[ERD][RAMEN9610-20347]ANDROID: Fix massive cpufreq_times memory leaks
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19
20 #include <linux/blkdev.h>
21 #include <linux/cpufreq_times.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/debug-snapshot.h>
31 #include <linux/ems.h>
32
33 #include <asm/switch_to.h>
34 #include <asm/tlb.h>
35 #ifdef CONFIG_PARAVIRT
36 #include <asm/paravirt.h>
37 #endif
38
39 #include "sched.h"
40 #include "../workqueue_internal.h"
41 #include "../smpboot.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/sched.h>
45 #include "walt.h"
46
47 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
48
49 /*
50 * Debugging: various feature bits
51 */
52
53 #define SCHED_FEAT(name, enabled) \
54 (1UL << __SCHED_FEAT_##name) * enabled |
55
56 const_debug unsigned int sysctl_sched_features =
57 #include "features.h"
58 0;
59
60 #undef SCHED_FEAT
61
62 /*
63 * Number of tasks to iterate in a single balance run.
64 * Limited because this is done with IRQs disabled.
65 */
66 const_debug unsigned int sysctl_sched_nr_migrate = 32;
67
68 /*
69 * period over which we average the RT time consumption, measured
70 * in ms.
71 *
72 * default: 1s
73 */
74 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
75
76 /*
77 * period over which we measure -rt task CPU usage in us.
78 * default: 1s
79 */
80 unsigned int sysctl_sched_rt_period = 1000000;
81
82 __read_mostly int scheduler_running;
83
84 /*
85 * part of the period that we allow rt tasks to run in us.
86 * default: 0.95s
87 */
88 int sysctl_sched_rt_runtime = 950000;
89
90 /* CPUs with isolated domains */
91 cpumask_var_t cpu_isolated_map;
92
93 /*
94 * __task_rq_lock - lock the rq @p resides on.
95 */
96 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
97 __acquires(rq->lock)
98 {
99 struct rq *rq;
100
101 lockdep_assert_held(&p->pi_lock);
102
103 for (;;) {
104 rq = task_rq(p);
105 raw_spin_lock(&rq->lock);
106 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
107 rq_pin_lock(rq, rf);
108 return rq;
109 }
110 raw_spin_unlock(&rq->lock);
111
112 while (unlikely(task_on_rq_migrating(p)))
113 cpu_relax();
114 }
115 }
116
117 /*
118 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
119 */
120 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
121 __acquires(p->pi_lock)
122 __acquires(rq->lock)
123 {
124 struct rq *rq;
125
126 for (;;) {
127 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
128 rq = task_rq(p);
129 raw_spin_lock(&rq->lock);
130 /*
131 * move_queued_task() task_rq_lock()
132 *
133 * ACQUIRE (rq->lock)
134 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
135 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
136 * [S] ->cpu = new_cpu [L] task_rq()
137 * [L] ->on_rq
138 * RELEASE (rq->lock)
139 *
140 * If we observe the old cpu in task_rq_lock, the acquire of
141 * the old rq->lock will fully serialize against the stores.
142 *
143 * If we observe the new CPU in task_rq_lock, the acquire will
144 * pair with the WMB to ensure we must then also see migrating.
145 */
146 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
147 rq_pin_lock(rq, rf);
148 return rq;
149 }
150 raw_spin_unlock(&rq->lock);
151 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
152
153 while (unlikely(task_on_rq_migrating(p)))
154 cpu_relax();
155 }
156 }
157
158 /*
159 * RQ-clock updating methods:
160 */
161
162 static void update_rq_clock_task(struct rq *rq, s64 delta)
163 {
164 /*
165 * In theory, the compile should just see 0 here, and optimize out the call
166 * to sched_rt_avg_update. But I don't trust it...
167 */
168 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
169 s64 steal = 0, irq_delta = 0;
170 #endif
171 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
172 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
173
174 /*
175 * Since irq_time is only updated on {soft,}irq_exit, we might run into
176 * this case when a previous update_rq_clock() happened inside a
177 * {soft,}irq region.
