nohz: Wake up full dynticks CPUs when a timer gets enqueued
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static bool wake_up_extended_nohz_cpu(int cpu)
621 {
622 if (tick_nohz_extended_cpu(cpu)) {
623 if (cpu != smp_processor_id() ||
624 tick_nohz_tick_stopped())
625 smp_send_reschedule(cpu);
626 return true;
627 }
628
629 return false;
630 }
631
632 void wake_up_nohz_cpu(int cpu)
633 {
634 if (!wake_up_extended_nohz_cpu(cpu))
635 wake_up_idle_cpu(cpu);
636 }
637
638 static inline bool got_nohz_idle_kick(void)
639 {
640 int cpu = smp_processor_id();
641 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
642 }
643
644 #else /* CONFIG_NO_HZ */
645
646 static inline bool got_nohz_idle_kick(void)
647 {
648 return false;
649 }
650
651 #endif /* CONFIG_NO_HZ */
652
653 void sched_avg_update(struct rq *rq)
654 {
655 s64 period = sched_avg_period();
656
657 while ((s64)(rq->clock - rq->age_stamp) > period) {
658 /*
659 * Inline assembly required to prevent the compiler
660 * optimising this loop into a divmod call.
661 * See __iter_div_u64_rem() for another example of this.
662 */
663 asm("" : "+rm" (rq->age_stamp));
664 rq->age_stamp += period;
665 rq->rt_avg /= 2;
666 }
667 }
668
669 #else /* !CONFIG_SMP */
670 void resched_task(struct task_struct *p)
671 {
672 assert_raw_spin_locked(&task_rq(p)->lock);
673 set_tsk_need_resched(p);
674 }
675 #endif /* CONFIG_SMP */
676
677 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
678 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
679 /*
680 * Iterate task_group tree rooted at *from, calling @down when first entering a
681 * node and @up when leaving it for the final time.
682 *
683 * Caller must hold rcu_lock or sufficient equivalent.
684 */
685 int walk_tg_tree_from(struct task_group *from,
686 tg_visitor down, tg_visitor up, void *data)
687 {
688 struct task_group *parent, *child;
689 int ret;
690
691 parent = from;
692
693 down:
694 ret = (*down)(parent, data);
695 if (ret)
696 goto out;
697 list_for_each_entry_rcu(child, &parent->children, siblings) {
698 parent = child;
699 goto down;
700
701 up:
702 continue;
703 }
704 ret = (*up)(parent, data);
705 if (ret || parent == from)
706 goto out;
707
708 child = parent;
709 parent = parent->parent;
710 if (parent)
711 goto up;
712 out:
713 return ret;
714 }
715
716 int tg_nop(struct task_group *tg, void *data)
717 {
718 return 0;
719 }
720 #endif
721
722 static void set_load_weight(struct task_struct *p)
723 {
724 int prio = p->static_prio - MAX_RT_PRIO;
725 struct load_weight *load = &p->se.load;
726
727 /*
728 * SCHED_IDLE tasks get minimal weight:
729 */
730 if (p->policy == SCHED_IDLE) {
731 load->weight = scale_load(WEIGHT_IDLEPRIO);
732 load->inv_weight = WMULT_IDLEPRIO;
733 return;
734 }
735
736 load->weight = scale_load(prio_to_weight[prio]);
737 load->inv_weight = prio_to_wmult[prio];
738 }
739
740 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
741 {
742 update_rq_clock(rq);
743 sched_info_queued(p);
744 p->sched_class->enqueue_task(rq, p, flags);
745 }
746
747 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 update_rq_clock(rq);
750 sched_info_dequeued(p);
751 p->sched_class->dequeue_task(rq, p, flags);
752 }
753
754 void activate_task(struct rq *rq, struct task_struct *p, int flags)
755 {
756 if (task_contributes_to_load(p))
757 rq->nr_uninterruptible--;
758
759 enqueue_task(rq, p, flags);
760 }
761
762 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
763 {
764 if (task_contributes_to_load(p))
765 rq->nr_uninterruptible++;
766
767 dequeue_task(rq, p, flags);
768 }
769
770 static void update_rq_clock_task(struct rq *rq, s64 delta)
771 {
772 /*
773 * In theory, the compile should just see 0 here, and optimize out the call
774 * to sched_rt_avg_update. But I don't trust it...
775 */
776 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
777 s64 steal = 0, irq_delta = 0;
778 #endif
779 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
780 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
781
782 /*
783 * Since irq_time is only updated on {soft,}irq_exit, we might run into
784 * this case when a previous update_rq_clock() happened inside a
785 * {soft,}irq region.
786 *
787 * When this happens, we stop ->clock_task and only update the
788 * prev_irq_time stamp to account for the part that fit, so that a next
789 * update will consume the rest. This ensures ->clock_task is
790 * monotonic.
791 *
792 * It does however cause some slight miss-attribution of {soft,}irq
793 * time, a more accurate solution would be to update the irq_time using
794 * the current rq->clock timestamp, except that would require using
795 * atomic ops.
796 */
797 if (irq_delta > delta)
798 irq_delta = delta;
799
800 rq->prev_irq_time += irq_delta;
801 delta -= irq_delta;
802 #endif
803 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
804 if (static_key_false((&paravirt_steal_rq_enabled))) {
805 u64 st;
806
807 steal = paravirt_steal_clock(cpu_of(rq));
808 steal -= rq->prev_steal_time_rq;
809
810 if (unlikely(steal > delta))
811 steal = delta;
812
813 st = steal_ticks(steal);
814 steal = st * TICK_NSEC;
815
816 rq->prev_steal_time_rq += steal;
817
818 delta -= steal;
819 }
820 #endif
821
822 rq->clock_task += delta;
823
824 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
825 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
826 sched_rt_avg_update(rq, irq_delta + steal);
827 #endif
828 }
829
830 void sched_set_stop_task(int cpu, struct task_struct *stop)
831 {
832 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
833 struct task_struct *old_stop = cpu_rq(cpu)->stop;
834
835 if (stop) {
836 /*
837 * Make it appear like a SCHED_FIFO task, its something
838 * userspace knows about and won't get confused about.
839 *
840 * Also, it will make PI more or less work without too
841 * much confusion -- but then, stop work should not
842 * rely on PI working anyway.
843 */
844 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
845
846 stop->sched_class = &stop_sched_class;
847 }
848
849 cpu_rq(cpu)->stop = stop;
850
851 if (old_stop) {
852 /*
853 * Reset it back to a normal scheduling class so that
854 * it can die in pieces.
855 */
856 old_stop->sched_class = &rt_sched_class;
857 }
858 }
859
860 /*
861 * __normal_prio - return the priority that is based on the static prio
862 */
863 static inline int __normal_prio(struct task_struct *p)
864 {
865 return p->static_prio;
866 }
867
868 /*
869 * Calculate the expected normal priority: i.e. priority
870 * without taking RT-inheritance into account. Might be
871 * boosted by interactivity modifiers. Changes upon fork,
872 * setprio syscalls, and whenever the interactivity
873 * estimator recalculates.
874 */
875 static inline int normal_prio(struct task_struct *p)
876 {
877 int prio;
878
879 if (task_has_rt_policy(p))
880 prio = MAX_RT_PRIO-1 - p->rt_priority;
881 else
882 prio = __normal_prio(p);
883 return prio;
884 }
885
886 /*
887 * Calculate the current priority, i.e. the priority
888 * taken into account by the scheduler. This value might
889 * be boosted by RT tasks, or might be boosted by
890 * interactivity modifiers. Will be RT if the task got
891 * RT-boosted. If not then it returns p->normal_prio.
892 */
893 static int effective_prio(struct task_struct *p)
894 {
895 p->normal_prio = normal_prio(p);
896 /*
897 * If we are RT tasks or we were boosted to RT priority,
898 * keep the priority unchanged. Otherwise, update priority
899 * to the normal priority:
900 */
901 if (!rt_prio(p->prio))
902 return p->normal_prio;
903 return p->prio;
904 }
905
906 /**
907 * task_curr - is this task currently executing on a CPU?
908 * @p: the task in question.
909 */
910 inline int task_curr(const struct task_struct *p)
911 {
912 return cpu_curr(task_cpu(p)) == p;
913 }
914
915 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
916 const struct sched_class *prev_class,
917 int oldprio)
918 {
919 if (prev_class != p->sched_class) {
920 if (prev_class->switched_from)
921 prev_class->switched_from(rq, p);
922 p->sched_class->switched_to(rq, p);
923 } else if (oldprio != p->prio)
924 p->sched_class->prio_changed(rq, p, oldprio);
925 }
926
927 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
928 {
929 const struct sched_class *class;
930
931 if (p->sched_class == rq->curr->sched_class) {
932 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
933 } else {
934 for_each_class(class) {
935 if (class == rq->curr->sched_class)
936 break;
937 if (class == p->sched_class) {
938 resched_task(rq->curr);
939 break;
940 }
941 }
942 }
943
944 /*
945 * A queue event has occurred, and we're going to schedule. In
946 * this case, we can save a useless back to back clock update.
947 */
948 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
949 rq->skip_clock_update = 1;
950 }
951
952 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
953
954 void register_task_migration_notifier(struct notifier_block *n)
955 {
956 atomic_notifier_chain_register(&task_migration_notifier, n);
957 }
958
959 #ifdef CONFIG_SMP
960 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
961 {
962 #ifdef CONFIG_SCHED_DEBUG
963 /*
964 * We should never call set_task_cpu() on a blocked task,
965 * ttwu() will sort out the placement.
966 */
967 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
968 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
969
970 #ifdef CONFIG_LOCKDEP
971 /*
972 * The caller should hold either p->pi_lock or rq->lock, when changing
973 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
974 *
975 * sched_move_task() holds both and thus holding either pins the cgroup,
976 * see task_group().
977 *
978 * Furthermore, all task_rq users should acquire both locks, see
979 * task_rq_lock().
980 */
981 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
982 lockdep_is_held(&task_rq(p)->lock)));
983 #endif
984 #endif
985
986 trace_sched_migrate_task(p, new_cpu);
987
988 if (task_cpu(p) != new_cpu) {
989 struct task_migration_notifier tmn;
990
991 if (p->sched_class->migrate_task_rq)
992 p->sched_class->migrate_task_rq(p, new_cpu);
993 p->se.nr_migrations++;
994 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
995
996 tmn.task = p;
997 tmn.from_cpu = task_cpu(p);
998 tmn.to_cpu = new_cpu;
999
1000 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1001 }
1002
1003 __set_task_cpu(p, new_cpu);
1004 }
1005
1006 struct migration_arg {
1007 struct task_struct *task;
1008 int dest_cpu;
1009 };
1010
1011 static int migration_cpu_stop(void *data);
1012
1013 /*
1014 * wait_task_inactive - wait for a thread to unschedule.
1015 *
1016 * If @match_state is nonzero, it's the @p->state value just checked and
1017 * not expected to change. If it changes, i.e. @p might have woken up,
1018 * then return zero. When we succeed in waiting for @p to be off its CPU,
1019 * we return a positive number (its total switch count). If a second call
1020 * a short while later returns the same number, the caller can be sure that
1021 * @p has remained unscheduled the whole time.
1022 *
1023 * The caller must ensure that the task *will* unschedule sometime soon,
1024 * else this function might spin for a *long* time. This function can't
1025 * be called with interrupts off, or it may introduce deadlock with
1026 * smp_call_function() if an IPI is sent by the same process we are
1027 * waiting to become inactive.
1028 */
1029 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1030 {
1031 unsigned long flags;
1032 int running, on_rq;
1033 unsigned long ncsw;
1034 struct rq *rq;
1035
1036 for (;;) {
1037 /*
1038 * We do the initial early heuristics without holding
1039 * any task-queue locks at all. We'll only try to get
1040 * the runqueue lock when things look like they will
1041 * work out!
1042 */
1043 rq = task_rq(p);
1044
1045 /*
1046 * If the task is actively running on another CPU
1047 * still, just relax and busy-wait without holding
1048 * any locks.
1049 *
1050 * NOTE! Since we don't hold any locks, it's not
1051 * even sure that "rq" stays as the right runqueue!
1052 * But we don't care, since "task_running()" will
1053 * return false if the runqueue has changed and p
1054 * is actually now running somewhere else!
1055 */
1056 while (task_running(rq, p)) {
1057 if (match_state && unlikely(p->state != match_state))
1058 return 0;
1059 cpu_relax();
1060 }
1061
1062 /*
1063 * Ok, time to look more closely! We need the rq
1064 * lock now, to be *sure*. If we're wrong, we'll
1065 * just go back and repeat.
1066 */
1067 rq = task_rq_lock(p, &flags);
1068 trace_sched_wait_task(p);
1069 running = task_running(rq, p);
1070 on_rq = p->on_rq;
1071 ncsw = 0;
1072 if (!match_state || p->state == match_state)
1073 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1074 task_rq_unlock(rq, p, &flags);
1075
1076 /*
1077 * If it changed from the expected state, bail out now.
1078 */
1079 if (unlikely(!ncsw))
1080 break;
1081
1082 /*
1083 * Was it really running after all now that we
1084 * checked with the proper locks actually held?
1085 *
1086 * Oops. Go back and try again..
1087 */
1088 if (unlikely(running)) {
1089 cpu_relax();
1090 continue;
1091 }
1092
1093 /*
1094 * It's not enough that it's not actively running,
1095 * it must be off the runqueue _entirely_, and not
1096 * preempted!
1097 *
1098 * So if it was still runnable (but just not actively
1099 * running right now), it's preempted, and we should
1100 * yield - it could be a while.
1101 */
1102 if (unlikely(on_rq)) {
1103 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1104
1105 set_current_state(TASK_UNINTERRUPTIBLE);
1106 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1107 continue;
1108 }
1109
1110 /*
1111 * Ahh, all good. It wasn't running, and it wasn't
1112 * runnable, which means that it will never become
1113 * running in the future either. We're all done!
1114 */
1115 break;
1116 }
1117
1118 return ncsw;
1119 }
1120
1121 /***
1122 * kick_process - kick a running thread to enter/exit the kernel
1123 * @p: the to-be-kicked thread
1124 *
1125 * Cause a process which is running on another CPU to enter
1126 * kernel-mode, without any delay. (to get signals handled.)
1127 *
1128 * NOTE: this function doesn't have to take the runqueue lock,
1129 * because all it wants to ensure is that the remote task enters
1130 * the kernel. If the IPI races and the task has been migrated
1131 * to another CPU then no harm is done and the purpose has been
1132 * achieved as well.
1133 */
1134 void kick_process(struct task_struct *p)
1135 {
1136 int cpu;
1137
1138 preempt_disable();
1139 cpu = task_cpu(p);
1140 if ((cpu != smp_processor_id()) && task_curr(p))
1141 smp_send_reschedule(cpu);
1142 preempt_enable();
1143 }
1144 EXPORT_SYMBOL_GPL(kick_process);
1145 #endif /* CONFIG_SMP */
1146
1147 #ifdef CONFIG_SMP
1148 /*
1149 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1150 */
1151 static int select_fallback_rq(int cpu, struct task_struct *p)
1152 {
1153 int nid = cpu_to_node(cpu);
1154 const struct cpumask *nodemask = NULL;
1155 enum { cpuset, possible, fail } state = cpuset;
1156 int dest_cpu;
1157
1158 /*
1159 * If the node that the cpu is on has been offlined, cpu_to_node()
1160 * will return -1. There is no cpu on the node, and we should
1161 * select the cpu on the other node.
1162 */
1163 if (nid != -1) {
1164 nodemask = cpumask_of_node(nid);
1165
1166 /* Look for allowed, online CPU in same node. */
1167 for_each_cpu(dest_cpu, nodemask) {
1168 if (!cpu_online(dest_cpu))
1169 continue;
1170 if (!cpu_active(dest_cpu))
1171 continue;
1172 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1173 return dest_cpu;
1174 }
1175 }
1176
1177 for (;;) {
1178 /* Any allowed, online CPU? */
1179 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1180 if (!cpu_online(dest_cpu))
1181 continue;
1182 if (!cpu_active(dest_cpu))
1183 continue;
1184 goto out;
1185 }
1186
1187 switch (state) {
1188 case cpuset:
1189 /* No more Mr. Nice Guy. */
1190 cpuset_cpus_allowed_fallback(p);
1191 state = possible;
1192 break;
1193
1194 case possible:
1195 do_set_cpus_allowed(p, cpu_possible_mask);
1196 state = fail;
1197 break;
1198
1199 case fail:
1200 BUG();
1201 break;
1202 }
1203 }
1204
1205 out:
1206 if (state != cpuset) {
1207 /*
1208 * Don't tell them about moving exiting tasks or
1209 * kernel threads (both mm NULL), since they never
1210 * leave kernel.
1211 */
1212 if (p->mm && printk_ratelimit()) {
1213 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1214 task_pid_nr(p), p->comm, cpu);
1215 }
1216 }
1217
1218 return dest_cpu;
1219 }
1220
1221 /*
1222 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1223 */
1224 static inline
1225 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1226 {
1227 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1228
1229 /*
1230 * In order not to call set_task_cpu() on a blocking task we need
1231 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1232 * cpu.
1233 *
1234 * Since this is common to all placement strategies, this lives here.
1235 *
1236 * [ this allows ->select_task() to simply return task_cpu(p) and
1237 * not worry about this generic constraint ]
1238 */
1239 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1240 !cpu_online(cpu)))
1241 cpu = select_fallback_rq(task_cpu(p), p);
1242
1243 return cpu;
1244 }
1245
1246 static void update_avg(u64 *avg, u64 sample)
1247 {
1248 s64 diff = sample - *avg;
1249 *avg += diff >> 3;
1250 }
1251 #endif
1252
1253 static void
1254 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1255 {
1256 #ifdef CONFIG_SCHEDSTATS
1257 struct rq *rq = this_rq();
1258
1259 #ifdef CONFIG_SMP
1260 int this_cpu = smp_processor_id();
1261
1262 if (cpu == this_cpu) {
1263 schedstat_inc(rq, ttwu_local);
1264 schedstat_inc(p, se.statistics.nr_wakeups_local);
1265 } else {
1266 struct sched_domain *sd;
1267
1268 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1269 rcu_read_lock();
1270 for_each_domain(this_cpu, sd) {
1271 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1272 schedstat_inc(sd, ttwu_wake_remote);
1273 break;
1274 }
1275 }
1276 rcu_read_unlock();
1277 }
1278
1279 if (wake_flags & WF_MIGRATED)
1280 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1281
1282 #endif /* CONFIG_SMP */
1283
1284 schedstat_inc(rq, ttwu_count);
1285 schedstat_inc(p, se.statistics.nr_wakeups);
1286
1287 if (wake_flags & WF_SYNC)
1288 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1289
1290 #endif /* CONFIG_SCHEDSTATS */
1291 }
1292
1293 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1294 {
1295 activate_task(rq, p, en_flags);
1296 p->on_rq = 1;
1297
1298 /* if a worker is waking up, notify workqueue */
1299 if (p->flags & PF_WQ_WORKER)
1300 wq_worker_waking_up(p, cpu_of(rq));
1301 }
1302
1303 /*
1304 * Mark the task runnable and perform wakeup-preemption.
1305 */
1306 static void
1307 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1308 {
1309 check_preempt_curr(rq, p, wake_flags);
1310 trace_sched_wakeup(p, true);
1311
1312 p->state = TASK_RUNNING;
1313 #ifdef CONFIG_SMP
1314 if (p->sched_class->task_woken)
1315 p->sched_class->task_woken(rq, p);
1316
1317 if (rq->idle_stamp) {
1318 u64 delta = rq->clock - rq->idle_stamp;
1319 u64 max = 2*sysctl_sched_migration_cost;
1320
1321 if (delta > max)
1322 rq->avg_idle = max;
1323 else
1324 update_avg(&rq->avg_idle, delta);
1325 rq->idle_stamp = 0;
1326 }
1327 #endif
1328 }
1329
1330 static void
1331 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1332 {
1333 #ifdef CONFIG_SMP
1334 if (p->sched_contributes_to_load)
1335 rq->nr_uninterruptible--;
1336 #endif
1337
1338 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1339 ttwu_do_wakeup(rq, p, wake_flags);
1340 }
1341
1342 /*
1343 * Called in case the task @p isn't fully descheduled from its runqueue,
1344 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1345 * since all we need to do is flip p->state to TASK_RUNNING, since
1346 * the task is still ->on_rq.
1347 */
1348 static int ttwu_remote(struct task_struct *p, int wake_flags)
1349 {
1350 struct rq *rq;
1351 int ret = 0;
1352
1353 rq = __task_rq_lock(p);
1354 if (p->on_rq) {
1355 ttwu_do_wakeup(rq, p, wake_flags);
1356 ret = 1;
1357 }
1358 __task_rq_unlock(rq);
1359
1360 return ret;
1361 }
1362
1363 #ifdef CONFIG_SMP
1364 static void sched_ttwu_pending(void)
1365 {
1366 struct rq *rq = this_rq();
1367 struct llist_node *llist = llist_del_all(&rq->wake_list);
1368 struct task_struct *p;
1369
1370 raw_spin_lock(&rq->lock);
1371
1372 while (llist) {
1373 p = llist_entry(llist, struct task_struct, wake_entry);
1374 llist = llist_next(llist);
1375 ttwu_do_activate(rq, p, 0);
1376 }
1377
1378 raw_spin_unlock(&rq->lock);
1379 }
1380
1381 void scheduler_ipi(void)
1382 {
1383 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1384 return;
1385
1386 /*
1387 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1388 * traditionally all their work was done from the interrupt return
1389 * path. Now that we actually do some work, we need to make sure
1390 * we do call them.
1391 *
1392 * Some archs already do call them, luckily irq_enter/exit nest
1393 * properly.
1394 *
1395 * Arguably we should visit all archs and update all handlers,
1396 * however a fair share of IPIs are still resched only so this would
1397 * somewhat pessimize the simple resched case.
1398 */
1399 irq_enter();
1400 sched_ttwu_pending();
1401
1402 /*
1403 * Check if someone kicked us for doing the nohz idle load balance.
1404 */
1405 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1406 this_rq()->idle_balance = 1;
1407 raise_softirq_irqoff(SCHED_SOFTIRQ);
1408 }
1409 irq_exit();
1410 }
1411
1412 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1413 {
1414 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1415 smp_send_reschedule(cpu);
1416 }
1417
1418 bool cpus_share_cache(int this_cpu, int that_cpu)
1419 {
1420 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1421 }
1422 #endif /* CONFIG_SMP */
1423
1424 static void ttwu_queue(struct task_struct *p, int cpu)
1425 {
1426 struct rq *rq = cpu_rq(cpu);
1427
1428 #if defined(CONFIG_SMP)
1429 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1430 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1431 ttwu_queue_remote(p, cpu);
1432 return;
1433 }
1434 #endif
1435
1436 raw_spin_lock(&rq->lock);
1437 ttwu_do_activate(rq, p, 0);
1438 raw_spin_unlock(&rq->lock);
1439 }
1440
1441 /**
1442 * try_to_wake_up - wake up a thread
1443 * @p: the thread to be awakened
1444 * @state: the mask of task states that can be woken
1445 * @wake_flags: wake modifier flags (WF_*)
1446 *
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1452 *
1453 * Returns %true if @p was woken up, %false if it was already running
1454 * or @state didn't match @p's state.
1455 */
1456 static int
1457 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1458 {
1459 unsigned long flags;
1460 int cpu, success = 0;
1461
1462 smp_wmb();
1463 raw_spin_lock_irqsave(&p->pi_lock, flags);
1464 if (!(p->state & state))
1465 goto out;
1466
1467 success = 1; /* we're going to change ->state */
1468 cpu = task_cpu(p);
1469
1470 if (p->on_rq && ttwu_remote(p, wake_flags))
1471 goto stat;
1472
1473 #ifdef CONFIG_SMP
1474 /*
1475 * If the owning (remote) cpu is still in the middle of schedule() with
1476 * this task as prev, wait until its done referencing the task.
1477 */
1478 while (p->on_cpu)
1479 cpu_relax();
1480 /*
1481 * Pairs with the smp_wmb() in finish_lock_switch().
1482 */
1483 smp_rmb();
1484
1485 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1486 p->state = TASK_WAKING;
1487
1488 if (p->sched_class->task_waking)
1489 p->sched_class->task_waking(p);
1490
1491 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1492 if (task_cpu(p) != cpu) {
1493 wake_flags |= WF_MIGRATED;
1494 set_task_cpu(p, cpu);
1495 }
1496 #endif /* CONFIG_SMP */
1497
1498 ttwu_queue(p, cpu);
1499 stat:
1500 ttwu_stat(p, cpu, wake_flags);
1501 out:
1502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1503
1504 return success;
1505 }
1506
1507 /**
1508 * try_to_wake_up_local - try to wake up a local task with rq lock held
1509 * @p: the thread to be awakened
1510 *
1511 * Put @p on the run-queue if it's not already there. The caller must
1512 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1513 * the current task.
1514 */
1515 static void try_to_wake_up_local(struct task_struct *p)
1516 {
1517 struct rq *rq = task_rq(p);
1518
1519 BUG_ON(rq != this_rq());
1520 BUG_ON(p == current);
1521 lockdep_assert_held(&rq->lock);
1522
1523 if (!raw_spin_trylock(&p->pi_lock)) {
1524 raw_spin_unlock(&rq->lock);
1525 raw_spin_lock(&p->pi_lock);
1526 raw_spin_lock(&rq->lock);
1527 }
1528
1529 if (!(p->state & TASK_NORMAL))
1530 goto out;
1531
1532 if (!p->on_rq)
1533 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1534
1535 ttwu_do_wakeup(rq, p, 0);
1536 ttwu_stat(p, smp_processor_id(), 0);
1537 out:
1538 raw_spin_unlock(&p->pi_lock);
1539 }
1540
1541 /**
1542 * wake_up_process - Wake up a specific process
1543 * @p: The process to be woken up.
1544 *
1545 * Attempt to wake up the nominated process and move it to the set of runnable
1546 * processes. Returns 1 if the process was woken up, 0 if it was already
1547 * running.
1548 *
1549 * It may be assumed that this function implies a write memory barrier before
1550 * changing the task state if and only if any tasks are woken up.
1551 */
1552 int wake_up_process(struct task_struct *p)
1553 {
1554 WARN_ON(task_is_stopped_or_traced(p));
1555 return try_to_wake_up(p, TASK_NORMAL, 0);
1556 }
1557 EXPORT_SYMBOL(wake_up_process);
1558
1559 int wake_up_state(struct task_struct *p, unsigned int state)
1560 {
1561 return try_to_wake_up(p, state, 0);
1562 }
1563
1564 /*
1565 * Perform scheduler related setup for a newly forked process p.
1566 * p is forked by current.
1567 *
1568 * __sched_fork() is basic setup used by init_idle() too:
1569 */
1570 static void __sched_fork(struct task_struct *p)
1571 {
1572 p->on_rq = 0;
1573
1574 p->se.on_rq = 0;
1575 p->se.exec_start = 0;
1576 p->se.sum_exec_runtime = 0;
1577 p->se.prev_sum_exec_runtime = 0;
1578 p->se.nr_migrations = 0;
1579 p->se.vruntime = 0;
1580 INIT_LIST_HEAD(&p->se.group_node);
1581
1582 /*
1583 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1584 * removed when useful for applications beyond shares distribution (e.g.
1585 * load-balance).
