781acb91a50aa973e73ff119bfd055c8d4e7e45d
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
90
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 {
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109 }
110
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116 void update_rq_clock(struct rq *rq)
117 {
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126 }
127
128 /*
129 * Debugging: various feature bits
130 */
131
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
137 0;
138
139 #undef SCHED_FEAT
140
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
144
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198 {
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237 }
238
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 return single_open(filp, sched_feat_show, NULL);
242 }
243
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250 };
251
252 static __init int sched_init_debug(void)
253 {
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261
262 /*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268 /*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276 /*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280 unsigned int sysctl_sched_rt_period = 1000000;
281
282 __read_mostly int scheduler_running;
283
284 /*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288 int sysctl_sched_rt_runtime = 950000;
289
290
291
292 /*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309 }
310
311 /*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329 }
330
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333 {
334 raw_spin_unlock(&rq->lock);
335 }
336
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345
346 /*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351 {
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359 }
360
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398 /*
399 * called from hardirq (IPI) context
400 */
401 static void __hrtick_start(void *arg)
402 {
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409 }
410
411 /*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429 }
430
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448 }
449
450 static __init void init_hrtick(void)
451 {
452 hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464 }
465
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483 }
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif /* CONFIG_SCHED_HRTICK */
497
498 /*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505 #ifdef CONFIG_SMP
506
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510
511 void resched_task(struct task_struct *p)
512 {
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_NO_HZ
544 /*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567 unlock:
568 rcu_read_unlock();
569 return cpu;
570 }
571 /*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581 void wake_up_idle_cpu(int cpu)
582 {
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609 }
610
611 static inline bool got_nohz_idle_kick(void)
612 {
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616
617 #else /* CONFIG_NO_HZ */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660 {
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674 up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
687 }
688
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 return 0;
692 }
693 #endif
694
695 static void set_load_weight(struct task_struct *p)
696 {
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711 }
712
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714 {
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718 }
719
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721 {
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725 }
726
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
728 {
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733 }
734
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736 {
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741 }
742
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745 /*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
761
762 void enable_sched_clock_irqtime(void)
763 {
764 sched_clock_irqtime = 1;
765 }
766
767 void disable_sched_clock_irqtime(void)
768 {
769 sched_clock_irqtime = 0;
770 }
771
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775 static inline void irq_time_write_begin(void)
776 {
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779 }
780
781 static inline void irq_time_write_end(void)
782 {
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785 }
786
787 static inline u64 irq_time_read(int cpu)
788 {
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799 }
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
802 {
803 }
804
805 static inline void irq_time_write_end(void)
806 {
807 }
808
809 static inline u64 irq_time_read(int cpu)
810 {
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812 }
813 #endif /* CONFIG_64BIT */
814
815 /*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819 void account_system_vtime(struct task_struct *curr)
820 {
821 unsigned long flags;
822 s64 delta;
823 int cpu;
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
834 irq_time_write_begin();
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
845
846 irq_time_write_end();
847 local_irq_restore(flags);
848 }
849 EXPORT_SYMBOL_GPL(account_system_vtime);
850
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
855 {
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
858
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860 }
861 #endif
862
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
864 {
865 /*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((&paravirt_steal_rq_enabled))) {
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913 #endif
914
915 rq->clock_task += delta;
916
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
921 }
922
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
925 {
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937 }
938
939 static int irqtime_account_si_update(void)
940 {
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952 }
953
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956 #define sched_clock_irqtime (0)
957
958 #endif
959
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
961 {
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988 }
989
990 /*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993 static inline int __normal_prio(struct task_struct *p)
994 {
995 return p->static_prio;
996 }
997
998 /*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005 static inline int normal_prio(struct task_struct *p)
1006 {
1007 int prio;
1008
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014 }
1015
1016 /*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023 static int effective_prio(struct task_struct *p)
1024 {
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034 }
1035
1036 /**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040 inline int task_curr(const struct task_struct *p)
1041 {
1042 return cpu_curr(task_cpu(p)) == p;
1043 }
1044
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1048 {
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1055 }
1056
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058 {
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1080 }
1081
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084 {
1085 #ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093 #ifdef CONFIG_LOCKDEP
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1108
1109 trace_sched_migrate_task(p, new_cpu);
1110
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114 }
1115
1116 __set_task_cpu(p, new_cpu);
1117 }
1118
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1122 };
1123
1124 static int migration_cpu_stop(void *data);
1125
1126 /*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143 {
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1148
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
1157
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1173 }
1174
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1188
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
1205
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1221 }
1222
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
1230
1231 return ncsw;
1232 }
1233
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247 void kick_process(struct task_struct *p)
1248 {
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256 }
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1259
1260 #ifdef CONFIG_SMP
1261 /*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1265 {
1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu(dest_cpu, nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 return dest_cpu;
1278 }
1279
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
1289
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308 out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
1319 }
1320
1321 return dest_cpu;
1322 }
1323
1324 /*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329 {
1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 !cpu_online(cpu)))
1344 cpu = select_fallback_rq(task_cpu(p), p);
1345
1346 return cpu;
1347 }
1348
1349 static void update_avg(u64 *avg, u64 sample)
1350 {
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353 }
1354 #endif
1355
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358 {
1359 #ifdef CONFIG_SCHEDSTATS
1360 struct rq *rq = this_rq();
1361
1362 #ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 rcu_read_lock();
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385 #endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
1388 schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390 if (wake_flags & WF_SYNC)
1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393 #endif /* CONFIG_SCHEDSTATS */
1394 }
1395
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397 {
1398 activate_task(rq, p, en_flags);
1399 p->on_rq = 1;
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
1404 }
1405
1406 /*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411 {
1412 trace_sched_wakeup(p, true);
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
1420 if (rq->idle_stamp) {
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430 #endif
1431 }
1432
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435 {
1436 #ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439 #endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443 }
1444
1445 /*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1452 {
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464 }
1465
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1468 {
1469 struct rq *rq = this_rq();
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
1472
1473 raw_spin_lock(&rq->lock);
1474
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482 }
1483
1484 void scheduler_ipi(void)
1485 {
1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
1503 sched_ttwu_pending();
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
1511 }
1512 irq_exit();
1513 }
1514
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516 {
1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 smp_send_reschedule(cpu);
1519 }
1520
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523 {
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537 }
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1541 {
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543 }
1544 #endif /* CONFIG_SMP */
1545
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1547 {
1548 struct rq *rq = cpu_rq(cpu);
1549
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556 #endif
1557
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
1561 }
1562
1563 /**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1577 */
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580 {
1581 unsigned long flags;
1582 int cpu, success = 0;
1583
1584 smp_wmb();
1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 if (!(p->state & state))
1587 goto out;
1588
1589 success = 1; /* we're going to change ->state */
1590 cpu = task_cpu(p);
1591
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1594
1595 #ifdef CONFIG_SMP
1596 /*
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
1599 */
1600 while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
1608 */
1609 if (ttwu_activate_remote(p, wake_flags))
1610 goto stat;
1611 #else
1612 cpu_relax();
1613 #endif
1614 }
1615 /*
1616 * Pairs with the smp_wmb() in finish_lock_switch().
1617 */
1618 smp_rmb();
1619
1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 p->state = TASK_WAKING;
1622
1623 if (p->sched_class->task_waking)
1624 p->sched_class->task_waking(p);
1625
1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
1629 set_task_cpu(p, cpu);
1630 }
1631 #endif /* CONFIG_SMP */
1632
1633 ttwu_queue(p, cpu);
1634 stat:
1635 ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639 return success;
1640 }
1641
1642 /**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650 static void try_to_wake_up_local(struct task_struct *p)
1651 {
1652 struct rq *rq = task_rq(p);
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
1664 if (!(p->state & TASK_NORMAL))
1665 goto out;
1666
1667 if (!p->on_rq)
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670 ttwu_do_wakeup(rq, p, 0);
1671 ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 raw_spin_unlock(&p->pi_lock);
1674 }
1675
1676 /**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
1687 int wake_up_process(struct task_struct *p)
1688 {
1689 return try_to_wake_up(p, TASK_ALL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 return try_to_wake_up(p, state, 0);
1696 }
1697
1698 /*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704 static void __sched_fork(struct task_struct *p)
1705 {
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719
1720 INIT_LIST_HEAD(&p->rt.run_list);
1721
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1725 }
1726
1727 /*
1728 * fork()/clone()-time setup:
1729 */
1730 void sched_fork(struct task_struct *p)
1731 {
1732 unsigned long flags;
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
1736 /*
1737 * We mark the process as running here. This guarantees that
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
1741 p->state = TASK_RUNNING;
1742
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
1752 if (task_has_rt_policy(p)) {
1753 p->policy = SCHED_NORMAL;
1754 p->static_prio = NICE_TO_PRIO(0);
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
1761
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
1768
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
1771
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 set_task_cpu(p, cpu);
1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 if (likely(sched_info_on()))
1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 /* Want to start with kernel preemption disabled. */
1795 task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1800
1801 put_cpu();
1802 }
1803
1804 /*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811 void wake_up_new_task(struct task_struct *p)
1812 {
1813 unsigned long flags;
1814 struct rq *rq;
1815
1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
1822 */
1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1825
1826 rq = __task_rq_lock(p);
1827 activate_task(rq, p, 0);
1828 p->on_rq = 1;
1829 trace_sched_wakeup_new(p, true);
1830 check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
1834 #endif
1835 task_rq_unlock(rq, p, &flags);
1836 }
1837
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840 /**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1845 {
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847 }
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850 /**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857 {
1858 hlist_del(&notifier->link);
1859 }
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863 {
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869 }
1870
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874 {
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880 }
1881
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885 {
1886 }
1887
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891 {
1892 }
1893
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
1896 /**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1912 {
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
1915 fire_sched_out_preempt_notifiers(prev, next);
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
1918 trace_sched_switch(prev, next);
1919 }
1920
1921 /**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 __releases(rq->lock)
1938 {
1939 struct mm_struct *mm = rq->prev_mm;
1940 long prev_state;
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
1949 * The test for TASK_DEAD must occur while the runqueue locks are
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
1955 prev_state = prev->state;
1956 finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 finish_lock_switch(rq, prev);
1965 finish_arch_post_lock_switch();
1966
1967 fire_sched_in_preempt_notifiers(current);
1968 if (mm)
1969 mmdrop(mm);
1970 if (unlikely(prev_state == TASK_DEAD)) {
1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
1974 */
1975 kprobe_flush_task(prev);
1976 put_task_struct(prev);
1977 }
1978 }
1979
1980 #ifdef CONFIG_SMP
1981
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984 {
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987 }
1988
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1991 {
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
1995 raw_spin_lock_irqsave(&rq->lock, flags);
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
1999
2000 rq->post_schedule = 0;
2001 }
2002 }
2003
2004 #else
2005
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007 {
2008 }
2009
2010 static inline void post_schedule(struct rq *rq)
2011 {
2012 }
2013
2014 #endif
2015
2016 /**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 __releases(rq->lock)
2022 {
2023 struct rq *rq = this_rq();
2024
2025 finish_task_switch(rq, prev);
2026
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
2032
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036 #endif
2037 if (current->set_child_tid)
2038 put_user(task_pid_vnr(current), current->set_child_tid);
2039 }
2040
2041 /*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 struct task_struct *next)
2048 {
2049 struct mm_struct *mm, *oldmm;
2050
2051 prepare_task_switch(rq, prev, next);
2052
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
2060 arch_start_context_switch(prev);
2061
2062 if (!mm) {
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
2069 if (!prev->mm) {
2070 prev->active_mm = NULL;
2071 rq->prev_mm = oldmm;
2072 }
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2082
2083 /* Here we just switch the register state and the stack. */
2084 rcu_switch_from(prev);
2085 switch_to(prev, next, prev);
2086
2087 barrier();
2088 /*
2089 * this_rq must be evaluated again because prev may have moved
2090 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 * frame will be invalid.
2092 */
2093 finish_task_switch(this_rq(), prev);
2094 }
2095
2096 /*
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2098 *
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2102 */
2103 unsigned long nr_running(void)
2104 {
2105 unsigned long i, sum = 0;
2106
2107 for_each_online_cpu(i)
2108 sum += cpu_rq(i)->nr_running;
2109
2110 return sum;
2111 }
2112
2113 unsigned long nr_uninterruptible(void)
2114 {
2115 unsigned long i, sum = 0;
2116
2117 for_each_possible_cpu(i)
2118 sum += cpu_rq(i)->nr_uninterruptible;
2119
2120 /*
2121 * Since we read the counters lockless, it might be slightly
2122 * inaccurate. Do not allow it to go below zero though:
2123 */
2124 if (unlikely((long)sum < 0))
2125 sum = 0;
2126
2127 return sum;
2128 }
2129
2130 unsigned long long nr_context_switches(void)
2131 {
2132 int i;
2133 unsigned long long sum = 0;
2134
2135 for_each_possible_cpu(i)
2136 sum += cpu_rq(i)->nr_switches;
2137
2138 return sum;
2139 }
2140
2141 unsigned long nr_iowait(void)
2142 {
2143 unsigned long i, sum = 0;
2144
2145 for_each_possible_cpu(i)
2146 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147
2148 return sum;
2149 }
2150
2151 unsigned long nr_iowait_cpu(int cpu)
2152 {
2153 struct rq *this = cpu_rq(cpu);
2154 return atomic_read(&this->nr_iowait);
2155 }
2156
2157 unsigned long this_cpu_load(void)
2158 {
2159 struct rq *this = this_rq();
2160 return this->cpu_load[0];
2161 }
2162
2163
2164 /* Variables and functions for calc_load */
2165 static atomic_long_t calc_load_tasks;
2166 static unsigned long calc_load_update;
2167 unsigned long avenrun[3];
2168 EXPORT_SYMBOL(avenrun);
2169
2170 static long calc_load_fold_active(struct rq *this_rq)
2171 {
2172 long nr_active, delta = 0;
2173
2174 nr_active = this_rq->nr_running;
2175 nr_active += (long) this_rq->nr_uninterruptible;
2176
2177 if (nr_active != this_rq->calc_load_active) {
2178 delta = nr_active - this_rq->calc_load_active;
2179 this_rq->calc_load_active = nr_active;
2180 }
2181
2182 return delta;
2183 }
2184
2185 static unsigned long
2186 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187 {
2188 load *= exp;
2189 load += active * (FIXED_1 - exp);
2190 load += 1UL << (FSHIFT - 1);
2191 return load >> FSHIFT;
2192 }
2193
2194 #ifdef CONFIG_NO_HZ
2195 /*
2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197 *
2198 * When making the ILB scale, we should try to pull this in as well.
2199 */
2200 static atomic_long_t calc_load_tasks_idle;
2201
2202 void calc_load_account_idle(struct rq *this_rq)
2203 {
2204 long delta;
2205
2206 delta = calc_load_fold_active(this_rq);
2207 if (delta)
2208 atomic_long_add(delta, &calc_load_tasks_idle);
2209 }
2210
2211 static long calc_load_fold_idle(void)
2212 {
2213 long delta = 0;
2214
2215 /*
2216 * Its got a race, we don't care...
2217 */
2218 if (atomic_long_read(&calc_load_tasks_idle))
2219 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220
2221 return delta;
2222 }
2223
2224 /**
2225 * fixed_power_int - compute: x^n, in O(log n) time
2226 *
2227 * @x: base of the power
2228 * @frac_bits: fractional bits of @x
2229 * @n: power to raise @x to.
2230 *
2231 * By exploiting the relation between the definition of the natural power
2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234 * (where: n_i \elem {0, 1}, the binary vector representing n),
2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236 * of course trivially computable in O(log_2 n), the length of our binary
2237 * vector.
2238 */
2239 static unsigned long
2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241 {
2242 unsigned long result = 1UL << frac_bits;
2243
2244 if (n) for (;;) {
2245 if (n & 1) {
2246 result *= x;
2247 result += 1UL << (frac_bits - 1);
2248 result >>= frac_bits;
2249 }
2250 n >>= 1;
2251 if (!n)
2252 break;
2253 x *= x;
2254 x += 1UL << (frac_bits - 1);
2255 x >>= frac_bits;
2256 }
2257
2258 return result;
2259 }
2260
2261 /*
2262 * a1 = a0 * e + a * (1 - e)
2263 *
2264 * a2 = a1 * e + a * (1 - e)
2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266 * = a0 * e^2 + a * (1 - e) * (1 + e)
2267 *
2268 * a3 = a2 * e + a * (1 - e)
2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271 *
2272 * ...
2273 *
2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276 * = a0 * e^n + a * (1 - e^n)
2277 *
2278 * [1] application of the geometric series:
2279 *
2280 * n 1 - x^(n+1)
2281 * S_n := \Sum x^i = -------------
2282 * i=0 1 - x
2283 */
2284 static unsigned long
2285 calc_load_n(unsigned long load, unsigned long exp,
2286 unsigned long active, unsigned int n)
2287 {
2288
2289 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290 }
2291
2292 /*
2293 * NO_HZ can leave us missing all per-cpu ticks calling
2294 * calc_load_account_active(), but since an idle CPU folds its delta into
2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296 * in the pending idle delta if our idle period crossed a load cycle boundary.
2297 *
2298 * Once we've updated the global active value, we need to apply the exponential
2299 * weights adjusted to the number of cycles missed.
2300 */
2301 static void calc_global_nohz(void)
2302 {
2303 long delta, active, n;
2304
2305 /*
2306 * If we crossed a calc_load_update boundary, make sure to fold
2307 * any pending idle changes, the respective CPUs might have
2308 * missed the tick driven calc_load_account_active() update
2309 * due to NO_HZ.
2310 */
2311 delta = calc_load_fold_idle();
2312 if (delta)
2313 atomic_long_add(delta, &calc_load_tasks);
2314
2315 /*
2316 * It could be the one fold was all it took, we done!
2317 */
2318 if (time_before(jiffies, calc_load_update + 10))
2319 return;
2320
2321 /*
2322 * Catch-up, fold however many we are behind still
2323 */
2324 delta = jiffies - calc_load_update - 10;
2325 n = 1 + (delta / LOAD_FREQ);
2326
2327 active = atomic_long_read(&calc_load_tasks);
2328 active = active > 0 ? active * FIXED_1 : 0;
2329
2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333
2334 calc_load_update += n * LOAD_FREQ;
2335 }
2336 #else
2337 void calc_load_account_idle(struct rq *this_rq)
2338 {
2339 }
2340
2341 static inline long calc_load_fold_idle(void)
2342 {
2343 return 0;
2344 }
2345
2346 static void calc_global_nohz(void)
2347 {
2348 }
2349 #endif
2350
2351 /**
2352 * get_avenrun - get the load average array
2353 * @loads: pointer to dest load array
2354 * @offset: offset to add
2355 * @shift: shift count to shift the result left
2356 *
2357 * These values are estimates at best, so no need for locking.
2358 */
2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360 {
2361 loads[0] = (avenrun[0] + offset) << shift;
2362 loads[1] = (avenrun[1] + offset) << shift;
2363 loads[2] = (avenrun[2] + offset) << shift;
2364 }
2365
2366 /*
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
2369 */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 long active;
2373
2374 if (time_before(jiffies, calc_load_update + 10))
2375 return;
2376
2377 active = atomic_long_read(&calc_load_tasks);
2378 active = active > 0 ? active * FIXED_1 : 0;
2379
2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383
2384 calc_load_update += LOAD_FREQ;
2385
2386 /*
2387 * Account one period with whatever state we found before
2388 * folding in the nohz state and ageing the entire idle period.
2389 *
2390 * This avoids loosing a sample when we go idle between
2391 * calc_load_account_active() (10 ticks ago) and now and thus
2392 * under-accounting.
2393 */
2394 calc_global_nohz();
2395 }
2396
2397 /*
2398 * Called from update_cpu_load() to periodically update this CPU's
2399 * active count.
2400 */
2401 static void calc_load_account_active(struct rq *this_rq)
2402 {
2403 long delta;
2404
2405 if (time_before(jiffies, this_rq->calc_load_update))
2406 return;
2407
2408 delta = calc_load_fold_active(this_rq);
2409 delta += calc_load_fold_idle();
2410 if (delta)
2411 atomic_long_add(delta, &calc_load_tasks);
2412
2413 this_rq->calc_load_update += LOAD_FREQ;
2414 }
2415
2416 /*
2417 * The exact cpuload at various idx values, calculated at every tick would be
2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419 *
2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421 * on nth tick when cpu may be busy, then we have:
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424 *
2425 * decay_load_missed() below does efficient calculation of
2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428 *
2429 * The calculation is approximated on a 128 point scale.
2430 * degrade_zero_ticks is the number of ticks after which load at any
2431 * particular idx is approximated to be zero.
2432 * degrade_factor is a precomputed table, a row for each load idx.
2433 * Each column corresponds to degradation factor for a power of two ticks,
2434 * based on 128 point scale.
2435 * Example:
2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438 *
2439 * With this power of 2 load factors, we can degrade the load n times
2440 * by looking at 1 bits in n and doing as many mult/shift instead of
2441 * n mult/shifts needed by the exact degradation.
2442 */
2443 #define DEGRADE_SHIFT 7
2444 static const unsigned char
2445 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2446 static const unsigned char
2447 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2448 {0, 0, 0, 0, 0, 0, 0, 0},
2449 {64, 32, 8, 0, 0, 0, 0, 0},
2450 {96, 72, 40, 12, 1, 0, 0},
2451 {112, 98, 75, 43, 15, 1, 0},
2452 {120, 112, 98, 76, 45, 16, 2} };
2453
2454 /*
2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456 * would be when CPU is idle and so we just decay the old load without
2457 * adding any new load.
2458 */
2459 static unsigned long
2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461 {
2462 int j = 0;
2463
2464 if (!missed_updates)
2465 return load;
2466
2467 if (missed_updates >= degrade_zero_ticks[idx])
2468 return 0;
2469
2470 if (idx == 1)
2471 return load >> missed_updates;
2472
2473 while (missed_updates) {
2474 if (missed_updates % 2)
2475 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476
2477 missed_updates >>= 1;
2478 j++;
2479 }
2480 return load;
2481 }
2482
2483 /*
2484 * Update rq->cpu_load[] statistics. This function is usually called every
2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486 * every tick. We fix it up based on jiffies.
2487 */
2488 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2489 unsigned long pending_updates)
2490 {
2491 int i, scale;
2492
2493 this_rq->nr_load_updates++;
2494
2495 /* Update our load: */
2496 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2497 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2498 unsigned long old_load, new_load;
2499
2500 /* scale is effectively 1 << i now, and >> i divides by scale */
2501
2502 old_load = this_rq->cpu_load[i];
2503 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2504 new_load = this_load;
2505 /*
2506 * Round up the averaging division if load is increasing. This
2507 * prevents us from getting stuck on 9 if the load is 10, for
2508 * example.
2509 */
2510 if (new_load > old_load)
2511 new_load += scale - 1;
2512
2513 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2514 }
2515
2516 sched_avg_update(this_rq);
2517 }
2518
2519 #ifdef CONFIG_NO_HZ
2520 /*
2521 * There is no sane way to deal with nohz on smp when using jiffies because the
2522 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2523 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2524 *
2525 * Therefore we cannot use the delta approach from the regular tick since that
2526 * would seriously skew the load calculation. However we'll make do for those
2527 * updates happening while idle (nohz_idle_balance) or coming out of idle
2528 * (tick_nohz_idle_exit).
2529 *
2530 * This means we might still be one tick off for nohz periods.
2531 */
2532
2533 /*
2534 * Called from nohz_idle_balance() to update the load ratings before doing the
2535 * idle balance.
2536 */
2537 void update_idle_cpu_load(struct rq *this_rq)
2538 {
2539 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2540 unsigned long load = this_rq->load.weight;
2541 unsigned long pending_updates;
2542
2543 /*
2544 * bail if there's load or we're actually up-to-date.