178 *
179 * When this happens, we stop ->clock_task and only update the
180 * prev_irq_time stamp to account for the part that fit, so that a next
181 * update will consume the rest. This ensures ->clock_task is
182 * monotonic.
183 *
184 * It does however cause some slight miss-attribution of {soft,}irq
185 * time, a more accurate solution would be to update the irq_time using
186 * the current rq->clock timestamp, except that would require using
187 * atomic ops.
188 */
189 if (irq_delta > delta)
190 irq_delta = delta;
191
192 rq->prev_irq_time += irq_delta;
193 delta -= irq_delta;
194 #endif
195 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
196 if (static_key_false((&paravirt_steal_rq_enabled))) {
197 steal = paravirt_steal_clock(cpu_of(rq));
198 steal -= rq->prev_steal_time_rq;
199
200 if (unlikely(steal > delta))
201 steal = delta;
202
203 rq->prev_steal_time_rq += steal;
204 delta -= steal;
205 }
206 #endif
207
208 rq->clock_task += delta;
209
210 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
211 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
212 sched_rt_avg_update(rq, irq_delta + steal);
213 #endif
214 }
215
216 void update_rq_clock(struct rq *rq)
217 {
218 s64 delta;
219
220 lockdep_assert_held(&rq->lock);
221
222 if (rq->clock_update_flags & RQCF_ACT_SKIP)
223 return;
224
225 #ifdef CONFIG_SCHED_DEBUG
226 if (sched_feat(WARN_DOUBLE_CLOCK))
227 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
228 rq->clock_update_flags |= RQCF_UPDATED;
229 #endif
230
231 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
232 if (delta < 0)
233 return;
234 rq->clock += delta;
235 update_rq_clock_task(rq, delta);
236 }
237
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257 struct rq_flags rf;
258
259 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
260
261 rq_lock(rq, &rf);
262 update_rq_clock(rq);
263 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
264 rq_unlock(rq, &rf);
265
266 return HRTIMER_NORESTART;
267 }
268
269 #ifdef CONFIG_SMP
270
271 static void __hrtick_restart(struct rq *rq)
272 {
273 struct hrtimer *timer = &rq->hrtick_timer;
274
275 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
276 }
277
278 /*
279 * called from hardirq (IPI) context
280 */
281 static void __hrtick_start(void *arg)
282 {
283 struct rq *rq = arg;
284 struct rq_flags rf;
285
286 rq_lock(rq, &rf);
287 __hrtick_restart(rq);
288 rq->hrtick_csd_pending = 0;
289 rq_unlock(rq, &rf);
290 }
291
292 /*
293 * Called to set the hrtick timer state.
294 *
295 * called with rq->lock held and irqs disabled
296 */
297 void hrtick_start(struct rq *rq, u64 delay)
298 {
299 struct hrtimer *timer = &rq->hrtick_timer;
300 ktime_t time;
301 s64 delta;
302
303 /*
304 * Don't schedule slices shorter than 10000ns, that just
305 * doesn't make sense and can cause timer DoS.
306 */
307 delta = max_t(s64, delay, 10000LL);
308 time = ktime_add_ns(timer->base->get_time(), delta);
309
310 hrtimer_set_expires(timer, time);
311
312 if (rq == this_rq()) {
313 __hrtick_restart(rq);
314 } else if (!rq->hrtick_csd_pending) {
315 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
316 rq->hrtick_csd_pending = 1;
317 }
318 }
319
320 #else
321 /*
322 * Called to set the hrtick timer state.
323 *
324 * called with rq->lock held and irqs disabled
325 */
326 void hrtick_start(struct rq *rq, u64 delay)
327 {
328 /*
329 * Don't schedule slices shorter than 10000ns, that just
330 * doesn't make sense. Rely on vruntime for fairness.