1586 */
1587 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1588 p->se.avg.runnable_avg_period = 0;
1589 p->se.avg.runnable_avg_sum = 0;
1590 #endif
1591 #ifdef CONFIG_SCHEDSTATS
1592 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1593 #endif
1594
1595 INIT_LIST_HEAD(&p->rt.run_list);
1596
1597 #ifdef CONFIG_PREEMPT_NOTIFIERS
1598 INIT_HLIST_HEAD(&p->preempt_notifiers);
1599 #endif
1600
1601 #ifdef CONFIG_NUMA_BALANCING
1602 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1603 p->mm->numa_next_scan = jiffies;
1604 p->mm->numa_next_reset = jiffies;
1605 p->mm->numa_scan_seq = 0;
1606 }
1607
1608 p->node_stamp = 0ULL;
1609 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1610 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1611 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1612 p->numa_work.next = &p->numa_work;
1613 #endif /* CONFIG_NUMA_BALANCING */
1614 }
1615
1616 #ifdef CONFIG_NUMA_BALANCING
1617 #ifdef CONFIG_SCHED_DEBUG
1618 void set_numabalancing_state(bool enabled)
1619 {
1620 if (enabled)
1621 sched_feat_set("NUMA");
1622 else
1623 sched_feat_set("NO_NUMA");
1624 }
1625 #else
1626 __read_mostly bool numabalancing_enabled;
1627
1628 void set_numabalancing_state(bool enabled)
1629 {
1630 numabalancing_enabled = enabled;
1631 }
1632 #endif /* CONFIG_SCHED_DEBUG */
1633 #endif /* CONFIG_NUMA_BALANCING */
1634
1635 /*
1636 * fork()/clone()-time setup:
1637 */
1638 void sched_fork(struct task_struct *p)
1639 {
1640 unsigned long flags;
1641 int cpu = get_cpu();
1642
1643 __sched_fork(p);
1644 /*
1645 * We mark the process as running here. This guarantees that
1646 * nobody will actually run it, and a signal or other external
1647 * event cannot wake it up and insert it on the runqueue either.
1648 */
1649 p->state = TASK_RUNNING;
1650
1651 /*
1652 * Make sure we do not leak PI boosting priority to the child.
1653 */
1654 p->prio = current->normal_prio;
1655
1656 /*
1657 * Revert to default priority/policy on fork if requested.
1658 */
1659 if (unlikely(p->sched_reset_on_fork)) {
1660 if (task_has_rt_policy(p)) {
1661 p->policy = SCHED_NORMAL;
1662 p->static_prio = NICE_TO_PRIO(0);
1663 p->rt_priority = 0;
1664 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1665 p->static_prio = NICE_TO_PRIO(0);
1666
1667 p->prio = p->normal_prio = __normal_prio(p);
1668 set_load_weight(p);
1669
1670 /*
1671 * We don't need the reset flag anymore after the fork. It has
1672 * fulfilled its duty:
1673 */
1674 p->sched_reset_on_fork = 0;
1675 }
1676
1677 if (!rt_prio(p->prio))
1678 p->sched_class = &fair_sched_class;
1679
1680 if (p->sched_class->task_fork)
1681 p->sched_class->task_fork(p);
1682
1683 /*
1684 * The child is not yet in the pid-hash so no cgroup attach races,
1685 * and the cgroup is pinned to this child due to cgroup_fork()
1686 * is ran before sched_fork().
1687 *
1688 * Silence PROVE_RCU.
1689 */
1690 raw_spin_lock_irqsave(&p->pi_lock, flags);
1691 set_task_cpu(p, cpu);
1692 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1693
1694 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1695 if (likely(sched_info_on()))
1696 memset(&p->sched_info, 0, sizeof(p->sched_info));
1697 #endif
1698 #if defined(CONFIG_SMP)
1699 p->on_cpu = 0;
1700 #endif
1701 #ifdef CONFIG_PREEMPT_COUNT
1702 /* Want to start with kernel preemption disabled. */
1703 task_thread_info(p)->preempt_count = 1;
1704 #endif
1705 #ifdef CONFIG_SMP
1706 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1707 #endif
1708
1709 put_cpu();
1710 }
1711
1712 /*
1713 * wake_up_new_task - wake up a newly created task for the first time.
1714 *
1715 * This function will do some initial scheduler statistics housekeeping
1716 * that must be done for every newly created context, then puts the task
1717 * on the runqueue and wakes it.
1718 */
1719 void wake_up_new_task(struct task_struct *p)
1720 {
1721 unsigned long flags;
1722 struct rq *rq;
1723
1724 raw_spin_lock_irqsave(&p->pi_lock, flags);
1725 #ifdef CONFIG_SMP
1726 /*
1727 * Fork balancing, do it here and not earlier because:
1728 * - cpus_allowed can change in the fork path
1729 * - any previously selected cpu might disappear through hotplug
1730 */
1731 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1732 #endif
1733
1734 rq = __task_rq_lock(p);
1735 activate_task(rq, p, 0);
1736 p->on_rq = 1;
1737 trace_sched_wakeup_new(p, true);
1738 check_preempt_curr(rq, p, WF_FORK);
1739 #ifdef CONFIG_SMP
1740 if (p->sched_class->task_woken)
1741 p->sched_class->task_woken(rq, p);
1742 #endif
1743 task_rq_unlock(rq, p, &flags);
1744 }
1745
1746 #ifdef CONFIG_PREEMPT_NOTIFIERS
1747
1748 /**
1749 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1750 * @notifier: notifier struct to register
1751 */
1752 void preempt_notifier_register(struct preempt_notifier *notifier)
1753 {
1754 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1755 }
1756 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1757
1758 /**
1759 * preempt_notifier_unregister - no longer interested in preemption notifications
1760 * @notifier: notifier struct to unregister
1761 *
1762 * This is safe to call from within a preemption notifier.
1763 */
1764 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1765 {
1766 hlist_del(&notifier->link);
1767 }
1768 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1769
1770 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1771 {
1772 struct preempt_notifier *notifier;
1773
1774 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1775 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1776 }
1777
1778 static void
1779 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781 {
1782 struct preempt_notifier *notifier;
1783
1784 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1785 notifier->ops->sched_out(notifier, next);
1786 }
1787
1788 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1789
1790 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1791 {
1792 }
1793
1794 static void
1795 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1796 struct task_struct *next)
1797 {
1798 }
1799
1800 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1801
1802 /**
1803 * prepare_task_switch - prepare to switch tasks
1804 * @rq: the runqueue preparing to switch
1805 * @prev: the current task that is being switched out
1806 * @next: the task we are going to switch to.
1807 *
1808 * This is called with the rq lock held and interrupts off. It must
1809 * be paired with a subsequent finish_task_switch after the context
1810 * switch.
1811 *
1812 * prepare_task_switch sets up locking and calls architecture specific
1813 * hooks.
1814 */
1815 static inline void
1816 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1817 struct task_struct *next)
1818 {
1819 trace_sched_switch(prev, next);
1820 sched_info_switch(prev, next);
1821 perf_event_task_sched_out(prev, next);
1822 fire_sched_out_preempt_notifiers(prev, next);
1823 prepare_lock_switch(rq, next);
1824 prepare_arch_switch(next);
1825 }
1826
1827 /**
1828 * finish_task_switch - clean up after a task-switch
1829 * @rq: runqueue associated with task-switch
1830 * @prev: the thread we just switched away from.
1831 *
1832 * finish_task_switch must be called after the context switch, paired
1833 * with a prepare_task_switch call before the context switch.
1834 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1835 * and do any other architecture-specific cleanup actions.
1836 *
1837 * Note that we may have delayed dropping an mm in context_switch(). If
1838 * so, we finish that here outside of the runqueue lock. (Doing it
1839 * with the lock held can cause deadlocks; see schedule() for
1840 * details.)
1841 */
1842 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1843 __releases(rq->lock)
1844 {
1845 struct mm_struct *mm = rq->prev_mm;
1846 long prev_state;
1847
1848 rq->prev_mm = NULL;
1849
1850 /*
1851 * A task struct has one reference for the use as "current".
1852 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1853 * schedule one last time. The schedule call will never return, and
1854 * the scheduled task must drop that reference.
1855 * The test for TASK_DEAD must occur while the runqueue locks are
1856 * still held, otherwise prev could be scheduled on another cpu, die
1857 * there before we look at prev->state, and then the reference would
1858 * be dropped twice.
1859 * Manfred Spraul <manfred@colorfullife.com>
1860 */
1861 prev_state = prev->state;
1862 vtime_task_switch(prev);
1863 finish_arch_switch(prev);
1864 perf_event_task_sched_in(prev, current);
1865 finish_lock_switch(rq, prev);
1866 finish_arch_post_lock_switch();
1867
1868 fire_sched_in_preempt_notifiers(current);
1869 if (mm)
1870 mmdrop(mm);
1871 if (unlikely(prev_state == TASK_DEAD)) {
1872 /*
1873 * Remove function-return probe instances associated with this
1874 * task and put them back on the free list.
1875 */
1876 kprobe_flush_task(prev);
1877 put_task_struct(prev);
1878 }
1879 }
1880
1881 #ifdef CONFIG_SMP
1882
1883 /* assumes rq->lock is held */
1884 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1885 {
1886 if (prev->sched_class->pre_schedule)
1887 prev->sched_class->pre_schedule(rq, prev);
1888 }
1889
1890 /* rq->lock is NOT held, but preemption is disabled */
1891 static inline void post_schedule(struct rq *rq)
1892 {
1893 if (rq->post_schedule) {
1894 unsigned long flags;
1895
1896 raw_spin_lock_irqsave(&rq->lock, flags);
1897 if (rq->curr->sched_class->post_schedule)
1898 rq->curr->sched_class->post_schedule(rq);
1899 raw_spin_unlock_irqrestore(&rq->lock, flags);
1900
1901 rq->post_schedule = 0;
1902 }
1903 }
1904
1905 #else
1906
1907 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1908 {
1909 }
1910
1911 static inline void post_schedule(struct rq *rq)
1912 {
1913 }
1914
1915 #endif
1916
1917 /**
1918 * schedule_tail - first thing a freshly forked thread must call.
1919 * @prev: the thread we just switched away from.
1920 */
1921 asmlinkage void schedule_tail(struct task_struct *prev)
1922 __releases(rq->lock)
1923 {
1924 struct rq *rq = this_rq();
1925
1926 finish_task_switch(rq, prev);
1927
1928 /*
1929 * FIXME: do we need to worry about rq being invalidated by the
1930 * task_switch?
1931 */
1932 post_schedule(rq);
1933
1934 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1935 /* In this case, finish_task_switch does not reenable preemption */
1936 preempt_enable();
1937 #endif
1938 if (current->set_child_tid)
1939 put_user(task_pid_vnr(current), current->set_child_tid);
1940 }
1941
1942 /*
1943 * context_switch - switch to the new MM and the new
1944 * thread's register state.
1945 */
1946 static inline void
1947 context_switch(struct rq *rq, struct task_struct *prev,
1948 struct task_struct *next)
1949 {
1950 struct mm_struct *mm, *oldmm;
1951
1952 prepare_task_switch(rq, prev, next);
1953
1954 mm = next->mm;
1955 oldmm = prev->active_mm;
1956 /*
1957 * For paravirt, this is coupled with an exit in switch_to to
1958 * combine the page table reload and the switch backend into
1959 * one hypercall.
1960 */
1961 arch_start_context_switch(prev);
1962
1963 if (!mm) {
1964 next->active_mm = oldmm;
1965 atomic_inc(&oldmm->mm_count);
1966 enter_lazy_tlb(oldmm, next);
1967 } else
1968 switch_mm(oldmm, mm, next);
1969
1970 if (!prev->mm) {
1971 prev->active_mm = NULL;
1972 rq->prev_mm = oldmm;
1973 }
1974 /*
1975 * Since the runqueue lock will be released by the next
1976 * task (which is an invalid locking op but in the case
1977 * of the scheduler it's an obvious special-case), so we
1978 * do an early lockdep release here:
1979 */
1980 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1981 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1982 #endif
1983
1984 context_tracking_task_switch(prev, next);
1985 /* Here we just switch the register state and the stack. */
1986 switch_to(prev, next, prev);
1987
1988 barrier();
1989 /*
1990 * this_rq must be evaluated again because prev may have moved
1991 * CPUs since it called schedule(), thus the 'rq' on its stack
1992 * frame will be invalid.
1993 */
1994 finish_task_switch(this_rq(), prev);
1995 }
1996
1997 /*
1998 * nr_running and nr_context_switches:
1999 *
2000 * externally visible scheduler statistics: current number of runnable
2001 * threads, total number of context switches performed since bootup.
2002 */
2003 unsigned long nr_running(void)
2004 {
2005 unsigned long i, sum = 0;
2006
2007 for_each_online_cpu(i)
2008 sum += cpu_rq(i)->nr_running;
2009
2010 return sum;
2011 }
2012
2013 unsigned long long nr_context_switches(void)
2014 {
2015 int i;
2016 unsigned long long sum = 0;
2017
2018 for_each_possible_cpu(i)
2019 sum += cpu_rq(i)->nr_switches;
2020
2021 return sum;
2022 }
2023
2024 unsigned long nr_iowait(void)
2025 {
2026 unsigned long i, sum = 0;
2027
2028 for_each_possible_cpu(i)
2029 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2030
2031 return sum;
2032 }
2033
2034 unsigned long nr_iowait_cpu(int cpu)
2035 {
2036 struct rq *this = cpu_rq(cpu);
2037 return atomic_read(&this->nr_iowait);
2038 }
2039
2040 unsigned long this_cpu_load(void)
2041 {
2042 struct rq *this = this_rq();
2043 return this->cpu_load[0];
2044 }
2045
2046
2047 /*
2048 * Global load-average calculations
2049 *
2050 * We take a distributed and async approach to calculating the global load-avg
2051 * in order to minimize overhead.
2052 *
2053 * The global load average is an exponentially decaying average of nr_running +
2054 * nr_uninterruptible.
2055 *
2056 * Once every LOAD_FREQ:
2057 *
2058 * nr_active = 0;
2059 * for_each_possible_cpu(cpu)
2060 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2061 *
2062 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2063 *
2064 * Due to a number of reasons the above turns in the mess below:
2065 *
2066 * - for_each_possible_cpu() is prohibitively expensive on machines with
2067 * serious number of cpus, therefore we need to take a distributed approach
2068 * to calculating nr_active.
2069 *
2070 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2071 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2072 *
2073 * So assuming nr_active := 0 when we start out -- true per definition, we
2074 * can simply take per-cpu deltas and fold those into a global accumulate
2075 * to obtain the same result. See calc_load_fold_active().
2076 *
2077 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2078 * across the machine, we assume 10 ticks is sufficient time for every
2079 * cpu to have completed this task.
2080 *
2081 * This places an upper-bound on the IRQ-off latency of the machine. Then
2082 * again, being late doesn't loose the delta, just wrecks the sample.
2083 *
2084 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2085 * this would add another cross-cpu cacheline miss and atomic operation
2086 * to the wakeup path. Instead we increment on whatever cpu the task ran
2087 * when it went into uninterruptible state and decrement on whatever cpu
2088 * did the wakeup. This means that only the sum of nr_uninterruptible over
2089 * all cpus yields the correct result.
2090 *
2091 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2092 */
2093
2094 /* Variables and functions for calc_load */
2095 static atomic_long_t calc_load_tasks;
2096 static unsigned long calc_load_update;
2097 unsigned long avenrun[3];
2098 EXPORT_SYMBOL(avenrun); /* should be removed */
2099
2100 /**
2101 * get_avenrun - get the load average array
2102 * @loads: pointer to dest load array
2103 * @offset: offset to add
2104 * @shift: shift count to shift the result left
2105 *
2106 * These values are estimates at best, so no need for locking.
2107 */
2108 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2109 {
2110 loads[0] = (avenrun[0] + offset) << shift;
2111 loads[1] = (avenrun[1] + offset) << shift;
2112 loads[2] = (avenrun[2] + offset) << shift;
2113 }
2114
2115 static long calc_load_fold_active(struct rq *this_rq)
2116 {
2117 long nr_active, delta = 0;
2118
2119 nr_active = this_rq->nr_running;
2120 nr_active += (long) this_rq->nr_uninterruptible;
2121
2122 if (nr_active != this_rq->calc_load_active) {
2123 delta = nr_active - this_rq->calc_load_active;
2124 this_rq->calc_load_active = nr_active;
2125 }
2126
2127 return delta;
2128 }
2129
2130 /*
2131 * a1 = a0 * e + a * (1 - e)
2132 */
2133 static unsigned long
2134 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2135 {
2136 load *= exp;
2137 load += active * (FIXED_1 - exp);
2138 load += 1UL << (FSHIFT - 1);
2139 return load >> FSHIFT;
2140 }
2141
2142 #ifdef CONFIG_NO_HZ
2143 /*
2144 * Handle NO_HZ for the global load-average.
2145 *
2146 * Since the above described distributed algorithm to compute the global
2147 * load-average relies on per-cpu sampling from the tick, it is affected by
2148 * NO_HZ.
2149 *
2150 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2151 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2152 * when we read the global state.
2153 *
2154 * Obviously reality has to ruin such a delightfully simple scheme:
2155 *
2156 * - When we go NO_HZ idle during the window, we can negate our sample
2157 * contribution, causing under-accounting.
2158 *
2159 * We avoid this by keeping two idle-delta counters and flipping them
2160 * when the window starts, thus separating old and new NO_HZ load.
2161 *
2162 * The only trick is the slight shift in index flip for read vs write.
2163 *
2164 * 0s 5s 10s 15s
2165 * +10 +10 +10 +10
2166 * |-|-----------|-|-----------|-|-----------|-|
2167 * r:0 0 1 1 0 0 1 1 0
2168 * w:0 1 1 0 0 1 1 0 0
2169 *
2170 * This ensures we'll fold the old idle contribution in this window while
2171 * accumlating the new one.
2172 *
2173 * - When we wake up from NO_HZ idle during the window, we push up our
2174 * contribution, since we effectively move our sample point to a known
2175 * busy state.
2176 *
2177 * This is solved by pushing the window forward, and thus skipping the
2178 * sample, for this cpu (effectively using the idle-delta for this cpu which
2179 * was in effect at the time the window opened). This also solves the issue
2180 * of having to deal with a cpu having been in NOHZ idle for multiple
2181 * LOAD_FREQ intervals.
2182 *
2183 * When making the ILB scale, we should try to pull this in as well.
2184 */
2185 static atomic_long_t calc_load_idle[2];
2186 static int calc_load_idx;
2187
2188 static inline int calc_load_write_idx(void)
2189 {
2190 int idx = calc_load_idx;
2191
2192 /*
2193 * See calc_global_nohz(), if we observe the new index, we also
2194 * need to observe the new update time.
2195 */
2196 smp_rmb();
2197
2198 /*
2199 * If the folding window started, make sure we start writing in the
2200 * next idle-delta.
2201 */
2202 if (!time_before(jiffies, calc_load_update))
2203 idx++;
2204
2205 return idx & 1;
2206 }
2207
2208 static inline int calc_load_read_idx(void)
2209 {
2210 return calc_load_idx & 1;
2211 }
2212
2213 void calc_load_enter_idle(void)
2214 {
2215 struct rq *this_rq = this_rq();
2216 long delta;
2217
2218 /*
2219 * We're going into NOHZ mode, if there's any pending delta, fold it
2220 * into the pending idle delta.
2221 */
2222 delta = calc_load_fold_active(this_rq);
2223 if (delta) {
2224 int idx = calc_load_write_idx();
2225 atomic_long_add(delta, &calc_load_idle[idx]);
2226 }
2227 }
2228
2229 void calc_load_exit_idle(void)
2230 {
2231 struct rq *this_rq = this_rq();
2232
2233 /*
2234 * If we're still before the sample window, we're done.
2235 */
2236 if (time_before(jiffies, this_rq->calc_load_update))
2237 return;
2238
2239 /*
2240 * We woke inside or after the sample window, this means we're already
2241 * accounted through the nohz accounting, so skip the entire deal and
2242 * sync up for the next window.
2243 */
2244 this_rq->calc_load_update = calc_load_update;
2245 if (time_before(jiffies, this_rq->calc_load_update + 10))
2246 this_rq->calc_load_update += LOAD_FREQ;
2247 }
2248
2249 static long calc_load_fold_idle(void)
2250 {
2251 int idx = calc_load_read_idx();
2252 long delta = 0;
2253
2254 if (atomic_long_read(&calc_load_idle[idx]))
2255 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2256
2257 return delta;
2258 }
2259
2260 /**
2261 * fixed_power_int - compute: x^n, in O(log n) time
2262 *
2263 * @x: base of the power
2264 * @frac_bits: fractional bits of @x
2265 * @n: power to raise @x to.
2266 *
2267 * By exploiting the relation between the definition of the natural power
2268 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2269 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2270 * (where: n_i \elem {0, 1}, the binary vector representing n),
2271 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2272 * of course trivially computable in O(log_2 n), the length of our binary
2273 * vector.
2274 */
2275 static unsigned long
2276 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2277 {
2278 unsigned long result = 1UL << frac_bits;
2279
2280 if (n) for (;;) {
2281 if (n & 1) {
2282 result *= x;
2283 result += 1UL << (frac_bits - 1);
2284 result >>= frac_bits;
2285 }
2286 n >>= 1;
2287 if (!n)
2288 break;
2289 x *= x;
2290 x += 1UL << (frac_bits - 1);
2291 x >>= frac_bits;
2292 }
2293
2294 return result;
2295 }
2296
2297 /*
2298 * a1 = a0 * e + a * (1 - e)
2299 *
2300 * a2 = a1 * e + a * (1 - e)
2301 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2302 * = a0 * e^2 + a * (1 - e) * (1 + e)
2303 *
2304 * a3 = a2 * e + a * (1 - e)
2305 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2306 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2307 *
2308 * ...
2309 *
2310 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2311 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2312 * = a0 * e^n + a * (1 - e^n)
2313 *
2314 * [1] application of the geometric series:
2315 *
2316 * n 1 - x^(n+1)
2317 * S_n := \Sum x^i = -------------
2318 * i=0 1 - x
2319 */
2320 static unsigned long
2321 calc_load_n(unsigned long load, unsigned long exp,
2322 unsigned long active, unsigned int n)
2323 {
2324
2325 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2326 }
2327
2328 /*
2329 * NO_HZ can leave us missing all per-cpu ticks calling
2330 * calc_load_account_active(), but since an idle CPU folds its delta into
2331 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2332 * in the pending idle delta if our idle period crossed a load cycle boundary.
2333 *
2334 * Once we've updated the global active value, we need to apply the exponential
2335 * weights adjusted to the number of cycles missed.
2336 */
2337 static void calc_global_nohz(void)
2338 {
2339 long delta, active, n;
2340
2341 if (!time_before(jiffies, calc_load_update + 10)) {
2342 /*
2343 * Catch-up, fold however many we are behind still
2344 */
2345 delta = jiffies - calc_load_update - 10;
2346 n = 1 + (delta / LOAD_FREQ);
2347
2348 active = atomic_long_read(&calc_load_tasks);
2349 active = active > 0 ? active * FIXED_1 : 0;
2350
2351 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2352 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2353 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2354
2355 calc_load_update += n * LOAD_FREQ;
2356 }
2357
2358 /*
2359 * Flip the idle index...
2360 *
2361 * Make sure we first write the new time then flip the index, so that
2362 * calc_load_write_idx() will see the new time when it reads the new
2363 * index, this avoids a double flip messing things up.
2364 */
2365 smp_wmb();
2366 calc_load_idx++;
2367 }
2368 #else /* !CONFIG_NO_HZ */
2369
2370 static inline long calc_load_fold_idle(void) { return 0; }
2371 static inline void calc_global_nohz(void) { }
2372
2373 #endif /* CONFIG_NO_HZ */
2374
2375 /*
2376 * calc_load - update the avenrun load estimates 10 ticks after the
2377 * CPUs have updated calc_load_tasks.
2378 */
2379 void calc_global_load(unsigned long ticks)
2380 {
2381 long active, delta;
2382
2383 if (time_before(jiffies, calc_load_update + 10))
2384 return;
2385
2386 /*
2387 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2388 */
2389 delta = calc_load_fold_idle();
2390 if (delta)
2391 atomic_long_add(delta, &calc_load_tasks);
2392
2393 active = atomic_long_read(&calc_load_tasks);
2394 active = active > 0 ? active * FIXED_1 : 0;
2395
2396 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2397 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2398 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2399
2400 calc_load_update += LOAD_FREQ;
2401
2402 /*
2403 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2404 */
2405 calc_global_nohz();
2406 }
2407
2408 /*
2409 * Called from update_cpu_load() to periodically update this CPU's
2410 * active count.
2411 */
2412 static void calc_load_account_active(struct rq *this_rq)
2413 {
2414 long delta;
2415
2416 if (time_before(jiffies, this_rq->calc_load_update))
2417 return;
2418
2419 delta = calc_load_fold_active(this_rq);
2420 if (delta)
2421 atomic_long_add(delta, &calc_load_tasks);
2422
2423 this_rq->calc_load_update += LOAD_FREQ;
2424 }
2425
2426 /*
2427 * End of global load-average stuff
2428 */
2429
2430 /*
2431 * The exact cpuload at various idx values, calculated at every tick would be
2432 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2433 *
2434 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2435 * on nth tick when cpu may be busy, then we have:
2436 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2437 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2438 *
2439 * decay_load_missed() below does efficient calculation of
2440 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2441 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2442 *
2443 * The calculation is approximated on a 128 point scale.
2444 * degrade_zero_ticks is the number of ticks after which load at any
2445 * particular idx is approximated to be zero.
2446 * degrade_factor is a precomputed table, a row for each load idx.
2447 * Each column corresponds to degradation factor for a power of two ticks,
2448 * based on 128 point scale.
2449 * Example:
2450 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2451 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2452 *
2453 * With this power of 2 load factors, we can degrade the load n times
2454 * by looking at 1 bits in n and doing as many mult/shift instead of
2455 * n mult/shifts needed by the exact degradation.
2456 */
2457 #define DEGRADE_SHIFT 7
2458 static const unsigned char
2459 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2460 static const unsigned char
2461 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2462 {0, 0, 0, 0, 0, 0, 0, 0},
2463 {64, 32, 8, 0, 0, 0, 0, 0},
2464 {96, 72, 40, 12, 1, 0, 0},
2465 {112, 98, 75, 43, 15, 1, 0},
2466 {120, 112, 98, 76, 45, 16, 2} };
2467
2468 /*
2469 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2470 * would be when CPU is idle and so we just decay the old load without
2471 * adding any new load.
2472 */
2473 static unsigned long
2474 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2475 {
2476 int j = 0;
2477
2478 if (!missed_updates)
2479 return load;
2480
2481 if (missed_updates >= degrade_zero_ticks[idx])
2482 return 0;
2483
2484 if (idx == 1)
2485 return load >> missed_updates;
2486
2487 while (missed_updates) {
2488 if (missed_updates % 2)
2489 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2490
2491 missed_updates >>= 1;
2492 j++;
2493 }
2494 return load;
2495 }
2496
2497 /*
2498 * Update rq->cpu_load[] statistics. This function is usually called every
2499 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2500 * every tick. We fix it up based on jiffies.
2501 */
2502 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2503 unsigned long pending_updates)
2504 {
2505 int i, scale;
2506
2507 this_rq->nr_load_updates++;
2508
2509 /* Update our load: */
2510 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2511 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2512 unsigned long old_load, new_load;
2513
2514 /* scale is effectively 1 << i now, and >> i divides by scale */
2515
2516 old_load = this_rq->cpu_load[i];
2517 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2518 new_load = this_load;
2519 /*
2520 * Round up the averaging division if load is increasing. This
2521 * prevents us from getting stuck on 9 if the load is 10, for
2522 * example.
