Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625
626 #else /* CONFIG_NO_HZ */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
632
633 #endif /* CONFIG_NO_HZ */
634
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
650
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
672
673 parent = from;
674
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
697
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
703
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
717
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
721
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
728
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
735
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
741 enqueue_task(rq, p, flags);
742 }
743
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
749 dequeue_task(rq, p, flags);
750 }
751
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((&paravirt_steal_rq_enabled))) {
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802 #endif
803
804 rq->clock_task += delta;
805
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
841
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
849
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
860
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
867
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
887
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
896
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
908
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
933
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967
968 trace_sched_migrate_task(p, new_cpu);
969
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
972
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
984
985 __set_task_cpu(p, new_cpu);
986 }
987
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
992
993 static int migration_cpu_stop(void *data);
994
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1017
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1026
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1043
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1057
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1074
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1091
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1099
1100 return ncsw;
1101 }
1102
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
1139
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
1157 }
1158
1159 for (;;) {
1160 /* Any allowed, online CPU? */
1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
1168
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187 out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
1198 }
1199
1200 return dest_cpu;
1201 }
1202
1203 /*
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205 */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 !cpu_online(cpu)))
1223 cpu = select_fallback_rq(task_cpu(p), p);
1224
1225 return cpu;
1226 }
1227
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232 }
1233 #endif
1234
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 struct rq *rq = this_rq();
1240
1241 #ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 rcu_read_lock();
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
1258 rcu_read_unlock();
1259 }
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
1264 #endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
1267 schedstat_inc(p, se.statistics.nr_wakeups);
1268
1269 if (wake_flags & WF_SYNC)
1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 activate_task(rq, p, en_flags);
1278 p->on_rq = 1;
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284
1285 /*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 check_preempt_curr(rq, p, wake_flags);
1292 trace_sched_wakeup(p, true);
1293
1294 p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
1299 if (rq->idle_stamp) {
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309 #endif
1310 }
1311
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318 #endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323
1324 /*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343 }
1344
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 struct rq *rq = this_rq();
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
1351
1352 raw_spin_lock(&rq->lock);
1353
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361 }
1362
1363 void scheduler_ipi(void)
1364 {
1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
1382 sched_ttwu_pending();
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 }
1391 irq_exit();
1392 }
1393
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 smp_send_reschedule(cpu);
1398 }
1399
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 struct rq *rq = cpu_rq(cpu);
1409
1410 #if defined(CONFIG_SMP)
1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416 #endif
1417
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
1421 }
1422
1423 /**
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1437 */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 unsigned long flags;
1442 int cpu, success = 0;
1443
1444 smp_wmb();
1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 if (!(p->state & state))
1447 goto out;
1448
1449 success = 1; /* we're going to change ->state */
1450 cpu = task_cpu(p);
1451
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1454
1455 #ifdef CONFIG_SMP
1456 /*
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
1459 */
1460 while (p->on_cpu)
1461 cpu_relax();
1462 /*
1463 * Pairs with the smp_wmb() in finish_lock_switch().
1464 */
1465 smp_rmb();
1466
1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 p->state = TASK_WAKING;
1469
1470 if (p->sched_class->task_waking)
1471 p->sched_class->task_waking(p);
1472
1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
1476 set_task_cpu(p, cpu);
1477 }
1478 #endif /* CONFIG_SMP */
1479
1480 ttwu_queue(p, cpu);
1481 stat:
1482 ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485
1486 return success;
1487 }
1488
1489 /**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495 * the current task.
1496 */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 struct rq *rq = task_rq(p);
1500
1501 if (WARN_ON_ONCE(rq != this_rq()) ||
1502 WARN_ON_ONCE(p == current))
1503 return;
1504
1505 lockdep_assert_held(&rq->lock);
1506
1507 if (!raw_spin_trylock(&p->pi_lock)) {
1508 raw_spin_unlock(&rq->lock);
1509 raw_spin_lock(&p->pi_lock);
1510 raw_spin_lock(&rq->lock);
1511 }
1512
1513 if (!(p->state & TASK_NORMAL))
1514 goto out;
1515
1516 if (!p->on_rq)
1517 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1518
1519 ttwu_do_wakeup(rq, p, 0);
1520 ttwu_stat(p, smp_processor_id(), 0);
1521 out:
1522 raw_spin_unlock(&p->pi_lock);
1523 }
1524
1525 /**
1526 * wake_up_process - Wake up a specific process
1527 * @p: The process to be woken up.
1528 *
1529 * Attempt to wake up the nominated process and move it to the set of runnable
1530 * processes. Returns 1 if the process was woken up, 0 if it was already
1531 * running.
1532 *
1533 * It may be assumed that this function implies a write memory barrier before
1534 * changing the task state if and only if any tasks are woken up.
1535 */
1536 int wake_up_process(struct task_struct *p)
1537 {
1538 WARN_ON(task_is_stopped_or_traced(p));
1539 return try_to_wake_up(p, TASK_NORMAL, 0);
1540 }
1541 EXPORT_SYMBOL(wake_up_process);
1542
1543 int wake_up_state(struct task_struct *p, unsigned int state)
1544 {
1545 return try_to_wake_up(p, state, 0);
1546 }
1547
1548 /*
1549 * Perform scheduler related setup for a newly forked process p.
1550 * p is forked by current.
1551 *
1552 * __sched_fork() is basic setup used by init_idle() too:
1553 */
1554 static void __sched_fork(struct task_struct *p)
1555 {
1556 p->on_rq = 0;
1557
1558 p->se.on_rq = 0;
1559 p->se.exec_start = 0;
1560 p->se.sum_exec_runtime = 0;
1561 p->se.prev_sum_exec_runtime = 0;
1562 p->se.nr_migrations = 0;
1563 p->se.vruntime = 0;
1564 INIT_LIST_HEAD(&p->se.group_node);
1565
1566 /*
1567 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1568 * removed when useful for applications beyond shares distribution (e.g.
1569 * load-balance).
1570 */
1571 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1572 p->se.avg.runnable_avg_period = 0;
1573 p->se.avg.runnable_avg_sum = 0;
1574 #endif
1575 #ifdef CONFIG_SCHEDSTATS
1576 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1577 #endif
1578
1579 INIT_LIST_HEAD(&p->rt.run_list);
1580
1581 #ifdef CONFIG_PREEMPT_NOTIFIERS
1582 INIT_HLIST_HEAD(&p->preempt_notifiers);
1583 #endif
1584
1585 #ifdef CONFIG_NUMA_BALANCING
1586 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1587 p->mm->numa_next_scan = jiffies;
1588 p->mm->numa_next_reset = jiffies;
1589 p->mm->numa_scan_seq = 0;
1590 }
1591
1592 p->node_stamp = 0ULL;
1593 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1594 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1595 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1596 p->numa_work.next = &p->numa_work;
1597 #endif /* CONFIG_NUMA_BALANCING */
1598 }
1599
1600 #ifdef CONFIG_NUMA_BALANCING
1601 #ifdef CONFIG_SCHED_DEBUG
1602 void set_numabalancing_state(bool enabled)
1603 {
1604 if (enabled)
1605 sched_feat_set("NUMA");
1606 else
1607 sched_feat_set("NO_NUMA");
1608 }
1609 #else
1610 __read_mostly bool numabalancing_enabled;
1611
1612 void set_numabalancing_state(bool enabled)
1613 {
1614 numabalancing_enabled = enabled;
1615 }
1616 #endif /* CONFIG_SCHED_DEBUG */
1617 #endif /* CONFIG_NUMA_BALANCING */
1618
1619 /*
1620 * fork()/clone()-time setup:
1621 */
1622 void sched_fork(struct task_struct *p)
1623 {
1624 unsigned long flags;
1625 int cpu = get_cpu();
1626
1627 __sched_fork(p);
1628 /*
1629 * We mark the process as running here. This guarantees that
1630 * nobody will actually run it, and a signal or other external
1631 * event cannot wake it up and insert it on the runqueue either.
1632 */
1633 p->state = TASK_RUNNING;
1634
1635 /*
1636 * Make sure we do not leak PI boosting priority to the child.
1637 */
1638 p->prio = current->normal_prio;
1639
1640 /*
1641 * Revert to default priority/policy on fork if requested.
1642 */
1643 if (unlikely(p->sched_reset_on_fork)) {
1644 if (task_has_rt_policy(p)) {
1645 p->policy = SCHED_NORMAL;
1646 p->static_prio = NICE_TO_PRIO(0);
1647 p->rt_priority = 0;
1648 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1649 p->static_prio = NICE_TO_PRIO(0);
1650
1651 p->prio = p->normal_prio = __normal_prio(p);
1652 set_load_weight(p);
1653
1654 /*
1655 * We don't need the reset flag anymore after the fork. It has
1656 * fulfilled its duty:
1657 */
1658 p->sched_reset_on_fork = 0;
1659 }
1660
1661 if (!rt_prio(p->prio))
1662 p->sched_class = &fair_sched_class;
1663
1664 if (p->sched_class->task_fork)
1665 p->sched_class->task_fork(p);
1666
1667 /*
1668 * The child is not yet in the pid-hash so no cgroup attach races,
1669 * and the cgroup is pinned to this child due to cgroup_fork()
1670 * is ran before sched_fork().
1671 *
1672 * Silence PROVE_RCU.
1673 */
1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 set_task_cpu(p, cpu);
1676 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1677
1678 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1679 if (likely(sched_info_on()))
1680 memset(&p->sched_info, 0, sizeof(p->sched_info));
1681 #endif
1682 #if defined(CONFIG_SMP)
1683 p->on_cpu = 0;
1684 #endif
1685 #ifdef CONFIG_PREEMPT_COUNT
1686 /* Want to start with kernel preemption disabled. */
1687 task_thread_info(p)->preempt_count = 1;
1688 #endif
1689 #ifdef CONFIG_SMP
1690 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1691 #endif
1692
1693 put_cpu();
1694 }
1695
1696 /*
1697 * wake_up_new_task - wake up a newly created task for the first time.
1698 *
1699 * This function will do some initial scheduler statistics housekeeping
1700 * that must be done for every newly created context, then puts the task
1701 * on the runqueue and wakes it.
1702 */
1703 void wake_up_new_task(struct task_struct *p)
1704 {
1705 unsigned long flags;
1706 struct rq *rq;
1707
1708 raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 #ifdef CONFIG_SMP
1710 /*
1711 * Fork balancing, do it here and not earlier because:
1712 * - cpus_allowed can change in the fork path
1713 * - any previously selected cpu might disappear through hotplug
1714 */
1715 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1716 #endif
1717
1718 rq = __task_rq_lock(p);
1719 activate_task(rq, p, 0);
1720 p->on_rq = 1;
1721 trace_sched_wakeup_new(p, true);
1722 check_preempt_curr(rq, p, WF_FORK);
1723 #ifdef CONFIG_SMP
1724 if (p->sched_class->task_woken)
1725 p->sched_class->task_woken(rq, p);
1726 #endif
1727 task_rq_unlock(rq, p, &flags);
1728 }
1729
1730 #ifdef CONFIG_PREEMPT_NOTIFIERS
1731
1732 /**
1733 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1734 * @notifier: notifier struct to register
1735 */
1736 void preempt_notifier_register(struct preempt_notifier *notifier)
1737 {
1738 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1739 }
1740 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1741
1742 /**
1743 * preempt_notifier_unregister - no longer interested in preemption notifications
1744 * @notifier: notifier struct to unregister
1745 *
1746 * This is safe to call from within a preemption notifier.
1747 */
1748 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1749 {
1750 hlist_del(&notifier->link);
1751 }
1752 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1753
1754 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1755 {
1756 struct preempt_notifier *notifier;
1757
1758 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760 }
1761
1762 static void
1763 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1764 struct task_struct *next)
1765 {
1766 struct preempt_notifier *notifier;
1767
1768 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1769 notifier->ops->sched_out(notifier, next);
1770 }
1771
1772 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1773
1774 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1775 {
1776 }
1777
1778 static void
1779 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781 {
1782 }
1783
1784 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1785
1786 /**
1787 * prepare_task_switch - prepare to switch tasks
1788 * @rq: the runqueue preparing to switch
1789 * @prev: the current task that is being switched out
1790 * @next: the task we are going to switch to.
1791 *
1792 * This is called with the rq lock held and interrupts off. It must
1793 * be paired with a subsequent finish_task_switch after the context
1794 * switch.
1795 *
1796 * prepare_task_switch sets up locking and calls architecture specific
1797 * hooks.
1798 */
1799 static inline void
1800 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1801 struct task_struct *next)
1802 {
1803 trace_sched_switch(prev, next);
1804 sched_info_switch(prev, next);
1805 perf_event_task_sched_out(prev, next);
1806 fire_sched_out_preempt_notifiers(prev, next);
1807 prepare_lock_switch(rq, next);
1808 prepare_arch_switch(next);
1809 }
1810
1811 /**
1812 * finish_task_switch - clean up after a task-switch
1813 * @rq: runqueue associated with task-switch
1814 * @prev: the thread we just switched away from.
1815 *
1816 * finish_task_switch must be called after the context switch, paired
1817 * with a prepare_task_switch call before the context switch.
1818 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1819 * and do any other architecture-specific cleanup actions.
1820 *
1821 * Note that we may have delayed dropping an mm in context_switch(). If
1822 * so, we finish that here outside of the runqueue lock. (Doing it
1823 * with the lock held can cause deadlocks; see schedule() for
1824 * details.)
1825 */
1826 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1827 __releases(rq->lock)
1828 {
1829 struct mm_struct *mm = rq->prev_mm;
1830 long prev_state;
1831
1832 rq->prev_mm = NULL;
1833
1834 /*
1835 * A task struct has one reference for the use as "current".
1836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1837 * schedule one last time. The schedule call will never return, and
1838 * the scheduled task must drop that reference.
1839 * The test for TASK_DEAD must occur while the runqueue locks are
1840 * still held, otherwise prev could be scheduled on another cpu, die
1841 * there before we look at prev->state, and then the reference would
1842 * be dropped twice.
1843 * Manfred Spraul <manfred@colorfullife.com>
1844 */
1845 prev_state = prev->state;
1846 vtime_task_switch(prev);
1847 finish_arch_switch(prev);
1848 perf_event_task_sched_in(prev, current);
1849 finish_lock_switch(rq, prev);
1850 finish_arch_post_lock_switch();
1851
1852 fire_sched_in_preempt_notifiers(current);
1853 if (mm)
1854 mmdrop(mm);
1855 if (unlikely(prev_state == TASK_DEAD)) {
1856 /*
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
1859 */
1860 kprobe_flush_task(prev);
1861 put_task_struct(prev);
1862 }
1863 }
1864
1865 #ifdef CONFIG_SMP
1866
1867 /* assumes rq->lock is held */
1868 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1869 {
1870 if (prev->sched_class->pre_schedule)
1871 prev->sched_class->pre_schedule(rq, prev);
1872 }
1873
1874 /* rq->lock is NOT held, but preemption is disabled */
1875 static inline void post_schedule(struct rq *rq)
1876 {
1877 if (rq->post_schedule) {
1878 unsigned long flags;
1879
1880 raw_spin_lock_irqsave(&rq->lock, flags);
1881 if (rq->curr->sched_class->post_schedule)
1882 rq->curr->sched_class->post_schedule(rq);
1883 raw_spin_unlock_irqrestore(&rq->lock, flags);
1884
1885 rq->post_schedule = 0;
1886 }
1887 }
1888
1889 #else
1890
1891 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1892 {
1893 }
1894
1895 static inline void post_schedule(struct rq *rq)
1896 {
1897 }
1898
1899 #endif
1900
1901 /**
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1904 */
1905 asmlinkage void schedule_tail(struct task_struct *prev)
1906 __releases(rq->lock)
1907 {
1908 struct rq *rq = this_rq();
1909
1910 finish_task_switch(rq, prev);
1911
1912 /*
1913 * FIXME: do we need to worry about rq being invalidated by the
1914 * task_switch?
1915 */
1916 post_schedule(rq);
1917
1918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1919 /* In this case, finish_task_switch does not reenable preemption */
1920 preempt_enable();
1921 #endif
1922 if (current->set_child_tid)
1923 put_user(task_pid_vnr(current), current->set_child_tid);
1924 }
1925
1926 /*
1927 * context_switch - switch to the new MM and the new
1928 * thread's register state.
1929 */
1930 static inline void
1931 context_switch(struct rq *rq, struct task_struct *prev,
1932 struct task_struct *next)
1933 {
1934 struct mm_struct *mm, *oldmm;
1935
1936 prepare_task_switch(rq, prev, next);
1937
1938 mm = next->mm;
1939 oldmm = prev->active_mm;
1940 /*
1941 * For paravirt, this is coupled with an exit in switch_to to
1942 * combine the page table reload and the switch backend into
1943 * one hypercall.
1944 */
1945 arch_start_context_switch(prev);
1946
1947 if (!mm) {
1948 next->active_mm = oldmm;
1949 atomic_inc(&oldmm->mm_count);
1950 enter_lazy_tlb(oldmm, next);
1951 } else
1952 switch_mm(oldmm, mm, next);
1953
1954 if (!prev->mm) {
1955 prev->active_mm = NULL;
1956 rq->prev_mm = oldmm;
1957 }
1958 /*
1959 * Since the runqueue lock will be released by the next
1960 * task (which is an invalid locking op but in the case
1961 * of the scheduler it's an obvious special-case), so we
1962 * do an early lockdep release here:
1963 */
1964 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1965 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1966 #endif
1967
1968 context_tracking_task_switch(prev, next);
1969 /* Here we just switch the register state and the stack. */
1970 switch_to(prev, next, prev);
1971
1972 barrier();
1973 /*
1974 * this_rq must be evaluated again because prev may have moved
1975 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 * frame will be invalid.
1977 */
1978 finish_task_switch(this_rq(), prev);
1979 }
1980
1981 /*
1982 * nr_running and nr_context_switches:
1983 *
1984 * externally visible scheduler statistics: current number of runnable
1985 * threads, total number of context switches performed since bootup.
1986 */
1987 unsigned long nr_running(void)
1988 {
1989 unsigned long i, sum = 0;
1990
1991 for_each_online_cpu(i)
1992 sum += cpu_rq(i)->nr_running;
1993
1994 return sum;
1995 }
1996
1997 unsigned long long nr_context_switches(void)
1998 {
1999 int i;
2000 unsigned long long sum = 0;
2001
2002 for_each_possible_cpu(i)
2003 sum += cpu_rq(i)->nr_switches;
2004
2005 return sum;
2006 }
2007
2008 unsigned long nr_iowait(void)
2009 {
2010 unsigned long i, sum = 0;
2011
2012 for_each_possible_cpu(i)
2013 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2014
2015 return sum;
2016 }
2017
2018 unsigned long nr_iowait_cpu(int cpu)
2019 {
2020 struct rq *this = cpu_rq(cpu);
2021 return atomic_read(&this->nr_iowait);
2022 }
2023
2024 unsigned long this_cpu_load(void)
2025 {
2026 struct rq *this = this_rq();
2027 return this->cpu_load[0];
2028 }
2029
2030
2031 /*
2032 * Global load-average calculations
2033 *
2034 * We take a distributed and async approach to calculating the global load-avg
2035 * in order to minimize overhead.
2036 *
2037 * The global load average is an exponentially decaying average of nr_running +
2038 * nr_uninterruptible.
2039 *
2040 * Once every LOAD_FREQ:
2041 *
2042 * nr_active = 0;
2043 * for_each_possible_cpu(cpu)
2044 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2045 *
2046 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2047 *
2048 * Due to a number of reasons the above turns in the mess below:
2049 *
2050 * - for_each_possible_cpu() is prohibitively expensive on machines with
2051 * serious number of cpus, therefore we need to take a distributed approach
2052 * to calculating nr_active.
2053 *
2054 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2055 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2056 *
2057 * So assuming nr_active := 0 when we start out -- true per definition, we
2058 * can simply take per-cpu deltas and fold those into a global accumulate
2059 * to obtain the same result. See calc_load_fold_active().
2060 *
2061 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2062 * across the machine, we assume 10 ticks is sufficient time for every
2063 * cpu to have completed this task.
2064 *
2065 * This places an upper-bound on the IRQ-off latency of the machine. Then
2066 * again, being late doesn't loose the delta, just wrecks the sample.
2067 *
2068 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2069 * this would add another cross-cpu cacheline miss and atomic operation
2070 * to the wakeup path. Instead we increment on whatever cpu the task ran
2071 * when it went into uninterruptible state and decrement on whatever cpu
2072 * did the wakeup. This means that only the sum of nr_uninterruptible over
2073 * all cpus yields the correct result.
2074 *
2075 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2076 */
2077
2078 /* Variables and functions for calc_load */
2079 static atomic_long_t calc_load_tasks;
2080 static unsigned long calc_load_update;
2081 unsigned long avenrun[3];
2082 EXPORT_SYMBOL(avenrun); /* should be removed */
2083
2084 /**
2085 * get_avenrun - get the load average array
2086 * @loads: pointer to dest load array
2087 * @offset: offset to add
2088 * @shift: shift count to shift the result left
2089 *
2090 * These values are estimates at best, so no need for locking.
2091 */
2092 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2093 {
2094 loads[0] = (avenrun[0] + offset) << shift;
2095 loads[1] = (avenrun[1] + offset) << shift;
2096 loads[2] = (avenrun[2] + offset) << shift;
2097 }
2098
2099 static long calc_load_fold_active(struct rq *this_rq)
2100 {
2101 long nr_active, delta = 0;
2102
2103 nr_active = this_rq->nr_running;
2104 nr_active += (long) this_rq->nr_uninterruptible;
2105
2106 if (nr_active != this_rq->calc_load_active) {
2107 delta = nr_active - this_rq->calc_load_active;
2108 this_rq->calc_load_active = nr_active;
2109 }
2110
2111 return delta;
2112 }
2113
2114 /*
2115 * a1 = a0 * e + a * (1 - e)
2116 */
2117 static unsigned long
2118 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2119 {
2120 load *= exp;
2121 load += active * (FIXED_1 - exp);
2122 load += 1UL << (FSHIFT - 1);
2123 return load >> FSHIFT;
2124 }
2125
2126 #ifdef CONFIG_NO_HZ
2127 /*
2128 * Handle NO_HZ for the global load-average.
2129 *
2130 * Since the above described distributed algorithm to compute the global
2131 * load-average relies on per-cpu sampling from the tick, it is affected by
2132 * NO_HZ.
2133 *
2134 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2135 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2136 * when we read the global state.
2137 *
2138 * Obviously reality has to ruin such a delightfully simple scheme:
2139 *
2140 * - When we go NO_HZ idle during the window, we can negate our sample
2141 * contribution, causing under-accounting.
2142 *
2143 * We avoid this by keeping two idle-delta counters and flipping them
2144 * when the window starts, thus separating old and new NO_HZ load.
2145 *
2146 * The only trick is the slight shift in index flip for read vs write.
2147 *
2148 * 0s 5s 10s 15s
2149 * +10 +10 +10 +10
2150 * |-|-----------|-|-----------|-|-----------|-|
2151 * r:0 0 1 1 0 0 1 1 0
2152 * w:0 1 1 0 0 1 1 0 0
2153 *
2154 * This ensures we'll fold the old idle contribution in this window while
2155 * accumlating the new one.
2156 *
2157 * - When we wake up from NO_HZ idle during the window, we push up our
2158 * contribution, since we effectively move our sample point to a known
2159 * busy state.
2160 *
2161 * This is solved by pushing the window forward, and thus skipping the
2162 * sample, for this cpu (effectively using the idle-delta for this cpu which
2163 * was in effect at the time the window opened). This also solves the issue
2164 * of having to deal with a cpu having been in NOHZ idle for multiple
2165 * LOAD_FREQ intervals.
2166 *
2167 * When making the ILB scale, we should try to pull this in as well.
2168 */
2169 static atomic_long_t calc_load_idle[2];
2170 static int calc_load_idx;
2171
2172 static inline int calc_load_write_idx(void)
2173 {
2174 int idx = calc_load_idx;
2175
2176 /*
2177 * See calc_global_nohz(), if we observe the new index, we also
2178 * need to observe the new update time.