2545 */
2546 if (load || curr_jiffies == this_rq->last_load_update_tick)
2547 return;
2548
2549 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2550 this_rq->last_load_update_tick = curr_jiffies;
2551
2552 __update_cpu_load(this_rq, load, pending_updates);
2553 }
2554
2555 /*
2556 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2557 */
2558 void update_cpu_load_nohz(void)
2559 {
2560 struct rq *this_rq = this_rq();
2561 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2562 unsigned long pending_updates;
2563
2564 if (curr_jiffies == this_rq->last_load_update_tick)
2565 return;
2566
2567 raw_spin_lock(&this_rq->lock);
2568 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2569 if (pending_updates) {
2570 this_rq->last_load_update_tick = curr_jiffies;
2571 /*
2572 * We were idle, this means load 0, the current load might be
2573 * !0 due to remote wakeups and the sort.
2574 */
2575 __update_cpu_load(this_rq, 0, pending_updates);
2576 }
2577 raw_spin_unlock(&this_rq->lock);
2578 }
2579 #endif /* CONFIG_NO_HZ */
2580
2581 /*
2582 * Called from scheduler_tick()
2583 */
2584 static void update_cpu_load_active(struct rq *this_rq)
2585 {
2586 /*
2587 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2588 */
2589 this_rq->last_load_update_tick = jiffies;
2590 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2591
2592 calc_load_account_active(this_rq);
2593 }
2594
2595 #ifdef CONFIG_SMP
2596
2597 /*
2598 * sched_exec - execve() is a valuable balancing opportunity, because at
2599 * this point the task has the smallest effective memory and cache footprint.
2600 */
2601 void sched_exec(void)
2602 {
2603 struct task_struct *p = current;
2604 unsigned long flags;
2605 int dest_cpu;
2606
2607 raw_spin_lock_irqsave(&p->pi_lock, flags);
2608 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2609 if (dest_cpu == smp_processor_id())
2610 goto unlock;
2611
2612 if (likely(cpu_active(dest_cpu))) {
2613 struct migration_arg arg = { p, dest_cpu };
2614
2615 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2616 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2617 return;
2618 }
2619 unlock:
2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 }
2622
2623 #endif
2624
2625 DEFINE_PER_CPU(struct kernel_stat, kstat);
2626 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2627
2628 EXPORT_PER_CPU_SYMBOL(kstat);
2629 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2630
2631 /*
2632 * Return any ns on the sched_clock that have not yet been accounted in
2633 * @p in case that task is currently running.
2634 *
2635 * Called with task_rq_lock() held on @rq.
2636 */
2637 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2638 {
2639 u64 ns = 0;
2640
2641 if (task_current(rq, p)) {
2642 update_rq_clock(rq);
2643 ns = rq->clock_task - p->se.exec_start;
2644 if ((s64)ns < 0)
2645 ns = 0;
2646 }
2647
2648 return ns;
2649 }
2650
2651 unsigned long long task_delta_exec(struct task_struct *p)
2652 {
2653 unsigned long flags;
2654 struct rq *rq;
2655 u64 ns = 0;
2656
2657 rq = task_rq_lock(p, &flags);
2658 ns = do_task_delta_exec(p, rq);
2659 task_rq_unlock(rq, p, &flags);
2660
2661 return ns;
2662 }
2663
2664 /*
2665 * Return accounted runtime for the task.
2666 * In case the task is currently running, return the runtime plus current's
2667 * pending runtime that have not been accounted yet.
2668 */
2669 unsigned long long task_sched_runtime(struct task_struct *p)
2670 {
2671 unsigned long flags;
2672 struct rq *rq;
2673 u64 ns = 0;
2674
2675 rq = task_rq_lock(p, &flags);
2676 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2677 task_rq_unlock(rq, p, &flags);
2678
2679 return ns;
2680 }
2681
2682 #ifdef CONFIG_CGROUP_CPUACCT
2683 struct cgroup_subsys cpuacct_subsys;
2684 struct cpuacct root_cpuacct;
2685 #endif
2686
2687 static inline void task_group_account_field(struct task_struct *p, int index,
2688 u64 tmp)
2689 {
2690 #ifdef CONFIG_CGROUP_CPUACCT
2691 struct kernel_cpustat *kcpustat;
2692 struct cpuacct *ca;
2693 #endif
2694 /*
2695 * Since all updates are sure to touch the root cgroup, we
2696 * get ourselves ahead and touch it first. If the root cgroup
2697 * is the only cgroup, then nothing else should be necessary.
2698 *
2699 */
2700 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2701
2702 #ifdef CONFIG_CGROUP_CPUACCT
2703 if (unlikely(!cpuacct_subsys.active))
2704 return;
2705
2706 rcu_read_lock();
2707 ca = task_ca(p);
2708 while (ca && (ca != &root_cpuacct)) {
2709 kcpustat = this_cpu_ptr(ca->cpustat);
2710 kcpustat->cpustat[index] += tmp;
2711 ca = parent_ca(ca);
2712 }
2713 rcu_read_unlock();
2714 #endif
2715 }
2716
2717
2718 /*
2719 * Account user cpu time to a process.
2720 * @p: the process that the cpu time gets accounted to
2721 * @cputime: the cpu time spent in user space since the last update
2722 * @cputime_scaled: cputime scaled by cpu frequency
2723 */
2724 void account_user_time(struct task_struct *p, cputime_t cputime,
2725 cputime_t cputime_scaled)
2726 {
2727 int index;
2728
2729 /* Add user time to process. */
2730 p->utime += cputime;
2731 p->utimescaled += cputime_scaled;
2732 account_group_user_time(p, cputime);
2733
2734 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2735
2736 /* Add user time to cpustat. */
2737 task_group_account_field(p, index, (__force u64) cputime);
2738
2739 /* Account for user time used */
2740 acct_update_integrals(p);
2741 }
2742
2743 /*
2744 * Account guest cpu time to a process.
2745 * @p: the process that the cpu time gets accounted to
2746 * @cputime: the cpu time spent in virtual machine since the last update
2747 * @cputime_scaled: cputime scaled by cpu frequency
2748 */
2749 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2750 cputime_t cputime_scaled)
2751 {
2752 u64 *cpustat = kcpustat_this_cpu->cpustat;
2753
2754 /* Add guest time to process. */
2755 p->utime += cputime;
2756 p->utimescaled += cputime_scaled;
2757 account_group_user_time(p, cputime);
2758 p->gtime += cputime;
2759
2760 /* Add guest time to cpustat. */
2761 if (TASK_NICE(p) > 0) {
2762 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2763 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2764 } else {
2765 cpustat[CPUTIME_USER] += (__force u64) cputime;
2766 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2767 }
2768 }
2769
2770 /*
2771 * Account system cpu time to a process and desired cpustat field
2772 * @p: the process that the cpu time gets accounted to
2773 * @cputime: the cpu time spent in kernel space since the last update
2774 * @cputime_scaled: cputime scaled by cpu frequency
2775 * @target_cputime64: pointer to cpustat field that has to be updated
2776 */
2777 static inline
2778 void __account_system_time(struct task_struct *p, cputime_t cputime,
2779 cputime_t cputime_scaled, int index)
2780 {
2781 /* Add system time to process. */
2782 p->stime += cputime;
2783 p->stimescaled += cputime_scaled;
2784 account_group_system_time(p, cputime);
2785
2786 /* Add system time to cpustat. */
2787 task_group_account_field(p, index, (__force u64) cputime);
2788
2789 /* Account for system time used */
2790 acct_update_integrals(p);
2791 }
2792
2793 /*
2794 * Account system cpu time to a process.
2795 * @p: the process that the cpu time gets accounted to
2796 * @hardirq_offset: the offset to subtract from hardirq_count()
2797 * @cputime: the cpu time spent in kernel space since the last update
2798 * @cputime_scaled: cputime scaled by cpu frequency
2799 */
2800 void account_system_time(struct task_struct *p, int hardirq_offset,
2801 cputime_t cputime, cputime_t cputime_scaled)
2802 {
2803 int index;
2804
2805 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2806 account_guest_time(p, cputime, cputime_scaled);
2807 return;
2808 }
2809
2810 if (hardirq_count() - hardirq_offset)
2811 index = CPUTIME_IRQ;
2812 else if (in_serving_softirq())
2813 index = CPUTIME_SOFTIRQ;
2814 else
2815 index = CPUTIME_SYSTEM;
2816
2817 __account_system_time(p, cputime, cputime_scaled, index);
2818 }
2819
2820 /*
2821 * Account for involuntary wait time.
2822 * @cputime: the cpu time spent in involuntary wait
2823 */
2824 void account_steal_time(cputime_t cputime)
2825 {
2826 u64 *cpustat = kcpustat_this_cpu->cpustat;
2827
2828 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2829 }
2830
2831 /*
2832 * Account for idle time.
2833 * @cputime: the cpu time spent in idle wait
2834 */
2835 void account_idle_time(cputime_t cputime)
2836 {
2837 u64 *cpustat = kcpustat_this_cpu->cpustat;
2838 struct rq *rq = this_rq();
2839
2840 if (atomic_read(&rq->nr_iowait) > 0)
2841 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2842 else
2843 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2844 }
2845
2846 static __always_inline bool steal_account_process_tick(void)
2847 {
2848 #ifdef CONFIG_PARAVIRT
2849 if (static_key_false(&paravirt_steal_enabled)) {
2850 u64 steal, st = 0;
2851
2852 steal = paravirt_steal_clock(smp_processor_id());
2853 steal -= this_rq()->prev_steal_time;
2854
2855 st = steal_ticks(steal);
2856 this_rq()->prev_steal_time += st * TICK_NSEC;
2857
2858 account_steal_time(st);
2859 return st;
2860 }
2861 #endif
2862 return false;
2863 }
2864
2865 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2866
2867 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2868 /*
2869 * Account a tick to a process and cpustat
2870 * @p: the process that the cpu time gets accounted to
2871 * @user_tick: is the tick from userspace
2872 * @rq: the pointer to rq
2873 *
2874 * Tick demultiplexing follows the order
2875 * - pending hardirq update
2876 * - pending softirq update
2877 * - user_time
2878 * - idle_time
2879 * - system time
2880 * - check for guest_time
2881 * - else account as system_time
2882 *
2883 * Check for hardirq is done both for system and user time as there is
2884 * no timer going off while we are on hardirq and hence we may never get an
2885 * opportunity to update it solely in system time.
2886 * p->stime and friends are only updated on system time and not on irq
2887 * softirq as those do not count in task exec_runtime any more.
2888 */
2889 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2890 struct rq *rq)
2891 {
2892 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2893 u64 *cpustat = kcpustat_this_cpu->cpustat;
2894
2895 if (steal_account_process_tick())
2896 return;
2897
2898 if (irqtime_account_hi_update()) {
2899 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2900 } else if (irqtime_account_si_update()) {
2901 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2902 } else if (this_cpu_ksoftirqd() == p) {
2903 /*
2904 * ksoftirqd time do not get accounted in cpu_softirq_time.
2905 * So, we have to handle it separately here.
2906 * Also, p->stime needs to be updated for ksoftirqd.
2907 */
2908 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2909 CPUTIME_SOFTIRQ);
2910 } else if (user_tick) {
2911 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2912 } else if (p == rq->idle) {
2913 account_idle_time(cputime_one_jiffy);
2914 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2915 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2916 } else {
2917 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2918 CPUTIME_SYSTEM);
2919 }
2920 }
2921
2922 static void irqtime_account_idle_ticks(int ticks)
2923 {
2924 int i;
2925 struct rq *rq = this_rq();
2926
2927 for (i = 0; i < ticks; i++)
2928 irqtime_account_process_tick(current, 0, rq);
2929 }
2930 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2931 static void irqtime_account_idle_ticks(int ticks) {}
2932 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2933 struct rq *rq) {}
2934 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2935
2936 /*
2937 * Account a single tick of cpu time.
2938 * @p: the process that the cpu time gets accounted to
2939 * @user_tick: indicates if the tick is a user or a system tick
2940 */
2941 void account_process_tick(struct task_struct *p, int user_tick)
2942 {
2943 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2944 struct rq *rq = this_rq();
2945
2946 if (sched_clock_irqtime) {
2947 irqtime_account_process_tick(p, user_tick, rq);
2948 return;
2949 }
2950
2951 if (steal_account_process_tick())
2952 return;
2953
2954 if (user_tick)
2955 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2956 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2957 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2958 one_jiffy_scaled);
2959 else
2960 account_idle_time(cputime_one_jiffy);
2961 }
2962
2963 /*
2964 * Account multiple ticks of steal time.
2965 * @p: the process from which the cpu time has been stolen
2966 * @ticks: number of stolen ticks
2967 */
2968 void account_steal_ticks(unsigned long ticks)
2969 {
2970 account_steal_time(jiffies_to_cputime(ticks));
2971 }
2972
2973 /*
2974 * Account multiple ticks of idle time.
2975 * @ticks: number of stolen ticks
2976 */
2977 void account_idle_ticks(unsigned long ticks)
2978 {
2979
2980 if (sched_clock_irqtime) {
2981 irqtime_account_idle_ticks(ticks);
2982 return;
2983 }
2984
2985 account_idle_time(jiffies_to_cputime(ticks));
2986 }
2987
2988 #endif
2989
2990 /*
2991 * Use precise platform statistics if available:
2992 */
2993 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2994 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2995 {
2996 *ut = p->utime;
2997 *st = p->stime;
2998 }
2999
3000 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3001 {
3002 struct task_cputime cputime;
3003
3004 thread_group_cputime(p, &cputime);
3005
3006 *ut = cputime.utime;
3007 *st = cputime.stime;
3008 }
3009 #else
3010
3011 #ifndef nsecs_to_cputime
3012 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3013 #endif
3014
3015 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3016 {
3017 cputime_t rtime, utime = p->utime, total = utime + p->stime;
3018
3019 /*
3020 * Use CFS's precise accounting:
3021 */
3022 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3023
3024 if (total) {
3025 u64 temp = (__force u64) rtime;
3026
3027 temp *= (__force u64) utime;
3028 do_div(temp, (__force u32) total);
3029 utime = (__force cputime_t) temp;
3030 } else
3031 utime = rtime;
3032
3033 /*
3034 * Compare with previous values, to keep monotonicity:
3035 */
3036 p->prev_utime = max(p->prev_utime, utime);
3037 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3038
3039 *ut = p->prev_utime;
3040 *st = p->prev_stime;
3041 }
3042
3043 /*
3044 * Must be called with siglock held.
3045 */
3046 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3047 {
3048 struct signal_struct *sig = p->signal;
3049 struct task_cputime cputime;
3050 cputime_t rtime, utime, total;
3051
3052 thread_group_cputime(p, &cputime);
3053
3054 total = cputime.utime + cputime.stime;
3055 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3056
3057 if (total) {
3058 u64 temp = (__force u64) rtime;
3059
3060 temp *= (__force u64) cputime.utime;
3061 do_div(temp, (__force u32) total);
3062 utime = (__force cputime_t) temp;
3063 } else
3064 utime = rtime;
3065
3066 sig->prev_utime = max(sig->prev_utime, utime);
3067 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3068
3069 *ut = sig->prev_utime;
3070 *st = sig->prev_stime;
3071 }
3072 #endif
3073
3074 /*
3075 * This function gets called by the timer code, with HZ frequency.
3076 * We call it with interrupts disabled.
3077 */
3078 void scheduler_tick(void)
3079 {
3080 int cpu = smp_processor_id();
3081 struct rq *rq = cpu_rq(cpu);
3082 struct task_struct *curr = rq->curr;
3083
3084 sched_clock_tick();
3085
3086 raw_spin_lock(&rq->lock);
3087 update_rq_clock(rq);
3088 update_cpu_load_active(rq);
3089 curr->sched_class->task_tick(rq, curr, 0);
3090 raw_spin_unlock(&rq->lock);
3091
3092 perf_event_task_tick();
3093
3094 #ifdef CONFIG_SMP
3095 rq->idle_balance = idle_cpu(cpu);
3096 trigger_load_balance(rq, cpu);
3097 #endif
3098 }
3099
3100 notrace unsigned long get_parent_ip(unsigned long addr)
3101 {
3102 if (in_lock_functions(addr)) {
3103 addr = CALLER_ADDR2;
3104 if (in_lock_functions(addr))
3105 addr = CALLER_ADDR3;
3106 }
3107 return addr;
3108 }
3109
3110 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3111 defined(CONFIG_PREEMPT_TRACER))
3112
3113 void __kprobes add_preempt_count(int val)
3114 {
3115 #ifdef CONFIG_DEBUG_PREEMPT
3116 /*
3117 * Underflow?
3118 */
3119 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3120 return;
3121 #endif
3122 preempt_count() += val;
3123 #ifdef CONFIG_DEBUG_PREEMPT
3124 /*
3125 * Spinlock count overflowing soon?
3126 */
3127 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3128 PREEMPT_MASK - 10);
3129 #endif
3130 if (preempt_count() == val)
3131 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3132 }
3133 EXPORT_SYMBOL(add_preempt_count);
3134
3135 void __kprobes sub_preempt_count(int val)
3136 {
3137 #ifdef CONFIG_DEBUG_PREEMPT
3138 /*
3139 * Underflow?
3140 */
3141 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3142 return;
3143 /*
3144 * Is the spinlock portion underflowing?
3145 */
3146 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3147 !(preempt_count() & PREEMPT_MASK)))
3148 return;
3149 #endif
3150
3151 if (preempt_count() == val)
3152 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3153 preempt_count() -= val;
3154 }
3155 EXPORT_SYMBOL(sub_preempt_count);
3156
3157 #endif
3158
3159 /*
3160 * Print scheduling while atomic bug:
3161 */
3162 static noinline void __schedule_bug(struct task_struct *prev)
3163 {
3164 if (oops_in_progress)
3165 return;
3166
3167 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3168 prev->comm, prev->pid, preempt_count());
3169
3170 debug_show_held_locks(prev);
3171 print_modules();
3172 if (irqs_disabled())
3173 print_irqtrace_events(prev);
3174 dump_stack();
3175 add_taint(TAINT_WARN);
3176 }
3177
3178 /*
3179 * Various schedule()-time debugging checks and statistics:
3180 */
3181 static inline void schedule_debug(struct task_struct *prev)
3182 {
3183 /*
3184 * Test if we are atomic. Since do_exit() needs to call into
3185 * schedule() atomically, we ignore that path for now.
3186 * Otherwise, whine if we are scheduling when we should not be.
3187 */
3188 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3189 __schedule_bug(prev);
3190 rcu_sleep_check();
3191
3192 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3193
3194 schedstat_inc(this_rq(), sched_count);
3195 }
3196
3197 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3198 {
3199 if (prev->on_rq || rq->skip_clock_update < 0)
3200 update_rq_clock(rq);
3201 prev->sched_class->put_prev_task(rq, prev);
3202 }
3203
3204 /*
3205 * Pick up the highest-prio task:
3206 */
3207 static inline struct task_struct *
3208 pick_next_task(struct rq *rq)
3209 {
3210 const struct sched_class *class;
3211 struct task_struct *p;
3212
3213 /*
3214 * Optimization: we know that if all tasks are in
3215 * the fair class we can call that function directly:
3216 */
3217 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3218 p = fair_sched_class.pick_next_task(rq);
3219 if (likely(p))
3220 return p;
3221 }
3222
3223 for_each_class(class) {
3224 p = class->pick_next_task(rq);
3225 if (p)
3226 return p;
3227 }
3228
3229 BUG(); /* the idle class will always have a runnable task */
3230 }
3231
3232 /*
3233 * __schedule() is the main scheduler function.
3234 */
3235 static void __sched __schedule(void)
3236 {
3237 struct task_struct *prev, *next;
3238 unsigned long *switch_count;
3239 struct rq *rq;
3240 int cpu;
3241
3242 need_resched:
3243 preempt_disable();
3244 cpu = smp_processor_id();
3245 rq = cpu_rq(cpu);
3246 rcu_note_context_switch(cpu);
3247 prev = rq->curr;
3248
3249 schedule_debug(prev);
3250
3251 if (sched_feat(HRTICK))
3252 hrtick_clear(rq);
3253
3254 raw_spin_lock_irq(&rq->lock);
3255
3256 switch_count = &prev->nivcsw;
3257 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3258 if (unlikely(signal_pending_state(prev->state, prev))) {
3259 prev->state = TASK_RUNNING;
3260 } else {
3261 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3262 prev->on_rq = 0;
3263
3264 /*
3265 * If a worker went to sleep, notify and ask workqueue
3266 * whether it wants to wake up a task to maintain
3267 * concurrency.
3268 */
3269 if (prev->flags & PF_WQ_WORKER) {
3270 struct task_struct *to_wakeup;
3271
3272 to_wakeup = wq_worker_sleeping(prev, cpu);
3273 if (to_wakeup)
3274 try_to_wake_up_local(to_wakeup);
3275 }
3276 }
3277 switch_count = &prev->nvcsw;
3278 }
3279
3280 pre_schedule(rq, prev);
3281
3282 if (unlikely(!rq->nr_running))
3283 idle_balance(cpu, rq);
3284
3285 put_prev_task(rq, prev);
3286 next = pick_next_task(rq);
3287 clear_tsk_need_resched(prev);
3288 rq->skip_clock_update = 0;
3289
3290 if (likely(prev != next)) {
3291 rq->nr_switches++;
3292 rq->curr = next;
3293 ++*switch_count;
3294
3295 context_switch(rq, prev, next); /* unlocks the rq */
3296 /*
3297 * The context switch have flipped the stack from under us
3298 * and restored the local variables which were saved when
3299 * this task called schedule() in the past. prev == current
3300 * is still correct, but it can be moved to another cpu/rq.
3301 */
3302 cpu = smp_processor_id();
3303 rq = cpu_rq(cpu);
3304 } else
3305 raw_spin_unlock_irq(&rq->lock);
3306
3307 post_schedule(rq);
3308
3309 sched_preempt_enable_no_resched();
3310 if (need_resched())
3311 goto need_resched;
3312 }
3313
3314 static inline void sched_submit_work(struct task_struct *tsk)
3315 {
3316 if (!tsk->state || tsk_is_pi_blocked(tsk))
3317 return;
3318 /*
3319 * If we are going to sleep and we have plugged IO queued,
3320 * make sure to submit it to avoid deadlocks.
3321 */
3322 if (blk_needs_flush_plug(tsk))
3323 blk_schedule_flush_plug(tsk);
3324 }
3325
3326 asmlinkage void __sched schedule(void)
3327 {
3328 struct task_struct *tsk = current;
3329
3330 sched_submit_work(tsk);
3331 __schedule();
3332 }
3333 EXPORT_SYMBOL(schedule);
3334
3335 /**
3336 * schedule_preempt_disabled - called with preemption disabled
3337 *
3338 * Returns with preemption disabled. Note: preempt_count must be 1
3339 */
3340 void __sched schedule_preempt_disabled(void)
3341 {
3342 sched_preempt_enable_no_resched();
3343 schedule();
3344 preempt_disable();
3345 }
3346
3347 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3348
3349 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3350 {
3351 if (lock->owner != owner)
3352 return false;
3353
3354 /*
3355 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3356 * lock->owner still matches owner, if that fails, owner might
3357 * point to free()d memory, if it still matches, the rcu_read_lock()
3358 * ensures the memory stays valid.
3359 */
3360 barrier();
3361
3362 return owner->on_cpu;
3363 }
3364
3365 /*
3366 * Look out! "owner" is an entirely speculative pointer
3367 * access and not reliable.