2523 */
2524 if (new_load > old_load)
2525 new_load += scale - 1;
2526
2527 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2528 }
2529
2530 sched_avg_update(this_rq);
2531 }
2532
2533 #ifdef CONFIG_NO_HZ
2534 /*
2535 * There is no sane way to deal with nohz on smp when using jiffies because the
2536 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2537 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2538 *
2539 * Therefore we cannot use the delta approach from the regular tick since that
2540 * would seriously skew the load calculation. However we'll make do for those
2541 * updates happening while idle (nohz_idle_balance) or coming out of idle
2542 * (tick_nohz_idle_exit).
2543 *
2544 * This means we might still be one tick off for nohz periods.
2545 */
2546
2547 /*
2548 * Called from nohz_idle_balance() to update the load ratings before doing the
2549 * idle balance.
2550 */
2551 void update_idle_cpu_load(struct rq *this_rq)
2552 {
2553 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2554 unsigned long load = this_rq->load.weight;
2555 unsigned long pending_updates;
2556
2557 /*
2558 * bail if there's load or we're actually up-to-date.
2559 */
2560 if (load || curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2564 this_rq->last_load_update_tick = curr_jiffies;
2565
2566 __update_cpu_load(this_rq, load, pending_updates);
2567 }
2568
2569 /*
2570 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2571 */
2572 void update_cpu_load_nohz(void)
2573 {
2574 struct rq *this_rq = this_rq();
2575 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2576 unsigned long pending_updates;
2577
2578 if (curr_jiffies == this_rq->last_load_update_tick)
2579 return;
2580
2581 raw_spin_lock(&this_rq->lock);
2582 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2583 if (pending_updates) {
2584 this_rq->last_load_update_tick = curr_jiffies;
2585 /*
2586 * We were idle, this means load 0, the current load might be
2587 * !0 due to remote wakeups and the sort.
2588 */
2589 __update_cpu_load(this_rq, 0, pending_updates);
2590 }
2591 raw_spin_unlock(&this_rq->lock);
2592 }
2593 #endif /* CONFIG_NO_HZ */
2594
2595 /*
2596 * Called from scheduler_tick()
2597 */
2598 static void update_cpu_load_active(struct rq *this_rq)
2599 {
2600 /*
2601 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2602 */
2603 this_rq->last_load_update_tick = jiffies;
2604 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2605
2606 calc_load_account_active(this_rq);
2607 }
2608
2609 #ifdef CONFIG_SMP
2610
2611 /*
2612 * sched_exec - execve() is a valuable balancing opportunity, because at
2613 * this point the task has the smallest effective memory and cache footprint.
2614 */
2615 void sched_exec(void)
2616 {
2617 struct task_struct *p = current;
2618 unsigned long flags;
2619 int dest_cpu;
2620
2621 raw_spin_lock_irqsave(&p->pi_lock, flags);
2622 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2623 if (dest_cpu == smp_processor_id())
2624 goto unlock;
2625
2626 if (likely(cpu_active(dest_cpu))) {
2627 struct migration_arg arg = { p, dest_cpu };
2628
2629 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2630 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2631 return;
2632 }
2633 unlock:
2634 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2635 }
2636
2637 #endif
2638
2639 DEFINE_PER_CPU(struct kernel_stat, kstat);
2640 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2641
2642 EXPORT_PER_CPU_SYMBOL(kstat);
2643 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2644
2645 /*
2646 * Return any ns on the sched_clock that have not yet been accounted in
2647 * @p in case that task is currently running.
2648 *
2649 * Called with task_rq_lock() held on @rq.
2650 */
2651 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2652 {
2653 u64 ns = 0;
2654
2655 if (task_current(rq, p)) {
2656 update_rq_clock(rq);
2657 ns = rq->clock_task - p->se.exec_start;
2658 if ((s64)ns < 0)
2659 ns = 0;
2660 }
2661
2662 return ns;
2663 }
2664
2665 unsigned long long task_delta_exec(struct task_struct *p)
2666 {
2667 unsigned long flags;
2668 struct rq *rq;
2669 u64 ns = 0;
2670
2671 rq = task_rq_lock(p, &flags);
2672 ns = do_task_delta_exec(p, rq);
2673 task_rq_unlock(rq, p, &flags);
2674
2675 return ns;
2676 }
2677
2678 /*
2679 * Return accounted runtime for the task.
2680 * In case the task is currently running, return the runtime plus current's
2681 * pending runtime that have not been accounted yet.
2682 */
2683 unsigned long long task_sched_runtime(struct task_struct *p)
2684 {
2685 unsigned long flags;
2686 struct rq *rq;
2687 u64 ns = 0;
2688
2689 rq = task_rq_lock(p, &flags);
2690 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2691 task_rq_unlock(rq, p, &flags);
2692
2693 return ns;
2694 }
2695
2696 /*
2697 * This function gets called by the timer code, with HZ frequency.
2698 * We call it with interrupts disabled.
2699 */
2700 void scheduler_tick(void)
2701 {
2702 int cpu = smp_processor_id();
2703 struct rq *rq = cpu_rq(cpu);
2704 struct task_struct *curr = rq->curr;
2705
2706 sched_clock_tick();
2707
2708 raw_spin_lock(&rq->lock);
2709 update_rq_clock(rq);
2710 update_cpu_load_active(rq);
2711 curr->sched_class->task_tick(rq, curr, 0);
2712 raw_spin_unlock(&rq->lock);
2713
2714 perf_event_task_tick();
2715
2716 #ifdef CONFIG_SMP
2717 rq->idle_balance = idle_cpu(cpu);
2718 trigger_load_balance(rq, cpu);
2719 #endif
2720 }
2721
2722 notrace unsigned long get_parent_ip(unsigned long addr)
2723 {
2724 if (in_lock_functions(addr)) {
2725 addr = CALLER_ADDR2;
2726 if (in_lock_functions(addr))
2727 addr = CALLER_ADDR3;
2728 }
2729 return addr;
2730 }
2731
2732 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2733 defined(CONFIG_PREEMPT_TRACER))
2734
2735 void __kprobes add_preempt_count(int val)
2736 {
2737 #ifdef CONFIG_DEBUG_PREEMPT
2738 /*
2739 * Underflow?
2740 */
2741 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2742 return;
2743 #endif
2744 preempt_count() += val;
2745 #ifdef CONFIG_DEBUG_PREEMPT
2746 /*
2747 * Spinlock count overflowing soon?
2748 */
2749 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2750 PREEMPT_MASK - 10);
2751 #endif
2752 if (preempt_count() == val)
2753 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2754 }
2755 EXPORT_SYMBOL(add_preempt_count);
2756
2757 void __kprobes sub_preempt_count(int val)
2758 {
2759 #ifdef CONFIG_DEBUG_PREEMPT
2760 /*
2761 * Underflow?
2762 */
2763 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2764 return;
2765 /*
2766 * Is the spinlock portion underflowing?
2767 */
2768 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2769 !(preempt_count() & PREEMPT_MASK)))
2770 return;
2771 #endif
2772
2773 if (preempt_count() == val)
2774 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2775 preempt_count() -= val;
2776 }
2777 EXPORT_SYMBOL(sub_preempt_count);
2778
2779 #endif
2780
2781 /*
2782 * Print scheduling while atomic bug:
2783 */
2784 static noinline void __schedule_bug(struct task_struct *prev)
2785 {
2786 if (oops_in_progress)
2787 return;
2788
2789 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2790 prev->comm, prev->pid, preempt_count());
2791
2792 debug_show_held_locks(prev);
2793 print_modules();
2794 if (irqs_disabled())
2795 print_irqtrace_events(prev);
2796 dump_stack();
2797 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2798 }
2799
2800 /*
2801 * Various schedule()-time debugging checks and statistics:
2802 */
2803 static inline void schedule_debug(struct task_struct *prev)
2804 {
2805 /*
2806 * Test if we are atomic. Since do_exit() needs to call into
2807 * schedule() atomically, we ignore that path for now.
2808 * Otherwise, whine if we are scheduling when we should not be.
2809 */
2810 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2811 __schedule_bug(prev);
2812 rcu_sleep_check();
2813
2814 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2815
2816 schedstat_inc(this_rq(), sched_count);
2817 }
2818
2819 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2820 {
2821 if (prev->on_rq || rq->skip_clock_update < 0)
2822 update_rq_clock(rq);
2823 prev->sched_class->put_prev_task(rq, prev);
2824 }
2825
2826 /*
2827 * Pick up the highest-prio task:
2828 */
2829 static inline struct task_struct *
2830 pick_next_task(struct rq *rq)
2831 {
2832 const struct sched_class *class;
2833 struct task_struct *p;
2834
2835 /*
2836 * Optimization: we know that if all tasks are in
2837 * the fair class we can call that function directly:
2838 */
2839 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2840 p = fair_sched_class.pick_next_task(rq);
2841 if (likely(p))
2842 return p;
2843 }
2844
2845 for_each_class(class) {
2846 p = class->pick_next_task(rq);
2847 if (p)
2848 return p;
2849 }
2850
2851 BUG(); /* the idle class will always have a runnable task */
2852 }
2853
2854 /*
2855 * __schedule() is the main scheduler function.
2856 *
2857 * The main means of driving the scheduler and thus entering this function are:
2858 *
2859 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2860 *
2861 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2862 * paths. For example, see arch/x86/entry_64.S.
2863 *
2864 * To drive preemption between tasks, the scheduler sets the flag in timer
2865 * interrupt handler scheduler_tick().
2866 *
2867 * 3. Wakeups don't really cause entry into schedule(). They add a
2868 * task to the run-queue and that's it.
2869 *
2870 * Now, if the new task added to the run-queue preempts the current
2871 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2872 * called on the nearest possible occasion:
2873 *
2874 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2875 *
2876 * - in syscall or exception context, at the next outmost
2877 * preempt_enable(). (this might be as soon as the wake_up()'s
2878 * spin_unlock()!)
2879 *
2880 * - in IRQ context, return from interrupt-handler to
2881 * preemptible context
2882 *
2883 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2884 * then at the next:
2885 *
2886 * - cond_resched() call
2887 * - explicit schedule() call
2888 * - return from syscall or exception to user-space
2889 * - return from interrupt-handler to user-space
2890 */
2891 static void __sched __schedule(void)
2892 {
2893 struct task_struct *prev, *next;
2894 unsigned long *switch_count;
2895 struct rq *rq;
2896 int cpu;
2897
2898 need_resched:
2899 preempt_disable();
2900 cpu = smp_processor_id();
2901 rq = cpu_rq(cpu);
2902 rcu_note_context_switch(cpu);
2903 prev = rq->curr;
2904
2905 schedule_debug(prev);
2906
2907 if (sched_feat(HRTICK))
2908 hrtick_clear(rq);
2909
2910 raw_spin_lock_irq(&rq->lock);
2911
2912 switch_count = &prev->nivcsw;
2913 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2914 if (unlikely(signal_pending_state(prev->state, prev))) {
2915 prev->state = TASK_RUNNING;
2916 } else {
2917 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2918 prev->on_rq = 0;
2919
2920 /*
2921 * If a worker went to sleep, notify and ask workqueue
2922 * whether it wants to wake up a task to maintain
2923 * concurrency.
2924 */
2925 if (prev->flags & PF_WQ_WORKER) {
2926 struct task_struct *to_wakeup;
2927
2928 to_wakeup = wq_worker_sleeping(prev, cpu);
2929 if (to_wakeup)
2930 try_to_wake_up_local(to_wakeup);
2931 }
2932 }
2933 switch_count = &prev->nvcsw;
2934 }
2935
2936 pre_schedule(rq, prev);
2937
2938 if (unlikely(!rq->nr_running))
2939 idle_balance(cpu, rq);
2940
2941 put_prev_task(rq, prev);
2942 next = pick_next_task(rq);
2943 clear_tsk_need_resched(prev);
2944 rq->skip_clock_update = 0;
2945
2946 if (likely(prev != next)) {
2947 rq->nr_switches++;
2948 rq->curr = next;
2949 ++*switch_count;
2950
2951 context_switch(rq, prev, next); /* unlocks the rq */
2952 /*
2953 * The context switch have flipped the stack from under us
2954 * and restored the local variables which were saved when
2955 * this task called schedule() in the past. prev == current
2956 * is still correct, but it can be moved to another cpu/rq.
2957 */
2958 cpu = smp_processor_id();
2959 rq = cpu_rq(cpu);
2960 } else
2961 raw_spin_unlock_irq(&rq->lock);
2962
2963 post_schedule(rq);
2964
2965 sched_preempt_enable_no_resched();
2966 if (need_resched())
2967 goto need_resched;
2968 }
2969
2970 static inline void sched_submit_work(struct task_struct *tsk)
2971 {
2972 if (!tsk->state || tsk_is_pi_blocked(tsk))
2973 return;
2974 /*
2975 * If we are going to sleep and we have plugged IO queued,
2976 * make sure to submit it to avoid deadlocks.
2977 */
2978 if (blk_needs_flush_plug(tsk))
2979 blk_schedule_flush_plug(tsk);
2980 }
2981
2982 asmlinkage void __sched schedule(void)
2983 {
2984 struct task_struct *tsk = current;
2985
2986 sched_submit_work(tsk);
2987 __schedule();
2988 }
2989 EXPORT_SYMBOL(schedule);
2990
2991 #ifdef CONFIG_CONTEXT_TRACKING
2992 asmlinkage void __sched schedule_user(void)
2993 {
2994 /*
2995 * If we come here after a random call to set_need_resched(),
2996 * or we have been woken up remotely but the IPI has not yet arrived,
2997 * we haven't yet exited the RCU idle mode. Do it here manually until
2998 * we find a better solution.
2999 */
3000 user_exit();
3001 schedule();
3002 user_enter();
3003 }
3004 #endif
3005
3006 /**
3007 * schedule_preempt_disabled - called with preemption disabled
3008 *
3009 * Returns with preemption disabled. Note: preempt_count must be 1
3010 */
3011 void __sched schedule_preempt_disabled(void)
3012 {
3013 sched_preempt_enable_no_resched();
3014 schedule();
3015 preempt_disable();
3016 }
3017
3018 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3019
3020 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3021 {
3022 if (lock->owner != owner)
3023 return false;
3024
3025 /*
3026 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3027 * lock->owner still matches owner, if that fails, owner might
3028 * point to free()d memory, if it still matches, the rcu_read_lock()
3029 * ensures the memory stays valid.
3030 */
3031 barrier();
3032
3033 return owner->on_cpu;
3034 }
3035
3036 /*
3037 * Look out! "owner" is an entirely speculative pointer
3038 * access and not reliable.
3039 */
3040 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3041 {
3042 if (!sched_feat(OWNER_SPIN))
3043 return 0;
3044
3045 rcu_read_lock();
3046 while (owner_running(lock, owner)) {
3047 if (need_resched())
3048 break;
3049
3050 arch_mutex_cpu_relax();
3051 }
3052 rcu_read_unlock();
3053
3054 /*
3055 * We break out the loop above on need_resched() and when the
3056 * owner changed, which is a sign for heavy contention. Return
3057 * success only when lock->owner is NULL.
3058 */
3059 return lock->owner == NULL;
3060 }
3061 #endif
3062
3063 #ifdef CONFIG_PREEMPT
3064 /*
3065 * this is the entry point to schedule() from in-kernel preemption
3066 * off of preempt_enable. Kernel preemptions off return from interrupt
3067 * occur there and call schedule directly.
3068 */
3069 asmlinkage void __sched notrace preempt_schedule(void)
3070 {
3071 struct thread_info *ti = current_thread_info();
3072
3073 /*
3074 * If there is a non-zero preempt_count or interrupts are disabled,
3075 * we do not want to preempt the current task. Just return..
3076 */
3077 if (likely(ti->preempt_count || irqs_disabled()))
3078 return;
3079
3080 do {
3081 add_preempt_count_notrace(PREEMPT_ACTIVE);
3082 __schedule();
3083 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3084
3085 /*
3086 * Check again in case we missed a preemption opportunity
3087 * between schedule and now.
3088 */
3089 barrier();
3090 } while (need_resched());
3091 }
3092 EXPORT_SYMBOL(preempt_schedule);
3093
3094 /*
3095 * this is the entry point to schedule() from kernel preemption
3096 * off of irq context.
3097 * Note, that this is called and return with irqs disabled. This will
3098 * protect us against recursive calling from irq.
3099 */
3100 asmlinkage void __sched preempt_schedule_irq(void)
3101 {
3102 struct thread_info *ti = current_thread_info();
3103 enum ctx_state prev_state;
3104
3105 /* Catch callers which need to be fixed */
3106 BUG_ON(ti->preempt_count || !irqs_disabled());
3107
3108 prev_state = exception_enter();
3109
3110 do {
3111 add_preempt_count(PREEMPT_ACTIVE);
3112 local_irq_enable();
3113 __schedule();
3114 local_irq_disable();
3115 sub_preempt_count(PREEMPT_ACTIVE);
3116
3117 /*
3118 * Check again in case we missed a preemption opportunity
3119 * between schedule and now.
3120 */
3121 barrier();
3122 } while (need_resched());
3123
3124 exception_exit(prev_state);
3125 }
3126
3127 #endif /* CONFIG_PREEMPT */
3128
3129 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3130 void *key)
3131 {
3132 return try_to_wake_up(curr->private, mode, wake_flags);
3133 }
3134 EXPORT_SYMBOL(default_wake_function);
3135
3136 /*
3137 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3138 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3139 * number) then we wake all the non-exclusive tasks and one exclusive task.
3140 *
3141 * There are circumstances in which we can try to wake a task which has already
3142 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3143 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3144 */
3145 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3146 int nr_exclusive, int wake_flags, void *key)
3147 {
3148 wait_queue_t *curr, *next;
3149
3150 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3151 unsigned flags = curr->flags;
3152
3153 if (curr->func(curr, mode, wake_flags, key) &&
3154 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3155 break;
3156 }
3157 }
3158
3159 /**
3160 * __wake_up - wake up threads blocked on a waitqueue.
3161 * @q: the waitqueue
3162 * @mode: which threads
3163 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3164 * @key: is directly passed to the wakeup function
3165 *
3166 * It may be assumed that this function implies a write memory barrier before
3167 * changing the task state if and only if any tasks are woken up.
3168 */
3169 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3170 int nr_exclusive, void *key)
3171 {
3172 unsigned long flags;
3173
3174 spin_lock_irqsave(&q->lock, flags);
3175 __wake_up_common(q, mode, nr_exclusive, 0, key);
3176 spin_unlock_irqrestore(&q->lock, flags);
3177 }
3178 EXPORT_SYMBOL(__wake_up);
3179
3180 /*
3181 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3182 */
3183 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3184 {
3185 __wake_up_common(q, mode, nr, 0, NULL);
3186 }
3187 EXPORT_SYMBOL_GPL(__wake_up_locked);
3188
3189 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3190 {
3191 __wake_up_common(q, mode, 1, 0, key);
3192 }
3193 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3194
3195 /**
3196 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3197 * @q: the waitqueue
3198 * @mode: which threads
3199 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3200 * @key: opaque value to be passed to wakeup targets
3201 *
3202 * The sync wakeup differs that the waker knows that it will schedule
3203 * away soon, so while the target thread will be woken up, it will not
3204 * be migrated to another CPU - ie. the two threads are 'synchronized'
3205 * with each other. This can prevent needless bouncing between CPUs.
3206 *
3207 * On UP it can prevent extra preemption.
3208 *
3209 * It may be assumed that this function implies a write memory barrier before
3210 * changing the task state if and only if any tasks are woken up.
3211 */
3212 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3213 int nr_exclusive, void *key)
3214 {
3215 unsigned long flags;
3216 int wake_flags = WF_SYNC;
3217
3218 if (unlikely(!q))
3219 return;
3220
3221 if (unlikely(!nr_exclusive))
3222 wake_flags = 0;
3223
3224 spin_lock_irqsave(&q->lock, flags);
3225 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3226 spin_unlock_irqrestore(&q->lock, flags);
3227 }
3228 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3229
3230 /*
3231 * __wake_up_sync - see __wake_up_sync_key()
3232 */
3233 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3234 {
3235 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3236 }
3237 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3238
3239 /**
3240 * complete: - signals a single thread waiting on this completion
3241 * @x: holds the state of this particular completion
3242 *
3243 * This will wake up a single thread waiting on this completion. Threads will be
3244 * awakened in the same order in which they were queued.
3245 *
3246 * See also complete_all(), wait_for_completion() and related routines.
3247 *
3248 * It may be assumed that this function implies a write memory barrier before
3249 * changing the task state if and only if any tasks are woken up.
3250 */
3251 void complete(struct completion *x)
3252 {
3253 unsigned long flags;
3254
3255 spin_lock_irqsave(&x->wait.lock, flags);
3256 x->done++;
3257 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3258 spin_unlock_irqrestore(&x->wait.lock, flags);
3259 }
3260 EXPORT_SYMBOL(complete);
3261
3262 /**
3263 * complete_all: - signals all threads waiting on this completion
3264 * @x: holds the state of this particular completion
3265 *
3266 * This will wake up all threads waiting on this particular completion event.
3267 *
3268 * It may be assumed that this function implies a write memory barrier before
3269 * changing the task state if and only if any tasks are woken up.
3270 */
3271 void complete_all(struct completion *x)
3272 {
3273 unsigned long flags;
3274
3275 spin_lock_irqsave(&x->wait.lock, flags);
3276 x->done += UINT_MAX/2;
3277 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3278 spin_unlock_irqrestore(&x->wait.lock, flags);
3279 }
3280 EXPORT_SYMBOL(complete_all);
3281
3282 static inline long __sched
3283 do_wait_for_common(struct completion *x,
3284 long (*action)(long), long timeout, int state)
3285 {
3286 if (!x->done) {
3287 DECLARE_WAITQUEUE(wait, current);
3288
3289 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3290 do {
3291 if (signal_pending_state(state, current)) {
3292 timeout = -ERESTARTSYS;
3293 break;
3294 }
3295 __set_current_state(state);
3296 spin_unlock_irq(&x->wait.lock);
3297 timeout = action(timeout);
3298 spin_lock_irq(&x->wait.lock);
3299 } while (!x->done && timeout);
3300 __remove_wait_queue(&x->wait, &wait);
3301 if (!x->done)
3302 return timeout;
3303 }
3304 x->done--;
3305 return timeout ?: 1;
3306 }
3307
3308 static inline long __sched
3309 __wait_for_common(struct completion *x,
3310 long (*action)(long), long timeout, int state)
3311 {
3312 might_sleep();
3313
3314 spin_lock_irq(&x->wait.lock);
3315 timeout = do_wait_for_common(x, action, timeout, state);
3316 spin_unlock_irq(&x->wait.lock);
3317 return timeout;
3318 }
3319
3320 static long __sched
3321 wait_for_common(struct completion *x, long timeout, int state)
3322 {
3323 return __wait_for_common(x, schedule_timeout, timeout, state);
3324 }
3325
3326 static long __sched
3327 wait_for_common_io(struct completion *x, long timeout, int state)
3328 {
3329 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3330 }
3331
3332 /**
3333 * wait_for_completion: - waits for completion of a task
3334 * @x: holds the state of this particular completion
3335 *
3336 * This waits to be signaled for completion of a specific task. It is NOT
3337 * interruptible and there is no timeout.
3338 *
3339 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3340 * and interrupt capability. Also see complete().
3341 */
3342 void __sched wait_for_completion(struct completion *x)
3343 {
3344 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3345 }
3346 EXPORT_SYMBOL(wait_for_completion);
3347
3348 /**
3349 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3350 * @x: holds the state of this particular completion
3351 * @timeout: timeout value in jiffies
3352 *
3353 * This waits for either a completion of a specific task to be signaled or for a
3354 * specified timeout to expire. The timeout is in jiffies. It is not
3355 * interruptible.
3356 *
3357 * The return value is 0 if timed out, and positive (at least 1, or number of
3358 * jiffies left till timeout) if completed.
3359 */
3360 unsigned long __sched
3361 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3362 {
3363 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3364 }
3365 EXPORT_SYMBOL(wait_for_completion_timeout);
3366
3367 /**
3368 * wait_for_completion_io: - waits for completion of a task
3369 * @x: holds the state of this particular completion
3370 *
3371 * This waits to be signaled for completion of a specific task. It is NOT
3372 * interruptible and there is no timeout. The caller is accounted as waiting
3373 * for IO.
3374 */
3375 void __sched wait_for_completion_io(struct completion *x)
3376 {
3377 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3378 }
3379 EXPORT_SYMBOL(wait_for_completion_io);
3380
3381 /**
3382 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3383 * @x: holds the state of this particular completion
3384 * @timeout: timeout value in jiffies
3385 *
3386 * This waits for either a completion of a specific task to be signaled or for a
3387 * specified timeout to expire. The timeout is in jiffies. It is not
3388 * interruptible. The caller is accounted as waiting for IO.
3389 *
3390 * The return value is 0 if timed out, and positive (at least 1, or number of
3391 * jiffies left till timeout) if completed.
3392 */
3393 unsigned long __sched
3394 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3395 {
3396 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3397 }
3398 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3399
3400 /**
3401 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3402 * @x: holds the state of this particular completion
3403 *
3404 * This waits for completion of a specific task to be signaled. It is
3405 * interruptible.
3406 *
3407 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3408 */
3409 int __sched wait_for_completion_interruptible(struct completion *x)
3410 {
3411 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3412 if (t == -ERESTARTSYS)
3413 return t;
3414 return 0;
3415 }
3416 EXPORT_SYMBOL(wait_for_completion_interruptible);
3417
3418 /**
3419 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3420 * @x: holds the state of this particular completion
3421 * @timeout: timeout value in jiffies
3422 *
3423 * This waits for either a completion of a specific task to be signaled or for a
3424 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3425 *
3426 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3427 * positive (at least 1, or number of jiffies left till timeout) if completed.
3428 */
3429 long __sched
3430 wait_for_completion_interruptible_timeout(struct completion *x,
3431 unsigned long timeout)
3432 {
3433 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3434 }
3435 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3436
3437 /**
3438 * wait_for_completion_killable: - waits for completion of a task (killable)
3439 * @x: holds the state of this particular completion
3440 *
3441 * This waits to be signaled for completion of a specific task. It can be
3442 * interrupted by a kill signal.
3443 *
3444 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3445 */
3446 int __sched wait_for_completion_killable(struct completion *x)
3447 {
3448 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3449 if (t == -ERESTARTSYS)
3450 return t;
3451 return 0;
3452 }
3453 EXPORT_SYMBOL(wait_for_completion_killable);
3454
3455 /**
3456 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3457 * @x: holds the state of this particular completion
3458 * @timeout: timeout value in jiffies
3459 *
3460 * This waits for either a completion of a specific task to be
3461 * signaled or for a specified timeout to expire. It can be
3462 * interrupted by a kill signal. The timeout is in jiffies.
3463 *
3464 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3465 * positive (at least 1, or number of jiffies left till timeout) if completed.
3466 */
3467 long __sched
3468 wait_for_completion_killable_timeout(struct completion *x,
3469 unsigned long timeout)
3470 {
3471 return wait_for_common(x, timeout, TASK_KILLABLE);
3472 }
3473 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3474
3475 /**
3476 * try_wait_for_completion - try to decrement a completion without blocking
3477 * @x: completion structure
3478 *
3479 * Returns: 0 if a decrement cannot be done without blocking
3480 * 1 if a decrement succeeded.
3481 *
3482 * If a completion is being used as a counting completion,
3483 * attempt to decrement the counter without blocking. This
3484 * enables us to avoid waiting if the resource the completion
3485 * is protecting is not available.