2179 */
2180 smp_rmb();
2181
2182 /*
2183 * If the folding window started, make sure we start writing in the
2184 * next idle-delta.
2185 */
2186 if (!time_before(jiffies, calc_load_update))
2187 idx++;
2188
2189 return idx & 1;
2190 }
2191
2192 static inline int calc_load_read_idx(void)
2193 {
2194 return calc_load_idx & 1;
2195 }
2196
2197 void calc_load_enter_idle(void)
2198 {
2199 struct rq *this_rq = this_rq();
2200 long delta;
2201
2202 /*
2203 * We're going into NOHZ mode, if there's any pending delta, fold it
2204 * into the pending idle delta.
2205 */
2206 delta = calc_load_fold_active(this_rq);
2207 if (delta) {
2208 int idx = calc_load_write_idx();
2209 atomic_long_add(delta, &calc_load_idle[idx]);
2210 }
2211 }
2212
2213 void calc_load_exit_idle(void)
2214 {
2215 struct rq *this_rq = this_rq();
2216
2217 /*
2218 * If we're still before the sample window, we're done.
2219 */
2220 if (time_before(jiffies, this_rq->calc_load_update))
2221 return;
2222
2223 /*
2224 * We woke inside or after the sample window, this means we're already
2225 * accounted through the nohz accounting, so skip the entire deal and
2226 * sync up for the next window.
2227 */
2228 this_rq->calc_load_update = calc_load_update;
2229 if (time_before(jiffies, this_rq->calc_load_update + 10))
2230 this_rq->calc_load_update += LOAD_FREQ;
2231 }
2232
2233 static long calc_load_fold_idle(void)
2234 {
2235 int idx = calc_load_read_idx();
2236 long delta = 0;
2237
2238 if (atomic_long_read(&calc_load_idle[idx]))
2239 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2240
2241 return delta;
2242 }
2243
2244 /**
2245 * fixed_power_int - compute: x^n, in O(log n) time
2246 *
2247 * @x: base of the power
2248 * @frac_bits: fractional bits of @x
2249 * @n: power to raise @x to.
2250 *
2251 * By exploiting the relation between the definition of the natural power
2252 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2253 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2254 * (where: n_i \elem {0, 1}, the binary vector representing n),
2255 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2256 * of course trivially computable in O(log_2 n), the length of our binary
2257 * vector.
2258 */
2259 static unsigned long
2260 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2261 {
2262 unsigned long result = 1UL << frac_bits;
2263
2264 if (n) for (;;) {
2265 if (n & 1) {
2266 result *= x;
2267 result += 1UL << (frac_bits - 1);
2268 result >>= frac_bits;
2269 }
2270 n >>= 1;
2271 if (!n)
2272 break;
2273 x *= x;
2274 x += 1UL << (frac_bits - 1);
2275 x >>= frac_bits;
2276 }
2277
2278 return result;
2279 }
2280
2281 /*
2282 * a1 = a0 * e + a * (1 - e)
2283 *
2284 * a2 = a1 * e + a * (1 - e)
2285 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2286 * = a0 * e^2 + a * (1 - e) * (1 + e)
2287 *
2288 * a3 = a2 * e + a * (1 - e)
2289 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2290 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2291 *
2292 * ...
2293 *
2294 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2295 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2296 * = a0 * e^n + a * (1 - e^n)
2297 *
2298 * [1] application of the geometric series:
2299 *
2300 * n 1 - x^(n+1)
2301 * S_n := \Sum x^i = -------------
2302 * i=0 1 - x
2303 */
2304 static unsigned long
2305 calc_load_n(unsigned long load, unsigned long exp,
2306 unsigned long active, unsigned int n)
2307 {
2308
2309 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2310 }
2311
2312 /*
2313 * NO_HZ can leave us missing all per-cpu ticks calling
2314 * calc_load_account_active(), but since an idle CPU folds its delta into
2315 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2316 * in the pending idle delta if our idle period crossed a load cycle boundary.
2317 *
2318 * Once we've updated the global active value, we need to apply the exponential
2319 * weights adjusted to the number of cycles missed.
2320 */
2321 static void calc_global_nohz(void)
2322 {
2323 long delta, active, n;
2324
2325 if (!time_before(jiffies, calc_load_update + 10)) {
2326 /*
2327 * Catch-up, fold however many we are behind still
2328 */
2329 delta = jiffies - calc_load_update - 10;
2330 n = 1 + (delta / LOAD_FREQ);
2331
2332 active = atomic_long_read(&calc_load_tasks);
2333 active = active > 0 ? active * FIXED_1 : 0;
2334
2335 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2336 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2337 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2338
2339 calc_load_update += n * LOAD_FREQ;
2340 }
2341
2342 /*
2343 * Flip the idle index...
2344 *
2345 * Make sure we first write the new time then flip the index, so that
2346 * calc_load_write_idx() will see the new time when it reads the new
2347 * index, this avoids a double flip messing things up.
2348 */
2349 smp_wmb();
2350 calc_load_idx++;
2351 }
2352 #else /* !CONFIG_NO_HZ */
2353
2354 static inline long calc_load_fold_idle(void) { return 0; }
2355 static inline void calc_global_nohz(void) { }
2356
2357 #endif /* CONFIG_NO_HZ */
2358
2359 /*
2360 * calc_load - update the avenrun load estimates 10 ticks after the
2361 * CPUs have updated calc_load_tasks.
2362 */
2363 void calc_global_load(unsigned long ticks)
2364 {
2365 long active, delta;
2366
2367 if (time_before(jiffies, calc_load_update + 10))
2368 return;
2369
2370 /*
2371 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2372 */
2373 delta = calc_load_fold_idle();
2374 if (delta)
2375 atomic_long_add(delta, &calc_load_tasks);
2376
2377 active = atomic_long_read(&calc_load_tasks);
2378 active = active > 0 ? active * FIXED_1 : 0;
2379
2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383
2384 calc_load_update += LOAD_FREQ;
2385
2386 /*
2387 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2388 */
2389 calc_global_nohz();
2390 }
2391
2392 /*
2393 * Called from update_cpu_load() to periodically update this CPU's
2394 * active count.
2395 */
2396 static void calc_load_account_active(struct rq *this_rq)
2397 {
2398 long delta;
2399
2400 if (time_before(jiffies, this_rq->calc_load_update))
2401 return;
2402
2403 delta = calc_load_fold_active(this_rq);
2404 if (delta)
2405 atomic_long_add(delta, &calc_load_tasks);
2406
2407 this_rq->calc_load_update += LOAD_FREQ;
2408 }
2409
2410 /*
2411 * End of global load-average stuff
2412 */
2413
2414 /*
2415 * The exact cpuload at various idx values, calculated at every tick would be
2416 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2417 *
2418 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2419 * on nth tick when cpu may be busy, then we have:
2420 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2421 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2422 *
2423 * decay_load_missed() below does efficient calculation of
2424 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2425 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2426 *
2427 * The calculation is approximated on a 128 point scale.
2428 * degrade_zero_ticks is the number of ticks after which load at any
2429 * particular idx is approximated to be zero.
2430 * degrade_factor is a precomputed table, a row for each load idx.
2431 * Each column corresponds to degradation factor for a power of two ticks,
2432 * based on 128 point scale.
2433 * Example:
2434 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2435 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2436 *
2437 * With this power of 2 load factors, we can degrade the load n times
2438 * by looking at 1 bits in n and doing as many mult/shift instead of
2439 * n mult/shifts needed by the exact degradation.
2440 */
2441 #define DEGRADE_SHIFT 7
2442 static const unsigned char
2443 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2444 static const unsigned char
2445 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2446 {0, 0, 0, 0, 0, 0, 0, 0},
2447 {64, 32, 8, 0, 0, 0, 0, 0},
2448 {96, 72, 40, 12, 1, 0, 0},
2449 {112, 98, 75, 43, 15, 1, 0},
2450 {120, 112, 98, 76, 45, 16, 2} };
2451
2452 /*
2453 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2454 * would be when CPU is idle and so we just decay the old load without
2455 * adding any new load.
2456 */
2457 static unsigned long
2458 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2459 {
2460 int j = 0;
2461
2462 if (!missed_updates)
2463 return load;
2464
2465 if (missed_updates >= degrade_zero_ticks[idx])
2466 return 0;
2467
2468 if (idx == 1)
2469 return load >> missed_updates;
2470
2471 while (missed_updates) {
2472 if (missed_updates % 2)
2473 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2474
2475 missed_updates >>= 1;
2476 j++;
2477 }
2478 return load;
2479 }
2480
2481 /*
2482 * Update rq->cpu_load[] statistics. This function is usually called every
2483 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2484 * every tick. We fix it up based on jiffies.
2485 */
2486 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2487 unsigned long pending_updates)
2488 {
2489 int i, scale;
2490
2491 this_rq->nr_load_updates++;
2492
2493 /* Update our load: */
2494 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2495 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2496 unsigned long old_load, new_load;
2497
2498 /* scale is effectively 1 << i now, and >> i divides by scale */
2499
2500 old_load = this_rq->cpu_load[i];
2501 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2502 new_load = this_load;
2503 /*
2504 * Round up the averaging division if load is increasing. This
2505 * prevents us from getting stuck on 9 if the load is 10, for
2506 * example.
2507 */
2508 if (new_load > old_load)
2509 new_load += scale - 1;
2510
2511 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2512 }
2513
2514 sched_avg_update(this_rq);
2515 }
2516
2517 #ifdef CONFIG_NO_HZ
2518 /*
2519 * There is no sane way to deal with nohz on smp when using jiffies because the
2520 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2521 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2522 *
2523 * Therefore we cannot use the delta approach from the regular tick since that
2524 * would seriously skew the load calculation. However we'll make do for those
2525 * updates happening while idle (nohz_idle_balance) or coming out of idle
2526 * (tick_nohz_idle_exit).
2527 *
2528 * This means we might still be one tick off for nohz periods.
2529 */
2530
2531 /*
2532 * Called from nohz_idle_balance() to update the load ratings before doing the
2533 * idle balance.
2534 */
2535 void update_idle_cpu_load(struct rq *this_rq)
2536 {
2537 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2538 unsigned long load = this_rq->load.weight;
2539 unsigned long pending_updates;
2540
2541 /*
2542 * bail if there's load or we're actually up-to-date.
2543 */
2544 if (load || curr_jiffies == this_rq->last_load_update_tick)
2545 return;
2546
2547 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2548 this_rq->last_load_update_tick = curr_jiffies;
2549
2550 __update_cpu_load(this_rq, load, pending_updates);
2551 }
2552
2553 /*
2554 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2555 */
2556 void update_cpu_load_nohz(void)
2557 {
2558 struct rq *this_rq = this_rq();
2559 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2560 unsigned long pending_updates;
2561
2562 if (curr_jiffies == this_rq->last_load_update_tick)
2563 return;
2564
2565 raw_spin_lock(&this_rq->lock);
2566 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2567 if (pending_updates) {
2568 this_rq->last_load_update_tick = curr_jiffies;
2569 /*
2570 * We were idle, this means load 0, the current load might be
2571 * !0 due to remote wakeups and the sort.
2572 */
2573 __update_cpu_load(this_rq, 0, pending_updates);
2574 }
2575 raw_spin_unlock(&this_rq->lock);
2576 }
2577 #endif /* CONFIG_NO_HZ */
2578
2579 /*
2580 * Called from scheduler_tick()
2581 */
2582 static void update_cpu_load_active(struct rq *this_rq)
2583 {
2584 /*
2585 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2586 */
2587 this_rq->last_load_update_tick = jiffies;
2588 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2589
2590 calc_load_account_active(this_rq);
2591 }
2592
2593 #ifdef CONFIG_SMP
2594
2595 /*
2596 * sched_exec - execve() is a valuable balancing opportunity, because at
2597 * this point the task has the smallest effective memory and cache footprint.
2598 */
2599 void sched_exec(void)
2600 {
2601 struct task_struct *p = current;
2602 unsigned long flags;
2603 int dest_cpu;
2604
2605 raw_spin_lock_irqsave(&p->pi_lock, flags);
2606 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2607 if (dest_cpu == smp_processor_id())
2608 goto unlock;
2609
2610 if (likely(cpu_active(dest_cpu))) {
2611 struct migration_arg arg = { p, dest_cpu };
2612
2613 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2614 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2615 return;
2616 }
2617 unlock:
2618 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2619 }
2620
2621 #endif
2622
2623 DEFINE_PER_CPU(struct kernel_stat, kstat);
2624 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2625
2626 EXPORT_PER_CPU_SYMBOL(kstat);
2627 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2628
2629 /*
2630 * Return any ns on the sched_clock that have not yet been accounted in
2631 * @p in case that task is currently running.
2632 *
2633 * Called with task_rq_lock() held on @rq.
2634 */
2635 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2636 {
2637 u64 ns = 0;
2638
2639 if (task_current(rq, p)) {
2640 update_rq_clock(rq);
2641 ns = rq->clock_task - p->se.exec_start;
2642 if ((s64)ns < 0)
2643 ns = 0;
2644 }
2645
2646 return ns;
2647 }
2648
2649 unsigned long long task_delta_exec(struct task_struct *p)
2650 {
2651 unsigned long flags;
2652 struct rq *rq;
2653 u64 ns = 0;
2654
2655 rq = task_rq_lock(p, &flags);
2656 ns = do_task_delta_exec(p, rq);
2657 task_rq_unlock(rq, p, &flags);
2658
2659 return ns;
2660 }
2661
2662 /*
2663 * Return accounted runtime for the task.
2664 * In case the task is currently running, return the runtime plus current's
2665 * pending runtime that have not been accounted yet.
2666 */
2667 unsigned long long task_sched_runtime(struct task_struct *p)
2668 {
2669 unsigned long flags;
2670 struct rq *rq;
2671 u64 ns = 0;
2672
2673 rq = task_rq_lock(p, &flags);
2674 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2675 task_rq_unlock(rq, p, &flags);
2676
2677 return ns;
2678 }
2679
2680 /*
2681 * This function gets called by the timer code, with HZ frequency.
2682 * We call it with interrupts disabled.
2683 */
2684 void scheduler_tick(void)
2685 {
2686 int cpu = smp_processor_id();
2687 struct rq *rq = cpu_rq(cpu);
2688 struct task_struct *curr = rq->curr;
2689
2690 sched_clock_tick();
2691
2692 raw_spin_lock(&rq->lock);
2693 update_rq_clock(rq);
2694 update_cpu_load_active(rq);
2695 curr->sched_class->task_tick(rq, curr, 0);
2696 raw_spin_unlock(&rq->lock);
2697
2698 perf_event_task_tick();
2699
2700 #ifdef CONFIG_SMP
2701 rq->idle_balance = idle_cpu(cpu);
2702 trigger_load_balance(rq, cpu);
2703 #endif
2704 }
2705
2706 notrace unsigned long get_parent_ip(unsigned long addr)
2707 {
2708 if (in_lock_functions(addr)) {
2709 addr = CALLER_ADDR2;
2710 if (in_lock_functions(addr))
2711 addr = CALLER_ADDR3;
2712 }
2713 return addr;
2714 }
2715
2716 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2717 defined(CONFIG_PREEMPT_TRACER))
2718
2719 void __kprobes add_preempt_count(int val)
2720 {
2721 #ifdef CONFIG_DEBUG_PREEMPT
2722 /*
2723 * Underflow?
2724 */
2725 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2726 return;
2727 #endif
2728 preempt_count() += val;
2729 #ifdef CONFIG_DEBUG_PREEMPT
2730 /*
2731 * Spinlock count overflowing soon?
2732 */
2733 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2734 PREEMPT_MASK - 10);
2735 #endif
2736 if (preempt_count() == val)
2737 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2738 }
2739 EXPORT_SYMBOL(add_preempt_count);
2740
2741 void __kprobes sub_preempt_count(int val)
2742 {
2743 #ifdef CONFIG_DEBUG_PREEMPT
2744 /*
2745 * Underflow?
2746 */
2747 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2748 return;
2749 /*
2750 * Is the spinlock portion underflowing?
2751 */
2752 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2753 !(preempt_count() & PREEMPT_MASK)))
2754 return;
2755 #endif
2756
2757 if (preempt_count() == val)
2758 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2759 preempt_count() -= val;
2760 }
2761 EXPORT_SYMBOL(sub_preempt_count);
2762
2763 #endif
2764
2765 /*
2766 * Print scheduling while atomic bug:
2767 */
2768 static noinline void __schedule_bug(struct task_struct *prev)
2769 {
2770 if (oops_in_progress)
2771 return;
2772
2773 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2774 prev->comm, prev->pid, preempt_count());
2775
2776 debug_show_held_locks(prev);
2777 print_modules();
2778 if (irqs_disabled())
2779 print_irqtrace_events(prev);
2780 dump_stack();
2781 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2782 }
2783
2784 /*
2785 * Various schedule()-time debugging checks and statistics:
2786 */
2787 static inline void schedule_debug(struct task_struct *prev)
2788 {
2789 /*
2790 * Test if we are atomic. Since do_exit() needs to call into
2791 * schedule() atomically, we ignore that path for now.
2792 * Otherwise, whine if we are scheduling when we should not be.
2793 */
2794 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2795 __schedule_bug(prev);
2796 rcu_sleep_check();
2797
2798 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2799
2800 schedstat_inc(this_rq(), sched_count);
2801 }
2802
2803 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2804 {
2805 if (prev->on_rq || rq->skip_clock_update < 0)
2806 update_rq_clock(rq);
2807 prev->sched_class->put_prev_task(rq, prev);
2808 }
2809
2810 /*
2811 * Pick up the highest-prio task:
2812 */
2813 static inline struct task_struct *
2814 pick_next_task(struct rq *rq)
2815 {
2816 const struct sched_class *class;
2817 struct task_struct *p;
2818
2819 /*
2820 * Optimization: we know that if all tasks are in
2821 * the fair class we can call that function directly:
2822 */
2823 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2824 p = fair_sched_class.pick_next_task(rq);
2825 if (likely(p))
2826 return p;
2827 }
2828
2829 for_each_class(class) {
2830 p = class->pick_next_task(rq);
2831 if (p)
2832 return p;
2833 }
2834
2835 BUG(); /* the idle class will always have a runnable task */
2836 }
2837
2838 /*
2839 * __schedule() is the main scheduler function.
2840 *
2841 * The main means of driving the scheduler and thus entering this function are:
2842 *
2843 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2844 *
2845 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2846 * paths. For example, see arch/x86/entry_64.S.
2847 *
2848 * To drive preemption between tasks, the scheduler sets the flag in timer
2849 * interrupt handler scheduler_tick().
2850 *
2851 * 3. Wakeups don't really cause entry into schedule(). They add a
2852 * task to the run-queue and that's it.
2853 *
2854 * Now, if the new task added to the run-queue preempts the current
2855 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2856 * called on the nearest possible occasion:
2857 *
2858 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2859 *
2860 * - in syscall or exception context, at the next outmost
2861 * preempt_enable(). (this might be as soon as the wake_up()'s
2862 * spin_unlock()!)
2863 *
2864 * - in IRQ context, return from interrupt-handler to
2865 * preemptible context
2866 *
2867 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2868 * then at the next:
2869 *
2870 * - cond_resched() call
2871 * - explicit schedule() call
2872 * - return from syscall or exception to user-space
2873 * - return from interrupt-handler to user-space
2874 */
2875 static void __sched __schedule(void)
2876 {
2877 struct task_struct *prev, *next;
2878 unsigned long *switch_count;
2879 struct rq *rq;
2880 int cpu;
2881
2882 need_resched:
2883 preempt_disable();
2884 cpu = smp_processor_id();
2885 rq = cpu_rq(cpu);
2886 rcu_note_context_switch(cpu);
2887 prev = rq->curr;
2888
2889 schedule_debug(prev);
2890
2891 if (sched_feat(HRTICK))
2892 hrtick_clear(rq);
2893
2894 raw_spin_lock_irq(&rq->lock);
2895
2896 switch_count = &prev->nivcsw;
2897 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2898 if (unlikely(signal_pending_state(prev->state, prev))) {
2899 prev->state = TASK_RUNNING;
2900 } else {
2901 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2902 prev->on_rq = 0;
2903
2904 /*
2905 * If a worker went to sleep, notify and ask workqueue
2906 * whether it wants to wake up a task to maintain
2907 * concurrency.
2908 */
2909 if (prev->flags & PF_WQ_WORKER) {
2910 struct task_struct *to_wakeup;
2911
2912 to_wakeup = wq_worker_sleeping(prev, cpu);
2913 if (to_wakeup)
2914 try_to_wake_up_local(to_wakeup);
2915 }
2916 }
2917 switch_count = &prev->nvcsw;
2918 }
2919
2920 pre_schedule(rq, prev);
2921
2922 if (unlikely(!rq->nr_running))
2923 idle_balance(cpu, rq);
2924
2925 put_prev_task(rq, prev);
2926 next = pick_next_task(rq);
2927 clear_tsk_need_resched(prev);
2928 rq->skip_clock_update = 0;
2929
2930 if (likely(prev != next)) {
2931 rq->nr_switches++;
2932 rq->curr = next;
2933 ++*switch_count;
2934
2935 context_switch(rq, prev, next); /* unlocks the rq */
2936 /*
2937 * The context switch have flipped the stack from under us
2938 * and restored the local variables which were saved when
2939 * this task called schedule() in the past. prev == current
2940 * is still correct, but it can be moved to another cpu/rq.
2941 */
2942 cpu = smp_processor_id();
2943 rq = cpu_rq(cpu);
2944 } else
2945 raw_spin_unlock_irq(&rq->lock);
2946
2947 post_schedule(rq);
2948
2949 sched_preempt_enable_no_resched();
2950 if (need_resched())
2951 goto need_resched;
2952 }
2953
2954 static inline void sched_submit_work(struct task_struct *tsk)
2955 {
2956 if (!tsk->state || tsk_is_pi_blocked(tsk))
2957 return;
2958 /*
2959 * If we are going to sleep and we have plugged IO queued,
2960 * make sure to submit it to avoid deadlocks.
2961 */
2962 if (blk_needs_flush_plug(tsk))
2963 blk_schedule_flush_plug(tsk);
2964 }
2965
2966 asmlinkage void __sched schedule(void)
2967 {
2968 struct task_struct *tsk = current;
2969
2970 sched_submit_work(tsk);
2971 __schedule();
2972 }
2973 EXPORT_SYMBOL(schedule);
2974
2975 #ifdef CONFIG_CONTEXT_TRACKING
2976 asmlinkage void __sched schedule_user(void)
2977 {
2978 /*
2979 * If we come here after a random call to set_need_resched(),
2980 * or we have been woken up remotely but the IPI has not yet arrived,
2981 * we haven't yet exited the RCU idle mode. Do it here manually until
2982 * we find a better solution.
2983 */
2984 user_exit();
2985 schedule();
2986 user_enter();
2987 }
2988 #endif
2989
2990 /**
2991 * schedule_preempt_disabled - called with preemption disabled
2992 *
2993 * Returns with preemption disabled. Note: preempt_count must be 1
2994 */
2995 void __sched schedule_preempt_disabled(void)
2996 {
2997 sched_preempt_enable_no_resched();
2998 schedule();
2999 preempt_disable();
3000 }
3001
3002 #ifdef CONFIG_PREEMPT
3003 /*
3004 * this is the entry point to schedule() from in-kernel preemption
3005 * off of preempt_enable. Kernel preemptions off return from interrupt
3006 * occur there and call schedule directly.
3007 */
3008 asmlinkage void __sched notrace preempt_schedule(void)
3009 {
3010 struct thread_info *ti = current_thread_info();
3011
3012 /*
3013 * If there is a non-zero preempt_count or interrupts are disabled,
3014 * we do not want to preempt the current task. Just return..
3015 */
3016 if (likely(ti->preempt_count || irqs_disabled()))
3017 return;
3018
3019 do {
3020 add_preempt_count_notrace(PREEMPT_ACTIVE);
3021 __schedule();
3022 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3023
3024 /*
3025 * Check again in case we missed a preemption opportunity
3026 * between schedule and now.