331 */
332 delay = max_t(u64, delay, 10000LL);
333 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
334 HRTIMER_MODE_REL_PINNED);
335 }
336 #endif /* CONFIG_SMP */
337
338 static void init_rq_hrtick(struct rq *rq)
339 {
340 #ifdef CONFIG_SMP
341 rq->hrtick_csd_pending = 0;
342
343 rq->hrtick_csd.flags = 0;
344 rq->hrtick_csd.func = __hrtick_start;
345 rq->hrtick_csd.info = rq;
346 #endif
347
348 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
349 rq->hrtick_timer.function = hrtick;
350 }
351 #else /* CONFIG_SCHED_HRTICK */
352 static inline void hrtick_clear(struct rq *rq)
353 {
354 }
355
356 static inline void init_rq_hrtick(struct rq *rq)
357 {
358 }
359 #endif /* CONFIG_SCHED_HRTICK */
360
361 /*
362 * cmpxchg based fetch_or, macro so it works for different integer types
363 */
364 #define fetch_or(ptr, mask) \
365 ({ \
366 typeof(ptr) _ptr = (ptr); \
367 typeof(mask) _mask = (mask); \
368 typeof(*_ptr) _old, _val = *_ptr; \
369 \
370 for (;;) { \
371 _old = cmpxchg(_ptr, _val, _val | _mask); \
372 if (_old == _val) \
373 break; \
374 _val = _old; \
375 } \
376 _old; \
377 })
378
379 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
380 /*
381 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
382 * this avoids any races wrt polling state changes and thereby avoids
383 * spurious IPIs.
384 */
385 static bool set_nr_and_not_polling(struct task_struct *p)
386 {
387 struct thread_info *ti = task_thread_info(p);
388 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
389 }
390
391 /*
392 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
393 *
394 * If this returns true, then the idle task promises to call
395 * sched_ttwu_pending() and reschedule soon.
396 */
397 static bool set_nr_if_polling(struct task_struct *p)
398 {
399 struct thread_info *ti = task_thread_info(p);
400 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
401
402 for (;;) {
403 if (!(val & _TIF_POLLING_NRFLAG))
404 return false;
405 if (val & _TIF_NEED_RESCHED)
406 return true;
407 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
408 if (old == val)
409 break;
410 val = old;
411 }
412 return true;
413 }
414
415 #else
416 static bool set_nr_and_not_polling(struct task_struct *p)
417 {
418 set_tsk_need_resched(p);
419 return true;
420 }
421
422 #ifdef CONFIG_SMP
423 static bool set_nr_if_polling(struct task_struct *p)
424 {
425 return false;
426 }
427 #endif
428 #endif
429
430 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
431 {
432 struct wake_q_node *node = &task->wake_q;
433
434 /*
435 * Atomically grab the task, if ->wake_q is !nil already it means
436 * its already queued (either by us or someone else) and will get the
437 * wakeup due to that.
438 *
439 * This cmpxchg() implies a full barrier, which pairs with the write
440 * barrier implied by the wakeup in wake_up_q().
441 */
442 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
443 return;
444
445 head->count++;
446
447 get_task_struct(task);
448
449 /*
450 * The head is context local, there can be no concurrency.
451 */
452 *head->lastp = node;
453 head->lastp = &node->next;
454 }
455
456 static int
457 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
458 int sibling_count_hint);
459
460 void wake_up_q(struct wake_q_head *head)
461 {
462 struct wake_q_node *node = head->first;
463
464 while (node != WAKE_Q_TAIL) {
465 struct task_struct *task;
466
467 task = container_of(node, struct task_struct, wake_q);
468 BUG_ON(!task);
469 /* Task can safely be re-inserted now: */
470 node = node->next;
471 task->wake_q.next = NULL;
472
473 /*
474 * try_to_wake_up() implies a wmb() to pair with the queueing
475 * in wake_q_add() so as not to miss wakeups.
476 */
477 try_to_wake_up(task, TASK_NORMAL, 0, head->count);
478 put_task_struct(task);
479 }
480 }
481
482 /*
483 * resched_curr - mark rq's current task 'to be rescheduled now'.