3368 */
3369 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3370 {
3371 if (!sched_feat(OWNER_SPIN))
3372 return 0;
3373
3374 rcu_read_lock();
3375 while (owner_running(lock, owner)) {
3376 if (need_resched())
3377 break;
3378
3379 arch_mutex_cpu_relax();
3380 }
3381 rcu_read_unlock();
3382
3383 /*
3384 * We break out the loop above on need_resched() and when the
3385 * owner changed, which is a sign for heavy contention. Return
3386 * success only when lock->owner is NULL.
3387 */
3388 return lock->owner == NULL;
3389 }
3390 #endif
3391
3392 #ifdef CONFIG_PREEMPT
3393 /*
3394 * this is the entry point to schedule() from in-kernel preemption
3395 * off of preempt_enable. Kernel preemptions off return from interrupt
3396 * occur there and call schedule directly.
3397 */
3398 asmlinkage void __sched notrace preempt_schedule(void)
3399 {
3400 struct thread_info *ti = current_thread_info();
3401
3402 /*
3403 * If there is a non-zero preempt_count or interrupts are disabled,
3404 * we do not want to preempt the current task. Just return..
3405 */
3406 if (likely(ti->preempt_count || irqs_disabled()))
3407 return;
3408
3409 do {
3410 add_preempt_count_notrace(PREEMPT_ACTIVE);
3411 __schedule();
3412 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3413
3414 /*
3415 * Check again in case we missed a preemption opportunity
3416 * between schedule and now.
3417 */
3418 barrier();
3419 } while (need_resched());
3420 }
3421 EXPORT_SYMBOL(preempt_schedule);
3422
3423 /*
3424 * this is the entry point to schedule() from kernel preemption
3425 * off of irq context.
3426 * Note, that this is called and return with irqs disabled. This will
3427 * protect us against recursive calling from irq.
3428 */
3429 asmlinkage void __sched preempt_schedule_irq(void)
3430 {
3431 struct thread_info *ti = current_thread_info();
3432
3433 /* Catch callers which need to be fixed */
3434 BUG_ON(ti->preempt_count || !irqs_disabled());
3435
3436 do {
3437 add_preempt_count(PREEMPT_ACTIVE);
3438 local_irq_enable();
3439 __schedule();
3440 local_irq_disable();
3441 sub_preempt_count(PREEMPT_ACTIVE);
3442
3443 /*
3444 * Check again in case we missed a preemption opportunity
3445 * between schedule and now.
3446 */
3447 barrier();
3448 } while (need_resched());
3449 }
3450
3451 #endif /* CONFIG_PREEMPT */
3452
3453 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3454 void *key)
3455 {
3456 return try_to_wake_up(curr->private, mode, wake_flags);
3457 }
3458 EXPORT_SYMBOL(default_wake_function);
3459
3460 /*
3461 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3462 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3463 * number) then we wake all the non-exclusive tasks and one exclusive task.
3464 *
3465 * There are circumstances in which we can try to wake a task which has already
3466 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3467 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3468 */
3469 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3470 int nr_exclusive, int wake_flags, void *key)
3471 {
3472 wait_queue_t *curr, *next;
3473
3474 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3475 unsigned flags = curr->flags;
3476
3477 if (curr->func(curr, mode, wake_flags, key) &&
3478 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3479 break;
3480 }
3481 }
3482
3483 /**
3484 * __wake_up - wake up threads blocked on a waitqueue.
3485 * @q: the waitqueue
3486 * @mode: which threads
3487 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3488 * @key: is directly passed to the wakeup function
3489 *
3490 * It may be assumed that this function implies a write memory barrier before
3491 * changing the task state if and only if any tasks are woken up.
3492 */
3493 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3494 int nr_exclusive, void *key)
3495 {
3496 unsigned long flags;
3497
3498 spin_lock_irqsave(&q->lock, flags);
3499 __wake_up_common(q, mode, nr_exclusive, 0, key);
3500 spin_unlock_irqrestore(&q->lock, flags);
3501 }
3502 EXPORT_SYMBOL(__wake_up);
3503
3504 /*
3505 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3506 */
3507 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3508 {
3509 __wake_up_common(q, mode, nr, 0, NULL);
3510 }
3511 EXPORT_SYMBOL_GPL(__wake_up_locked);
3512
3513 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3514 {
3515 __wake_up_common(q, mode, 1, 0, key);
3516 }
3517 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3518
3519 /**
3520 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3521 * @q: the waitqueue
3522 * @mode: which threads
3523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3524 * @key: opaque value to be passed to wakeup targets
3525 *
3526 * The sync wakeup differs that the waker knows that it will schedule
3527 * away soon, so while the target thread will be woken up, it will not
3528 * be migrated to another CPU - ie. the two threads are 'synchronized'
3529 * with each other. This can prevent needless bouncing between CPUs.
3530 *
3531 * On UP it can prevent extra preemption.
3532 *
3533 * It may be assumed that this function implies a write memory barrier before
3534 * changing the task state if and only if any tasks are woken up.
3535 */
3536 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3537 int nr_exclusive, void *key)
3538 {
3539 unsigned long flags;
3540 int wake_flags = WF_SYNC;
3541
3542 if (unlikely(!q))
3543 return;
3544
3545 if (unlikely(!nr_exclusive))
3546 wake_flags = 0;
3547
3548 spin_lock_irqsave(&q->lock, flags);
3549 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3550 spin_unlock_irqrestore(&q->lock, flags);
3551 }
3552 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3553
3554 /*
3555 * __wake_up_sync - see __wake_up_sync_key()
3556 */
3557 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3558 {
3559 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3560 }
3561 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3562
3563 /**
3564 * complete: - signals a single thread waiting on this completion
3565 * @x: holds the state of this particular completion
3566 *
3567 * This will wake up a single thread waiting on this completion. Threads will be
3568 * awakened in the same order in which they were queued.
3569 *
3570 * See also complete_all(), wait_for_completion() and related routines.
3571 *
3572 * It may be assumed that this function implies a write memory barrier before
3573 * changing the task state if and only if any tasks are woken up.
3574 */
3575 void complete(struct completion *x)
3576 {
3577 unsigned long flags;
3578
3579 spin_lock_irqsave(&x->wait.lock, flags);
3580 x->done++;
3581 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3582 spin_unlock_irqrestore(&x->wait.lock, flags);
3583 }
3584 EXPORT_SYMBOL(complete);
3585
3586 /**
3587 * complete_all: - signals all threads waiting on this completion
3588 * @x: holds the state of this particular completion
3589 *
3590 * This will wake up all threads waiting on this particular completion event.
3591 *
3592 * It may be assumed that this function implies a write memory barrier before
3593 * changing the task state if and only if any tasks are woken up.
3594 */
3595 void complete_all(struct completion *x)
3596 {
3597 unsigned long flags;
3598
3599 spin_lock_irqsave(&x->wait.lock, flags);
3600 x->done += UINT_MAX/2;
3601 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3602 spin_unlock_irqrestore(&x->wait.lock, flags);
3603 }
3604 EXPORT_SYMBOL(complete_all);
3605
3606 static inline long __sched
3607 do_wait_for_common(struct completion *x, long timeout, int state)
3608 {
3609 if (!x->done) {
3610 DECLARE_WAITQUEUE(wait, current);
3611
3612 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3613 do {
3614 if (signal_pending_state(state, current)) {
3615 timeout = -ERESTARTSYS;
3616 break;
3617 }
3618 __set_current_state(state);
3619 spin_unlock_irq(&x->wait.lock);
3620 timeout = schedule_timeout(timeout);
3621 spin_lock_irq(&x->wait.lock);
3622 } while (!x->done && timeout);
3623 __remove_wait_queue(&x->wait, &wait);
3624 if (!x->done)
3625 return timeout;
3626 }
3627 x->done--;
3628 return timeout ?: 1;
3629 }
3630
3631 static long __sched
3632 wait_for_common(struct completion *x, long timeout, int state)
3633 {
3634 might_sleep();
3635
3636 spin_lock_irq(&x->wait.lock);
3637 timeout = do_wait_for_common(x, timeout, state);
3638 spin_unlock_irq(&x->wait.lock);
3639 return timeout;
3640 }
3641
3642 /**
3643 * wait_for_completion: - waits for completion of a task
3644 * @x: holds the state of this particular completion
3645 *
3646 * This waits to be signaled for completion of a specific task. It is NOT
3647 * interruptible and there is no timeout.
3648 *
3649 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3650 * and interrupt capability. Also see complete().
3651 */
3652 void __sched wait_for_completion(struct completion *x)
3653 {
3654 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3655 }
3656 EXPORT_SYMBOL(wait_for_completion);
3657
3658 /**
3659 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3660 * @x: holds the state of this particular completion
3661 * @timeout: timeout value in jiffies
3662 *
3663 * This waits for either a completion of a specific task to be signaled or for a
3664 * specified timeout to expire. The timeout is in jiffies. It is not
3665 * interruptible.
3666 *
3667 * The return value is 0 if timed out, and positive (at least 1, or number of
3668 * jiffies left till timeout) if completed.
3669 */
3670 unsigned long __sched
3671 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3672 {
3673 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3674 }
3675 EXPORT_SYMBOL(wait_for_completion_timeout);
3676
3677 /**
3678 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3679 * @x: holds the state of this particular completion
3680 *
3681 * This waits for completion of a specific task to be signaled. It is
3682 * interruptible.
3683 *
3684 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3685 */
3686 int __sched wait_for_completion_interruptible(struct completion *x)
3687 {
3688 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3689 if (t == -ERESTARTSYS)
3690 return t;
3691 return 0;
3692 }
3693 EXPORT_SYMBOL(wait_for_completion_interruptible);
3694
3695 /**
3696 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3697 * @x: holds the state of this particular completion
3698 * @timeout: timeout value in jiffies
3699 *
3700 * This waits for either a completion of a specific task to be signaled or for a
3701 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3702 *
3703 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3704 * positive (at least 1, or number of jiffies left till timeout) if completed.
3705 */
3706 long __sched
3707 wait_for_completion_interruptible_timeout(struct completion *x,
3708 unsigned long timeout)
3709 {
3710 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3711 }
3712 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3713
3714 /**
3715 * wait_for_completion_killable: - waits for completion of a task (killable)
3716 * @x: holds the state of this particular completion
3717 *
3718 * This waits to be signaled for completion of a specific task. It can be
3719 * interrupted by a kill signal.
3720 *
3721 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3722 */
3723 int __sched wait_for_completion_killable(struct completion *x)
3724 {
3725 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3726 if (t == -ERESTARTSYS)
3727 return t;
3728 return 0;
3729 }
3730 EXPORT_SYMBOL(wait_for_completion_killable);
3731
3732 /**
3733 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3734 * @x: holds the state of this particular completion
3735 * @timeout: timeout value in jiffies
3736 *
3737 * This waits for either a completion of a specific task to be
3738 * signaled or for a specified timeout to expire. It can be
3739 * interrupted by a kill signal. The timeout is in jiffies.
3740 *
3741 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3742 * positive (at least 1, or number of jiffies left till timeout) if completed.
3743 */
3744 long __sched
3745 wait_for_completion_killable_timeout(struct completion *x,
3746 unsigned long timeout)
3747 {
3748 return wait_for_common(x, timeout, TASK_KILLABLE);
3749 }
3750 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3751
3752 /**
3753 * try_wait_for_completion - try to decrement a completion without blocking
3754 * @x: completion structure
3755 *
3756 * Returns: 0 if a decrement cannot be done without blocking
3757 * 1 if a decrement succeeded.
3758 *
3759 * If a completion is being used as a counting completion,
3760 * attempt to decrement the counter without blocking. This
3761 * enables us to avoid waiting if the resource the completion
3762 * is protecting is not available.
3763 */
3764 bool try_wait_for_completion(struct completion *x)
3765 {
3766 unsigned long flags;
3767 int ret = 1;
3768
3769 spin_lock_irqsave(&x->wait.lock, flags);
3770 if (!x->done)
3771 ret = 0;
3772 else
3773 x->done--;
3774 spin_unlock_irqrestore(&x->wait.lock, flags);
3775 return ret;
3776 }
3777 EXPORT_SYMBOL(try_wait_for_completion);
3778
3779 /**
3780 * completion_done - Test to see if a completion has any waiters
3781 * @x: completion structure
3782 *
3783 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3784 * 1 if there are no waiters.
3785 *
3786 */
3787 bool completion_done(struct completion *x)
3788 {
3789 unsigned long flags;
3790 int ret = 1;
3791
3792 spin_lock_irqsave(&x->wait.lock, flags);
3793 if (!x->done)
3794 ret = 0;
3795 spin_unlock_irqrestore(&x->wait.lock, flags);
3796 return ret;
3797 }
3798 EXPORT_SYMBOL(completion_done);
3799
3800 static long __sched
3801 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3802 {
3803 unsigned long flags;
3804 wait_queue_t wait;
3805
3806 init_waitqueue_entry(&wait, current);
3807
3808 __set_current_state(state);
3809
3810 spin_lock_irqsave(&q->lock, flags);
3811 __add_wait_queue(q, &wait);
3812 spin_unlock(&q->lock);
3813 timeout = schedule_timeout(timeout);
3814 spin_lock_irq(&q->lock);
3815 __remove_wait_queue(q, &wait);
3816 spin_unlock_irqrestore(&q->lock, flags);
3817
3818 return timeout;
3819 }
3820
3821 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3822 {
3823 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3824 }
3825 EXPORT_SYMBOL(interruptible_sleep_on);
3826
3827 long __sched
3828 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3829 {
3830 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3831 }
3832 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3833
3834 void __sched sleep_on(wait_queue_head_t *q)
3835 {
3836 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3837 }
3838 EXPORT_SYMBOL(sleep_on);
3839
3840 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3841 {
3842 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3843 }
3844 EXPORT_SYMBOL(sleep_on_timeout);
3845
3846 #ifdef CONFIG_RT_MUTEXES
3847
3848 /*
3849 * rt_mutex_setprio - set the current priority of a task
3850 * @p: task
3851 * @prio: prio value (kernel-internal form)
3852 *
3853 * This function changes the 'effective' priority of a task. It does
3854 * not touch ->normal_prio like __setscheduler().
3855 *
3856 * Used by the rt_mutex code to implement priority inheritance logic.
3857 */
3858 void rt_mutex_setprio(struct task_struct *p, int prio)
3859 {
3860 int oldprio, on_rq, running;
3861 struct rq *rq;
3862 const struct sched_class *prev_class;
3863
3864 BUG_ON(prio < 0 || prio > MAX_PRIO);
3865
3866 rq = __task_rq_lock(p);
3867
3868 /*
3869 * Idle task boosting is a nono in general. There is one
3870 * exception, when PREEMPT_RT and NOHZ is active:
3871 *
3872 * The idle task calls get_next_timer_interrupt() and holds
3873 * the timer wheel base->lock on the CPU and another CPU wants
3874 * to access the timer (probably to cancel it). We can safely
3875 * ignore the boosting request, as the idle CPU runs this code
3876 * with interrupts disabled and will complete the lock
3877 * protected section without being interrupted. So there is no
3878 * real need to boost.
3879 */
3880 if (unlikely(p == rq->idle)) {
3881 WARN_ON(p != rq->curr);
3882 WARN_ON(p->pi_blocked_on);
3883 goto out_unlock;
3884 }
3885
3886 trace_sched_pi_setprio(p, prio);
3887 oldprio = p->prio;
3888 prev_class = p->sched_class;
3889 on_rq = p->on_rq;
3890 running = task_current(rq, p);
3891 if (on_rq)
3892 dequeue_task(rq, p, 0);
3893 if (running)
3894 p->sched_class->put_prev_task(rq, p);
3895
3896 if (rt_prio(prio))
3897 p->sched_class = &rt_sched_class;
3898 else
3899 p->sched_class = &fair_sched_class;
3900
3901 p->prio = prio;
3902
3903 if (running)
3904 p->sched_class->set_curr_task(rq);
3905 if (on_rq)
3906 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3907
3908 check_class_changed(rq, p, prev_class, oldprio);
3909 out_unlock:
3910 __task_rq_unlock(rq);
3911 }
3912 #endif
3913 void set_user_nice(struct task_struct *p, long nice)
3914 {
3915 int old_prio, delta, on_rq;
3916 unsigned long flags;
3917 struct rq *rq;
3918
3919 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3920 return;
3921 /*
3922 * We have to be careful, if called from sys_setpriority(),
3923 * the task might be in the middle of scheduling on another CPU.
3924 */
3925 rq = task_rq_lock(p, &flags);
3926 /*
3927 * The RT priorities are set via sched_setscheduler(), but we still
3928 * allow the 'normal' nice value to be set - but as expected
3929 * it wont have any effect on scheduling until the task is
3930 * SCHED_FIFO/SCHED_RR:
3931 */
3932 if (task_has_rt_policy(p)) {
3933 p->static_prio = NICE_TO_PRIO(nice);
3934 goto out_unlock;
3935 }
3936 on_rq = p->on_rq;
3937 if (on_rq)
3938 dequeue_task(rq, p, 0);
3939
3940 p->static_prio = NICE_TO_PRIO(nice);
3941 set_load_weight(p);
3942 old_prio = p->prio;
3943 p->prio = effective_prio(p);
3944 delta = p->prio - old_prio;
3945
3946 if (on_rq) {
3947 enqueue_task(rq, p, 0);
3948 /*
3949 * If the task increased its priority or is running and
3950 * lowered its priority, then reschedule its CPU:
3951 */
3952 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3953 resched_task(rq->curr);
3954 }
3955 out_unlock:
3956 task_rq_unlock(rq, p, &flags);
3957 }
3958 EXPORT_SYMBOL(set_user_nice);
3959
3960 /*
3961 * can_nice - check if a task can reduce its nice value
3962 * @p: task
3963 * @nice: nice value
3964 */
3965 int can_nice(const struct task_struct *p, const int nice)
3966 {
3967 /* convert nice value [19,-20] to rlimit style value [1,40] */
3968 int nice_rlim = 20 - nice;
3969
3970 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3971 capable(CAP_SYS_NICE));
3972 }
3973
3974 #ifdef __ARCH_WANT_SYS_NICE
3975
3976 /*
3977 * sys_nice - change the priority of the current process.
3978 * @increment: priority increment
3979 *
3980 * sys_setpriority is a more generic, but much slower function that
3981 * does similar things.
3982 */
3983 SYSCALL_DEFINE1(nice, int, increment)
3984 {
3985 long nice, retval;
3986
3987 /*
3988 * Setpriority might change our priority at the same moment.
3989 * We don't have to worry. Conceptually one call occurs first
3990 * and we have a single winner.
3991 */
3992 if (increment < -40)
3993 increment = -40;
3994 if (increment > 40)
3995 increment = 40;
3996
3997 nice = TASK_NICE(current) + increment;
3998 if (nice < -20)
3999 nice = -20;
4000 if (nice > 19)
4001 nice = 19;
4002
4003 if (increment < 0 && !can_nice(current, nice))
4004 return -EPERM;
4005
4006 retval = security_task_setnice(current, nice);
4007 if (retval)
4008 return retval;
4009
4010 set_user_nice(current, nice);
4011 return 0;
4012 }
4013
4014 #endif
4015
4016 /**
4017 * task_prio - return the priority value of a given task.
4018 * @p: the task in question.
4019 *
4020 * This is the priority value as seen by users in /proc.
4021 * RT tasks are offset by -200. Normal tasks are centered
4022 * around 0, value goes from -16 to +15.
4023 */
4024 int task_prio(const struct task_struct *p)
4025 {
4026 return p->prio - MAX_RT_PRIO;
4027 }
4028
4029 /**
4030 * task_nice - return the nice value of a given task.
4031 * @p: the task in question.
4032 */
4033 int task_nice(const struct task_struct *p)
4034 {
4035 return TASK_NICE(p);
4036 }
4037 EXPORT_SYMBOL(task_nice);
4038
4039 /**
4040 * idle_cpu - is a given cpu idle currently?
4041 * @cpu: the processor in question.
4042 */
4043 int idle_cpu(int cpu)
4044 {
4045 struct rq *rq = cpu_rq(cpu);
4046
4047 if (rq->curr != rq->idle)
4048 return 0;
4049
4050 if (rq->nr_running)
4051 return 0;
4052
4053 #ifdef CONFIG_SMP
4054 if (!llist_empty(&rq->wake_list))
4055 return 0;
4056 #endif
4057
4058 return 1;
4059 }
4060
4061 /**
4062 * idle_task - return the idle task for a given cpu.
4063 * @cpu: the processor in question.
4064 */
4065 struct task_struct *idle_task(int cpu)
4066 {
4067 return cpu_rq(cpu)->idle;
4068 }
4069
4070 /**
4071 * find_process_by_pid - find a process with a matching PID value.
4072 * @pid: the pid in question.
4073 */
4074 static struct task_struct *find_process_by_pid(pid_t pid)
4075 {
4076 return pid ? find_task_by_vpid(pid) : current;
4077 }
4078
4079 /* Actually do priority change: must hold rq lock. */
4080 static void
4081 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4082 {
4083 p->policy = policy;
4084 p->rt_priority = prio;
4085 p->normal_prio = normal_prio(p);
4086 /* we are holding p->pi_lock already */
4087 p->prio = rt_mutex_getprio(p);
4088 if (rt_prio(p->prio))
4089 p->sched_class = &rt_sched_class;
4090 else
4091 p->sched_class = &fair_sched_class;
4092 set_load_weight(p);
4093 }
4094
4095 /*
4096 * check the target process has a UID that matches the current process's
4097 */
4098 static bool check_same_owner(struct task_struct *p)
4099 {
4100 const struct cred *cred = current_cred(), *pcred;
4101 bool match;
4102
4103 rcu_read_lock();
4104 pcred = __task_cred(p);
4105 match = (uid_eq(cred->euid, pcred->euid) ||
4106 uid_eq(cred->euid, pcred->uid));
4107 rcu_read_unlock();
4108 return match;
4109 }
4110
4111 static int __sched_setscheduler(struct task_struct *p, int policy,
4112 const struct sched_param *param, bool user)
4113 {
4114 int retval, oldprio, oldpolicy = -1, on_rq, running;
4115 unsigned long flags;
4116 const struct sched_class *prev_class;
4117 struct rq *rq;
4118 int reset_on_fork;
4119
4120 /* may grab non-irq protected spin_locks */
4121 BUG_ON(in_interrupt());
4122 recheck:
4123 /* double check policy once rq lock held */
4124 if (policy < 0) {
4125 reset_on_fork = p->sched_reset_on_fork;
4126 policy = oldpolicy = p->policy;
4127 } else {
4128 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4129 policy &= ~SCHED_RESET_ON_FORK;
4130
4131 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4132 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4133 policy != SCHED_IDLE)
4134 return -EINVAL;
4135 }
4136
4137 /*
4138 * Valid priorities for SCHED_FIFO and SCHED_RR are
4139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4140 * SCHED_BATCH and SCHED_IDLE is 0.
4141 */
4142 if (param->sched_priority < 0 ||
4143 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4144 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4145 return -EINVAL;
4146 if (rt_policy(policy) != (param->sched_priority != 0))
4147 return -EINVAL;
4148
4149 /*
4150 * Allow unprivileged RT tasks to decrease priority:
4151 */
4152 if (user && !capable(CAP_SYS_NICE)) {
4153 if (rt_policy(policy)) {
4154 unsigned long rlim_rtprio =
4155 task_rlimit(p, RLIMIT_RTPRIO);
4156
4157 /* can't set/change the rt policy */
4158 if (policy != p->policy && !rlim_rtprio)
4159 return -EPERM;
4160
4161 /* can't increase priority */
4162 if (param->sched_priority > p->rt_priority &&
4163 param->sched_priority > rlim_rtprio)
4164 return -EPERM;
4165 }
4166
4167 /*
4168 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4169 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4170 */
4171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4172 if (!can_nice(p, TASK_NICE(p)))
4173 return -EPERM;
4174 }
4175
4176 /* can't change other user's priorities */
4177 if (!check_same_owner(p))
4178 return -EPERM;
4179
4180 /* Normal users shall not reset the sched_reset_on_fork flag */
4181 if (p->sched_reset_on_fork && !reset_on_fork)
4182 return -EPERM;
4183 }
4184
4185 if (user) {
4186 retval = security_task_setscheduler(p);
4187 if (retval)
4188 return retval;
4189 }
4190
4191 /*
4192 * make sure no PI-waiters arrive (or leave) while we are
4193 * changing the priority of the task:
4194 *
4195 * To be able to change p->policy safely, the appropriate
4196 * runqueue lock must be held.