3027 */
3028 barrier();
3029 } while (need_resched());
3030 }
3031 EXPORT_SYMBOL(preempt_schedule);
3032
3033 /*
3034 * this is the entry point to schedule() from kernel preemption
3035 * off of irq context.
3036 * Note, that this is called and return with irqs disabled. This will
3037 * protect us against recursive calling from irq.
3038 */
3039 asmlinkage void __sched preempt_schedule_irq(void)
3040 {
3041 struct thread_info *ti = current_thread_info();
3042 enum ctx_state prev_state;
3043
3044 /* Catch callers which need to be fixed */
3045 BUG_ON(ti->preempt_count || !irqs_disabled());
3046
3047 prev_state = exception_enter();
3048
3049 do {
3050 add_preempt_count(PREEMPT_ACTIVE);
3051 local_irq_enable();
3052 __schedule();
3053 local_irq_disable();
3054 sub_preempt_count(PREEMPT_ACTIVE);
3055
3056 /*
3057 * Check again in case we missed a preemption opportunity
3058 * between schedule and now.
3059 */
3060 barrier();
3061 } while (need_resched());
3062
3063 exception_exit(prev_state);
3064 }
3065
3066 #endif /* CONFIG_PREEMPT */
3067
3068 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3069 void *key)
3070 {
3071 return try_to_wake_up(curr->private, mode, wake_flags);
3072 }
3073 EXPORT_SYMBOL(default_wake_function);
3074
3075 /*
3076 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3077 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3078 * number) then we wake all the non-exclusive tasks and one exclusive task.
3079 *
3080 * There are circumstances in which we can try to wake a task which has already
3081 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3082 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3083 */
3084 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3085 int nr_exclusive, int wake_flags, void *key)
3086 {
3087 wait_queue_t *curr, *next;
3088
3089 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3090 unsigned flags = curr->flags;
3091
3092 if (curr->func(curr, mode, wake_flags, key) &&
3093 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3094 break;
3095 }
3096 }
3097
3098 /**
3099 * __wake_up - wake up threads blocked on a waitqueue.
3100 * @q: the waitqueue
3101 * @mode: which threads
3102 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3103 * @key: is directly passed to the wakeup function
3104 *
3105 * It may be assumed that this function implies a write memory barrier before
3106 * changing the task state if and only if any tasks are woken up.
3107 */
3108 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3109 int nr_exclusive, void *key)
3110 {
3111 unsigned long flags;
3112
3113 spin_lock_irqsave(&q->lock, flags);
3114 __wake_up_common(q, mode, nr_exclusive, 0, key);
3115 spin_unlock_irqrestore(&q->lock, flags);
3116 }
3117 EXPORT_SYMBOL(__wake_up);
3118
3119 /*
3120 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3121 */
3122 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3123 {
3124 __wake_up_common(q, mode, nr, 0, NULL);
3125 }
3126 EXPORT_SYMBOL_GPL(__wake_up_locked);
3127
3128 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3129 {
3130 __wake_up_common(q, mode, 1, 0, key);
3131 }
3132 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3133
3134 /**
3135 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3136 * @q: the waitqueue
3137 * @mode: which threads
3138 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3139 * @key: opaque value to be passed to wakeup targets
3140 *
3141 * The sync wakeup differs that the waker knows that it will schedule
3142 * away soon, so while the target thread will be woken up, it will not
3143 * be migrated to another CPU - ie. the two threads are 'synchronized'
3144 * with each other. This can prevent needless bouncing between CPUs.
3145 *
3146 * On UP it can prevent extra preemption.
3147 *
3148 * It may be assumed that this function implies a write memory barrier before
3149 * changing the task state if and only if any tasks are woken up.
3150 */
3151 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3152 int nr_exclusive, void *key)
3153 {
3154 unsigned long flags;
3155 int wake_flags = WF_SYNC;
3156
3157 if (unlikely(!q))
3158 return;
3159
3160 if (unlikely(!nr_exclusive))
3161 wake_flags = 0;
3162
3163 spin_lock_irqsave(&q->lock, flags);
3164 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3165 spin_unlock_irqrestore(&q->lock, flags);
3166 }
3167 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3168
3169 /*
3170 * __wake_up_sync - see __wake_up_sync_key()
3171 */
3172 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3173 {
3174 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3175 }
3176 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3177
3178 /**
3179 * complete: - signals a single thread waiting on this completion
3180 * @x: holds the state of this particular completion
3181 *
3182 * This will wake up a single thread waiting on this completion. Threads will be
3183 * awakened in the same order in which they were queued.
3184 *
3185 * See also complete_all(), wait_for_completion() and related routines.
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
3189 */
3190 void complete(struct completion *x)
3191 {
3192 unsigned long flags;
3193
3194 spin_lock_irqsave(&x->wait.lock, flags);
3195 x->done++;
3196 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3197 spin_unlock_irqrestore(&x->wait.lock, flags);
3198 }
3199 EXPORT_SYMBOL(complete);
3200
3201 /**
3202 * complete_all: - signals all threads waiting on this completion
3203 * @x: holds the state of this particular completion
3204 *
3205 * This will wake up all threads waiting on this particular completion event.
3206 *
3207 * It may be assumed that this function implies a write memory barrier before
3208 * changing the task state if and only if any tasks are woken up.
3209 */
3210 void complete_all(struct completion *x)
3211 {
3212 unsigned long flags;
3213
3214 spin_lock_irqsave(&x->wait.lock, flags);
3215 x->done += UINT_MAX/2;
3216 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3217 spin_unlock_irqrestore(&x->wait.lock, flags);
3218 }
3219 EXPORT_SYMBOL(complete_all);
3220
3221 static inline long __sched
3222 do_wait_for_common(struct completion *x,
3223 long (*action)(long), long timeout, int state)
3224 {
3225 if (!x->done) {
3226 DECLARE_WAITQUEUE(wait, current);
3227
3228 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3229 do {
3230 if (signal_pending_state(state, current)) {
3231 timeout = -ERESTARTSYS;
3232 break;
3233 }
3234 __set_current_state(state);
3235 spin_unlock_irq(&x->wait.lock);
3236 timeout = action(timeout);
3237 spin_lock_irq(&x->wait.lock);
3238 } while (!x->done && timeout);
3239 __remove_wait_queue(&x->wait, &wait);
3240 if (!x->done)
3241 return timeout;
3242 }
3243 x->done--;
3244 return timeout ?: 1;
3245 }
3246
3247 static inline long __sched
3248 __wait_for_common(struct completion *x,
3249 long (*action)(long), long timeout, int state)
3250 {
3251 might_sleep();
3252
3253 spin_lock_irq(&x->wait.lock);
3254 timeout = do_wait_for_common(x, action, timeout, state);
3255 spin_unlock_irq(&x->wait.lock);
3256 return timeout;
3257 }
3258
3259 static long __sched
3260 wait_for_common(struct completion *x, long timeout, int state)
3261 {
3262 return __wait_for_common(x, schedule_timeout, timeout, state);
3263 }
3264
3265 static long __sched
3266 wait_for_common_io(struct completion *x, long timeout, int state)
3267 {
3268 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3269 }
3270
3271 /**
3272 * wait_for_completion: - waits for completion of a task
3273 * @x: holds the state of this particular completion
3274 *
3275 * This waits to be signaled for completion of a specific task. It is NOT
3276 * interruptible and there is no timeout.
3277 *
3278 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3279 * and interrupt capability. Also see complete().
3280 */
3281 void __sched wait_for_completion(struct completion *x)
3282 {
3283 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3284 }
3285 EXPORT_SYMBOL(wait_for_completion);
3286
3287 /**
3288 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3289 * @x: holds the state of this particular completion
3290 * @timeout: timeout value in jiffies
3291 *
3292 * This waits for either a completion of a specific task to be signaled or for a
3293 * specified timeout to expire. The timeout is in jiffies. It is not
3294 * interruptible.
3295 *
3296 * The return value is 0 if timed out, and positive (at least 1, or number of
3297 * jiffies left till timeout) if completed.
3298 */
3299 unsigned long __sched
3300 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3301 {
3302 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3303 }
3304 EXPORT_SYMBOL(wait_for_completion_timeout);
3305
3306 /**
3307 * wait_for_completion_io: - waits for completion of a task
3308 * @x: holds the state of this particular completion
3309 *
3310 * This waits to be signaled for completion of a specific task. It is NOT
3311 * interruptible and there is no timeout. The caller is accounted as waiting
3312 * for IO.
3313 */
3314 void __sched wait_for_completion_io(struct completion *x)
3315 {
3316 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3317 }
3318 EXPORT_SYMBOL(wait_for_completion_io);
3319
3320 /**
3321 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3322 * @x: holds the state of this particular completion
3323 * @timeout: timeout value in jiffies
3324 *
3325 * This waits for either a completion of a specific task to be signaled or for a
3326 * specified timeout to expire. The timeout is in jiffies. It is not
3327 * interruptible. The caller is accounted as waiting for IO.
3328 *
3329 * The return value is 0 if timed out, and positive (at least 1, or number of
3330 * jiffies left till timeout) if completed.
3331 */
3332 unsigned long __sched
3333 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3334 {
3335 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3336 }
3337 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3338
3339 /**
3340 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3341 * @x: holds the state of this particular completion
3342 *
3343 * This waits for completion of a specific task to be signaled. It is
3344 * interruptible.
3345 *
3346 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3347 */
3348 int __sched wait_for_completion_interruptible(struct completion *x)
3349 {
3350 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3351 if (t == -ERESTARTSYS)
3352 return t;
3353 return 0;
3354 }
3355 EXPORT_SYMBOL(wait_for_completion_interruptible);
3356
3357 /**
3358 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3359 * @x: holds the state of this particular completion
3360 * @timeout: timeout value in jiffies
3361 *
3362 * This waits for either a completion of a specific task to be signaled or for a
3363 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3364 *
3365 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3366 * positive (at least 1, or number of jiffies left till timeout) if completed.
3367 */
3368 long __sched
3369 wait_for_completion_interruptible_timeout(struct completion *x,
3370 unsigned long timeout)
3371 {
3372 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3373 }
3374 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3375
3376 /**
3377 * wait_for_completion_killable: - waits for completion of a task (killable)
3378 * @x: holds the state of this particular completion
3379 *
3380 * This waits to be signaled for completion of a specific task. It can be
3381 * interrupted by a kill signal.
3382 *
3383 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3384 */
3385 int __sched wait_for_completion_killable(struct completion *x)
3386 {
3387 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3388 if (t == -ERESTARTSYS)
3389 return t;
3390 return 0;
3391 }
3392 EXPORT_SYMBOL(wait_for_completion_killable);
3393
3394 /**
3395 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3396 * @x: holds the state of this particular completion
3397 * @timeout: timeout value in jiffies
3398 *
3399 * This waits for either a completion of a specific task to be
3400 * signaled or for a specified timeout to expire. It can be
3401 * interrupted by a kill signal. The timeout is in jiffies.
3402 *
3403 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3404 * positive (at least 1, or number of jiffies left till timeout) if completed.
3405 */
3406 long __sched
3407 wait_for_completion_killable_timeout(struct completion *x,
3408 unsigned long timeout)
3409 {
3410 return wait_for_common(x, timeout, TASK_KILLABLE);
3411 }
3412 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3413
3414 /**
3415 * try_wait_for_completion - try to decrement a completion without blocking
3416 * @x: completion structure
3417 *
3418 * Returns: 0 if a decrement cannot be done without blocking
3419 * 1 if a decrement succeeded.
3420 *
3421 * If a completion is being used as a counting completion,
3422 * attempt to decrement the counter without blocking. This
3423 * enables us to avoid waiting if the resource the completion
3424 * is protecting is not available.
3425 */
3426 bool try_wait_for_completion(struct completion *x)
3427 {
3428 unsigned long flags;
3429 int ret = 1;
3430
3431 spin_lock_irqsave(&x->wait.lock, flags);
3432 if (!x->done)
3433 ret = 0;
3434 else
3435 x->done--;
3436 spin_unlock_irqrestore(&x->wait.lock, flags);
3437 return ret;
3438 }
3439 EXPORT_SYMBOL(try_wait_for_completion);
3440
3441 /**
3442 * completion_done - Test to see if a completion has any waiters
3443 * @x: completion structure
3444 *
3445 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3446 * 1 if there are no waiters.
3447 *
3448 */
3449 bool completion_done(struct completion *x)
3450 {
3451 unsigned long flags;
3452 int ret = 1;
3453
3454 spin_lock_irqsave(&x->wait.lock, flags);
3455 if (!x->done)
3456 ret = 0;
3457 spin_unlock_irqrestore(&x->wait.lock, flags);
3458 return ret;
3459 }
3460 EXPORT_SYMBOL(completion_done);
3461
3462 static long __sched
3463 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3464 {
3465 unsigned long flags;
3466 wait_queue_t wait;
3467
3468 init_waitqueue_entry(&wait, current);
3469
3470 __set_current_state(state);
3471
3472 spin_lock_irqsave(&q->lock, flags);
3473 __add_wait_queue(q, &wait);
3474 spin_unlock(&q->lock);
3475 timeout = schedule_timeout(timeout);
3476 spin_lock_irq(&q->lock);
3477 __remove_wait_queue(q, &wait);
3478 spin_unlock_irqrestore(&q->lock, flags);
3479
3480 return timeout;
3481 }
3482
3483 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3484 {
3485 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3486 }
3487 EXPORT_SYMBOL(interruptible_sleep_on);
3488
3489 long __sched
3490 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3491 {
3492 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3493 }
3494 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3495
3496 void __sched sleep_on(wait_queue_head_t *q)
3497 {
3498 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3499 }
3500 EXPORT_SYMBOL(sleep_on);
3501
3502 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3503 {
3504 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3505 }
3506 EXPORT_SYMBOL(sleep_on_timeout);
3507
3508 #ifdef CONFIG_RT_MUTEXES
3509
3510 /*
3511 * rt_mutex_setprio - set the current priority of a task
3512 * @p: task
3513 * @prio: prio value (kernel-internal form)
3514 *
3515 * This function changes the 'effective' priority of a task. It does
3516 * not touch ->normal_prio like __setscheduler().
3517 *
3518 * Used by the rt_mutex code to implement priority inheritance logic.
3519 */
3520 void rt_mutex_setprio(struct task_struct *p, int prio)
3521 {
3522 int oldprio, on_rq, running;
3523 struct rq *rq;
3524 const struct sched_class *prev_class;
3525
3526 BUG_ON(prio < 0 || prio > MAX_PRIO);
3527
3528 rq = __task_rq_lock(p);
3529
3530 /*
3531 * Idle task boosting is a nono in general. There is one
3532 * exception, when PREEMPT_RT and NOHZ is active:
3533 *
3534 * The idle task calls get_next_timer_interrupt() and holds
3535 * the timer wheel base->lock on the CPU and another CPU wants
3536 * to access the timer (probably to cancel it). We can safely
3537 * ignore the boosting request, as the idle CPU runs this code
3538 * with interrupts disabled and will complete the lock
3539 * protected section without being interrupted. So there is no
3540 * real need to boost.
3541 */
3542 if (unlikely(p == rq->idle)) {
3543 WARN_ON(p != rq->curr);
3544 WARN_ON(p->pi_blocked_on);
3545 goto out_unlock;
3546 }
3547
3548 trace_sched_pi_setprio(p, prio);
3549 oldprio = p->prio;
3550 prev_class = p->sched_class;
3551 on_rq = p->on_rq;
3552 running = task_current(rq, p);
3553 if (on_rq)
3554 dequeue_task(rq, p, 0);
3555 if (running)
3556 p->sched_class->put_prev_task(rq, p);
3557
3558 if (rt_prio(prio))
3559 p->sched_class = &rt_sched_class;
3560 else
3561 p->sched_class = &fair_sched_class;
3562
3563 p->prio = prio;
3564
3565 if (running)
3566 p->sched_class->set_curr_task(rq);
3567 if (on_rq)
3568 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3569
3570 check_class_changed(rq, p, prev_class, oldprio);
3571 out_unlock:
3572 __task_rq_unlock(rq);
3573 }
3574 #endif
3575 void set_user_nice(struct task_struct *p, long nice)
3576 {
3577 int old_prio, delta, on_rq;
3578 unsigned long flags;
3579 struct rq *rq;
3580
3581 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3582 return;
3583 /*
3584 * We have to be careful, if called from sys_setpriority(),
3585 * the task might be in the middle of scheduling on another CPU.
3586 */
3587 rq = task_rq_lock(p, &flags);
3588 /*
3589 * The RT priorities are set via sched_setscheduler(), but we still
3590 * allow the 'normal' nice value to be set - but as expected
3591 * it wont have any effect on scheduling until the task is
3592 * SCHED_FIFO/SCHED_RR:
3593 */
3594 if (task_has_rt_policy(p)) {
3595 p->static_prio = NICE_TO_PRIO(nice);
3596 goto out_unlock;
3597 }
3598 on_rq = p->on_rq;
3599 if (on_rq)
3600 dequeue_task(rq, p, 0);
3601
3602 p->static_prio = NICE_TO_PRIO(nice);
3603 set_load_weight(p);
3604 old_prio = p->prio;
3605 p->prio = effective_prio(p);
3606 delta = p->prio - old_prio;
3607
3608 if (on_rq) {
3609 enqueue_task(rq, p, 0);
3610 /*
3611 * If the task increased its priority or is running and
3612 * lowered its priority, then reschedule its CPU:
3613 */
3614 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3615 resched_task(rq->curr);
3616 }
3617 out_unlock:
3618 task_rq_unlock(rq, p, &flags);
3619 }
3620 EXPORT_SYMBOL(set_user_nice);
3621
3622 /*
3623 * can_nice - check if a task can reduce its nice value
3624 * @p: task
3625 * @nice: nice value
3626 */
3627 int can_nice(const struct task_struct *p, const int nice)
3628 {
3629 /* convert nice value [19,-20] to rlimit style value [1,40] */
3630 int nice_rlim = 20 - nice;
3631
3632 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3633 capable(CAP_SYS_NICE));
3634 }
3635
3636 #ifdef __ARCH_WANT_SYS_NICE
3637
3638 /*
3639 * sys_nice - change the priority of the current process.
3640 * @increment: priority increment
3641 *
3642 * sys_setpriority is a more generic, but much slower function that
3643 * does similar things.
3644 */
3645 SYSCALL_DEFINE1(nice, int, increment)
3646 {
3647 long nice, retval;
3648
3649 /*
3650 * Setpriority might change our priority at the same moment.
3651 * We don't have to worry. Conceptually one call occurs first
3652 * and we have a single winner.
3653 */
3654 if (increment < -40)
3655 increment = -40;
3656 if (increment > 40)
3657 increment = 40;
3658
3659 nice = TASK_NICE(current) + increment;
3660 if (nice < -20)
3661 nice = -20;
3662 if (nice > 19)
3663 nice = 19;
3664
3665 if (increment < 0 && !can_nice(current, nice))
3666 return -EPERM;
3667
3668 retval = security_task_setnice(current, nice);
3669 if (retval)
3670 return retval;
3671
3672 set_user_nice(current, nice);
3673 return 0;
3674 }
3675
3676 #endif
3677
3678 /**
3679 * task_prio - return the priority value of a given task.
3680 * @p: the task in question.
3681 *
3682 * This is the priority value as seen by users in /proc.
3683 * RT tasks are offset by -200. Normal tasks are centered
3684 * around 0, value goes from -16 to +15.
3685 */
3686 int task_prio(const struct task_struct *p)
3687 {
3688 return p->prio - MAX_RT_PRIO;
3689 }
3690
3691 /**
3692 * task_nice - return the nice value of a given task.
3693 * @p: the task in question.
3694 */
3695 int task_nice(const struct task_struct *p)
3696 {
3697 return TASK_NICE(p);
3698 }
3699 EXPORT_SYMBOL(task_nice);
3700
3701 /**
3702 * idle_cpu - is a given cpu idle currently?
3703 * @cpu: the processor in question.
3704 */
3705 int idle_cpu(int cpu)
3706 {
3707 struct rq *rq = cpu_rq(cpu);
3708
3709 if (rq->curr != rq->idle)
3710 return 0;
3711
3712 if (rq->nr_running)
3713 return 0;
3714
3715 #ifdef CONFIG_SMP
3716 if (!llist_empty(&rq->wake_list))
3717 return 0;
3718 #endif
3719
3720 return 1;
3721 }
3722
3723 /**
3724 * idle_task - return the idle task for a given cpu.
3725 * @cpu: the processor in question.
3726 */
3727 struct task_struct *idle_task(int cpu)
3728 {
3729 return cpu_rq(cpu)->idle;
3730 }
3731
3732 /**
3733 * find_process_by_pid - find a process with a matching PID value.
3734 * @pid: the pid in question.
3735 */
3736 static struct task_struct *find_process_by_pid(pid_t pid)
3737 {
3738 return pid ? find_task_by_vpid(pid) : current;
3739 }
3740
3741 /* Actually do priority change: must hold rq lock. */
3742 static void
3743 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3744 {
3745 p->policy = policy;
3746 p->rt_priority = prio;
3747 p->normal_prio = normal_prio(p);
3748 /* we are holding p->pi_lock already */
3749 p->prio = rt_mutex_getprio(p);
3750 if (rt_prio(p->prio))
3751 p->sched_class = &rt_sched_class;
3752 else
3753 p->sched_class = &fair_sched_class;
3754 set_load_weight(p);
3755 }
3756
3757 /*
3758 * check the target process has a UID that matches the current process's
3759 */
3760 static bool check_same_owner(struct task_struct *p)
3761 {
3762 const struct cred *cred = current_cred(), *pcred;
3763 bool match;
3764
3765 rcu_read_lock();
3766 pcred = __task_cred(p);
3767 match = (uid_eq(cred->euid, pcred->euid) ||
3768 uid_eq(cred->euid, pcred->uid));
3769 rcu_read_unlock();
3770 return match;
3771 }
3772
3773 static int __sched_setscheduler(struct task_struct *p, int policy,
3774 const struct sched_param *param, bool user)
3775 {
3776 int retval, oldprio, oldpolicy = -1, on_rq, running;
3777 unsigned long flags;
3778 const struct sched_class *prev_class;
3779 struct rq *rq;
3780 int reset_on_fork;
3781
3782 /* may grab non-irq protected spin_locks */
3783 BUG_ON(in_interrupt());
3784 recheck:
3785 /* double check policy once rq lock held */
3786 if (policy < 0) {
3787 reset_on_fork = p->sched_reset_on_fork;
3788 policy = oldpolicy = p->policy;
3789 } else {
3790 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3791 policy &= ~SCHED_RESET_ON_FORK;
3792
3793 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3794 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3795 policy != SCHED_IDLE)
3796 return -EINVAL;
3797 }
3798
3799 /*
3800 * Valid priorities for SCHED_FIFO and SCHED_RR are
3801 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3802 * SCHED_BATCH and SCHED_IDLE is 0.
3803 */
3804 if (param->sched_priority < 0 ||
3805 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3806 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3807 return -EINVAL;
3808 if (rt_policy(policy) != (param->sched_priority != 0))
3809 return -EINVAL;
3810
3811 /*
3812 * Allow unprivileged RT tasks to decrease priority:
3813 */
3814 if (user && !capable(CAP_SYS_NICE)) {
3815 if (rt_policy(policy)) {
3816 unsigned long rlim_rtprio =
3817 task_rlimit(p, RLIMIT_RTPRIO);
3818
3819 /* can't set/change the rt policy */
3820 if (policy != p->policy && !rlim_rtprio)
3821 return -EPERM;
3822
3823 /* can't increase priority */
3824 if (param->sched_priority > p->rt_priority &&
3825 param->sched_priority > rlim_rtprio)
3826 return -EPERM;
3827 }
3828
3829 /*
3830 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3831 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3832 */
3833 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3834 if (!can_nice(p, TASK_NICE(p)))
3835 return -EPERM;
3836 }
3837
3838 /* can't change other user's priorities */
3839 if (!check_same_owner(p))
3840 return -EPERM;
3841
3842 /* Normal users shall not reset the sched_reset_on_fork flag */
3843 if (p->sched_reset_on_fork && !reset_on_fork)
3844 return -EPERM;
3845 }
3846
3847 if (user) {
3848 retval = security_task_setscheduler(p);
3849 if (retval)
3850 return retval;
3851 }
3852
3853 /*
3854 * make sure no PI-waiters arrive (or leave) while we are
3855 * changing the priority of the task:
3856 *
3857 * To be able to change p->policy safely, the appropriate
3858 * runqueue lock must be held.