484 *
485 * On UP this means the setting of the need_resched flag, on SMP it
486 * might also involve a cross-CPU call to trigger the scheduler on
487 * the target CPU.
488 */
489 void resched_curr(struct rq *rq)
490 {
491 struct task_struct *curr = rq->curr;
492 int cpu;
493
494 lockdep_assert_held(&rq->lock);
495
496 if (test_tsk_need_resched(curr))
497 return;
498
499 cpu = cpu_of(rq);
500
501 if (cpu == smp_processor_id()) {
502 set_tsk_need_resched(curr);
503 set_preempt_need_resched();
504 return;
505 }
506
507 if (set_nr_and_not_polling(curr))
508 smp_send_reschedule(cpu);
509 else
510 trace_sched_wake_idle_without_ipi(cpu);
511 }
512
513 void resched_cpu(int cpu)
514 {
515 struct rq *rq = cpu_rq(cpu);
516 unsigned long flags;
517
518 raw_spin_lock_irqsave(&rq->lock, flags);
519 if (cpu_online(cpu) || cpu == smp_processor_id())
520 resched_curr(rq);
521 raw_spin_unlock_irqrestore(&rq->lock, flags);
522 }
523
524 #ifdef CONFIG_SMP
525 #ifdef CONFIG_NO_HZ_COMMON
526 /*
527 * In the semi idle case, use the nearest busy CPU for migrating timers
528 * from an idle CPU. This is good for power-savings.
529 *
530 * We don't do similar optimization for completely idle system, as
531 * selecting an idle CPU will add more delays to the timers than intended
532 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
533 */
534 int get_nohz_timer_target(void)
535 {
536 int i, cpu = smp_processor_id();
537 struct sched_domain *sd;
538
539 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
540 return cpu;
541
542 rcu_read_lock();
543 for_each_domain(cpu, sd) {
544 for_each_cpu(i, sched_domain_span(sd)) {
545 if (cpu == i)
546 continue;
547
548 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
549 cpu = i;
550 goto unlock;
551 }
552 }
553 }
554
555 if (!is_housekeeping_cpu(cpu))
556 cpu = housekeeping_any_cpu();
557 unlock:
558 rcu_read_unlock();
559 return cpu;
560 }
561
562 /*
563 * When add_timer_on() enqueues a timer into the timer wheel of an
564 * idle CPU then this timer might expire before the next timer event
565 * which is scheduled to wake up that CPU. In case of a completely
566 * idle system the next event might even be infinite time into the
567 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
568 * leaves the inner idle loop so the newly added timer is taken into
569 * account when the CPU goes back to idle and evaluates the timer
570 * wheel for the next timer event.
571 */
572 static void wake_up_idle_cpu(int cpu)
573 {
574 struct rq *rq = cpu_rq(cpu);
575
576 if (cpu == smp_processor_id())
577 return;
578
579 if (set_nr_and_not_polling(rq->idle))
580 smp_send_reschedule(cpu);
581 else
582 trace_sched_wake_idle_without_ipi(cpu);
583 }
584
585 static bool wake_up_full_nohz_cpu(int cpu)
586 {
587 /*
588 * We just need the target to call irq_exit() and re-evaluate
589 * the next tick. The nohz full kick at least implies that.
590 * If needed we can still optimize that later with an
591 * empty IRQ.