3486 */
3487 bool try_wait_for_completion(struct completion *x)
3488 {
3489 unsigned long flags;
3490 int ret = 1;
3491
3492 spin_lock_irqsave(&x->wait.lock, flags);
3493 if (!x->done)
3494 ret = 0;
3495 else
3496 x->done--;
3497 spin_unlock_irqrestore(&x->wait.lock, flags);
3498 return ret;
3499 }
3500 EXPORT_SYMBOL(try_wait_for_completion);
3501
3502 /**
3503 * completion_done - Test to see if a completion has any waiters
3504 * @x: completion structure
3505 *
3506 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3507 * 1 if there are no waiters.
3508 *
3509 */
3510 bool completion_done(struct completion *x)
3511 {
3512 unsigned long flags;
3513 int ret = 1;
3514
3515 spin_lock_irqsave(&x->wait.lock, flags);
3516 if (!x->done)
3517 ret = 0;
3518 spin_unlock_irqrestore(&x->wait.lock, flags);
3519 return ret;
3520 }
3521 EXPORT_SYMBOL(completion_done);
3522
3523 static long __sched
3524 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3525 {
3526 unsigned long flags;
3527 wait_queue_t wait;
3528
3529 init_waitqueue_entry(&wait, current);
3530
3531 __set_current_state(state);
3532
3533 spin_lock_irqsave(&q->lock, flags);
3534 __add_wait_queue(q, &wait);
3535 spin_unlock(&q->lock);
3536 timeout = schedule_timeout(timeout);
3537 spin_lock_irq(&q->lock);
3538 __remove_wait_queue(q, &wait);
3539 spin_unlock_irqrestore(&q->lock, flags);
3540
3541 return timeout;
3542 }
3543
3544 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3545 {
3546 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3547 }
3548 EXPORT_SYMBOL(interruptible_sleep_on);
3549
3550 long __sched
3551 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3552 {
3553 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3554 }
3555 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3556
3557 void __sched sleep_on(wait_queue_head_t *q)
3558 {
3559 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3560 }
3561 EXPORT_SYMBOL(sleep_on);
3562
3563 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3564 {
3565 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3566 }
3567 EXPORT_SYMBOL(sleep_on_timeout);
3568
3569 #ifdef CONFIG_RT_MUTEXES
3570
3571 /*
3572 * rt_mutex_setprio - set the current priority of a task
3573 * @p: task
3574 * @prio: prio value (kernel-internal form)
3575 *
3576 * This function changes the 'effective' priority of a task. It does
3577 * not touch ->normal_prio like __setscheduler().
3578 *
3579 * Used by the rt_mutex code to implement priority inheritance logic.
3580 */
3581 void rt_mutex_setprio(struct task_struct *p, int prio)
3582 {
3583 int oldprio, on_rq, running;
3584 struct rq *rq;
3585 const struct sched_class *prev_class;
3586
3587 BUG_ON(prio < 0 || prio > MAX_PRIO);
3588
3589 rq = __task_rq_lock(p);
3590
3591 /*
3592 * Idle task boosting is a nono in general. There is one
3593 * exception, when PREEMPT_RT and NOHZ is active:
3594 *
3595 * The idle task calls get_next_timer_interrupt() and holds
3596 * the timer wheel base->lock on the CPU and another CPU wants
3597 * to access the timer (probably to cancel it). We can safely
3598 * ignore the boosting request, as the idle CPU runs this code
3599 * with interrupts disabled and will complete the lock
3600 * protected section without being interrupted. So there is no
3601 * real need to boost.
3602 */
3603 if (unlikely(p == rq->idle)) {
3604 WARN_ON(p != rq->curr);
3605 WARN_ON(p->pi_blocked_on);
3606 goto out_unlock;
3607 }
3608
3609 trace_sched_pi_setprio(p, prio);
3610 oldprio = p->prio;
3611 prev_class = p->sched_class;
3612 on_rq = p->on_rq;
3613 running = task_current(rq, p);
3614 if (on_rq)
3615 dequeue_task(rq, p, 0);
3616 if (running)
3617 p->sched_class->put_prev_task(rq, p);
3618
3619 if (rt_prio(prio))
3620 p->sched_class = &rt_sched_class;
3621 else
3622 p->sched_class = &fair_sched_class;
3623
3624 p->prio = prio;
3625
3626 if (running)
3627 p->sched_class->set_curr_task(rq);
3628 if (on_rq)
3629 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3630
3631 check_class_changed(rq, p, prev_class, oldprio);
3632 out_unlock:
3633 __task_rq_unlock(rq);
3634 }
3635 #endif
3636 void set_user_nice(struct task_struct *p, long nice)
3637 {
3638 int old_prio, delta, on_rq;
3639 unsigned long flags;
3640 struct rq *rq;
3641
3642 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3643 return;
3644 /*
3645 * We have to be careful, if called from sys_setpriority(),
3646 * the task might be in the middle of scheduling on another CPU.
3647 */
3648 rq = task_rq_lock(p, &flags);
3649 /*
3650 * The RT priorities are set via sched_setscheduler(), but we still
3651 * allow the 'normal' nice value to be set - but as expected
3652 * it wont have any effect on scheduling until the task is
3653 * SCHED_FIFO/SCHED_RR:
3654 */
3655 if (task_has_rt_policy(p)) {
3656 p->static_prio = NICE_TO_PRIO(nice);
3657 goto out_unlock;
3658 }
3659 on_rq = p->on_rq;
3660 if (on_rq)
3661 dequeue_task(rq, p, 0);
3662
3663 p->static_prio = NICE_TO_PRIO(nice);
3664 set_load_weight(p);
3665 old_prio = p->prio;
3666 p->prio = effective_prio(p);
3667 delta = p->prio - old_prio;
3668
3669 if (on_rq) {
3670 enqueue_task(rq, p, 0);
3671 /*
3672 * If the task increased its priority or is running and
3673 * lowered its priority, then reschedule its CPU:
3674 */
3675 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3676 resched_task(rq->curr);
3677 }
3678 out_unlock:
3679 task_rq_unlock(rq, p, &flags);
3680 }
3681 EXPORT_SYMBOL(set_user_nice);
3682
3683 /*
3684 * can_nice - check if a task can reduce its nice value
3685 * @p: task
3686 * @nice: nice value
3687 */
3688 int can_nice(const struct task_struct *p, const int nice)
3689 {
3690 /* convert nice value [19,-20] to rlimit style value [1,40] */
3691 int nice_rlim = 20 - nice;
3692
3693 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3694 capable(CAP_SYS_NICE));
3695 }
3696
3697 #ifdef __ARCH_WANT_SYS_NICE
3698
3699 /*
3700 * sys_nice - change the priority of the current process.
3701 * @increment: priority increment
3702 *
3703 * sys_setpriority is a more generic, but much slower function that
3704 * does similar things.
3705 */
3706 SYSCALL_DEFINE1(nice, int, increment)
3707 {
3708 long nice, retval;
3709
3710 /*
3711 * Setpriority might change our priority at the same moment.
3712 * We don't have to worry. Conceptually one call occurs first
3713 * and we have a single winner.
3714 */
3715 if (increment < -40)
3716 increment = -40;
3717 if (increment > 40)
3718 increment = 40;
3719
3720 nice = TASK_NICE(current) + increment;
3721 if (nice < -20)
3722 nice = -20;
3723 if (nice > 19)
3724 nice = 19;
3725
3726 if (increment < 0 && !can_nice(current, nice))
3727 return -EPERM;
3728
3729 retval = security_task_setnice(current, nice);
3730 if (retval)
3731 return retval;
3732
3733 set_user_nice(current, nice);
3734 return 0;
3735 }
3736
3737 #endif
3738
3739 /**
3740 * task_prio - return the priority value of a given task.
3741 * @p: the task in question.
3742 *
3743 * This is the priority value as seen by users in /proc.
3744 * RT tasks are offset by -200. Normal tasks are centered
3745 * around 0, value goes from -16 to +15.
3746 */
3747 int task_prio(const struct task_struct *p)
3748 {
3749 return p->prio - MAX_RT_PRIO;
3750 }
3751
3752 /**
3753 * task_nice - return the nice value of a given task.
3754 * @p: the task in question.
3755 */
3756 int task_nice(const struct task_struct *p)
3757 {
3758 return TASK_NICE(p);
3759 }
3760 EXPORT_SYMBOL(task_nice);
3761
3762 /**
3763 * idle_cpu - is a given cpu idle currently?
3764 * @cpu: the processor in question.
3765 */
3766 int idle_cpu(int cpu)
3767 {
3768 struct rq *rq = cpu_rq(cpu);
3769
3770 if (rq->curr != rq->idle)
3771 return 0;
3772
3773 if (rq->nr_running)
3774 return 0;
3775
3776 #ifdef CONFIG_SMP
3777 if (!llist_empty(&rq->wake_list))
3778 return 0;
3779 #endif
3780
3781 return 1;
3782 }
3783
3784 /**
3785 * idle_task - return the idle task for a given cpu.
3786 * @cpu: the processor in question.
3787 */
3788 struct task_struct *idle_task(int cpu)
3789 {
3790 return cpu_rq(cpu)->idle;
3791 }
3792
3793 /**
3794 * find_process_by_pid - find a process with a matching PID value.
3795 * @pid: the pid in question.
3796 */
3797 static struct task_struct *find_process_by_pid(pid_t pid)
3798 {
3799 return pid ? find_task_by_vpid(pid) : current;
3800 }
3801
3802 /* Actually do priority change: must hold rq lock. */
3803 static void
3804 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3805 {
3806 p->policy = policy;
3807 p->rt_priority = prio;
3808 p->normal_prio = normal_prio(p);
3809 /* we are holding p->pi_lock already */
3810 p->prio = rt_mutex_getprio(p);
3811 if (rt_prio(p->prio))
3812 p->sched_class = &rt_sched_class;
3813 else
3814 p->sched_class = &fair_sched_class;
3815 set_load_weight(p);
3816 }
3817
3818 /*
3819 * check the target process has a UID that matches the current process's
3820 */
3821 static bool check_same_owner(struct task_struct *p)
3822 {
3823 const struct cred *cred = current_cred(), *pcred;
3824 bool match;
3825
3826 rcu_read_lock();
3827 pcred = __task_cred(p);
3828 match = (uid_eq(cred->euid, pcred->euid) ||
3829 uid_eq(cred->euid, pcred->uid));
3830 rcu_read_unlock();
3831 return match;
3832 }
3833
3834 static int __sched_setscheduler(struct task_struct *p, int policy,
3835 const struct sched_param *param, bool user)
3836 {
3837 int retval, oldprio, oldpolicy = -1, on_rq, running;
3838 unsigned long flags;
3839 const struct sched_class *prev_class;
3840 struct rq *rq;
3841 int reset_on_fork;
3842
3843 /* may grab non-irq protected spin_locks */
3844 BUG_ON(in_interrupt());
3845 recheck:
3846 /* double check policy once rq lock held */
3847 if (policy < 0) {
3848 reset_on_fork = p->sched_reset_on_fork;
3849 policy = oldpolicy = p->policy;
3850 } else {
3851 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3852 policy &= ~SCHED_RESET_ON_FORK;
3853
3854 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3855 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3856 policy != SCHED_IDLE)
3857 return -EINVAL;
3858 }
3859
3860 /*
3861 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863 * SCHED_BATCH and SCHED_IDLE is 0.
3864 */
3865 if (param->sched_priority < 0 ||
3866 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3867 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3868 return -EINVAL;
3869 if (rt_policy(policy) != (param->sched_priority != 0))
3870 return -EINVAL;
3871
3872 /*
3873 * Allow unprivileged RT tasks to decrease priority:
3874 */
3875 if (user && !capable(CAP_SYS_NICE)) {
3876 if (rt_policy(policy)) {
3877 unsigned long rlim_rtprio =
3878 task_rlimit(p, RLIMIT_RTPRIO);
3879
3880 /* can't set/change the rt policy */
3881 if (policy != p->policy && !rlim_rtprio)
3882 return -EPERM;
3883
3884 /* can't increase priority */
3885 if (param->sched_priority > p->rt_priority &&
3886 param->sched_priority > rlim_rtprio)
3887 return -EPERM;
3888 }
3889
3890 /*
3891 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3892 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3893 */
3894 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3895 if (!can_nice(p, TASK_NICE(p)))
3896 return -EPERM;
3897 }
3898
3899 /* can't change other user's priorities */
3900 if (!check_same_owner(p))
3901 return -EPERM;
3902
3903 /* Normal users shall not reset the sched_reset_on_fork flag */
3904 if (p->sched_reset_on_fork && !reset_on_fork)
3905 return -EPERM;
3906 }
3907
3908 if (user) {
3909 retval = security_task_setscheduler(p);
3910 if (retval)
3911 return retval;
3912 }
3913
3914 /*
3915 * make sure no PI-waiters arrive (or leave) while we are
3916 * changing the priority of the task:
3917 *
3918 * To be able to change p->policy safely, the appropriate
3919 * runqueue lock must be held.
3920 */
3921 rq = task_rq_lock(p, &flags);
3922
3923 /*
3924 * Changing the policy of the stop threads its a very bad idea
3925 */
3926 if (p == rq->stop) {
3927 task_rq_unlock(rq, p, &flags);
3928 return -EINVAL;
3929 }
3930
3931 /*
3932 * If not changing anything there's no need to proceed further:
3933 */
3934 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3935 param->sched_priority == p->rt_priority))) {
3936 task_rq_unlock(rq, p, &flags);
3937 return 0;
3938 }
3939
3940 #ifdef CONFIG_RT_GROUP_SCHED
3941 if (user) {
3942 /*
3943 * Do not allow realtime tasks into groups that have no runtime
3944 * assigned.
3945 */
3946 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3947 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3948 !task_group_is_autogroup(task_group(p))) {
3949 task_rq_unlock(rq, p, &flags);
3950 return -EPERM;
3951 }
3952 }
3953 #endif
3954
3955 /* recheck policy now with rq lock held */
3956 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3957 policy = oldpolicy = -1;
3958 task_rq_unlock(rq, p, &flags);
3959 goto recheck;
3960 }
3961 on_rq = p->on_rq;
3962 running = task_current(rq, p);
3963 if (on_rq)
3964 dequeue_task(rq, p, 0);
3965 if (running)
3966 p->sched_class->put_prev_task(rq, p);
3967
3968 p->sched_reset_on_fork = reset_on_fork;
3969
3970 oldprio = p->prio;
3971 prev_class = p->sched_class;
3972 __setscheduler(rq, p, policy, param->sched_priority);
3973
3974 if (running)
3975 p->sched_class->set_curr_task(rq);
3976 if (on_rq)
3977 enqueue_task(rq, p, 0);
3978
3979 check_class_changed(rq, p, prev_class, oldprio);
3980 task_rq_unlock(rq, p, &flags);
3981
3982 rt_mutex_adjust_pi(p);
3983
3984 return 0;
3985 }
3986
3987 /**
3988 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3989 * @p: the task in question.
3990 * @policy: new policy.
3991 * @param: structure containing the new RT priority.
3992 *
3993 * NOTE that the task may be already dead.
3994 */
3995 int sched_setscheduler(struct task_struct *p, int policy,
3996 const struct sched_param *param)
3997 {
3998 return __sched_setscheduler(p, policy, param, true);
3999 }
4000 EXPORT_SYMBOL_GPL(sched_setscheduler);
4001
4002 /**
4003 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4004 * @p: the task in question.
4005 * @policy: new policy.
4006 * @param: structure containing the new RT priority.
4007 *
4008 * Just like sched_setscheduler, only don't bother checking if the
4009 * current context has permission. For example, this is needed in
4010 * stop_machine(): we create temporary high priority worker threads,
4011 * but our caller might not have that capability.
4012 */
4013 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4014 const struct sched_param *param)
4015 {
4016 return __sched_setscheduler(p, policy, param, false);
4017 }
4018
4019 static int
4020 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4021 {
4022 struct sched_param lparam;
4023 struct task_struct *p;
4024 int retval;
4025
4026 if (!param || pid < 0)
4027 return -EINVAL;
4028 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4029 return -EFAULT;
4030
4031 rcu_read_lock();
4032 retval = -ESRCH;
4033 p = find_process_by_pid(pid);
4034 if (p != NULL)
4035 retval = sched_setscheduler(p, policy, &lparam);
4036 rcu_read_unlock();
4037
4038 return retval;
4039 }
4040
4041 /**
4042 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4043 * @pid: the pid in question.
4044 * @policy: new policy.
4045 * @param: structure containing the new RT priority.
4046 */
4047 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4048 struct sched_param __user *, param)
4049 {
4050 /* negative values for policy are not valid */
4051 if (policy < 0)
4052 return -EINVAL;
4053
4054 return do_sched_setscheduler(pid, policy, param);
4055 }
4056
4057 /**
4058 * sys_sched_setparam - set/change the RT priority of a thread
4059 * @pid: the pid in question.
4060 * @param: structure containing the new RT priority.
4061 */
4062 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4063 {
4064 return do_sched_setscheduler(pid, -1, param);
4065 }
4066
4067 /**
4068 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4069 * @pid: the pid in question.
4070 */
4071 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4072 {
4073 struct task_struct *p;
4074 int retval;
4075
4076 if (pid < 0)
4077 return -EINVAL;
4078
4079 retval = -ESRCH;
4080 rcu_read_lock();
4081 p = find_process_by_pid(pid);
4082 if (p) {
4083 retval = security_task_getscheduler(p);
4084 if (!retval)
4085 retval = p->policy
4086 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4087 }
4088 rcu_read_unlock();
4089 return retval;
4090 }
4091
4092 /**
4093 * sys_sched_getparam - get the RT priority of a thread
4094 * @pid: the pid in question.
4095 * @param: structure containing the RT priority.
4096 */
4097 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4098 {
4099 struct sched_param lp;
4100 struct task_struct *p;
4101 int retval;
4102
4103 if (!param || pid < 0)
4104 return -EINVAL;
4105
4106 rcu_read_lock();
4107 p = find_process_by_pid(pid);
4108 retval = -ESRCH;
4109 if (!p)
4110 goto out_unlock;
4111
4112 retval = security_task_getscheduler(p);
4113 if (retval)
4114 goto out_unlock;
4115
4116 lp.sched_priority = p->rt_priority;
4117 rcu_read_unlock();
4118
4119 /*
4120 * This one might sleep, we cannot do it with a spinlock held ...
4121 */
4122 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4123
4124 return retval;
4125
4126 out_unlock:
4127 rcu_read_unlock();
4128 return retval;
4129 }
4130
4131 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4132 {
4133 cpumask_var_t cpus_allowed, new_mask;
4134 struct task_struct *p;
4135 int retval;
4136
4137 get_online_cpus();
4138 rcu_read_lock();
4139
4140 p = find_process_by_pid(pid);
4141 if (!p) {
4142 rcu_read_unlock();
4143 put_online_cpus();
4144 return -ESRCH;
4145 }
4146
4147 /* Prevent p going away */
4148 get_task_struct(p);
4149 rcu_read_unlock();
4150
4151 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4152 retval = -ENOMEM;
4153 goto out_put_task;
4154 }
4155 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4156 retval = -ENOMEM;
4157 goto out_free_cpus_allowed;
4158 }
4159 retval = -EPERM;
4160 if (!check_same_owner(p)) {
4161 rcu_read_lock();
4162 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4163 rcu_read_unlock();
4164 goto out_unlock;
4165 }
4166 rcu_read_unlock();
4167 }
4168
4169 retval = security_task_setscheduler(p);
4170 if (retval)
4171 goto out_unlock;
4172
4173 cpuset_cpus_allowed(p, cpus_allowed);
4174 cpumask_and(new_mask, in_mask, cpus_allowed);
4175 again:
4176 retval = set_cpus_allowed_ptr(p, new_mask);
4177
4178 if (!retval) {
4179 cpuset_cpus_allowed(p, cpus_allowed);
4180 if (!cpumask_subset(new_mask, cpus_allowed)) {
4181 /*
4182 * We must have raced with a concurrent cpuset
4183 * update. Just reset the cpus_allowed to the
4184 * cpuset's cpus_allowed
4185 */
4186 cpumask_copy(new_mask, cpus_allowed);
4187 goto again;
4188 }
4189 }
4190 out_unlock:
4191 free_cpumask_var(new_mask);
4192 out_free_cpus_allowed:
4193 free_cpumask_var(cpus_allowed);
4194 out_put_task:
4195 put_task_struct(p);
4196 put_online_cpus();
4197 return retval;
4198 }
4199
4200 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4201 struct cpumask *new_mask)
4202 {
4203 if (len < cpumask_size())
4204 cpumask_clear(new_mask);
4205 else if (len > cpumask_size())
4206 len = cpumask_size();
4207
4208 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4209 }
4210
4211 /**
4212 * sys_sched_setaffinity - set the cpu affinity of a process
4213 * @pid: pid of the process
4214 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4215 * @user_mask_ptr: user-space pointer to the new cpu mask
4216 */
4217 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4218 unsigned long __user *, user_mask_ptr)
4219 {
4220 cpumask_var_t new_mask;
4221 int retval;
4222
4223 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4224 return -ENOMEM;
4225
4226 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4227 if (retval == 0)
4228 retval = sched_setaffinity(pid, new_mask);
4229 free_cpumask_var(new_mask);
4230 return retval;
4231 }
4232
4233 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4234 {
4235 struct task_struct *p;
4236 unsigned long flags;
4237 int retval;
4238
4239 get_online_cpus();
4240 rcu_read_lock();
4241
4242 retval = -ESRCH;
4243 p = find_process_by_pid(pid);
4244 if (!p)
4245 goto out_unlock;
4246
4247 retval = security_task_getscheduler(p);
4248 if (retval)
4249 goto out_unlock;
4250
4251 raw_spin_lock_irqsave(&p->pi_lock, flags);
4252 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4253 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4254
4255 out_unlock:
4256 rcu_read_unlock();
4257 put_online_cpus();
4258
4259 return retval;
4260 }
4261
4262 /**
4263 * sys_sched_getaffinity - get the cpu affinity of a process
4264 * @pid: pid of the process
4265 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4266 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4267 */
4268 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4269 unsigned long __user *, user_mask_ptr)
4270 {
4271 int ret;
4272 cpumask_var_t mask;
4273
4274 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4275 return -EINVAL;
4276 if (len & (sizeof(unsigned long)-1))
4277 return -EINVAL;
4278
4279 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4280 return -ENOMEM;
4281
4282 ret = sched_getaffinity(pid, mask);
4283 if (ret == 0) {
4284 size_t retlen = min_t(size_t, len, cpumask_size());
4285
4286 if (copy_to_user(user_mask_ptr, mask, retlen))
4287 ret = -EFAULT;
4288 else
4289 ret = retlen;
4290 }
4291 free_cpumask_var(mask);
4292
4293 return ret;
4294 }
4295
4296 /**
4297 * sys_sched_yield - yield the current processor to other threads.
4298 *
4299 * This function yields the current CPU to other tasks. If there are no
4300 * other threads running on this CPU then this function will return.
4301 */
4302 SYSCALL_DEFINE0(sched_yield)
4303 {
4304 struct rq *rq = this_rq_lock();
4305
4306 schedstat_inc(rq, yld_count);
4307 current->sched_class->yield_task(rq);
4308
4309 /*
4310 * Since we are going to call schedule() anyway, there's
4311 * no need to preempt or enable interrupts:
4312 */
4313 __release(rq->lock);
4314 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4315 do_raw_spin_unlock(&rq->lock);
4316 sched_preempt_enable_no_resched();
4317
4318 schedule();
4319
4320 return 0;
4321 }
4322
4323 static inline int should_resched(void)
4324 {
4325 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4326 }
4327
4328 static void __cond_resched(void)
4329 {
4330 add_preempt_count(PREEMPT_ACTIVE);
4331 __schedule();
4332 sub_preempt_count(PREEMPT_ACTIVE);
4333 }
4334
4335 int __sched _cond_resched(void)
4336 {
4337 if (should_resched()) {
4338 __cond_resched();
4339 return 1;
4340 }
4341 return 0;
4342 }
4343 EXPORT_SYMBOL(_cond_resched);
4344
4345 /*
4346 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4347 * call schedule, and on return reacquire the lock.
4348 *
4349 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4350 * operations here to prevent schedule() from being called twice (once via
4351 * spin_unlock(), once by hand).
4352 */
4353 int __cond_resched_lock(spinlock_t *lock)
4354 {
4355 int resched = should_resched();
4356 int ret = 0;
4357
4358 lockdep_assert_held(lock);
4359
4360 if (spin_needbreak(lock) || resched) {
4361 spin_unlock(lock);
4362 if (resched)
4363 __cond_resched();
4364 else
4365 cpu_relax();
4366 ret = 1;
4367 spin_lock(lock);
4368 }
4369 return ret;
4370 }
4371 EXPORT_SYMBOL(__cond_resched_lock);
4372
4373 int __sched __cond_resched_softirq(void)
4374 {
4375 BUG_ON(!in_softirq());
4376
4377 if (should_resched()) {
4378 local_bh_enable();
4379 __cond_resched();
4380 local_bh_disable();
4381 return 1;
4382 }
4383 return 0;
4384 }
4385 EXPORT_SYMBOL(__cond_resched_softirq);
4386
4387 /**
4388 * yield - yield the current processor to other threads.
4389 *
4390 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4391 *
4392 * The scheduler is at all times free to pick the calling task as the most
4393 * eligible task to run, if removing the yield() call from your code breaks
4394 * it, its already broken.
4395 *
4396 * Typical broken usage is:
4397 *
4398 * while (!event)
4399 * yield();
4400 *
4401 * where one assumes that yield() will let 'the other' process run that will
4402 * make event true. If the current task is a SCHED_FIFO task that will never
4403 * happen. Never use yield() as a progress guarantee!!
4404 *
4405 * If you want to use yield() to wait for something, use wait_event().
4406 * If you want to use yield() to be 'nice' for others, use cond_resched().
4407 * If you still want to use yield(), do not!
4408 */
4409 void __sched yield(void)
4410 {
4411 set_current_state(TASK_RUNNING);
4412 sys_sched_yield();
4413 }
4414 EXPORT_SYMBOL(yield);
4415
4416 /**
4417 * yield_to - yield the current processor to another thread in
4418 * your thread group, or accelerate that thread toward the
4419 * processor it's on.
4420 * @p: target task
4421 * @preempt: whether task preemption is allowed or not
4422 *
4423 * It's the caller's job to ensure that the target task struct
4424 * can't go away on us before we can do any checks.
4425 *
4426 * Returns:
4427 * true (>0) if we indeed boosted the target task.
4428 * false (0) if we failed to boost the target.
4429 * -ESRCH if there's no task to yield to.
4430 */
4431 bool __sched yield_to(struct task_struct *p, bool preempt)
4432 {
4433 struct task_struct *curr = current;
4434 struct rq *rq, *p_rq;
4435 unsigned long flags;
4436 int yielded = 0;
4437
4438 local_irq_save(flags);
4439 rq = this_rq();
4440
4441 again:
4442 p_rq = task_rq(p);
4443 /*
4444 * If we're the only runnable task on the rq and target rq also
4445 * has only one task, there's absolutely no point in yielding.
4446 */
4447 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4448 yielded = -ESRCH;
4449 goto out_irq;
4450 }
4451
4452 double_rq_lock(rq, p_rq);
4453 while (task_rq(p) != p_rq) {
4454 double_rq_unlock(rq, p_rq);
4455 goto again;
4456 }
4457
4458 if (!curr->sched_class->yield_to_task)
4459 goto out_unlock;
4460
4461 if (curr->sched_class != p->sched_class)
4462 goto out_unlock;
4463
4464 if (task_running(p_rq, p) || p->state)
4465 goto out_unlock;
4466
4467 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4468 if (yielded) {
4469 schedstat_inc(rq, yld_count);
4470 /*
4471 * Make p's CPU reschedule; pick_next_entity takes care of
4472 * fairness.