4197 */
4198 rq = task_rq_lock(p, &flags);
4199
4200 /*
4201 * Changing the policy of the stop threads its a very bad idea
4202 */
4203 if (p == rq->stop) {
4204 task_rq_unlock(rq, p, &flags);
4205 return -EINVAL;
4206 }
4207
4208 /*
4209 * If not changing anything there's no need to proceed further:
4210 */
4211 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4212 param->sched_priority == p->rt_priority))) {
4213
4214 __task_rq_unlock(rq);
4215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4216 return 0;
4217 }
4218
4219 #ifdef CONFIG_RT_GROUP_SCHED
4220 if (user) {
4221 /*
4222 * Do not allow realtime tasks into groups that have no runtime
4223 * assigned.
4224 */
4225 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4226 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4227 !task_group_is_autogroup(task_group(p))) {
4228 task_rq_unlock(rq, p, &flags);
4229 return -EPERM;
4230 }
4231 }
4232 #endif
4233
4234 /* recheck policy now with rq lock held */
4235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4236 policy = oldpolicy = -1;
4237 task_rq_unlock(rq, p, &flags);
4238 goto recheck;
4239 }
4240 on_rq = p->on_rq;
4241 running = task_current(rq, p);
4242 if (on_rq)
4243 dequeue_task(rq, p, 0);
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
4246
4247 p->sched_reset_on_fork = reset_on_fork;
4248
4249 oldprio = p->prio;
4250 prev_class = p->sched_class;
4251 __setscheduler(rq, p, policy, param->sched_priority);
4252
4253 if (running)
4254 p->sched_class->set_curr_task(rq);
4255 if (on_rq)
4256 enqueue_task(rq, p, 0);
4257
4258 check_class_changed(rq, p, prev_class, oldprio);
4259 task_rq_unlock(rq, p, &flags);
4260
4261 rt_mutex_adjust_pi(p);
4262
4263 return 0;
4264 }
4265
4266 /**
4267 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4268 * @p: the task in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4271 *
4272 * NOTE that the task may be already dead.
4273 */
4274 int sched_setscheduler(struct task_struct *p, int policy,
4275 const struct sched_param *param)
4276 {
4277 return __sched_setscheduler(p, policy, param, true);
4278 }
4279 EXPORT_SYMBOL_GPL(sched_setscheduler);
4280
4281 /**
4282 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4283 * @p: the task in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4286 *
4287 * Just like sched_setscheduler, only don't bother checking if the
4288 * current context has permission. For example, this is needed in
4289 * stop_machine(): we create temporary high priority worker threads,
4290 * but our caller might not have that capability.
4291 */
4292 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4293 const struct sched_param *param)
4294 {
4295 return __sched_setscheduler(p, policy, param, false);
4296 }
4297
4298 static int
4299 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4300 {
4301 struct sched_param lparam;
4302 struct task_struct *p;
4303 int retval;
4304
4305 if (!param || pid < 0)
4306 return -EINVAL;
4307 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4308 return -EFAULT;
4309
4310 rcu_read_lock();
4311 retval = -ESRCH;
4312 p = find_process_by_pid(pid);
4313 if (p != NULL)
4314 retval = sched_setscheduler(p, policy, &lparam);
4315 rcu_read_unlock();
4316
4317 return retval;
4318 }
4319
4320 /**
4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322 * @pid: the pid in question.
4323 * @policy: new policy.
4324 * @param: structure containing the new RT priority.
4325 */
4326 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4327 struct sched_param __user *, param)
4328 {
4329 /* negative values for policy are not valid */
4330 if (policy < 0)
4331 return -EINVAL;
4332
4333 return do_sched_setscheduler(pid, policy, param);
4334 }
4335
4336 /**
4337 * sys_sched_setparam - set/change the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the new RT priority.
4340 */
4341 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4342 {
4343 return do_sched_setscheduler(pid, -1, param);
4344 }
4345
4346 /**
4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348 * @pid: the pid in question.
4349 */
4350 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4351 {
4352 struct task_struct *p;
4353 int retval;
4354
4355 if (pid < 0)
4356 return -EINVAL;
4357
4358 retval = -ESRCH;
4359 rcu_read_lock();
4360 p = find_process_by_pid(pid);
4361 if (p) {
4362 retval = security_task_getscheduler(p);
4363 if (!retval)
4364 retval = p->policy
4365 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4366 }
4367 rcu_read_unlock();
4368 return retval;
4369 }
4370
4371 /**
4372 * sys_sched_getparam - get the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4375 */
4376 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4377 {
4378 struct sched_param lp;
4379 struct task_struct *p;
4380 int retval;
4381
4382 if (!param || pid < 0)
4383 return -EINVAL;
4384
4385 rcu_read_lock();
4386 p = find_process_by_pid(pid);
4387 retval = -ESRCH;
4388 if (!p)
4389 goto out_unlock;
4390
4391 retval = security_task_getscheduler(p);
4392 if (retval)
4393 goto out_unlock;
4394
4395 lp.sched_priority = p->rt_priority;
4396 rcu_read_unlock();
4397
4398 /*
4399 * This one might sleep, we cannot do it with a spinlock held ...
4400 */
4401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4402
4403 return retval;
4404
4405 out_unlock:
4406 rcu_read_unlock();
4407 return retval;
4408 }
4409
4410 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4411 {
4412 cpumask_var_t cpus_allowed, new_mask;
4413 struct task_struct *p;
4414 int retval;
4415
4416 get_online_cpus();
4417 rcu_read_lock();
4418
4419 p = find_process_by_pid(pid);
4420 if (!p) {
4421 rcu_read_unlock();
4422 put_online_cpus();
4423 return -ESRCH;
4424 }
4425
4426 /* Prevent p going away */
4427 get_task_struct(p);
4428 rcu_read_unlock();
4429
4430 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4431 retval = -ENOMEM;
4432 goto out_put_task;
4433 }
4434 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4435 retval = -ENOMEM;
4436 goto out_free_cpus_allowed;
4437 }
4438 retval = -EPERM;
4439 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4440 goto out_unlock;
4441
4442 retval = security_task_setscheduler(p);
4443 if (retval)
4444 goto out_unlock;
4445
4446 cpuset_cpus_allowed(p, cpus_allowed);
4447 cpumask_and(new_mask, in_mask, cpus_allowed);
4448 again:
4449 retval = set_cpus_allowed_ptr(p, new_mask);
4450
4451 if (!retval) {
4452 cpuset_cpus_allowed(p, cpus_allowed);
4453 if (!cpumask_subset(new_mask, cpus_allowed)) {
4454 /*
4455 * We must have raced with a concurrent cpuset
4456 * update. Just reset the cpus_allowed to the
4457 * cpuset's cpus_allowed
4458 */
4459 cpumask_copy(new_mask, cpus_allowed);
4460 goto again;
4461 }
4462 }
4463 out_unlock:
4464 free_cpumask_var(new_mask);
4465 out_free_cpus_allowed:
4466 free_cpumask_var(cpus_allowed);
4467 out_put_task:
4468 put_task_struct(p);
4469 put_online_cpus();
4470 return retval;
4471 }
4472
4473 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4474 struct cpumask *new_mask)
4475 {
4476 if (len < cpumask_size())
4477 cpumask_clear(new_mask);
4478 else if (len > cpumask_size())
4479 len = cpumask_size();
4480
4481 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4482 }
4483
4484 /**
4485 * sys_sched_setaffinity - set the cpu affinity of a process
4486 * @pid: pid of the process
4487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4488 * @user_mask_ptr: user-space pointer to the new cpu mask
4489 */
4490 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4491 unsigned long __user *, user_mask_ptr)
4492 {
4493 cpumask_var_t new_mask;
4494 int retval;
4495
4496 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4497 return -ENOMEM;
4498
4499 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4500 if (retval == 0)
4501 retval = sched_setaffinity(pid, new_mask);
4502 free_cpumask_var(new_mask);
4503 return retval;
4504 }
4505
4506 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4507 {
4508 struct task_struct *p;
4509 unsigned long flags;
4510 int retval;
4511
4512 get_online_cpus();
4513 rcu_read_lock();
4514
4515 retval = -ESRCH;
4516 p = find_process_by_pid(pid);
4517 if (!p)
4518 goto out_unlock;
4519
4520 retval = security_task_getscheduler(p);
4521 if (retval)
4522 goto out_unlock;
4523
4524 raw_spin_lock_irqsave(&p->pi_lock, flags);
4525 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4527
4528 out_unlock:
4529 rcu_read_unlock();
4530 put_online_cpus();
4531
4532 return retval;
4533 }
4534
4535 /**
4536 * sys_sched_getaffinity - get the cpu affinity of a process
4537 * @pid: pid of the process
4538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4539 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4540 */
4541 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4542 unsigned long __user *, user_mask_ptr)
4543 {
4544 int ret;
4545 cpumask_var_t mask;
4546
4547 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4548 return -EINVAL;
4549 if (len & (sizeof(unsigned long)-1))
4550 return -EINVAL;
4551
4552 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4553 return -ENOMEM;
4554
4555 ret = sched_getaffinity(pid, mask);
4556 if (ret == 0) {
4557 size_t retlen = min_t(size_t, len, cpumask_size());
4558
4559 if (copy_to_user(user_mask_ptr, mask, retlen))
4560 ret = -EFAULT;
4561 else
4562 ret = retlen;
4563 }
4564 free_cpumask_var(mask);
4565
4566 return ret;
4567 }
4568
4569 /**
4570 * sys_sched_yield - yield the current processor to other threads.
4571 *
4572 * This function yields the current CPU to other tasks. If there are no
4573 * other threads running on this CPU then this function will return.
4574 */
4575 SYSCALL_DEFINE0(sched_yield)
4576 {
4577 struct rq *rq = this_rq_lock();
4578
4579 schedstat_inc(rq, yld_count);
4580 current->sched_class->yield_task(rq);
4581
4582 /*
4583 * Since we are going to call schedule() anyway, there's
4584 * no need to preempt or enable interrupts:
4585 */
4586 __release(rq->lock);
4587 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4588 do_raw_spin_unlock(&rq->lock);
4589 sched_preempt_enable_no_resched();
4590
4591 schedule();
4592
4593 return 0;
4594 }
4595
4596 static inline int should_resched(void)
4597 {
4598 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4599 }
4600
4601 static void __cond_resched(void)
4602 {
4603 add_preempt_count(PREEMPT_ACTIVE);
4604 __schedule();
4605 sub_preempt_count(PREEMPT_ACTIVE);
4606 }
4607
4608 int __sched _cond_resched(void)
4609 {
4610 if (should_resched()) {
4611 __cond_resched();
4612 return 1;
4613 }
4614 return 0;
4615 }
4616 EXPORT_SYMBOL(_cond_resched);
4617
4618 /*
4619 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4620 * call schedule, and on return reacquire the lock.
4621 *
4622 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4623 * operations here to prevent schedule() from being called twice (once via
4624 * spin_unlock(), once by hand).
4625 */
4626 int __cond_resched_lock(spinlock_t *lock)
4627 {
4628 int resched = should_resched();
4629 int ret = 0;
4630
4631 lockdep_assert_held(lock);
4632
4633 if (spin_needbreak(lock) || resched) {
4634 spin_unlock(lock);
4635 if (resched)
4636 __cond_resched();
4637 else
4638 cpu_relax();
4639 ret = 1;
4640 spin_lock(lock);
4641 }
4642 return ret;
4643 }
4644 EXPORT_SYMBOL(__cond_resched_lock);
4645
4646 int __sched __cond_resched_softirq(void)
4647 {
4648 BUG_ON(!in_softirq());
4649
4650 if (should_resched()) {
4651 local_bh_enable();
4652 __cond_resched();
4653 local_bh_disable();
4654 return 1;
4655 }
4656 return 0;
4657 }
4658 EXPORT_SYMBOL(__cond_resched_softirq);
4659
4660 /**
4661 * yield - yield the current processor to other threads.
4662 *
4663 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4664 *
4665 * The scheduler is at all times free to pick the calling task as the most
4666 * eligible task to run, if removing the yield() call from your code breaks
4667 * it, its already broken.
4668 *
4669 * Typical broken usage is:
4670 *
4671 * while (!event)
4672 * yield();
4673 *
4674 * where one assumes that yield() will let 'the other' process run that will
4675 * make event true. If the current task is a SCHED_FIFO task that will never
4676 * happen. Never use yield() as a progress guarantee!!
4677 *
4678 * If you want to use yield() to wait for something, use wait_event().
4679 * If you want to use yield() to be 'nice' for others, use cond_resched().
4680 * If you still want to use yield(), do not!
4681 */
4682 void __sched yield(void)
4683 {
4684 set_current_state(TASK_RUNNING);
4685 sys_sched_yield();
4686 }
4687 EXPORT_SYMBOL(yield);
4688
4689 /**
4690 * yield_to - yield the current processor to another thread in
4691 * your thread group, or accelerate that thread toward the
4692 * processor it's on.
4693 * @p: target task
4694 * @preempt: whether task preemption is allowed or not
4695 *
4696 * It's the caller's job to ensure that the target task struct
4697 * can't go away on us before we can do any checks.
4698 *
4699 * Returns true if we indeed boosted the target task.
4700 */
4701 bool __sched yield_to(struct task_struct *p, bool preempt)
4702 {
4703 struct task_struct *curr = current;
4704 struct rq *rq, *p_rq;
4705 unsigned long flags;
4706 bool yielded = 0;
4707
4708 local_irq_save(flags);
4709 rq = this_rq();
4710
4711 again:
4712 p_rq = task_rq(p);
4713 double_rq_lock(rq, p_rq);
4714 while (task_rq(p) != p_rq) {
4715 double_rq_unlock(rq, p_rq);
4716 goto again;
4717 }
4718
4719 if (!curr->sched_class->yield_to_task)
4720 goto out;
4721
4722 if (curr->sched_class != p->sched_class)
4723 goto out;
4724
4725 if (task_running(p_rq, p) || p->state)
4726 goto out;
4727
4728 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4729 if (yielded) {
4730 schedstat_inc(rq, yld_count);
4731 /*
4732 * Make p's CPU reschedule; pick_next_entity takes care of
4733 * fairness.
4734 */
4735 if (preempt && rq != p_rq)
4736 resched_task(p_rq->curr);
4737 } else {
4738 /*
4739 * We might have set it in task_yield_fair(), but are
4740 * not going to schedule(), so don't want to skip
4741 * the next update.
4742 */
4743 rq->skip_clock_update = 0;
4744 }
4745
4746 out:
4747 double_rq_unlock(rq, p_rq);
4748 local_irq_restore(flags);
4749
4750 if (yielded)
4751 schedule();
4752
4753 return yielded;
4754 }
4755 EXPORT_SYMBOL_GPL(yield_to);
4756
4757 /*
4758 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4759 * that process accounting knows that this is a task in IO wait state.
4760 */
4761 void __sched io_schedule(void)
4762 {
4763 struct rq *rq = raw_rq();
4764
4765 delayacct_blkio_start();
4766 atomic_inc(&rq->nr_iowait);
4767 blk_flush_plug(current);
4768 current->in_iowait = 1;
4769 schedule();
4770 current->in_iowait = 0;
4771 atomic_dec(&rq->nr_iowait);
4772 delayacct_blkio_end();
4773 }
4774 EXPORT_SYMBOL(io_schedule);
4775
4776 long __sched io_schedule_timeout(long timeout)
4777 {
4778 struct rq *rq = raw_rq();
4779 long ret;
4780
4781 delayacct_blkio_start();
4782 atomic_inc(&rq->nr_iowait);
4783 blk_flush_plug(current);
4784 current->in_iowait = 1;
4785 ret = schedule_timeout(timeout);
4786 current->in_iowait = 0;
4787 atomic_dec(&rq->nr_iowait);
4788 delayacct_blkio_end();
4789 return ret;
4790 }
4791
4792 /**
4793 * sys_sched_get_priority_max - return maximum RT priority.
4794 * @policy: scheduling class.
4795 *
4796 * this syscall returns the maximum rt_priority that can be used
4797 * by a given scheduling class.
4798 */
4799 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4800 {
4801 int ret = -EINVAL;
4802
4803 switch (policy) {
4804 case SCHED_FIFO:
4805 case SCHED_RR:
4806 ret = MAX_USER_RT_PRIO-1;
4807 break;
4808 case SCHED_NORMAL:
4809 case SCHED_BATCH:
4810 case SCHED_IDLE:
4811 ret = 0;
4812 break;
4813 }
4814 return ret;
4815 }
4816
4817 /**
4818 * sys_sched_get_priority_min - return minimum RT priority.
4819 * @policy: scheduling class.
4820 *
4821 * this syscall returns the minimum rt_priority that can be used
4822 * by a given scheduling class.
4823 */
4824 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4825 {
4826 int ret = -EINVAL;
4827
4828 switch (policy) {
4829 case SCHED_FIFO:
4830 case SCHED_RR:
4831 ret = 1;
4832 break;
4833 case SCHED_NORMAL:
4834 case SCHED_BATCH:
4835 case SCHED_IDLE:
4836 ret = 0;
4837 }
4838 return ret;
4839 }
4840
4841 /**
4842 * sys_sched_rr_get_interval - return the default timeslice of a process.
4843 * @pid: pid of the process.
4844 * @interval: userspace pointer to the timeslice value.
4845 *
4846 * this syscall writes the default timeslice value of a given process
4847 * into the user-space timespec buffer. A value of '0' means infinity.
4848 */
4849 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4850 struct timespec __user *, interval)
4851 {
4852 struct task_struct *p;
4853 unsigned int time_slice;
4854 unsigned long flags;
4855 struct rq *rq;
4856 int retval;
4857 struct timespec t;
4858
4859 if (pid < 0)
4860 return -EINVAL;
4861
4862 retval = -ESRCH;
4863 rcu_read_lock();
4864 p = find_process_by_pid(pid);
4865 if (!p)
4866 goto out_unlock;
4867
4868 retval = security_task_getscheduler(p);
4869 if (retval)
4870 goto out_unlock;
4871
4872 rq = task_rq_lock(p, &flags);
4873 time_slice = p->sched_class->get_rr_interval(rq, p);
4874 task_rq_unlock(rq, p, &flags);
4875
4876 rcu_read_unlock();
4877 jiffies_to_timespec(time_slice, &t);
4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4879 return retval;
4880
4881 out_unlock:
4882 rcu_read_unlock();
4883 return retval;
4884 }
4885
4886 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4887
4888 void sched_show_task(struct task_struct *p)
4889 {
4890 unsigned long free = 0;
4891 unsigned state;
4892
4893 state = p->state ? __ffs(p->state) + 1 : 0;
4894 printk(KERN_INFO "%-15.15s %c", p->comm,
4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4896 #if BITS_PER_LONG == 32
4897 if (state == TASK_RUNNING)
4898 printk(KERN_CONT " running ");
4899 else
4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4901 #else
4902 if (state == TASK_RUNNING)
4903 printk(KERN_CONT " running task ");
4904 else
4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4906 #endif
4907 #ifdef CONFIG_DEBUG_STACK_USAGE
4908 free = stack_not_used(p);
4909 #endif
4910 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4911 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4912 (unsigned long)task_thread_info(p)->flags);
4913
4914 show_stack(p, NULL);
4915 }
4916
4917 void show_state_filter(unsigned long state_filter)
4918 {
4919 struct task_struct *g, *p;
4920
4921 #if BITS_PER_LONG == 32
4922 printk(KERN_INFO
4923 " task PC stack pid father\n");
4924 #else
4925 printk(KERN_INFO
4926 " task PC stack pid father\n");
4927 #endif
4928 rcu_read_lock();
4929 do_each_thread(g, p) {
4930 /*
4931 * reset the NMI-timeout, listing all files on a slow
4932 * console might take a lot of time:
4933 */
4934 touch_nmi_watchdog();
4935 if (!state_filter || (p->state & state_filter))
4936 sched_show_task(p);
4937 } while_each_thread(g, p);
4938
4939 touch_all_softlockup_watchdogs();
4940
4941 #ifdef CONFIG_SCHED_DEBUG
4942 sysrq_sched_debug_show();
4943 #endif
4944 rcu_read_unlock();
4945 /*
4946 * Only show locks if all tasks are dumped:
4947 */
4948 if (!state_filter)
4949 debug_show_all_locks();
4950 }
4951
4952 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4953 {
4954 idle->sched_class = &idle_sched_class;
4955 }
4956
4957 /**
4958 * init_idle - set up an idle thread for a given CPU
4959 * @idle: task in question
4960 * @cpu: cpu the idle task belongs to
4961 *
4962 * NOTE: this function does not set the idle thread's NEED_RESCHED
4963 * flag, to make booting more robust.
4964 */
4965 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4966 {
4967 struct rq *rq = cpu_rq(cpu);
4968 unsigned long flags;
4969
4970 raw_spin_lock_irqsave(&rq->lock, flags);
4971
4972 __sched_fork(idle);
4973 idle->state = TASK_RUNNING;
4974 idle->se.exec_start = sched_clock();
4975
4976 do_set_cpus_allowed(idle, cpumask_of(cpu));
4977 /*
4978 * We're having a chicken and egg problem, even though we are
4979 * holding rq->lock, the cpu isn't yet set to this cpu so the
4980 * lockdep check in task_group() will fail.
4981 *
4982 * Similar case to sched_fork(). / Alternatively we could
4983 * use task_rq_lock() here and obtain the other rq->lock.
4984 *
4985 * Silence PROVE_RCU
4986 */
4987 rcu_read_lock();
4988 __set_task_cpu(idle, cpu);
4989 rcu_read_unlock();
4990
4991 rq->curr = rq->idle = idle;
4992 #if defined(CONFIG_SMP)
4993 idle->on_cpu = 1;
4994 #endif
4995 raw_spin_unlock_irqrestore(&rq->lock, flags);
4996
4997 /* Set the preempt count _outside_ the spinlocks! */
4998 task_thread_info(idle)->preempt_count = 0;
4999
5000 /*
5001 * The idle tasks have their own, simple scheduling class:
5002 */
5003 idle->sched_class = &idle_sched_class;
5004 ftrace_graph_init_idle_task(idle, cpu);
5005 #if defined(CONFIG_SMP)
5006 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5007 #endif
5008 }
5009
5010 #ifdef CONFIG_SMP
5011 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5012 {
5013 if (p->sched_class && p->sched_class->set_cpus_allowed)
5014 p->sched_class->set_cpus_allowed(p, new_mask);
5015
5016 cpumask_copy(&p->cpus_allowed, new_mask);
5017 p->nr_cpus_allowed = cpumask_weight(new_mask);
5018 }
5019
5020 /*
5021 * This is how migration works:
5022 *
5023 * 1) we invoke migration_cpu_stop() on the target CPU using
5024 * stop_one_cpu().
5025 * 2) stopper starts to run (implicitly forcing the migrated thread
5026 * off the CPU)
5027 * 3) it checks whether the migrated task is still in the wrong runqueue.
5028 * 4) if it's in the wrong runqueue then the migration thread removes
5029 * it and puts it into the right queue.
5030 * 5) stopper completes and stop_one_cpu() returns and the migration
5031 * is done.
