make sure that signal_pending_state()->signal_pending() below
3300 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3301 * done by the caller to avoid the race with signal_wake_up().
3302 */
3303 rq_lock(rq, &rf);
3304 smp_mb__after_spinlock();
3305
3306 /* Promote REQ to ACT */
3307 rq->clock_update_flags <<= 1;
3308 update_rq_clock(rq);
3309
3310 switch_count = &prev->nivcsw;
3311 if (!preempt && prev->state) {
3312 if (unlikely(signal_pending_state(prev->state, prev))) {
3313 prev->state = TASK_RUNNING;
3314 } else {
3315 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3316 prev->on_rq = 0;
3317
3318 if (prev->in_iowait) {
3319 atomic_inc(&rq->nr_iowait);
3320 delayacct_blkio_start();
3321 }
3322
3323 /*
3324 * If a worker went to sleep, notify and ask workqueue
3325 * whether it wants to wake up a task to maintain
3326 * concurrency.
3327 */
3328 if (prev->flags & PF_WQ_WORKER) {
3329 struct task_struct *to_wakeup;
3330
3331 to_wakeup = wq_worker_sleeping(prev);
3332 if (to_wakeup)
3333 try_to_wake_up_local(to_wakeup, &rf);
3334 }
3335 }
3336 switch_count = &prev->nvcsw;
3337 }
3338
3339 next = pick_next_task(rq, prev, &rf);
3340 clear_tsk_need_resched(prev);
3341 clear_preempt_need_resched();
3342
3343 if (likely(prev != next)) {
3344 rq->nr_switches++;
3345 rq->curr = next;
3346 /*
3347 * The membarrier system call requires each architecture
3348 * to have a full memory barrier after updating
3349 * rq->curr, before returning to user-space. For TSO
3350 * (e.g. x86), the architecture must provide its own
3351 * barrier in switch_mm(). For weakly ordered machines
3352 * for which spin_unlock() acts as a full memory
3353 * barrier, finish_lock_switch() in common code takes
3354 * care of this barrier. For weakly ordered machines for
3355 * which spin_unlock() acts as a RELEASE barrier (only
3356 * arm64 and PowerPC), arm64 has a full barrier in
3357 * switch_to(), and PowerPC has
3358 * smp_mb__after_unlock_lock() before
3359 * finish_lock_switch().
3360 */
3361 ++*switch_count;
3362
3363 trace_sched_switch(preempt, prev, next);
3364
3365 /* Also unlocks the rq: */
3366 rq = context_switch(rq, prev, next, &rf);
3367 } else {
3368 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3369 rq_unlock_irq(rq, &rf);
3370 }
3371
3372 balance_callback(rq);
3373 }
3374
3375 void __noreturn do_task_dead(void)
3376 {
3377 /*
3378 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3379 * when the following two conditions become true.
3380 * - There is race condition of mmap_sem (It is acquired by
3381 * exit_mm()), and
3382 * - SMI occurs before setting TASK_RUNINNG.
3383 * (or hypervisor of virtual machine switches to other guest)
3384 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3385 *
3386 * To avoid it, we have to wait for releasing tsk->pi_lock which
3387 * is held by try_to_wake_up()
3388 */
3389 raw_spin_lock_irq(&current->pi_lock);
3390 raw_spin_unlock_irq(&current->pi_lock);
3391
3392 /* Causes final put_task_struct in finish_task_switch(): */
3393 __set_current_state(TASK_DEAD);
3394
3395 /* Tell freezer to ignore us: */
3396 current->flags |= PF_NOFREEZE;
3397
3398 __schedule(false);
3399 BUG();
3400
3401 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3402 for (;;)
3403 cpu_relax();
3404 }
3405
3406 static inline void sched_submit_work(struct task_struct *tsk)
3407 {
3408 if (!tsk->state || tsk_is_pi_blocked(tsk))
3409 return;
3410 /*
3411 * If we are going to sleep and we have plugged IO queued,
3412 * make sure to submit it to avoid deadlocks.
3413 */
3414 if (blk_needs_flush_plug(tsk))
3415 blk_schedule_flush_plug(tsk);
3416 }
3417
3418 asmlinkage __visible void __sched schedule(void)
3419 {
3420 struct task_struct *tsk = current;
3421
3422 sched_submit_work(tsk);
3423 do {
3424 preempt_disable();
3425 __schedule(false);
3426 sched_preempt_enable_no_resched();
3427 } while (need_resched());
3428 }
3429 EXPORT_SYMBOL(schedule);
3430
3431 /*
3432 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3433 * state (have scheduled out non-voluntarily) by making sure that all
3434 * tasks have either left the run queue or have gone into user space.
3435 * As idle tasks do not do either, they must not ever be preempted
3436 * (schedule out non-voluntarily).
3437 *
3438 * schedule_idle() is similar to schedule_preempt_disable() except that it
3439 * never enables preemption because it does not call sched_submit_work().
3440 */
3441 void __sched schedule_idle(void)
3442 {
3443 /*
3444 * As this skips calling sched_submit_work(), which the idle task does
3445 * regardless because that function is a nop when the task is in a
3446 * TASK_RUNNING state, make sure this isn't used someplace that the
3447 * current task can be in any other state. Note, idle is always in the
3448 * TASK_RUNNING state.
3449 */
3450 WARN_ON_ONCE(current->state);
3451 do {
3452 __schedule(false);
3453 } while (need_resched());
3454 }
3455
3456 #ifdef CONFIG_CONTEXT_TRACKING
3457 asmlinkage __visible void __sched schedule_user(void)
3458 {
3459 /*
3460 * If we come here after a random call to set_need_resched(),
3461 * or we have been woken up remotely but the IPI has not yet arrived,
3462 * we haven't yet exited the RCU idle mode. Do it here manually until
3463 * we find a better solution.
3464 *
3465 * NB: There are buggy callers of this function. Ideally we
3466 * should warn if prev_state != CONTEXT_USER, but that will trigger
3467 * too frequently to make sense yet.
3468 */
3469 enum ctx_state prev_state = exception_enter();
3470 schedule();
3471 exception_exit(prev_state);
3472 }
3473 #endif
3474
3475 /**
3476 * schedule_preempt_disabled - called with preemption disabled
3477 *
3478 * Returns with preemption disabled. Note: preempt_count must be 1
3479 */
3480 void __sched schedule_preempt_disabled(void)
3481 {
3482 sched_preempt_enable_no_resched();
3483 schedule();
3484 preempt_disable();
3485 }
3486
3487 static void __sched notrace preempt_schedule_common(void)
3488 {
3489 do {
3490 /*
3491 * Because the function tracer can trace preempt_count_sub()
3492 * and it also uses preempt_enable/disable_notrace(), if
3493 * NEED_RESCHED is set, the preempt_enable_notrace() called
3494 * by the function tracer will call this function again and
3495 * cause infinite recursion.
3496 *
3497 * Preemption must be disabled here before the function
3498 * tracer can trace. Break up preempt_disable() into two
3499 * calls. One to disable preemption without fear of being
3500 * traced. The other to still record the preemption latency,
3501 * which can also be traced by the function tracer.
3502 */
3503 preempt_disable_notrace();
3504 preempt_latency_start(1);
3505 __schedule(true);
3506 preempt_latency_stop(1);
3507 preempt_enable_no_resched_notrace();
3508
3509 /*
3510 * Check again in case we missed a preemption opportunity
3511 * between schedule and now.
3512 */
3513 } while (need_resched());
3514 }
3515
3516 #ifdef CONFIG_PREEMPT
3517 /*
3518 * this is the entry point to schedule() from in-kernel preemption
3519 * off of preempt_enable. Kernel preemptions off return from interrupt
3520 * occur there and call schedule directly.
3521 */
3522 asmlinkage __visible void __sched notrace preempt_schedule(void)
3523 {
3524 /*
3525 * If there is a non-zero preempt_count or interrupts are disabled,
3526 * we do not want to preempt the current task. Just return..
3527 */
3528 if (likely(!preemptible()))
3529 return;
3530
3531 preempt_schedule_common();
3532 }
3533 NOKPROBE_SYMBOL(preempt_schedule);
3534 EXPORT_SYMBOL(preempt_schedule);
3535
3536 /**
3537 * preempt_schedule_notrace - preempt_schedule called by tracing
3538 *
3539 * The tracing infrastructure uses preempt_enable_notrace to prevent
3540 * recursion and tracing preempt enabling caused by the tracing
3541 * infrastructure itself. But as tracing can happen in areas coming
3542 * from userspace or just about to enter userspace, a preempt enable
3543 * can occur before user_exit() is called. This will cause the scheduler
3544 * to be called when the system is still in usermode.
3545 *
3546 * To prevent this, the preempt_enable_notrace will use this function
3547 * instead of preempt_schedule() to exit user context if needed before
3548 * calling the scheduler.
3549 */
3550 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3551 {
3552 enum ctx_state prev_ctx;
3553
3554 if (likely(!preemptible()))
3555 return;
3556
3557 do {
3558 /*
3559 * Because the function tracer can trace preempt_count_sub()
3560 * and it also uses preempt_enable/disable_notrace(), if
3561 * NEED_RESCHED is set, the preempt_enable_notrace() called
3562 * by the function tracer will call this function again and
3563 * cause infinite recursion.
3564 *
3565 * Preemption must be disabled here before the function
3566 * tracer can trace. Break up preempt_disable() into two
3567 * calls. One to disable preemption without fear of being
3568 * traced. The other to still record the preemption latency,
3569 * which can also be traced by the function tracer.
3570 */
3571 preempt_disable_notrace();
3572 preempt_latency_start(1);
3573 /*
3574 * Needs preempt disabled in case user_exit() is traced
3575 * and the tracer calls preempt_enable_notrace() causing
3576 * an infinite recursion.
3577 */
3578 prev_ctx = exception_enter();
3579 __schedule(true);
3580 exception_exit(prev_ctx);
3581
3582 preempt_latency_stop(1);
3583 preempt_enable_no_resched_notrace();
3584 } while (need_resched());
3585 }
3586 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3587
3588 #endif /* CONFIG_PREEMPT */
3589
3590 /*
3591 * this is the entry point to schedule() from kernel preemption
3592 * off of irq context.
3593 * Note, that this is called and return with irqs disabled. This will
3594 * protect us against recursive calling from irq.
3595 */
3596 asmlinkage __visible void __sched preempt_schedule_irq(void)
3597 {
3598 enum ctx_state prev_state;
3599
3600 /* Catch callers which need to be fixed */
3601 BUG_ON(preempt_count() || !irqs_disabled());
3602
3603 prev_state = exception_enter();
3604
3605 do {
3606 preempt_disable();
3607 local_irq_enable();
3608 __schedule(true);
3609 local_irq_disable();
3610 sched_preempt_enable_no_resched();
3611 } while (need_resched());
3612
3613 exception_exit(prev_state);
3614 }
3615
3616 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3617 void *key)
3618 {
3619 return try_to_wake_up(curr->private, mode, wake_flags);
3620 }
3621 EXPORT_SYMBOL(default_wake_function);
3622
3623 #ifdef CONFIG_RT_MUTEXES
3624
3625 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3626 {
3627 if (pi_task)
3628 prio = min(prio, pi_task->prio);
3629
3630 return prio;
3631 }
3632
3633 static inline int rt_effective_prio(struct task_struct *p, int prio)
3634 {
3635 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3636
3637 return __rt_effective_prio(pi_task, prio);
3638 }
3639
3640 /*
3641 * rt_mutex_setprio - set the current priority of a task
3642 * @p: task to boost
3643 * @pi_task: donor task
3644 *
3645 * This function changes the 'effective' priority of a task. It does
3646 * not touch ->normal_prio like __setscheduler().
3647 *
3648 * Used by the rt_mutex code to implement priority inheritance
3649 * logic. Call site only calls if the priority of the task changed.
3650 */
3651 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3652 {
3653 int prio, oldprio, queued, running, queue_flag =
3654 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3655 const struct sched_class *prev_class;
3656 struct rq_flags rf;
3657 struct rq *rq;
3658
3659 /* XXX used to be waiter->prio, not waiter->task->prio */
3660 prio = __rt_effective_prio(pi_task, p->normal_prio);
3661
3662 /*
3663 * If nothing changed; bail early.
3664 */
3665 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3666 return;
3667
3668 rq = __task_rq_lock(p, &rf);
3669 update_rq_clock(rq);
3670 /*
3671 * Set under pi_lock && rq->lock, such that the value can be used under
3672 * either lock.
3673 *
3674 * Note that there is loads of tricky to make this pointer cache work
3675 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3676 * ensure a task is de-boosted (pi_task is set to NULL) before the
3677 * task is allowed to run again (and can exit). This ensures the pointer
3678 * points to a blocked task -- which guaratees the task is present.
3679 */
3680 p->pi_top_task = pi_task;
3681
3682 /*
3683 * For FIFO/RR we only need to set prio, if that matches we're done.