4473 */
4474 if (preempt && rq != p_rq)
4475 resched_task(p_rq->curr);
4476 }
4477
4478 out_unlock:
4479 double_rq_unlock(rq, p_rq);
4480 out_irq:
4481 local_irq_restore(flags);
4482
4483 if (yielded > 0)
4484 schedule();
4485
4486 return yielded;
4487 }
4488 EXPORT_SYMBOL_GPL(yield_to);
4489
4490 /*
4491 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4492 * that process accounting knows that this is a task in IO wait state.
4493 */
4494 void __sched io_schedule(void)
4495 {
4496 struct rq *rq = raw_rq();
4497
4498 delayacct_blkio_start();
4499 atomic_inc(&rq->nr_iowait);
4500 blk_flush_plug(current);
4501 current->in_iowait = 1;
4502 schedule();
4503 current->in_iowait = 0;
4504 atomic_dec(&rq->nr_iowait);
4505 delayacct_blkio_end();
4506 }
4507 EXPORT_SYMBOL(io_schedule);
4508
4509 long __sched io_schedule_timeout(long timeout)
4510 {
4511 struct rq *rq = raw_rq();
4512 long ret;
4513
4514 delayacct_blkio_start();
4515 atomic_inc(&rq->nr_iowait);
4516 blk_flush_plug(current);
4517 current->in_iowait = 1;
4518 ret = schedule_timeout(timeout);
4519 current->in_iowait = 0;
4520 atomic_dec(&rq->nr_iowait);
4521 delayacct_blkio_end();
4522 return ret;
4523 }
4524
4525 /**
4526 * sys_sched_get_priority_max - return maximum RT priority.
4527 * @policy: scheduling class.
4528 *
4529 * this syscall returns the maximum rt_priority that can be used
4530 * by a given scheduling class.
4531 */
4532 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4533 {
4534 int ret = -EINVAL;
4535
4536 switch (policy) {
4537 case SCHED_FIFO:
4538 case SCHED_RR:
4539 ret = MAX_USER_RT_PRIO-1;
4540 break;
4541 case SCHED_NORMAL:
4542 case SCHED_BATCH:
4543 case SCHED_IDLE:
4544 ret = 0;
4545 break;
4546 }
4547 return ret;
4548 }
4549
4550 /**
4551 * sys_sched_get_priority_min - return minimum RT priority.
4552 * @policy: scheduling class.
4553 *
4554 * this syscall returns the minimum rt_priority that can be used
4555 * by a given scheduling class.
4556 */
4557 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4558 {
4559 int ret = -EINVAL;
4560
4561 switch (policy) {
4562 case SCHED_FIFO:
4563 case SCHED_RR:
4564 ret = 1;
4565 break;
4566 case SCHED_NORMAL:
4567 case SCHED_BATCH:
4568 case SCHED_IDLE:
4569 ret = 0;
4570 }
4571 return ret;
4572 }
4573
4574 /**
4575 * sys_sched_rr_get_interval - return the default timeslice of a process.
4576 * @pid: pid of the process.
4577 * @interval: userspace pointer to the timeslice value.
4578 *
4579 * this syscall writes the default timeslice value of a given process
4580 * into the user-space timespec buffer. A value of '0' means infinity.
4581 */
4582 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4583 struct timespec __user *, interval)
4584 {
4585 struct task_struct *p;
4586 unsigned int time_slice;
4587 unsigned long flags;
4588 struct rq *rq;
4589 int retval;
4590 struct timespec t;
4591
4592 if (pid < 0)
4593 return -EINVAL;
4594
4595 retval = -ESRCH;
4596 rcu_read_lock();
4597 p = find_process_by_pid(pid);
4598 if (!p)
4599 goto out_unlock;
4600
4601 retval = security_task_getscheduler(p);
4602 if (retval)
4603 goto out_unlock;
4604
4605 rq = task_rq_lock(p, &flags);
4606 time_slice = p->sched_class->get_rr_interval(rq, p);
4607 task_rq_unlock(rq, p, &flags);
4608
4609 rcu_read_unlock();
4610 jiffies_to_timespec(time_slice, &t);
4611 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4612 return retval;
4613
4614 out_unlock:
4615 rcu_read_unlock();
4616 return retval;
4617 }
4618
4619 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4620
4621 void sched_show_task(struct task_struct *p)
4622 {
4623 unsigned long free = 0;
4624 int ppid;
4625 unsigned state;
4626
4627 state = p->state ? __ffs(p->state) + 1 : 0;
4628 printk(KERN_INFO "%-15.15s %c", p->comm,
4629 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4630 #if BITS_PER_LONG == 32
4631 if (state == TASK_RUNNING)
4632 printk(KERN_CONT " running ");
4633 else
4634 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4635 #else
4636 if (state == TASK_RUNNING)
4637 printk(KERN_CONT " running task ");
4638 else
4639 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4640 #endif
4641 #ifdef CONFIG_DEBUG_STACK_USAGE
4642 free = stack_not_used(p);
4643 #endif
4644 rcu_read_lock();
4645 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4646 rcu_read_unlock();
4647 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4648 task_pid_nr(p), ppid,
4649 (unsigned long)task_thread_info(p)->flags);
4650
4651 show_stack(p, NULL);
4652 }
4653
4654 void show_state_filter(unsigned long state_filter)
4655 {
4656 struct task_struct *g, *p;
4657
4658 #if BITS_PER_LONG == 32
4659 printk(KERN_INFO
4660 " task PC stack pid father\n");
4661 #else
4662 printk(KERN_INFO
4663 " task PC stack pid father\n");
4664 #endif
4665 rcu_read_lock();
4666 do_each_thread(g, p) {
4667 /*
4668 * reset the NMI-timeout, listing all files on a slow
4669 * console might take a lot of time:
4670 */
4671 touch_nmi_watchdog();
4672 if (!state_filter || (p->state & state_filter))
4673 sched_show_task(p);
4674 } while_each_thread(g, p);
4675
4676 touch_all_softlockup_watchdogs();
4677
4678 #ifdef CONFIG_SCHED_DEBUG
4679 sysrq_sched_debug_show();
4680 #endif
4681 rcu_read_unlock();
4682 /*
4683 * Only show locks if all tasks are dumped:
4684 */
4685 if (!state_filter)
4686 debug_show_all_locks();
4687 }
4688
4689 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4690 {
4691 idle->sched_class = &idle_sched_class;
4692 }
4693
4694 /**
4695 * init_idle - set up an idle thread for a given CPU
4696 * @idle: task in question
4697 * @cpu: cpu the idle task belongs to
4698 *
4699 * NOTE: this function does not set the idle thread's NEED_RESCHED
4700 * flag, to make booting more robust.
4701 */
4702 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4703 {
4704 struct rq *rq = cpu_rq(cpu);
4705 unsigned long flags;
4706
4707 raw_spin_lock_irqsave(&rq->lock, flags);
4708
4709 __sched_fork(idle);
4710 idle->state = TASK_RUNNING;
4711 idle->se.exec_start = sched_clock();
4712
4713 do_set_cpus_allowed(idle, cpumask_of(cpu));
4714 /*
4715 * We're having a chicken and egg problem, even though we are
4716 * holding rq->lock, the cpu isn't yet set to this cpu so the
4717 * lockdep check in task_group() will fail.
4718 *
4719 * Similar case to sched_fork(). / Alternatively we could
4720 * use task_rq_lock() here and obtain the other rq->lock.
4721 *
4722 * Silence PROVE_RCU
4723 */
4724 rcu_read_lock();
4725 __set_task_cpu(idle, cpu);
4726 rcu_read_unlock();
4727
4728 rq->curr = rq->idle = idle;
4729 #if defined(CONFIG_SMP)
4730 idle->on_cpu = 1;
4731 #endif
4732 raw_spin_unlock_irqrestore(&rq->lock, flags);
4733
4734 /* Set the preempt count _outside_ the spinlocks! */
4735 task_thread_info(idle)->preempt_count = 0;
4736
4737 /*
4738 * The idle tasks have their own, simple scheduling class:
4739 */
4740 idle->sched_class = &idle_sched_class;
4741 ftrace_graph_init_idle_task(idle, cpu);
4742 vtime_init_idle(idle);
4743 #if defined(CONFIG_SMP)
4744 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4745 #endif
4746 }
4747
4748 #ifdef CONFIG_SMP
4749 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4750 {
4751 if (p->sched_class && p->sched_class->set_cpus_allowed)
4752 p->sched_class->set_cpus_allowed(p, new_mask);
4753
4754 cpumask_copy(&p->cpus_allowed, new_mask);
4755 p->nr_cpus_allowed = cpumask_weight(new_mask);
4756 }
4757
4758 /*
4759 * This is how migration works:
4760 *
4761 * 1) we invoke migration_cpu_stop() on the target CPU using
4762 * stop_one_cpu().
4763 * 2) stopper starts to run (implicitly forcing the migrated thread
4764 * off the CPU)
4765 * 3) it checks whether the migrated task is still in the wrong runqueue.
4766 * 4) if it's in the wrong runqueue then the migration thread removes
4767 * it and puts it into the right queue.
4768 * 5) stopper completes and stop_one_cpu() returns and the migration
4769 * is done.
4770 */
4771
4772 /*
4773 * Change a given task's CPU affinity. Migrate the thread to a
4774 * proper CPU and schedule it away if the CPU it's executing on
4775 * is removed from the allowed bitmask.
4776 *
4777 * NOTE: the caller must have a valid reference to the task, the
4778 * task must not exit() & deallocate itself prematurely. The
4779 * call is not atomic; no spinlocks may be held.
4780 */
4781 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4782 {
4783 unsigned long flags;
4784 struct rq *rq;
4785 unsigned int dest_cpu;
4786 int ret = 0;
4787
4788 rq = task_rq_lock(p, &flags);
4789
4790 if (cpumask_equal(&p->cpus_allowed, new_mask))
4791 goto out;
4792
4793 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4794 ret = -EINVAL;
4795 goto out;
4796 }
4797
4798 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4799 ret = -EINVAL;
4800 goto out;
4801 }
4802
4803 do_set_cpus_allowed(p, new_mask);
4804
4805 /* Can the task run on the task's current CPU? If so, we're done */
4806 if (cpumask_test_cpu(task_cpu(p), new_mask))
4807 goto out;
4808
4809 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4810 if (p->on_rq) {
4811 struct migration_arg arg = { p, dest_cpu };
4812 /* Need help from migration thread: drop lock and wait. */
4813 task_rq_unlock(rq, p, &flags);
4814 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4815 tlb_migrate_finish(p->mm);
4816 return 0;
4817 }
4818 out:
4819 task_rq_unlock(rq, p, &flags);
4820
4821 return ret;
4822 }
4823 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4824
4825 /*
4826 * Move (not current) task off this cpu, onto dest cpu. We're doing
4827 * this because either it can't run here any more (set_cpus_allowed()
4828 * away from this CPU, or CPU going down), or because we're
4829 * attempting to rebalance this task on exec (sched_exec).
4830 *
4831 * So we race with normal scheduler movements, but that's OK, as long
4832 * as the task is no longer on this CPU.
4833 *
4834 * Returns non-zero if task was successfully migrated.
4835 */
4836 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4837 {
4838 struct rq *rq_dest, *rq_src;
4839 int ret = 0;
4840
4841 if (unlikely(!cpu_active(dest_cpu)))
4842 return ret;
4843
4844 rq_src = cpu_rq(src_cpu);
4845 rq_dest = cpu_rq(dest_cpu);
4846
4847 raw_spin_lock(&p->pi_lock);
4848 double_rq_lock(rq_src, rq_dest);
4849 /* Already moved. */
4850 if (task_cpu(p) != src_cpu)
4851 goto done;
4852 /* Affinity changed (again). */
4853 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4854 goto fail;
4855
4856 /*
4857 * If we're not on a rq, the next wake-up will ensure we're
4858 * placed properly.
4859 */
4860 if (p->on_rq) {
4861 dequeue_task(rq_src, p, 0);
4862 set_task_cpu(p, dest_cpu);
4863 enqueue_task(rq_dest, p, 0);
4864 check_preempt_curr(rq_dest, p, 0);
4865 }
4866 done:
4867 ret = 1;
4868 fail:
4869 double_rq_unlock(rq_src, rq_dest);
4870 raw_spin_unlock(&p->pi_lock);
4871 return ret;
4872 }
4873
4874 /*
4875 * migration_cpu_stop - this will be executed by a highprio stopper thread
4876 * and performs thread migration by bumping thread off CPU then
4877 * 'pushing' onto another runqueue.
4878 */
4879 static int migration_cpu_stop(void *data)
4880 {
4881 struct migration_arg *arg = data;
4882
4883 /*
4884 * The original target cpu might have gone down and we might
4885 * be on another cpu but it doesn't matter.
4886 */
4887 local_irq_disable();
4888 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4889 local_irq_enable();
4890 return 0;
4891 }
4892
4893 #ifdef CONFIG_HOTPLUG_CPU
4894
4895 /*
4896 * Ensures that the idle task is using init_mm right before its cpu goes
4897 * offline.
4898 */
4899 void idle_task_exit(void)
4900 {
4901 struct mm_struct *mm = current->active_mm;
4902
4903 BUG_ON(cpu_online(smp_processor_id()));
4904
4905 if (mm != &init_mm)
4906 switch_mm(mm, &init_mm, current);
4907 mmdrop(mm);
4908 }
4909
4910 /*
4911 * Since this CPU is going 'away' for a while, fold any nr_active delta
4912 * we might have. Assumes we're called after migrate_tasks() so that the
4913 * nr_active count is stable.
4914 *
4915 * Also see the comment "Global load-average calculations".
4916 */
4917 static void calc_load_migrate(struct rq *rq)
4918 {
4919 long delta = calc_load_fold_active(rq);
4920 if (delta)
4921 atomic_long_add(delta, &calc_load_tasks);
4922 }
4923
4924 /*
4925 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4926 * try_to_wake_up()->select_task_rq().
4927 *
4928 * Called with rq->lock held even though we'er in stop_machine() and
4929 * there's no concurrency possible, we hold the required locks anyway
4930 * because of lock validation efforts.
4931 */
4932 static void migrate_tasks(unsigned int dead_cpu)
4933 {
4934 struct rq *rq = cpu_rq(dead_cpu);
4935 struct task_struct *next, *stop = rq->stop;
4936 int dest_cpu;
4937
4938 /*
4939 * Fudge the rq selection such that the below task selection loop
4940 * doesn't get stuck on the currently eligible stop task.
4941 *
4942 * We're currently inside stop_machine() and the rq is either stuck
4943 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4944 * either way we should never end up calling schedule() until we're
4945 * done here.
4946 */
4947 rq->stop = NULL;
4948
4949 for ( ; ; ) {
4950 /*
4951 * There's this thread running, bail when that's the only
4952 * remaining thread.
4953 */
4954 if (rq->nr_running == 1)
4955 break;
4956
4957 next = pick_next_task(rq);
4958 BUG_ON(!next);
4959 next->sched_class->put_prev_task(rq, next);
4960
4961 /* Find suitable destination for @next, with force if needed. */
4962 dest_cpu = select_fallback_rq(dead_cpu, next);
4963 raw_spin_unlock(&rq->lock);
4964
4965 __migrate_task(next, dead_cpu, dest_cpu);
4966
4967 raw_spin_lock(&rq->lock);
4968 }
4969
4970 rq->stop = stop;
4971 }
4972
4973 #endif /* CONFIG_HOTPLUG_CPU */
4974
4975 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4976
4977 static struct ctl_table sd_ctl_dir[] = {
4978 {
4979 .procname = "sched_domain",
4980 .mode = 0555,
4981 },
4982 {}
4983 };
4984
4985 static struct ctl_table sd_ctl_root[] = {
4986 {
4987 .procname = "kernel",
4988 .mode = 0555,
4989 .child = sd_ctl_dir,
4990 },
4991 {}
4992 };
4993
4994 static struct ctl_table *sd_alloc_ctl_entry(int n)
4995 {
4996 struct ctl_table *entry =
4997 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4998
4999 return entry;
5000 }
5001
5002 static void sd_free_ctl_entry(struct ctl_table **tablep)
5003 {
5004 struct ctl_table *entry;
5005
5006 /*
5007 * In the intermediate directories, both the child directory and
5008 * procname are dynamically allocated and could fail but the mode
5009 * will always be set. In the lowest directory the names are
5010 * static strings and all have proc handlers.
5011 */
5012 for (entry = *tablep; entry->mode; entry++) {
5013 if (entry->child)
5014 sd_free_ctl_entry(&entry->child);
5015 if (entry->proc_handler == NULL)
5016 kfree(entry->procname);
5017 }
5018
5019 kfree(*tablep);
5020 *tablep = NULL;
5021 }
5022
5023 static int min_load_idx = 0;
5024 static int max_load_idx = CPU_LOAD_IDX_MAX;
5025
5026 static void
5027 set_table_entry(struct ctl_table *entry,
5028 const char *procname, void *data, int maxlen,
5029 umode_t mode, proc_handler *proc_handler,
5030 bool load_idx)
5031 {
5032 entry->procname = procname;
5033 entry->data = data;
5034 entry->maxlen = maxlen;
5035 entry->mode = mode;
5036 entry->proc_handler = proc_handler;
5037
5038 if (load_idx) {
5039 entry->extra1 = &min_load_idx;
5040 entry->extra2 = &max_load_idx;
5041 }
5042 }
5043
5044 static struct ctl_table *
5045 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5046 {
5047 struct ctl_table *table = sd_alloc_ctl_entry(13);
5048
5049 if (table == NULL)
5050 return NULL;
5051
5052 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5053 sizeof(long), 0644, proc_doulongvec_minmax, false);
5054 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5055 sizeof(long), 0644, proc_doulongvec_minmax, false);
5056 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5057 sizeof(int), 0644, proc_dointvec_minmax, true);
5058 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5059 sizeof(int), 0644, proc_dointvec_minmax, true);
5060 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5061 sizeof(int), 0644, proc_dointvec_minmax, true);
5062 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5063 sizeof(int), 0644, proc_dointvec_minmax, true);
5064 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5065 sizeof(int), 0644, proc_dointvec_minmax, true);
5066 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5067 sizeof(int), 0644, proc_dointvec_minmax, false);
5068 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5069 sizeof(int), 0644, proc_dointvec_minmax, false);
5070 set_table_entry(&table[9], "cache_nice_tries",
5071 &sd->cache_nice_tries,
5072 sizeof(int), 0644, proc_dointvec_minmax, false);
5073 set_table_entry(&table[10], "flags", &sd->flags,
5074 sizeof(int), 0644, proc_dointvec_minmax, false);
5075 set_table_entry(&table[11], "name", sd->name,
5076 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5077 /* &table[12] is terminator */
5078
5079 return table;
5080 }
5081
5082 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5083 {
5084 struct ctl_table *entry, *table;
5085 struct sched_domain *sd;
5086 int domain_num = 0, i;
5087 char buf[32];
5088
5089 for_each_domain(cpu, sd)
5090 domain_num++;
5091 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5092 if (table == NULL)
5093 return NULL;
5094
5095 i = 0;
5096 for_each_domain(cpu, sd) {
5097 snprintf(buf, 32, "domain%d", i);
5098 entry->procname = kstrdup(buf, GFP_KERNEL);
5099 entry->mode = 0555;
5100 entry->child = sd_alloc_ctl_domain_table(sd);
5101 entry++;
5102 i++;
5103 }
5104 return table;
5105 }
5106
5107 static struct ctl_table_header *sd_sysctl_header;
5108 static void register_sched_domain_sysctl(void)
5109 {
5110 int i, cpu_num = num_possible_cpus();
5111 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5112 char buf[32];
5113
5114 WARN_ON(sd_ctl_dir[0].child);
5115 sd_ctl_dir[0].child = entry;
5116
5117 if (entry == NULL)
5118 return;
5119
5120 for_each_possible_cpu(i) {
5121 snprintf(buf, 32, "cpu%d", i);
5122 entry->procname = kstrdup(buf, GFP_KERNEL);
5123 entry->mode = 0555;
5124 entry->child = sd_alloc_ctl_cpu_table(i);
5125 entry++;
5126 }
5127
5128 WARN_ON(sd_sysctl_header);
5129 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5130 }
5131
5132 /* may be called multiple times per register */
5133 static void unregister_sched_domain_sysctl(void)
5134 {
5135 if (sd_sysctl_header)
5136 unregister_sysctl_table(sd_sysctl_header);
5137 sd_sysctl_header = NULL;
5138 if (sd_ctl_dir[0].child)
5139 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5140 }
5141 #else
5142 static void register_sched_domain_sysctl(void)
5143 {
5144 }
5145 static void unregister_sched_domain_sysctl(void)
5146 {
5147 }
5148 #endif
5149
5150 static void set_rq_online(struct rq *rq)
5151 {
5152 if (!rq->online) {
5153 const struct sched_class *class;
5154
5155 cpumask_set_cpu(rq->cpu, rq->rd->online);
5156 rq->online = 1;
5157
5158 for_each_class(class) {
5159 if (class->rq_online)
5160 class->rq_online(rq);
5161 }
5162 }
5163 }
5164
5165 static void set_rq_offline(struct rq *rq)
5166 {
5167 if (rq->online) {
5168 const struct sched_class *class;
5169
5170 for_each_class(class) {
5171 if (class->rq_offline)
5172 class->rq_offline(rq);
5173 }
5174
5175 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5176 rq->online = 0;
5177 }
5178 }
5179
5180 /*
5181 * migration_call - callback that gets triggered when a CPU is added.
5182 * Here we can start up the necessary migration thread for the new CPU.
5183 */
5184 static int __cpuinit
5185 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5186 {
5187 int cpu = (long)hcpu;
5188 unsigned long flags;
5189 struct rq *rq = cpu_rq(cpu);
5190
5191 switch (action & ~CPU_TASKS_FROZEN) {
5192
5193 case CPU_UP_PREPARE:
5194 rq->calc_load_update = calc_load_update;
5195 break;
5196
5197 case CPU_ONLINE:
5198 /* Update our root-domain */
5199 raw_spin_lock_irqsave(&rq->lock, flags);
5200 if (rq->rd) {
5201 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5202
5203 set_rq_online(rq);
5204 }
5205 raw_spin_unlock_irqrestore(&rq->lock, flags);
5206 break;
5207
5208 #ifdef CONFIG_HOTPLUG_CPU
5209 case CPU_DYING:
5210 sched_ttwu_pending();
5211 /* Update our root-domain */
5212 raw_spin_lock_irqsave(&rq->lock, flags);
5213 if (rq->rd) {
5214 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5215 set_rq_offline(rq);
5216 }
5217 migrate_tasks(cpu);
5218 BUG_ON(rq->nr_running != 1); /* the migration thread */
5219 raw_spin_unlock_irqrestore(&rq->lock, flags);
5220 break;
5221
5222 case CPU_DEAD:
5223 calc_load_migrate(rq);
5224 break;
5225 #endif
5226 }
5227
5228 update_max_interval();
5229
5230 return NOTIFY_OK;
5231 }
5232
5233 /*
5234 * Register at high priority so that task migration (migrate_all_tasks)
5235 * happens before everything else. This has to be lower priority than
5236 * the notifier in the perf_event subsystem, though.
5237 */
5238 static struct notifier_block __cpuinitdata migration_notifier = {
5239 .notifier_call = migration_call,
5240 .priority = CPU_PRI_MIGRATION,
5241 };
5242
5243 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5244 unsigned long action, void *hcpu)
5245 {
5246 switch (action & ~CPU_TASKS_FROZEN) {
5247 case CPU_STARTING:
5248 case CPU_DOWN_FAILED:
5249 set_cpu_active((long)hcpu, true);
5250 return NOTIFY_OK;
5251 default:
5252 return NOTIFY_DONE;
5253 }
5254 }
5255
5256 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5257 unsigned long action, void *hcpu)
5258 {
5259 switch (action & ~CPU_TASKS_FROZEN) {
5260 case CPU_DOWN_PREPARE:
5261 set_cpu_active((long)hcpu, false);
5262 return NOTIFY_OK;
5263 default:
5264 return NOTIFY_DONE;
5265 }
5266 }
5267
5268 static int __init migration_init(void)
5269 {
5270 void *cpu = (void *)(long)smp_processor_id();
5271 int err;
5272
5273 /* Initialize migration for the boot CPU */
5274 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5275 BUG_ON(err == NOTIFY_BAD);
5276 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5277 register_cpu_notifier(&migration_notifier);
5278
5279 /* Register cpu active notifiers */
5280 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5281 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5282
5283 return 0;
5284 }
5285 early_initcall(migration_init);
5286 #endif
5287
5288 #ifdef CONFIG_SMP
5289
5290 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5291
5292 #ifdef CONFIG_SCHED_DEBUG
5293
5294 static __read_mostly int sched_debug_enabled;
5295
5296 static int __init sched_debug_setup(char *str)
5297 {
5298 sched_debug_enabled = 1;
5299
5300 return 0;
5301 }
5302 early_param("sched_debug", sched_debug_setup);
5303
5304 static inline bool sched_debug(void)
5305 {
5306 return sched_debug_enabled;
5307 }
5308
5309 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5310 struct cpumask *groupmask)
5311 {
5312 struct sched_group *group = sd->groups;
5313 char str[256];
5314
5315 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5316 cpumask_clear(groupmask);
5317
5318 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5319
5320 if (!(sd->flags & SD_LOAD_BALANCE)) {
5321 printk("does not load-balance\n");
5322 if (sd->parent)
5323 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5324 " has parent");
5325 return -1;
5326 }
5327
5328 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5329
5330 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5331 printk(KERN_ERR "ERROR: domain->span does not contain "
5332 "CPU%d\n", cpu);
5333 }
5334 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5335 printk(KERN_ERR "ERROR: domain->groups does not contain"
5336 " CPU%d\n", cpu);
5337 }
5338
5339 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5340 do {
5341 if (!group) {
5342 printk("\n");
5343 printk(KERN_ERR "ERROR: group is NULL\n");
5344 break;
5345 }
5346
5347 /*
5348 * Even though we initialize ->power to something semi-sane,
5349 * we leave power_orig unset. This allows us to detect if
5350 * domain iteration is still funny without causing /0 traps.