5032 */
5033
5034 /*
5035 * Change a given task's CPU affinity. Migrate the thread to a
5036 * proper CPU and schedule it away if the CPU it's executing on
5037 * is removed from the allowed bitmask.
5038 *
5039 * NOTE: the caller must have a valid reference to the task, the
5040 * task must not exit() & deallocate itself prematurely. The
5041 * call is not atomic; no spinlocks may be held.
5042 */
5043 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5044 {
5045 unsigned long flags;
5046 struct rq *rq;
5047 unsigned int dest_cpu;
5048 int ret = 0;
5049
5050 rq = task_rq_lock(p, &flags);
5051
5052 if (cpumask_equal(&p->cpus_allowed, new_mask))
5053 goto out;
5054
5055 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5056 ret = -EINVAL;
5057 goto out;
5058 }
5059
5060 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5061 ret = -EINVAL;
5062 goto out;
5063 }
5064
5065 do_set_cpus_allowed(p, new_mask);
5066
5067 /* Can the task run on the task's current CPU? If so, we're done */
5068 if (cpumask_test_cpu(task_cpu(p), new_mask))
5069 goto out;
5070
5071 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5072 if (p->on_rq) {
5073 struct migration_arg arg = { p, dest_cpu };
5074 /* Need help from migration thread: drop lock and wait. */
5075 task_rq_unlock(rq, p, &flags);
5076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5077 tlb_migrate_finish(p->mm);
5078 return 0;
5079 }
5080 out:
5081 task_rq_unlock(rq, p, &flags);
5082
5083 return ret;
5084 }
5085 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5086
5087 /*
5088 * Move (not current) task off this cpu, onto dest cpu. We're doing
5089 * this because either it can't run here any more (set_cpus_allowed()
5090 * away from this CPU, or CPU going down), or because we're
5091 * attempting to rebalance this task on exec (sched_exec).
5092 *
5093 * So we race with normal scheduler movements, but that's OK, as long
5094 * as the task is no longer on this CPU.
5095 *
5096 * Returns non-zero if task was successfully migrated.
5097 */
5098 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5099 {
5100 struct rq *rq_dest, *rq_src;
5101 int ret = 0;
5102
5103 if (unlikely(!cpu_active(dest_cpu)))
5104 return ret;
5105
5106 rq_src = cpu_rq(src_cpu);
5107 rq_dest = cpu_rq(dest_cpu);
5108
5109 raw_spin_lock(&p->pi_lock);
5110 double_rq_lock(rq_src, rq_dest);
5111 /* Already moved. */
5112 if (task_cpu(p) != src_cpu)
5113 goto done;
5114 /* Affinity changed (again). */
5115 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5116 goto fail;
5117
5118 /*
5119 * If we're not on a rq, the next wake-up will ensure we're
5120 * placed properly.
5121 */
5122 if (p->on_rq) {
5123 dequeue_task(rq_src, p, 0);
5124 set_task_cpu(p, dest_cpu);
5125 enqueue_task(rq_dest, p, 0);
5126 check_preempt_curr(rq_dest, p, 0);
5127 }
5128 done:
5129 ret = 1;
5130 fail:
5131 double_rq_unlock(rq_src, rq_dest);
5132 raw_spin_unlock(&p->pi_lock);
5133 return ret;
5134 }
5135
5136 /*
5137 * migration_cpu_stop - this will be executed by a highprio stopper thread
5138 * and performs thread migration by bumping thread off CPU then
5139 * 'pushing' onto another runqueue.
5140 */
5141 static int migration_cpu_stop(void *data)
5142 {
5143 struct migration_arg *arg = data;
5144
5145 /*
5146 * The original target cpu might have gone down and we might
5147 * be on another cpu but it doesn't matter.
5148 */
5149 local_irq_disable();
5150 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5151 local_irq_enable();
5152 return 0;
5153 }
5154
5155 #ifdef CONFIG_HOTPLUG_CPU
5156
5157 /*
5158 * Ensures that the idle task is using init_mm right before its cpu goes
5159 * offline.
5160 */
5161 void idle_task_exit(void)
5162 {
5163 struct mm_struct *mm = current->active_mm;
5164
5165 BUG_ON(cpu_online(smp_processor_id()));
5166
5167 if (mm != &init_mm)
5168 switch_mm(mm, &init_mm, current);
5169 mmdrop(mm);
5170 }
5171
5172 /*
5173 * While a dead CPU has no uninterruptible tasks queued at this point,
5174 * it might still have a nonzero ->nr_uninterruptible counter, because
5175 * for performance reasons the counter is not stricly tracking tasks to
5176 * their home CPUs. So we just add the counter to another CPU's counter,
5177 * to keep the global sum constant after CPU-down:
5178 */
5179 static void migrate_nr_uninterruptible(struct rq *rq_src)
5180 {
5181 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5182
5183 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5184 rq_src->nr_uninterruptible = 0;
5185 }
5186
5187 /*
5188 * remove the tasks which were accounted by rq from calc_load_tasks.
5189 */
5190 static void calc_global_load_remove(struct rq *rq)
5191 {
5192 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5193 rq->calc_load_active = 0;
5194 }
5195
5196 /*
5197 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5198 * try_to_wake_up()->select_task_rq().
5199 *
5200 * Called with rq->lock held even though we'er in stop_machine() and
5201 * there's no concurrency possible, we hold the required locks anyway
5202 * because of lock validation efforts.
5203 */
5204 static void migrate_tasks(unsigned int dead_cpu)
5205 {
5206 struct rq *rq = cpu_rq(dead_cpu);
5207 struct task_struct *next, *stop = rq->stop;
5208 int dest_cpu;
5209
5210 /*
5211 * Fudge the rq selection such that the below task selection loop
5212 * doesn't get stuck on the currently eligible stop task.
5213 *
5214 * We're currently inside stop_machine() and the rq is either stuck
5215 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5216 * either way we should never end up calling schedule() until we're
5217 * done here.
5218 */
5219 rq->stop = NULL;
5220
5221 /* Ensure any throttled groups are reachable by pick_next_task */
5222 unthrottle_offline_cfs_rqs(rq);
5223
5224 for ( ; ; ) {
5225 /*
5226 * There's this thread running, bail when that's the only
5227 * remaining thread.
5228 */
5229 if (rq->nr_running == 1)
5230 break;
5231
5232 next = pick_next_task(rq);
5233 BUG_ON(!next);
5234 next->sched_class->put_prev_task(rq, next);
5235
5236 /* Find suitable destination for @next, with force if needed. */
5237 dest_cpu = select_fallback_rq(dead_cpu, next);
5238 raw_spin_unlock(&rq->lock);
5239
5240 __migrate_task(next, dead_cpu, dest_cpu);
5241
5242 raw_spin_lock(&rq->lock);
5243 }
5244
5245 rq->stop = stop;
5246 }
5247
5248 #endif /* CONFIG_HOTPLUG_CPU */
5249
5250 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5251
5252 static struct ctl_table sd_ctl_dir[] = {
5253 {
5254 .procname = "sched_domain",
5255 .mode = 0555,
5256 },
5257 {}
5258 };
5259
5260 static struct ctl_table sd_ctl_root[] = {
5261 {
5262 .procname = "kernel",
5263 .mode = 0555,
5264 .child = sd_ctl_dir,
5265 },
5266 {}
5267 };
5268
5269 static struct ctl_table *sd_alloc_ctl_entry(int n)
5270 {
5271 struct ctl_table *entry =
5272 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5273
5274 return entry;
5275 }
5276
5277 static void sd_free_ctl_entry(struct ctl_table **tablep)
5278 {
5279 struct ctl_table *entry;
5280
5281 /*
5282 * In the intermediate directories, both the child directory and
5283 * procname are dynamically allocated and could fail but the mode
5284 * will always be set. In the lowest directory the names are
5285 * static strings and all have proc handlers.
5286 */
5287 for (entry = *tablep; entry->mode; entry++) {
5288 if (entry->child)
5289 sd_free_ctl_entry(&entry->child);
5290 if (entry->proc_handler == NULL)
5291 kfree(entry->procname);
5292 }
5293
5294 kfree(*tablep);
5295 *tablep = NULL;
5296 }
5297
5298 static void
5299 set_table_entry(struct ctl_table *entry,
5300 const char *procname, void *data, int maxlen,
5301 umode_t mode, proc_handler *proc_handler)
5302 {
5303 entry->procname = procname;
5304 entry->data = data;
5305 entry->maxlen = maxlen;
5306 entry->mode = mode;
5307 entry->proc_handler = proc_handler;
5308 }
5309
5310 static struct ctl_table *
5311 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5312 {
5313 struct ctl_table *table = sd_alloc_ctl_entry(13);
5314
5315 if (table == NULL)
5316 return NULL;
5317
5318 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5319 sizeof(long), 0644, proc_doulongvec_minmax);
5320 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5321 sizeof(long), 0644, proc_doulongvec_minmax);
5322 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5323 sizeof(int), 0644, proc_dointvec_minmax);
5324 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5325 sizeof(int), 0644, proc_dointvec_minmax);
5326 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5327 sizeof(int), 0644, proc_dointvec_minmax);
5328 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5329 sizeof(int), 0644, proc_dointvec_minmax);
5330 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5331 sizeof(int), 0644, proc_dointvec_minmax);
5332 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5333 sizeof(int), 0644, proc_dointvec_minmax);
5334 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5335 sizeof(int), 0644, proc_dointvec_minmax);
5336 set_table_entry(&table[9], "cache_nice_tries",
5337 &sd->cache_nice_tries,
5338 sizeof(int), 0644, proc_dointvec_minmax);
5339 set_table_entry(&table[10], "flags", &sd->flags,
5340 sizeof(int), 0644, proc_dointvec_minmax);
5341 set_table_entry(&table[11], "name", sd->name,
5342 CORENAME_MAX_SIZE, 0444, proc_dostring);
5343 /* &table[12] is terminator */
5344
5345 return table;
5346 }
5347
5348 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5349 {
5350 struct ctl_table *entry, *table;
5351 struct sched_domain *sd;
5352 int domain_num = 0, i;
5353 char buf[32];
5354
5355 for_each_domain(cpu, sd)
5356 domain_num++;
5357 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5358 if (table == NULL)
5359 return NULL;
5360
5361 i = 0;
5362 for_each_domain(cpu, sd) {
5363 snprintf(buf, 32, "domain%d", i);
5364 entry->procname = kstrdup(buf, GFP_KERNEL);
5365 entry->mode = 0555;
5366 entry->child = sd_alloc_ctl_domain_table(sd);
5367 entry++;
5368 i++;
5369 }
5370 return table;
5371 }
5372
5373 static struct ctl_table_header *sd_sysctl_header;
5374 static void register_sched_domain_sysctl(void)
5375 {
5376 int i, cpu_num = num_possible_cpus();
5377 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5378 char buf[32];
5379
5380 WARN_ON(sd_ctl_dir[0].child);
5381 sd_ctl_dir[0].child = entry;
5382
5383 if (entry == NULL)
5384 return;
5385
5386 for_each_possible_cpu(i) {
5387 snprintf(buf, 32, "cpu%d", i);
5388 entry->procname = kstrdup(buf, GFP_KERNEL);
5389 entry->mode = 0555;
5390 entry->child = sd_alloc_ctl_cpu_table(i);
5391 entry++;
5392 }
5393
5394 WARN_ON(sd_sysctl_header);
5395 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5396 }
5397
5398 /* may be called multiple times per register */
5399 static void unregister_sched_domain_sysctl(void)
5400 {
5401 if (sd_sysctl_header)
5402 unregister_sysctl_table(sd_sysctl_header);
5403 sd_sysctl_header = NULL;
5404 if (sd_ctl_dir[0].child)
5405 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5406 }
5407 #else
5408 static void register_sched_domain_sysctl(void)
5409 {
5410 }
5411 static void unregister_sched_domain_sysctl(void)
5412 {
5413 }
5414 #endif
5415
5416 static void set_rq_online(struct rq *rq)
5417 {
5418 if (!rq->online) {
5419 const struct sched_class *class;
5420
5421 cpumask_set_cpu(rq->cpu, rq->rd->online);
5422 rq->online = 1;
5423
5424 for_each_class(class) {
5425 if (class->rq_online)
5426 class->rq_online(rq);
5427 }
5428 }
5429 }
5430
5431 static void set_rq_offline(struct rq *rq)
5432 {
5433 if (rq->online) {
5434 const struct sched_class *class;
5435
5436 for_each_class(class) {
5437 if (class->rq_offline)
5438 class->rq_offline(rq);
5439 }
5440
5441 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5442 rq->online = 0;
5443 }
5444 }
5445
5446 /*
5447 * migration_call - callback that gets triggered when a CPU is added.
5448 * Here we can start up the necessary migration thread for the new CPU.
5449 */
5450 static int __cpuinit
5451 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5452 {
5453 int cpu = (long)hcpu;
5454 unsigned long flags;
5455 struct rq *rq = cpu_rq(cpu);
5456
5457 switch (action & ~CPU_TASKS_FROZEN) {
5458
5459 case CPU_UP_PREPARE:
5460 rq->calc_load_update = calc_load_update;
5461 break;
5462
5463 case CPU_ONLINE:
5464 /* Update our root-domain */
5465 raw_spin_lock_irqsave(&rq->lock, flags);
5466 if (rq->rd) {
5467 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5468
5469 set_rq_online(rq);
5470 }
5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
5472 break;
5473
5474 #ifdef CONFIG_HOTPLUG_CPU
5475 case CPU_DYING:
5476 sched_ttwu_pending();
5477 /* Update our root-domain */
5478 raw_spin_lock_irqsave(&rq->lock, flags);
5479 if (rq->rd) {
5480 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5481 set_rq_offline(rq);
5482 }
5483 migrate_tasks(cpu);
5484 BUG_ON(rq->nr_running != 1); /* the migration thread */
5485 raw_spin_unlock_irqrestore(&rq->lock, flags);
5486
5487 migrate_nr_uninterruptible(rq);
5488 calc_global_load_remove(rq);
5489 break;
5490 #endif
5491 }
5492
5493 update_max_interval();
5494
5495 return NOTIFY_OK;
5496 }
5497
5498 /*
5499 * Register at high priority so that task migration (migrate_all_tasks)
5500 * happens before everything else. This has to be lower priority than
5501 * the notifier in the perf_event subsystem, though.
5502 */
5503 static struct notifier_block __cpuinitdata migration_notifier = {
5504 .notifier_call = migration_call,
5505 .priority = CPU_PRI_MIGRATION,
5506 };
5507
5508 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5509 unsigned long action, void *hcpu)
5510 {
5511 switch (action & ~CPU_TASKS_FROZEN) {
5512 case CPU_STARTING:
5513 case CPU_DOWN_FAILED:
5514 set_cpu_active((long)hcpu, true);
5515 return NOTIFY_OK;
5516 default:
5517 return NOTIFY_DONE;
5518 }
5519 }
5520
5521 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5522 unsigned long action, void *hcpu)
5523 {
5524 switch (action & ~CPU_TASKS_FROZEN) {
5525 case CPU_DOWN_PREPARE:
5526 set_cpu_active((long)hcpu, false);
5527 return NOTIFY_OK;
5528 default:
5529 return NOTIFY_DONE;
5530 }
5531 }
5532
5533 static int __init migration_init(void)
5534 {
5535 void *cpu = (void *)(long)smp_processor_id();
5536 int err;
5537
5538 /* Initialize migration for the boot CPU */
5539 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5540 BUG_ON(err == NOTIFY_BAD);
5541 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5542 register_cpu_notifier(&migration_notifier);
5543
5544 /* Register cpu active notifiers */
5545 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5546 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5547
5548 return 0;
5549 }
5550 early_initcall(migration_init);
5551 #endif
5552
5553 #ifdef CONFIG_SMP
5554
5555 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5556
5557 #ifdef CONFIG_SCHED_DEBUG
5558
5559 static __read_mostly int sched_domain_debug_enabled;
5560
5561 static int __init sched_domain_debug_setup(char *str)
5562 {
5563 sched_domain_debug_enabled = 1;
5564
5565 return 0;
5566 }
5567 early_param("sched_debug", sched_domain_debug_setup);
5568
5569 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5570 struct cpumask *groupmask)
5571 {
5572 struct sched_group *group = sd->groups;
5573 char str[256];
5574
5575 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5576 cpumask_clear(groupmask);
5577
5578 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5579
5580 if (!(sd->flags & SD_LOAD_BALANCE)) {
5581 printk("does not load-balance\n");
5582 if (sd->parent)
5583 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5584 " has parent");
5585 return -1;
5586 }
5587
5588 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5589
5590 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5591 printk(KERN_ERR "ERROR: domain->span does not contain "
5592 "CPU%d\n", cpu);
5593 }
5594 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
5597 }
5598
5599 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5600 do {
5601 if (!group) {
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
5604 break;
5605 }
5606
5607 if (!group->sgp->power) {
5608 printk(KERN_CONT "\n");
5609 printk(KERN_ERR "ERROR: domain->cpu_power not "
5610 "set\n");
5611 break;
5612 }
5613
5614 if (!cpumask_weight(sched_group_cpus(group))) {
5615 printk(KERN_CONT "\n");
5616 printk(KERN_ERR "ERROR: empty group\n");
5617 break;
5618 }
5619
5620 if (!(sd->flags & SD_OVERLAP) &&
5621 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5622 printk(KERN_CONT "\n");
5623 printk(KERN_ERR "ERROR: repeated CPUs\n");
5624 break;
5625 }
5626
5627 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5628
5629 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5630
5631 printk(KERN_CONT " %s", str);
5632 if (group->sgp->power != SCHED_POWER_SCALE) {
5633 printk(KERN_CONT " (cpu_power = %d)",
5634 group->sgp->power);
5635 }
5636
5637 group = group->next;
5638 } while (group != sd->groups);
5639 printk(KERN_CONT "\n");
5640
5641 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5642 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5643
5644 if (sd->parent &&
5645 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5646 printk(KERN_ERR "ERROR: parent span is not a superset "
5647 "of domain->span\n");
5648 return 0;
5649 }
5650
5651 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5652 {
5653 int level = 0;
5654
5655 if (!sched_domain_debug_enabled)
5656 return;
5657
5658 if (!sd) {
5659 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5660 return;
5661 }
5662
5663 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5664
5665 for (;;) {
5666 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5667 break;
5668 level++;
5669 sd = sd->parent;
5670 if (!sd)
5671 break;
5672 }
5673 }
5674 #else /* !CONFIG_SCHED_DEBUG */
5675 # define sched_domain_debug(sd, cpu) do { } while (0)
5676 #endif /* CONFIG_SCHED_DEBUG */
5677
5678 static int sd_degenerate(struct sched_domain *sd)
5679 {
5680 if (cpumask_weight(sched_domain_span(sd)) == 1)
5681 return 1;
5682
5683 /* Following flags need at least 2 groups */
5684 if (sd->flags & (SD_LOAD_BALANCE |
5685 SD_BALANCE_NEWIDLE |
5686 SD_BALANCE_FORK |
5687 SD_BALANCE_EXEC |
5688 SD_SHARE_CPUPOWER |
5689 SD_SHARE_PKG_RESOURCES)) {
5690 if (sd->groups != sd->groups->next)
5691 return 0;
5692 }
5693
5694 /* Following flags don't use groups */
5695 if (sd->flags & (SD_WAKE_AFFINE))
5696 return 0;
5697
5698 return 1;
5699 }
5700
5701 static int
5702 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5703 {
5704 unsigned long cflags = sd->flags, pflags = parent->flags;
5705
5706 if (sd_degenerate(parent))
5707 return 1;
5708
5709 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5710 return 0;
5711
5712 /* Flags needing groups don't count if only 1 group in parent */
5713 if (parent->groups == parent->groups->next) {
5714 pflags &= ~(SD_LOAD_BALANCE |
5715 SD_BALANCE_NEWIDLE |
5716 SD_BALANCE_FORK |
5717 SD_BALANCE_EXEC |
5718 SD_SHARE_CPUPOWER |
5719 SD_SHARE_PKG_RESOURCES);
5720 if (nr_node_ids == 1)
5721 pflags &= ~SD_SERIALIZE;
5722 }
5723 if (~cflags & pflags)
5724 return 0;
5725
5726 return 1;
5727 }
5728
5729 static void free_rootdomain(struct rcu_head *rcu)
5730 {
5731 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732
5733 cpupri_cleanup(&rd->cpupri);
5734 free_cpumask_var(rd->rto_mask);
5735 free_cpumask_var(rd->online);
5736 free_cpumask_var(rd->span);
5737 kfree(rd);
5738 }
5739
5740 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5741 {
5742 struct root_domain *old_rd = NULL;
5743 unsigned long flags;
5744
5745 raw_spin_lock_irqsave(&rq->lock, flags);
5746
5747 if (rq->rd) {
5748 old_rd = rq->rd;
5749
5750 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5751 set_rq_offline(rq);
5752
5753 cpumask_clear_cpu(rq->cpu, old_rd->span);
5754
5755 /*
5756 * If we dont want to free the old_rt yet then
5757 * set old_rd to NULL to skip the freeing later
5758 * in this function:
5759 */
5760 if (!atomic_dec_and_test(&old_rd->refcount))
5761 old_rd = NULL;
5762 }
5763
5764 atomic_inc(&rd->refcount);
5765 rq->rd = rd;
5766
5767 cpumask_set_cpu(rq->cpu, rd->span);
5768 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5769 set_rq_online(rq);
5770
5771 raw_spin_unlock_irqrestore(&rq->lock, flags);
5772
5773 if (old_rd)
5774 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5775 }
5776
5777 static int init_rootdomain(struct root_domain *rd)
5778 {
5779 memset(rd, 0, sizeof(*rd));
5780
5781 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5782 goto out;
5783 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5784 goto free_span;
5785 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5786 goto free_online;
5787
5788 if (cpupri_init(&rd->cpupri) != 0)
5789 goto free_rto_mask;
5790 return 0;
5791
5792 free_rto_mask:
5793 free_cpumask_var(rd->rto_mask);
5794 free_online:
5795 free_cpumask_var(rd->online);
5796 free_span:
5797 free_cpumask_var(rd->span);
5798 out:
5799 return -ENOMEM;
5800 }
5801
5802 /*
5803 * By default the system creates a single root-domain with all cpus as
5804 * members (mimicking the global state we have today).
5805 */
5806 struct root_domain def_root_domain;
5807
5808 static void init_defrootdomain(void)
5809 {
5810 init_rootdomain(&def_root_domain);
5811
5812 atomic_set(&def_root_domain.refcount, 1);
5813 }
5814
5815 static struct root_domain *alloc_rootdomain(void)
5816 {
5817 struct root_domain *rd;
5818
5819 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5820 if (!rd)
5821 return NULL;
5822
5823 if (init_rootdomain(rd) != 0) {
5824 kfree(rd);
5825 return NULL;
5826 }
5827
5828 return rd;
5829 }
5830
5831 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5832 {
5833 struct sched_group *tmp, *first;
5834
5835 if (!sg)
5836 return;
5837
5838 first = sg;
5839 do {
5840 tmp = sg->next;
5841
5842 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5843 kfree(sg->sgp);
5844
5845 kfree(sg);
5846 sg = tmp;
5847 } while (sg != first);
5848 }
5849
5850 static void free_sched_domain(struct rcu_head *rcu)
5851 {
5852 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5853
5854 /*
5855 * If its an overlapping domain it has private groups, iterate and
5856 * nuke them all.
5857 */
5858 if (sd->flags & SD_OVERLAP) {
5859 free_sched_groups(sd->groups, 1);
5860 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5861 kfree(sd->groups->sgp);
5862 kfree(sd->groups);
5863 }
5864 kfree(sd);
5865 }
5866
5867 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5868 {
5869 call_rcu(&sd->rcu, free_sched_domain);
5870 }
5871
5872 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5873 {
5874 for (; sd; sd = sd->parent)
5875 destroy_sched_domain(sd, cpu);
5876 }
5877
5878 /*
5879 * Keep a special pointer to the highest sched_domain that has
5880 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5881 * allows us to avoid some pointer chasing select_idle_sibling().