3684 */
3685 if (prio == p->prio && !dl_prio(prio))
3686 goto out_unlock;
3687
3688 /*
3689 * Idle task boosting is a nono in general. There is one
3690 * exception, when PREEMPT_RT and NOHZ is active:
3691 *
3692 * The idle task calls get_next_timer_interrupt() and holds
3693 * the timer wheel base->lock on the CPU and another CPU wants
3694 * to access the timer (probably to cancel it). We can safely
3695 * ignore the boosting request, as the idle CPU runs this code
3696 * with interrupts disabled and will complete the lock
3697 * protected section without being interrupted. So there is no
3698 * real need to boost.
3699 */
3700 if (unlikely(p == rq->idle)) {
3701 WARN_ON(p != rq->curr);
3702 WARN_ON(p->pi_blocked_on);
3703 goto out_unlock;
3704 }
3705
3706 trace_sched_pi_setprio(p, pi_task);
3707 oldprio = p->prio;
3708
3709 if (oldprio == prio)
3710 queue_flag &= ~DEQUEUE_MOVE;
3711
3712 prev_class = p->sched_class;
3713 queued = task_on_rq_queued(p);
3714 running = task_current(rq, p);
3715 if (queued)
3716 dequeue_task(rq, p, queue_flag);
3717 if (running)
3718 put_prev_task(rq, p);
3719
3720 /*
3721 * Boosting condition are:
3722 * 1. -rt task is running and holds mutex A
3723 * --> -dl task blocks on mutex A
3724 *
3725 * 2. -dl task is running and holds mutex A
3726 * --> -dl task blocks on mutex A and could preempt the
3727 * running task
3728 */
3729 if (dl_prio(prio)) {
3730 if (!dl_prio(p->normal_prio) ||
3731 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3732 p->dl.dl_boosted = 1;
3733 queue_flag |= ENQUEUE_REPLENISH;
3734 } else
3735 p->dl.dl_boosted = 0;
3736 p->sched_class = &dl_sched_class;
3737 } else if (rt_prio(prio)) {
3738 if (dl_prio(oldprio))
3739 p->dl.dl_boosted = 0;
3740 if (oldprio < prio)
3741 queue_flag |= ENQUEUE_HEAD;
3742 p->sched_class = &rt_sched_class;
3743 } else {
3744 if (dl_prio(oldprio))
3745 p->dl.dl_boosted = 0;
3746 if (rt_prio(oldprio))
3747 p->rt.timeout = 0;
3748 p->sched_class = &fair_sched_class;
3749 }
3750
3751 p->prio = prio;
3752
3753 if (queued)
3754 enqueue_task(rq, p, queue_flag);
3755 if (running)
3756 set_curr_task(rq, p);
3757
3758 check_class_changed(rq, p, prev_class, oldprio);
3759 out_unlock:
3760 /* Avoid rq from going away on us: */
3761 preempt_disable();
3762 __task_rq_unlock(rq, &rf);
3763
3764 balance_callback(rq);
3765 preempt_enable();
3766 }
3767 #else
3768 static inline int rt_effective_prio(struct task_struct *p, int prio)
3769 {
3770 return prio;
3771 }
3772 #endif
3773
3774 void set_user_nice(struct task_struct *p, long nice)
3775 {
3776 bool queued, running;
3777 int old_prio, delta;
3778 struct rq_flags rf;
3779 struct rq *rq;
3780
3781 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3782 return;
3783 /*
3784 * We have to be careful, if called from sys_setpriority(),
3785 * the task might be in the middle of scheduling on another CPU.
3786 */
3787 rq = task_rq_lock(p, &rf);
3788 update_rq_clock(rq);
3789
3790 /*
3791 * The RT priorities are set via sched_setscheduler(), but we still
3792 * allow the 'normal' nice value to be set - but as expected
3793 * it wont have any effect on scheduling until the task is
3794 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3795 */
3796 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3797 p->static_prio = NICE_TO_PRIO(nice);
3798 goto out_unlock;
3799 }
3800 queued = task_on_rq_queued(p);
3801 running = task_current(rq, p);
3802 if (queued)
3803 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3804 if (running)
3805 put_prev_task(rq, p);
3806
3807 p->static_prio = NICE_TO_PRIO(nice);
3808 set_load_weight(p);
3809 old_prio = p->prio;
3810 p->prio = effective_prio(p);
3811 delta = p->prio - old_prio;
3812
3813 if (queued) {
3814 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3815 /*
3816 * If the task increased its priority or is running and
3817 * lowered its priority, then reschedule its CPU:
3818 */
3819 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3820 resched_curr(rq);
3821 }
3822 if (running)
3823 set_curr_task(rq, p);
3824 out_unlock:
3825 task_rq_unlock(rq, p, &rf);
3826 }
3827 EXPORT_SYMBOL(set_user_nice);
3828
3829 /*
3830 * can_nice - check if a task can reduce its nice value
3831 * @p: task
3832 * @nice: nice value
3833 */
3834 int can_nice(const struct task_struct *p, const int nice)
3835 {
3836 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3837 int nice_rlim = nice_to_rlimit(nice);
3838
3839 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3840 capable(CAP_SYS_NICE));
3841 }
3842
3843 #ifdef __ARCH_WANT_SYS_NICE
3844
3845 /*
3846 * sys_nice - change the priority of the current process.
3847 * @increment: priority increment
3848 *
3849 * sys_setpriority is a more generic, but much slower function that
3850 * does similar things.
3851 */
3852 SYSCALL_DEFINE1(nice, int, increment)
3853 {
3854 long nice, retval;
3855
3856 /*
3857 * Setpriority might change our priority at the same moment.
3858 * We don't have to worry. Conceptually one call occurs first
3859 * and we have a single winner.
3860 */
3861 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3862 nice = task_nice(current) + increment;
3863
3864 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3865 if (increment < 0 && !can_nice(current, nice))
3866 return -EPERM;
3867
3868 retval = security_task_setnice(current, nice);
3869 if (retval)
3870 return retval;
3871
3872 set_user_nice(current, nice);
3873 return 0;
3874 }
3875
3876 #endif
3877
3878 /**
3879 * task_prio - return the priority value of a given task.
3880 * @p: the task in question.
3881 *
3882 * Return: The priority value as seen by users in /proc.
3883 * RT tasks are offset by -200. Normal tasks are centered
3884 * around 0, value goes from -16 to +15.
3885 */
3886 int task_prio(const struct task_struct *p)
3887 {
3888 return p->prio - MAX_RT_PRIO;
3889 }
3890
3891 /**
3892 * idle_cpu - is a given CPU idle currently?
3893 * @cpu: the processor in question.
3894 *
3895 * Return: 1 if the CPU is currently idle. 0 otherwise.
3896 */
3897 int idle_cpu(int cpu)
3898 {
3899 struct rq *rq = cpu_rq(cpu);
3900
3901 if (rq->curr != rq->idle)
3902 return 0;
3903
3904 if (rq->nr_running)
3905 return 0;
3906
3907 #ifdef CONFIG_SMP
3908 if (!llist_empty(&rq->wake_list))
3909 return 0;
3910 #endif
3911
3912 return 1;
3913 }
3914
3915 /**
3916 * idle_task - return the idle task for a given CPU.
3917 * @cpu: the processor in question.
3918 *
3919 * Return: The idle task for the CPU @cpu.
3920 */
3921 struct task_struct *idle_task(int cpu)
3922 {
3923 return cpu_rq(cpu)->idle;
3924 }
3925
3926 /**
3927 * find_process_by_pid - find a process with a matching PID value.
3928 * @pid: the pid in question.
3929 *
3930 * The task of @pid, if found. %NULL otherwise.
3931 */
3932 static struct task_struct *find_process_by_pid(pid_t pid)
3933 {
3934 return pid ? find_task_by_vpid(pid) : current;
3935 }
3936
3937 /*
3938 * sched_setparam() passes in -1 for its policy, to let the functions
3939 * it calls know not to change it.
3940 */
3941 #define SETPARAM_POLICY -1
3942
3943 static void __setscheduler_params(struct task_struct *p,
3944 const struct sched_attr *attr)
3945 {
3946 int policy = attr->sched_policy;
3947
3948 if (policy == SETPARAM_POLICY)
3949 policy = p->policy;
3950
3951 p->policy = policy;
3952
3953 if (dl_policy(policy))
3954 __setparam_dl(p, attr);
3955 else if (fair_policy(policy))
3956 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957
3958 /*
3959 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960 * !rt_policy. Always setting this ensures that things like
3961 * getparam()/getattr() don't report silly values for !rt tasks.
3962 */
3963 p->rt_priority = attr->sched_priority;
3964 p->normal_prio = normal_prio(p);
3965 set_load_weight(p);
3966 }
3967
3968 /* Actually do priority change: must hold pi & rq lock. */
3969 static void __setscheduler(struct rq *rq, struct task_struct *p,
3970 const struct sched_attr *attr, bool keep_boost)
3971 {
3972 __setscheduler_params(p, attr);
3973
3974 /*
3975 * Keep a potential priority boosting if called from
3976 * sched_setscheduler().
3977 */
3978 p->prio = normal_prio(p);
3979 if (keep_boost)
3980 p->prio = rt_effective_prio(p, p->prio);
3981
3982 if (dl_prio(p->prio))
3983 p->sched_class = &dl_sched_class;
3984 else if (rt_prio(p->prio))
3985 p->sched_class = &rt_sched_class;
3986 else
3987 p->sched_class = &fair_sched_class;
3988 }
3989
3990 /*
3991 * Check the target process has a UID that matches the current process's:
3992 */
3993 static bool check_same_owner(struct task_struct *p)
3994 {
3995 const struct cred *cred = current_cred(), *pcred;
3996 bool match;
3997
3998 rcu_read_lock();
3999 pcred = __task_cred(p);
4000 match = (uid_eq(cred->euid, pcred->euid) ||
4001 uid_eq(cred->euid, pcred->uid));
4002 rcu_read_unlock();
4003 return match;
4004 }
4005
4006 static int __sched_setscheduler(struct task_struct *p,
4007 const struct sched_attr *attr,
4008 bool user, bool pi)
4009 {
4010 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4011 MAX_RT_PRIO - 1 - attr->sched_priority;
4012 int retval, oldprio, oldpolicy = -1, queued, running;
4013 int new_effective_prio, policy = attr->sched_policy;
4014 const struct sched_class *prev_class;
4015 struct rq_flags rf;
4016 int reset_on_fork;
4017 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4018 struct rq *rq;
4019
4020 /* The pi code expects interrupts enabled */
4021 BUG_ON(pi && in_interrupt());
4022 recheck:
4023 /* Double check policy once rq lock held: */
4024 if (policy < 0) {
4025 reset_on_fork = p->sched_reset_on_fork;
4026 policy = oldpolicy = p->policy;
4027 } else {
4028 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4029
4030 if (!valid_policy(policy))
4031 return -EINVAL;
4032 }
4033
4034 if (attr->sched_flags &
4035 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4036 return -EINVAL;
4037
4038 /*
4039 * Valid priorities for SCHED_FIFO and SCHED_RR are
4040 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4041 * SCHED_BATCH and SCHED_IDLE is 0.
4042 */
4043 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4044 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4045 return -EINVAL;
4046 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4047 (rt_policy(policy) != (attr->sched_priority != 0)))
4048 return -EINVAL;
4049
4050 /*
4051 * Allow unprivileged RT tasks to decrease priority:
4052 */
4053 if (user && !capable(CAP_SYS_NICE)) {
4054 if (fair_policy(policy)) {
4055 if (attr->sched_nice < task_nice(p) &&
4056 !can_nice(p, attr->sched_nice))
4057 return -EPERM;
4058 }
4059
4060 if (rt_policy(policy)) {
4061 unsigned long rlim_rtprio =
4062 task_rlimit(p, RLIMIT_RTPRIO);
4063
4064 /* Can't set/change the rt policy: */
4065 if (policy != p->policy && !rlim_rtprio)
4066 return -EPERM;
4067
4068 /* Can't increase priority: */
4069 if (attr->sched_priority > p->rt_priority &&
4070 attr->sched_priority > rlim_rtprio)
4071 return -EPERM;
4072 }
4073
4074 /*
4075 * Can't set/change SCHED_DEADLINE policy at all for now
4076 * (safest behavior); in the future we would like to allow
4077 * unprivileged DL tasks to increase their relative deadline
4078 * or reduce their runtime (both ways reducing utilization)
4079 */
4080 if (dl_policy(policy))
4081 return -EPERM;
4082
4083 /*
4084 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4085 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4086 */
4087 if (idle_policy(p->policy) && !idle_policy(policy)) {
4088 if (!can_nice(p, task_nice(p)))
4089 return -EPERM;
4090 }
4091
4092 /* Can't change other user's priorities: */
4093 if (!check_same_owner(p))
4094 return -EPERM;
4095
4096 /* Normal users shall not reset the sched_reset_on_fork flag: */
4097 if (p->sched_reset_on_fork && !reset_on_fork)
4098 return -EPERM;
4099 }
4100
4101 if (user) {
4102 retval = security_task_setscheduler(p);
4103 if (retval)
4104 return retval;
4105 }
4106
4107 /*
4108 * Make sure no PI-waiters arrive (or leave) while we are
4109 * changing the priority of the task:
4110 *
4111 * To be able to change p->policy safely, the appropriate
4112 * runqueue lock must be held.