3859 */
3860 rq = task_rq_lock(p, &flags);
3861
3862 /*
3863 * Changing the policy of the stop threads its a very bad idea
3864 */
3865 if (p == rq->stop) {
3866 task_rq_unlock(rq, p, &flags);
3867 return -EINVAL;
3868 }
3869
3870 /*
3871 * If not changing anything there's no need to proceed further:
3872 */
3873 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3874 param->sched_priority == p->rt_priority))) {
3875 task_rq_unlock(rq, p, &flags);
3876 return 0;
3877 }
3878
3879 #ifdef CONFIG_RT_GROUP_SCHED
3880 if (user) {
3881 /*
3882 * Do not allow realtime tasks into groups that have no runtime
3883 * assigned.
3884 */
3885 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3886 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3887 !task_group_is_autogroup(task_group(p))) {
3888 task_rq_unlock(rq, p, &flags);
3889 return -EPERM;
3890 }
3891 }
3892 #endif
3893
3894 /* recheck policy now with rq lock held */
3895 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3896 policy = oldpolicy = -1;
3897 task_rq_unlock(rq, p, &flags);
3898 goto recheck;
3899 }
3900 on_rq = p->on_rq;
3901 running = task_current(rq, p);
3902 if (on_rq)
3903 dequeue_task(rq, p, 0);
3904 if (running)
3905 p->sched_class->put_prev_task(rq, p);
3906
3907 p->sched_reset_on_fork = reset_on_fork;
3908
3909 oldprio = p->prio;
3910 prev_class = p->sched_class;
3911 __setscheduler(rq, p, policy, param->sched_priority);
3912
3913 if (running)
3914 p->sched_class->set_curr_task(rq);
3915 if (on_rq)
3916 enqueue_task(rq, p, 0);
3917
3918 check_class_changed(rq, p, prev_class, oldprio);
3919 task_rq_unlock(rq, p, &flags);
3920
3921 rt_mutex_adjust_pi(p);
3922
3923 return 0;
3924 }
3925
3926 /**
3927 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3928 * @p: the task in question.
3929 * @policy: new policy.
3930 * @param: structure containing the new RT priority.
3931 *
3932 * NOTE that the task may be already dead.
3933 */
3934 int sched_setscheduler(struct task_struct *p, int policy,
3935 const struct sched_param *param)
3936 {
3937 return __sched_setscheduler(p, policy, param, true);
3938 }
3939 EXPORT_SYMBOL_GPL(sched_setscheduler);
3940
3941 /**
3942 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3943 * @p: the task in question.
3944 * @policy: new policy.
3945 * @param: structure containing the new RT priority.
3946 *
3947 * Just like sched_setscheduler, only don't bother checking if the
3948 * current context has permission. For example, this is needed in
3949 * stop_machine(): we create temporary high priority worker threads,
3950 * but our caller might not have that capability.
3951 */
3952 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3953 const struct sched_param *param)
3954 {
3955 return __sched_setscheduler(p, policy, param, false);
3956 }
3957
3958 static int
3959 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3960 {
3961 struct sched_param lparam;
3962 struct task_struct *p;
3963 int retval;
3964
3965 if (!param || pid < 0)
3966 return -EINVAL;
3967 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3968 return -EFAULT;
3969
3970 rcu_read_lock();
3971 retval = -ESRCH;
3972 p = find_process_by_pid(pid);
3973 if (p != NULL)
3974 retval = sched_setscheduler(p, policy, &lparam);
3975 rcu_read_unlock();
3976
3977 return retval;
3978 }
3979
3980 /**
3981 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3982 * @pid: the pid in question.
3983 * @policy: new policy.
3984 * @param: structure containing the new RT priority.
3985 */
3986 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3987 struct sched_param __user *, param)
3988 {
3989 /* negative values for policy are not valid */
3990 if (policy < 0)
3991 return -EINVAL;
3992
3993 return do_sched_setscheduler(pid, policy, param);
3994 }
3995
3996 /**
3997 * sys_sched_setparam - set/change the RT priority of a thread
3998 * @pid: the pid in question.
3999 * @param: structure containing the new RT priority.
4000 */
4001 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4002 {
4003 return do_sched_setscheduler(pid, -1, param);
4004 }
4005
4006 /**
4007 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4008 * @pid: the pid in question.
4009 */
4010 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4011 {
4012 struct task_struct *p;
4013 int retval;
4014
4015 if (pid < 0)
4016 return -EINVAL;
4017
4018 retval = -ESRCH;
4019 rcu_read_lock();
4020 p = find_process_by_pid(pid);
4021 if (p) {
4022 retval = security_task_getscheduler(p);
4023 if (!retval)
4024 retval = p->policy
4025 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4026 }
4027 rcu_read_unlock();
4028 return retval;
4029 }
4030
4031 /**
4032 * sys_sched_getparam - get the RT priority of a thread
4033 * @pid: the pid in question.
4034 * @param: structure containing the RT priority.
4035 */
4036 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4037 {
4038 struct sched_param lp;
4039 struct task_struct *p;
4040 int retval;
4041
4042 if (!param || pid < 0)
4043 return -EINVAL;
4044
4045 rcu_read_lock();
4046 p = find_process_by_pid(pid);
4047 retval = -ESRCH;
4048 if (!p)
4049 goto out_unlock;
4050
4051 retval = security_task_getscheduler(p);
4052 if (retval)
4053 goto out_unlock;
4054
4055 lp.sched_priority = p->rt_priority;
4056 rcu_read_unlock();
4057
4058 /*
4059 * This one might sleep, we cannot do it with a spinlock held ...
4060 */
4061 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4062
4063 return retval;
4064
4065 out_unlock:
4066 rcu_read_unlock();
4067 return retval;
4068 }
4069
4070 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4071 {
4072 cpumask_var_t cpus_allowed, new_mask;
4073 struct task_struct *p;
4074 int retval;
4075
4076 get_online_cpus();
4077 rcu_read_lock();
4078
4079 p = find_process_by_pid(pid);
4080 if (!p) {
4081 rcu_read_unlock();
4082 put_online_cpus();
4083 return -ESRCH;
4084 }
4085
4086 /* Prevent p going away */
4087 get_task_struct(p);
4088 rcu_read_unlock();
4089
4090 if (p->flags & PF_NO_SETAFFINITY) {
4091 retval = -EINVAL;
4092 goto out_put_task;
4093 }
4094 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4095 retval = -ENOMEM;
4096 goto out_put_task;
4097 }
4098 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4099 retval = -ENOMEM;
4100 goto out_free_cpus_allowed;
4101 }
4102 retval = -EPERM;
4103 if (!check_same_owner(p)) {
4104 rcu_read_lock();
4105 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4106 rcu_read_unlock();
4107 goto out_unlock;
4108 }
4109 rcu_read_unlock();
4110 }
4111
4112 retval = security_task_setscheduler(p);
4113 if (retval)
4114 goto out_unlock;
4115
4116 cpuset_cpus_allowed(p, cpus_allowed);
4117 cpumask_and(new_mask, in_mask, cpus_allowed);
4118 again:
4119 retval = set_cpus_allowed_ptr(p, new_mask);
4120
4121 if (!retval) {
4122 cpuset_cpus_allowed(p, cpus_allowed);
4123 if (!cpumask_subset(new_mask, cpus_allowed)) {
4124 /*
4125 * We must have raced with a concurrent cpuset
4126 * update. Just reset the cpus_allowed to the
4127 * cpuset's cpus_allowed
4128 */
4129 cpumask_copy(new_mask, cpus_allowed);
4130 goto again;
4131 }
4132 }
4133 out_unlock:
4134 free_cpumask_var(new_mask);
4135 out_free_cpus_allowed:
4136 free_cpumask_var(cpus_allowed);
4137 out_put_task:
4138 put_task_struct(p);
4139 put_online_cpus();
4140 return retval;
4141 }
4142
4143 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4144 struct cpumask *new_mask)
4145 {
4146 if (len < cpumask_size())
4147 cpumask_clear(new_mask);
4148 else if (len > cpumask_size())
4149 len = cpumask_size();
4150
4151 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4152 }
4153
4154 /**
4155 * sys_sched_setaffinity - set the cpu affinity of a process
4156 * @pid: pid of the process
4157 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4158 * @user_mask_ptr: user-space pointer to the new cpu mask
4159 */
4160 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4161 unsigned long __user *, user_mask_ptr)
4162 {
4163 cpumask_var_t new_mask;
4164 int retval;
4165
4166 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4167 return -ENOMEM;
4168
4169 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4170 if (retval == 0)
4171 retval = sched_setaffinity(pid, new_mask);
4172 free_cpumask_var(new_mask);
4173 return retval;
4174 }
4175
4176 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4177 {
4178 struct task_struct *p;
4179 unsigned long flags;
4180 int retval;
4181
4182 get_online_cpus();
4183 rcu_read_lock();
4184
4185 retval = -ESRCH;
4186 p = find_process_by_pid(pid);
4187 if (!p)
4188 goto out_unlock;
4189
4190 retval = security_task_getscheduler(p);
4191 if (retval)
4192 goto out_unlock;
4193
4194 raw_spin_lock_irqsave(&p->pi_lock, flags);
4195 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4196 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4197
4198 out_unlock:
4199 rcu_read_unlock();
4200 put_online_cpus();
4201
4202 return retval;
4203 }
4204
4205 /**
4206 * sys_sched_getaffinity - get the cpu affinity of a process
4207 * @pid: pid of the process
4208 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4209 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4210 */
4211 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4212 unsigned long __user *, user_mask_ptr)
4213 {
4214 int ret;
4215 cpumask_var_t mask;
4216
4217 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4218 return -EINVAL;
4219 if (len & (sizeof(unsigned long)-1))
4220 return -EINVAL;
4221
4222 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4223 return -ENOMEM;
4224
4225 ret = sched_getaffinity(pid, mask);
4226 if (ret == 0) {
4227 size_t retlen = min_t(size_t, len, cpumask_size());
4228
4229 if (copy_to_user(user_mask_ptr, mask, retlen))
4230 ret = -EFAULT;
4231 else
4232 ret = retlen;
4233 }
4234 free_cpumask_var(mask);
4235
4236 return ret;
4237 }
4238
4239 /**
4240 * sys_sched_yield - yield the current processor to other threads.
4241 *
4242 * This function yields the current CPU to other tasks. If there are no
4243 * other threads running on this CPU then this function will return.
4244 */
4245 SYSCALL_DEFINE0(sched_yield)
4246 {
4247 struct rq *rq = this_rq_lock();
4248
4249 schedstat_inc(rq, yld_count);
4250 current->sched_class->yield_task(rq);
4251
4252 /*
4253 * Since we are going to call schedule() anyway, there's
4254 * no need to preempt or enable interrupts:
4255 */
4256 __release(rq->lock);
4257 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4258 do_raw_spin_unlock(&rq->lock);
4259 sched_preempt_enable_no_resched();
4260
4261 schedule();
4262
4263 return 0;
4264 }
4265
4266 static inline int should_resched(void)
4267 {
4268 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4269 }
4270
4271 static void __cond_resched(void)
4272 {
4273 add_preempt_count(PREEMPT_ACTIVE);
4274 __schedule();
4275 sub_preempt_count(PREEMPT_ACTIVE);
4276 }
4277
4278 int __sched _cond_resched(void)
4279 {
4280 if (should_resched()) {
4281 __cond_resched();
4282 return 1;
4283 }
4284 return 0;
4285 }
4286 EXPORT_SYMBOL(_cond_resched);
4287
4288 /*
4289 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4290 * call schedule, and on return reacquire the lock.
4291 *
4292 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4293 * operations here to prevent schedule() from being called twice (once via
4294 * spin_unlock(), once by hand).
4295 */
4296 int __cond_resched_lock(spinlock_t *lock)
4297 {
4298 int resched = should_resched();
4299 int ret = 0;
4300
4301 lockdep_assert_held(lock);
4302
4303 if (spin_needbreak(lock) || resched) {
4304 spin_unlock(lock);
4305 if (resched)
4306 __cond_resched();
4307 else
4308 cpu_relax();
4309 ret = 1;
4310 spin_lock(lock);
4311 }
4312 return ret;
4313 }
4314 EXPORT_SYMBOL(__cond_resched_lock);
4315
4316 int __sched __cond_resched_softirq(void)
4317 {
4318 BUG_ON(!in_softirq());
4319
4320 if (should_resched()) {
4321 local_bh_enable();
4322 __cond_resched();
4323 local_bh_disable();
4324 return 1;
4325 }
4326 return 0;
4327 }
4328 EXPORT_SYMBOL(__cond_resched_softirq);
4329
4330 /**
4331 * yield - yield the current processor to other threads.
4332 *
4333 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4334 *
4335 * The scheduler is at all times free to pick the calling task as the most
4336 * eligible task to run, if removing the yield() call from your code breaks
4337 * it, its already broken.
4338 *
4339 * Typical broken usage is:
4340 *
4341 * while (!event)
4342 * yield();
4343 *
4344 * where one assumes that yield() will let 'the other' process run that will
4345 * make event true. If the current task is a SCHED_FIFO task that will never
4346 * happen. Never use yield() as a progress guarantee!!
4347 *
4348 * If you want to use yield() to wait for something, use wait_event().
4349 * If you want to use yield() to be 'nice' for others, use cond_resched().
4350 * If you still want to use yield(), do not!
4351 */
4352 void __sched yield(void)
4353 {
4354 set_current_state(TASK_RUNNING);
4355 sys_sched_yield();
4356 }
4357 EXPORT_SYMBOL(yield);
4358
4359 /**
4360 * yield_to - yield the current processor to another thread in
4361 * your thread group, or accelerate that thread toward the
4362 * processor it's on.
4363 * @p: target task
4364 * @preempt: whether task preemption is allowed or not
4365 *
4366 * It's the caller's job to ensure that the target task struct
4367 * can't go away on us before we can do any checks.
4368 *
4369 * Returns:
4370 * true (>0) if we indeed boosted the target task.
4371 * false (0) if we failed to boost the target.
4372 * -ESRCH if there's no task to yield to.
4373 */
4374 bool __sched yield_to(struct task_struct *p, bool preempt)
4375 {
4376 struct task_struct *curr = current;
4377 struct rq *rq, *p_rq;
4378 unsigned long flags;
4379 int yielded = 0;
4380
4381 local_irq_save(flags);
4382 rq = this_rq();
4383
4384 again:
4385 p_rq = task_rq(p);
4386 /*
4387 * If we're the only runnable task on the rq and target rq also
4388 * has only one task, there's absolutely no point in yielding.
4389 */
4390 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4391 yielded = -ESRCH;
4392 goto out_irq;
4393 }
4394
4395 double_rq_lock(rq, p_rq);
4396 while (task_rq(p) != p_rq) {
4397 double_rq_unlock(rq, p_rq);
4398 goto again;
4399 }
4400
4401 if (!curr->sched_class->yield_to_task)
4402 goto out_unlock;
4403
4404 if (curr->sched_class != p->sched_class)
4405 goto out_unlock;
4406
4407 if (task_running(p_rq, p) || p->state)
4408 goto out_unlock;
4409
4410 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4411 if (yielded) {
4412 schedstat_inc(rq, yld_count);
4413 /*
4414 * Make p's CPU reschedule; pick_next_entity takes care of
4415 * fairness.
4416 */
4417 if (preempt && rq != p_rq)
4418 resched_task(p_rq->curr);
4419 }
4420
4421 out_unlock:
4422 double_rq_unlock(rq, p_rq);
4423 out_irq:
4424 local_irq_restore(flags);
4425
4426 if (yielded > 0)
4427 schedule();
4428
4429 return yielded;
4430 }
4431 EXPORT_SYMBOL_GPL(yield_to);
4432
4433 /*
4434 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4435 * that process accounting knows that this is a task in IO wait state.
4436 */
4437 void __sched io_schedule(void)
4438 {
4439 struct rq *rq = raw_rq();
4440
4441 delayacct_blkio_start();
4442 atomic_inc(&rq->nr_iowait);
4443 blk_flush_plug(current);
4444 current->in_iowait = 1;
4445 schedule();
4446 current->in_iowait = 0;
4447 atomic_dec(&rq->nr_iowait);
4448 delayacct_blkio_end();
4449 }
4450 EXPORT_SYMBOL(io_schedule);
4451
4452 long __sched io_schedule_timeout(long timeout)
4453 {
4454 struct rq *rq = raw_rq();
4455 long ret;
4456
4457 delayacct_blkio_start();
4458 atomic_inc(&rq->nr_iowait);
4459 blk_flush_plug(current);
4460 current->in_iowait = 1;
4461 ret = schedule_timeout(timeout);
4462 current->in_iowait = 0;
4463 atomic_dec(&rq->nr_iowait);
4464 delayacct_blkio_end();
4465 return ret;
4466 }
4467
4468 /**
4469 * sys_sched_get_priority_max - return maximum RT priority.
4470 * @policy: scheduling class.
4471 *
4472 * this syscall returns the maximum rt_priority that can be used
4473 * by a given scheduling class.
4474 */
4475 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4476 {
4477 int ret = -EINVAL;
4478
4479 switch (policy) {
4480 case SCHED_FIFO:
4481 case SCHED_RR:
4482 ret = MAX_USER_RT_PRIO-1;
4483 break;
4484 case SCHED_NORMAL:
4485 case SCHED_BATCH:
4486 case SCHED_IDLE:
4487 ret = 0;
4488 break;
4489 }
4490 return ret;
4491 }
4492
4493 /**
4494 * sys_sched_get_priority_min - return minimum RT priority.
4495 * @policy: scheduling class.
4496 *
4497 * this syscall returns the minimum rt_priority that can be used
4498 * by a given scheduling class.
4499 */
4500 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4501 {
4502 int ret = -EINVAL;
4503
4504 switch (policy) {
4505 case SCHED_FIFO:
4506 case SCHED_RR:
4507 ret = 1;
4508 break;
4509 case SCHED_NORMAL:
4510 case SCHED_BATCH:
4511 case SCHED_IDLE:
4512 ret = 0;
4513 }
4514 return ret;
4515 }
4516
4517 /**
4518 * sys_sched_rr_get_interval - return the default timeslice of a process.
4519 * @pid: pid of the process.
4520 * @interval: userspace pointer to the timeslice value.
4521 *
4522 * this syscall writes the default timeslice value of a given process
4523 * into the user-space timespec buffer. A value of '0' means infinity.
4524 */
4525 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4526 struct timespec __user *, interval)
4527 {
4528 struct task_struct *p;
4529 unsigned int time_slice;
4530 unsigned long flags;
4531 struct rq *rq;
4532 int retval;
4533 struct timespec t;
4534
4535 if (pid < 0)
4536 return -EINVAL;
4537
4538 retval = -ESRCH;
4539 rcu_read_lock();
4540 p = find_process_by_pid(pid);
4541 if (!p)
4542 goto out_unlock;
4543
4544 retval = security_task_getscheduler(p);
4545 if (retval)
4546 goto out_unlock;
4547
4548 rq = task_rq_lock(p, &flags);
4549 time_slice = p->sched_class->get_rr_interval(rq, p);
4550 task_rq_unlock(rq, p, &flags);
4551
4552 rcu_read_unlock();
4553 jiffies_to_timespec(time_slice, &t);
4554 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4555 return retval;
4556
4557 out_unlock:
4558 rcu_read_unlock();
4559 return retval;
4560 }
4561
4562 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4563
4564 void sched_show_task(struct task_struct *p)
4565 {
4566 unsigned long free = 0;
4567 int ppid;
4568 unsigned state;
4569
4570 state = p->state ? __ffs(p->state) + 1 : 0;
4571 printk(KERN_INFO "%-15.15s %c", p->comm,
4572 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4573 #if BITS_PER_LONG == 32
4574 if (state == TASK_RUNNING)
4575 printk(KERN_CONT " running ");
4576 else
4577 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4578 #else
4579 if (state == TASK_RUNNING)
4580 printk(KERN_CONT " running task ");
4581 else
4582 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4583 #endif
4584 #ifdef CONFIG_DEBUG_STACK_USAGE
4585 free = stack_not_used(p);
4586 #endif
4587 rcu_read_lock();
4588 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4589 rcu_read_unlock();
4590 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4591 task_pid_nr(p), ppid,
4592 (unsigned long)task_thread_info(p)->flags);
4593
4594 show_stack(p, NULL);
4595 }
4596
4597 void show_state_filter(unsigned long state_filter)
4598 {
4599 struct task_struct *g, *p;
4600
4601 #if BITS_PER_LONG == 32
4602 printk(KERN_INFO
4603 " task PC stack pid father\n");
4604 #else
4605 printk(KERN_INFO
4606 " task PC stack pid father\n");
4607 #endif
4608 rcu_read_lock();
4609 do_each_thread(g, p) {
4610 /*
4611 * reset the NMI-timeout, listing all files on a slow
4612 * console might take a lot of time:
4613 */
4614 touch_nmi_watchdog();
4615 if (!state_filter || (p->state & state_filter))
4616 sched_show_task(p);
4617 } while_each_thread(g, p);
4618
4619 touch_all_softlockup_watchdogs();
4620
4621 #ifdef CONFIG_SCHED_DEBUG
4622 sysrq_sched_debug_show();
4623 #endif
4624 rcu_read_unlock();
4625 /*
4626 * Only show locks if all tasks are dumped:
4627 */
4628 if (!state_filter)
4629 debug_show_all_locks();
4630 }
4631
4632 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4633 {
4634 idle->sched_class = &idle_sched_class;
4635 }
4636
4637 /**
4638 * init_idle - set up an idle thread for a given CPU
4639 * @idle: task in question
4640 * @cpu: cpu the idle task belongs to
4641 *
4642 * NOTE: this function does not set the idle thread's NEED_RESCHED
4643 * flag, to make booting more robust.
4644 */
4645 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4646 {
4647 struct rq *rq = cpu_rq(cpu);
4648 unsigned long flags;
4649
4650 raw_spin_lock_irqsave(&rq->lock, flags);
4651
4652 __sched_fork(idle);
4653 idle->state = TASK_RUNNING;
4654 idle->se.exec_start = sched_clock();
4655
4656 do_set_cpus_allowed(idle, cpumask_of(cpu));
4657 /*
4658 * We're having a chicken and egg problem, even though we are
4659 * holding rq->lock, the cpu isn't yet set to this cpu so the
4660 * lockdep check in task_group() will fail.
4661 *
4662 * Similar case to sched_fork(). / Alternatively we could
4663 * use task_rq_lock() here and obtain the other rq->lock.
4664 *
4665 * Silence PROVE_RCU
4666 */
4667 rcu_read_lock();
4668 __set_task_cpu(idle, cpu);
4669 rcu_read_unlock();
4670
4671 rq->curr = rq->idle = idle;
4672 #if defined(CONFIG_SMP)
4673 idle->on_cpu = 1;
4674 #endif
4675 raw_spin_unlock_irqrestore(&rq->lock, flags);
4676
4677 /* Set the preempt count _outside_ the spinlocks! */
4678 task_thread_info(idle)->preempt_count = 0;
4679
4680 /*
4681 * The idle tasks have their own, simple scheduling class:
4682 */
4683 idle->sched_class = &idle_sched_class;
4684 ftrace_graph_init_idle_task(idle, cpu);
4685 vtime_init_idle(idle);
4686 #if defined(CONFIG_SMP)
4687 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4688 #endif
4689 }
4690
4691 #ifdef CONFIG_SMP
4692 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4693 {
4694 if (p->sched_class && p->sched_class->set_cpus_allowed)
4695 p->sched_class->set_cpus_allowed(p, new_mask);
4696
4697 cpumask_copy(&p->cpus_allowed, new_mask);
4698 p->nr_cpus_allowed = cpumask_weight(new_mask);
4699 }
4700
4701 /*
4702 * This is how migration works:
4703 *
4704 * 1) we invoke migration_cpu_stop() on the target CPU using
4705 * stop_one_cpu().