592 */
593 if (cpu_is_offline(cpu))
594 return true; /* Don't try to wake offline CPUs. */
595 if (tick_nohz_full_cpu(cpu)) {
596 if (cpu != smp_processor_id() ||
597 tick_nohz_tick_stopped())
598 tick_nohz_full_kick_cpu(cpu);
599 return true;
600 }
601
602 return false;
603 }
604
605 /*
606 * Wake up the specified CPU. If the CPU is going offline, it is the
607 * caller's responsibility to deal with the lost wakeup, for example,
608 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
609 */
610 void wake_up_nohz_cpu(int cpu)
611 {
612 if (!wake_up_full_nohz_cpu(cpu))
613 wake_up_idle_cpu(cpu);
614 }
615
616 static inline bool got_nohz_idle_kick(void)
617 {
618 int cpu = smp_processor_id();
619
620 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
621 return false;
622
623 if (idle_cpu(cpu) && !need_resched())
624 return true;
625
626 /*
627 * We can't run Idle Load Balance on this CPU for this time so we
628 * cancel it and clear NOHZ_BALANCE_KICK
629 */
630 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
631 return false;
632 }
633
634 #else /* CONFIG_NO_HZ_COMMON */
635
636 static inline bool got_nohz_idle_kick(void)
637 {
638 return false;
639 }
640
641 #endif /* CONFIG_NO_HZ_COMMON */
642
643 #ifdef CONFIG_NO_HZ_FULL
644 bool sched_can_stop_tick(struct rq *rq)
645 {
646 int fifo_nr_running;
647
648 /* Deadline tasks, even if single, need the tick */
649 if (rq->dl.dl_nr_running)
650 return false;
651
652 /*
653 * If there are more than one RR tasks, we need the tick to effect the
654 * actual RR behaviour.
655 */
656 if (rq->rt.rr_nr_running) {
657 if (rq->rt.rr_nr_running == 1)
658 return true;
659 else
660 return false;
661 }
662
663 /*
664 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
665 * forced preemption between FIFO tasks.
666 */
667 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
668 if (fifo_nr_running)
669 return true;
670
671 /*
672 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
673 * if there's more than one we need the tick for involuntary
674 * preemption.
675 */
676 if (rq->nr_running > 1)
677 return false;
678
679 return true;
680 }
681 #endif /* CONFIG_NO_HZ_FULL */
682
683 void sched_avg_update(struct rq *rq)
684 {
685 s64 period = sched_avg_period();
686
687 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
688 /*
689 * Inline assembly required to prevent the compiler
690 * optimising this loop into a divmod call.
691 * See __iter_div_u64_rem() for another example of this.
692 */
693 asm("" : "+rm" (rq->age_stamp));
694 rq->age_stamp += period;
695 rq->rt_avg /= 2;
696 }
697 }
698
699 #endif /* CONFIG_SMP */
700
701 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
702 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
703 /*
704 * Iterate task_group tree rooted at *from, calling @down when first entering a
705 * node and @up when leaving it for the final time.
706 *
707 * Caller must hold rcu_lock or sufficient equivalent.
708 */
709 int walk_tg_tree_from(struct task_group *from,
710 tg_visitor down, tg_visitor up, void *data)
711 {
712 struct task_group *parent, *child;
713 int ret;
714
715 parent = from;
716
717 down:
718 ret = (*down)(parent, data);
719 if (ret)
720 goto out;
721 list_for_each_entry_rcu(child, &parent->children, siblings) {
722 parent = child;
723 goto down;
724
725 up:
726 continue;
727 }
728 ret = (*up)(parent, data);
729 if (ret || parent == from)
730 goto out;
731
732 child = parent;
733 parent = parent->parent;
734 if (parent)
735 goto up;
736 out:
737 return ret;
738 }
739
740 int tg_nop(struct task_group *tg, void *data)
741 {
742 return 0;
743 }
744 #endif
745
746 static void set_load_weight(struct task_struct *p)
747 {
748 int prio = p->static_prio - MAX_RT_PRIO;
749 struct load_weight *load = &p->se.load;
750
751 /*
752 * SCHED_IDLE tasks get minimal weight:
753 */
754 if (idle_policy(p->policy)) {
755 load->weight = scale_load(WEIGHT_IDLEPRIO);
756 load->inv_weight = WMULT_IDLEPRIO;
757 return;
758 }
759
760 load->weight = scale_load(sched_prio_to_weight[prio]);
761 load->inv_weight = sched_prio_to_wmult[prio];
762 }
763