4113 */
4114 rq = task_rq_lock(p, &rf);
4115 update_rq_clock(rq);
4116
4117 /*
4118 * Changing the policy of the stop threads its a very bad idea:
4119 */
4120 if (p == rq->stop) {
4121 task_rq_unlock(rq, p, &rf);
4122 return -EINVAL;
4123 }
4124
4125 /*
4126 * If not changing anything there's no need to proceed further,
4127 * but store a possible modification of reset_on_fork.
4128 */
4129 if (unlikely(policy == p->policy)) {
4130 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4131 goto change;
4132 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4133 goto change;
4134 if (dl_policy(policy) && dl_param_changed(p, attr))
4135 goto change;
4136
4137 p->sched_reset_on_fork = reset_on_fork;
4138 task_rq_unlock(rq, p, &rf);
4139 return 0;
4140 }
4141 change:
4142
4143 if (user) {
4144 #ifdef CONFIG_RT_GROUP_SCHED
4145 /*
4146 * Do not allow realtime tasks into groups that have no runtime
4147 * assigned.
4148 */
4149 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4150 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4151 !task_group_is_autogroup(task_group(p))) {
4152 task_rq_unlock(rq, p, &rf);
4153 return -EPERM;
4154 }
4155 #endif
4156 #ifdef CONFIG_SMP
4157 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4158 cpumask_t *span = rq->rd->span;
4159
4160 /*
4161 * Don't allow tasks with an affinity mask smaller than
4162 * the entire root_domain to become SCHED_DEADLINE. We
4163 * will also fail if there's no bandwidth available.
4164 */
4165 if (!cpumask_subset(span, &p->cpus_allowed) ||
4166 rq->rd->dl_bw.bw == 0) {
4167 task_rq_unlock(rq, p, &rf);
4168 return -EPERM;
4169 }
4170 }
4171 #endif
4172 }
4173
4174 /* Re-check policy now with rq lock held: */
4175 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4176 policy = oldpolicy = -1;
4177 task_rq_unlock(rq, p, &rf);
4178 goto recheck;
4179 }
4180
4181 /*
4182 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4183 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4184 * is available.
4185 */
4186 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4187 task_rq_unlock(rq, p, &rf);
4188 return -EBUSY;
4189 }
4190
4191 p->sched_reset_on_fork = reset_on_fork;
4192 oldprio = p->prio;
4193
4194 if (pi) {
4195 /*
4196 * Take priority boosted tasks into account. If the new
4197 * effective priority is unchanged, we just store the new
4198 * normal parameters and do not touch the scheduler class and
4199 * the runqueue. This will be done when the task deboost
4200 * itself.
4201 */
4202 new_effective_prio = rt_effective_prio(p, newprio);
4203 if (new_effective_prio == oldprio)
4204 queue_flags &= ~DEQUEUE_MOVE;
4205 }
4206
4207 queued = task_on_rq_queued(p);
4208 running = task_current(rq, p);
4209 if (queued)
4210 dequeue_task(rq, p, queue_flags);
4211 if (running)
4212 put_prev_task(rq, p);
4213
4214 prev_class = p->sched_class;
4215 __setscheduler(rq, p, attr, pi);
4216
4217 if (queued) {
4218 /*
4219 * We enqueue to tail when the priority of a task is
4220 * increased (user space view).
4221 */
4222 if (oldprio < p->prio)
4223 queue_flags |= ENQUEUE_HEAD;
4224
4225 enqueue_task(rq, p, queue_flags);
4226 }
4227 if (running)
4228 set_curr_task(rq, p);
4229
4230 check_class_changed(rq, p, prev_class, oldprio);
4231
4232 /* Avoid rq from going away on us: */
4233 preempt_disable();
4234 task_rq_unlock(rq, p, &rf);
4235
4236 if (pi)
4237 rt_mutex_adjust_pi(p);
4238
4239 /* Run balance callbacks after we've adjusted the PI chain: */
4240 balance_callback(rq);
4241 preempt_enable();
4242
4243 return 0;
4244 }
4245
4246 static int _sched_setscheduler(struct task_struct *p, int policy,
4247 const struct sched_param *param, bool check)
4248 {
4249 struct sched_attr attr = {
4250 .sched_policy = policy,
4251 .sched_priority = param->sched_priority,
4252 .sched_nice = PRIO_TO_NICE(p->static_prio),
4253 };
4254
4255 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4256 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4257 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4258 policy &= ~SCHED_RESET_ON_FORK;
4259 attr.sched_policy = policy;
4260 }
4261
4262 return __sched_setscheduler(p, &attr, check, true);
4263 }
4264 /**
4265 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4266 * @p: the task in question.
4267 * @policy: new policy.
4268 * @param: structure containing the new RT priority.
4269 *
4270 * Return: 0 on success. An error code otherwise.
4271 *
4272 * NOTE that the task may be already dead.
4273 */
4274 int sched_setscheduler(struct task_struct *p, int policy,
4275 const struct sched_param *param)
4276 {
4277 return _sched_setscheduler(p, policy, param, true);
4278 }
4279 EXPORT_SYMBOL_GPL(sched_setscheduler);
4280
4281 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4282 {
4283 return __sched_setscheduler(p, attr, true, true);
4284 }
4285 EXPORT_SYMBOL_GPL(sched_setattr);
4286
4287 /**
4288 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4289 * @p: the task in question.
4290 * @policy: new policy.
4291 * @param: structure containing the new RT priority.
4292 *
4293 * Just like sched_setscheduler, only don't bother checking if the
4294 * current context has permission. For example, this is needed in
4295 * stop_machine(): we create temporary high priority worker threads,
4296 * but our caller might not have that capability.
4297 *
4298 * Return: 0 on success. An error code otherwise.
4299 */
4300 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4301 const struct sched_param *param)
4302 {
4303 return _sched_setscheduler(p, policy, param, false);
4304 }
4305 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4306
4307 static int
4308 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4309 {
4310 struct sched_param lparam;
4311 struct task_struct *p;
4312 int retval;
4313
4314 if (!param || pid < 0)
4315 return -EINVAL;
4316 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4317 return -EFAULT;
4318
4319 rcu_read_lock();
4320 retval = -ESRCH;
4321 p = find_process_by_pid(pid);
4322 if (p != NULL)
4323 retval = sched_setscheduler(p, policy, &lparam);
4324 rcu_read_unlock();
4325
4326 return retval;
4327 }
4328
4329 /*
4330 * Mimics kernel/events/core.c perf_copy_attr().
4331 */
4332 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4333 {
4334 u32 size;
4335 int ret;
4336
4337 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4338 return -EFAULT;
4339
4340 /* Zero the full structure, so that a short copy will be nice: */
4341 memset(attr, 0, sizeof(*attr));
4342
4343 ret = get_user(size, &uattr->size);
4344 if (ret)
4345 return ret;
4346
4347 /* Bail out on silly large: */
4348 if (size > PAGE_SIZE)
4349 goto err_size;
4350
4351 /* ABI compatibility quirk: */
4352 if (!size)
4353 size = SCHED_ATTR_SIZE_VER0;
4354
4355 if (size < SCHED_ATTR_SIZE_VER0)
4356 goto err_size;
4357
4358 /*
4359 * If we're handed a bigger struct than we know of,
4360 * ensure all the unknown bits are 0 - i.e. new
4361 * user-space does not rely on any kernel feature
4362 * extensions we dont know about yet.
4363 */
4364 if (size > sizeof(*attr)) {
4365 unsigned char __user *addr;
4366 unsigned char __user *end;
4367 unsigned char val;
4368
4369 addr = (void __user *)uattr + sizeof(*attr);
4370 end = (void __user *)uattr + size;
4371
4372 for (; addr < end; addr++) {
4373 ret = get_user(val, addr);
4374 if (ret)
4375 return ret;
4376 if (val)
4377 goto err_size;
4378 }
4379 size = sizeof(*attr);
4380 }
4381
4382 ret = copy_from_user(attr, uattr, size);
4383 if (ret)
4384 return -EFAULT;
4385
4386 /*
4387 * XXX: Do we want to be lenient like existing syscalls; or do we want
4388 * to be strict and return an error on out-of-bounds values?
4389 */
4390 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4391
4392 return 0;
4393
4394 err_size:
4395 put_user(sizeof(*attr), &uattr->size);
4396 return -E2BIG;
4397 }
4398
4399 /**
4400 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4401 * @pid: the pid in question.
4402 * @policy: new policy.
4403 * @param: structure containing the new RT priority.
4404 *
4405 * Return: 0 on success. An error code otherwise.
4406 */
4407 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4408 {
4409 if (policy < 0)
4410 return -EINVAL;
4411
4412 return do_sched_setscheduler(pid, policy, param);
4413 }
4414
4415 /**
4416 * sys_sched_setparam - set/change the RT priority of a thread
4417 * @pid: the pid in question.
4418 * @param: structure containing the new RT priority.
4419 *
4420 * Return: 0 on success. An error code otherwise.
4421 */
4422 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4423 {
4424 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4425 }
4426
4427 /**
4428 * sys_sched_setattr - same as above, but with extended sched_attr
4429 * @pid: the pid in question.
4430 * @uattr: structure containing the extended parameters.
4431 * @flags: for future extension.
4432 */
4433 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4434 unsigned int, flags)
4435 {
4436 struct sched_attr attr;
4437 struct task_struct *p;
4438 int retval;
4439
4440 if (!uattr || pid < 0 || flags)
4441 return -EINVAL;
4442
4443 retval = sched_copy_attr(uattr, &attr);
4444 if (retval)
4445 return retval;
4446
4447 if ((int)attr.sched_policy < 0)
4448 return -EINVAL;
4449
4450 rcu_read_lock();
4451 retval = -ESRCH;
4452 p = find_process_by_pid(pid);
4453 if (p != NULL)
4454 retval = sched_setattr(p, &attr);
4455 rcu_read_unlock();
4456
4457 return retval;
4458 }
4459
4460 /**
4461 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4462 * @pid: the pid in question.
4463 *
4464 * Return: On success, the policy of the thread. Otherwise, a negative error
4465 * code.
4466 */
4467 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4468 {
4469 struct task_struct *p;
4470 int retval;
4471
4472 if (pid < 0)
4473 return -EINVAL;
4474
4475 retval = -ESRCH;
4476 rcu_read_lock();
4477 p = find_process_by_pid(pid);
4478 if (p) {
4479 retval = security_task_getscheduler(p);
4480 if (!retval)
4481 retval = p->policy
4482 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4483 }
4484 rcu_read_unlock();
4485 return retval;
4486 }
4487
4488 /**
4489 * sys_sched_getparam - get the RT priority of a thread
4490 * @pid: the pid in question.
4491 * @param: structure containing the RT priority.
4492 *
4493 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4494 * code.
4495 */
4496 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4497 {
4498 struct sched_param lp = { .sched_priority = 0 };
4499 struct task_struct *p;
4500 int retval;
4501
4502 if (!param || pid < 0)
4503 return -EINVAL;
4504
4505 rcu_read_lock();
4506 p = find_process_by_pid(pid);
4507 retval = -ESRCH;
4508 if (!p)
4509 goto out_unlock;
4510
4511 retval = security_task_getscheduler(p);
4512 if (retval)
4513 goto out_unlock;
4514
4515 if (task_has_rt_policy(p))
4516 lp.sched_priority = p->rt_priority;
4517 rcu_read_unlock();
4518
4519 /*
4520 * This one might sleep, we cannot do it with a spinlock held ...
4521 */
4522 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4523
4524 return retval;
4525
4526 out_unlock:
4527 rcu_read_unlock();
4528 return retval;
4529 }
4530
4531 static int sched_read_attr(struct sched_attr __user *uattr,
4532 struct sched_attr *attr,
4533 unsigned int usize)
4534 {
4535 int ret;
4536
4537 if (!access_ok(VERIFY_WRITE, uattr, usize))
4538 return -EFAULT;
4539
4540 /*
4541 * If we're handed a smaller struct than we know of,
4542 * ensure all the unknown bits are 0 - i.e. old
4543 * user-space does not get uncomplete information.
4544 */
4545 if (usize < sizeof(*attr)) {
4546 unsigned char *addr;
4547 unsigned char *end;
4548
4549 addr = (void *)attr + usize;
4550 end = (void *)attr + sizeof(*attr);
4551
4552 for (; addr < end; addr++) {
4553 if (*addr)
4554 return -EFBIG;
4555 }
4556
4557 attr->size = usize;
4558 }
4559
4560 ret = copy_to_user(uattr, attr, attr->size);
4561 if (ret)
4562 return -EFAULT;
4563
4564 return 0;
4565 }
4566
4567 /**
4568 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4569 * @pid: the pid in question.
4570 * @uattr: structure containing the extended parameters.
4571 * @size: sizeof(attr) for fwd/bwd comp.
4572 * @flags: for future extension.