4706 * 2) stopper starts to run (implicitly forcing the migrated thread
4707 * off the CPU)
4708 * 3) it checks whether the migrated task is still in the wrong runqueue.
4709 * 4) if it's in the wrong runqueue then the migration thread removes
4710 * it and puts it into the right queue.
4711 * 5) stopper completes and stop_one_cpu() returns and the migration
4712 * is done.
4713 */
4714
4715 /*
4716 * Change a given task's CPU affinity. Migrate the thread to a
4717 * proper CPU and schedule it away if the CPU it's executing on
4718 * is removed from the allowed bitmask.
4719 *
4720 * NOTE: the caller must have a valid reference to the task, the
4721 * task must not exit() & deallocate itself prematurely. The
4722 * call is not atomic; no spinlocks may be held.
4723 */
4724 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4725 {
4726 unsigned long flags;
4727 struct rq *rq;
4728 unsigned int dest_cpu;
4729 int ret = 0;
4730
4731 rq = task_rq_lock(p, &flags);
4732
4733 if (cpumask_equal(&p->cpus_allowed, new_mask))
4734 goto out;
4735
4736 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4737 ret = -EINVAL;
4738 goto out;
4739 }
4740
4741 do_set_cpus_allowed(p, new_mask);
4742
4743 /* Can the task run on the task's current CPU? If so, we're done */
4744 if (cpumask_test_cpu(task_cpu(p), new_mask))
4745 goto out;
4746
4747 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4748 if (p->on_rq) {
4749 struct migration_arg arg = { p, dest_cpu };
4750 /* Need help from migration thread: drop lock and wait. */
4751 task_rq_unlock(rq, p, &flags);
4752 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4753 tlb_migrate_finish(p->mm);
4754 return 0;
4755 }
4756 out:
4757 task_rq_unlock(rq, p, &flags);
4758
4759 return ret;
4760 }
4761 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4762
4763 /*
4764 * Move (not current) task off this cpu, onto dest cpu. We're doing
4765 * this because either it can't run here any more (set_cpus_allowed()
4766 * away from this CPU, or CPU going down), or because we're
4767 * attempting to rebalance this task on exec (sched_exec).
4768 *
4769 * So we race with normal scheduler movements, but that's OK, as long
4770 * as the task is no longer on this CPU.
4771 *
4772 * Returns non-zero if task was successfully migrated.
4773 */
4774 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4775 {
4776 struct rq *rq_dest, *rq_src;
4777 int ret = 0;
4778
4779 if (unlikely(!cpu_active(dest_cpu)))
4780 return ret;
4781
4782 rq_src = cpu_rq(src_cpu);
4783 rq_dest = cpu_rq(dest_cpu);
4784
4785 raw_spin_lock(&p->pi_lock);
4786 double_rq_lock(rq_src, rq_dest);
4787 /* Already moved. */
4788 if (task_cpu(p) != src_cpu)
4789 goto done;
4790 /* Affinity changed (again). */
4791 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4792 goto fail;
4793
4794 /*
4795 * If we're not on a rq, the next wake-up will ensure we're
4796 * placed properly.
4797 */
4798 if (p->on_rq) {
4799 dequeue_task(rq_src, p, 0);
4800 set_task_cpu(p, dest_cpu);
4801 enqueue_task(rq_dest, p, 0);
4802 check_preempt_curr(rq_dest, p, 0);
4803 }
4804 done:
4805 ret = 1;
4806 fail:
4807 double_rq_unlock(rq_src, rq_dest);
4808 raw_spin_unlock(&p->pi_lock);
4809 return ret;
4810 }
4811
4812 /*
4813 * migration_cpu_stop - this will be executed by a highprio stopper thread
4814 * and performs thread migration by bumping thread off CPU then
4815 * 'pushing' onto another runqueue.
4816 */
4817 static int migration_cpu_stop(void *data)
4818 {
4819 struct migration_arg *arg = data;
4820
4821 /*
4822 * The original target cpu might have gone down and we might
4823 * be on another cpu but it doesn't matter.
4824 */
4825 local_irq_disable();
4826 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4827 local_irq_enable();
4828 return 0;
4829 }
4830
4831 #ifdef CONFIG_HOTPLUG_CPU
4832
4833 /*
4834 * Ensures that the idle task is using init_mm right before its cpu goes
4835 * offline.
4836 */
4837 void idle_task_exit(void)
4838 {
4839 struct mm_struct *mm = current->active_mm;
4840
4841 BUG_ON(cpu_online(smp_processor_id()));
4842
4843 if (mm != &init_mm)
4844 switch_mm(mm, &init_mm, current);
4845 mmdrop(mm);
4846 }
4847
4848 /*
4849 * Since this CPU is going 'away' for a while, fold any nr_active delta
4850 * we might have. Assumes we're called after migrate_tasks() so that the
4851 * nr_active count is stable.
4852 *
4853 * Also see the comment "Global load-average calculations".
4854 */
4855 static void calc_load_migrate(struct rq *rq)
4856 {
4857 long delta = calc_load_fold_active(rq);
4858 if (delta)
4859 atomic_long_add(delta, &calc_load_tasks);
4860 }
4861
4862 /*
4863 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4864 * try_to_wake_up()->select_task_rq().
4865 *
4866 * Called with rq->lock held even though we'er in stop_machine() and
4867 * there's no concurrency possible, we hold the required locks anyway
4868 * because of lock validation efforts.
4869 */
4870 static void migrate_tasks(unsigned int dead_cpu)
4871 {
4872 struct rq *rq = cpu_rq(dead_cpu);
4873 struct task_struct *next, *stop = rq->stop;
4874 int dest_cpu;
4875
4876 /*
4877 * Fudge the rq selection such that the below task selection loop
4878 * doesn't get stuck on the currently eligible stop task.
4879 *
4880 * We're currently inside stop_machine() and the rq is either stuck
4881 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4882 * either way we should never end up calling schedule() until we're
4883 * done here.
4884 */
4885 rq->stop = NULL;
4886
4887 for ( ; ; ) {
4888 /*
4889 * There's this thread running, bail when that's the only
4890 * remaining thread.
4891 */
4892 if (rq->nr_running == 1)
4893 break;
4894
4895 next = pick_next_task(rq);
4896 BUG_ON(!next);
4897 next->sched_class->put_prev_task(rq, next);
4898
4899 /* Find suitable destination for @next, with force if needed. */
4900 dest_cpu = select_fallback_rq(dead_cpu, next);
4901 raw_spin_unlock(&rq->lock);
4902
4903 __migrate_task(next, dead_cpu, dest_cpu);
4904
4905 raw_spin_lock(&rq->lock);
4906 }
4907
4908 rq->stop = stop;
4909 }
4910
4911 #endif /* CONFIG_HOTPLUG_CPU */
4912
4913 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4914
4915 static struct ctl_table sd_ctl_dir[] = {
4916 {
4917 .procname = "sched_domain",
4918 .mode = 0555,
4919 },
4920 {}
4921 };
4922
4923 static struct ctl_table sd_ctl_root[] = {
4924 {
4925 .procname = "kernel",
4926 .mode = 0555,
4927 .child = sd_ctl_dir,
4928 },
4929 {}
4930 };
4931
4932 static struct ctl_table *sd_alloc_ctl_entry(int n)
4933 {
4934 struct ctl_table *entry =
4935 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4936
4937 return entry;
4938 }
4939
4940 static void sd_free_ctl_entry(struct ctl_table **tablep)
4941 {
4942 struct ctl_table *entry;
4943
4944 /*
4945 * In the intermediate directories, both the child directory and
4946 * procname are dynamically allocated and could fail but the mode
4947 * will always be set. In the lowest directory the names are
4948 * static strings and all have proc handlers.
4949 */
4950 for (entry = *tablep; entry->mode; entry++) {
4951 if (entry->child)
4952 sd_free_ctl_entry(&entry->child);
4953 if (entry->proc_handler == NULL)
4954 kfree(entry->procname);
4955 }
4956
4957 kfree(*tablep);
4958 *tablep = NULL;
4959 }
4960
4961 static int min_load_idx = 0;
4962 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4963
4964 static void
4965 set_table_entry(struct ctl_table *entry,
4966 const char *procname, void *data, int maxlen,
4967 umode_t mode, proc_handler *proc_handler,
4968 bool load_idx)
4969 {
4970 entry->procname = procname;
4971 entry->data = data;
4972 entry->maxlen = maxlen;
4973 entry->mode = mode;
4974 entry->proc_handler = proc_handler;
4975
4976 if (load_idx) {
4977 entry->extra1 = &min_load_idx;
4978 entry->extra2 = &max_load_idx;
4979 }
4980 }
4981
4982 static struct ctl_table *
4983 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4984 {
4985 struct ctl_table *table = sd_alloc_ctl_entry(13);
4986
4987 if (table == NULL)
4988 return NULL;
4989
4990 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4991 sizeof(long), 0644, proc_doulongvec_minmax, false);
4992 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4993 sizeof(long), 0644, proc_doulongvec_minmax, false);
4994 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4995 sizeof(int), 0644, proc_dointvec_minmax, true);
4996 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4997 sizeof(int), 0644, proc_dointvec_minmax, true);
4998 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4999 sizeof(int), 0644, proc_dointvec_minmax, true);
5000 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5001 sizeof(int), 0644, proc_dointvec_minmax, true);
5002 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5003 sizeof(int), 0644, proc_dointvec_minmax, true);
5004 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5005 sizeof(int), 0644, proc_dointvec_minmax, false);
5006 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5007 sizeof(int), 0644, proc_dointvec_minmax, false);
5008 set_table_entry(&table[9], "cache_nice_tries",
5009 &sd->cache_nice_tries,
5010 sizeof(int), 0644, proc_dointvec_minmax, false);
5011 set_table_entry(&table[10], "flags", &sd->flags,
5012 sizeof(int), 0644, proc_dointvec_minmax, false);
5013 set_table_entry(&table[11], "name", sd->name,
5014 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5015 /* &table[12] is terminator */
5016
5017 return table;
5018 }
5019
5020 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5021 {
5022 struct ctl_table *entry, *table;
5023 struct sched_domain *sd;
5024 int domain_num = 0, i;
5025 char buf[32];
5026
5027 for_each_domain(cpu, sd)
5028 domain_num++;
5029 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5030 if (table == NULL)
5031 return NULL;
5032
5033 i = 0;
5034 for_each_domain(cpu, sd) {
5035 snprintf(buf, 32, "domain%d", i);
5036 entry->procname = kstrdup(buf, GFP_KERNEL);
5037 entry->mode = 0555;
5038 entry->child = sd_alloc_ctl_domain_table(sd);
5039 entry++;
5040 i++;
5041 }
5042 return table;
5043 }
5044
5045 static struct ctl_table_header *sd_sysctl_header;
5046 static void register_sched_domain_sysctl(void)
5047 {
5048 int i, cpu_num = num_possible_cpus();
5049 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5050 char buf[32];
5051
5052 WARN_ON(sd_ctl_dir[0].child);
5053 sd_ctl_dir[0].child = entry;
5054
5055 if (entry == NULL)
5056 return;
5057
5058 for_each_possible_cpu(i) {
5059 snprintf(buf, 32, "cpu%d", i);
5060 entry->procname = kstrdup(buf, GFP_KERNEL);
5061 entry->mode = 0555;
5062 entry->child = sd_alloc_ctl_cpu_table(i);
5063 entry++;
5064 }
5065
5066 WARN_ON(sd_sysctl_header);
5067 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5068 }
5069
5070 /* may be called multiple times per register */
5071 static void unregister_sched_domain_sysctl(void)
5072 {
5073 if (sd_sysctl_header)
5074 unregister_sysctl_table(sd_sysctl_header);
5075 sd_sysctl_header = NULL;
5076 if (sd_ctl_dir[0].child)
5077 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5078 }
5079 #else
5080 static void register_sched_domain_sysctl(void)
5081 {
5082 }
5083 static void unregister_sched_domain_sysctl(void)
5084 {
5085 }
5086 #endif
5087
5088 static void set_rq_online(struct rq *rq)
5089 {
5090 if (!rq->online) {
5091 const struct sched_class *class;
5092
5093 cpumask_set_cpu(rq->cpu, rq->rd->online);
5094 rq->online = 1;
5095
5096 for_each_class(class) {
5097 if (class->rq_online)
5098 class->rq_online(rq);
5099 }
5100 }
5101 }
5102
5103 static void set_rq_offline(struct rq *rq)
5104 {
5105 if (rq->online) {
5106 const struct sched_class *class;
5107
5108 for_each_class(class) {
5109 if (class->rq_offline)
5110 class->rq_offline(rq);
5111 }
5112
5113 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5114 rq->online = 0;
5115 }
5116 }
5117
5118 /*
5119 * migration_call - callback that gets triggered when a CPU is added.
5120 * Here we can start up the necessary migration thread for the new CPU.
5121 */
5122 static int __cpuinit
5123 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5124 {
5125 int cpu = (long)hcpu;
5126 unsigned long flags;
5127 struct rq *rq = cpu_rq(cpu);
5128
5129 switch (action & ~CPU_TASKS_FROZEN) {
5130
5131 case CPU_UP_PREPARE:
5132 rq->calc_load_update = calc_load_update;
5133 break;
5134
5135 case CPU_ONLINE:
5136 /* Update our root-domain */
5137 raw_spin_lock_irqsave(&rq->lock, flags);
5138 if (rq->rd) {
5139 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5140
5141 set_rq_online(rq);
5142 }
5143 raw_spin_unlock_irqrestore(&rq->lock, flags);
5144 break;
5145
5146 #ifdef CONFIG_HOTPLUG_CPU
5147 case CPU_DYING:
5148 sched_ttwu_pending();
5149 /* Update our root-domain */
5150 raw_spin_lock_irqsave(&rq->lock, flags);
5151 if (rq->rd) {
5152 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5153 set_rq_offline(rq);
5154 }
5155 migrate_tasks(cpu);
5156 BUG_ON(rq->nr_running != 1); /* the migration thread */
5157 raw_spin_unlock_irqrestore(&rq->lock, flags);
5158 break;
5159
5160 case CPU_DEAD:
5161 calc_load_migrate(rq);
5162 break;
5163 #endif
5164 }
5165
5166 update_max_interval();
5167
5168 return NOTIFY_OK;
5169 }
5170
5171 /*
5172 * Register at high priority so that task migration (migrate_all_tasks)
5173 * happens before everything else. This has to be lower priority than
5174 * the notifier in the perf_event subsystem, though.
5175 */
5176 static struct notifier_block __cpuinitdata migration_notifier = {
5177 .notifier_call = migration_call,
5178 .priority = CPU_PRI_MIGRATION,
5179 };
5180
5181 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5182 unsigned long action, void *hcpu)
5183 {
5184 switch (action & ~CPU_TASKS_FROZEN) {
5185 case CPU_STARTING:
5186 case CPU_DOWN_FAILED:
5187 set_cpu_active((long)hcpu, true);
5188 return NOTIFY_OK;
5189 default:
5190 return NOTIFY_DONE;
5191 }
5192 }
5193
5194 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5195 unsigned long action, void *hcpu)
5196 {
5197 switch (action & ~CPU_TASKS_FROZEN) {
5198 case CPU_DOWN_PREPARE:
5199 set_cpu_active((long)hcpu, false);
5200 return NOTIFY_OK;
5201 default:
5202 return NOTIFY_DONE;
5203 }
5204 }
5205
5206 static int __init migration_init(void)
5207 {
5208 void *cpu = (void *)(long)smp_processor_id();
5209 int err;
5210
5211 /* Initialize migration for the boot CPU */
5212 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5213 BUG_ON(err == NOTIFY_BAD);
5214 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5215 register_cpu_notifier(&migration_notifier);
5216
5217 /* Register cpu active notifiers */
5218 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5219 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5220
5221 return 0;
5222 }
5223 early_initcall(migration_init);
5224 #endif
5225
5226 #ifdef CONFIG_SMP
5227
5228 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5229
5230 #ifdef CONFIG_SCHED_DEBUG
5231
5232 static __read_mostly int sched_debug_enabled;
5233
5234 static int __init sched_debug_setup(char *str)
5235 {
5236 sched_debug_enabled = 1;
5237
5238 return 0;
5239 }
5240 early_param("sched_debug", sched_debug_setup);
5241
5242 static inline bool sched_debug(void)
5243 {
5244 return sched_debug_enabled;
5245 }
5246
5247 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5248 struct cpumask *groupmask)
5249 {
5250 struct sched_group *group = sd->groups;
5251 char str[256];
5252
5253 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5254 cpumask_clear(groupmask);
5255
5256 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5257
5258 if (!(sd->flags & SD_LOAD_BALANCE)) {
5259 printk("does not load-balance\n");
5260 if (sd->parent)
5261 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5262 " has parent");
5263 return -1;
5264 }
5265
5266 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5267
5268 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5269 printk(KERN_ERR "ERROR: domain->span does not contain "
5270 "CPU%d\n", cpu);
5271 }
5272 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5273 printk(KERN_ERR "ERROR: domain->groups does not contain"
5274 " CPU%d\n", cpu);
5275 }
5276
5277 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5278 do {
5279 if (!group) {
5280 printk("\n");
5281 printk(KERN_ERR "ERROR: group is NULL\n");
5282 break;
5283 }
5284
5285 /*
5286 * Even though we initialize ->power to something semi-sane,
5287 * we leave power_orig unset. This allows us to detect if
5288 * domain iteration is still funny without causing /0 traps.
5289 */
5290 if (!group->sgp->power_orig) {
5291 printk(KERN_CONT "\n");
5292 printk(KERN_ERR "ERROR: domain->cpu_power not "
5293 "set\n");
5294 break;
5295 }
5296
5297 if (!cpumask_weight(sched_group_cpus(group))) {
5298 printk(KERN_CONT "\n");
5299 printk(KERN_ERR "ERROR: empty group\n");
5300 break;
5301 }
5302
5303 if (!(sd->flags & SD_OVERLAP) &&
5304 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5305 printk(KERN_CONT "\n");
5306 printk(KERN_ERR "ERROR: repeated CPUs\n");
5307 break;
5308 }
5309
5310 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5311
5312 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5313
5314 printk(KERN_CONT " %s", str);
5315 if (group->sgp->power != SCHED_POWER_SCALE) {
5316 printk(KERN_CONT " (cpu_power = %d)",
5317 group->sgp->power);
5318 }
5319
5320 group = group->next;
5321 } while (group != sd->groups);
5322 printk(KERN_CONT "\n");
5323
5324 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5325 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5326
5327 if (sd->parent &&
5328 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5329 printk(KERN_ERR "ERROR: parent span is not a superset "
5330 "of domain->span\n");
5331 return 0;
5332 }
5333
5334 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5335 {
5336 int level = 0;
5337
5338 if (!sched_debug_enabled)
5339 return;
5340
5341 if (!sd) {
5342 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5343 return;
5344 }
5345
5346 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5347
5348 for (;;) {
5349 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5350 break;
5351 level++;
5352 sd = sd->parent;
5353 if (!sd)
5354 break;
5355 }
5356 }
5357 #else /* !CONFIG_SCHED_DEBUG */
5358 # define sched_domain_debug(sd, cpu) do { } while (0)
5359 static inline bool sched_debug(void)
5360 {
5361 return false;
5362 }
5363 #endif /* CONFIG_SCHED_DEBUG */
5364
5365 static int sd_degenerate(struct sched_domain *sd)
5366 {
5367 if (cpumask_weight(sched_domain_span(sd)) == 1)
5368 return 1;
5369
5370 /* Following flags need at least 2 groups */
5371 if (sd->flags & (SD_LOAD_BALANCE |
5372 SD_BALANCE_NEWIDLE |
5373 SD_BALANCE_FORK |
5374 SD_BALANCE_EXEC |
5375 SD_SHARE_CPUPOWER |
5376 SD_SHARE_PKG_RESOURCES)) {
5377 if (sd->groups != sd->groups->next)
5378 return 0;
5379 }
5380
5381 /* Following flags don't use groups */
5382 if (sd->flags & (SD_WAKE_AFFINE))
5383 return 0;
5384
5385 return 1;
5386 }
5387
5388 static int
5389 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5390 {
5391 unsigned long cflags = sd->flags, pflags = parent->flags;
5392
5393 if (sd_degenerate(parent))
5394 return 1;
5395
5396 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5397 return 0;
5398
5399 /* Flags needing groups don't count if only 1 group in parent */
5400 if (parent->groups == parent->groups->next) {
5401 pflags &= ~(SD_LOAD_BALANCE |
5402 SD_BALANCE_NEWIDLE |
5403 SD_BALANCE_FORK |
5404 SD_BALANCE_EXEC |
5405 SD_SHARE_CPUPOWER |
5406 SD_SHARE_PKG_RESOURCES);
5407 if (nr_node_ids == 1)
5408 pflags &= ~SD_SERIALIZE;
5409 }
5410 if (~cflags & pflags)
5411 return 0;
5412
5413 return 1;
5414 }
5415
5416 static void free_rootdomain(struct rcu_head *rcu)
5417 {
5418 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5419
5420 cpupri_cleanup(&rd->cpupri);
5421 free_cpumask_var(rd->rto_mask);
5422 free_cpumask_var(rd->online);
5423 free_cpumask_var(rd->span);
5424 kfree(rd);
5425 }
5426
5427 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5428 {
5429 struct root_domain *old_rd = NULL;
5430 unsigned long flags;
5431
5432 raw_spin_lock_irqsave(&rq->lock, flags);
5433
5434 if (rq->rd) {
5435 old_rd = rq->rd;
5436
5437 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5438 set_rq_offline(rq);
5439
5440 cpumask_clear_cpu(rq->cpu, old_rd->span);
5441
5442 /*
5443 * If we dont want to free the old_rt yet then
5444 * set old_rd to NULL to skip the freeing later
5445 * in this function:
5446 */
5447 if (!atomic_dec_and_test(&old_rd->refcount))
5448 old_rd = NULL;
5449 }
5450
5451 atomic_inc(&rd->refcount);
5452 rq->rd = rd;
5453
5454 cpumask_set_cpu(rq->cpu, rd->span);
5455 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5456 set_rq_online(rq);
5457
5458 raw_spin_unlock_irqrestore(&rq->lock, flags);
5459
5460 if (old_rd)
5461 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5462 }
5463
5464 static int init_rootdomain(struct root_domain *rd)
5465 {
5466 memset(rd, 0, sizeof(*rd));
5467
5468 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5469 goto out;
5470 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5471 goto free_span;
5472 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5473 goto free_online;
5474
5475 if (cpupri_init(&rd->cpupri) != 0)
5476 goto free_rto_mask;
5477 return 0;
5478
5479 free_rto_mask:
5480 free_cpumask_var(rd->rto_mask);
5481 free_online:
5482 free_cpumask_var(rd->online);
5483 free_span:
5484 free_cpumask_var(rd->span);
5485 out:
5486 return -ENOMEM;
5487 }
5488
5489 /*
5490 * By default the system creates a single root-domain with all cpus as
5491 * members (mimicking the global state we have today).
5492 */
5493 struct root_domain def_root_domain;
5494
5495 static void init_defrootdomain(void)
5496 {
5497 init_rootdomain(&def_root_domain);
5498
5499 atomic_set(&def_root_domain.refcount, 1);
5500 }
5501
5502 static struct root_domain *alloc_rootdomain(void)
5503 {
5504 struct root_domain *rd;
5505
5506 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5507 if (!rd)
5508 return NULL;
5509
5510 if (init_rootdomain(rd) != 0) {
5511 kfree(rd);
5512 return NULL;
5513 }
5514
5515 return rd;
5516 }
5517
5518 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5519 {
5520 struct sched_group *tmp, *first;
5521
5522 if (!sg)
5523 return;
5524
5525 first = sg;
5526 do {
5527 tmp = sg->next;
5528
5529 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5530 kfree(sg->sgp);
5531
5532 kfree(sg);
5533 sg = tmp;
5534 } while (sg != first);
5535 }
5536
5537 static void free_sched_domain(struct rcu_head *rcu)
5538 {
5539 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5540
5541 /*
5542 * If its an overlapping domain it has private groups, iterate and
5543 * nuke them all.