764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 if (!(flags & ENQUEUE_NOCLOCK))
767 update_rq_clock(rq);
768
769 if (!(flags & ENQUEUE_RESTORE))
770 sched_info_queued(rq, p);
771
772 p->sched_class->enqueue_task(rq, p, flags);
773 }
774
775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 if (!(flags & DEQUEUE_NOCLOCK))
778 update_rq_clock(rq);
779
780 if (!(flags & DEQUEUE_SAVE))
781 sched_info_dequeued(rq, p);
782
783 p->sched_class->dequeue_task(rq, p, flags);
784 }
785
786 void activate_task(struct rq *rq, struct task_struct *p, int flags)
787 {
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
790
791 enqueue_task(rq, p, flags);
792 }
793
794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795 {
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
798
799 dequeue_task(rq, p, flags);
800 }
801
802 /*
803 * __normal_prio - return the priority that is based on the static prio
804 */
805 static inline int __normal_prio(struct task_struct *p)
806 {
807 return p->static_prio;
808 }
809
810 /*
811 * Calculate the expected normal priority: i.e. priority
812 * without taking RT-inheritance into account. Might be
813 * boosted by interactivity modifiers. Changes upon fork,
814 * setprio syscalls, and whenever the interactivity
815 * estimator recalculates.
816 */
817 static inline int normal_prio(struct task_struct *p)
818 {
819 int prio;
820
821 if (task_has_dl_policy(p))
822 prio = MAX_DL_PRIO-1;
823 else if (task_has_rt_policy(p))
824 prio = MAX_RT_PRIO-1 - p->rt_priority;
825 else
826 prio = __normal_prio(p);
827 return prio;
828 }
829
830 /*
831 * Calculate the current priority, i.e. the priority
832 * taken into account by the scheduler. This value might
833 * be boosted by RT tasks, or might be boosted by
834 * interactivity modifiers. Will be RT if the task got
835 * RT-boosted. If not then it returns p->normal_prio.
836 */
837 static int effective_prio(struct task_struct *p)
838 {
839 p->normal_prio = normal_prio(p);
840 /*
841 * If we are RT tasks or we were boosted to RT priority,
842 * keep the priority unchanged. Otherwise, update priority
843 * to the normal priority:
844 */
845 if (!rt_prio(p->prio))
846 return p->normal_prio;
847 return p->prio;
848 }
849
850 /**
851 * task_curr - is this task currently executing on a CPU?
852 * @p: the task in question.
853 *
854 * Return: 1 if the task is currently executing. 0 otherwise.
855 */
856 inline int task_curr(const struct task_struct *p)
857 {
858 return cpu_curr(task_cpu(p)) == p;
859 }
860
861 /*
862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863 * use the balance_callback list if you want balancing.
864 *
865 * this means any call to check_class_changed() must be followed by a call to
866 * balance_callback().
867 */
868 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 const struct sched_class *prev_class,
870 int oldprio)
871 {
872 if (prev_class != p->sched_class) {
873 if (prev_class->switched_from)
874 prev_class->switched_from(rq, p);
875
876 p->sched_class->switched_to(rq, p);
877 } else if (oldprio != p->prio || dl_task(p))
878 p->sched_class->prio_changed(rq, p, oldprio);
879 }
880
881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
882 {
883 const struct sched_class *class;
884
885 if (p->sched_class == rq->curr->sched_class) {
886 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887 } else {
888 for_each_class(class) {
889 if (class == rq->curr->sched_class)
890 break;
891 if (class == p->sched_class) {
892 resched_curr(rq);
893 break;
894 }
895 }
896 }
897
898 /*
899 * A queue event has occurred, and we're going to schedule. In
900 * this case, we can save a useless back to back clock update.
901 */
902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903 rq_clock_skip_update(rq, true);
904 }
905
906 #ifdef CONFIG_SMP
907
908 static inline bool is_per_cpu_kthread(struct task_struct *p)
909 {
910 if (!(p->flags & PF_KTHREAD))
911 return false;
912
913 if (p->nr_cpus_allowed != 1)
914 return false;
915
916 return true;
917 }
918
919 /*
920 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
921 * __set_cpus_allowed_ptr() and select_fallback_rq().