4573 */
4574 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4575 unsigned int, size, unsigned int, flags)
4576 {
4577 struct sched_attr attr = {
4578 .size = sizeof(struct sched_attr),
4579 };
4580 struct task_struct *p;
4581 int retval;
4582
4583 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4584 size < SCHED_ATTR_SIZE_VER0 || flags)
4585 return -EINVAL;
4586
4587 rcu_read_lock();
4588 p = find_process_by_pid(pid);
4589 retval = -ESRCH;
4590 if (!p)
4591 goto out_unlock;
4592
4593 retval = security_task_getscheduler(p);
4594 if (retval)
4595 goto out_unlock;
4596
4597 attr.sched_policy = p->policy;
4598 if (p->sched_reset_on_fork)
4599 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4600 if (task_has_dl_policy(p))
4601 __getparam_dl(p, &attr);
4602 else if (task_has_rt_policy(p))
4603 attr.sched_priority = p->rt_priority;
4604 else
4605 attr.sched_nice = task_nice(p);
4606
4607 rcu_read_unlock();
4608
4609 retval = sched_read_attr(uattr, &attr, size);
4610 return retval;
4611
4612 out_unlock:
4613 rcu_read_unlock();
4614 return retval;
4615 }
4616
4617 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4618 {
4619 cpumask_var_t cpus_allowed, new_mask;
4620 struct task_struct *p;
4621 int retval;
4622
4623 rcu_read_lock();
4624
4625 p = find_process_by_pid(pid);
4626 if (!p) {
4627 rcu_read_unlock();
4628 return -ESRCH;
4629 }
4630
4631 /* Prevent p going away */
4632 get_task_struct(p);
4633 rcu_read_unlock();
4634
4635 if (p->flags & PF_NO_SETAFFINITY) {
4636 retval = -EINVAL;
4637 goto out_put_task;
4638 }
4639 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4640 retval = -ENOMEM;
4641 goto out_put_task;
4642 }
4643 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4644 retval = -ENOMEM;
4645 goto out_free_cpus_allowed;
4646 }
4647 retval = -EPERM;
4648 if (!check_same_owner(p)) {
4649 rcu_read_lock();
4650 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4651 rcu_read_unlock();
4652 goto out_free_new_mask;
4653 }
4654 rcu_read_unlock();
4655 }
4656
4657 retval = security_task_setscheduler(p);
4658 if (retval)
4659 goto out_free_new_mask;
4660
4661
4662 cpuset_cpus_allowed(p, cpus_allowed);
4663 cpumask_and(new_mask, in_mask, cpus_allowed);
4664
4665 /*
4666 * Since bandwidth control happens on root_domain basis,
4667 * if admission test is enabled, we only admit -deadline
4668 * tasks allowed to run on all the CPUs in the task's
4669 * root_domain.
4670 */
4671 #ifdef CONFIG_SMP
4672 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4673 rcu_read_lock();
4674 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4675 retval = -EBUSY;
4676 rcu_read_unlock();
4677 goto out_free_new_mask;
4678 }
4679 rcu_read_unlock();
4680 }
4681 #endif
4682 again:
4683 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4684
4685 if (!retval) {
4686 cpuset_cpus_allowed(p, cpus_allowed);
4687 if (!cpumask_subset(new_mask, cpus_allowed)) {
4688 /*
4689 * We must have raced with a concurrent cpuset
4690 * update. Just reset the cpus_allowed to the
4691 * cpuset's cpus_allowed
4692 */
4693 cpumask_copy(new_mask, cpus_allowed);
4694 goto again;
4695 }
4696 }
4697 out_free_new_mask:
4698 free_cpumask_var(new_mask);
4699 out_free_cpus_allowed:
4700 free_cpumask_var(cpus_allowed);
4701 out_put_task:
4702 put_task_struct(p);
4703 return retval;
4704 }
4705
4706 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4707 struct cpumask *new_mask)
4708 {
4709 if (len < cpumask_size())
4710 cpumask_clear(new_mask);
4711 else if (len > cpumask_size())
4712 len = cpumask_size();
4713
4714 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4715 }
4716
4717 /**
4718 * sys_sched_setaffinity - set the CPU affinity of a process
4719 * @pid: pid of the process
4720 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4721 * @user_mask_ptr: user-space pointer to the new CPU mask
4722 *
4723 * Return: 0 on success. An error code otherwise.
4724 */
4725 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4726 unsigned long __user *, user_mask_ptr)
4727 {
4728 cpumask_var_t new_mask;
4729 int retval;
4730
4731 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4732 return -ENOMEM;
4733
4734 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4735 if (retval == 0)
4736 retval = sched_setaffinity(pid, new_mask);
4737 free_cpumask_var(new_mask);
4738 return retval;
4739 }
4740
4741 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4742 {
4743 struct task_struct *p;
4744 unsigned long flags;
4745 int retval;
4746
4747 rcu_read_lock();
4748
4749 retval = -ESRCH;
4750 p = find_process_by_pid(pid);
4751 if (!p)
4752 goto out_unlock;
4753
4754 retval = security_task_getscheduler(p);
4755 if (retval)
4756 goto out_unlock;
4757
4758 raw_spin_lock_irqsave(&p->pi_lock, flags);
4759 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4760 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4761
4762 out_unlock:
4763 rcu_read_unlock();
4764
4765 return retval;
4766 }
4767
4768 /**
4769 * sys_sched_getaffinity - get the CPU affinity of a process
4770 * @pid: pid of the process
4771 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4772 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4773 *
4774 * Return: size of CPU mask copied to user_mask_ptr on success. An
4775 * error code otherwise.
4776 */
4777 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4778 unsigned long __user *, user_mask_ptr)
4779 {
4780 int ret;
4781 cpumask_var_t mask;
4782
4783 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4784 return -EINVAL;
4785 if (len & (sizeof(unsigned long)-1))
4786 return -EINVAL;
4787
4788 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4789 return -ENOMEM;
4790
4791 ret = sched_getaffinity(pid, mask);
4792 if (ret == 0) {
4793 size_t retlen = min_t(size_t, len, cpumask_size());
4794
4795 if (copy_to_user(user_mask_ptr, mask, retlen))
4796 ret = -EFAULT;
4797 else
4798 ret = retlen;
4799 }
4800 free_cpumask_var(mask);
4801
4802 return ret;
4803 }
4804
4805 /**
4806 * sys_sched_yield - yield the current processor to other threads.
4807 *
4808 * This function yields the current CPU to other tasks. If there are no
4809 * other threads running on this CPU then this function will return.
4810 *
4811 * Return: 0.
4812 */
4813 SYSCALL_DEFINE0(sched_yield)
4814 {
4815 struct rq_flags rf;
4816 struct rq *rq;
4817
4818 local_irq_disable();
4819 rq = this_rq();
4820 rq_lock(rq, &rf);
4821
4822 schedstat_inc(rq->yld_count);
4823 current->sched_class->yield_task(rq);
4824
4825 /*
4826 * Since we are going to call schedule() anyway, there's
4827 * no need to preempt or enable interrupts:
4828 */
4829 preempt_disable();
4830 rq_unlock(rq, &rf);
4831 sched_preempt_enable_no_resched();
4832
4833 schedule();
4834
4835 return 0;
4836 }
4837
4838 #ifndef CONFIG_PREEMPT
4839 int __sched _cond_resched(void)
4840 {
4841 if (should_resched(0)) {
4842 preempt_schedule_common();
4843 return 1;
4844 }
4845 return 0;
4846 }
4847 EXPORT_SYMBOL(_cond_resched);
4848 #endif
4849
4850 /*
4851 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4852 * call schedule, and on return reacquire the lock.
4853 *
4854 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4855 * operations here to prevent schedule() from being called twice (once via
4856 * spin_unlock(), once by hand).
4857 */
4858 int __cond_resched_lock(spinlock_t *lock)
4859 {
4860 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4861 int ret = 0;
4862
4863 lockdep_assert_held(lock);
4864
4865 if (spin_needbreak(lock) || resched) {
4866 spin_unlock(lock);
4867 if (resched)
4868 preempt_schedule_common();
4869 else
4870 cpu_relax();
4871 ret = 1;
4872 spin_lock(lock);
4873 }
4874 return ret;
4875 }
4876 EXPORT_SYMBOL(__cond_resched_lock);
4877
4878 int __sched __cond_resched_softirq(void)
4879 {
4880 BUG_ON(!in_softirq());
4881
4882 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4883 local_bh_enable();
4884 preempt_schedule_common();
4885 local_bh_disable();
4886 return 1;
4887 }
4888 return 0;
4889 }
4890 EXPORT_SYMBOL(__cond_resched_softirq);
4891
4892 /**
4893 * yield - yield the current processor to other threads.
4894 *
4895 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4896 *
4897 * The scheduler is at all times free to pick the calling task as the most
4898 * eligible task to run, if removing the yield() call from your code breaks
4899 * it, its already broken.
4900 *
4901 * Typical broken usage is:
4902 *
4903 * while (!event)
4904 * yield();
4905 *
4906 * where one assumes that yield() will let 'the other' process run that will
4907 * make event true. If the current task is a SCHED_FIFO task that will never
4908 * happen. Never use yield() as a progress guarantee!!
4909 *
4910 * If you want to use yield() to wait for something, use wait_event().
4911 * If you want to use yield() to be 'nice' for others, use cond_resched().
4912 * If you still want to use yield(), do not!
4913 */
4914 void __sched yield(void)
4915 {
4916 set_current_state(TASK_RUNNING);
4917 sys_sched_yield();
4918 }
4919 EXPORT_SYMBOL(yield);
4920
4921 /**
4922 * yield_to - yield the current processor to another thread in
4923 * your thread group, or accelerate that thread toward the
4924 * processor it's on.
4925 * @p: target task
4926 * @preempt: whether task preemption is allowed or not
4927 *
4928 * It's the caller's job to ensure that the target task struct
4929 * can't go away on us before we can do any checks.
4930 *
4931 * Return:
4932 * true (>0) if we indeed boosted the target task.
4933 * false (0) if we failed to boost the target.
4934 * -ESRCH if there's no task to yield to.
4935 */
4936 int __sched yield_to(struct task_struct *p, bool preempt)
4937 {
4938 struct task_struct *curr = current;
4939 struct rq *rq, *p_rq;
4940 unsigned long flags;
4941 int yielded = 0;
4942
4943 local_irq_save(flags);
4944 rq = this_rq();
4945
4946 again:
4947 p_rq = task_rq(p);
4948 /*
4949 * If we're the only runnable task on the rq and target rq also
4950 * has only one task, there's absolutely no point in yielding.
4951 */
4952 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4953 yielded = -ESRCH;
4954 goto out_irq;
4955 }
4956
4957 double_rq_lock(rq, p_rq);
4958 if (task_rq(p) != p_rq) {
4959 double_rq_unlock(rq, p_rq);
4960 goto again;
4961 }
4962
4963 if (!curr->sched_class->yield_to_task)
4964 goto out_unlock;
4965
4966 if (curr->sched_class != p->sched_class)
4967 goto out_unlock;
4968
4969 if (task_running(p_rq, p) || p->state)
4970 goto out_unlock;
4971
4972 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4973 if (yielded) {
4974 schedstat_inc(rq->yld_count);
4975 /*
4976 * Make p's CPU reschedule; pick_next_entity takes care of
4977 * fairness.
4978 */
4979 if (preempt && rq != p_rq)
4980 resched_curr(p_rq);
4981 }
4982
4983 out_unlock:
4984 double_rq_unlock(rq, p_rq);
4985 out_irq:
4986 local_irq_restore(flags);
4987
4988 if (yielded > 0)
4989 schedule();
4990
4991 return yielded;
4992 }
4993 EXPORT_SYMBOL_GPL(yield_to);
4994
4995 int io_schedule_prepare(void)
4996 {
4997 int old_iowait = current->in_iowait;
4998
4999 current->in_iowait = 1;
5000 blk_schedule_flush_plug(current);
5001
5002 return old_iowait;
5003 }
5004
5005 void io_schedule_finish(int token)
5006 {
5007 current->in_iowait = token;
5008 }
5009
5010 /*
5011 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5012 * that process accounting knows that this is a task in IO wait state.
5013 */
5014 long __sched io_schedule_timeout(long timeout)
5015 {
5016 int token;
5017 long ret;
5018
5019 token = io_schedule_prepare();
5020 ret = schedule_timeout(timeout);
5021 io_schedule_finish(token);
5022
5023 return ret;
5024 }
5025 EXPORT_SYMBOL(io_schedule_timeout);
5026
5027 void io_schedule(void)
5028 {
5029 int token;
5030
5031 token = io_schedule_prepare();
5032 schedule();
5033 io_schedule_finish(token);
5034 }
5035 EXPORT_SYMBOL(io_schedule);
5036
5037 /**
5038 * sys_sched_get_priority_max - return maximum RT priority.
5039 * @policy: scheduling class.
5040 *
5041 * Return: On success, this syscall returns the maximum
5042 * rt_priority that can be used by a given scheduling class.
5043 * On failure, a negative error code is returned.