5882 *
5883 * Also keep a unique ID per domain (we use the first cpu number in
5884 * the cpumask of the domain), this allows us to quickly tell if
5885 * two cpus are in the same cache domain, see cpus_share_cache().
5886 */
5887 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5888 DEFINE_PER_CPU(int, sd_llc_id);
5889
5890 static void update_top_cache_domain(int cpu)
5891 {
5892 struct sched_domain *sd;
5893 int id = cpu;
5894
5895 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5896 if (sd)
5897 id = cpumask_first(sched_domain_span(sd));
5898
5899 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5900 per_cpu(sd_llc_id, cpu) = id;
5901 }
5902
5903 /*
5904 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5905 * hold the hotplug lock.
5906 */
5907 static void
5908 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5909 {
5910 struct rq *rq = cpu_rq(cpu);
5911 struct sched_domain *tmp;
5912
5913 /* Remove the sched domains which do not contribute to scheduling. */
5914 for (tmp = sd; tmp; ) {
5915 struct sched_domain *parent = tmp->parent;
5916 if (!parent)
5917 break;
5918
5919 if (sd_parent_degenerate(tmp, parent)) {
5920 tmp->parent = parent->parent;
5921 if (parent->parent)
5922 parent->parent->child = tmp;
5923 destroy_sched_domain(parent, cpu);
5924 } else
5925 tmp = tmp->parent;
5926 }
5927
5928 if (sd && sd_degenerate(sd)) {
5929 tmp = sd;
5930 sd = sd->parent;
5931 destroy_sched_domain(tmp, cpu);
5932 if (sd)
5933 sd->child = NULL;
5934 }
5935
5936 sched_domain_debug(sd, cpu);
5937
5938 rq_attach_root(rq, rd);
5939 tmp = rq->sd;
5940 rcu_assign_pointer(rq->sd, sd);
5941 destroy_sched_domains(tmp, cpu);
5942
5943 update_top_cache_domain(cpu);
5944 }
5945
5946 /* cpus with isolated domains */
5947 static cpumask_var_t cpu_isolated_map;
5948
5949 /* Setup the mask of cpus configured for isolated domains */
5950 static int __init isolated_cpu_setup(char *str)
5951 {
5952 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5953 cpulist_parse(str, cpu_isolated_map);
5954 return 1;
5955 }
5956
5957 __setup("isolcpus=", isolated_cpu_setup);
5958
5959 static const struct cpumask *cpu_cpu_mask(int cpu)
5960 {
5961 return cpumask_of_node(cpu_to_node(cpu));
5962 }
5963
5964 struct sd_data {
5965 struct sched_domain **__percpu sd;
5966 struct sched_group **__percpu sg;
5967 struct sched_group_power **__percpu sgp;
5968 };
5969
5970 struct s_data {
5971 struct sched_domain ** __percpu sd;
5972 struct root_domain *rd;
5973 };
5974
5975 enum s_alloc {
5976 sa_rootdomain,
5977 sa_sd,
5978 sa_sd_storage,
5979 sa_none,
5980 };
5981
5982 struct sched_domain_topology_level;
5983
5984 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5985 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5986
5987 #define SDTL_OVERLAP 0x01
5988
5989 struct sched_domain_topology_level {
5990 sched_domain_init_f init;
5991 sched_domain_mask_f mask;
5992 int flags;
5993 int numa_level;
5994 struct sd_data data;
5995 };
5996
5997 /*
5998 * Build an iteration mask that can exclude certain CPUs from the upwards
5999 * domain traversal.
6000 *
6001 * Asymmetric node setups can result in situations where the domain tree is of
6002 * unequal depth, make sure to skip domains that already cover the entire
6003 * range.
6004 *
6005 * In that case build_sched_domains() will have terminated the iteration early
6006 * and our sibling sd spans will be empty. Domains should always include the
6007 * cpu they're built on, so check that.
6008 *
6009 */
6010 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6011 {
6012 const struct cpumask *span = sched_domain_span(sd);
6013 struct sd_data *sdd = sd->private;
6014 struct sched_domain *sibling;
6015 int i;
6016
6017 for_each_cpu(i, span) {
6018 sibling = *per_cpu_ptr(sdd->sd, i);
6019 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6020 continue;
6021
6022 cpumask_set_cpu(i, sched_group_mask(sg));
6023 }
6024 }
6025
6026 /*
6027 * Return the canonical balance cpu for this group, this is the first cpu
6028 * of this group that's also in the iteration mask.
6029 */
6030 int group_balance_cpu(struct sched_group *sg)
6031 {
6032 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6033 }
6034
6035 static int
6036 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6037 {
6038 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6039 const struct cpumask *span = sched_domain_span(sd);
6040 struct cpumask *covered = sched_domains_tmpmask;
6041 struct sd_data *sdd = sd->private;
6042 struct sched_domain *child;
6043 int i;
6044
6045 cpumask_clear(covered);
6046
6047 for_each_cpu(i, span) {
6048 struct cpumask *sg_span;
6049
6050 if (cpumask_test_cpu(i, covered))
6051 continue;
6052
6053 child = *per_cpu_ptr(sdd->sd, i);
6054
6055 /* See the comment near build_group_mask(). */
6056 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6057 continue;
6058
6059 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6060 GFP_KERNEL, cpu_to_node(cpu));
6061
6062 if (!sg)
6063 goto fail;
6064
6065 sg_span = sched_group_cpus(sg);
6066 if (child->child) {
6067 child = child->child;
6068 cpumask_copy(sg_span, sched_domain_span(child));
6069 } else
6070 cpumask_set_cpu(i, sg_span);
6071
6072 cpumask_or(covered, covered, sg_span);
6073
6074 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6075 if (atomic_inc_return(&sg->sgp->ref) == 1)
6076 build_group_mask(sd, sg);
6077
6078
6079 /*
6080 * Make sure the first group of this domain contains the
6081 * canonical balance cpu. Otherwise the sched_domain iteration
6082 * breaks. See update_sg_lb_stats().
6083 */
6084 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6085 group_balance_cpu(sg) == cpu)
6086 groups = sg;
6087
6088 if (!first)
6089 first = sg;
6090 if (last)
6091 last->next = sg;
6092 last = sg;
6093 last->next = first;
6094 }
6095 sd->groups = groups;
6096
6097 return 0;
6098
6099 fail:
6100 free_sched_groups(first, 0);
6101
6102 return -ENOMEM;
6103 }
6104
6105 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6106 {
6107 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6108 struct sched_domain *child = sd->child;
6109
6110 if (child)
6111 cpu = cpumask_first(sched_domain_span(child));
6112
6113 if (sg) {
6114 *sg = *per_cpu_ptr(sdd->sg, cpu);
6115 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6116 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6117 }
6118
6119 return cpu;
6120 }
6121
6122 /*
6123 * build_sched_groups will build a circular linked list of the groups
6124 * covered by the given span, and will set each group's ->cpumask correctly,
6125 * and ->cpu_power to 0.
6126 *
6127 * Assumes the sched_domain tree is fully constructed
6128 */
6129 static int
6130 build_sched_groups(struct sched_domain *sd, int cpu)
6131 {
6132 struct sched_group *first = NULL, *last = NULL;
6133 struct sd_data *sdd = sd->private;
6134 const struct cpumask *span = sched_domain_span(sd);
6135 struct cpumask *covered;
6136 int i;
6137
6138 get_group(cpu, sdd, &sd->groups);
6139 atomic_inc(&sd->groups->ref);
6140
6141 if (cpu != cpumask_first(sched_domain_span(sd)))
6142 return 0;
6143
6144 lockdep_assert_held(&sched_domains_mutex);
6145 covered = sched_domains_tmpmask;
6146
6147 cpumask_clear(covered);
6148
6149 for_each_cpu(i, span) {
6150 struct sched_group *sg;
6151 int group = get_group(i, sdd, &sg);
6152 int j;
6153
6154 if (cpumask_test_cpu(i, covered))
6155 continue;
6156
6157 cpumask_clear(sched_group_cpus(sg));
6158 sg->sgp->power = 0;
6159 cpumask_setall(sched_group_mask(sg));
6160
6161 for_each_cpu(j, span) {
6162 if (get_group(j, sdd, NULL) != group)
6163 continue;
6164
6165 cpumask_set_cpu(j, covered);
6166 cpumask_set_cpu(j, sched_group_cpus(sg));
6167 }
6168
6169 if (!first)
6170 first = sg;
6171 if (last)
6172 last->next = sg;
6173 last = sg;
6174 }
6175 last->next = first;
6176
6177 return 0;
6178 }
6179
6180 /*
6181 * Initialize sched groups cpu_power.
6182 *
6183 * cpu_power indicates the capacity of sched group, which is used while
6184 * distributing the load between different sched groups in a sched domain.
6185 * Typically cpu_power for all the groups in a sched domain will be same unless
6186 * there are asymmetries in the topology. If there are asymmetries, group
6187 * having more cpu_power will pickup more load compared to the group having
6188 * less cpu_power.
6189 */
6190 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6191 {
6192 struct sched_group *sg = sd->groups;
6193
6194 WARN_ON(!sd || !sg);
6195
6196 do {
6197 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6198 sg = sg->next;
6199 } while (sg != sd->groups);
6200
6201 if (cpu != group_balance_cpu(sg))
6202 return;
6203
6204 update_group_power(sd, cpu);
6205 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6206 }
6207
6208 int __weak arch_sd_sibling_asym_packing(void)
6209 {
6210 return 0*SD_ASYM_PACKING;
6211 }
6212
6213 /*
6214 * Initializers for schedule domains
6215 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6216 */
6217
6218 #ifdef CONFIG_SCHED_DEBUG
6219 # define SD_INIT_NAME(sd, type) sd->name = #type
6220 #else
6221 # define SD_INIT_NAME(sd, type) do { } while (0)
6222 #endif
6223
6224 #define SD_INIT_FUNC(type) \
6225 static noinline struct sched_domain * \
6226 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6227 { \
6228 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6229 *sd = SD_##type##_INIT; \
6230 SD_INIT_NAME(sd, type); \
6231 sd->private = &tl->data; \
6232 return sd; \
6233 }
6234
6235 SD_INIT_FUNC(CPU)
6236 #ifdef CONFIG_SCHED_SMT
6237 SD_INIT_FUNC(SIBLING)
6238 #endif
6239 #ifdef CONFIG_SCHED_MC
6240 SD_INIT_FUNC(MC)
6241 #endif
6242 #ifdef CONFIG_SCHED_BOOK
6243 SD_INIT_FUNC(BOOK)
6244 #endif
6245
6246 static int default_relax_domain_level = -1;
6247 int sched_domain_level_max;
6248
6249 static int __init setup_relax_domain_level(char *str)
6250 {
6251 unsigned long val;
6252
6253 val = simple_strtoul(str, NULL, 0);
6254 if (val < sched_domain_level_max)
6255 default_relax_domain_level = val;
6256
6257 return 1;
6258 }
6259 __setup("relax_domain_level=", setup_relax_domain_level);
6260
6261 static void set_domain_attribute(struct sched_domain *sd,
6262 struct sched_domain_attr *attr)
6263 {
6264 int request;
6265
6266 if (!attr || attr->relax_domain_level < 0) {
6267 if (default_relax_domain_level < 0)
6268 return;
6269 else
6270 request = default_relax_domain_level;
6271 } else
6272 request = attr->relax_domain_level;
6273 if (request < sd->level) {
6274 /* turn off idle balance on this domain */
6275 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6276 } else {
6277 /* turn on idle balance on this domain */
6278 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6279 }
6280 }
6281
6282 static void __sdt_free(const struct cpumask *cpu_map);
6283 static int __sdt_alloc(const struct cpumask *cpu_map);
6284
6285 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6286 const struct cpumask *cpu_map)
6287 {
6288 switch (what) {
6289 case sa_rootdomain:
6290 if (!atomic_read(&d->rd->refcount))
6291 free_rootdomain(&d->rd->rcu); /* fall through */
6292 case sa_sd:
6293 free_percpu(d->sd); /* fall through */
6294 case sa_sd_storage:
6295 __sdt_free(cpu_map); /* fall through */
6296 case sa_none:
6297 break;
6298 }
6299 }
6300
6301 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6302 const struct cpumask *cpu_map)
6303 {
6304 memset(d, 0, sizeof(*d));
6305
6306 if (__sdt_alloc(cpu_map))
6307 return sa_sd_storage;
6308 d->sd = alloc_percpu(struct sched_domain *);
6309 if (!d->sd)
6310 return sa_sd_storage;
6311 d->rd = alloc_rootdomain();
6312 if (!d->rd)
6313 return sa_sd;
6314 return sa_rootdomain;
6315 }
6316
6317 /*
6318 * NULL the sd_data elements we've used to build the sched_domain and
6319 * sched_group structure so that the subsequent __free_domain_allocs()
6320 * will not free the data we're using.
6321 */
6322 static void claim_allocations(int cpu, struct sched_domain *sd)
6323 {
6324 struct sd_data *sdd = sd->private;
6325
6326 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6327 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6328
6329 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6330 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6331
6332 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6333 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6334 }
6335
6336 #ifdef CONFIG_SCHED_SMT
6337 static const struct cpumask *cpu_smt_mask(int cpu)
6338 {
6339 return topology_thread_cpumask(cpu);
6340 }
6341 #endif
6342
6343 /*
6344 * Topology list, bottom-up.
6345 */
6346 static struct sched_domain_topology_level default_topology[] = {
6347 #ifdef CONFIG_SCHED_SMT
6348 { sd_init_SIBLING, cpu_smt_mask, },
6349 #endif
6350 #ifdef CONFIG_SCHED_MC
6351 { sd_init_MC, cpu_coregroup_mask, },
6352 #endif
6353 #ifdef CONFIG_SCHED_BOOK
6354 { sd_init_BOOK, cpu_book_mask, },
6355 #endif
6356 { sd_init_CPU, cpu_cpu_mask, },
6357 { NULL, },
6358 };
6359
6360 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6361
6362 #ifdef CONFIG_NUMA
6363
6364 static int sched_domains_numa_levels;
6365 static int sched_domains_numa_scale;
6366 static int *sched_domains_numa_distance;
6367 static struct cpumask ***sched_domains_numa_masks;
6368 static int sched_domains_curr_level;
6369
6370 static inline int sd_local_flags(int level)
6371 {
6372 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6373 return 0;
6374
6375 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6376 }
6377
6378 static struct sched_domain *
6379 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6380 {
6381 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6382 int level = tl->numa_level;
6383 int sd_weight = cpumask_weight(
6384 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6385
6386 *sd = (struct sched_domain){
6387 .min_interval = sd_weight,
6388 .max_interval = 2*sd_weight,
6389 .busy_factor = 32,
6390 .imbalance_pct = 125,
6391 .cache_nice_tries = 2,
6392 .busy_idx = 3,
6393 .idle_idx = 2,
6394 .newidle_idx = 0,
6395 .wake_idx = 0,
6396 .forkexec_idx = 0,
6397
6398 .flags = 1*SD_LOAD_BALANCE
6399 | 1*SD_BALANCE_NEWIDLE
6400 | 0*SD_BALANCE_EXEC
6401 | 0*SD_BALANCE_FORK
6402 | 0*SD_BALANCE_WAKE
6403 | 0*SD_WAKE_AFFINE
6404 | 0*SD_PREFER_LOCAL
6405 | 0*SD_SHARE_CPUPOWER
6406 | 0*SD_SHARE_PKG_RESOURCES
6407 | 1*SD_SERIALIZE
6408 | 0*SD_PREFER_SIBLING
6409 | sd_local_flags(level)
6410 ,
6411 .last_balance = jiffies,
6412 .balance_interval = sd_weight,
6413 };
6414 SD_INIT_NAME(sd, NUMA);
6415 sd->private = &tl->data;
6416
6417 /*
6418 * Ugly hack to pass state to sd_numa_mask()...
6419 */
6420 sched_domains_curr_level = tl->numa_level;
6421
6422 return sd;
6423 }
6424
6425 static const struct cpumask *sd_numa_mask(int cpu)
6426 {
6427 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6428 }
6429
6430 static void sched_init_numa(void)
6431 {
6432 int next_distance, curr_distance = node_distance(0, 0);
6433 struct sched_domain_topology_level *tl;
6434 int level = 0;
6435 int i, j, k;
6436
6437 sched_domains_numa_scale = curr_distance;
6438 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6439 if (!sched_domains_numa_distance)
6440 return;
6441
6442 /*
6443 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6444 * unique distances in the node_distance() table.
6445 *
6446 * Assumes node_distance(0,j) includes all distances in
6447 * node_distance(i,j) in order to avoid cubic time.
6448 *
6449 * XXX: could be optimized to O(n log n) by using sort()
6450 */
6451 next_distance = curr_distance;
6452 for (i = 0; i < nr_node_ids; i++) {
6453 for (j = 0; j < nr_node_ids; j++) {
6454 int distance = node_distance(0, j);
6455 if (distance > curr_distance &&
6456 (distance < next_distance ||
6457 next_distance == curr_distance))
6458 next_distance = distance;
6459 }
6460 if (next_distance != curr_distance) {
6461 sched_domains_numa_distance[level++] = next_distance;
6462 sched_domains_numa_levels = level;
6463 curr_distance = next_distance;
6464 } else break;
6465 }
6466 /*
6467 * 'level' contains the number of unique distances, excluding the
6468 * identity distance node_distance(i,i).
6469 *
6470 * The sched_domains_nume_distance[] array includes the actual distance
6471 * numbers.
6472 */
6473
6474 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6475 if (!sched_domains_numa_masks)
6476 return;
6477
6478 /*
6479 * Now for each level, construct a mask per node which contains all
6480 * cpus of nodes that are that many hops away from us.
6481 */
6482 for (i = 0; i < level; i++) {
6483 sched_domains_numa_masks[i] =
6484 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6485 if (!sched_domains_numa_masks[i])
6486 return;
6487
6488 for (j = 0; j < nr_node_ids; j++) {
6489 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6490 if (!mask)
6491 return;
6492
6493 sched_domains_numa_masks[i][j] = mask;
6494
6495 for (k = 0; k < nr_node_ids; k++) {
6496 if (node_distance(j, k) > sched_domains_numa_distance[i])
6497 continue;
6498
6499 cpumask_or(mask, mask, cpumask_of_node(k));
6500 }
6501 }
6502 }
6503
6504 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6505 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6506 if (!tl)
6507 return;
6508
6509 /*
6510 * Copy the default topology bits..
6511 */
6512 for (i = 0; default_topology[i].init; i++)
6513 tl[i] = default_topology[i];
6514
6515 /*
6516 * .. and append 'j' levels of NUMA goodness.
6517 */
6518 for (j = 0; j < level; i++, j++) {
6519 tl[i] = (struct sched_domain_topology_level){
6520 .init = sd_numa_init,
6521 .mask = sd_numa_mask,
6522 .flags = SDTL_OVERLAP,
6523 .numa_level = j,
6524 };
6525 }
6526
6527 sched_domain_topology = tl;
6528 }
6529 #else
6530 static inline void sched_init_numa(void)
6531 {
6532 }
6533 #endif /* CONFIG_NUMA */
6534
6535 static int __sdt_alloc(const struct cpumask *cpu_map)
6536 {
6537 struct sched_domain_topology_level *tl;
6538 int j;
6539
6540 for (tl = sched_domain_topology; tl->init; tl++) {
6541 struct sd_data *sdd = &tl->data;
6542
6543 sdd->sd = alloc_percpu(struct sched_domain *);
6544 if (!sdd->sd)
6545 return -ENOMEM;
6546
6547 sdd->sg = alloc_percpu(struct sched_group *);
6548 if (!sdd->sg)
6549 return -ENOMEM;
6550
6551 sdd->sgp = alloc_percpu(struct sched_group_power *);
6552 if (!sdd->sgp)
6553 return -ENOMEM;
6554
6555 for_each_cpu(j, cpu_map) {
6556 struct sched_domain *sd;
6557 struct sched_group *sg;
6558 struct sched_group_power *sgp;
6559
6560 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6561 GFP_KERNEL, cpu_to_node(j));
6562 if (!sd)
6563 return -ENOMEM;
6564
6565 *per_cpu_ptr(sdd->sd, j) = sd;
6566
6567 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6568 GFP_KERNEL, cpu_to_node(j));
6569 if (!sg)
6570 return -ENOMEM;
6571
6572 sg->next = sg;
6573
6574 *per_cpu_ptr(sdd->sg, j) = sg;
6575
6576 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6577 GFP_KERNEL, cpu_to_node(j));
6578 if (!sgp)
6579 return -ENOMEM;
6580
6581 *per_cpu_ptr(sdd->sgp, j) = sgp;
6582 }
6583 }
6584
6585 return 0;
6586 }
6587
6588 static void __sdt_free(const struct cpumask *cpu_map)
6589 {
6590 struct sched_domain_topology_level *tl;
6591 int j;
6592
6593 for (tl = sched_domain_topology; tl->init; tl++) {
6594 struct sd_data *sdd = &tl->data;
6595
6596 for_each_cpu(j, cpu_map) {
6597 struct sched_domain *sd;
6598
6599 if (sdd->sd) {
6600 sd = *per_cpu_ptr(sdd->sd, j);
6601 if (sd && (sd->flags & SD_OVERLAP))
6602 free_sched_groups(sd->groups, 0);
6603 kfree(*per_cpu_ptr(sdd->sd, j));
6604 }
6605
6606 if (sdd->sg)
6607 kfree(*per_cpu_ptr(sdd->sg, j));
6608 if (sdd->sgp)
6609 kfree(*per_cpu_ptr(sdd->sgp, j));
6610 }
6611 free_percpu(sdd->sd);
6612 sdd->sd = NULL;
6613 free_percpu(sdd->sg);
6614 sdd->sg = NULL;
6615 free_percpu(sdd->sgp);
6616 sdd->sgp = NULL;
6617 }
6618 }
6619
6620 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6621 struct s_data *d, const struct cpumask *cpu_map,
6622 struct sched_domain_attr *attr, struct sched_domain *child,
6623 int cpu)
6624 {
6625 struct sched_domain *sd = tl->init(tl, cpu);
6626 if (!sd)
6627 return child;
6628
6629 set_domain_attribute(sd, attr);
6630 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6631 if (child) {
6632 sd->level = child->level + 1;
6633 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6634 child->parent = sd;
6635 }
6636 sd->child = child;
6637
6638 return sd;
6639 }
6640
6641 /*
6642 * Build sched domains for a given set of cpus and attach the sched domains
6643 * to the individual cpus
6644 */
6645 static int build_sched_domains(const struct cpumask *cpu_map,
6646 struct sched_domain_attr *attr)
6647 {
6648 enum s_alloc alloc_state = sa_none;
6649 struct sched_domain *sd;
6650 struct s_data d;
6651 int i, ret = -ENOMEM;
6652
6653 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6654 if (alloc_state != sa_rootdomain)
6655 goto error;
6656
6657 /* Set up domains for cpus specified by the cpu_map. */
6658 for_each_cpu(i, cpu_map) {
6659 struct sched_domain_topology_level *tl;
6660
6661 sd = NULL;
6662 for (tl = sched_domain_topology; tl->init; tl++) {
6663 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6664 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6665 sd->flags |= SD_OVERLAP;
6666 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6667 break;
6668 }
6669
6670 while (sd->child)
6671 sd = sd->child;
6672
6673 *per_cpu_ptr(d.sd, i) = sd;
6674 }
6675
6676 /* Build the groups for the domains */
6677 for_each_cpu(i, cpu_map) {
6678 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6679 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6680 if (sd->flags & SD_OVERLAP) {
6681 if (build_overlap_sched_groups(sd, i))
6682 goto error;
6683 } else {
6684 if (build_sched_groups(sd, i))
6685 goto error;
6686 }
6687 }
6688 }
6689
6690 /* Calculate CPU power for physical packages and nodes */
6691 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6692 if (!cpumask_test_cpu(i, cpu_map))
6693 continue;
6694
6695 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6696 claim_allocations(i, sd);
6697 init_sched_groups_power(i, sd);
6698 }
6699 }
6700
6701 /* Attach the domains */
6702 rcu_read_lock();
6703 for_each_cpu(i, cpu_map) {
6704 sd = *per_cpu_ptr(d.sd, i);
6705 cpu_attach_domain(sd, d.rd, i);
6706 }
6707 rcu_read_unlock();
6708
6709 ret = 0;
6710 error:
6711 __free_domain_allocs(&d, alloc_state, cpu_map);
6712 return ret;
6713 }
6714
6715 static cpumask_var_t *doms_cur; /* current sched domains */
6716 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6717 static struct sched_domain_attr *dattr_cur;
6718 /* attribues of custom domains in 'doms_cur' */
6719
6720 /*
6721 * Special case: If a kmalloc of a doms_cur partition (array of
6722 * cpumask) fails, then fallback to a single sched domain,
6723 * as determined by the single cpumask fallback_doms.