5544 */
5545 if (sd->flags & SD_OVERLAP) {
5546 free_sched_groups(sd->groups, 1);
5547 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5548 kfree(sd->groups->sgp);
5549 kfree(sd->groups);
5550 }
5551 kfree(sd);
5552 }
5553
5554 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5555 {
5556 call_rcu(&sd->rcu, free_sched_domain);
5557 }
5558
5559 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5560 {
5561 for (; sd; sd = sd->parent)
5562 destroy_sched_domain(sd, cpu);
5563 }
5564
5565 /*
5566 * Keep a special pointer to the highest sched_domain that has
5567 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5568 * allows us to avoid some pointer chasing select_idle_sibling().
5569 *
5570 * Also keep a unique ID per domain (we use the first cpu number in
5571 * the cpumask of the domain), this allows us to quickly tell if
5572 * two cpus are in the same cache domain, see cpus_share_cache().
5573 */
5574 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5575 DEFINE_PER_CPU(int, sd_llc_id);
5576
5577 static void update_top_cache_domain(int cpu)
5578 {
5579 struct sched_domain *sd;
5580 int id = cpu;
5581
5582 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5583 if (sd)
5584 id = cpumask_first(sched_domain_span(sd));
5585
5586 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5587 per_cpu(sd_llc_id, cpu) = id;
5588 }
5589
5590 /*
5591 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5592 * hold the hotplug lock.
5593 */
5594 static void
5595 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5596 {
5597 struct rq *rq = cpu_rq(cpu);
5598 struct sched_domain *tmp;
5599
5600 /* Remove the sched domains which do not contribute to scheduling. */
5601 for (tmp = sd; tmp; ) {
5602 struct sched_domain *parent = tmp->parent;
5603 if (!parent)
5604 break;
5605
5606 if (sd_parent_degenerate(tmp, parent)) {
5607 tmp->parent = parent->parent;
5608 if (parent->parent)
5609 parent->parent->child = tmp;
5610 destroy_sched_domain(parent, cpu);
5611 } else
5612 tmp = tmp->parent;
5613 }
5614
5615 if (sd && sd_degenerate(sd)) {
5616 tmp = sd;
5617 sd = sd->parent;
5618 destroy_sched_domain(tmp, cpu);
5619 if (sd)
5620 sd->child = NULL;
5621 }
5622
5623 sched_domain_debug(sd, cpu);
5624
5625 rq_attach_root(rq, rd);
5626 tmp = rq->sd;
5627 rcu_assign_pointer(rq->sd, sd);
5628 destroy_sched_domains(tmp, cpu);
5629
5630 update_top_cache_domain(cpu);
5631 }
5632
5633 /* cpus with isolated domains */
5634 static cpumask_var_t cpu_isolated_map;
5635
5636 /* Setup the mask of cpus configured for isolated domains */
5637 static int __init isolated_cpu_setup(char *str)
5638 {
5639 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5640 cpulist_parse(str, cpu_isolated_map);
5641 return 1;
5642 }
5643
5644 __setup("isolcpus=", isolated_cpu_setup);
5645
5646 static const struct cpumask *cpu_cpu_mask(int cpu)
5647 {
5648 return cpumask_of_node(cpu_to_node(cpu));
5649 }
5650
5651 struct sd_data {
5652 struct sched_domain **__percpu sd;
5653 struct sched_group **__percpu sg;
5654 struct sched_group_power **__percpu sgp;
5655 };
5656
5657 struct s_data {
5658 struct sched_domain ** __percpu sd;
5659 struct root_domain *rd;
5660 };
5661
5662 enum s_alloc {
5663 sa_rootdomain,
5664 sa_sd,
5665 sa_sd_storage,
5666 sa_none,
5667 };
5668
5669 struct sched_domain_topology_level;
5670
5671 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5672 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5673
5674 #define SDTL_OVERLAP 0x01
5675
5676 struct sched_domain_topology_level {
5677 sched_domain_init_f init;
5678 sched_domain_mask_f mask;
5679 int flags;
5680 int numa_level;
5681 struct sd_data data;
5682 };
5683
5684 /*
5685 * Build an iteration mask that can exclude certain CPUs from the upwards
5686 * domain traversal.
5687 *
5688 * Asymmetric node setups can result in situations where the domain tree is of
5689 * unequal depth, make sure to skip domains that already cover the entire
5690 * range.
5691 *
5692 * In that case build_sched_domains() will have terminated the iteration early
5693 * and our sibling sd spans will be empty. Domains should always include the
5694 * cpu they're built on, so check that.
5695 *
5696 */
5697 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5698 {
5699 const struct cpumask *span = sched_domain_span(sd);
5700 struct sd_data *sdd = sd->private;
5701 struct sched_domain *sibling;
5702 int i;
5703
5704 for_each_cpu(i, span) {
5705 sibling = *per_cpu_ptr(sdd->sd, i);
5706 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5707 continue;
5708
5709 cpumask_set_cpu(i, sched_group_mask(sg));
5710 }
5711 }
5712
5713 /*
5714 * Return the canonical balance cpu for this group, this is the first cpu
5715 * of this group that's also in the iteration mask.
5716 */
5717 int group_balance_cpu(struct sched_group *sg)
5718 {
5719 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5720 }
5721
5722 static int
5723 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5724 {
5725 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5726 const struct cpumask *span = sched_domain_span(sd);
5727 struct cpumask *covered = sched_domains_tmpmask;
5728 struct sd_data *sdd = sd->private;
5729 struct sched_domain *child;
5730 int i;
5731
5732 cpumask_clear(covered);
5733
5734 for_each_cpu(i, span) {
5735 struct cpumask *sg_span;
5736
5737 if (cpumask_test_cpu(i, covered))
5738 continue;
5739
5740 child = *per_cpu_ptr(sdd->sd, i);
5741
5742 /* See the comment near build_group_mask(). */
5743 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5744 continue;
5745
5746 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5747 GFP_KERNEL, cpu_to_node(cpu));
5748
5749 if (!sg)
5750 goto fail;
5751
5752 sg_span = sched_group_cpus(sg);
5753 if (child->child) {
5754 child = child->child;
5755 cpumask_copy(sg_span, sched_domain_span(child));
5756 } else
5757 cpumask_set_cpu(i, sg_span);
5758
5759 cpumask_or(covered, covered, sg_span);
5760
5761 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5762 if (atomic_inc_return(&sg->sgp->ref) == 1)
5763 build_group_mask(sd, sg);
5764
5765 /*
5766 * Initialize sgp->power such that even if we mess up the
5767 * domains and no possible iteration will get us here, we won't
5768 * die on a /0 trap.
5769 */
5770 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5771
5772 /*
5773 * Make sure the first group of this domain contains the
5774 * canonical balance cpu. Otherwise the sched_domain iteration
5775 * breaks. See update_sg_lb_stats().
5776 */
5777 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5778 group_balance_cpu(sg) == cpu)
5779 groups = sg;
5780
5781 if (!first)
5782 first = sg;
5783 if (last)
5784 last->next = sg;
5785 last = sg;
5786 last->next = first;
5787 }
5788 sd->groups = groups;
5789
5790 return 0;
5791
5792 fail:
5793 free_sched_groups(first, 0);
5794
5795 return -ENOMEM;
5796 }
5797
5798 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5799 {
5800 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5801 struct sched_domain *child = sd->child;
5802
5803 if (child)
5804 cpu = cpumask_first(sched_domain_span(child));
5805
5806 if (sg) {
5807 *sg = *per_cpu_ptr(sdd->sg, cpu);
5808 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5809 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5810 }
5811
5812 return cpu;
5813 }
5814
5815 /*
5816 * build_sched_groups will build a circular linked list of the groups
5817 * covered by the given span, and will set each group's ->cpumask correctly,
5818 * and ->cpu_power to 0.
5819 *
5820 * Assumes the sched_domain tree is fully constructed
5821 */
5822 static int
5823 build_sched_groups(struct sched_domain *sd, int cpu)
5824 {
5825 struct sched_group *first = NULL, *last = NULL;
5826 struct sd_data *sdd = sd->private;
5827 const struct cpumask *span = sched_domain_span(sd);
5828 struct cpumask *covered;
5829 int i;
5830
5831 get_group(cpu, sdd, &sd->groups);
5832 atomic_inc(&sd->groups->ref);
5833
5834 if (cpu != cpumask_first(sched_domain_span(sd)))
5835 return 0;
5836
5837 lockdep_assert_held(&sched_domains_mutex);
5838 covered = sched_domains_tmpmask;
5839
5840 cpumask_clear(covered);
5841
5842 for_each_cpu(i, span) {
5843 struct sched_group *sg;
5844 int group = get_group(i, sdd, &sg);
5845 int j;
5846
5847 if (cpumask_test_cpu(i, covered))
5848 continue;
5849
5850 cpumask_clear(sched_group_cpus(sg));
5851 sg->sgp->power = 0;
5852 cpumask_setall(sched_group_mask(sg));
5853
5854 for_each_cpu(j, span) {
5855 if (get_group(j, sdd, NULL) != group)
5856 continue;
5857
5858 cpumask_set_cpu(j, covered);
5859 cpumask_set_cpu(j, sched_group_cpus(sg));
5860 }
5861
5862 if (!first)
5863 first = sg;
5864 if (last)
5865 last->next = sg;
5866 last = sg;
5867 }
5868 last->next = first;
5869
5870 return 0;
5871 }
5872
5873 /*
5874 * Initialize sched groups cpu_power.
5875 *
5876 * cpu_power indicates the capacity of sched group, which is used while
5877 * distributing the load between different sched groups in a sched domain.
5878 * Typically cpu_power for all the groups in a sched domain will be same unless
5879 * there are asymmetries in the topology. If there are asymmetries, group
5880 * having more cpu_power will pickup more load compared to the group having
5881 * less cpu_power.
5882 */
5883 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5884 {
5885 struct sched_group *sg = sd->groups;
5886
5887 WARN_ON(!sd || !sg);
5888
5889 do {
5890 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5891 sg = sg->next;
5892 } while (sg != sd->groups);
5893
5894 if (cpu != group_balance_cpu(sg))
5895 return;
5896
5897 update_group_power(sd, cpu);
5898 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5899 }
5900
5901 int __weak arch_sd_sibling_asym_packing(void)
5902 {
5903 return 0*SD_ASYM_PACKING;
5904 }
5905
5906 /*
5907 * Initializers for schedule domains
5908 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5909 */
5910
5911 #ifdef CONFIG_SCHED_DEBUG
5912 # define SD_INIT_NAME(sd, type) sd->name = #type
5913 #else
5914 # define SD_INIT_NAME(sd, type) do { } while (0)
5915 #endif
5916
5917 #define SD_INIT_FUNC(type) \
5918 static noinline struct sched_domain * \
5919 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5920 { \
5921 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5922 *sd = SD_##type##_INIT; \
5923 SD_INIT_NAME(sd, type); \
5924 sd->private = &tl->data; \
5925 return sd; \
5926 }
5927
5928 SD_INIT_FUNC(CPU)
5929 #ifdef CONFIG_SCHED_SMT
5930 SD_INIT_FUNC(SIBLING)
5931 #endif
5932 #ifdef CONFIG_SCHED_MC
5933 SD_INIT_FUNC(MC)
5934 #endif
5935 #ifdef CONFIG_SCHED_BOOK
5936 SD_INIT_FUNC(BOOK)
5937 #endif
5938
5939 static int default_relax_domain_level = -1;
5940 int sched_domain_level_max;
5941
5942 static int __init setup_relax_domain_level(char *str)
5943 {
5944 if (kstrtoint(str, 0, &default_relax_domain_level))
5945 pr_warn("Unable to set relax_domain_level\n");
5946
5947 return 1;
5948 }
5949 __setup("relax_domain_level=", setup_relax_domain_level);
5950
5951 static void set_domain_attribute(struct sched_domain *sd,
5952 struct sched_domain_attr *attr)
5953 {
5954 int request;
5955
5956 if (!attr || attr->relax_domain_level < 0) {
5957 if (default_relax_domain_level < 0)
5958 return;
5959 else
5960 request = default_relax_domain_level;
5961 } else
5962 request = attr->relax_domain_level;
5963 if (request < sd->level) {
5964 /* turn off idle balance on this domain */
5965 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5966 } else {
5967 /* turn on idle balance on this domain */
5968 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5969 }
5970 }
5971
5972 static void __sdt_free(const struct cpumask *cpu_map);
5973 static int __sdt_alloc(const struct cpumask *cpu_map);
5974
5975 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5976 const struct cpumask *cpu_map)
5977 {
5978 switch (what) {
5979 case sa_rootdomain:
5980 if (!atomic_read(&d->rd->refcount))
5981 free_rootdomain(&d->rd->rcu); /* fall through */
5982 case sa_sd:
5983 free_percpu(d->sd); /* fall through */
5984 case sa_sd_storage:
5985 __sdt_free(cpu_map); /* fall through */
5986 case sa_none:
5987 break;
5988 }
5989 }
5990
5991 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5992 const struct cpumask *cpu_map)
5993 {
5994 memset(d, 0, sizeof(*d));
5995
5996 if (__sdt_alloc(cpu_map))
5997 return sa_sd_storage;
5998 d->sd = alloc_percpu(struct sched_domain *);
5999 if (!d->sd)
6000 return sa_sd_storage;
6001 d->rd = alloc_rootdomain();
6002 if (!d->rd)
6003 return sa_sd;
6004 return sa_rootdomain;
6005 }
6006
6007 /*
6008 * NULL the sd_data elements we've used to build the sched_domain and
6009 * sched_group structure so that the subsequent __free_domain_allocs()
6010 * will not free the data we're using.
6011 */
6012 static void claim_allocations(int cpu, struct sched_domain *sd)
6013 {
6014 struct sd_data *sdd = sd->private;
6015
6016 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6017 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6018
6019 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6020 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6021
6022 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6023 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6024 }
6025
6026 #ifdef CONFIG_SCHED_SMT
6027 static const struct cpumask *cpu_smt_mask(int cpu)
6028 {
6029 return topology_thread_cpumask(cpu);
6030 }
6031 #endif
6032
6033 /*
6034 * Topology list, bottom-up.
6035 */
6036 static struct sched_domain_topology_level default_topology[] = {
6037 #ifdef CONFIG_SCHED_SMT
6038 { sd_init_SIBLING, cpu_smt_mask, },
6039 #endif
6040 #ifdef CONFIG_SCHED_MC
6041 { sd_init_MC, cpu_coregroup_mask, },
6042 #endif
6043 #ifdef CONFIG_SCHED_BOOK
6044 { sd_init_BOOK, cpu_book_mask, },
6045 #endif
6046 { sd_init_CPU, cpu_cpu_mask, },
6047 { NULL, },
6048 };
6049
6050 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6051
6052 #ifdef CONFIG_NUMA
6053
6054 static int sched_domains_numa_levels;
6055 static int *sched_domains_numa_distance;
6056 static struct cpumask ***sched_domains_numa_masks;
6057 static int sched_domains_curr_level;
6058
6059 static inline int sd_local_flags(int level)
6060 {
6061 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6062 return 0;
6063
6064 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6065 }
6066
6067 static struct sched_domain *
6068 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6069 {
6070 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6071 int level = tl->numa_level;
6072 int sd_weight = cpumask_weight(
6073 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6074
6075 *sd = (struct sched_domain){
6076 .min_interval = sd_weight,
6077 .max_interval = 2*sd_weight,
6078 .busy_factor = 32,
6079 .imbalance_pct = 125,
6080 .cache_nice_tries = 2,
6081 .busy_idx = 3,
6082 .idle_idx = 2,
6083 .newidle_idx = 0,
6084 .wake_idx = 0,
6085 .forkexec_idx = 0,
6086
6087 .flags = 1*SD_LOAD_BALANCE
6088 | 1*SD_BALANCE_NEWIDLE
6089 | 0*SD_BALANCE_EXEC
6090 | 0*SD_BALANCE_FORK
6091 | 0*SD_BALANCE_WAKE
6092 | 0*SD_WAKE_AFFINE
6093 | 0*SD_SHARE_CPUPOWER
6094 | 0*SD_SHARE_PKG_RESOURCES
6095 | 1*SD_SERIALIZE
6096 | 0*SD_PREFER_SIBLING
6097 | sd_local_flags(level)
6098 ,
6099 .last_balance = jiffies,
6100 .balance_interval = sd_weight,
6101 };
6102 SD_INIT_NAME(sd, NUMA);
6103 sd->private = &tl->data;
6104
6105 /*
6106 * Ugly hack to pass state to sd_numa_mask()...
6107 */
6108 sched_domains_curr_level = tl->numa_level;
6109
6110 return sd;
6111 }
6112
6113 static const struct cpumask *sd_numa_mask(int cpu)
6114 {
6115 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6116 }
6117
6118 static void sched_numa_warn(const char *str)
6119 {
6120 static int done = false;
6121 int i,j;
6122
6123 if (done)
6124 return;
6125
6126 done = true;
6127
6128 printk(KERN_WARNING "ERROR: %s\n\n", str);
6129
6130 for (i = 0; i < nr_node_ids; i++) {
6131 printk(KERN_WARNING " ");
6132 for (j = 0; j < nr_node_ids; j++)
6133 printk(KERN_CONT "%02d ", node_distance(i,j));
6134 printk(KERN_CONT "\n");
6135 }
6136 printk(KERN_WARNING "\n");
6137 }
6138
6139 static bool find_numa_distance(int distance)
6140 {
6141 int i;
6142
6143 if (distance == node_distance(0, 0))
6144 return true;
6145
6146 for (i = 0; i < sched_domains_numa_levels; i++) {
6147 if (sched_domains_numa_distance[i] == distance)
6148 return true;
6149 }
6150
6151 return false;
6152 }
6153
6154 static void sched_init_numa(void)
6155 {
6156 int next_distance, curr_distance = node_distance(0, 0);
6157 struct sched_domain_topology_level *tl;
6158 int level = 0;
6159 int i, j, k;
6160
6161 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6162 if (!sched_domains_numa_distance)
6163 return;
6164
6165 /*
6166 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6167 * unique distances in the node_distance() table.
6168 *
6169 * Assumes node_distance(0,j) includes all distances in
6170 * node_distance(i,j) in order to avoid cubic time.
6171 */
6172 next_distance = curr_distance;
6173 for (i = 0; i < nr_node_ids; i++) {
6174 for (j = 0; j < nr_node_ids; j++) {
6175 for (k = 0; k < nr_node_ids; k++) {
6176 int distance = node_distance(i, k);
6177
6178 if (distance > curr_distance &&
6179 (distance < next_distance ||
6180 next_distance == curr_distance))
6181 next_distance = distance;
6182
6183 /*
6184 * While not a strong assumption it would be nice to know
6185 * about cases where if node A is connected to B, B is not
6186 * equally connected to A.
6187 */
6188 if (sched_debug() && node_distance(k, i) != distance)
6189 sched_numa_warn("Node-distance not symmetric");
6190
6191 if (sched_debug() && i && !find_numa_distance(distance))
6192 sched_numa_warn("Node-0 not representative");
6193 }
6194 if (next_distance != curr_distance) {
6195 sched_domains_numa_distance[level++] = next_distance;
6196 sched_domains_numa_levels = level;
6197 curr_distance = next_distance;
6198 } else break;
6199 }
6200
6201 /*
6202 * In case of sched_debug() we verify the above assumption.
6203 */
6204 if (!sched_debug())
6205 break;
6206 }
6207 /*
6208 * 'level' contains the number of unique distances, excluding the
6209 * identity distance node_distance(i,i).
6210 *
6211 * The sched_domains_numa_distance[] array includes the actual distance
6212 * numbers.
6213 */
6214
6215 /*
6216 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6217 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6218 * the array will contain less then 'level' members. This could be
6219 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6220 * in other functions.
6221 *
6222 * We reset it to 'level' at the end of this function.
6223 */
6224 sched_domains_numa_levels = 0;
6225
6226 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6227 if (!sched_domains_numa_masks)
6228 return;
6229
6230 /*
6231 * Now for each level, construct a mask per node which contains all
6232 * cpus of nodes that are that many hops away from us.
6233 */
6234 for (i = 0; i < level; i++) {
6235 sched_domains_numa_masks[i] =
6236 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6237 if (!sched_domains_numa_masks[i])
6238 return;
6239
6240 for (j = 0; j < nr_node_ids; j++) {
6241 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6242 if (!mask)
6243 return;
6244
6245 sched_domains_numa_masks[i][j] = mask;
6246
6247 for (k = 0; k < nr_node_ids; k++) {
6248 if (node_distance(j, k) > sched_domains_numa_distance[i])
6249 continue;
6250
6251 cpumask_or(mask, mask, cpumask_of_node(k));
6252 }
6253 }
6254 }
6255
6256 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6257 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6258 if (!tl)
6259 return;
6260
6261 /*
6262 * Copy the default topology bits..
6263 */
6264 for (i = 0; default_topology[i].init; i++)
6265 tl[i] = default_topology[i];
6266
6267 /*
6268 * .. and append 'j' levels of NUMA goodness.
6269 */
6270 for (j = 0; j < level; i++, j++) {
6271 tl[i] = (struct sched_domain_topology_level){
6272 .init = sd_numa_init,
6273 .mask = sd_numa_mask,
6274 .flags = SDTL_OVERLAP,
6275 .numa_level = j,
6276 };
6277 }
6278
6279 sched_domain_topology = tl;
6280
6281 sched_domains_numa_levels = level;
6282 }
6283
6284 static void sched_domains_numa_masks_set(int cpu)
6285 {
6286 int i, j;
6287 int node = cpu_to_node(cpu);
6288
6289 for (i = 0; i < sched_domains_numa_levels; i++) {
6290 for (j = 0; j < nr_node_ids; j++) {
6291 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6292 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6293 }
6294 }
6295 }
6296
6297 static void sched_domains_numa_masks_clear(int cpu)
6298 {
6299 int i, j;
6300 for (i = 0; i < sched_domains_numa_levels; i++) {
6301 for (j = 0; j < nr_node_ids; j++)
6302 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6303 }
6304 }
6305
6306 /*
6307 * Update sched_domains_numa_masks[level][node] array when new cpus
6308 * are onlined.