5044 */
5045 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5046 {
5047 int ret = -EINVAL;
5048
5049 switch (policy) {
5050 case SCHED_FIFO:
5051 case SCHED_RR:
5052 ret = MAX_USER_RT_PRIO-1;
5053 break;
5054 case SCHED_DEADLINE:
5055 case SCHED_NORMAL:
5056 case SCHED_BATCH:
5057 case SCHED_IDLE:
5058 ret = 0;
5059 break;
5060 }
5061 return ret;
5062 }
5063
5064 /**
5065 * sys_sched_get_priority_min - return minimum RT priority.
5066 * @policy: scheduling class.
5067 *
5068 * Return: On success, this syscall returns the minimum
5069 * rt_priority that can be used by a given scheduling class.
5070 * On failure, a negative error code is returned.
5071 */
5072 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5073 {
5074 int ret = -EINVAL;
5075
5076 switch (policy) {
5077 case SCHED_FIFO:
5078 case SCHED_RR:
5079 ret = 1;
5080 break;
5081 case SCHED_DEADLINE:
5082 case SCHED_NORMAL:
5083 case SCHED_BATCH:
5084 case SCHED_IDLE:
5085 ret = 0;
5086 }
5087 return ret;
5088 }
5089
5090 /**
5091 * sys_sched_rr_get_interval - return the default timeslice of a process.
5092 * @pid: pid of the process.
5093 * @interval: userspace pointer to the timeslice value.
5094 *
5095 * this syscall writes the default timeslice value of a given process
5096 * into the user-space timespec buffer. A value of '0' means infinity.
5097 *
5098 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5099 * an error code.
5100 */
5101 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5102 struct timespec __user *, interval)
5103 {
5104 struct task_struct *p;
5105 unsigned int time_slice;
5106 struct rq_flags rf;
5107 struct timespec t;
5108 struct rq *rq;
5109 int retval;
5110
5111 if (pid < 0)
5112 return -EINVAL;
5113
5114 retval = -ESRCH;
5115 rcu_read_lock();
5116 p = find_process_by_pid(pid);
5117 if (!p)
5118 goto out_unlock;
5119
5120 retval = security_task_getscheduler(p);
5121 if (retval)
5122 goto out_unlock;
5123
5124 rq = task_rq_lock(p, &rf);
5125 time_slice = 0;
5126 if (p->sched_class->get_rr_interval)
5127 time_slice = p->sched_class->get_rr_interval(rq, p);
5128 task_rq_unlock(rq, p, &rf);
5129
5130 rcu_read_unlock();
5131 jiffies_to_timespec(time_slice, &t);
5132 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5133 return retval;
5134
5135 out_unlock:
5136 rcu_read_unlock();
5137 return retval;
5138 }
5139
5140 void sched_show_task(struct task_struct *p)
5141 {
5142 unsigned long free = 0;
5143 int ppid;
5144
5145 if (!try_get_task_stack(p))
5146 return;
5147
5148 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5149
5150 if (p->state == TASK_RUNNING)
5151 printk(KERN_CONT " running task ");
5152 #ifdef CONFIG_DEBUG_STACK_USAGE
5153 free = stack_not_used(p);
5154 #endif
5155 ppid = 0;
5156 rcu_read_lock();
5157 if (pid_alive(p))
5158 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5159 rcu_read_unlock();
5160 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5161 task_pid_nr(p), ppid,
5162 (unsigned long)task_thread_info(p)->flags);
5163
5164 print_worker_info(KERN_INFO, p);
5165 show_stack(p, NULL);
5166 put_task_stack(p);
5167 }
5168
5169 static inline bool
5170 state_filter_match(unsigned long state_filter, struct task_struct *p)
5171 {
5172 /* no filter, everything matches */
5173 if (!state_filter)
5174 return true;
5175
5176 /* filter, but doesn't match */
5177 if (!(p->state & state_filter))
5178 return false;
5179
5180 /*
5181 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5182 * TASK_KILLABLE).
5183 */
5184 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5185 return false;
5186
5187 return true;
5188 }
5189
5190
5191 void show_state_filter(unsigned long state_filter)
5192 {
5193 struct task_struct *g, *p;
5194
5195 #if BITS_PER_LONG == 32
5196 printk(KERN_INFO
5197 " task PC stack pid father\n");
5198 #else
5199 printk(KERN_INFO
5200 " task PC stack pid father\n");
5201 #endif
5202 rcu_read_lock();
5203 for_each_process_thread(g, p) {
5204 /*
5205 * reset the NMI-timeout, listing all files on a slow
5206 * console might take a lot of time:
5207 * Also, reset softlockup watchdogs on all CPUs, because
5208 * another CPU might be blocked waiting for us to process
5209 * an IPI.
5210 */
5211 touch_nmi_watchdog();
5212 touch_all_softlockup_watchdogs();
5213 if (state_filter_match(state_filter, p))
5214 sched_show_task(p);
5215 }
5216
5217 #ifdef CONFIG_SCHED_DEBUG
5218 if (!state_filter)
5219 sysrq_sched_debug_show();
5220 #endif
5221 rcu_read_unlock();
5222 /*
5223 * Only show locks if all tasks are dumped:
5224 */
5225 if (!state_filter)
5226 debug_show_all_locks();
5227 }
5228
5229 /**
5230 * init_idle - set up an idle thread for a given CPU
5231 * @idle: task in question
5232 * @cpu: CPU the idle task belongs to
5233 *
5234 * NOTE: this function does not set the idle thread's NEED_RESCHED
5235 * flag, to make booting more robust.
5236 */
5237 void init_idle(struct task_struct *idle, int cpu)
5238 {
5239 struct rq *rq = cpu_rq(cpu);
5240 unsigned long flags;
5241
5242 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5243 raw_spin_lock(&rq->lock);
5244
5245 __sched_fork(0, idle);
5246 idle->state = TASK_RUNNING;
5247 idle->se.exec_start = sched_clock();
5248 idle->flags |= PF_IDLE;
5249
5250 kasan_unpoison_task_stack(idle);
5251
5252 #ifdef CONFIG_SMP
5253 /*
5254 * Its possible that init_idle() gets called multiple times on a task,
5255 * in that case do_set_cpus_allowed() will not do the right thing.
5256 *
5257 * And since this is boot we can forgo the serialization.
5258 */
5259 set_cpus_allowed_common(idle, cpumask_of(cpu));
5260 #endif
5261 /*
5262 * We're having a chicken and egg problem, even though we are
5263 * holding rq->lock, the CPU isn't yet set to this CPU so the
5264 * lockdep check in task_group() will fail.
5265 *
5266 * Similar case to sched_fork(). / Alternatively we could
5267 * use task_rq_lock() here and obtain the other rq->lock.
5268 *
5269 * Silence PROVE_RCU
5270 */
5271 rcu_read_lock();
5272 __set_task_cpu(idle, cpu);
5273 rcu_read_unlock();
5274
5275 rq->curr = rq->idle = idle;
5276 idle->on_rq = TASK_ON_RQ_QUEUED;
5277 #ifdef CONFIG_SMP
5278 idle->on_cpu = 1;
5279 #endif
5280 raw_spin_unlock(&rq->lock);
5281 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5282
5283 /* Set the preempt count _outside_ the spinlocks! */
5284 init_idle_preempt_count(idle, cpu);
5285
5286 /*
5287 * The idle tasks have their own, simple scheduling class:
5288 */
5289 idle->sched_class = &idle_sched_class;
5290 ftrace_graph_init_idle_task(idle, cpu);
5291 vtime_init_idle(idle, cpu);
5292 #ifdef CONFIG_SMP
5293 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5294 #endif
5295 }
5296
5297 #ifdef CONFIG_SMP
5298
5299 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5300 const struct cpumask *trial)
5301 {
5302 int ret = 1;
5303
5304 if (!cpumask_weight(cur))
5305 return ret;
5306
5307 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5308
5309 return ret;
5310 }
5311
5312 int task_can_attach(struct task_struct *p,
5313 const struct cpumask *cs_cpus_allowed)
5314 {
5315 int ret = 0;
5316
5317 /*
5318 * Kthreads which disallow setaffinity shouldn't be moved
5319 * to a new cpuset; we don't want to change their CPU
5320 * affinity and isolating such threads by their set of
5321 * allowed nodes is unnecessary. Thus, cpusets are not
5322 * applicable for such threads. This prevents checking for
5323 * success of set_cpus_allowed_ptr() on all attached tasks
5324 * before cpus_allowed may be changed.
5325 */
5326 if (p->flags & PF_NO_SETAFFINITY) {
5327 ret = -EINVAL;
5328 goto out;
5329 }
5330
5331 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5332 cs_cpus_allowed))
5333 ret = dl_task_can_attach(p, cs_cpus_allowed);
5334
5335 out:
5336 return ret;
5337 }
5338
5339 bool sched_smp_initialized __read_mostly;
5340
5341 #ifdef CONFIG_NUMA_BALANCING
5342 /* Migrate current task p to target_cpu */
5343 int migrate_task_to(struct task_struct *p, int target_cpu)
5344 {
5345 struct migration_arg arg = { p, target_cpu };
5346 int curr_cpu = task_cpu(p);
5347
5348 if (curr_cpu == target_cpu)
5349 return 0;
5350
5351 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5352 return -EINVAL;
5353
5354 /* TODO: This is not properly updating schedstats */
5355
5356 trace_sched_move_numa(p, curr_cpu, target_cpu);
5357 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5358 }
5359
5360 /*
5361 * Requeue a task on a given node and accurately track the number of NUMA
5362 * tasks on the runqueues
5363 */
5364 void sched_setnuma(struct task_struct *p, int nid)
5365 {
5366 bool queued, running;
5367 struct rq_flags rf;
5368 struct rq *rq;
5369
5370 rq = task_rq_lock(p, &rf);
5371 queued = task_on_rq_queued(p);
5372 running = task_current(rq, p);
5373
5374 if (queued)
5375 dequeue_task(rq, p, DEQUEUE_SAVE);
5376 if (running)
5377 put_prev_task(rq, p);
5378
5379 p->numa_preferred_nid = nid;
5380
5381 if (queued)
5382 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5383 if (running)
5384 set_curr_task(rq, p);
5385 task_rq_unlock(rq, p, &rf);
5386 }
5387 #endif /* CONFIG_NUMA_BALANCING */
5388
5389 #ifdef CONFIG_HOTPLUG_CPU
5390 /*
5391 * Ensure that the idle task is using init_mm right before its CPU goes
5392 * offline.
5393 */
5394 void idle_task_exit(void)
5395 {
5396 struct mm_struct *mm = current->active_mm;
5397
5398 BUG_ON(cpu_online(smp_processor_id()));
5399
5400 if (mm != &init_mm) {
5401 switch_mm(mm, &init_mm, current);
5402 finish_arch_post_lock_switch();
5403 }
5404 mmdrop(mm);
5405 }
5406
5407 /*
5408 * Since this CPU is going 'away' for a while, fold any nr_active delta
5409 * we might have. Assumes we're called after migrate_tasks() so that the
5410 * nr_active count is stable. We need to take the teardown thread which
5411 * is calling this into account, so we hand in adjust = 1 to the load
5412 * calculation.
5413 *
5414 * Also see the comment "Global load-average calculations".
5415 */
5416 static void calc_load_migrate(struct rq *rq)
5417 {
5418 long delta = calc_load_fold_active(rq, 1);
5419 if (delta)
5420 atomic_long_add(delta, &calc_load_tasks);
5421 }
5422
5423 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5424 {
5425 }
5426
5427 static const struct sched_class fake_sched_class = {
5428 .put_prev_task = put_prev_task_fake,
5429 };
5430
5431 static struct task_struct fake_task = {
5432 /*
5433 * Avoid pull_{rt,dl}_task()
5434 */
5435 .prio = MAX_PRIO + 1,
5436 .sched_class = &fake_sched_class,
5437 };
5438
5439 /*
5440 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5441 * try_to_wake_up()->select_task_rq().
5442 *
5443 * Called with rq->lock held even though we'er in stop_machine() and
5444 * there's no concurrency possible, we hold the required locks anyway
5445 * because of lock validation efforts.
5446 */
5447 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5448 {
5449 struct rq *rq = dead_rq;
5450 struct task_struct *next, *stop = rq->stop;
5451 struct rq_flags orf = *rf;
5452 int dest_cpu;
5453
5454 /*
5455 * Fudge the rq selection such that the below task selection loop
5456 * doesn't get stuck on the currently eligible stop task.
5457 *
5458 * We're currently inside stop_machine() and the rq is either stuck
5459 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5460 * either way we should never end up calling schedule() until we're
5461 * done here.
5462 */
5463 rq->stop = NULL;
5464
5465 /*
5466 * put_prev_task() and pick_next_task() sched
5467 * class method both need to have an up-to-date
5468 * value of rq->clock[_task]
5469 */
5470 update_rq_clock(rq);
5471
5472 for (;;) {
5473 /*
5474 * There's this thread running, bail when that's the only
5475 * remaining thread:
5476 */
5477 if (rq->nr_running == 1)
5478 break;
5479
5480 /*
5481 * pick_next_task() assumes pinned rq->lock:
5482 */
5483 next = pick_next_task(rq, &fake_task, rf);
5484 BUG_ON(!next);
5485 put_prev_task(rq, next);
5486
5487 /*
5488 * Rules for changing task_struct::cpus_allowed are holding
5489 * both pi_lock and rq->lock, such that holding either
5490 * stabilizes the mask.