5351 */
5352 if (!group->sgp->power_orig) {
5353 printk(KERN_CONT "\n");
5354 printk(KERN_ERR "ERROR: domain->cpu_power not "
5355 "set\n");
5356 break;
5357 }
5358
5359 if (!cpumask_weight(sched_group_cpus(group))) {
5360 printk(KERN_CONT "\n");
5361 printk(KERN_ERR "ERROR: empty group\n");
5362 break;
5363 }
5364
5365 if (!(sd->flags & SD_OVERLAP) &&
5366 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5367 printk(KERN_CONT "\n");
5368 printk(KERN_ERR "ERROR: repeated CPUs\n");
5369 break;
5370 }
5371
5372 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5373
5374 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5375
5376 printk(KERN_CONT " %s", str);
5377 if (group->sgp->power != SCHED_POWER_SCALE) {
5378 printk(KERN_CONT " (cpu_power = %d)",
5379 group->sgp->power);
5380 }
5381
5382 group = group->next;
5383 } while (group != sd->groups);
5384 printk(KERN_CONT "\n");
5385
5386 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5387 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5388
5389 if (sd->parent &&
5390 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5391 printk(KERN_ERR "ERROR: parent span is not a superset "
5392 "of domain->span\n");
5393 return 0;
5394 }
5395
5396 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5397 {
5398 int level = 0;
5399
5400 if (!sched_debug_enabled)
5401 return;
5402
5403 if (!sd) {
5404 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5405 return;
5406 }
5407
5408 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5409
5410 for (;;) {
5411 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5412 break;
5413 level++;
5414 sd = sd->parent;
5415 if (!sd)
5416 break;
5417 }
5418 }
5419 #else /* !CONFIG_SCHED_DEBUG */
5420 # define sched_domain_debug(sd, cpu) do { } while (0)
5421 static inline bool sched_debug(void)
5422 {
5423 return false;
5424 }
5425 #endif /* CONFIG_SCHED_DEBUG */
5426
5427 static int sd_degenerate(struct sched_domain *sd)
5428 {
5429 if (cpumask_weight(sched_domain_span(sd)) == 1)
5430 return 1;
5431
5432 /* Following flags need at least 2 groups */
5433 if (sd->flags & (SD_LOAD_BALANCE |
5434 SD_BALANCE_NEWIDLE |
5435 SD_BALANCE_FORK |
5436 SD_BALANCE_EXEC |
5437 SD_SHARE_CPUPOWER |
5438 SD_SHARE_PKG_RESOURCES)) {
5439 if (sd->groups != sd->groups->next)
5440 return 0;
5441 }
5442
5443 /* Following flags don't use groups */
5444 if (sd->flags & (SD_WAKE_AFFINE))
5445 return 0;
5446
5447 return 1;
5448 }
5449
5450 static int
5451 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5452 {
5453 unsigned long cflags = sd->flags, pflags = parent->flags;
5454
5455 if (sd_degenerate(parent))
5456 return 1;
5457
5458 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5459 return 0;
5460
5461 /* Flags needing groups don't count if only 1 group in parent */
5462 if (parent->groups == parent->groups->next) {
5463 pflags &= ~(SD_LOAD_BALANCE |
5464 SD_BALANCE_NEWIDLE |
5465 SD_BALANCE_FORK |
5466 SD_BALANCE_EXEC |
5467 SD_SHARE_CPUPOWER |
5468 SD_SHARE_PKG_RESOURCES);
5469 if (nr_node_ids == 1)
5470 pflags &= ~SD_SERIALIZE;
5471 }
5472 if (~cflags & pflags)
5473 return 0;
5474
5475 return 1;
5476 }
5477
5478 static void free_rootdomain(struct rcu_head *rcu)
5479 {
5480 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5481
5482 cpupri_cleanup(&rd->cpupri);
5483 free_cpumask_var(rd->rto_mask);
5484 free_cpumask_var(rd->online);
5485 free_cpumask_var(rd->span);
5486 kfree(rd);
5487 }
5488
5489 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5490 {
5491 struct root_domain *old_rd = NULL;
5492 unsigned long flags;
5493
5494 raw_spin_lock_irqsave(&rq->lock, flags);
5495
5496 if (rq->rd) {
5497 old_rd = rq->rd;
5498
5499 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5500 set_rq_offline(rq);
5501
5502 cpumask_clear_cpu(rq->cpu, old_rd->span);
5503
5504 /*
5505 * If we dont want to free the old_rt yet then
5506 * set old_rd to NULL to skip the freeing later
5507 * in this function:
5508 */
5509 if (!atomic_dec_and_test(&old_rd->refcount))
5510 old_rd = NULL;
5511 }
5512
5513 atomic_inc(&rd->refcount);
5514 rq->rd = rd;
5515
5516 cpumask_set_cpu(rq->cpu, rd->span);
5517 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5518 set_rq_online(rq);
5519
5520 raw_spin_unlock_irqrestore(&rq->lock, flags);
5521
5522 if (old_rd)
5523 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5524 }
5525
5526 static int init_rootdomain(struct root_domain *rd)
5527 {
5528 memset(rd, 0, sizeof(*rd));
5529
5530 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5531 goto out;
5532 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5533 goto free_span;
5534 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5535 goto free_online;
5536
5537 if (cpupri_init(&rd->cpupri) != 0)
5538 goto free_rto_mask;
5539 return 0;
5540
5541 free_rto_mask:
5542 free_cpumask_var(rd->rto_mask);
5543 free_online:
5544 free_cpumask_var(rd->online);
5545 free_span:
5546 free_cpumask_var(rd->span);
5547 out:
5548 return -ENOMEM;
5549 }
5550
5551 /*
5552 * By default the system creates a single root-domain with all cpus as
5553 * members (mimicking the global state we have today).
5554 */
5555 struct root_domain def_root_domain;
5556
5557 static void init_defrootdomain(void)
5558 {
5559 init_rootdomain(&def_root_domain);
5560
5561 atomic_set(&def_root_domain.refcount, 1);
5562 }
5563
5564 static struct root_domain *alloc_rootdomain(void)
5565 {
5566 struct root_domain *rd;
5567
5568 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5569 if (!rd)
5570 return NULL;
5571
5572 if (init_rootdomain(rd) != 0) {
5573 kfree(rd);
5574 return NULL;
5575 }
5576
5577 return rd;
5578 }
5579
5580 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5581 {
5582 struct sched_group *tmp, *first;
5583
5584 if (!sg)
5585 return;
5586
5587 first = sg;
5588 do {
5589 tmp = sg->next;
5590
5591 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5592 kfree(sg->sgp);
5593
5594 kfree(sg);
5595 sg = tmp;
5596 } while (sg != first);
5597 }
5598
5599 static void free_sched_domain(struct rcu_head *rcu)
5600 {
5601 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5602
5603 /*
5604 * If its an overlapping domain it has private groups, iterate and
5605 * nuke them all.
5606 */
5607 if (sd->flags & SD_OVERLAP) {
5608 free_sched_groups(sd->groups, 1);
5609 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5610 kfree(sd->groups->sgp);
5611 kfree(sd->groups);
5612 }
5613 kfree(sd);
5614 }
5615
5616 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5617 {
5618 call_rcu(&sd->rcu, free_sched_domain);
5619 }
5620
5621 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5622 {
5623 for (; sd; sd = sd->parent)
5624 destroy_sched_domain(sd, cpu);
5625 }
5626
5627 /*
5628 * Keep a special pointer to the highest sched_domain that has
5629 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5630 * allows us to avoid some pointer chasing select_idle_sibling().
5631 *
5632 * Also keep a unique ID per domain (we use the first cpu number in
5633 * the cpumask of the domain), this allows us to quickly tell if
5634 * two cpus are in the same cache domain, see cpus_share_cache().
5635 */
5636 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5637 DEFINE_PER_CPU(int, sd_llc_id);
5638
5639 static void update_top_cache_domain(int cpu)
5640 {
5641 struct sched_domain *sd;
5642 int id = cpu;
5643
5644 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5645 if (sd)
5646 id = cpumask_first(sched_domain_span(sd));
5647
5648 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5649 per_cpu(sd_llc_id, cpu) = id;
5650 }
5651
5652 /*
5653 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5654 * hold the hotplug lock.
5655 */
5656 static void
5657 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5658 {
5659 struct rq *rq = cpu_rq(cpu);
5660 struct sched_domain *tmp;
5661
5662 /* Remove the sched domains which do not contribute to scheduling. */
5663 for (tmp = sd; tmp; ) {
5664 struct sched_domain *parent = tmp->parent;
5665 if (!parent)
5666 break;
5667
5668 if (sd_parent_degenerate(tmp, parent)) {
5669 tmp->parent = parent->parent;
5670 if (parent->parent)
5671 parent->parent->child = tmp;
5672 destroy_sched_domain(parent, cpu);
5673 } else
5674 tmp = tmp->parent;
5675 }
5676
5677 if (sd && sd_degenerate(sd)) {
5678 tmp = sd;
5679 sd = sd->parent;
5680 destroy_sched_domain(tmp, cpu);
5681 if (sd)
5682 sd->child = NULL;
5683 }
5684
5685 sched_domain_debug(sd, cpu);
5686
5687 rq_attach_root(rq, rd);
5688 tmp = rq->sd;
5689 rcu_assign_pointer(rq->sd, sd);
5690 destroy_sched_domains(tmp, cpu);
5691
5692 update_top_cache_domain(cpu);
5693 }
5694
5695 /* cpus with isolated domains */
5696 static cpumask_var_t cpu_isolated_map;
5697
5698 /* Setup the mask of cpus configured for isolated domains */
5699 static int __init isolated_cpu_setup(char *str)
5700 {
5701 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5702 cpulist_parse(str, cpu_isolated_map);
5703 return 1;
5704 }
5705
5706 __setup("isolcpus=", isolated_cpu_setup);
5707
5708 static const struct cpumask *cpu_cpu_mask(int cpu)
5709 {
5710 return cpumask_of_node(cpu_to_node(cpu));
5711 }
5712
5713 struct sd_data {
5714 struct sched_domain **__percpu sd;
5715 struct sched_group **__percpu sg;
5716 struct sched_group_power **__percpu sgp;
5717 };
5718
5719 struct s_data {
5720 struct sched_domain ** __percpu sd;
5721 struct root_domain *rd;
5722 };
5723
5724 enum s_alloc {
5725 sa_rootdomain,
5726 sa_sd,
5727 sa_sd_storage,
5728 sa_none,
5729 };
5730
5731 struct sched_domain_topology_level;
5732
5733 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5734 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5735
5736 #define SDTL_OVERLAP 0x01
5737
5738 struct sched_domain_topology_level {
5739 sched_domain_init_f init;
5740 sched_domain_mask_f mask;
5741 int flags;
5742 int numa_level;
5743 struct sd_data data;
5744 };
5745
5746 /*
5747 * Build an iteration mask that can exclude certain CPUs from the upwards
5748 * domain traversal.
5749 *
5750 * Asymmetric node setups can result in situations where the domain tree is of
5751 * unequal depth, make sure to skip domains that already cover the entire
5752 * range.
5753 *
5754 * In that case build_sched_domains() will have terminated the iteration early
5755 * and our sibling sd spans will be empty. Domains should always include the
5756 * cpu they're built on, so check that.
5757 *
5758 */
5759 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5760 {
5761 const struct cpumask *span = sched_domain_span(sd);
5762 struct sd_data *sdd = sd->private;
5763 struct sched_domain *sibling;
5764 int i;
5765
5766 for_each_cpu(i, span) {
5767 sibling = *per_cpu_ptr(sdd->sd, i);
5768 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5769 continue;
5770
5771 cpumask_set_cpu(i, sched_group_mask(sg));
5772 }
5773 }
5774
5775 /*
5776 * Return the canonical balance cpu for this group, this is the first cpu
5777 * of this group that's also in the iteration mask.
5778 */
5779 int group_balance_cpu(struct sched_group *sg)
5780 {
5781 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5782 }
5783
5784 static int
5785 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5786 {
5787 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5788 const struct cpumask *span = sched_domain_span(sd);
5789 struct cpumask *covered = sched_domains_tmpmask;
5790 struct sd_data *sdd = sd->private;
5791 struct sched_domain *child;
5792 int i;
5793
5794 cpumask_clear(covered);
5795
5796 for_each_cpu(i, span) {
5797 struct cpumask *sg_span;
5798
5799 if (cpumask_test_cpu(i, covered))
5800 continue;
5801
5802 child = *per_cpu_ptr(sdd->sd, i);
5803
5804 /* See the comment near build_group_mask(). */
5805 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5806 continue;
5807
5808 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5809 GFP_KERNEL, cpu_to_node(cpu));
5810
5811 if (!sg)
5812 goto fail;
5813
5814 sg_span = sched_group_cpus(sg);
5815 if (child->child) {
5816 child = child->child;
5817 cpumask_copy(sg_span, sched_domain_span(child));
5818 } else
5819 cpumask_set_cpu(i, sg_span);
5820
5821 cpumask_or(covered, covered, sg_span);
5822
5823 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5824 if (atomic_inc_return(&sg->sgp->ref) == 1)
5825 build_group_mask(sd, sg);
5826
5827 /*
5828 * Initialize sgp->power such that even if we mess up the
5829 * domains and no possible iteration will get us here, we won't
5830 * die on a /0 trap.
5831 */
5832 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5833
5834 /*
5835 * Make sure the first group of this domain contains the
5836 * canonical balance cpu. Otherwise the sched_domain iteration
5837 * breaks. See update_sg_lb_stats().
5838 */
5839 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5840 group_balance_cpu(sg) == cpu)
5841 groups = sg;
5842
5843 if (!first)
5844 first = sg;
5845 if (last)
5846 last->next = sg;
5847 last = sg;
5848 last->next = first;
5849 }
5850 sd->groups = groups;
5851
5852 return 0;
5853
5854 fail:
5855 free_sched_groups(first, 0);
5856
5857 return -ENOMEM;
5858 }
5859
5860 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5861 {
5862 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5863 struct sched_domain *child = sd->child;
5864
5865 if (child)
5866 cpu = cpumask_first(sched_domain_span(child));
5867
5868 if (sg) {
5869 *sg = *per_cpu_ptr(sdd->sg, cpu);
5870 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5871 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5872 }
5873
5874 return cpu;
5875 }
5876
5877 /*
5878 * build_sched_groups will build a circular linked list of the groups
5879 * covered by the given span, and will set each group's ->cpumask correctly,
5880 * and ->cpu_power to 0.
5881 *
5882 * Assumes the sched_domain tree is fully constructed
5883 */
5884 static int
5885 build_sched_groups(struct sched_domain *sd, int cpu)
5886 {
5887 struct sched_group *first = NULL, *last = NULL;
5888 struct sd_data *sdd = sd->private;
5889 const struct cpumask *span = sched_domain_span(sd);
5890 struct cpumask *covered;
5891 int i;
5892
5893 get_group(cpu, sdd, &sd->groups);
5894 atomic_inc(&sd->groups->ref);
5895
5896 if (cpu != cpumask_first(sched_domain_span(sd)))
5897 return 0;
5898
5899 lockdep_assert_held(&sched_domains_mutex);
5900 covered = sched_domains_tmpmask;
5901
5902 cpumask_clear(covered);
5903
5904 for_each_cpu(i, span) {
5905 struct sched_group *sg;
5906 int group = get_group(i, sdd, &sg);
5907 int j;
5908
5909 if (cpumask_test_cpu(i, covered))
5910 continue;
5911
5912 cpumask_clear(sched_group_cpus(sg));
5913 sg->sgp->power = 0;
5914 cpumask_setall(sched_group_mask(sg));
5915
5916 for_each_cpu(j, span) {
5917 if (get_group(j, sdd, NULL) != group)
5918 continue;
5919
5920 cpumask_set_cpu(j, covered);
5921 cpumask_set_cpu(j, sched_group_cpus(sg));
5922 }
5923
5924 if (!first)
5925 first = sg;
5926 if (last)
5927 last->next = sg;
5928 last = sg;
5929 }
5930 last->next = first;
5931
5932 return 0;
5933 }
5934
5935 /*
5936 * Initialize sched groups cpu_power.
5937 *
5938 * cpu_power indicates the capacity of sched group, which is used while
5939 * distributing the load between different sched groups in a sched domain.
5940 * Typically cpu_power for all the groups in a sched domain will be same unless
5941 * there are asymmetries in the topology. If there are asymmetries, group
5942 * having more cpu_power will pickup more load compared to the group having
5943 * less cpu_power.
5944 */
5945 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5946 {
5947 struct sched_group *sg = sd->groups;
5948
5949 WARN_ON(!sd || !sg);
5950
5951 do {
5952 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5953 sg = sg->next;
5954 } while (sg != sd->groups);
5955
5956 if (cpu != group_balance_cpu(sg))
5957 return;
5958
5959 update_group_power(sd, cpu);
5960 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5961 }
5962
5963 int __weak arch_sd_sibling_asym_packing(void)
5964 {
5965 return 0*SD_ASYM_PACKING;
5966 }
5967
5968 /*
5969 * Initializers for schedule domains
5970 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5971 */
5972
5973 #ifdef CONFIG_SCHED_DEBUG
5974 # define SD_INIT_NAME(sd, type) sd->name = #type
5975 #else
5976 # define SD_INIT_NAME(sd, type) do { } while (0)
5977 #endif
5978
5979 #define SD_INIT_FUNC(type) \
5980 static noinline struct sched_domain * \
5981 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5982 { \
5983 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5984 *sd = SD_##type##_INIT; \
5985 SD_INIT_NAME(sd, type); \
5986 sd->private = &tl->data; \
5987 return sd; \
5988 }
5989
5990 SD_INIT_FUNC(CPU)
5991 #ifdef CONFIG_SCHED_SMT
5992 SD_INIT_FUNC(SIBLING)
5993 #endif
5994 #ifdef CONFIG_SCHED_MC
5995 SD_INIT_FUNC(MC)
5996 #endif
5997 #ifdef CONFIG_SCHED_BOOK
5998 SD_INIT_FUNC(BOOK)
5999 #endif
6000
6001 static int default_relax_domain_level = -1;
6002 int sched_domain_level_max;
6003
6004 static int __init setup_relax_domain_level(char *str)
6005 {
6006 if (kstrtoint(str, 0, &default_relax_domain_level))
6007 pr_warn("Unable to set relax_domain_level\n");
6008
6009 return 1;
6010 }
6011 __setup("relax_domain_level=", setup_relax_domain_level);
6012
6013 static void set_domain_attribute(struct sched_domain *sd,
6014 struct sched_domain_attr *attr)
6015 {
6016 int request;
6017
6018 if (!attr || attr->relax_domain_level < 0) {
6019 if (default_relax_domain_level < 0)
6020 return;
6021 else
6022 request = default_relax_domain_level;
6023 } else
6024 request = attr->relax_domain_level;
6025 if (request < sd->level) {
6026 /* turn off idle balance on this domain */
6027 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6028 } else {
6029 /* turn on idle balance on this domain */
6030 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6031 }
6032 }
6033
6034 static void __sdt_free(const struct cpumask *cpu_map);
6035 static int __sdt_alloc(const struct cpumask *cpu_map);
6036
6037 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6038 const struct cpumask *cpu_map)
6039 {
6040 switch (what) {
6041 case sa_rootdomain:
6042 if (!atomic_read(&d->rd->refcount))
6043 free_rootdomain(&d->rd->rcu); /* fall through */
6044 case sa_sd:
6045 free_percpu(d->sd); /* fall through */
6046 case sa_sd_storage:
6047 __sdt_free(cpu_map); /* fall through */
6048 case sa_none:
6049 break;
6050 }
6051 }
6052
6053 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6054 const struct cpumask *cpu_map)
6055 {
6056 memset(d, 0, sizeof(*d));
6057
6058 if (__sdt_alloc(cpu_map))
6059 return sa_sd_storage;
6060 d->sd = alloc_percpu(struct sched_domain *);
6061 if (!d->sd)
6062 return sa_sd_storage;
6063 d->rd = alloc_rootdomain();
6064 if (!d->rd)
6065 return sa_sd;
6066 return sa_rootdomain;
6067 }
6068
6069 /*
6070 * NULL the sd_data elements we've used to build the sched_domain and
6071 * sched_group structure so that the subsequent __free_domain_allocs()
6072 * will not free the data we're using.
6073 */
6074 static void claim_allocations(int cpu, struct sched_domain *sd)
6075 {
6076 struct sd_data *sdd = sd->private;
6077
6078 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6079 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6080
6081 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6082 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6083
6084 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6085 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6086 }
6087
6088 #ifdef CONFIG_SCHED_SMT
6089 static const struct cpumask *cpu_smt_mask(int cpu)
6090 {
6091 return topology_thread_cpumask(cpu);
6092 }
6093 #endif
6094
6095 /*
6096 * Topology list, bottom-up.
6097 */
6098 static struct sched_domain_topology_level default_topology[] = {
6099 #ifdef CONFIG_SCHED_SMT
6100 { sd_init_SIBLING, cpu_smt_mask, },
6101 #endif
6102 #ifdef CONFIG_SCHED_MC
6103 { sd_init_MC, cpu_coregroup_mask, },
6104 #endif
6105 #ifdef CONFIG_SCHED_BOOK
6106 { sd_init_BOOK, cpu_book_mask, },
6107 #endif
6108 { sd_init_CPU, cpu_cpu_mask, },
6109 { NULL, },
6110 };
6111
6112 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6113
6114 #ifdef CONFIG_NUMA
6115
6116 static int sched_domains_numa_levels;
6117 static int *sched_domains_numa_distance;
6118 static struct cpumask ***sched_domains_numa_masks;
6119 static int sched_domains_curr_level;
6120
6121 static inline int sd_local_flags(int level)
6122 {
6123 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6124 return 0;
6125
6126 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6127 }
6128
6129 static struct sched_domain *
6130 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6131 {
6132 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6133 int level = tl->numa_level;
6134 int sd_weight = cpumask_weight(
6135 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6136
6137 *sd = (struct sched_domain){
6138 .min_interval = sd_weight,
6139 .max_interval = 2*sd_weight,
6140 .busy_factor = 32,
6141 .imbalance_pct = 125,
6142 .cache_nice_tries = 2,
6143 .busy_idx = 3,
6144 .idle_idx = 2,
6145 .newidle_idx = 0,
6146 .wake_idx = 0,
6147 .forkexec_idx = 0,
6148
6149 .flags = 1*SD_LOAD_BALANCE
6150 | 1*SD_BALANCE_NEWIDLE
6151 | 0*SD_BALANCE_EXEC
6152 | 0*SD_BALANCE_FORK
6153 | 0*SD_BALANCE_WAKE
6154 | 0*SD_WAKE_AFFINE
6155 | 0*SD_SHARE_CPUPOWER
6156 | 0*SD_SHARE_PKG_RESOURCES
6157 | 1*SD_SERIALIZE
6158 | 0*SD_PREFER_SIBLING
6159 | sd_local_flags(level)
6160 ,
6161 .last_balance = jiffies,
6162 .balance_interval = sd_weight,
6163 };
6164 SD_INIT_NAME(sd, NUMA);
6165 sd->private = &tl->data;
6166
6167 /*
6168 * Ugly hack to pass state to sd_numa_mask()...
6169 */
6170 sched_domains_curr_level = tl->numa_level;
6171
6172 return sd;
6173 }
6174
6175 static const struct cpumask *sd_numa_mask(int cpu)
6176 {
6177 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6178 }
6179
6180 static void sched_numa_warn(const char *str)
6181 {
6182 static int done = false;
6183 int i,j;
6184
6185 if (done)
6186 return;
6187
6188 done = true;
6189
6190 printk(KERN_WARNING "ERROR: %s\n\n", str);
6191
6192 for (i = 0; i < nr_node_ids; i++) {
6193 printk(KERN_WARNING " ");
6194 for (j = 0; j < nr_node_ids; j++)
6195 printk(KERN_CONT "%02d ", node_distance(i,j));
6196 printk(KERN_CONT "\n");
6197 }
6198 printk(KERN_WARNING "\n");
6199 }
6200
6201 static bool find_numa_distance(int distance)
6202 {
6203 int i;
6204
6205 if (distance == node_distance(0, 0))
6206 return true;
6207
6208 for (i = 0; i < sched_domains_numa_levels; i++) {
6209 if (sched_domains_numa_distance[i] == distance)
6210 return true;
6211 }
6212
6213 return false;
6214 }
6215
6216 static void sched_init_numa(void)
6217 {
6218 int next_distance, curr_distance = node_distance(0, 0);
6219 struct sched_domain_topology_level *tl;
6220 int level = 0;
6221 int i, j, k;
6222
6223 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6224 if (!sched_domains_numa_distance)
6225 return;
6226
6227 /*
6228 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6229 * unique distances in the node_distance() table.
6230 *
6231 * Assumes node_distance(0,j) includes all distances in
6232 * node_distance(i,j) in order to avoid cubic time.
6233 */
6234 next_distance = curr_distance;
6235 for (i = 0; i < nr_node_ids; i++) {
6236 for (j = 0; j < nr_node_ids; j++) {
6237 for (k = 0; k < nr_node_ids; k++) {
6238 int distance = node_distance(i, k);
6239
6240 if (distance > curr_distance &&
6241 (distance < next_distance ||
6242 next_distance == curr_distance))
6243 next_distance = distance;
6244
6245 /*
6246 * While not a strong assumption it would be nice to know
6247 * about cases where if node A is connected to B, B is not
6248 * equally connected to A.
6249 */
6250 if (sched_debug() && node_distance(k, i) != distance)
6251 sched_numa_warn("Node-distance not symmetric");
6252
6253 if (sched_debug() && i && !find_numa_distance(distance))
6254 sched_numa_warn("Node-0 not representative");
6255 }
6256 if (next_distance != curr_distance) {
6257 sched_domains_numa_distance[level++] = next_distance;
6258 sched_domains_numa_levels = level;
6259 curr_distance = next_distance;
6260 } else break;
6261 }
6262
6263 /*
6264 * In case of sched_debug() we verify the above assumption.
6265 */
6266 if (!sched_debug())
6267 break;
6268 }
6269 /*
6270 * 'level' contains the number of unique distances, excluding the
6271 * identity distance node_distance(i,i).
6272 *
6273 * The sched_domains_nume_distance[] array includes the actual distance
6274 * numbers.
6275 */
6276
6277 /*
6278 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6279 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6280 * the array will contain less then 'level' members. This could be
6281 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6282 * in other functions.
6283 *
6284 * We reset it to 'level' at the end of this function.
6285 */
6286 sched_domains_numa_levels = 0;
6287
6288 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6289 if (!sched_domains_numa_masks)
6290 return;
6291
6292 /*
6293 * Now for each level, construct a mask per node which contains all
6294 * cpus of nodes that are that many hops away from us.
6295 */
6296 for (i = 0; i < level; i++) {
6297 sched_domains_numa_masks[i] =
6298 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6299 if (!sched_domains_numa_masks[i])
6300 return;
6301
6302 for (j = 0; j < nr_node_ids; j++) {
6303 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6304 if (!mask)
6305 return;
6306
6307 sched_domains_numa_masks[i][j] = mask;
6308
6309 for (k = 0; k < nr_node_ids; k++) {
6310 if (node_distance(j, k) > sched_domains_numa_distance[i])
6311 continue;
6312
6313 cpumask_or(mask, mask, cpumask_of_node(k));
6314 }
6315 }
6316 }
6317
6318 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6319 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6320 if (!tl)
6321 return;
6322
6323 /*
6324 * Copy the default topology bits..
6325 */
6326 for (i = 0; default_topology[i].init; i++)
6327 tl[i] = default_topology[i];
6328
6329 /*
6330 * .. and append 'j' levels of NUMA goodness.
6331 */
6332 for (j = 0; j < level; i++, j++) {
6333 tl[i] = (struct sched_domain_topology_level){
6334 .init = sd_numa_init,
6335 .mask = sd_numa_mask,
6336 .flags = SDTL_OVERLAP,
6337 .numa_level = j,
6338 };
6339 }
6340
6341 sched_domain_topology = tl;
6342
6343 sched_domains_numa_levels = level;
6344 }
6345
6346 static void sched_domains_numa_masks_set(int cpu)
6347 {
6348 int i, j;
6349 int node = cpu_to_node(cpu);
6350
6351 for (i = 0; i < sched_domains_numa_levels; i++) {
6352 for (j = 0; j < nr_node_ids; j++) {
6353 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6354 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6355 }
6356 }
6357 }
6358
6359 static void sched_domains_numa_masks_clear(int cpu)
6360 {
6361 int i, j;
6362 for (i = 0; i < sched_domains_numa_levels; i++) {
6363 for (j = 0; j < nr_node_ids; j++)
6364 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6365 }
6366 }
6367
6368 /*
6369 * Update sched_domains_numa_masks[level][node] array when new cpus
6370 * are onlined.