6309 */
6310 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6311 unsigned long action,
6312 void *hcpu)
6313 {
6314 int cpu = (long)hcpu;
6315
6316 switch (action & ~CPU_TASKS_FROZEN) {
6317 case CPU_ONLINE:
6318 sched_domains_numa_masks_set(cpu);
6319 break;
6320
6321 case CPU_DEAD:
6322 sched_domains_numa_masks_clear(cpu);
6323 break;
6324
6325 default:
6326 return NOTIFY_DONE;
6327 }
6328
6329 return NOTIFY_OK;
6330 }
6331 #else
6332 static inline void sched_init_numa(void)
6333 {
6334 }
6335
6336 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6337 unsigned long action,
6338 void *hcpu)
6339 {
6340 return 0;
6341 }
6342 #endif /* CONFIG_NUMA */
6343
6344 static int __sdt_alloc(const struct cpumask *cpu_map)
6345 {
6346 struct sched_domain_topology_level *tl;
6347 int j;
6348
6349 for (tl = sched_domain_topology; tl->init; tl++) {
6350 struct sd_data *sdd = &tl->data;
6351
6352 sdd->sd = alloc_percpu(struct sched_domain *);
6353 if (!sdd->sd)
6354 return -ENOMEM;
6355
6356 sdd->sg = alloc_percpu(struct sched_group *);
6357 if (!sdd->sg)
6358 return -ENOMEM;
6359
6360 sdd->sgp = alloc_percpu(struct sched_group_power *);
6361 if (!sdd->sgp)
6362 return -ENOMEM;
6363
6364 for_each_cpu(j, cpu_map) {
6365 struct sched_domain *sd;
6366 struct sched_group *sg;
6367 struct sched_group_power *sgp;
6368
6369 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6370 GFP_KERNEL, cpu_to_node(j));
6371 if (!sd)
6372 return -ENOMEM;
6373
6374 *per_cpu_ptr(sdd->sd, j) = sd;
6375
6376 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6377 GFP_KERNEL, cpu_to_node(j));
6378 if (!sg)
6379 return -ENOMEM;
6380
6381 sg->next = sg;
6382
6383 *per_cpu_ptr(sdd->sg, j) = sg;
6384
6385 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6386 GFP_KERNEL, cpu_to_node(j));
6387 if (!sgp)
6388 return -ENOMEM;
6389
6390 *per_cpu_ptr(sdd->sgp, j) = sgp;
6391 }
6392 }
6393
6394 return 0;
6395 }
6396
6397 static void __sdt_free(const struct cpumask *cpu_map)
6398 {
6399 struct sched_domain_topology_level *tl;
6400 int j;
6401
6402 for (tl = sched_domain_topology; tl->init; tl++) {
6403 struct sd_data *sdd = &tl->data;
6404
6405 for_each_cpu(j, cpu_map) {
6406 struct sched_domain *sd;
6407
6408 if (sdd->sd) {
6409 sd = *per_cpu_ptr(sdd->sd, j);
6410 if (sd && (sd->flags & SD_OVERLAP))
6411 free_sched_groups(sd->groups, 0);
6412 kfree(*per_cpu_ptr(sdd->sd, j));
6413 }
6414
6415 if (sdd->sg)
6416 kfree(*per_cpu_ptr(sdd->sg, j));
6417 if (sdd->sgp)
6418 kfree(*per_cpu_ptr(sdd->sgp, j));
6419 }
6420 free_percpu(sdd->sd);
6421 sdd->sd = NULL;
6422 free_percpu(sdd->sg);
6423 sdd->sg = NULL;
6424 free_percpu(sdd->sgp);
6425 sdd->sgp = NULL;
6426 }
6427 }
6428
6429 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6430 struct s_data *d, const struct cpumask *cpu_map,
6431 struct sched_domain_attr *attr, struct sched_domain *child,
6432 int cpu)
6433 {
6434 struct sched_domain *sd = tl->init(tl, cpu);
6435 if (!sd)
6436 return child;
6437
6438 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6439 if (child) {
6440 sd->level = child->level + 1;
6441 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6442 child->parent = sd;
6443 }
6444 sd->child = child;
6445 set_domain_attribute(sd, attr);
6446
6447 return sd;
6448 }
6449
6450 /*
6451 * Build sched domains for a given set of cpus and attach the sched domains
6452 * to the individual cpus
6453 */
6454 static int build_sched_domains(const struct cpumask *cpu_map,
6455 struct sched_domain_attr *attr)
6456 {
6457 enum s_alloc alloc_state = sa_none;
6458 struct sched_domain *sd;
6459 struct s_data d;
6460 int i, ret = -ENOMEM;
6461
6462 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6463 if (alloc_state != sa_rootdomain)
6464 goto error;
6465
6466 /* Set up domains for cpus specified by the cpu_map. */
6467 for_each_cpu(i, cpu_map) {
6468 struct sched_domain_topology_level *tl;
6469
6470 sd = NULL;
6471 for (tl = sched_domain_topology; tl->init; tl++) {
6472 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6473 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6474 sd->flags |= SD_OVERLAP;
6475 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6476 break;
6477 }
6478
6479 while (sd->child)
6480 sd = sd->child;
6481
6482 *per_cpu_ptr(d.sd, i) = sd;
6483 }
6484
6485 /* Build the groups for the domains */
6486 for_each_cpu(i, cpu_map) {
6487 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6488 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6489 if (sd->flags & SD_OVERLAP) {
6490 if (build_overlap_sched_groups(sd, i))
6491 goto error;
6492 } else {
6493 if (build_sched_groups(sd, i))
6494 goto error;
6495 }
6496 }
6497 }
6498
6499 /* Calculate CPU power for physical packages and nodes */
6500 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6501 if (!cpumask_test_cpu(i, cpu_map))
6502 continue;
6503
6504 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6505 claim_allocations(i, sd);
6506 init_sched_groups_power(i, sd);
6507 }
6508 }
6509
6510 /* Attach the domains */
6511 rcu_read_lock();
6512 for_each_cpu(i, cpu_map) {
6513 sd = *per_cpu_ptr(d.sd, i);
6514 cpu_attach_domain(sd, d.rd, i);
6515 }
6516 rcu_read_unlock();
6517
6518 ret = 0;
6519 error:
6520 __free_domain_allocs(&d, alloc_state, cpu_map);
6521 return ret;
6522 }
6523
6524 static cpumask_var_t *doms_cur; /* current sched domains */
6525 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6526 static struct sched_domain_attr *dattr_cur;
6527 /* attribues of custom domains in 'doms_cur' */
6528
6529 /*
6530 * Special case: If a kmalloc of a doms_cur partition (array of
6531 * cpumask) fails, then fallback to a single sched domain,
6532 * as determined by the single cpumask fallback_doms.
6533 */
6534 static cpumask_var_t fallback_doms;
6535
6536 /*
6537 * arch_update_cpu_topology lets virtualized architectures update the
6538 * cpu core maps. It is supposed to return 1 if the topology changed
6539 * or 0 if it stayed the same.
6540 */
6541 int __attribute__((weak)) arch_update_cpu_topology(void)
6542 {
6543 return 0;
6544 }
6545
6546 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6547 {
6548 int i;
6549 cpumask_var_t *doms;
6550
6551 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6552 if (!doms)
6553 return NULL;
6554 for (i = 0; i < ndoms; i++) {
6555 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6556 free_sched_domains(doms, i);
6557 return NULL;
6558 }
6559 }
6560 return doms;
6561 }
6562
6563 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6564 {
6565 unsigned int i;
6566 for (i = 0; i < ndoms; i++)
6567 free_cpumask_var(doms[i]);
6568 kfree(doms);
6569 }
6570
6571 /*
6572 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6573 * For now this just excludes isolated cpus, but could be used to
6574 * exclude other special cases in the future.
6575 */
6576 static int init_sched_domains(const struct cpumask *cpu_map)
6577 {
6578 int err;
6579
6580 arch_update_cpu_topology();
6581 ndoms_cur = 1;
6582 doms_cur = alloc_sched_domains(ndoms_cur);
6583 if (!doms_cur)
6584 doms_cur = &fallback_doms;
6585 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6586 err = build_sched_domains(doms_cur[0], NULL);
6587 register_sched_domain_sysctl();
6588
6589 return err;
6590 }
6591
6592 /*
6593 * Detach sched domains from a group of cpus specified in cpu_map
6594 * These cpus will now be attached to the NULL domain
6595 */
6596 static void detach_destroy_domains(const struct cpumask *cpu_map)
6597 {
6598 int i;
6599
6600 rcu_read_lock();
6601 for_each_cpu(i, cpu_map)
6602 cpu_attach_domain(NULL, &def_root_domain, i);
6603 rcu_read_unlock();
6604 }
6605
6606 /* handle null as "default" */
6607 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6608 struct sched_domain_attr *new, int idx_new)
6609 {
6610 struct sched_domain_attr tmp;
6611
6612 /* fast path */
6613 if (!new && !cur)
6614 return 1;
6615
6616 tmp = SD_ATTR_INIT;
6617 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6618 new ? (new + idx_new) : &tmp,
6619 sizeof(struct sched_domain_attr));
6620 }
6621
6622 /*
6623 * Partition sched domains as specified by the 'ndoms_new'
6624 * cpumasks in the array doms_new[] of cpumasks. This compares
6625 * doms_new[] to the current sched domain partitioning, doms_cur[].
6626 * It destroys each deleted domain and builds each new domain.
6627 *
6628 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6629 * The masks don't intersect (don't overlap.) We should setup one
6630 * sched domain for each mask. CPUs not in any of the cpumasks will
6631 * not be load balanced. If the same cpumask appears both in the
6632 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6633 * it as it is.
6634 *
6635 * The passed in 'doms_new' should be allocated using
6636 * alloc_sched_domains. This routine takes ownership of it and will
6637 * free_sched_domains it when done with it. If the caller failed the
6638 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6639 * and partition_sched_domains() will fallback to the single partition
6640 * 'fallback_doms', it also forces the domains to be rebuilt.
6641 *
6642 * If doms_new == NULL it will be replaced with cpu_online_mask.
6643 * ndoms_new == 0 is a special case for destroying existing domains,
6644 * and it will not create the default domain.
6645 *
6646 * Call with hotplug lock held
6647 */
6648 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6649 struct sched_domain_attr *dattr_new)
6650 {
6651 int i, j, n;
6652 int new_topology;
6653
6654 mutex_lock(&sched_domains_mutex);
6655
6656 /* always unregister in case we don't destroy any domains */
6657 unregister_sched_domain_sysctl();
6658
6659 /* Let architecture update cpu core mappings. */
6660 new_topology = arch_update_cpu_topology();
6661
6662 n = doms_new ? ndoms_new : 0;
6663
6664 /* Destroy deleted domains */
6665 for (i = 0; i < ndoms_cur; i++) {
6666 for (j = 0; j < n && !new_topology; j++) {
6667 if (cpumask_equal(doms_cur[i], doms_new[j])
6668 && dattrs_equal(dattr_cur, i, dattr_new, j))
6669 goto match1;
6670 }
6671 /* no match - a current sched domain not in new doms_new[] */
6672 detach_destroy_domains(doms_cur[i]);
6673 match1:
6674 ;
6675 }
6676
6677 if (doms_new == NULL) {
6678 ndoms_cur = 0;
6679 doms_new = &fallback_doms;
6680 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6681 WARN_ON_ONCE(dattr_new);
6682 }
6683
6684 /* Build new domains */
6685 for (i = 0; i < ndoms_new; i++) {
6686 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6687 if (cpumask_equal(doms_new[i], doms_cur[j])
6688 && dattrs_equal(dattr_new, i, dattr_cur, j))
6689 goto match2;
6690 }
6691 /* no match - add a new doms_new */
6692 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6693 match2:
6694 ;
6695 }
6696
6697 /* Remember the new sched domains */
6698 if (doms_cur != &fallback_doms)
6699 free_sched_domains(doms_cur, ndoms_cur);
6700 kfree(dattr_cur); /* kfree(NULL) is safe */
6701 doms_cur = doms_new;
6702 dattr_cur = dattr_new;
6703 ndoms_cur = ndoms_new;
6704
6705 register_sched_domain_sysctl();
6706
6707 mutex_unlock(&sched_domains_mutex);
6708 }
6709
6710 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6711
6712 /*
6713 * Update cpusets according to cpu_active mask. If cpusets are
6714 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6715 * around partition_sched_domains().
6716 *
6717 * If we come here as part of a suspend/resume, don't touch cpusets because we
6718 * want to restore it back to its original state upon resume anyway.
6719 */
6720 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6721 void *hcpu)
6722 {
6723 switch (action) {
6724 case CPU_ONLINE_FROZEN:
6725 case CPU_DOWN_FAILED_FROZEN:
6726
6727 /*
6728 * num_cpus_frozen tracks how many CPUs are involved in suspend
6729 * resume sequence. As long as this is not the last online
6730 * operation in the resume sequence, just build a single sched
6731 * domain, ignoring cpusets.
6732 */
6733 num_cpus_frozen--;
6734 if (likely(num_cpus_frozen)) {
6735 partition_sched_domains(1, NULL, NULL);
6736 break;
6737 }
6738
6739 /*
6740 * This is the last CPU online operation. So fall through and
6741 * restore the original sched domains by considering the
6742 * cpuset configurations.
6743 */
6744
6745 case CPU_ONLINE:
6746 case CPU_DOWN_FAILED:
6747 cpuset_update_active_cpus(true);
6748 break;
6749 default:
6750 return NOTIFY_DONE;
6751 }
6752 return NOTIFY_OK;
6753 }
6754
6755 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6756 void *hcpu)
6757 {
6758 switch (action) {
6759 case CPU_DOWN_PREPARE:
6760 cpuset_update_active_cpus(false);
6761 break;
6762 case CPU_DOWN_PREPARE_FROZEN:
6763 num_cpus_frozen++;
6764 partition_sched_domains(1, NULL, NULL);
6765 break;
6766 default:
6767 return NOTIFY_DONE;
6768 }
6769 return NOTIFY_OK;
6770 }
6771
6772 void __init sched_init_smp(void)
6773 {
6774 cpumask_var_t non_isolated_cpus;
6775
6776 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6777 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6778
6779 sched_init_numa();
6780
6781 get_online_cpus();
6782 mutex_lock(&sched_domains_mutex);
6783 init_sched_domains(cpu_active_mask);
6784 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6785 if (cpumask_empty(non_isolated_cpus))
6786 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6787 mutex_unlock(&sched_domains_mutex);
6788 put_online_cpus();
6789
6790 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6791 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6792 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6793
6794 /* RT runtime code needs to handle some hotplug events */
6795 hotcpu_notifier(update_runtime, 0);
6796
6797 init_hrtick();
6798
6799 /* Move init over to a non-isolated CPU */
6800 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6801 BUG();
6802 sched_init_granularity();
6803 free_cpumask_var(non_isolated_cpus);
6804
6805 init_sched_rt_class();
6806 }
6807 #else
6808 void __init sched_init_smp(void)
6809 {
6810 sched_init_granularity();
6811 }
6812 #endif /* CONFIG_SMP */
6813
6814 const_debug unsigned int sysctl_timer_migration = 1;
6815
6816 int in_sched_functions(unsigned long addr)
6817 {
6818 return in_lock_functions(addr) ||
6819 (addr >= (unsigned long)__sched_text_start
6820 && addr < (unsigned long)__sched_text_end);
6821 }
6822
6823 #ifdef CONFIG_CGROUP_SCHED
6824 /*
6825 * Default task group.
6826 * Every task in system belongs to this group at bootup.
6827 */
6828 struct task_group root_task_group;
6829 LIST_HEAD(task_groups);
6830 #endif
6831
6832 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6833
6834 void __init sched_init(void)
6835 {
6836 int i, j;
6837 unsigned long alloc_size = 0, ptr;
6838
6839 #ifdef CONFIG_FAIR_GROUP_SCHED
6840 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6841 #endif
6842 #ifdef CONFIG_RT_GROUP_SCHED
6843 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6844 #endif
6845 #ifdef CONFIG_CPUMASK_OFFSTACK
6846 alloc_size += num_possible_cpus() * cpumask_size();
6847 #endif
6848 if (alloc_size) {
6849 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6850
6851 #ifdef CONFIG_FAIR_GROUP_SCHED
6852 root_task_group.se = (struct sched_entity **)ptr;
6853 ptr += nr_cpu_ids * sizeof(void **);
6854
6855 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6856 ptr += nr_cpu_ids * sizeof(void **);
6857
6858 #endif /* CONFIG_FAIR_GROUP_SCHED */
6859 #ifdef CONFIG_RT_GROUP_SCHED
6860 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6861 ptr += nr_cpu_ids * sizeof(void **);
6862
6863 root_task_group.rt_rq = (struct rt_rq **)ptr;
6864 ptr += nr_cpu_ids * sizeof(void **);
6865
6866 #endif /* CONFIG_RT_GROUP_SCHED */
6867 #ifdef CONFIG_CPUMASK_OFFSTACK
6868 for_each_possible_cpu(i) {
6869 per_cpu(load_balance_mask, i) = (void *)ptr;
6870 ptr += cpumask_size();
6871 }
6872 #endif /* CONFIG_CPUMASK_OFFSTACK */
6873 }
6874
6875 #ifdef CONFIG_SMP
6876 init_defrootdomain();
6877 #endif
6878
6879 init_rt_bandwidth(&def_rt_bandwidth,
6880 global_rt_period(), global_rt_runtime());
6881
6882 #ifdef CONFIG_RT_GROUP_SCHED
6883 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6884 global_rt_period(), global_rt_runtime());
6885 #endif /* CONFIG_RT_GROUP_SCHED */
6886
6887 #ifdef CONFIG_CGROUP_SCHED
6888 list_add(&root_task_group.list, &task_groups);
6889 INIT_LIST_HEAD(&root_task_group.children);
6890 INIT_LIST_HEAD(&root_task_group.siblings);
6891 autogroup_init(&init_task);
6892
6893 #endif /* CONFIG_CGROUP_SCHED */
6894
6895 for_each_possible_cpu(i) {
6896 struct rq *rq;
6897
6898 rq = cpu_rq(i);
6899 raw_spin_lock_init(&rq->lock);
6900 rq->nr_running = 0;
6901 rq->calc_load_active = 0;
6902 rq->calc_load_update = jiffies + LOAD_FREQ;
6903 init_cfs_rq(&rq->cfs);
6904 init_rt_rq(&rq->rt, rq);
6905 #ifdef CONFIG_FAIR_GROUP_SCHED
6906 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6907 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6908 /*
6909 * How much cpu bandwidth does root_task_group get?
6910 *
6911 * In case of task-groups formed thr' the cgroup filesystem, it
6912 * gets 100% of the cpu resources in the system. This overall
6913 * system cpu resource is divided among the tasks of
6914 * root_task_group and its child task-groups in a fair manner,
6915 * based on each entity's (task or task-group's) weight
6916 * (se->load.weight).
6917 *
6918 * In other words, if root_task_group has 10 tasks of weight
6919 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6920 * then A0's share of the cpu resource is:
6921 *
6922 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6923 *
6924 * We achieve this by letting root_task_group's tasks sit
6925 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6926 */
6927 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6928 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6929 #endif /* CONFIG_FAIR_GROUP_SCHED */
6930
6931 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6932 #ifdef CONFIG_RT_GROUP_SCHED
6933 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6934 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6935 #endif
6936
6937 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6938 rq->cpu_load[j] = 0;
6939
6940 rq->last_load_update_tick = jiffies;
6941
6942 #ifdef CONFIG_SMP
6943 rq->sd = NULL;
6944 rq->rd = NULL;
6945 rq->cpu_power = SCHED_POWER_SCALE;
6946 rq->post_schedule = 0;
6947 rq->active_balance = 0;
6948 rq->next_balance = jiffies;
6949 rq->push_cpu = 0;
6950 rq->cpu = i;
6951 rq->online = 0;
6952 rq->idle_stamp = 0;
6953 rq->avg_idle = 2*sysctl_sched_migration_cost;
6954
6955 INIT_LIST_HEAD(&rq->cfs_tasks);
6956
6957 rq_attach_root(rq, &def_root_domain);
6958 #ifdef CONFIG_NO_HZ
6959 rq->nohz_flags = 0;
6960 #endif
6961 #endif
6962 init_rq_hrtick(rq);
6963 atomic_set(&rq->nr_iowait, 0);
6964 }
6965
6966 set_load_weight(&init_task);
6967
6968 #ifdef CONFIG_PREEMPT_NOTIFIERS
6969 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6970 #endif
6971
6972 #ifdef CONFIG_RT_MUTEXES
6973 plist_head_init(&init_task.pi_waiters);
6974 #endif
6975
6976 /*
6977 * The boot idle thread does lazy MMU switching as well:
6978 */
6979 atomic_inc(&init_mm.mm_count);
6980 enter_lazy_tlb(&init_mm, current);
6981
6982 /*
6983 * Make us the idle thread. Technically, schedule() should not be
6984 * called from this thread, however somewhere below it might be,
6985 * but because we are the idle thread, we just pick up running again
6986 * when this runqueue becomes "idle".
6987 */
6988 init_idle(current, smp_processor_id());
6989
6990 calc_load_update = jiffies + LOAD_FREQ;
6991
6992 /*
6993 * During early bootup we pretend to be a normal task:
6994 */
6995 current->sched_class = &fair_sched_class;
6996
6997 #ifdef CONFIG_SMP
6998 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6999 /* May be allocated at isolcpus cmdline parse time */
7000 if (cpu_isolated_map == NULL)
7001 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7002 idle_thread_set_boot_cpu();
7003 #endif
7004 init_sched_fair_class();
7005
7006 scheduler_running = 1;
7007 }
7008
7009 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7010 static inline int preempt_count_equals(int preempt_offset)
7011 {
7012 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7013
7014 return (nested == preempt_offset);
7015 }
7016
7017 void __might_sleep(const char *file, int line, int preempt_offset)
7018 {
7019 static unsigned long prev_jiffy; /* ratelimiting */
7020
7021 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7022 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7023 system_state != SYSTEM_RUNNING || oops_in_progress)
7024 return;
7025 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7026 return;
7027 prev_jiffy = jiffies;
7028
7029 printk(KERN_ERR
7030 "BUG: sleeping function called from invalid context at %s:%d\n",
7031 file, line);
7032 printk(KERN_ERR
7033 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7034 in_atomic(), irqs_disabled(),
7035 current->pid, current->comm);
7036
7037 debug_show_held_locks(current);
7038 if (irqs_disabled())
7039 print_irqtrace_events(current);
7040 dump_stack();
7041 }
7042 EXPORT_SYMBOL(__might_sleep);
7043 #endif
7044
7045 #ifdef CONFIG_MAGIC_SYSRQ
7046 static void normalize_task(struct rq *rq, struct task_struct *p)
7047 {
7048 const struct sched_class *prev_class = p->sched_class;
7049 int old_prio = p->prio;
7050 int on_rq;
7051
7052 on_rq = p->on_rq;
7053 if (on_rq)
7054 dequeue_task(rq, p, 0);
7055 __setscheduler(rq, p, SCHED_NORMAL, 0);
7056 if (on_rq) {
7057 enqueue_task(rq, p, 0);
7058 resched_task(rq->curr);
7059 }
7060
7061 check_class_changed(rq, p, prev_class, old_prio);
7062 }
7063
7064 void normalize_rt_tasks(void)
7065 {
7066 struct task_struct *g, *p;
7067 unsigned long flags;
7068 struct rq *rq;
7069
7070 read_lock_irqsave(&tasklist_lock, flags);
7071 do_each_thread(g, p) {
7072 /*
7073 * Only normalize user tasks:
7074 */
7075 if (!p->mm)
7076 continue;
7077
7078 p->se.exec_start = 0;
7079 #ifdef CONFIG_SCHEDSTATS
7080 p->se.statistics.wait_start = 0;
7081 p->se.statistics.sleep_start = 0;
7082 p->se.statistics.block_start = 0;
7083 #endif
7084
7085 if (!rt_task(p)) {
7086 /*
7087 * Renice negative nice level userspace
7088 * tasks back to 0:
7089 */
7090 if (TASK_NICE(p) < 0 && p->mm)
7091 set_user_nice(p, 0);
7092 continue;
7093 }
7094
7095 raw_spin_lock(&p->pi_lock);
7096 rq = __task_rq_lock(p);
7097
7098 normalize_task(rq, p);
7099
7100 __task_rq_unlock(rq);
7101 raw_spin_unlock(&p->pi_lock);
7102 } while_each_thread(g, p);
7103
7104 read_unlock_irqrestore(&tasklist_lock, flags);
7105 }
7106
7107 #endif /* CONFIG_MAGIC_SYSRQ */
7108
7109 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7110 /*
7111 * These functions are only useful for the IA64 MCA handling, or kdb.
7112 *
7113 * They can only be called when the whole system has been
7114 * stopped - every CPU needs to be quiescent, and no scheduling
7115 * activity can take place. Using them for anything else would
7116 * be a serious bug, and as a result, they aren't even visible
7117 * under any other configuration.
7118 */
7119
7120 /**
7121 * curr_task - return the current task for a given cpu.
7122 * @cpu: the processor in question.
7123 *
7124 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7125 */
7126 struct task_struct *curr_task(int cpu)
7127 {
7128 return cpu_curr(cpu);
7129 }
7130
7131 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7132
7133 #ifdef CONFIG_IA64
7134 /**
7135 * set_curr_task - set the current task for a given cpu.
7136 * @cpu: the processor in question.
7137 * @p: the task pointer to set.
7138 *
7139 * Description: This function must only be used when non-maskable interrupts
7140 * are serviced on a separate stack. It allows the architecture to switch the
7141 * notion of the current task on a cpu in a non-blocking manner. This function
7142 * must be called with all CPU's synchronized, and interrupts disabled, the
7143 * and caller must save the original value of the current task (see
7144 * curr_task() above) and restore that value before reenabling interrupts and
7145 * re-starting the system.