5491 *
5492 * Drop rq->lock is not quite as disastrous as it usually is
5493 * because !cpu_active at this point, which means load-balance
5494 * will not interfere. Also, stop-machine.
5495 */
5496 rq_unlock(rq, rf);
5497 raw_spin_lock(&next->pi_lock);
5498 rq_relock(rq, rf);
5499
5500 /*
5501 * Since we're inside stop-machine, _nothing_ should have
5502 * changed the task, WARN if weird stuff happened, because in
5503 * that case the above rq->lock drop is a fail too.
5504 */
5505 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5506 raw_spin_unlock(&next->pi_lock);
5507 continue;
5508 }
5509
5510 /* Find suitable destination for @next, with force if needed. */
5511 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5512 rq = __migrate_task(rq, rf, next, dest_cpu);
5513 if (rq != dead_rq) {
5514 rq_unlock(rq, rf);
5515 rq = dead_rq;
5516 *rf = orf;
5517 rq_relock(rq, rf);
5518 }
5519 raw_spin_unlock(&next->pi_lock);
5520 }
5521
5522 rq->stop = stop;
5523 }
5524 #endif /* CONFIG_HOTPLUG_CPU */
5525
5526 void set_rq_online(struct rq *rq)
5527 {
5528 if (!rq->online) {
5529 const struct sched_class *class;
5530
5531 cpumask_set_cpu(rq->cpu, rq->rd->online);
5532 rq->online = 1;
5533
5534 for_each_class(class) {
5535 if (class->rq_online)
5536 class->rq_online(rq);
5537 }
5538 }
5539 }
5540
5541 void set_rq_offline(struct rq *rq)
5542 {
5543 if (rq->online) {
5544 const struct sched_class *class;
5545
5546 for_each_class(class) {
5547 if (class->rq_offline)
5548 class->rq_offline(rq);
5549 }
5550
5551 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5552 rq->online = 0;
5553 }
5554 }
5555
5556 static void set_cpu_rq_start_time(unsigned int cpu)
5557 {
5558 struct rq *rq = cpu_rq(cpu);
5559
5560 rq->age_stamp = sched_clock_cpu(cpu);
5561 }
5562
5563 /*
5564 * used to mark begin/end of suspend/resume:
5565 */
5566 static int num_cpus_frozen;
5567
5568 /*
5569 * Update cpusets according to cpu_active mask. If cpusets are
5570 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5571 * around partition_sched_domains().
5572 *
5573 * If we come here as part of a suspend/resume, don't touch cpusets because we
5574 * want to restore it back to its original state upon resume anyway.
5575 */
5576 static void cpuset_cpu_active(void)
5577 {
5578 if (cpuhp_tasks_frozen) {
5579 /*
5580 * num_cpus_frozen tracks how many CPUs are involved in suspend
5581 * resume sequence. As long as this is not the last online
5582 * operation in the resume sequence, just build a single sched
5583 * domain, ignoring cpusets.
5584 */
5585 partition_sched_domains(1, NULL, NULL);
5586 if (--num_cpus_frozen)
5587 return;
5588 /*
5589 * This is the last CPU online operation. So fall through and
5590 * restore the original sched domains by considering the
5591 * cpuset configurations.
5592 */
5593 cpuset_force_rebuild();
5594 }
5595 cpuset_update_active_cpus();
5596 }
5597
5598 static int cpuset_cpu_inactive(unsigned int cpu)
5599 {
5600 if (!cpuhp_tasks_frozen) {
5601 if (dl_cpu_busy(cpu))
5602 return -EBUSY;
5603 cpuset_update_active_cpus();
5604 } else {
5605 num_cpus_frozen++;
5606 partition_sched_domains(1, NULL, NULL);
5607 }
5608 return 0;
5609 }
5610
5611 int sched_cpu_activate(unsigned int cpu)
5612 {
5613 struct rq *rq = cpu_rq(cpu);
5614 struct rq_flags rf;
5615
5616 set_cpu_active(cpu, true);
5617
5618 if (sched_smp_initialized) {
5619 sched_domains_numa_masks_set(cpu);
5620 cpuset_cpu_active();
5621 }
5622
5623 /*
5624 * Put the rq online, if not already. This happens:
5625 *
5626 * 1) In the early boot process, because we build the real domains
5627 * after all CPUs have been brought up.
5628 *
5629 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5630 * domains.
5631 */
5632 rq_lock_irqsave(rq, &rf);
5633 if (rq->rd) {
5634 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5635 set_rq_online(rq);
5636 }
5637 rq_unlock_irqrestore(rq, &rf);
5638
5639 update_max_interval();
5640
5641 return 0;
5642 }
5643
5644 int sched_cpu_deactivate(unsigned int cpu)
5645 {
5646 int ret;
5647
5648 set_cpu_active(cpu, false);
5649 /*
5650 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5651 * users of this state to go away such that all new such users will
5652 * observe it.
5653 *
5654 * Do sync before park smpboot threads to take care the rcu boost case.
5655 */
5656 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5657
5658 if (!sched_smp_initialized)
5659 return 0;
5660
5661 ret = cpuset_cpu_inactive(cpu);
5662 if (ret) {
5663 set_cpu_active(cpu, true);
5664 return ret;
5665 }
5666 sched_domains_numa_masks_clear(cpu);
5667 return 0;
5668 }
5669
5670 static void sched_rq_cpu_starting(unsigned int cpu)
5671 {
5672 struct rq *rq = cpu_rq(cpu);
5673
5674 rq->calc_load_update = calc_load_update;
5675 update_max_interval();
5676 }
5677
5678 int sched_cpu_starting(unsigned int cpu)
5679 {
5680 set_cpu_rq_start_time(cpu);
5681 sched_rq_cpu_starting(cpu);
5682 return 0;
5683 }
5684
5685 #ifdef CONFIG_HOTPLUG_CPU
5686 int sched_cpu_dying(unsigned int cpu)
5687 {
5688 struct rq *rq = cpu_rq(cpu);
5689 struct rq_flags rf;
5690
5691 /* Handle pending wakeups and then migrate everything off */
5692 sched_ttwu_pending();
5693
5694 rq_lock_irqsave(rq, &rf);
5695 if (rq->rd) {
5696 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5697 set_rq_offline(rq);
5698 }
5699 migrate_tasks(rq, &rf);
5700 BUG_ON(rq->nr_running != 1);
5701 rq_unlock_irqrestore(rq, &rf);
5702
5703 calc_load_migrate(rq);
5704 update_max_interval();
5705 nohz_balance_exit_idle(cpu);
5706 hrtick_clear(rq);
5707 return 0;
5708 }
5709 #endif
5710
5711 #ifdef CONFIG_SCHED_SMT
5712 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5713
5714 static void sched_init_smt(void)
5715 {
5716 /*
5717 * We've enumerated all CPUs and will assume that if any CPU
5718 * has SMT siblings, CPU0 will too.
5719 */
5720 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5721 static_branch_enable(&sched_smt_present);
5722 }
5723 #else
5724 static inline void sched_init_smt(void) { }
5725 #endif
5726
5727 void __init sched_init_smp(void)
5728 {
5729 cpumask_var_t non_isolated_cpus;
5730
5731 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5732
5733 sched_init_numa();
5734
5735 /*
5736 * There's no userspace yet to cause hotplug operations; hence all the
5737 * CPU masks are stable and all blatant races in the below code cannot
5738 * happen.
5739 */
5740 mutex_lock(&sched_domains_mutex);
5741 sched_init_domains(cpu_active_mask);
5742 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5743 if (cpumask_empty(non_isolated_cpus))
5744 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5745 mutex_unlock(&sched_domains_mutex);
5746
5747 /* Move init over to a non-isolated CPU */
5748 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5749 BUG();
5750 sched_init_granularity();
5751 free_cpumask_var(non_isolated_cpus);
5752
5753 init_sched_rt_class();
5754 init_sched_dl_class();
5755
5756 sched_init_smt();
5757
5758 sched_smp_initialized = true;
5759 }
5760
5761 static int __init migration_init(void)
5762 {
5763 sched_rq_cpu_starting(smp_processor_id());
5764 return 0;
5765 }
5766 early_initcall(migration_init);
5767
5768 #else
5769 void __init sched_init_smp(void)
5770 {
5771 sched_init_granularity();
5772 }
5773 #endif /* CONFIG_SMP */
5774
5775 int in_sched_functions(unsigned long addr)
5776 {
5777 return in_lock_functions(addr) ||
5778 (addr >= (unsigned long)__sched_text_start
5779 && addr < (unsigned long)__sched_text_end);
5780 }
5781
5782 #ifdef CONFIG_CGROUP_SCHED
5783 /*
5784 * Default task group.
5785 * Every task in system belongs to this group at bootup.
5786 */
5787 struct task_group root_task_group;
5788 LIST_HEAD(task_groups);
5789
5790 /* Cacheline aligned slab cache for task_group */
5791 static struct kmem_cache *task_group_cache __read_mostly;
5792 #endif
5793
5794 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5795 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5796
5797 void __init sched_init(void)
5798 {
5799 int i, j;
5800 unsigned long alloc_size = 0, ptr;
5801
5802 sched_clock_init();
5803 wait_bit_init();
5804
5805 #ifdef CONFIG_FAIR_GROUP_SCHED
5806 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5807 #endif
5808 #ifdef CONFIG_RT_GROUP_SCHED
5809 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5810 #endif
5811 if (alloc_size) {
5812 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5813
5814 #ifdef CONFIG_FAIR_GROUP_SCHED
5815 root_task_group.se = (struct sched_entity **)ptr;
5816 ptr += nr_cpu_ids * sizeof(void **);
5817
5818 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5819 ptr += nr_cpu_ids * sizeof(void **);
5820
5821 #endif /* CONFIG_FAIR_GROUP_SCHED */
5822 #ifdef CONFIG_RT_GROUP_SCHED
5823 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5824 ptr += nr_cpu_ids * sizeof(void **);
5825
5826 root_task_group.rt_rq = (struct rt_rq **)ptr;
5827 ptr += nr_cpu_ids * sizeof(void **);
5828
5829 #endif /* CONFIG_RT_GROUP_SCHED */
5830 }
5831 #ifdef CONFIG_CPUMASK_OFFSTACK
5832 for_each_possible_cpu(i) {
5833 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5834 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5835 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5836 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5837 }
5838 #endif /* CONFIG_CPUMASK_OFFSTACK */
5839
5840 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5841 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5842
5843 #ifdef CONFIG_SMP
5844 init_defrootdomain();
5845 #endif
5846
5847 #ifdef CONFIG_RT_GROUP_SCHED
5848 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5849 global_rt_period(), global_rt_runtime());
5850 #endif /* CONFIG_RT_GROUP_SCHED */
5851
5852 #ifdef CONFIG_CGROUP_SCHED
5853 task_group_cache = KMEM_CACHE(task_group, 0);
5854
5855 list_add(&root_task_group.list, &task_groups);
5856 INIT_LIST_HEAD(&root_task_group.children);
5857 INIT_LIST_HEAD(&root_task_group.siblings);
5858 autogroup_init(&init_task);
5859 #endif /* CONFIG_CGROUP_SCHED */
5860
5861 for_each_possible_cpu(i) {
5862 struct rq *rq;
5863
5864 rq = cpu_rq(i);
5865 raw_spin_lock_init(&rq->lock);
5866 rq->nr_running = 0;
5867 rq->calc_load_active = 0;
5868 rq->calc_load_update = jiffies + LOAD_FREQ;
5869 init_cfs_rq(&rq->cfs);
5870 init_rt_rq(&rq->rt);
5871 init_dl_rq(&rq->dl);
5872 #ifdef CONFIG_FAIR_GROUP_SCHED
5873 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5874 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5875 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5876 /*
5877 * How much CPU bandwidth does root_task_group get?
5878 *
5879 * In case of task-groups formed thr' the cgroup filesystem, it
5880 * gets 100% of the CPU resources in the system. This overall
5881 * system CPU resource is divided among the tasks of
5882 * root_task_group and its child task-groups in a fair manner,
5883 * based on each entity's (task or task-group's) weight
5884 * (se->load.weight).