6371 */
6372 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6373 unsigned long action,
6374 void *hcpu)
6375 {
6376 int cpu = (long)hcpu;
6377
6378 switch (action & ~CPU_TASKS_FROZEN) {
6379 case CPU_ONLINE:
6380 sched_domains_numa_masks_set(cpu);
6381 break;
6382
6383 case CPU_DEAD:
6384 sched_domains_numa_masks_clear(cpu);
6385 break;
6386
6387 default:
6388 return NOTIFY_DONE;
6389 }
6390
6391 return NOTIFY_OK;
6392 }
6393 #else
6394 static inline void sched_init_numa(void)
6395 {
6396 }
6397
6398 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6399 unsigned long action,
6400 void *hcpu)
6401 {
6402 return 0;
6403 }
6404 #endif /* CONFIG_NUMA */
6405
6406 static int __sdt_alloc(const struct cpumask *cpu_map)
6407 {
6408 struct sched_domain_topology_level *tl;
6409 int j;
6410
6411 for (tl = sched_domain_topology; tl->init; tl++) {
6412 struct sd_data *sdd = &tl->data;
6413
6414 sdd->sd = alloc_percpu(struct sched_domain *);
6415 if (!sdd->sd)
6416 return -ENOMEM;
6417
6418 sdd->sg = alloc_percpu(struct sched_group *);
6419 if (!sdd->sg)
6420 return -ENOMEM;
6421
6422 sdd->sgp = alloc_percpu(struct sched_group_power *);
6423 if (!sdd->sgp)
6424 return -ENOMEM;
6425
6426 for_each_cpu(j, cpu_map) {
6427 struct sched_domain *sd;
6428 struct sched_group *sg;
6429 struct sched_group_power *sgp;
6430
6431 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6432 GFP_KERNEL, cpu_to_node(j));
6433 if (!sd)
6434 return -ENOMEM;
6435
6436 *per_cpu_ptr(sdd->sd, j) = sd;
6437
6438 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6439 GFP_KERNEL, cpu_to_node(j));
6440 if (!sg)
6441 return -ENOMEM;
6442
6443 sg->next = sg;
6444
6445 *per_cpu_ptr(sdd->sg, j) = sg;
6446
6447 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6448 GFP_KERNEL, cpu_to_node(j));
6449 if (!sgp)
6450 return -ENOMEM;
6451
6452 *per_cpu_ptr(sdd->sgp, j) = sgp;
6453 }
6454 }
6455
6456 return 0;
6457 }
6458
6459 static void __sdt_free(const struct cpumask *cpu_map)
6460 {
6461 struct sched_domain_topology_level *tl;
6462 int j;
6463
6464 for (tl = sched_domain_topology; tl->init; tl++) {
6465 struct sd_data *sdd = &tl->data;
6466
6467 for_each_cpu(j, cpu_map) {
6468 struct sched_domain *sd;
6469
6470 if (sdd->sd) {
6471 sd = *per_cpu_ptr(sdd->sd, j);
6472 if (sd && (sd->flags & SD_OVERLAP))
6473 free_sched_groups(sd->groups, 0);
6474 kfree(*per_cpu_ptr(sdd->sd, j));
6475 }
6476
6477 if (sdd->sg)
6478 kfree(*per_cpu_ptr(sdd->sg, j));
6479 if (sdd->sgp)
6480 kfree(*per_cpu_ptr(sdd->sgp, j));
6481 }
6482 free_percpu(sdd->sd);
6483 sdd->sd = NULL;
6484 free_percpu(sdd->sg);
6485 sdd->sg = NULL;
6486 free_percpu(sdd->sgp);
6487 sdd->sgp = NULL;
6488 }
6489 }
6490
6491 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6492 struct s_data *d, const struct cpumask *cpu_map,
6493 struct sched_domain_attr *attr, struct sched_domain *child,
6494 int cpu)
6495 {
6496 struct sched_domain *sd = tl->init(tl, cpu);
6497 if (!sd)
6498 return child;
6499
6500 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6501 if (child) {
6502 sd->level = child->level + 1;
6503 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6504 child->parent = sd;
6505 }
6506 sd->child = child;
6507 set_domain_attribute(sd, attr);
6508
6509 return sd;
6510 }
6511
6512 /*
6513 * Build sched domains for a given set of cpus and attach the sched domains
6514 * to the individual cpus
6515 */
6516 static int build_sched_domains(const struct cpumask *cpu_map,
6517 struct sched_domain_attr *attr)
6518 {
6519 enum s_alloc alloc_state = sa_none;
6520 struct sched_domain *sd;
6521 struct s_data d;
6522 int i, ret = -ENOMEM;
6523
6524 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6525 if (alloc_state != sa_rootdomain)
6526 goto error;
6527
6528 /* Set up domains for cpus specified by the cpu_map. */
6529 for_each_cpu(i, cpu_map) {
6530 struct sched_domain_topology_level *tl;
6531
6532 sd = NULL;
6533 for (tl = sched_domain_topology; tl->init; tl++) {
6534 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6535 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6536 sd->flags |= SD_OVERLAP;
6537 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6538 break;
6539 }
6540
6541 while (sd->child)
6542 sd = sd->child;
6543
6544 *per_cpu_ptr(d.sd, i) = sd;
6545 }
6546
6547 /* Build the groups for the domains */
6548 for_each_cpu(i, cpu_map) {
6549 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6550 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6551 if (sd->flags & SD_OVERLAP) {
6552 if (build_overlap_sched_groups(sd, i))
6553 goto error;
6554 } else {
6555 if (build_sched_groups(sd, i))
6556 goto error;
6557 }
6558 }
6559 }
6560
6561 /* Calculate CPU power for physical packages and nodes */
6562 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6563 if (!cpumask_test_cpu(i, cpu_map))
6564 continue;
6565
6566 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6567 claim_allocations(i, sd);
6568 init_sched_groups_power(i, sd);
6569 }
6570 }
6571
6572 /* Attach the domains */
6573 rcu_read_lock();
6574 for_each_cpu(i, cpu_map) {
6575 sd = *per_cpu_ptr(d.sd, i);
6576 cpu_attach_domain(sd, d.rd, i);
6577 }
6578 rcu_read_unlock();
6579
6580 ret = 0;
6581 error:
6582 __free_domain_allocs(&d, alloc_state, cpu_map);
6583 return ret;
6584 }
6585
6586 static cpumask_var_t *doms_cur; /* current sched domains */
6587 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6588 static struct sched_domain_attr *dattr_cur;
6589 /* attribues of custom domains in 'doms_cur' */
6590
6591 /*
6592 * Special case: If a kmalloc of a doms_cur partition (array of
6593 * cpumask) fails, then fallback to a single sched domain,
6594 * as determined by the single cpumask fallback_doms.
6595 */
6596 static cpumask_var_t fallback_doms;
6597
6598 /*
6599 * arch_update_cpu_topology lets virtualized architectures update the
6600 * cpu core maps. It is supposed to return 1 if the topology changed
6601 * or 0 if it stayed the same.
6602 */
6603 int __attribute__((weak)) arch_update_cpu_topology(void)
6604 {
6605 return 0;
6606 }
6607
6608 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6609 {
6610 int i;
6611 cpumask_var_t *doms;
6612
6613 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6614 if (!doms)
6615 return NULL;
6616 for (i = 0; i < ndoms; i++) {
6617 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6618 free_sched_domains(doms, i);
6619 return NULL;
6620 }
6621 }
6622 return doms;
6623 }
6624
6625 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6626 {
6627 unsigned int i;
6628 for (i = 0; i < ndoms; i++)
6629 free_cpumask_var(doms[i]);
6630 kfree(doms);
6631 }
6632
6633 /*
6634 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6635 * For now this just excludes isolated cpus, but could be used to
6636 * exclude other special cases in the future.
6637 */
6638 static int init_sched_domains(const struct cpumask *cpu_map)
6639 {
6640 int err;
6641
6642 arch_update_cpu_topology();
6643 ndoms_cur = 1;
6644 doms_cur = alloc_sched_domains(ndoms_cur);
6645 if (!doms_cur)
6646 doms_cur = &fallback_doms;
6647 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6648 err = build_sched_domains(doms_cur[0], NULL);
6649 register_sched_domain_sysctl();
6650
6651 return err;
6652 }
6653
6654 /*
6655 * Detach sched domains from a group of cpus specified in cpu_map
6656 * These cpus will now be attached to the NULL domain
6657 */
6658 static void detach_destroy_domains(const struct cpumask *cpu_map)
6659 {
6660 int i;
6661
6662 rcu_read_lock();
6663 for_each_cpu(i, cpu_map)
6664 cpu_attach_domain(NULL, &def_root_domain, i);
6665 rcu_read_unlock();
6666 }
6667
6668 /* handle null as "default" */
6669 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6670 struct sched_domain_attr *new, int idx_new)
6671 {
6672 struct sched_domain_attr tmp;
6673
6674 /* fast path */
6675 if (!new && !cur)
6676 return 1;
6677
6678 tmp = SD_ATTR_INIT;
6679 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6680 new ? (new + idx_new) : &tmp,
6681 sizeof(struct sched_domain_attr));
6682 }
6683
6684 /*
6685 * Partition sched domains as specified by the 'ndoms_new'
6686 * cpumasks in the array doms_new[] of cpumasks. This compares
6687 * doms_new[] to the current sched domain partitioning, doms_cur[].
6688 * It destroys each deleted domain and builds each new domain.
6689 *
6690 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6691 * The masks don't intersect (don't overlap.) We should setup one
6692 * sched domain for each mask. CPUs not in any of the cpumasks will
6693 * not be load balanced. If the same cpumask appears both in the
6694 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6695 * it as it is.
6696 *
6697 * The passed in 'doms_new' should be allocated using
6698 * alloc_sched_domains. This routine takes ownership of it and will
6699 * free_sched_domains it when done with it. If the caller failed the
6700 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6701 * and partition_sched_domains() will fallback to the single partition
6702 * 'fallback_doms', it also forces the domains to be rebuilt.
6703 *
6704 * If doms_new == NULL it will be replaced with cpu_online_mask.
6705 * ndoms_new == 0 is a special case for destroying existing domains,
6706 * and it will not create the default domain.
6707 *
6708 * Call with hotplug lock held
6709 */
6710 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6711 struct sched_domain_attr *dattr_new)
6712 {
6713 int i, j, n;
6714 int new_topology;
6715
6716 mutex_lock(&sched_domains_mutex);
6717
6718 /* always unregister in case we don't destroy any domains */
6719 unregister_sched_domain_sysctl();
6720
6721 /* Let architecture update cpu core mappings. */
6722 new_topology = arch_update_cpu_topology();
6723
6724 n = doms_new ? ndoms_new : 0;
6725
6726 /* Destroy deleted domains */
6727 for (i = 0; i < ndoms_cur; i++) {
6728 for (j = 0; j < n && !new_topology; j++) {
6729 if (cpumask_equal(doms_cur[i], doms_new[j])
6730 && dattrs_equal(dattr_cur, i, dattr_new, j))
6731 goto match1;
6732 }
6733 /* no match - a current sched domain not in new doms_new[] */
6734 detach_destroy_domains(doms_cur[i]);
6735 match1:
6736 ;
6737 }
6738
6739 if (doms_new == NULL) {
6740 ndoms_cur = 0;
6741 doms_new = &fallback_doms;
6742 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6743 WARN_ON_ONCE(dattr_new);
6744 }
6745
6746 /* Build new domains */
6747 for (i = 0; i < ndoms_new; i++) {
6748 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6749 if (cpumask_equal(doms_new[i], doms_cur[j])
6750 && dattrs_equal(dattr_new, i, dattr_cur, j))
6751 goto match2;
6752 }
6753 /* no match - add a new doms_new */
6754 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6755 match2:
6756 ;
6757 }
6758
6759 /* Remember the new sched domains */
6760 if (doms_cur != &fallback_doms)
6761 free_sched_domains(doms_cur, ndoms_cur);
6762 kfree(dattr_cur); /* kfree(NULL) is safe */
6763 doms_cur = doms_new;
6764 dattr_cur = dattr_new;
6765 ndoms_cur = ndoms_new;
6766
6767 register_sched_domain_sysctl();
6768
6769 mutex_unlock(&sched_domains_mutex);
6770 }
6771
6772 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6773
6774 /*
6775 * Update cpusets according to cpu_active mask. If cpusets are
6776 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6777 * around partition_sched_domains().
6778 *
6779 * If we come here as part of a suspend/resume, don't touch cpusets because we
6780 * want to restore it back to its original state upon resume anyway.
6781 */
6782 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6783 void *hcpu)
6784 {
6785 switch (action) {
6786 case CPU_ONLINE_FROZEN:
6787 case CPU_DOWN_FAILED_FROZEN:
6788
6789 /*
6790 * num_cpus_frozen tracks how many CPUs are involved in suspend
6791 * resume sequence. As long as this is not the last online
6792 * operation in the resume sequence, just build a single sched
6793 * domain, ignoring cpusets.
6794 */
6795 num_cpus_frozen--;
6796 if (likely(num_cpus_frozen)) {
6797 partition_sched_domains(1, NULL, NULL);
6798 break;
6799 }
6800
6801 /*
6802 * This is the last CPU online operation. So fall through and
6803 * restore the original sched domains by considering the
6804 * cpuset configurations.
6805 */
6806
6807 case CPU_ONLINE:
6808 case CPU_DOWN_FAILED:
6809 cpuset_update_active_cpus(true);
6810 break;
6811 default:
6812 return NOTIFY_DONE;
6813 }
6814 return NOTIFY_OK;
6815 }
6816
6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 void *hcpu)
6819 {
6820 switch (action) {
6821 case CPU_DOWN_PREPARE:
6822 cpuset_update_active_cpus(false);
6823 break;
6824 case CPU_DOWN_PREPARE_FROZEN:
6825 num_cpus_frozen++;
6826 partition_sched_domains(1, NULL, NULL);
6827 break;
6828 default:
6829 return NOTIFY_DONE;
6830 }
6831 return NOTIFY_OK;
6832 }
6833
6834 void __init sched_init_smp(void)
6835 {
6836 cpumask_var_t non_isolated_cpus;
6837
6838 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6839 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6840
6841 sched_init_numa();
6842
6843 get_online_cpus();
6844 mutex_lock(&sched_domains_mutex);
6845 init_sched_domains(cpu_active_mask);
6846 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6847 if (cpumask_empty(non_isolated_cpus))
6848 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6849 mutex_unlock(&sched_domains_mutex);
6850 put_online_cpus();
6851
6852 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6853 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6854 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6855
6856 /* RT runtime code needs to handle some hotplug events */
6857 hotcpu_notifier(update_runtime, 0);
6858
6859 init_hrtick();
6860
6861 /* Move init over to a non-isolated CPU */
6862 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6863 BUG();
6864 sched_init_granularity();
6865 free_cpumask_var(non_isolated_cpus);
6866
6867 init_sched_rt_class();
6868 }
6869 #else
6870 void __init sched_init_smp(void)
6871 {
6872 sched_init_granularity();
6873 }
6874 #endif /* CONFIG_SMP */
6875
6876 const_debug unsigned int sysctl_timer_migration = 1;
6877
6878 int in_sched_functions(unsigned long addr)
6879 {
6880 return in_lock_functions(addr) ||
6881 (addr >= (unsigned long)__sched_text_start
6882 && addr < (unsigned long)__sched_text_end);
6883 }
6884
6885 #ifdef CONFIG_CGROUP_SCHED
6886 /*
6887 * Default task group.
6888 * Every task in system belongs to this group at bootup.
6889 */
6890 struct task_group root_task_group;
6891 LIST_HEAD(task_groups);
6892 #endif
6893
6894 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6895
6896 void __init sched_init(void)
6897 {
6898 int i, j;
6899 unsigned long alloc_size = 0, ptr;
6900
6901 #ifdef CONFIG_FAIR_GROUP_SCHED
6902 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6903 #endif
6904 #ifdef CONFIG_RT_GROUP_SCHED
6905 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6906 #endif
6907 #ifdef CONFIG_CPUMASK_OFFSTACK
6908 alloc_size += num_possible_cpus() * cpumask_size();
6909 #endif
6910 if (alloc_size) {
6911 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6912
6913 #ifdef CONFIG_FAIR_GROUP_SCHED
6914 root_task_group.se = (struct sched_entity **)ptr;
6915 ptr += nr_cpu_ids * sizeof(void **);
6916
6917 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6918 ptr += nr_cpu_ids * sizeof(void **);
6919
6920 #endif /* CONFIG_FAIR_GROUP_SCHED */
6921 #ifdef CONFIG_RT_GROUP_SCHED
6922 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6923 ptr += nr_cpu_ids * sizeof(void **);
6924
6925 root_task_group.rt_rq = (struct rt_rq **)ptr;
6926 ptr += nr_cpu_ids * sizeof(void **);
6927
6928 #endif /* CONFIG_RT_GROUP_SCHED */
6929 #ifdef CONFIG_CPUMASK_OFFSTACK
6930 for_each_possible_cpu(i) {
6931 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6932 ptr += cpumask_size();
6933 }
6934 #endif /* CONFIG_CPUMASK_OFFSTACK */
6935 }
6936
6937 #ifdef CONFIG_SMP
6938 init_defrootdomain();
6939 #endif
6940
6941 init_rt_bandwidth(&def_rt_bandwidth,
6942 global_rt_period(), global_rt_runtime());
6943
6944 #ifdef CONFIG_RT_GROUP_SCHED
6945 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6946 global_rt_period(), global_rt_runtime());
6947 #endif /* CONFIG_RT_GROUP_SCHED */
6948
6949 #ifdef CONFIG_CGROUP_SCHED
6950 list_add(&root_task_group.list, &task_groups);
6951 INIT_LIST_HEAD(&root_task_group.children);
6952 INIT_LIST_HEAD(&root_task_group.siblings);
6953 autogroup_init(&init_task);
6954
6955 #endif /* CONFIG_CGROUP_SCHED */
6956
6957 #ifdef CONFIG_CGROUP_CPUACCT
6958 root_cpuacct.cpustat = &kernel_cpustat;
6959 root_cpuacct.cpuusage = alloc_percpu(u64);
6960 /* Too early, not expected to fail */
6961 BUG_ON(!root_cpuacct.cpuusage);
6962 #endif
6963 for_each_possible_cpu(i) {
6964 struct rq *rq;
6965
6966 rq = cpu_rq(i);
6967 raw_spin_lock_init(&rq->lock);
6968 rq->nr_running = 0;
6969 rq->calc_load_active = 0;
6970 rq->calc_load_update = jiffies + LOAD_FREQ;
6971 init_cfs_rq(&rq->cfs);
6972 init_rt_rq(&rq->rt, rq);
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6975 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6976 /*
6977 * How much cpu bandwidth does root_task_group get?
6978 *
6979 * In case of task-groups formed thr' the cgroup filesystem, it
6980 * gets 100% of the cpu resources in the system. This overall
6981 * system cpu resource is divided among the tasks of
6982 * root_task_group and its child task-groups in a fair manner,
6983 * based on each entity's (task or task-group's) weight
6984 * (se->load.weight).
6985 *
6986 * In other words, if root_task_group has 10 tasks of weight
6987 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6988 * then A0's share of the cpu resource is:
6989 *
6990 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6991 *
6992 * We achieve this by letting root_task_group's tasks sit
6993 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6994 */
6995 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6996 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6997 #endif /* CONFIG_FAIR_GROUP_SCHED */
6998
6999 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7000 #ifdef CONFIG_RT_GROUP_SCHED
7001 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7002 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7003 #endif
7004
7005 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7006 rq->cpu_load[j] = 0;
7007
7008 rq->last_load_update_tick = jiffies;
7009
7010 #ifdef CONFIG_SMP
7011 rq->sd = NULL;
7012 rq->rd = NULL;
7013 rq->cpu_power = SCHED_POWER_SCALE;
7014 rq->post_schedule = 0;
7015 rq->active_balance = 0;
7016 rq->next_balance = jiffies;
7017 rq->push_cpu = 0;
7018 rq->cpu = i;
7019 rq->online = 0;
7020 rq->idle_stamp = 0;
7021 rq->avg_idle = 2*sysctl_sched_migration_cost;
7022
7023 INIT_LIST_HEAD(&rq->cfs_tasks);
7024
7025 rq_attach_root(rq, &def_root_domain);
7026 #ifdef CONFIG_NO_HZ
7027 rq->nohz_flags = 0;
7028 #endif
7029 #endif
7030 init_rq_hrtick(rq);
7031 atomic_set(&rq->nr_iowait, 0);
7032 }
7033
7034 set_load_weight(&init_task);
7035
7036 #ifdef CONFIG_PREEMPT_NOTIFIERS
7037 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7038 #endif
7039
7040 #ifdef CONFIG_RT_MUTEXES
7041 plist_head_init(&init_task.pi_waiters);
7042 #endif
7043
7044 /*
7045 * The boot idle thread does lazy MMU switching as well:
7046 */
7047 atomic_inc(&init_mm.mm_count);
7048 enter_lazy_tlb(&init_mm, current);
7049
7050 /*
7051 * Make us the idle thread. Technically, schedule() should not be
7052 * called from this thread, however somewhere below it might be,
7053 * but because we are the idle thread, we just pick up running again
7054 * when this runqueue becomes "idle".
7055 */
7056 init_idle(current, smp_processor_id());
7057
7058 calc_load_update = jiffies + LOAD_FREQ;
7059
7060 /*
7061 * During early bootup we pretend to be a normal task:
7062 */
7063 current->sched_class = &fair_sched_class;
7064
7065 #ifdef CONFIG_SMP
7066 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7067 /* May be allocated at isolcpus cmdline parse time */
7068 if (cpu_isolated_map == NULL)
7069 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7070 idle_thread_set_boot_cpu();
7071 #endif
7072 init_sched_fair_class();
7073
7074 scheduler_running = 1;
7075 }
7076
7077 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7078 static inline int preempt_count_equals(int preempt_offset)
7079 {
7080 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7081
7082 return (nested == preempt_offset);
7083 }
7084
7085 void __might_sleep(const char *file, int line, int preempt_offset)
7086 {
7087 static unsigned long prev_jiffy; /* ratelimiting */
7088
7089 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7090 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7091 system_state != SYSTEM_RUNNING || oops_in_progress)
7092 return;
7093 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7094 return;
7095 prev_jiffy = jiffies;
7096
7097 printk(KERN_ERR
7098 "BUG: sleeping function called from invalid context at %s:%d\n",
7099 file, line);
7100 printk(KERN_ERR
7101 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7102 in_atomic(), irqs_disabled(),
7103 current->pid, current->comm);
7104
7105 debug_show_held_locks(current);
7106 if (irqs_disabled())
7107 print_irqtrace_events(current);
7108 dump_stack();
7109 }
7110 EXPORT_SYMBOL(__might_sleep);
7111 #endif
7112
7113 #ifdef CONFIG_MAGIC_SYSRQ
7114 static void normalize_task(struct rq *rq, struct task_struct *p)
7115 {
7116 const struct sched_class *prev_class = p->sched_class;
7117 int old_prio = p->prio;
7118 int on_rq;
7119
7120 on_rq = p->on_rq;
7121 if (on_rq)
7122 dequeue_task(rq, p, 0);
7123 __setscheduler(rq, p, SCHED_NORMAL, 0);
7124 if (on_rq) {
7125 enqueue_task(rq, p, 0);
7126 resched_task(rq->curr);
7127 }
7128
7129 check_class_changed(rq, p, prev_class, old_prio);
7130 }
7131
7132 void normalize_rt_tasks(void)
7133 {
7134 struct task_struct *g, *p;
7135 unsigned long flags;
7136 struct rq *rq;
7137
7138 read_lock_irqsave(&tasklist_lock, flags);
7139 do_each_thread(g, p) {
7140 /*
7141 * Only normalize user tasks:
7142 */
7143 if (!p->mm)
7144 continue;
7145
7146 p->se.exec_start = 0;
7147 #ifdef CONFIG_SCHEDSTATS
7148 p->se.statistics.wait_start = 0;
7149 p->se.statistics.sleep_start = 0;
7150 p->se.statistics.block_start = 0;
7151 #endif
7152
7153 if (!rt_task(p)) {
7154 /*
7155 * Renice negative nice level userspace
7156 * tasks back to 0:
7157 */
7158 if (TASK_NICE(p) < 0 && p->mm)
7159 set_user_nice(p, 0);
7160 continue;
7161 }
7162
7163 raw_spin_lock(&p->pi_lock);
7164 rq = __task_rq_lock(p);
7165
7166 normalize_task(rq, p);
7167
7168 __task_rq_unlock(rq);
7169 raw_spin_unlock(&p->pi_lock);
7170 } while_each_thread(g, p);
7171
7172 read_unlock_irqrestore(&tasklist_lock, flags);
7173 }
7174
7175 #endif /* CONFIG_MAGIC_SYSRQ */
7176
7177 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7178 /*
7179 * These functions are only useful for the IA64 MCA handling, or kdb.
7180 *
7181 * They can only be called when the whole system has been
7182 * stopped - every CPU needs to be quiescent, and no scheduling
7183 * activity can take place. Using them for anything else would
7184 * be a serious bug, and as a result, they aren't even visible
7185 * under any other configuration.
7186 */
7187
7188 /**
7189 * curr_task - return the current task for a given cpu.
7190 * @cpu: the processor in question.
7191 *
7192 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7193 */
7194 struct task_struct *curr_task(int cpu)
7195 {
7196 return cpu_curr(cpu);
7197 }
7198
7199 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7200
7201 #ifdef CONFIG_IA64
7202 /**
7203 * set_curr_task - set the current task for a given cpu.
7204 * @cpu: the processor in question.
7205 * @p: the task pointer to set.
7206 *
7207 * Description: This function must only be used when non-maskable interrupts
7208 * are serviced on a separate stack. It allows the architecture to switch the
7209 * notion of the current task on a cpu in a non-blocking manner. This function
7210 * must be called with all CPU's synchronized, and interrupts disabled, the
7211 * and caller must save the original value of the current task (see
7212 * curr_task() above) and restore that value before reenabling interrupts and
7213 * re-starting the system.
7214 *
7215 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7216 */
7217 void set_curr_task(int cpu, struct task_struct *p)
7218 {
7219 cpu_curr(cpu) = p;
7220 }
7221
7222 #endif
7223
7224 #ifdef CONFIG_CGROUP_SCHED
7225 /* task_group_lock serializes the addition/removal of task groups */
7226 static DEFINE_SPINLOCK(task_group_lock);
7227
7228 static void free_sched_group(struct task_group *tg)
7229 {
7230 free_fair_sched_group(tg);
7231 free_rt_sched_group(tg);
7232 autogroup_free(tg);
7233 kfree(tg);
7234 }
7235
7236 /* allocate runqueue etc for a new task group */
7237 struct task_group *sched_create_group(struct task_group *parent)
7238 {
7239 struct task_group *tg;
7240
7241 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7242 if (!tg)
7243 return ERR_PTR(-ENOMEM);
7244
7245 if (!alloc_fair_sched_group(tg, parent))
7246 goto err;
7247
7248 if (!alloc_rt_sched_group(tg, parent))
7249 goto err;
7250
7251 return tg;
7252
7253 err:
7254 free_sched_group(tg);
7255 return ERR_PTR(-ENOMEM);
7256 }
7257
7258 void sched_online_group(struct task_group *tg, struct task_group *parent)
7259 {
7260 unsigned long flags;
7261
7262 spin_lock_irqsave(&task_group_lock, flags);
7263 list_add_rcu(&tg->list, &task_groups);
7264
7265 WARN_ON(!parent); /* root should already exist */
7266
7267 tg->parent = parent;
7268 INIT_LIST_HEAD(&tg->children);
7269 list_add_rcu(&tg->siblings, &parent->children);
7270 spin_unlock_irqrestore(&task_group_lock, flags);
7271 }
7272
7273 /* rcu callback to free various structures associated with a task group */
7274 static void free_sched_group_rcu(struct rcu_head *rhp)
7275 {
7276 /* now it should be safe to free those cfs_rqs */
7277 free_sched_group(container_of(rhp, struct task_group, rcu));
7278 }
7279
7280 /* Destroy runqueue etc associated with a task group */
7281 void sched_destroy_group(struct task_group *tg)
7282 {
7283 /* wait for possible concurrent references to cfs_rqs complete */
7284 call_rcu(&tg->rcu, free_sched_group_rcu);
7285 }
7286
7287 void sched_offline_group(struct task_group *tg)
7288 {
7289 unsigned long flags;
7290 int i;
7291
7292 /* end participation in shares distribution */
7293 for_each_possible_cpu(i)
7294 unregister_fair_sched_group(tg, i);
7295
7296 spin_lock_irqsave(&task_group_lock, flags);
7297 list_del_rcu(&tg->list);
7298 list_del_rcu(&tg->siblings);
7299 spin_unlock_irqrestore(&task_group_lock, flags);
7300 }
7301
7302 /* change task's runqueue when it moves between groups.