7146 *
7147 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7148 */
7149 void set_curr_task(int cpu, struct task_struct *p)
7150 {
7151 cpu_curr(cpu) = p;
7152 }
7153
7154 #endif
7155
7156 #ifdef CONFIG_CGROUP_SCHED
7157 /* task_group_lock serializes the addition/removal of task groups */
7158 static DEFINE_SPINLOCK(task_group_lock);
7159
7160 static void free_sched_group(struct task_group *tg)
7161 {
7162 free_fair_sched_group(tg);
7163 free_rt_sched_group(tg);
7164 autogroup_free(tg);
7165 kfree(tg);
7166 }
7167
7168 /* allocate runqueue etc for a new task group */
7169 struct task_group *sched_create_group(struct task_group *parent)
7170 {
7171 struct task_group *tg;
7172
7173 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7174 if (!tg)
7175 return ERR_PTR(-ENOMEM);
7176
7177 if (!alloc_fair_sched_group(tg, parent))
7178 goto err;
7179
7180 if (!alloc_rt_sched_group(tg, parent))
7181 goto err;
7182
7183 return tg;
7184
7185 err:
7186 free_sched_group(tg);
7187 return ERR_PTR(-ENOMEM);
7188 }
7189
7190 void sched_online_group(struct task_group *tg, struct task_group *parent)
7191 {
7192 unsigned long flags;
7193
7194 spin_lock_irqsave(&task_group_lock, flags);
7195 list_add_rcu(&tg->list, &task_groups);
7196
7197 WARN_ON(!parent); /* root should already exist */
7198
7199 tg->parent = parent;
7200 INIT_LIST_HEAD(&tg->children);
7201 list_add_rcu(&tg->siblings, &parent->children);
7202 spin_unlock_irqrestore(&task_group_lock, flags);
7203 }
7204
7205 /* rcu callback to free various structures associated with a task group */
7206 static void free_sched_group_rcu(struct rcu_head *rhp)
7207 {
7208 /* now it should be safe to free those cfs_rqs */
7209 free_sched_group(container_of(rhp, struct task_group, rcu));
7210 }
7211
7212 /* Destroy runqueue etc associated with a task group */
7213 void sched_destroy_group(struct task_group *tg)
7214 {
7215 /* wait for possible concurrent references to cfs_rqs complete */
7216 call_rcu(&tg->rcu, free_sched_group_rcu);
7217 }
7218
7219 void sched_offline_group(struct task_group *tg)
7220 {
7221 unsigned long flags;
7222 int i;
7223
7224 /* end participation in shares distribution */
7225 for_each_possible_cpu(i)
7226 unregister_fair_sched_group(tg, i);
7227
7228 spin_lock_irqsave(&task_group_lock, flags);
7229 list_del_rcu(&tg->list);
7230 list_del_rcu(&tg->siblings);
7231 spin_unlock_irqrestore(&task_group_lock, flags);
7232 }
7233
7234 /* change task's runqueue when it moves between groups.
7235 * The caller of this function should have put the task in its new group
7236 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7237 * reflect its new group.
7238 */
7239 void sched_move_task(struct task_struct *tsk)
7240 {
7241 struct task_group *tg;
7242 int on_rq, running;
7243 unsigned long flags;
7244 struct rq *rq;
7245
7246 rq = task_rq_lock(tsk, &flags);
7247
7248 running = task_current(rq, tsk);
7249 on_rq = tsk->on_rq;
7250
7251 if (on_rq)
7252 dequeue_task(rq, tsk, 0);
7253 if (unlikely(running))
7254 tsk->sched_class->put_prev_task(rq, tsk);
7255
7256 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7257 lockdep_is_held(&tsk->sighand->siglock)),
7258 struct task_group, css);
7259 tg = autogroup_task_group(tsk, tg);
7260 tsk->sched_task_group = tg;
7261
7262 #ifdef CONFIG_FAIR_GROUP_SCHED
7263 if (tsk->sched_class->task_move_group)
7264 tsk->sched_class->task_move_group(tsk, on_rq);
7265 else
7266 #endif
7267 set_task_rq(tsk, task_cpu(tsk));
7268
7269 if (unlikely(running))
7270 tsk->sched_class->set_curr_task(rq);
7271 if (on_rq)
7272 enqueue_task(rq, tsk, 0);
7273
7274 task_rq_unlock(rq, tsk, &flags);
7275 }
7276 #endif /* CONFIG_CGROUP_SCHED */
7277
7278 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7279 static unsigned long to_ratio(u64 period, u64 runtime)
7280 {
7281 if (runtime == RUNTIME_INF)
7282 return 1ULL << 20;
7283
7284 return div64_u64(runtime << 20, period);
7285 }
7286 #endif
7287
7288 #ifdef CONFIG_RT_GROUP_SCHED
7289 /*
7290 * Ensure that the real time constraints are schedulable.
7291 */
7292 static DEFINE_MUTEX(rt_constraints_mutex);
7293
7294 /* Must be called with tasklist_lock held */
7295 static inline int tg_has_rt_tasks(struct task_group *tg)
7296 {
7297 struct task_struct *g, *p;
7298
7299 do_each_thread(g, p) {
7300 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7301 return 1;
7302 } while_each_thread(g, p);
7303
7304 return 0;
7305 }
7306
7307 struct rt_schedulable_data {
7308 struct task_group *tg;
7309 u64 rt_period;
7310 u64 rt_runtime;
7311 };
7312
7313 static int tg_rt_schedulable(struct task_group *tg, void *data)
7314 {
7315 struct rt_schedulable_data *d = data;
7316 struct task_group *child;
7317 unsigned long total, sum = 0;
7318 u64 period, runtime;
7319
7320 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7321 runtime = tg->rt_bandwidth.rt_runtime;
7322
7323 if (tg == d->tg) {
7324 period = d->rt_period;
7325 runtime = d->rt_runtime;
7326 }
7327
7328 /*
7329 * Cannot have more runtime than the period.
7330 */
7331 if (runtime > period && runtime != RUNTIME_INF)
7332 return -EINVAL;
7333
7334 /*
7335 * Ensure we don't starve existing RT tasks.
7336 */
7337 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7338 return -EBUSY;
7339
7340 total = to_ratio(period, runtime);
7341
7342 /*
7343 * Nobody can have more than the global setting allows.
7344 */
7345 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7346 return -EINVAL;
7347
7348 /*
7349 * The sum of our children's runtime should not exceed our own.
7350 */
7351 list_for_each_entry_rcu(child, &tg->children, siblings) {
7352 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7353 runtime = child->rt_bandwidth.rt_runtime;
7354
7355 if (child == d->tg) {
7356 period = d->rt_period;
7357 runtime = d->rt_runtime;
7358 }
7359
7360 sum += to_ratio(period, runtime);
7361 }
7362
7363 if (sum > total)
7364 return -EINVAL;
7365
7366 return 0;
7367 }
7368
7369 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7370 {
7371 int ret;
7372
7373 struct rt_schedulable_data data = {
7374 .tg = tg,
7375 .rt_period = period,
7376 .rt_runtime = runtime,
7377 };
7378
7379 rcu_read_lock();
7380 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7381 rcu_read_unlock();
7382
7383 return ret;
7384 }
7385
7386 static int tg_set_rt_bandwidth(struct task_group *tg,
7387 u64 rt_period, u64 rt_runtime)
7388 {
7389 int i, err = 0;
7390
7391 mutex_lock(&rt_constraints_mutex);
7392 read_lock(&tasklist_lock);
7393 err = __rt_schedulable(tg, rt_period, rt_runtime);
7394 if (err)
7395 goto unlock;
7396
7397 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7398 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7399 tg->rt_bandwidth.rt_runtime = rt_runtime;
7400
7401 for_each_possible_cpu(i) {
7402 struct rt_rq *rt_rq = tg->rt_rq[i];
7403
7404 raw_spin_lock(&rt_rq->rt_runtime_lock);
7405 rt_rq->rt_runtime = rt_runtime;
7406 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7407 }
7408 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7409 unlock:
7410 read_unlock(&tasklist_lock);
7411 mutex_unlock(&rt_constraints_mutex);
7412
7413 return err;
7414 }
7415
7416 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7417 {
7418 u64 rt_runtime, rt_period;
7419
7420 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7421 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7422 if (rt_runtime_us < 0)
7423 rt_runtime = RUNTIME_INF;
7424
7425 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7426 }
7427
7428 static long sched_group_rt_runtime(struct task_group *tg)
7429 {
7430 u64 rt_runtime_us;
7431
7432 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7433 return -1;
7434
7435 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7436 do_div(rt_runtime_us, NSEC_PER_USEC);
7437 return rt_runtime_us;
7438 }
7439
7440 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7441 {
7442 u64 rt_runtime, rt_period;
7443
7444 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7445 rt_runtime = tg->rt_bandwidth.rt_runtime;
7446
7447 if (rt_period == 0)
7448 return -EINVAL;
7449
7450 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7451 }
7452
7453 static long sched_group_rt_period(struct task_group *tg)
7454 {
7455 u64 rt_period_us;
7456
7457 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7458 do_div(rt_period_us, NSEC_PER_USEC);
7459 return rt_period_us;
7460 }
7461
7462 static int sched_rt_global_constraints(void)
7463 {
7464 u64 runtime, period;
7465 int ret = 0;
7466
7467 if (sysctl_sched_rt_period <= 0)
7468 return -EINVAL;
7469
7470 runtime = global_rt_runtime();
7471 period = global_rt_period();
7472
7473 /*
7474 * Sanity check on the sysctl variables.
7475 */
7476 if (runtime > period && runtime != RUNTIME_INF)
7477 return -EINVAL;
7478
7479 mutex_lock(&rt_constraints_mutex);
7480 read_lock(&tasklist_lock);
7481 ret = __rt_schedulable(NULL, 0, 0);
7482 read_unlock(&tasklist_lock);
7483 mutex_unlock(&rt_constraints_mutex);
7484
7485 return ret;
7486 }
7487
7488 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7489 {
7490 /* Don't accept realtime tasks when there is no way for them to run */
7491 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7492 return 0;
7493
7494 return 1;
7495 }
7496
7497 #else /* !CONFIG_RT_GROUP_SCHED */
7498 static int sched_rt_global_constraints(void)
7499 {
7500 unsigned long flags;
7501 int i;
7502
7503 if (sysctl_sched_rt_period <= 0)
7504 return -EINVAL;
7505
7506 /*
7507 * There's always some RT tasks in the root group
7508 * -- migration, kstopmachine etc..
7509 */
7510 if (sysctl_sched_rt_runtime == 0)
7511 return -EBUSY;
7512
7513 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7514 for_each_possible_cpu(i) {
7515 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7516
7517 raw_spin_lock(&rt_rq->rt_runtime_lock);
7518 rt_rq->rt_runtime = global_rt_runtime();
7519 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7520 }
7521 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7522
7523 return 0;
7524 }
7525 #endif /* CONFIG_RT_GROUP_SCHED */
7526
7527 int sched_rr_handler(struct ctl_table *table, int write,
7528 void __user *buffer, size_t *lenp,
7529 loff_t *ppos)
7530 {
7531 int ret;
7532 static DEFINE_MUTEX(mutex);
7533
7534 mutex_lock(&mutex);
7535 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7536 /* make sure that internally we keep jiffies */
7537 /* also, writing zero resets timeslice to default */
7538 if (!ret && write) {
7539 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7540 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7541 }
7542 mutex_unlock(&mutex);
7543 return ret;
7544 }
7545
7546 int sched_rt_handler(struct ctl_table *table, int write,
7547 void __user *buffer, size_t *lenp,
7548 loff_t *ppos)
7549 {
7550 int ret;
7551 int old_period, old_runtime;
7552 static DEFINE_MUTEX(mutex);
7553
7554 mutex_lock(&mutex);
7555 old_period = sysctl_sched_rt_period;
7556 old_runtime = sysctl_sched_rt_runtime;
7557
7558 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7559
7560 if (!ret && write) {
7561 ret = sched_rt_global_constraints();
7562 if (ret) {
7563 sysctl_sched_rt_period = old_period;
7564 sysctl_sched_rt_runtime = old_runtime;
7565 } else {
7566 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7567 def_rt_bandwidth.rt_period =
7568 ns_to_ktime(global_rt_period());
7569 }
7570 }
7571 mutex_unlock(&mutex);
7572
7573 return ret;
7574 }
7575
7576 #ifdef CONFIG_CGROUP_SCHED
7577
7578 /* return corresponding task_group object of a cgroup */
7579 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7580 {
7581 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7582 struct task_group, css);
7583 }
7584
7585 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7586 {
7587 struct task_group *tg, *parent;
7588
7589 if (!cgrp->parent) {
7590 /* This is early initialization for the top cgroup */
7591 return &root_task_group.css;
7592 }
7593
7594 parent = cgroup_tg(cgrp->parent);
7595 tg = sched_create_group(parent);
7596 if (IS_ERR(tg))
7597 return ERR_PTR(-ENOMEM);
7598
7599 return &tg->css;
7600 }
7601
7602 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7603 {
7604 struct task_group *tg = cgroup_tg(cgrp);
7605 struct task_group *parent;
7606
7607 if (!cgrp->parent)
7608 return 0;
7609
7610 parent = cgroup_tg(cgrp->parent);
7611 sched_online_group(tg, parent);
7612 return 0;
7613 }
7614
7615 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7616 {
7617 struct task_group *tg = cgroup_tg(cgrp);
7618
7619 sched_destroy_group(tg);
7620 }
7621
7622 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7623 {
7624 struct task_group *tg = cgroup_tg(cgrp);
7625
7626 sched_offline_group(tg);
7627 }
7628
7629 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7630 struct cgroup_taskset *tset)
7631 {
7632 struct task_struct *task;
7633
7634 cgroup_taskset_for_each(task, cgrp, tset) {
7635 #ifdef CONFIG_RT_GROUP_SCHED
7636 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7637 return -EINVAL;
7638 #else
7639 /* We don't support RT-tasks being in separate groups */
7640 if (task->sched_class != &fair_sched_class)
7641 return -EINVAL;
7642 #endif
7643 }
7644 return 0;
7645 }
7646
7647 static void cpu_cgroup_attach(struct cgroup *cgrp,
7648 struct cgroup_taskset *tset)
7649 {
7650 struct task_struct *task;
7651
7652 cgroup_taskset_for_each(task, cgrp, tset)
7653 sched_move_task(task);
7654 }
7655
7656 static void
7657 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7658 struct task_struct *task)
7659 {
7660 /*
7661 * cgroup_exit() is called in the copy_process() failure path.
7662 * Ignore this case since the task hasn't ran yet, this avoids
7663 * trying to poke a half freed task state from generic code.
7664 */
7665 if (!(task->flags & PF_EXITING))
7666 return;
7667
7668 sched_move_task(task);
7669 }
7670
7671 #ifdef CONFIG_FAIR_GROUP_SCHED
7672 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7673 u64 shareval)
7674 {
7675 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7676 }
7677
7678 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7679 {
7680 struct task_group *tg = cgroup_tg(cgrp);
7681
7682 return (u64) scale_load_down(tg->shares);
7683 }
7684
7685 #ifdef CONFIG_CFS_BANDWIDTH
7686 static DEFINE_MUTEX(cfs_constraints_mutex);
7687
7688 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7689 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7690
7691 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7692
7693 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7694 {
7695 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7696 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7697
7698 if (tg == &root_task_group)
7699 return -EINVAL;
7700
7701 /*
7702 * Ensure we have at some amount of bandwidth every period. This is
7703 * to prevent reaching a state of large arrears when throttled via
7704 * entity_tick() resulting in prolonged exit starvation.
7705 */
7706 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7707 return -EINVAL;
7708
7709 /*
7710 * Likewise, bound things on the otherside by preventing insane quota
7711 * periods. This also allows us to normalize in computing quota
7712 * feasibility.
7713 */
7714 if (period > max_cfs_quota_period)
7715 return -EINVAL;
7716
7717 mutex_lock(&cfs_constraints_mutex);
7718 ret = __cfs_schedulable(tg, period, quota);
7719 if (ret)
7720 goto out_unlock;
7721
7722 runtime_enabled = quota != RUNTIME_INF;
7723 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7724 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7725 raw_spin_lock_irq(&cfs_b->lock);
7726 cfs_b->period = ns_to_ktime(period);
7727 cfs_b->quota = quota;
7728
7729 __refill_cfs_bandwidth_runtime(cfs_b);
7730 /* restart the period timer (if active) to handle new period expiry */
7731 if (runtime_enabled && cfs_b->timer_active) {
7732 /* force a reprogram */
7733 cfs_b->timer_active = 0;
7734 __start_cfs_bandwidth(cfs_b);
7735 }
7736 raw_spin_unlock_irq(&cfs_b->lock);
7737
7738 for_each_possible_cpu(i) {
7739 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7740 struct rq *rq = cfs_rq->rq;
7741
7742 raw_spin_lock_irq(&rq->lock);
7743 cfs_rq->runtime_enabled = runtime_enabled;
7744 cfs_rq->runtime_remaining = 0;
7745
7746 if (cfs_rq->throttled)
7747 unthrottle_cfs_rq(cfs_rq);
7748 raw_spin_unlock_irq(&rq->lock);
7749 }
7750 out_unlock:
7751 mutex_unlock(&cfs_constraints_mutex);
7752
7753 return ret;
7754 }
7755
7756 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7757 {
7758 u64 quota, period;
7759
7760 period = ktime_to_ns(tg->cfs_bandwidth.period);
7761 if (cfs_quota_us < 0)
7762 quota = RUNTIME_INF;
7763 else
7764 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7765
7766 return tg_set_cfs_bandwidth(tg, period, quota);
7767 }
7768
7769 long tg_get_cfs_quota(struct task_group *tg)
7770 {
7771 u64 quota_us;
7772
7773 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7774 return -1;
7775
7776 quota_us = tg->cfs_bandwidth.quota;
7777 do_div(quota_us, NSEC_PER_USEC);
7778
7779 return quota_us;
7780 }
7781
7782 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7783 {
7784 u64 quota, period;
7785
7786 period = (u64)cfs_period_us * NSEC_PER_USEC;
7787 quota = tg->cfs_bandwidth.quota;
7788
7789 return tg_set_cfs_bandwidth(tg, period, quota);
7790 }
7791
7792 long tg_get_cfs_period(struct task_group *tg)
7793 {
7794 u64 cfs_period_us;
7795
7796 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7797 do_div(cfs_period_us, NSEC_PER_USEC);
7798
7799 return cfs_period_us;
7800 }
7801
7802 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7803 {
7804 return tg_get_cfs_quota(cgroup_tg(cgrp));
7805 }
7806
7807 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7808 s64 cfs_quota_us)
7809 {
7810 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7811 }
7812
7813 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7814 {
7815 return tg_get_cfs_period(cgroup_tg(cgrp));
7816 }
7817
7818 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7819 u64 cfs_period_us)
7820 {
7821 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7822 }
7823
7824 struct cfs_schedulable_data {
7825 struct task_group *tg;
7826 u64 period, quota;
7827 };
7828
7829 /*
7830 * normalize group quota/period to be quota/max_period
7831 * note: units are usecs
7832 */
7833 static u64 normalize_cfs_quota(struct task_group *tg,
7834 struct cfs_schedulable_data *d)
7835 {
7836 u64 quota, period;
7837
7838 if (tg == d->tg) {
7839 period = d->period;
7840 quota = d->quota;
7841 } else {
7842 period = tg_get_cfs_period(tg);
7843 quota = tg_get_cfs_quota(tg);
7844 }
7845
7846 /* note: these should typically be equivalent */
7847 if (quota == RUNTIME_INF || quota == -1)
7848 return RUNTIME_INF;
7849
7850 return to_ratio(period, quota);
7851 }
7852
7853 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7854 {
7855 struct cfs_schedulable_data *d = data;
7856 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7857 s64 quota = 0, parent_quota = -1;
7858
7859 if (!tg->parent) {
7860 quota = RUNTIME_INF;
7861 } else {
7862 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7863
7864 quota = normalize_cfs_quota(tg, d);
7865 parent_quota = parent_b->hierarchal_quota;
7866
7867 /*
7868 * ensure max(child_quota) <= parent_quota, inherit when no
7869 * limit is set
7870 */
7871 if (quota == RUNTIME_INF)
7872 quota = parent_quota;
7873 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7874 return -EINVAL;
7875 }
7876 cfs_b->hierarchal_quota = quota;
7877
7878 return 0;
7879 }
7880
7881 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7882 {
7883 int ret;
7884 struct cfs_schedulable_data data = {
7885 .tg = tg,
7886 .period = period,
7887 .quota = quota,
7888 };
7889
7890 if (quota != RUNTIME_INF) {
7891 do_div(data.period, NSEC_PER_USEC);
7892 do_div(data.quota, NSEC_PER_USEC);
7893 }
7894
7895 rcu_read_lock();
7896 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7897 rcu_read_unlock();
7898
7899 return ret;
7900 }
7901
7902 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7903 struct cgroup_map_cb *cb)
7904 {
7905 struct task_group *tg = cgroup_tg(cgrp);
7906 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7907
7908 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7909 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7910 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7911
7912 return 0;
7913 }
7914 #endif /* CONFIG_CFS_BANDWIDTH */
7915 #endif /* CONFIG_FAIR_GROUP_SCHED */
7916
7917 #ifdef CONFIG_RT_GROUP_SCHED
7918 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7919 s64 val)
7920 {
7921 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7922 }
7923
7924 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7925 {
7926 return sched_group_rt_runtime(cgroup_tg(cgrp));
7927 }
7928
7929 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7930 u64 rt_period_us)
7931 {
7932 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7933 }
7934
7935 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7936 {
7937 return sched_group_rt_period(cgroup_tg(cgrp));
7938 }
7939 #endif /* CONFIG_RT_GROUP_SCHED */
7940
7941 static struct cftype cpu_files[] = {
7942 #ifdef CONFIG_FAIR_GROUP_SCHED
7943 {
7944 .name = "shares",
7945 .read_u64 = cpu_shares_read_u64,
7946 .write_u64 = cpu_shares_write_u64,
7947 },
7948 #endif
7949 #ifdef CONFIG_CFS_BANDWIDTH
7950 {
7951 .name = "cfs_quota_us",
7952 .read_s64 = cpu_cfs_quota_read_s64,
7953 .write_s64 = cpu_cfs_quota_write_s64,
7954 },
7955 {
7956 .name = "cfs_period_us",
7957 .read_u64 = cpu_cfs_period_read_u64,
7958 .write_u64 = cpu_cfs_period_write_u64,
7959 },
7960 {
7961 .name = "stat",
7962 .read_map = cpu_stats_show,
7963 },
7964 #endif
7965 #ifdef CONFIG_RT_GROUP_SCHED
7966 {
7967 .name = "rt_runtime_us",
7968 .read_s64 = cpu_rt_runtime_read,
7969 .write_s64 = cpu_rt_runtime_write,
7970 },
7971 {
7972 .name = "rt_period_us",
7973 .read_u64 = cpu_rt_period_read_uint,
7974 .write_u64 = cpu_rt_period_write_uint,
7975 },
7976 #endif
7977 { } /* terminate */
7978 };
7979
7980 struct cgroup_subsys cpu_cgroup_subsys = {
7981 .name = "cpu",
7982 .css_alloc = cpu_cgroup_css_alloc,
7983 .css_free = cpu_cgroup_css_free,
7984 .css_online = cpu_cgroup_css_online,
7985 .css_offline = cpu_cgroup_css_offline,
7986 .can_attach = cpu_cgroup_can_attach,
7987 .attach = cpu_cgroup_attach,
7988 .exit = cpu_cgroup_exit,
7989 .subsys_id = cpu_cgroup_subsys_id,
7990 .base_cftypes = cpu_files,
7991 .early_init = 1,
7992 };
7993
7994 #endif /* CONFIG_CGROUP_SCHED */
7995
7996 void dump_cpu_task(int cpu)
7997 {
7998 pr_info("Task dump for CPU %d:\n", cpu);
7999 sched_show_task(cpu_curr(cpu));
8000 }