5885 *
5886 * In other words, if root_task_group has 10 tasks of weight
5887 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5888 * then A0's share of the CPU resource is:
5889 *
5890 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5891 *
5892 * We achieve this by letting root_task_group's tasks sit
5893 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5894 */
5895 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5896 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5897 #endif /* CONFIG_FAIR_GROUP_SCHED */
5898
5899 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5900 #ifdef CONFIG_RT_GROUP_SCHED
5901 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5902 #endif
5903
5904 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5905 rq->cpu_load[j] = 0;
5906
5907 #ifdef CONFIG_SMP
5908 rq->sd = NULL;
5909 rq->rd = NULL;
5910 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5911 rq->balance_callback = NULL;
5912 rq->active_balance = 0;
5913 rq->next_balance = jiffies;
5914 rq->push_cpu = 0;
5915 rq->cpu = i;
5916 rq->online = 0;
5917 rq->idle_stamp = 0;
5918 rq->avg_idle = 2*sysctl_sched_migration_cost;
5919 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5920
5921 INIT_LIST_HEAD(&rq->cfs_tasks);
5922
5923 rq_attach_root(rq, &def_root_domain);
5924 #ifdef CONFIG_NO_HZ_COMMON
5925 rq->last_load_update_tick = jiffies;
5926 rq->nohz_flags = 0;
5927 #endif
5928 #ifdef CONFIG_NO_HZ_FULL
5929 rq->last_sched_tick = 0;
5930 #endif
5931 #endif /* CONFIG_SMP */
5932 init_rq_hrtick(rq);
5933 atomic_set(&rq->nr_iowait, 0);
5934 }
5935
5936 set_load_weight(&init_task);
5937
5938 /*
5939 * The boot idle thread does lazy MMU switching as well:
5940 */
5941 mmgrab(&init_mm);
5942 enter_lazy_tlb(&init_mm, current);
5943
5944 /*
5945 * Make us the idle thread. Technically, schedule() should not be
5946 * called from this thread, however somewhere below it might be,
5947 * but because we are the idle thread, we just pick up running again
5948 * when this runqueue becomes "idle".
5949 */
5950 init_idle(current, smp_processor_id());
5951
5952 calc_load_update = jiffies + LOAD_FREQ;
5953
5954 #ifdef CONFIG_SMP
5955 /* May be allocated at isolcpus cmdline parse time */
5956 if (cpu_isolated_map == NULL)
5957 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
5958 idle_thread_set_boot_cpu();
5959 set_cpu_rq_start_time(smp_processor_id());
5960 #endif
5961 init_sched_fair_class();
5962
5963 init_schedstats();
5964
5965 scheduler_running = 1;
5966 }
5967
5968 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5969 static inline int preempt_count_equals(int preempt_offset)
5970 {
5971 int nested = preempt_count() + rcu_preempt_depth();
5972
5973 return (nested == preempt_offset);
5974 }
5975
5976 void __might_sleep(const char *file, int line, int preempt_offset)
5977 {
5978 /*
5979 * Blocking primitives will set (and therefore destroy) current->state,
5980 * since we will exit with TASK_RUNNING make sure we enter with it,
5981 * otherwise we will destroy state.
5982 */
5983 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
5984 "do not call blocking ops when !TASK_RUNNING; "
5985 "state=%lx set at [<%p>] %pS\n",
5986 current->state,
5987 (void *)current->task_state_change,
5988 (void *)current->task_state_change);
5989
5990 ___might_sleep(file, line, preempt_offset);
5991 }
5992 EXPORT_SYMBOL(__might_sleep);
5993
5994 void ___might_sleep(const char *file, int line, int preempt_offset)
5995 {
5996 /* Ratelimiting timestamp: */
5997 static unsigned long prev_jiffy;
5998
5999 unsigned long preempt_disable_ip;
6000
6001 /* WARN_ON_ONCE() by default, no rate limit required: */
6002 rcu_sleep_check();
6003
6004 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6005 !is_idle_task(current)) ||
6006 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6007 oops_in_progress)
6008 return;
6009
6010 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6011 return;
6012 prev_jiffy = jiffies;
6013
6014 /* Save this before calling printk(), since that will clobber it: */
6015 preempt_disable_ip = get_preempt_disable_ip(current);
6016
6017 printk(KERN_ERR
6018 "BUG: sleeping function called from invalid context at %s:%d\n",
6019 file, line);
6020 printk(KERN_ERR
6021 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6022 in_atomic(), irqs_disabled(),
6023 current->pid, current->comm);
6024
6025 if (task_stack_end_corrupted(current))
6026 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6027
6028 debug_show_held_locks(current);
6029 if (irqs_disabled())
6030 print_irqtrace_events(current);
6031 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6032 && !preempt_count_equals(preempt_offset)) {
6033 pr_err("Preemption disabled at:");
6034 print_ip_sym(preempt_disable_ip);
6035 pr_cont("\n");
6036 }
6037 dump_stack();
6038 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6039 }
6040 EXPORT_SYMBOL(___might_sleep);
6041 #endif
6042
6043 #ifdef CONFIG_MAGIC_SYSRQ
6044 void normalize_rt_tasks(void)
6045 {
6046 struct task_struct *g, *p;
6047 struct sched_attr attr = {
6048 .sched_policy = SCHED_NORMAL,
6049 };
6050
6051 read_lock(&tasklist_lock);
6052 for_each_process_thread(g, p) {
6053 /*
6054 * Only normalize user tasks:
6055 */
6056 if (p->flags & PF_KTHREAD)
6057 continue;
6058
6059 p->se.exec_start = 0;
6060 schedstat_set(p->se.statistics.wait_start, 0);
6061 schedstat_set(p->se.statistics.sleep_start, 0);
6062 schedstat_set(p->se.statistics.block_start, 0);
6063
6064 if (!dl_task(p) && !rt_task(p)) {
6065 /*
6066 * Renice negative nice level userspace
6067 * tasks back to 0:
6068 */
6069 if (task_nice(p) < 0)
6070 set_user_nice(p, 0);
6071 continue;
6072 }
6073
6074 __sched_setscheduler(p, &attr, false, false);
6075 }
6076 read_unlock(&tasklist_lock);
6077 }
6078
6079 #endif /* CONFIG_MAGIC_SYSRQ */
6080
6081 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6082 /*
6083 * These functions are only useful for the IA64 MCA handling, or kdb.
6084 *
6085 * They can only be called when the whole system has been
6086 * stopped - every CPU needs to be quiescent, and no scheduling
6087 * activity can take place. Using them for anything else would
6088 * be a serious bug, and as a result, they aren't even visible
6089 * under any other configuration.
6090 */
6091
6092 /**
6093 * curr_task - return the current task for a given CPU.
6094 * @cpu: the processor in question.
6095 *
6096 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6097 *
6098 * Return: The current task for @cpu.
6099 */
6100 struct task_struct *curr_task(int cpu)
6101 {
6102 return cpu_curr(cpu);
6103 }
6104
6105 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6106
6107 #ifdef CONFIG_IA64
6108 /**
6109 * set_curr_task - set the current task for a given CPU.
6110 * @cpu: the processor in question.
6111 * @p: the task pointer to set.
6112 *
6113 * Description: This function must only be used when non-maskable interrupts
6114 * are serviced on a separate stack. It allows the architecture to switch the
6115 * notion of the current task on a CPU in a non-blocking manner. This function
6116 * must be called with all CPU's synchronized, and interrupts disabled, the
6117 * and caller must save the original value of the current task (see
6118 * curr_task() above) and restore that value before reenabling interrupts and
6119 * re-starting the system.
6120 *
6121 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6122 */
6123 void ia64_set_curr_task(int cpu, struct task_struct *p)
6124 {
6125 cpu_curr(cpu) = p;
6126 }
6127
6128 #endif
6129
6130 #ifdef CONFIG_CGROUP_SCHED
6131 /* task_group_lock serializes the addition/removal of task groups */
6132 static DEFINE_SPINLOCK(task_group_lock);
6133
6134 static void sched_free_group(struct task_group *tg)
6135 {
6136 free_fair_sched_group(tg);
6137 free_rt_sched_group(tg);
6138 autogroup_free(tg);
6139 kmem_cache_free(task_group_cache, tg);
6140 }
6141
6142 /* allocate runqueue etc for a new task group */
6143 struct task_group *sched_create_group(struct task_group *parent)
6144 {
6145 struct task_group *tg;
6146
6147 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6148 if (!tg)
6149 return ERR_PTR(-ENOMEM);
6150
6151 if (!alloc_fair_sched_group(tg, parent))
6152 goto err;
6153
6154 if (!alloc_rt_sched_group(tg, parent))
6155 goto err;
6156
6157 return tg;
6158
6159 err:
6160 sched_free_group(tg);
6161 return ERR_PTR(-ENOMEM);
6162 }
6163
6164 void sched_online_group(struct task_group *tg, struct task_group *parent)
6165 {
6166 unsigned long flags;
6167
6168 spin_lock_irqsave(&task_group_lock, flags);
6169 list_add_rcu(&tg->list, &task_groups);
6170
6171 /* Root should already exist: */
6172 WARN_ON(!parent);
6173
6174 tg->parent = parent;
6175 INIT_LIST_HEAD(&tg->children);
6176 list_add_rcu(&tg->siblings, &parent->children);
6177 spin_unlock_irqrestore(&task_group_lock, flags);
6178
6179 online_fair_sched_group(tg);
6180 }
6181
6182 /* rcu callback to free various structures associated with a task group */
6183 static void sched_free_group_rcu(struct rcu_head *rhp)
6184 {
6185 /* Now it should be safe to free those cfs_rqs: */
6186 sched_free_group(container_of(rhp, struct task_group, rcu));
6187 }
6188
6189 void sched_destroy_group(struct task_group *tg)
6190 {
6191 /* Wait for possible concurrent references to cfs_rqs complete: */
6192 call_rcu(&tg->rcu, sched_free_group_rcu);
6193 }
6194
6195 void sched_offline_group(struct task_group *tg)
6196 {
6197 unsigned long flags;
6198
6199 /* End participation in shares distribution: */
6200 unregister_fair_sched_group(tg);
6201
6202 spin_lock_irqsave(&task_group_lock, flags);
6203 list_del_rcu(&tg->list);
6204 list_del_rcu(&tg->siblings);
6205 spin_unlock_irqrestore(&task_group_lock, flags);
6206 }
6207
6208 static void sched_change_group(struct task_struct *tsk, int type)
6209 {
6210 struct task_group *tg;
6211
6212 /*
6213 * All callers are synchronized by task_rq_lock(); we do not use RCU
6214 * which is pointless here. Thus, we pass "true" to task_css_check()
6215 * to prevent lockdep warnings.
6216 */
6217 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6218 struct task_group, css);
6219 tg = autogroup_task_group(tsk, tg);
6220 tsk->sched_task_group = tg;
6221
6222 #ifdef CONFIG_FAIR_GROUP_SCHED
6223 if (tsk->sched_class->task_change_group)
6224 tsk->sched_class->task_change_group(tsk, type);
6225 else
6226 #endif
6227 set_task_rq(tsk, task_cpu(tsk));
6228 }
6229
6230 /*
6231 * Change task's runqueue when it moves between groups.
6232 *
6233 * The caller of this function should have put the task in its new group by
6234 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6235 * its new group.
6236 */
6237 void sched_move_task(struct task_struct *tsk)
6238 {
6239 int queued, running, queue_flags =
6240 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6241 struct rq_flags rf;
6242 struct rq *rq;
6243
6244 rq = task_rq_lock(tsk, &rf);
6245 update_rq_clock(rq);
6246
6247 running = task_current(rq, tsk);
6248 queued = task_on_rq_queued(tsk);
6249
6250 if (queued)
6251 dequeue_task(rq, tsk, queue_flags);
6252 if (running)
6253 put_prev_task(rq, tsk);
6254
6255 sched_change_group(tsk, TASK_MOVE_GROUP);
6256
6257 if (queued)
6258 enqueue_task(rq, tsk, queue_flags);
6259 if (running)
6260 set_curr_task(rq, tsk);
6261
6262 task_rq_unlock(rq, tsk, &rf);
6263 }
6264
6265 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6266 {
6267 return css ? container_of(css, struct task_group, css) : NULL;
6268 }
6269
6270 static struct cgroup_subsys_state *
6271 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6272 {
6273 struct task_group *parent = css_tg(parent_css);
6274 struct task_group *tg;
6275
6276 if (!parent) {
6277 /* This is early initialization for the top cgroup */
6278 return &root_task_group.css;
6279 }
6280
6281 tg = sched_create_group(parent);
6282 if (IS_ERR(tg))
6283 return ERR_PTR(-ENOMEM);
6284
6285 return &tg->css;
6286 }
6287
6288 /* Expose task group only after completing cgroup initialization */
6289 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6290 {
6291 struct task_group *tg = css_tg(css);
6292 struct task_group *parent = css_tg(css->parent);
6293
6294 if (parent)
6295 sched_online_group(tg, parent);
6296 return 0;
6297 }
6298
6299 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6300 {
6301 struct task_group *tg = css_tg(css);
6302
6303 sched_offline_group(tg);
6304 }
6305
6306 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6307 {
6308 struct task_group *tg = css_tg(css);
6309
6310 /*
6311 * Relies on the RCU grace period between css_released() and this.
6312 */
6313 sched_free_group(tg);
6314 }
6315
6316 /*
6317 * This is called before wake_up_new_task(), therefore we really only
6318 * have to set its group bits, all the other stuff does not apply.