7303 * The caller of this function should have put the task in its new group
7304 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7305 * reflect its new group.
7306 */
7307 void sched_move_task(struct task_struct *tsk)
7308 {
7309 struct task_group *tg;
7310 int on_rq, running;
7311 unsigned long flags;
7312 struct rq *rq;
7313
7314 rq = task_rq_lock(tsk, &flags);
7315
7316 running = task_current(rq, tsk);
7317 on_rq = tsk->on_rq;
7318
7319 if (on_rq)
7320 dequeue_task(rq, tsk, 0);
7321 if (unlikely(running))
7322 tsk->sched_class->put_prev_task(rq, tsk);
7323
7324 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7325 lockdep_is_held(&tsk->sighand->siglock)),
7326 struct task_group, css);
7327 tg = autogroup_task_group(tsk, tg);
7328 tsk->sched_task_group = tg;
7329
7330 #ifdef CONFIG_FAIR_GROUP_SCHED
7331 if (tsk->sched_class->task_move_group)
7332 tsk->sched_class->task_move_group(tsk, on_rq);
7333 else
7334 #endif
7335 set_task_rq(tsk, task_cpu(tsk));
7336
7337 if (unlikely(running))
7338 tsk->sched_class->set_curr_task(rq);
7339 if (on_rq)
7340 enqueue_task(rq, tsk, 0);
7341
7342 task_rq_unlock(rq, tsk, &flags);
7343 }
7344 #endif /* CONFIG_CGROUP_SCHED */
7345
7346 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7347 static unsigned long to_ratio(u64 period, u64 runtime)
7348 {
7349 if (runtime == RUNTIME_INF)
7350 return 1ULL << 20;
7351
7352 return div64_u64(runtime << 20, period);
7353 }
7354 #endif
7355
7356 #ifdef CONFIG_RT_GROUP_SCHED
7357 /*
7358 * Ensure that the real time constraints are schedulable.
7359 */
7360 static DEFINE_MUTEX(rt_constraints_mutex);
7361
7362 /* Must be called with tasklist_lock held */
7363 static inline int tg_has_rt_tasks(struct task_group *tg)
7364 {
7365 struct task_struct *g, *p;
7366
7367 do_each_thread(g, p) {
7368 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7369 return 1;
7370 } while_each_thread(g, p);
7371
7372 return 0;
7373 }
7374
7375 struct rt_schedulable_data {
7376 struct task_group *tg;
7377 u64 rt_period;
7378 u64 rt_runtime;
7379 };
7380
7381 static int tg_rt_schedulable(struct task_group *tg, void *data)
7382 {
7383 struct rt_schedulable_data *d = data;
7384 struct task_group *child;
7385 unsigned long total, sum = 0;
7386 u64 period, runtime;
7387
7388 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7389 runtime = tg->rt_bandwidth.rt_runtime;
7390
7391 if (tg == d->tg) {
7392 period = d->rt_period;
7393 runtime = d->rt_runtime;
7394 }
7395
7396 /*
7397 * Cannot have more runtime than the period.
7398 */
7399 if (runtime > period && runtime != RUNTIME_INF)
7400 return -EINVAL;
7401
7402 /*
7403 * Ensure we don't starve existing RT tasks.
7404 */
7405 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7406 return -EBUSY;
7407
7408 total = to_ratio(period, runtime);
7409
7410 /*
7411 * Nobody can have more than the global setting allows.
7412 */
7413 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7414 return -EINVAL;
7415
7416 /*
7417 * The sum of our children's runtime should not exceed our own.
7418 */
7419 list_for_each_entry_rcu(child, &tg->children, siblings) {
7420 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7421 runtime = child->rt_bandwidth.rt_runtime;
7422
7423 if (child == d->tg) {
7424 period = d->rt_period;
7425 runtime = d->rt_runtime;
7426 }
7427
7428 sum += to_ratio(period, runtime);
7429 }
7430
7431 if (sum > total)
7432 return -EINVAL;
7433
7434 return 0;
7435 }
7436
7437 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7438 {
7439 int ret;
7440
7441 struct rt_schedulable_data data = {
7442 .tg = tg,
7443 .rt_period = period,
7444 .rt_runtime = runtime,
7445 };
7446
7447 rcu_read_lock();
7448 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7449 rcu_read_unlock();
7450
7451 return ret;
7452 }
7453
7454 static int tg_set_rt_bandwidth(struct task_group *tg,
7455 u64 rt_period, u64 rt_runtime)
7456 {
7457 int i, err = 0;
7458
7459 mutex_lock(&rt_constraints_mutex);
7460 read_lock(&tasklist_lock);
7461 err = __rt_schedulable(tg, rt_period, rt_runtime);
7462 if (err)
7463 goto unlock;
7464
7465 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7466 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7467 tg->rt_bandwidth.rt_runtime = rt_runtime;
7468
7469 for_each_possible_cpu(i) {
7470 struct rt_rq *rt_rq = tg->rt_rq[i];
7471
7472 raw_spin_lock(&rt_rq->rt_runtime_lock);
7473 rt_rq->rt_runtime = rt_runtime;
7474 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7475 }
7476 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7477 unlock:
7478 read_unlock(&tasklist_lock);
7479 mutex_unlock(&rt_constraints_mutex);
7480
7481 return err;
7482 }
7483
7484 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7485 {
7486 u64 rt_runtime, rt_period;
7487
7488 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7489 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7490 if (rt_runtime_us < 0)
7491 rt_runtime = RUNTIME_INF;
7492
7493 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7494 }
7495
7496 static long sched_group_rt_runtime(struct task_group *tg)
7497 {
7498 u64 rt_runtime_us;
7499
7500 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7501 return -1;
7502
7503 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7504 do_div(rt_runtime_us, NSEC_PER_USEC);
7505 return rt_runtime_us;
7506 }
7507
7508 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7509 {
7510 u64 rt_runtime, rt_period;
7511
7512 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7513 rt_runtime = tg->rt_bandwidth.rt_runtime;
7514
7515 if (rt_period == 0)
7516 return -EINVAL;
7517
7518 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7519 }
7520
7521 static long sched_group_rt_period(struct task_group *tg)
7522 {
7523 u64 rt_period_us;
7524
7525 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7526 do_div(rt_period_us, NSEC_PER_USEC);
7527 return rt_period_us;
7528 }
7529
7530 static int sched_rt_global_constraints(void)
7531 {
7532 u64 runtime, period;
7533 int ret = 0;
7534
7535 if (sysctl_sched_rt_period <= 0)
7536 return -EINVAL;
7537
7538 runtime = global_rt_runtime();
7539 period = global_rt_period();
7540
7541 /*
7542 * Sanity check on the sysctl variables.
7543 */
7544 if (runtime > period && runtime != RUNTIME_INF)
7545 return -EINVAL;
7546
7547 mutex_lock(&rt_constraints_mutex);
7548 read_lock(&tasklist_lock);
7549 ret = __rt_schedulable(NULL, 0, 0);
7550 read_unlock(&tasklist_lock);
7551 mutex_unlock(&rt_constraints_mutex);
7552
7553 return ret;
7554 }
7555
7556 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7557 {
7558 /* Don't accept realtime tasks when there is no way for them to run */
7559 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7560 return 0;
7561
7562 return 1;
7563 }
7564
7565 #else /* !CONFIG_RT_GROUP_SCHED */
7566 static int sched_rt_global_constraints(void)
7567 {
7568 unsigned long flags;
7569 int i;
7570
7571 if (sysctl_sched_rt_period <= 0)
7572 return -EINVAL;
7573
7574 /*
7575 * There's always some RT tasks in the root group
7576 * -- migration, kstopmachine etc..
7577 */
7578 if (sysctl_sched_rt_runtime == 0)
7579 return -EBUSY;
7580
7581 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7582 for_each_possible_cpu(i) {
7583 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7584
7585 raw_spin_lock(&rt_rq->rt_runtime_lock);
7586 rt_rq->rt_runtime = global_rt_runtime();
7587 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7588 }
7589 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7590
7591 return 0;
7592 }
7593 #endif /* CONFIG_RT_GROUP_SCHED */
7594
7595 int sched_rr_handler(struct ctl_table *table, int write,
7596 void __user *buffer, size_t *lenp,
7597 loff_t *ppos)
7598 {
7599 int ret;
7600 static DEFINE_MUTEX(mutex);
7601
7602 mutex_lock(&mutex);
7603 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7604 /* make sure that internally we keep jiffies */
7605 /* also, writing zero resets timeslice to default */
7606 if (!ret && write) {
7607 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7608 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7609 }
7610 mutex_unlock(&mutex);
7611 return ret;
7612 }
7613
7614 int sched_rt_handler(struct ctl_table *table, int write,
7615 void __user *buffer, size_t *lenp,
7616 loff_t *ppos)
7617 {
7618 int ret;
7619 int old_period, old_runtime;
7620 static DEFINE_MUTEX(mutex);
7621
7622 mutex_lock(&mutex);
7623 old_period = sysctl_sched_rt_period;
7624 old_runtime = sysctl_sched_rt_runtime;
7625
7626 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7627
7628 if (!ret && write) {
7629 ret = sched_rt_global_constraints();
7630 if (ret) {
7631 sysctl_sched_rt_period = old_period;
7632 sysctl_sched_rt_runtime = old_runtime;
7633 } else {
7634 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7635 def_rt_bandwidth.rt_period =
7636 ns_to_ktime(global_rt_period());
7637 }
7638 }
7639 mutex_unlock(&mutex);
7640
7641 return ret;
7642 }
7643
7644 #ifdef CONFIG_CGROUP_SCHED
7645
7646 /* return corresponding task_group object of a cgroup */
7647 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7648 {
7649 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7650 struct task_group, css);
7651 }
7652
7653 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7654 {
7655 struct task_group *tg, *parent;
7656
7657 if (!cgrp->parent) {
7658 /* This is early initialization for the top cgroup */
7659 return &root_task_group.css;
7660 }
7661
7662 parent = cgroup_tg(cgrp->parent);
7663 tg = sched_create_group(parent);
7664 if (IS_ERR(tg))
7665 return ERR_PTR(-ENOMEM);
7666
7667 return &tg->css;
7668 }
7669
7670 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7671 {
7672 struct task_group *tg = cgroup_tg(cgrp);
7673 struct task_group *parent;
7674
7675 if (!cgrp->parent)
7676 return 0;
7677
7678 parent = cgroup_tg(cgrp->parent);
7679 sched_online_group(tg, parent);
7680 return 0;
7681 }
7682
7683 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7684 {
7685 struct task_group *tg = cgroup_tg(cgrp);
7686
7687 sched_destroy_group(tg);
7688 }
7689
7690 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7691 {
7692 struct task_group *tg = cgroup_tg(cgrp);
7693
7694 sched_offline_group(tg);
7695 }
7696
7697 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7698 struct cgroup_taskset *tset)
7699 {
7700 struct task_struct *task;
7701
7702 cgroup_taskset_for_each(task, cgrp, tset) {
7703 #ifdef CONFIG_RT_GROUP_SCHED
7704 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7705 return -EINVAL;
7706 #else
7707 /* We don't support RT-tasks being in separate groups */
7708 if (task->sched_class != &fair_sched_class)
7709 return -EINVAL;
7710 #endif
7711 }
7712 return 0;
7713 }
7714
7715 static void cpu_cgroup_attach(struct cgroup *cgrp,
7716 struct cgroup_taskset *tset)
7717 {
7718 struct task_struct *task;
7719
7720 cgroup_taskset_for_each(task, cgrp, tset)
7721 sched_move_task(task);
7722 }
7723
7724 static void
7725 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7726 struct task_struct *task)
7727 {
7728 /*
7729 * cgroup_exit() is called in the copy_process() failure path.
7730 * Ignore this case since the task hasn't ran yet, this avoids
7731 * trying to poke a half freed task state from generic code.
7732 */
7733 if (!(task->flags & PF_EXITING))
7734 return;
7735
7736 sched_move_task(task);
7737 }
7738
7739 #ifdef CONFIG_FAIR_GROUP_SCHED
7740 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7741 u64 shareval)
7742 {
7743 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7744 }
7745
7746 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7747 {
7748 struct task_group *tg = cgroup_tg(cgrp);
7749
7750 return (u64) scale_load_down(tg->shares);
7751 }
7752
7753 #ifdef CONFIG_CFS_BANDWIDTH
7754 static DEFINE_MUTEX(cfs_constraints_mutex);
7755
7756 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7757 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7758
7759 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7760
7761 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7762 {
7763 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7764 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7765
7766 if (tg == &root_task_group)
7767 return -EINVAL;
7768
7769 /*
7770 * Ensure we have at some amount of bandwidth every period. This is
7771 * to prevent reaching a state of large arrears when throttled via
7772 * entity_tick() resulting in prolonged exit starvation.
7773 */
7774 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7775 return -EINVAL;
7776
7777 /*
7778 * Likewise, bound things on the otherside by preventing insane quota
7779 * periods. This also allows us to normalize in computing quota
7780 * feasibility.
7781 */
7782 if (period > max_cfs_quota_period)
7783 return -EINVAL;
7784
7785 mutex_lock(&cfs_constraints_mutex);
7786 ret = __cfs_schedulable(tg, period, quota);
7787 if (ret)
7788 goto out_unlock;
7789
7790 runtime_enabled = quota != RUNTIME_INF;
7791 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7792 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7793 raw_spin_lock_irq(&cfs_b->lock);
7794 cfs_b->period = ns_to_ktime(period);
7795 cfs_b->quota = quota;
7796
7797 __refill_cfs_bandwidth_runtime(cfs_b);
7798 /* restart the period timer (if active) to handle new period expiry */
7799 if (runtime_enabled && cfs_b->timer_active) {
7800 /* force a reprogram */
7801 cfs_b->timer_active = 0;
7802 __start_cfs_bandwidth(cfs_b);
7803 }
7804 raw_spin_unlock_irq(&cfs_b->lock);
7805
7806 for_each_possible_cpu(i) {
7807 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7808 struct rq *rq = cfs_rq->rq;
7809
7810 raw_spin_lock_irq(&rq->lock);
7811 cfs_rq->runtime_enabled = runtime_enabled;
7812 cfs_rq->runtime_remaining = 0;
7813
7814 if (cfs_rq->throttled)
7815 unthrottle_cfs_rq(cfs_rq);
7816 raw_spin_unlock_irq(&rq->lock);
7817 }
7818 out_unlock:
7819 mutex_unlock(&cfs_constraints_mutex);
7820
7821 return ret;
7822 }
7823
7824 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7825 {
7826 u64 quota, period;
7827
7828 period = ktime_to_ns(tg->cfs_bandwidth.period);
7829 if (cfs_quota_us < 0)
7830 quota = RUNTIME_INF;
7831 else
7832 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7833
7834 return tg_set_cfs_bandwidth(tg, period, quota);
7835 }
7836
7837 long tg_get_cfs_quota(struct task_group *tg)
7838 {
7839 u64 quota_us;
7840
7841 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7842 return -1;
7843
7844 quota_us = tg->cfs_bandwidth.quota;
7845 do_div(quota_us, NSEC_PER_USEC);
7846
7847 return quota_us;
7848 }
7849
7850 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7851 {
7852 u64 quota, period;
7853
7854 period = (u64)cfs_period_us * NSEC_PER_USEC;
7855 quota = tg->cfs_bandwidth.quota;
7856
7857 return tg_set_cfs_bandwidth(tg, period, quota);
7858 }
7859
7860 long tg_get_cfs_period(struct task_group *tg)
7861 {
7862 u64 cfs_period_us;
7863
7864 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7865 do_div(cfs_period_us, NSEC_PER_USEC);
7866
7867 return cfs_period_us;
7868 }
7869
7870 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7871 {
7872 return tg_get_cfs_quota(cgroup_tg(cgrp));
7873 }
7874
7875 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7876 s64 cfs_quota_us)
7877 {
7878 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7879 }
7880
7881 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7882 {
7883 return tg_get_cfs_period(cgroup_tg(cgrp));
7884 }
7885
7886 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7887 u64 cfs_period_us)
7888 {
7889 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7890 }
7891
7892 struct cfs_schedulable_data {
7893 struct task_group *tg;
7894 u64 period, quota;
7895 };
7896
7897 /*
7898 * normalize group quota/period to be quota/max_period
7899 * note: units are usecs
7900 */
7901 static u64 normalize_cfs_quota(struct task_group *tg,
7902 struct cfs_schedulable_data *d)
7903 {
7904 u64 quota, period;
7905
7906 if (tg == d->tg) {
7907 period = d->period;
7908 quota = d->quota;
7909 } else {
7910 period = tg_get_cfs_period(tg);
7911 quota = tg_get_cfs_quota(tg);
7912 }
7913
7914 /* note: these should typically be equivalent */
7915 if (quota == RUNTIME_INF || quota == -1)
7916 return RUNTIME_INF;
7917
7918 return to_ratio(period, quota);
7919 }
7920
7921 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7922 {
7923 struct cfs_schedulable_data *d = data;
7924 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7925 s64 quota = 0, parent_quota = -1;
7926
7927 if (!tg->parent) {
7928 quota = RUNTIME_INF;
7929 } else {
7930 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7931
7932 quota = normalize_cfs_quota(tg, d);
7933 parent_quota = parent_b->hierarchal_quota;
7934
7935 /*
7936 * ensure max(child_quota) <= parent_quota, inherit when no
7937 * limit is set
7938 */
7939 if (quota == RUNTIME_INF)
7940 quota = parent_quota;
7941 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7942 return -EINVAL;
7943 }
7944 cfs_b->hierarchal_quota = quota;
7945
7946 return 0;
7947 }
7948
7949 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7950 {
7951 int ret;
7952 struct cfs_schedulable_data data = {
7953 .tg = tg,
7954 .period = period,
7955 .quota = quota,
7956 };
7957
7958 if (quota != RUNTIME_INF) {
7959 do_div(data.period, NSEC_PER_USEC);
7960 do_div(data.quota, NSEC_PER_USEC);
7961 }
7962
7963 rcu_read_lock();
7964 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7965 rcu_read_unlock();
7966
7967 return ret;
7968 }
7969
7970 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7971 struct cgroup_map_cb *cb)
7972 {
7973 struct task_group *tg = cgroup_tg(cgrp);
7974 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7975
7976 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7977 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7978 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7979
7980 return 0;
7981 }
7982 #endif /* CONFIG_CFS_BANDWIDTH */
7983 #endif /* CONFIG_FAIR_GROUP_SCHED */
7984
7985 #ifdef CONFIG_RT_GROUP_SCHED
7986 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7987 s64 val)
7988 {
7989 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7990 }
7991
7992 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7993 {
7994 return sched_group_rt_runtime(cgroup_tg(cgrp));
7995 }
7996
7997 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7998 u64 rt_period_us)
7999 {
8000 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8001 }
8002
8003 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8004 {
8005 return sched_group_rt_period(cgroup_tg(cgrp));
8006 }
8007 #endif /* CONFIG_RT_GROUP_SCHED */
8008
8009 static struct cftype cpu_files[] = {
8010 #ifdef CONFIG_FAIR_GROUP_SCHED
8011 {
8012 .name = "shares",
8013 .read_u64 = cpu_shares_read_u64,
8014 .write_u64 = cpu_shares_write_u64,
8015 },
8016 #endif
8017 #ifdef CONFIG_CFS_BANDWIDTH
8018 {
8019 .name = "cfs_quota_us",
8020 .read_s64 = cpu_cfs_quota_read_s64,
8021 .write_s64 = cpu_cfs_quota_write_s64,
8022 },
8023 {
8024 .name = "cfs_period_us",
8025 .read_u64 = cpu_cfs_period_read_u64,
8026 .write_u64 = cpu_cfs_period_write_u64,
8027 },
8028 {
8029 .name = "stat",
8030 .read_map = cpu_stats_show,
8031 },
8032 #endif
8033 #ifdef CONFIG_RT_GROUP_SCHED
8034 {
8035 .name = "rt_runtime_us",
8036 .read_s64 = cpu_rt_runtime_read,
8037 .write_s64 = cpu_rt_runtime_write,
8038 },
8039 {
8040 .name = "rt_period_us",
8041 .read_u64 = cpu_rt_period_read_uint,
8042 .write_u64 = cpu_rt_period_write_uint,
8043 },
8044 #endif
8045 { } /* terminate */
8046 };
8047
8048 struct cgroup_subsys cpu_cgroup_subsys = {
8049 .name = "cpu",
8050 .css_alloc = cpu_cgroup_css_alloc,
8051 .css_free = cpu_cgroup_css_free,
8052 .css_online = cpu_cgroup_css_online,
8053 .css_offline = cpu_cgroup_css_offline,
8054 .can_attach = cpu_cgroup_can_attach,
8055 .attach = cpu_cgroup_attach,
8056 .exit = cpu_cgroup_exit,
8057 .subsys_id = cpu_cgroup_subsys_id,
8058 .base_cftypes = cpu_files,
8059 .early_init = 1,
8060 };
8061
8062 #endif /* CONFIG_CGROUP_SCHED */
8063
8064 #ifdef CONFIG_CGROUP_CPUACCT
8065
8066 /*
8067 * CPU accounting code for task groups.
8068 *
8069 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8070 * (balbir@in.ibm.com).
8071 */
8072
8073 struct cpuacct root_cpuacct;
8074
8075 /* create a new cpu accounting group */
8076 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8077 {
8078 struct cpuacct *ca;
8079
8080 if (!cgrp->parent)
8081 return &root_cpuacct.css;
8082
8083 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8084 if (!ca)
8085 goto out;
8086
8087 ca->cpuusage = alloc_percpu(u64);
8088 if (!ca->cpuusage)
8089 goto out_free_ca;
8090
8091 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8092 if (!ca->cpustat)
8093 goto out_free_cpuusage;
8094
8095 return &ca->css;
8096
8097 out_free_cpuusage:
8098 free_percpu(ca->cpuusage);
8099 out_free_ca:
8100 kfree(ca);
8101 out:
8102 return ERR_PTR(-ENOMEM);
8103 }
8104
8105 /* destroy an existing cpu accounting group */
8106 static void cpuacct_css_free(struct cgroup *cgrp)
8107 {
8108 struct cpuacct *ca = cgroup_ca(cgrp);
8109
8110 free_percpu(ca->cpustat);
8111 free_percpu(ca->cpuusage);
8112 kfree(ca);
8113 }
8114
8115 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8116 {
8117 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8118 u64 data;
8119
8120 #ifndef CONFIG_64BIT
8121 /*
8122 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8123 */
8124 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8125 data = *cpuusage;
8126 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8127 #else
8128 data = *cpuusage;
8129 #endif
8130
8131 return data;
8132 }
8133
8134 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8135 {
8136 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8137
8138 #ifndef CONFIG_64BIT
8139 /*
8140 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8141 */
8142 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8143 *cpuusage = val;
8144 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8145 #else
8146 *cpuusage = val;
8147 #endif
8148 }
8149
8150 /* return total cpu usage (in nanoseconds) of a group */
8151 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8152 {
8153 struct cpuacct *ca = cgroup_ca(cgrp);
8154 u64 totalcpuusage = 0;
8155 int i;
8156
8157 for_each_present_cpu(i)
8158 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8159
8160 return totalcpuusage;
8161 }
8162
8163 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8164 u64 reset)
8165 {
8166 struct cpuacct *ca = cgroup_ca(cgrp);
8167 int err = 0;
8168 int i;
8169
8170 if (reset) {
8171 err = -EINVAL;
8172 goto out;
8173 }
8174
8175 for_each_present_cpu(i)
8176 cpuacct_cpuusage_write(ca, i, 0);
8177
8178 out:
8179 return err;
8180 }
8181
8182 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8183 struct seq_file *m)
8184 {
8185 struct cpuacct *ca = cgroup_ca(cgroup);
8186 u64 percpu;
8187 int i;
8188
8189 for_each_present_cpu(i) {
8190 percpu = cpuacct_cpuusage_read(ca, i);
8191 seq_printf(m, "%llu ", (unsigned long long) percpu);
8192 }
8193 seq_printf(m, "\n");
8194 return 0;
8195 }
8196
8197 static const char *cpuacct_stat_desc[] = {
8198 [CPUACCT_STAT_USER] = "user",
8199 [CPUACCT_STAT_SYSTEM] = "system",
8200 };
8201
8202 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8203 struct cgroup_map_cb *cb)
8204 {
8205 struct cpuacct *ca = cgroup_ca(cgrp);
8206 int cpu;
8207 s64 val = 0;
8208
8209 for_each_online_cpu(cpu) {
8210 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8211 val += kcpustat->cpustat[CPUTIME_USER];
8212 val += kcpustat->cpustat[CPUTIME_NICE];
8213 }
8214 val = cputime64_to_clock_t(val);
8215 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8216
8217 val = 0;
8218 for_each_online_cpu(cpu) {
8219 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8220 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8221 val += kcpustat->cpustat[CPUTIME_IRQ];
8222 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8223 }
8224
8225 val = cputime64_to_clock_t(val);
8226 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8227
8228 return 0;
8229 }
8230
8231 static struct cftype files[] = {
8232 {
8233 .name = "usage",
8234 .read_u64 = cpuusage_read,
8235 .write_u64 = cpuusage_write,
8236 },
8237 {
8238 .name = "usage_percpu",
8239 .read_seq_string = cpuacct_percpu_seq_read,
8240 },
8241 {
8242 .name = "stat",
8243 .read_map = cpuacct_stats_show,
8244 },
8245 { } /* terminate */
8246 };
8247
8248 /*
8249 * charge this task's execution time to its accounting group.
8250 *
8251 * called with rq->lock held.
8252 */
8253 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8254 {
8255 struct cpuacct *ca;
8256 int cpu;
8257
8258 if (unlikely(!cpuacct_subsys.active))
8259 return;
8260
8261 cpu = task_cpu(tsk);
8262
8263 rcu_read_lock();
8264
8265 ca = task_ca(tsk);
8266
8267 for (; ca; ca = parent_ca(ca)) {
8268 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8269 *cpuusage += cputime;
8270 }
8271
8272 rcu_read_unlock();
8273 }
8274
8275 struct cgroup_subsys cpuacct_subsys = {
8276 .name = "cpuacct",
8277 .css_alloc = cpuacct_css_alloc,
8278 .css_free = cpuacct_css_free,
8279 .subsys_id = cpuacct_subsys_id,
8280 .base_cftypes = files,
8281 };
8282 #endif /* CONFIG_CGROUP_CPUACCT */
8283
8284 void dump_cpu_task(int cpu)
8285 {
8286 pr_info("Task dump for CPU %d:\n", cpu);
8287 sched_show_task(cpu_curr(cpu));
8288 }