6724 */
6725 static cpumask_var_t fallback_doms;
6726
6727 /*
6728 * arch_update_cpu_topology lets virtualized architectures update the
6729 * cpu core maps. It is supposed to return 1 if the topology changed
6730 * or 0 if it stayed the same.
6731 */
6732 int __attribute__((weak)) arch_update_cpu_topology(void)
6733 {
6734 return 0;
6735 }
6736
6737 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6738 {
6739 int i;
6740 cpumask_var_t *doms;
6741
6742 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6743 if (!doms)
6744 return NULL;
6745 for (i = 0; i < ndoms; i++) {
6746 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6747 free_sched_domains(doms, i);
6748 return NULL;
6749 }
6750 }
6751 return doms;
6752 }
6753
6754 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6755 {
6756 unsigned int i;
6757 for (i = 0; i < ndoms; i++)
6758 free_cpumask_var(doms[i]);
6759 kfree(doms);
6760 }
6761
6762 /*
6763 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6764 * For now this just excludes isolated cpus, but could be used to
6765 * exclude other special cases in the future.
6766 */
6767 static int init_sched_domains(const struct cpumask *cpu_map)
6768 {
6769 int err;
6770
6771 arch_update_cpu_topology();
6772 ndoms_cur = 1;
6773 doms_cur = alloc_sched_domains(ndoms_cur);
6774 if (!doms_cur)
6775 doms_cur = &fallback_doms;
6776 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6777 err = build_sched_domains(doms_cur[0], NULL);
6778 register_sched_domain_sysctl();
6779
6780 return err;
6781 }
6782
6783 /*
6784 * Detach sched domains from a group of cpus specified in cpu_map
6785 * These cpus will now be attached to the NULL domain
6786 */
6787 static void detach_destroy_domains(const struct cpumask *cpu_map)
6788 {
6789 int i;
6790
6791 rcu_read_lock();
6792 for_each_cpu(i, cpu_map)
6793 cpu_attach_domain(NULL, &def_root_domain, i);
6794 rcu_read_unlock();
6795 }
6796
6797 /* handle null as "default" */
6798 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6799 struct sched_domain_attr *new, int idx_new)
6800 {
6801 struct sched_domain_attr tmp;
6802
6803 /* fast path */
6804 if (!new && !cur)
6805 return 1;
6806
6807 tmp = SD_ATTR_INIT;
6808 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6809 new ? (new + idx_new) : &tmp,
6810 sizeof(struct sched_domain_attr));
6811 }
6812
6813 /*
6814 * Partition sched domains as specified by the 'ndoms_new'
6815 * cpumasks in the array doms_new[] of cpumasks. This compares
6816 * doms_new[] to the current sched domain partitioning, doms_cur[].
6817 * It destroys each deleted domain and builds each new domain.
6818 *
6819 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6820 * The masks don't intersect (don't overlap.) We should setup one
6821 * sched domain for each mask. CPUs not in any of the cpumasks will
6822 * not be load balanced. If the same cpumask appears both in the
6823 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6824 * it as it is.
6825 *
6826 * The passed in 'doms_new' should be allocated using
6827 * alloc_sched_domains. This routine takes ownership of it and will
6828 * free_sched_domains it when done with it. If the caller failed the
6829 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6830 * and partition_sched_domains() will fallback to the single partition
6831 * 'fallback_doms', it also forces the domains to be rebuilt.
6832 *
6833 * If doms_new == NULL it will be replaced with cpu_online_mask.
6834 * ndoms_new == 0 is a special case for destroying existing domains,
6835 * and it will not create the default domain.
6836 *
6837 * Call with hotplug lock held
6838 */
6839 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6840 struct sched_domain_attr *dattr_new)
6841 {
6842 int i, j, n;
6843 int new_topology;
6844
6845 mutex_lock(&sched_domains_mutex);
6846
6847 /* always unregister in case we don't destroy any domains */
6848 unregister_sched_domain_sysctl();
6849
6850 /* Let architecture update cpu core mappings. */
6851 new_topology = arch_update_cpu_topology();
6852
6853 n = doms_new ? ndoms_new : 0;
6854
6855 /* Destroy deleted domains */
6856 for (i = 0; i < ndoms_cur; i++) {
6857 for (j = 0; j < n && !new_topology; j++) {
6858 if (cpumask_equal(doms_cur[i], doms_new[j])
6859 && dattrs_equal(dattr_cur, i, dattr_new, j))
6860 goto match1;
6861 }
6862 /* no match - a current sched domain not in new doms_new[] */
6863 detach_destroy_domains(doms_cur[i]);
6864 match1:
6865 ;
6866 }
6867
6868 if (doms_new == NULL) {
6869 ndoms_cur = 0;
6870 doms_new = &fallback_doms;
6871 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6872 WARN_ON_ONCE(dattr_new);
6873 }
6874
6875 /* Build new domains */
6876 for (i = 0; i < ndoms_new; i++) {
6877 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6878 if (cpumask_equal(doms_new[i], doms_cur[j])
6879 && dattrs_equal(dattr_new, i, dattr_cur, j))
6880 goto match2;
6881 }
6882 /* no match - add a new doms_new */
6883 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6884 match2:
6885 ;
6886 }
6887
6888 /* Remember the new sched domains */
6889 if (doms_cur != &fallback_doms)
6890 free_sched_domains(doms_cur, ndoms_cur);
6891 kfree(dattr_cur); /* kfree(NULL) is safe */
6892 doms_cur = doms_new;
6893 dattr_cur = dattr_new;
6894 ndoms_cur = ndoms_new;
6895
6896 register_sched_domain_sysctl();
6897
6898 mutex_unlock(&sched_domains_mutex);
6899 }
6900
6901 /*
6902 * Update cpusets according to cpu_active mask. If cpusets are
6903 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6904 * around partition_sched_domains().
6905 */
6906 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6907 void *hcpu)
6908 {
6909 switch (action & ~CPU_TASKS_FROZEN) {
6910 case CPU_ONLINE:
6911 case CPU_DOWN_FAILED:
6912 cpuset_update_active_cpus();
6913 return NOTIFY_OK;
6914 default:
6915 return NOTIFY_DONE;
6916 }
6917 }
6918
6919 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6920 void *hcpu)
6921 {
6922 switch (action & ~CPU_TASKS_FROZEN) {
6923 case CPU_DOWN_PREPARE:
6924 cpuset_update_active_cpus();
6925 return NOTIFY_OK;
6926 default:
6927 return NOTIFY_DONE;
6928 }
6929 }
6930
6931 void __init sched_init_smp(void)
6932 {
6933 cpumask_var_t non_isolated_cpus;
6934
6935 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6936 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6937
6938 sched_init_numa();
6939
6940 get_online_cpus();
6941 mutex_lock(&sched_domains_mutex);
6942 init_sched_domains(cpu_active_mask);
6943 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6944 if (cpumask_empty(non_isolated_cpus))
6945 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6946 mutex_unlock(&sched_domains_mutex);
6947 put_online_cpus();
6948
6949 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6950 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6951
6952 /* RT runtime code needs to handle some hotplug events */
6953 hotcpu_notifier(update_runtime, 0);
6954
6955 init_hrtick();
6956
6957 /* Move init over to a non-isolated CPU */
6958 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6959 BUG();
6960 sched_init_granularity();
6961 free_cpumask_var(non_isolated_cpus);
6962
6963 init_sched_rt_class();
6964 }
6965 #else
6966 void __init sched_init_smp(void)
6967 {
6968 sched_init_granularity();
6969 }
6970 #endif /* CONFIG_SMP */
6971
6972 const_debug unsigned int sysctl_timer_migration = 1;
6973
6974 int in_sched_functions(unsigned long addr)
6975 {
6976 return in_lock_functions(addr) ||
6977 (addr >= (unsigned long)__sched_text_start
6978 && addr < (unsigned long)__sched_text_end);
6979 }
6980
6981 #ifdef CONFIG_CGROUP_SCHED
6982 struct task_group root_task_group;
6983 #endif
6984
6985 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6986
6987 void __init sched_init(void)
6988 {
6989 int i, j;
6990 unsigned long alloc_size = 0, ptr;
6991
6992 #ifdef CONFIG_FAIR_GROUP_SCHED
6993 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6994 #endif
6995 #ifdef CONFIG_RT_GROUP_SCHED
6996 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6997 #endif
6998 #ifdef CONFIG_CPUMASK_OFFSTACK
6999 alloc_size += num_possible_cpus() * cpumask_size();
7000 #endif
7001 if (alloc_size) {
7002 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7003
7004 #ifdef CONFIG_FAIR_GROUP_SCHED
7005 root_task_group.se = (struct sched_entity **)ptr;
7006 ptr += nr_cpu_ids * sizeof(void **);
7007
7008 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7009 ptr += nr_cpu_ids * sizeof(void **);
7010
7011 #endif /* CONFIG_FAIR_GROUP_SCHED */
7012 #ifdef CONFIG_RT_GROUP_SCHED
7013 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7014 ptr += nr_cpu_ids * sizeof(void **);
7015
7016 root_task_group.rt_rq = (struct rt_rq **)ptr;
7017 ptr += nr_cpu_ids * sizeof(void **);
7018
7019 #endif /* CONFIG_RT_GROUP_SCHED */
7020 #ifdef CONFIG_CPUMASK_OFFSTACK
7021 for_each_possible_cpu(i) {
7022 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7023 ptr += cpumask_size();
7024 }
7025 #endif /* CONFIG_CPUMASK_OFFSTACK */
7026 }
7027
7028 #ifdef CONFIG_SMP
7029 init_defrootdomain();
7030 #endif
7031
7032 init_rt_bandwidth(&def_rt_bandwidth,
7033 global_rt_period(), global_rt_runtime());
7034
7035 #ifdef CONFIG_RT_GROUP_SCHED
7036 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7037 global_rt_period(), global_rt_runtime());
7038 #endif /* CONFIG_RT_GROUP_SCHED */
7039
7040 #ifdef CONFIG_CGROUP_SCHED
7041 list_add(&root_task_group.list, &task_groups);
7042 INIT_LIST_HEAD(&root_task_group.children);
7043 INIT_LIST_HEAD(&root_task_group.siblings);
7044 autogroup_init(&init_task);
7045
7046 #endif /* CONFIG_CGROUP_SCHED */
7047
7048 #ifdef CONFIG_CGROUP_CPUACCT
7049 root_cpuacct.cpustat = &kernel_cpustat;
7050 root_cpuacct.cpuusage = alloc_percpu(u64);
7051 /* Too early, not expected to fail */
7052 BUG_ON(!root_cpuacct.cpuusage);
7053 #endif
7054 for_each_possible_cpu(i) {
7055 struct rq *rq;
7056
7057 rq = cpu_rq(i);
7058 raw_spin_lock_init(&rq->lock);
7059 rq->nr_running = 0;
7060 rq->calc_load_active = 0;
7061 rq->calc_load_update = jiffies + LOAD_FREQ;
7062 init_cfs_rq(&rq->cfs);
7063 init_rt_rq(&rq->rt, rq);
7064 #ifdef CONFIG_FAIR_GROUP_SCHED
7065 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7066 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7067 /*
7068 * How much cpu bandwidth does root_task_group get?
7069 *
7070 * In case of task-groups formed thr' the cgroup filesystem, it
7071 * gets 100% of the cpu resources in the system. This overall
7072 * system cpu resource is divided among the tasks of
7073 * root_task_group and its child task-groups in a fair manner,
7074 * based on each entity's (task or task-group's) weight
7075 * (se->load.weight).
7076 *
7077 * In other words, if root_task_group has 10 tasks of weight
7078 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7079 * then A0's share of the cpu resource is:
7080 *
7081 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7082 *
7083 * We achieve this by letting root_task_group's tasks sit
7084 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7085 */
7086 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7087 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7088 #endif /* CONFIG_FAIR_GROUP_SCHED */
7089
7090 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7091 #ifdef CONFIG_RT_GROUP_SCHED
7092 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7093 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7094 #endif
7095
7096 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7097 rq->cpu_load[j] = 0;
7098
7099 rq->last_load_update_tick = jiffies;
7100
7101 #ifdef CONFIG_SMP
7102 rq->sd = NULL;
7103 rq->rd = NULL;
7104 rq->cpu_power = SCHED_POWER_SCALE;
7105 rq->post_schedule = 0;
7106 rq->active_balance = 0;
7107 rq->next_balance = jiffies;
7108 rq->push_cpu = 0;
7109 rq->cpu = i;
7110 rq->online = 0;
7111 rq->idle_stamp = 0;
7112 rq->avg_idle = 2*sysctl_sched_migration_cost;
7113
7114 INIT_LIST_HEAD(&rq->cfs_tasks);
7115
7116 rq_attach_root(rq, &def_root_domain);
7117 #ifdef CONFIG_NO_HZ
7118 rq->nohz_flags = 0;
7119 #endif
7120 #endif
7121 init_rq_hrtick(rq);
7122 atomic_set(&rq->nr_iowait, 0);
7123 }
7124
7125 set_load_weight(&init_task);
7126
7127 #ifdef CONFIG_PREEMPT_NOTIFIERS
7128 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7129 #endif
7130
7131 #ifdef CONFIG_RT_MUTEXES
7132 plist_head_init(&init_task.pi_waiters);
7133 #endif
7134
7135 /*
7136 * The boot idle thread does lazy MMU switching as well:
7137 */
7138 atomic_inc(&init_mm.mm_count);
7139 enter_lazy_tlb(&init_mm, current);
7140
7141 /*
7142 * Make us the idle thread. Technically, schedule() should not be
7143 * called from this thread, however somewhere below it might be,
7144 * but because we are the idle thread, we just pick up running again
7145 * when this runqueue becomes "idle".
7146 */
7147 init_idle(current, smp_processor_id());
7148
7149 calc_load_update = jiffies + LOAD_FREQ;
7150
7151 /*
7152 * During early bootup we pretend to be a normal task:
7153 */
7154 current->sched_class = &fair_sched_class;
7155
7156 #ifdef CONFIG_SMP
7157 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7158 /* May be allocated at isolcpus cmdline parse time */
7159 if (cpu_isolated_map == NULL)
7160 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7161 idle_thread_set_boot_cpu();
7162 #endif
7163 init_sched_fair_class();
7164
7165 scheduler_running = 1;
7166 }
7167
7168 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7169 static inline int preempt_count_equals(int preempt_offset)
7170 {
7171 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7172
7173 return (nested == preempt_offset);
7174 }
7175
7176 void __might_sleep(const char *file, int line, int preempt_offset)
7177 {
7178 static unsigned long prev_jiffy; /* ratelimiting */
7179
7180 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7181 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7182 system_state != SYSTEM_RUNNING || oops_in_progress)
7183 return;
7184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7185 return;
7186 prev_jiffy = jiffies;
7187
7188 printk(KERN_ERR
7189 "BUG: sleeping function called from invalid context at %s:%d\n",
7190 file, line);
7191 printk(KERN_ERR
7192 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7193 in_atomic(), irqs_disabled(),
7194 current->pid, current->comm);
7195
7196 debug_show_held_locks(current);
7197 if (irqs_disabled())
7198 print_irqtrace_events(current);
7199 dump_stack();
7200 }
7201 EXPORT_SYMBOL(__might_sleep);
7202 #endif
7203
7204 #ifdef CONFIG_MAGIC_SYSRQ
7205 static void normalize_task(struct rq *rq, struct task_struct *p)
7206 {
7207 const struct sched_class *prev_class = p->sched_class;
7208 int old_prio = p->prio;
7209 int on_rq;
7210
7211 on_rq = p->on_rq;
7212 if (on_rq)
7213 dequeue_task(rq, p, 0);
7214 __setscheduler(rq, p, SCHED_NORMAL, 0);
7215 if (on_rq) {
7216 enqueue_task(rq, p, 0);
7217 resched_task(rq->curr);
7218 }
7219
7220 check_class_changed(rq, p, prev_class, old_prio);
7221 }
7222
7223 void normalize_rt_tasks(void)
7224 {
7225 struct task_struct *g, *p;
7226 unsigned long flags;
7227 struct rq *rq;
7228
7229 read_lock_irqsave(&tasklist_lock, flags);
7230 do_each_thread(g, p) {
7231 /*
7232 * Only normalize user tasks:
7233 */
7234 if (!p->mm)
7235 continue;
7236
7237 p->se.exec_start = 0;
7238 #ifdef CONFIG_SCHEDSTATS
7239 p->se.statistics.wait_start = 0;
7240 p->se.statistics.sleep_start = 0;
7241 p->se.statistics.block_start = 0;
7242 #endif
7243
7244 if (!rt_task(p)) {
7245 /*
7246 * Renice negative nice level userspace
7247 * tasks back to 0:
7248 */
7249 if (TASK_NICE(p) < 0 && p->mm)
7250 set_user_nice(p, 0);
7251 continue;
7252 }
7253
7254 raw_spin_lock(&p->pi_lock);
7255 rq = __task_rq_lock(p);
7256
7257 normalize_task(rq, p);
7258
7259 __task_rq_unlock(rq);
7260 raw_spin_unlock(&p->pi_lock);
7261 } while_each_thread(g, p);
7262
7263 read_unlock_irqrestore(&tasklist_lock, flags);
7264 }
7265
7266 #endif /* CONFIG_MAGIC_SYSRQ */
7267
7268 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7269 /*
7270 * These functions are only useful for the IA64 MCA handling, or kdb.
7271 *
7272 * They can only be called when the whole system has been
7273 * stopped - every CPU needs to be quiescent, and no scheduling
7274 * activity can take place. Using them for anything else would
7275 * be a serious bug, and as a result, they aren't even visible
7276 * under any other configuration.
7277 */
7278
7279 /**
7280 * curr_task - return the current task for a given cpu.
7281 * @cpu: the processor in question.
7282 *
7283 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7284 */
7285 struct task_struct *curr_task(int cpu)
7286 {
7287 return cpu_curr(cpu);
7288 }
7289
7290 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7291
7292 #ifdef CONFIG_IA64
7293 /**
7294 * set_curr_task - set the current task for a given cpu.
7295 * @cpu: the processor in question.
7296 * @p: the task pointer to set.
7297 *
7298 * Description: This function must only be used when non-maskable interrupts
7299 * are serviced on a separate stack. It allows the architecture to switch the
7300 * notion of the current task on a cpu in a non-blocking manner. This function
7301 * must be called with all CPU's synchronized, and interrupts disabled, the
7302 * and caller must save the original value of the current task (see
7303 * curr_task() above) and restore that value before reenabling interrupts and
7304 * re-starting the system.
7305 *
7306 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7307 */
7308 void set_curr_task(int cpu, struct task_struct *p)
7309 {
7310 cpu_curr(cpu) = p;
7311 }
7312
7313 #endif
7314
7315 #ifdef CONFIG_CGROUP_SCHED
7316 /* task_group_lock serializes the addition/removal of task groups */
7317 static DEFINE_SPINLOCK(task_group_lock);
7318
7319 static void free_sched_group(struct task_group *tg)
7320 {
7321 free_fair_sched_group(tg);
7322 free_rt_sched_group(tg);
7323 autogroup_free(tg);
7324 kfree(tg);
7325 }
7326
7327 /* allocate runqueue etc for a new task group */
7328 struct task_group *sched_create_group(struct task_group *parent)
7329 {
7330 struct task_group *tg;
7331 unsigned long flags;
7332
7333 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7334 if (!tg)
7335 return ERR_PTR(-ENOMEM);
7336
7337 if (!alloc_fair_sched_group(tg, parent))
7338 goto err;
7339
7340 if (!alloc_rt_sched_group(tg, parent))
7341 goto err;
7342
7343 spin_lock_irqsave(&task_group_lock, flags);
7344 list_add_rcu(&tg->list, &task_groups);
7345
7346 WARN_ON(!parent); /* root should already exist */
7347
7348 tg->parent = parent;
7349 INIT_LIST_HEAD(&tg->children);
7350 list_add_rcu(&tg->siblings, &parent->children);
7351 spin_unlock_irqrestore(&task_group_lock, flags);
7352
7353 return tg;
7354
7355 err:
7356 free_sched_group(tg);
7357 return ERR_PTR(-ENOMEM);
7358 }
7359
7360 /* rcu callback to free various structures associated with a task group */
7361 static void free_sched_group_rcu(struct rcu_head *rhp)
7362 {
7363 /* now it should be safe to free those cfs_rqs */
7364 free_sched_group(container_of(rhp, struct task_group, rcu));
7365 }
7366
7367 /* Destroy runqueue etc associated with a task group */
7368 void sched_destroy_group(struct task_group *tg)
7369 {
7370 unsigned long flags;
7371 int i;
7372
7373 /* end participation in shares distribution */
7374 for_each_possible_cpu(i)
7375 unregister_fair_sched_group(tg, i);
7376
7377 spin_lock_irqsave(&task_group_lock, flags);
7378 list_del_rcu(&tg->list);
7379 list_del_rcu(&tg->siblings);
7380 spin_unlock_irqrestore(&task_group_lock, flags);
7381
7382 /* wait for possible concurrent references to cfs_rqs complete */
7383 call_rcu(&tg->rcu, free_sched_group_rcu);
7384 }
7385
7386 /* change task's runqueue when it moves between groups.
7387 * The caller of this function should have put the task in its new group
7388 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7389 * reflect its new group.
7390 */
7391 void sched_move_task(struct task_struct *tsk)
7392 {
7393 int on_rq, running;
7394 unsigned long flags;
7395 struct rq *rq;
7396
7397 rq = task_rq_lock(tsk, &flags);
7398
7399 running = task_current(rq, tsk);
7400 on_rq = tsk->on_rq;
7401
7402 if (on_rq)
7403 dequeue_task(rq, tsk, 0);
7404 if (unlikely(running))
7405 tsk->sched_class->put_prev_task(rq, tsk);
7406
7407 #ifdef CONFIG_FAIR_GROUP_SCHED
7408 if (tsk->sched_class->task_move_group)
7409 tsk->sched_class->task_move_group(tsk, on_rq);
7410 else
7411 #endif
7412 set_task_rq(tsk, task_cpu(tsk));
7413
7414 if (unlikely(running))
7415 tsk->sched_class->set_curr_task(rq);
7416 if (on_rq)
7417 enqueue_task(rq, tsk, 0);
7418
7419 task_rq_unlock(rq, tsk, &flags);
7420 }
7421 #endif /* CONFIG_CGROUP_SCHED */
7422
7423 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7424 static unsigned long to_ratio(u64 period, u64 runtime)
7425 {
7426 if (runtime == RUNTIME_INF)
7427 return 1ULL << 20;
7428
7429 return div64_u64(runtime << 20, period);
7430 }
7431 #endif
7432
7433 #ifdef CONFIG_RT_GROUP_SCHED
7434 /*
7435 * Ensure that the real time constraints are schedulable.