6319 */
6320 static void cpu_cgroup_fork(struct task_struct *task)
6321 {
6322 struct rq_flags rf;
6323 struct rq *rq;
6324
6325 rq = task_rq_lock(task, &rf);
6326
6327 update_rq_clock(rq);
6328 sched_change_group(task, TASK_SET_GROUP);
6329
6330 task_rq_unlock(rq, task, &rf);
6331 }
6332
6333 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6334 {
6335 struct task_struct *task;
6336 struct cgroup_subsys_state *css;
6337 int ret = 0;
6338
6339 cgroup_taskset_for_each(task, css, tset) {
6340 #ifdef CONFIG_RT_GROUP_SCHED
6341 if (!sched_rt_can_attach(css_tg(css), task))
6342 return -EINVAL;
6343 #else
6344 /* We don't support RT-tasks being in separate groups */
6345 if (task->sched_class != &fair_sched_class)
6346 return -EINVAL;
6347 #endif
6348 /*
6349 * Serialize against wake_up_new_task() such that if its
6350 * running, we're sure to observe its full state.
6351 */
6352 raw_spin_lock_irq(&task->pi_lock);
6353 /*
6354 * Avoid calling sched_move_task() before wake_up_new_task()
6355 * has happened. This would lead to problems with PELT, due to
6356 * move wanting to detach+attach while we're not attached yet.
6357 */
6358 if (task->state == TASK_NEW)
6359 ret = -EINVAL;
6360 raw_spin_unlock_irq(&task->pi_lock);
6361
6362 if (ret)
6363 break;
6364 }
6365 return ret;
6366 }
6367
6368 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6369 {
6370 struct task_struct *task;
6371 struct cgroup_subsys_state *css;
6372
6373 cgroup_taskset_for_each(task, css, tset)
6374 sched_move_task(task);
6375 }
6376
6377 #ifdef CONFIG_FAIR_GROUP_SCHED
6378 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6379 struct cftype *cftype, u64 shareval)
6380 {
6381 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6382 }
6383
6384 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6385 struct cftype *cft)
6386 {
6387 struct task_group *tg = css_tg(css);
6388
6389 return (u64) scale_load_down(tg->shares);
6390 }
6391
6392 #ifdef CONFIG_CFS_BANDWIDTH
6393 static DEFINE_MUTEX(cfs_constraints_mutex);
6394
6395 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6396 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6397
6398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6399
6400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6401 {
6402 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6403 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6404
6405 if (tg == &root_task_group)
6406 return -EINVAL;
6407
6408 /*
6409 * Ensure we have at some amount of bandwidth every period. This is
6410 * to prevent reaching a state of large arrears when throttled via
6411 * entity_tick() resulting in prolonged exit starvation.
6412 */
6413 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6414 return -EINVAL;
6415
6416 /*
6417 * Likewise, bound things on the otherside by preventing insane quota
6418 * periods. This also allows us to normalize in computing quota
6419 * feasibility.
6420 */
6421 if (period > max_cfs_quota_period)
6422 return -EINVAL;
6423
6424 /*
6425 * Prevent race between setting of cfs_rq->runtime_enabled and
6426 * unthrottle_offline_cfs_rqs().
6427 */
6428 get_online_cpus();
6429 mutex_lock(&cfs_constraints_mutex);
6430 ret = __cfs_schedulable(tg, period, quota);
6431 if (ret)
6432 goto out_unlock;
6433
6434 runtime_enabled = quota != RUNTIME_INF;
6435 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6436 /*
6437 * If we need to toggle cfs_bandwidth_used, off->on must occur
6438 * before making related changes, and on->off must occur afterwards
6439 */
6440 if (runtime_enabled && !runtime_was_enabled)
6441 cfs_bandwidth_usage_inc();
6442 raw_spin_lock_irq(&cfs_b->lock);
6443 cfs_b->period = ns_to_ktime(period);
6444 cfs_b->quota = quota;
6445
6446 __refill_cfs_bandwidth_runtime(cfs_b);
6447
6448 /* Restart the period timer (if active) to handle new period expiry: */
6449 if (runtime_enabled)
6450 start_cfs_bandwidth(cfs_b);
6451
6452 raw_spin_unlock_irq(&cfs_b->lock);
6453
6454 for_each_online_cpu(i) {
6455 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6456 struct rq *rq = cfs_rq->rq;
6457 struct rq_flags rf;
6458
6459 rq_lock_irq(rq, &rf);
6460 cfs_rq->runtime_enabled = runtime_enabled;
6461 cfs_rq->runtime_remaining = 0;
6462
6463 if (cfs_rq->throttled)
6464 unthrottle_cfs_rq(cfs_rq);
6465 rq_unlock_irq(rq, &rf);
6466 }
6467 if (runtime_was_enabled && !runtime_enabled)
6468 cfs_bandwidth_usage_dec();
6469 out_unlock:
6470 mutex_unlock(&cfs_constraints_mutex);
6471 put_online_cpus();
6472
6473 return ret;
6474 }
6475
6476 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6477 {
6478 u64 quota, period;
6479
6480 period = ktime_to_ns(tg->cfs_bandwidth.period);
6481 if (cfs_quota_us < 0)
6482 quota = RUNTIME_INF;
6483 else
6484 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6485
6486 return tg_set_cfs_bandwidth(tg, period, quota);
6487 }
6488
6489 long tg_get_cfs_quota(struct task_group *tg)
6490 {
6491 u64 quota_us;
6492
6493 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6494 return -1;
6495
6496 quota_us = tg->cfs_bandwidth.quota;
6497 do_div(quota_us, NSEC_PER_USEC);
6498
6499 return quota_us;
6500 }
6501
6502 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6503 {
6504 u64 quota, period;
6505
6506 period = (u64)cfs_period_us * NSEC_PER_USEC;
6507 quota = tg->cfs_bandwidth.quota;
6508
6509 return tg_set_cfs_bandwidth(tg, period, quota);
6510 }
6511
6512 long tg_get_cfs_period(struct task_group *tg)
6513 {
6514 u64 cfs_period_us;
6515
6516 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6517 do_div(cfs_period_us, NSEC_PER_USEC);
6518
6519 return cfs_period_us;
6520 }
6521
6522 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6523 struct cftype *cft)
6524 {
6525 return tg_get_cfs_quota(css_tg(css));
6526 }
6527
6528 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6529 struct cftype *cftype, s64 cfs_quota_us)
6530 {
6531 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6532 }
6533
6534 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6535 struct cftype *cft)
6536 {
6537 return tg_get_cfs_period(css_tg(css));
6538 }
6539
6540 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6541 struct cftype *cftype, u64 cfs_period_us)
6542 {
6543 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6544 }
6545
6546 struct cfs_schedulable_data {
6547 struct task_group *tg;
6548 u64 period, quota;
6549 };
6550
6551 /*
6552 * normalize group quota/period to be quota/max_period
6553 * note: units are usecs
6554 */
6555 static u64 normalize_cfs_quota(struct task_group *tg,
6556 struct cfs_schedulable_data *d)
6557 {
6558 u64 quota, period;
6559
6560 if (tg == d->tg) {
6561 period = d->period;
6562 quota = d->quota;
6563 } else {
6564 period = tg_get_cfs_period(tg);
6565 quota = tg_get_cfs_quota(tg);
6566 }
6567
6568 /* note: these should typically be equivalent */
6569 if (quota == RUNTIME_INF || quota == -1)
6570 return RUNTIME_INF;
6571
6572 return to_ratio(period, quota);
6573 }
6574
6575 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6576 {
6577 struct cfs_schedulable_data *d = data;
6578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6579 s64 quota = 0, parent_quota = -1;
6580
6581 if (!tg->parent) {
6582 quota = RUNTIME_INF;
6583 } else {
6584 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6585
6586 quota = normalize_cfs_quota(tg, d);
6587 parent_quota = parent_b->hierarchical_quota;
6588
6589 /*
6590 * Ensure max(child_quota) <= parent_quota, inherit when no
6591 * limit is set:
6592 */
6593 if (quota == RUNTIME_INF)
6594 quota = parent_quota;
6595 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6596 return -EINVAL;
6597 }
6598 cfs_b->hierarchical_quota = quota;
6599
6600 return 0;
6601 }
6602
6603 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6604 {
6605 int ret;
6606 struct cfs_schedulable_data data = {
6607 .tg = tg,
6608 .period = period,
6609 .quota = quota,
6610 };
6611
6612 if (quota != RUNTIME_INF) {
6613 do_div(data.period, NSEC_PER_USEC);
6614 do_div(data.quota, NSEC_PER_USEC);
6615 }
6616
6617 rcu_read_lock();
6618 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6619 rcu_read_unlock();
6620
6621 return ret;
6622 }
6623
6624 static int cpu_stats_show(struct seq_file *sf, void *v)
6625 {
6626 struct task_group *tg = css_tg(seq_css(sf));
6627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6628
6629 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6630 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6631 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6632
6633 return 0;
6634 }
6635 #endif /* CONFIG_CFS_BANDWIDTH */
6636 #endif /* CONFIG_FAIR_GROUP_SCHED */
6637
6638 #ifdef CONFIG_RT_GROUP_SCHED
6639 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6640 struct cftype *cft, s64 val)
6641 {
6642 return sched_group_set_rt_runtime(css_tg(css), val);
6643 }
6644
6645 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6646 struct cftype *cft)
6647 {
6648 return sched_group_rt_runtime(css_tg(css));
6649 }
6650
6651 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6652 struct cftype *cftype, u64 rt_period_us)
6653 {
6654 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6655 }
6656
6657 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6658 struct cftype *cft)
6659 {
6660 return sched_group_rt_period(css_tg(css));
6661 }
6662 #endif /* CONFIG_RT_GROUP_SCHED */
6663
6664 static struct cftype cpu_files[] = {
6665 #ifdef CONFIG_FAIR_GROUP_SCHED
6666 {
6667 .name = "shares",
6668 .read_u64 = cpu_shares_read_u64,
6669 .write_u64 = cpu_shares_write_u64,
6670 },
6671 #endif
6672 #ifdef CONFIG_CFS_BANDWIDTH
6673 {
6674 .name = "cfs_quota_us",
6675 .read_s64 = cpu_cfs_quota_read_s64,
6676 .write_s64 = cpu_cfs_quota_write_s64,
6677 },
6678 {
6679 .name = "cfs_period_us",
6680 .read_u64 = cpu_cfs_period_read_u64,
6681 .write_u64 = cpu_cfs_period_write_u64,
6682 },
6683 {
6684 .name = "stat",
6685 .seq_show = cpu_stats_show,
6686 },
6687 #endif
6688 #ifdef CONFIG_RT_GROUP_SCHED
6689 {
6690 .name = "rt_runtime_us",
6691 .read_s64 = cpu_rt_runtime_read,
6692 .write_s64 = cpu_rt_runtime_write,
6693 },
6694 {
6695 .name = "rt_period_us",
6696 .read_u64 = cpu_rt_period_read_uint,
6697 .write_u64 = cpu_rt_period_write_uint,
6698 },
6699 #endif
6700 { } /* Terminate */
6701 };
6702
6703 struct cgroup_subsys cpu_cgrp_subsys = {
6704 .css_alloc = cpu_cgroup_css_alloc,
6705 .css_online = cpu_cgroup_css_online,
6706 .css_released = cpu_cgroup_css_released,
6707 .css_free = cpu_cgroup_css_free,
6708 .fork = cpu_cgroup_fork,
6709 .can_attach = cpu_cgroup_can_attach,
6710 .attach = cpu_cgroup_attach,
6711 .legacy_cftypes = cpu_files,
6712 .early_init = true,
6713 };
6714
6715 #endif /* CONFIG_CGROUP_SCHED */
6716
6717 void dump_cpu_task(int cpu)
6718 {
6719 pr_info("Task dump for CPU %d:\n", cpu);
6720 sched_show_task(cpu_curr(cpu));
6721 }
6722
6723 /*
6724 * Nice levels are multiplicative, with a gentle 10% change for every
6725 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6726 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6727 * that remained on nice 0.
6728 *
6729 * The "10% effect" is relative and cumulative: from _any_ nice level,
6730 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6731 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6732 * If a task goes up by ~10% and another task goes down by ~10% then
6733 * the relative distance between them is ~25%.)
6734 */
6735 const int sched_prio_to_weight[40] = {
6736 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6737 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6738 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6739 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6740 /* 0 */ 1024, 820, 655, 526, 423,
6741 /* 5 */ 335, 272, 215, 172, 137,
6742 /* 10 */ 110, 87, 70, 56, 45,
6743 /* 15 */ 36, 29, 23, 18, 15,
6744 };
6745
6746 /*
6747 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6748 *
6749 * In cases where the weight does not change often, we can use the
6750 * precalculated inverse to speed up arithmetics by turning divisions
6751 * into multiplications:
6752 */
6753 const u32 sched_prio_to_wmult[40] = {
6754 /* -20 */ 48388, 59856, 76040, 92818, 118348,
6755 /* -15 */ 147320, 184698, 229616, 287308, 360437,
6756 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
6757 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
6758 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
6759 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
6760 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
6761 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6762 };