7436 */
7437 static DEFINE_MUTEX(rt_constraints_mutex);
7438
7439 /* Must be called with tasklist_lock held */
7440 static inline int tg_has_rt_tasks(struct task_group *tg)
7441 {
7442 struct task_struct *g, *p;
7443
7444 do_each_thread(g, p) {
7445 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7446 return 1;
7447 } while_each_thread(g, p);
7448
7449 return 0;
7450 }
7451
7452 struct rt_schedulable_data {
7453 struct task_group *tg;
7454 u64 rt_period;
7455 u64 rt_runtime;
7456 };
7457
7458 static int tg_rt_schedulable(struct task_group *tg, void *data)
7459 {
7460 struct rt_schedulable_data *d = data;
7461 struct task_group *child;
7462 unsigned long total, sum = 0;
7463 u64 period, runtime;
7464
7465 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7466 runtime = tg->rt_bandwidth.rt_runtime;
7467
7468 if (tg == d->tg) {
7469 period = d->rt_period;
7470 runtime = d->rt_runtime;
7471 }
7472
7473 /*
7474 * Cannot have more runtime than the period.
7475 */
7476 if (runtime > period && runtime != RUNTIME_INF)
7477 return -EINVAL;
7478
7479 /*
7480 * Ensure we don't starve existing RT tasks.
7481 */
7482 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7483 return -EBUSY;
7484
7485 total = to_ratio(period, runtime);
7486
7487 /*
7488 * Nobody can have more than the global setting allows.
7489 */
7490 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7491 return -EINVAL;
7492
7493 /*
7494 * The sum of our children's runtime should not exceed our own.
7495 */
7496 list_for_each_entry_rcu(child, &tg->children, siblings) {
7497 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7498 runtime = child->rt_bandwidth.rt_runtime;
7499
7500 if (child == d->tg) {
7501 period = d->rt_period;
7502 runtime = d->rt_runtime;
7503 }
7504
7505 sum += to_ratio(period, runtime);
7506 }
7507
7508 if (sum > total)
7509 return -EINVAL;
7510
7511 return 0;
7512 }
7513
7514 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7515 {
7516 int ret;
7517
7518 struct rt_schedulable_data data = {
7519 .tg = tg,
7520 .rt_period = period,
7521 .rt_runtime = runtime,
7522 };
7523
7524 rcu_read_lock();
7525 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7526 rcu_read_unlock();
7527
7528 return ret;
7529 }
7530
7531 static int tg_set_rt_bandwidth(struct task_group *tg,
7532 u64 rt_period, u64 rt_runtime)
7533 {
7534 int i, err = 0;
7535
7536 mutex_lock(&rt_constraints_mutex);
7537 read_lock(&tasklist_lock);
7538 err = __rt_schedulable(tg, rt_period, rt_runtime);
7539 if (err)
7540 goto unlock;
7541
7542 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7543 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7544 tg->rt_bandwidth.rt_runtime = rt_runtime;
7545
7546 for_each_possible_cpu(i) {
7547 struct rt_rq *rt_rq = tg->rt_rq[i];
7548
7549 raw_spin_lock(&rt_rq->rt_runtime_lock);
7550 rt_rq->rt_runtime = rt_runtime;
7551 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7552 }
7553 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7554 unlock:
7555 read_unlock(&tasklist_lock);
7556 mutex_unlock(&rt_constraints_mutex);
7557
7558 return err;
7559 }
7560
7561 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7562 {
7563 u64 rt_runtime, rt_period;
7564
7565 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7566 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7567 if (rt_runtime_us < 0)
7568 rt_runtime = RUNTIME_INF;
7569
7570 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7571 }
7572
7573 long sched_group_rt_runtime(struct task_group *tg)
7574 {
7575 u64 rt_runtime_us;
7576
7577 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7578 return -1;
7579
7580 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7581 do_div(rt_runtime_us, NSEC_PER_USEC);
7582 return rt_runtime_us;
7583 }
7584
7585 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7586 {
7587 u64 rt_runtime, rt_period;
7588
7589 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7590 rt_runtime = tg->rt_bandwidth.rt_runtime;
7591
7592 if (rt_period == 0)
7593 return -EINVAL;
7594
7595 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7596 }
7597
7598 long sched_group_rt_period(struct task_group *tg)
7599 {
7600 u64 rt_period_us;
7601
7602 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7603 do_div(rt_period_us, NSEC_PER_USEC);
7604 return rt_period_us;
7605 }
7606
7607 static int sched_rt_global_constraints(void)
7608 {
7609 u64 runtime, period;
7610 int ret = 0;
7611
7612 if (sysctl_sched_rt_period <= 0)
7613 return -EINVAL;
7614
7615 runtime = global_rt_runtime();
7616 period = global_rt_period();
7617
7618 /*
7619 * Sanity check on the sysctl variables.
7620 */
7621 if (runtime > period && runtime != RUNTIME_INF)
7622 return -EINVAL;
7623
7624 mutex_lock(&rt_constraints_mutex);
7625 read_lock(&tasklist_lock);
7626 ret = __rt_schedulable(NULL, 0, 0);
7627 read_unlock(&tasklist_lock);
7628 mutex_unlock(&rt_constraints_mutex);
7629
7630 return ret;
7631 }
7632
7633 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7634 {
7635 /* Don't accept realtime tasks when there is no way for them to run */
7636 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7637 return 0;
7638
7639 return 1;
7640 }
7641
7642 #else /* !CONFIG_RT_GROUP_SCHED */
7643 static int sched_rt_global_constraints(void)
7644 {
7645 unsigned long flags;
7646 int i;
7647
7648 if (sysctl_sched_rt_period <= 0)
7649 return -EINVAL;
7650
7651 /*
7652 * There's always some RT tasks in the root group
7653 * -- migration, kstopmachine etc..
7654 */
7655 if (sysctl_sched_rt_runtime == 0)
7656 return -EBUSY;
7657
7658 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7659 for_each_possible_cpu(i) {
7660 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7661
7662 raw_spin_lock(&rt_rq->rt_runtime_lock);
7663 rt_rq->rt_runtime = global_rt_runtime();
7664 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7665 }
7666 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7667
7668 return 0;
7669 }
7670 #endif /* CONFIG_RT_GROUP_SCHED */
7671
7672 int sched_rt_handler(struct ctl_table *table, int write,
7673 void __user *buffer, size_t *lenp,
7674 loff_t *ppos)
7675 {
7676 int ret;
7677 int old_period, old_runtime;
7678 static DEFINE_MUTEX(mutex);
7679
7680 mutex_lock(&mutex);
7681 old_period = sysctl_sched_rt_period;
7682 old_runtime = sysctl_sched_rt_runtime;
7683
7684 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7685
7686 if (!ret && write) {
7687 ret = sched_rt_global_constraints();
7688 if (ret) {
7689 sysctl_sched_rt_period = old_period;
7690 sysctl_sched_rt_runtime = old_runtime;
7691 } else {
7692 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7693 def_rt_bandwidth.rt_period =
7694 ns_to_ktime(global_rt_period());
7695 }
7696 }
7697 mutex_unlock(&mutex);
7698
7699 return ret;
7700 }
7701
7702 #ifdef CONFIG_CGROUP_SCHED
7703
7704 /* return corresponding task_group object of a cgroup */
7705 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7706 {
7707 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7708 struct task_group, css);
7709 }
7710
7711 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7712 {
7713 struct task_group *tg, *parent;
7714
7715 if (!cgrp->parent) {
7716 /* This is early initialization for the top cgroup */
7717 return &root_task_group.css;
7718 }
7719
7720 parent = cgroup_tg(cgrp->parent);
7721 tg = sched_create_group(parent);
7722 if (IS_ERR(tg))
7723 return ERR_PTR(-ENOMEM);
7724
7725 return &tg->css;
7726 }
7727
7728 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7729 {
7730 struct task_group *tg = cgroup_tg(cgrp);
7731
7732 sched_destroy_group(tg);
7733 }
7734
7735 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7736 struct cgroup_taskset *tset)
7737 {
7738 struct task_struct *task;
7739
7740 cgroup_taskset_for_each(task, cgrp, tset) {
7741 #ifdef CONFIG_RT_GROUP_SCHED
7742 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7743 return -EINVAL;
7744 #else
7745 /* We don't support RT-tasks being in separate groups */
7746 if (task->sched_class != &fair_sched_class)
7747 return -EINVAL;
7748 #endif
7749 }
7750 return 0;
7751 }
7752
7753 static void cpu_cgroup_attach(struct cgroup *cgrp,
7754 struct cgroup_taskset *tset)
7755 {
7756 struct task_struct *task;
7757
7758 cgroup_taskset_for_each(task, cgrp, tset)
7759 sched_move_task(task);
7760 }
7761
7762 static void
7763 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7764 struct task_struct *task)
7765 {
7766 /*
7767 * cgroup_exit() is called in the copy_process() failure path.
7768 * Ignore this case since the task hasn't ran yet, this avoids
7769 * trying to poke a half freed task state from generic code.
7770 */
7771 if (!(task->flags & PF_EXITING))
7772 return;
7773
7774 sched_move_task(task);
7775 }
7776
7777 #ifdef CONFIG_FAIR_GROUP_SCHED
7778 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7779 u64 shareval)
7780 {
7781 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7782 }
7783
7784 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7785 {
7786 struct task_group *tg = cgroup_tg(cgrp);
7787
7788 return (u64) scale_load_down(tg->shares);
7789 }
7790
7791 #ifdef CONFIG_CFS_BANDWIDTH
7792 static DEFINE_MUTEX(cfs_constraints_mutex);
7793
7794 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7795 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7796
7797 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7798
7799 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7800 {
7801 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7802 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7803
7804 if (tg == &root_task_group)
7805 return -EINVAL;
7806
7807 /*
7808 * Ensure we have at some amount of bandwidth every period. This is
7809 * to prevent reaching a state of large arrears when throttled via
7810 * entity_tick() resulting in prolonged exit starvation.
7811 */
7812 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7813 return -EINVAL;
7814
7815 /*
7816 * Likewise, bound things on the otherside by preventing insane quota
7817 * periods. This also allows us to normalize in computing quota
7818 * feasibility.
7819 */
7820 if (period > max_cfs_quota_period)
7821 return -EINVAL;
7822
7823 mutex_lock(&cfs_constraints_mutex);
7824 ret = __cfs_schedulable(tg, period, quota);
7825 if (ret)
7826 goto out_unlock;
7827
7828 runtime_enabled = quota != RUNTIME_INF;
7829 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7830 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7831 raw_spin_lock_irq(&cfs_b->lock);
7832 cfs_b->period = ns_to_ktime(period);
7833 cfs_b->quota = quota;
7834
7835 __refill_cfs_bandwidth_runtime(cfs_b);
7836 /* restart the period timer (if active) to handle new period expiry */
7837 if (runtime_enabled && cfs_b->timer_active) {
7838 /* force a reprogram */
7839 cfs_b->timer_active = 0;
7840 __start_cfs_bandwidth(cfs_b);
7841 }
7842 raw_spin_unlock_irq(&cfs_b->lock);
7843
7844 for_each_possible_cpu(i) {
7845 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7846 struct rq *rq = cfs_rq->rq;
7847
7848 raw_spin_lock_irq(&rq->lock);
7849 cfs_rq->runtime_enabled = runtime_enabled;
7850 cfs_rq->runtime_remaining = 0;
7851
7852 if (cfs_rq->throttled)
7853 unthrottle_cfs_rq(cfs_rq);
7854 raw_spin_unlock_irq(&rq->lock);
7855 }
7856 out_unlock:
7857 mutex_unlock(&cfs_constraints_mutex);
7858
7859 return ret;
7860 }
7861
7862 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7863 {
7864 u64 quota, period;
7865
7866 period = ktime_to_ns(tg->cfs_bandwidth.period);
7867 if (cfs_quota_us < 0)
7868 quota = RUNTIME_INF;
7869 else
7870 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7871
7872 return tg_set_cfs_bandwidth(tg, period, quota);
7873 }
7874
7875 long tg_get_cfs_quota(struct task_group *tg)
7876 {
7877 u64 quota_us;
7878
7879 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7880 return -1;
7881
7882 quota_us = tg->cfs_bandwidth.quota;
7883 do_div(quota_us, NSEC_PER_USEC);
7884
7885 return quota_us;
7886 }
7887
7888 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7889 {
7890 u64 quota, period;
7891
7892 period = (u64)cfs_period_us * NSEC_PER_USEC;
7893 quota = tg->cfs_bandwidth.quota;
7894
7895 return tg_set_cfs_bandwidth(tg, period, quota);
7896 }
7897
7898 long tg_get_cfs_period(struct task_group *tg)
7899 {
7900 u64 cfs_period_us;
7901
7902 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7903 do_div(cfs_period_us, NSEC_PER_USEC);
7904
7905 return cfs_period_us;
7906 }
7907
7908 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7909 {
7910 return tg_get_cfs_quota(cgroup_tg(cgrp));
7911 }
7912
7913 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7914 s64 cfs_quota_us)
7915 {
7916 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7917 }
7918
7919 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7920 {
7921 return tg_get_cfs_period(cgroup_tg(cgrp));
7922 }
7923
7924 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7925 u64 cfs_period_us)
7926 {
7927 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7928 }
7929
7930 struct cfs_schedulable_data {
7931 struct task_group *tg;
7932 u64 period, quota;
7933 };
7934
7935 /*
7936 * normalize group quota/period to be quota/max_period
7937 * note: units are usecs
7938 */
7939 static u64 normalize_cfs_quota(struct task_group *tg,
7940 struct cfs_schedulable_data *d)
7941 {
7942 u64 quota, period;
7943
7944 if (tg == d->tg) {
7945 period = d->period;
7946 quota = d->quota;
7947 } else {
7948 period = tg_get_cfs_period(tg);
7949 quota = tg_get_cfs_quota(tg);
7950 }
7951
7952 /* note: these should typically be equivalent */
7953 if (quota == RUNTIME_INF || quota == -1)
7954 return RUNTIME_INF;
7955
7956 return to_ratio(period, quota);
7957 }
7958
7959 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7960 {
7961 struct cfs_schedulable_data *d = data;
7962 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7963 s64 quota = 0, parent_quota = -1;
7964
7965 if (!tg->parent) {
7966 quota = RUNTIME_INF;
7967 } else {
7968 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7969
7970 quota = normalize_cfs_quota(tg, d);
7971 parent_quota = parent_b->hierarchal_quota;
7972
7973 /*
7974 * ensure max(child_quota) <= parent_quota, inherit when no
7975 * limit is set
7976 */
7977 if (quota == RUNTIME_INF)
7978 quota = parent_quota;
7979 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7980 return -EINVAL;
7981 }
7982 cfs_b->hierarchal_quota = quota;
7983
7984 return 0;
7985 }
7986
7987 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7988 {
7989 int ret;
7990 struct cfs_schedulable_data data = {
7991 .tg = tg,
7992 .period = period,
7993 .quota = quota,
7994 };
7995
7996 if (quota != RUNTIME_INF) {
7997 do_div(data.period, NSEC_PER_USEC);
7998 do_div(data.quota, NSEC_PER_USEC);
7999 }
8000
8001 rcu_read_lock();
8002 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8003 rcu_read_unlock();
8004
8005 return ret;
8006 }
8007
8008 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8009 struct cgroup_map_cb *cb)
8010 {
8011 struct task_group *tg = cgroup_tg(cgrp);
8012 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8013
8014 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8015 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8016 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8017
8018 return 0;
8019 }
8020 #endif /* CONFIG_CFS_BANDWIDTH */
8021 #endif /* CONFIG_FAIR_GROUP_SCHED */
8022
8023 #ifdef CONFIG_RT_GROUP_SCHED
8024 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8025 s64 val)
8026 {
8027 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8028 }
8029
8030 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8031 {
8032 return sched_group_rt_runtime(cgroup_tg(cgrp));
8033 }
8034
8035 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8036 u64 rt_period_us)
8037 {
8038 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8039 }
8040
8041 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8042 {
8043 return sched_group_rt_period(cgroup_tg(cgrp));
8044 }
8045 #endif /* CONFIG_RT_GROUP_SCHED */
8046
8047 static struct cftype cpu_files[] = {
8048 #ifdef CONFIG_FAIR_GROUP_SCHED
8049 {
8050 .name = "shares",
8051 .read_u64 = cpu_shares_read_u64,
8052 .write_u64 = cpu_shares_write_u64,
8053 },
8054 #endif
8055 #ifdef CONFIG_CFS_BANDWIDTH
8056 {
8057 .name = "cfs_quota_us",
8058 .read_s64 = cpu_cfs_quota_read_s64,
8059 .write_s64 = cpu_cfs_quota_write_s64,
8060 },
8061 {
8062 .name = "cfs_period_us",
8063 .read_u64 = cpu_cfs_period_read_u64,
8064 .write_u64 = cpu_cfs_period_write_u64,
8065 },
8066 {
8067 .name = "stat",
8068 .read_map = cpu_stats_show,
8069 },
8070 #endif
8071 #ifdef CONFIG_RT_GROUP_SCHED
8072 {
8073 .name = "rt_runtime_us",
8074 .read_s64 = cpu_rt_runtime_read,
8075 .write_s64 = cpu_rt_runtime_write,
8076 },
8077 {
8078 .name = "rt_period_us",
8079 .read_u64 = cpu_rt_period_read_uint,
8080 .write_u64 = cpu_rt_period_write_uint,
8081 },
8082 #endif
8083 { } /* terminate */
8084 };
8085
8086 struct cgroup_subsys cpu_cgroup_subsys = {
8087 .name = "cpu",
8088 .create = cpu_cgroup_create,
8089 .destroy = cpu_cgroup_destroy,
8090 .can_attach = cpu_cgroup_can_attach,
8091 .attach = cpu_cgroup_attach,
8092 .exit = cpu_cgroup_exit,
8093 .subsys_id = cpu_cgroup_subsys_id,
8094 .base_cftypes = cpu_files,
8095 .early_init = 1,
8096 };
8097
8098 #endif /* CONFIG_CGROUP_SCHED */
8099
8100 #ifdef CONFIG_CGROUP_CPUACCT
8101
8102 /*
8103 * CPU accounting code for task groups.
8104 *
8105 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8106 * (balbir@in.ibm.com).
8107 */
8108
8109 /* create a new cpu accounting group */
8110 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8111 {
8112 struct cpuacct *ca;
8113
8114 if (!cgrp->parent)
8115 return &root_cpuacct.css;
8116
8117 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8118 if (!ca)
8119 goto out;
8120
8121 ca->cpuusage = alloc_percpu(u64);
8122 if (!ca->cpuusage)
8123 goto out_free_ca;
8124
8125 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8126 if (!ca->cpustat)
8127 goto out_free_cpuusage;
8128
8129 return &ca->css;
8130
8131 out_free_cpuusage:
8132 free_percpu(ca->cpuusage);
8133 out_free_ca:
8134 kfree(ca);
8135 out:
8136 return ERR_PTR(-ENOMEM);
8137 }
8138
8139 /* destroy an existing cpu accounting group */
8140 static void cpuacct_destroy(struct cgroup *cgrp)
8141 {
8142 struct cpuacct *ca = cgroup_ca(cgrp);
8143
8144 free_percpu(ca->cpustat);
8145 free_percpu(ca->cpuusage);
8146 kfree(ca);
8147 }
8148
8149 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8150 {
8151 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8152 u64 data;
8153
8154 #ifndef CONFIG_64BIT
8155 /*
8156 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8157 */
8158 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8159 data = *cpuusage;
8160 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8161 #else
8162 data = *cpuusage;
8163 #endif
8164
8165 return data;
8166 }
8167
8168 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8169 {
8170 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8171
8172 #ifndef CONFIG_64BIT
8173 /*
8174 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8175 */
8176 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8177 *cpuusage = val;
8178 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8179 #else
8180 *cpuusage = val;
8181 #endif
8182 }
8183
8184 /* return total cpu usage (in nanoseconds) of a group */
8185 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8186 {
8187 struct cpuacct *ca = cgroup_ca(cgrp);
8188 u64 totalcpuusage = 0;
8189 int i;
8190
8191 for_each_present_cpu(i)
8192 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8193
8194 return totalcpuusage;
8195 }
8196
8197 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8198 u64 reset)
8199 {
8200 struct cpuacct *ca = cgroup_ca(cgrp);
8201 int err = 0;
8202 int i;
8203
8204 if (reset) {
8205 err = -EINVAL;
8206 goto out;
8207 }
8208
8209 for_each_present_cpu(i)
8210 cpuacct_cpuusage_write(ca, i, 0);
8211
8212 out:
8213 return err;
8214 }
8215
8216 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8217 struct seq_file *m)
8218 {
8219 struct cpuacct *ca = cgroup_ca(cgroup);
8220 u64 percpu;
8221 int i;
8222
8223 for_each_present_cpu(i) {
8224 percpu = cpuacct_cpuusage_read(ca, i);
8225 seq_printf(m, "%llu ", (unsigned long long) percpu);
8226 }
8227 seq_printf(m, "\n");
8228 return 0;
8229 }
8230
8231 static const char *cpuacct_stat_desc[] = {
8232 [CPUACCT_STAT_USER] = "user",
8233 [CPUACCT_STAT_SYSTEM] = "system",
8234 };
8235
8236 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8237 struct cgroup_map_cb *cb)
8238 {
8239 struct cpuacct *ca = cgroup_ca(cgrp);
8240 int cpu;
8241 s64 val = 0;
8242
8243 for_each_online_cpu(cpu) {
8244 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8245 val += kcpustat->cpustat[CPUTIME_USER];
8246 val += kcpustat->cpustat[CPUTIME_NICE];
8247 }
8248 val = cputime64_to_clock_t(val);
8249 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8250
8251 val = 0;
8252 for_each_online_cpu(cpu) {
8253 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8254 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8255 val += kcpustat->cpustat[CPUTIME_IRQ];
8256 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8257 }
8258
8259 val = cputime64_to_clock_t(val);
8260 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8261
8262 return 0;
8263 }
8264
8265 static struct cftype files[] = {
8266 {
8267 .name = "usage",
8268 .read_u64 = cpuusage_read,
8269 .write_u64 = cpuusage_write,
8270 },
8271 {
8272 .name = "usage_percpu",
8273 .read_seq_string = cpuacct_percpu_seq_read,
8274 },
8275 {
8276 .name = "stat",
8277 .read_map = cpuacct_stats_show,
8278 },
8279 { } /* terminate */
8280 };
8281
8282 /*
8283 * charge this task's execution time to its accounting group.
8284 *
8285 * called with rq->lock held.
8286 */
8287 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8288 {
8289 struct cpuacct *ca;
8290 int cpu;
8291
8292 if (unlikely(!cpuacct_subsys.active))
8293 return;
8294
8295 cpu = task_cpu(tsk);
8296
8297 rcu_read_lock();
8298
8299 ca = task_ca(tsk);
8300
8301 for (; ca; ca = parent_ca(ca)) {
8302 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8303 *cpuusage += cputime;
8304 }
8305
8306 rcu_read_unlock();
8307 }
8308
8309 struct cgroup_subsys cpuacct_subsys = {
8310 .name = "cpuacct",
8311 .create = cpuacct_create,
8312 .destroy = cpuacct_destroy,
8313 .subsys_id = cpuacct_subsys_id,
8314 .base_cftypes = files,
8315 };
8316 #endif /* CONFIG_CGROUP_CPUACCT */