922 */
923 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
924 {
925 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
926 return false;
927
928 if (is_per_cpu_kthread(p))
929 return cpu_online(cpu);
930
931 return cpu_active(cpu);
932 }
933
934 /*
935 * This is how migration works:
936 *
937 * 1) we invoke migration_cpu_stop() on the target CPU using
938 * stop_one_cpu().
939 * 2) stopper starts to run (implicitly forcing the migrated thread
940 * off the CPU)
941 * 3) it checks whether the migrated task is still in the wrong runqueue.
942 * 4) if it's in the wrong runqueue then the migration thread removes
943 * it and puts it into the right queue.
944 * 5) stopper completes and stop_one_cpu() returns and the migration
945 * is done.
946 */
947
948 /*
949 * move_queued_task - move a queued task to new rq.
950 *
951 * Returns (locked) new rq. Old rq's lock is released.
952 */
953 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
954 struct task_struct *p, int new_cpu)
955 {
956 lockdep_assert_held(&rq->lock);
957
958 p->on_rq = TASK_ON_RQ_MIGRATING;
959 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
960 set_task_cpu(p, new_cpu);
961 rq_unlock(rq, rf);
962
963 rq = cpu_rq(new_cpu);
964
965 rq_lock(rq, rf);
966 BUG_ON(task_cpu(p) != new_cpu);
967 enqueue_task(rq, p, 0);
968 p->on_rq = TASK_ON_RQ_QUEUED;
969 check_preempt_curr(rq, p, 0);
970
971 return rq;
972 }
973
974 struct migration_arg {
975 struct task_struct *task;
976 int dest_cpu;
977 };
978
979 /*
980 * Move (not current) task off this CPU, onto the destination CPU. We're doing
981 * this because either it can't run here any more (set_cpus_allowed()
982 * away from this CPU, or CPU going down), or because we're
983 * attempting to rebalance this task on exec (sched_exec).
984 *
985 * So we race with normal scheduler movements, but that's OK, as long
986 * as the task is no longer on this CPU.
987 */
988 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
989 struct task_struct *p, int dest_cpu)
990 {
991 /* Affinity changed (again). */
992 if (!is_cpu_allowed(p, dest_cpu))
993 return rq;
994
995 update_rq_clock(rq);
996 rq = move_queued_task(rq, rf, p, dest_cpu);
997
998 return rq;
999 }
1000
1001 /*
1002 * migration_cpu_stop - this will be executed by a highprio stopper thread
1003 * and performs thread migration by bumping thread off CPU then
1004 * 'pushing' onto another runqueue.
1005 */
1006 static int migration_cpu_stop(void *data)
1007 {
1008 struct migration_arg *arg = data;
1009 struct task_struct *p = arg->task;
1010 struct rq *rq = this_rq();
1011 struct rq_flags rf;
1012
1013 /*
1014 * The original target CPU might have gone down and we might
1015 * be on another CPU but it doesn't matter.
1016 */
1017 local_irq_disable();
1018 /*
1019 * We need to explicitly wake pending tasks before running
1020 * __migrate_task() such that we will not miss enforcing cpus_allowed
1021 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1022 */
1023 sched_ttwu_pending();
1024
1025 raw_spin_lock(&p->pi_lock);
1026 rq_lock(rq, &rf);
1027 /*
1028 * If task_rq(p) != rq, it cannot be migrated here, because we're
1029 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1030 * we're holding p->pi_lock.
1031 */
1032 if (task_rq(p) == rq) {
1033 if (task_on_rq_queued(p))
1034 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1035 else
1036 p->wake_cpu = arg->dest_cpu;
1037 }
1038 rq_unlock(rq, &rf);
1039 raw_spin_unlock(&p->pi_lock);
1040
1041 local_irq_enable();
1042 return 0;
1043 }
1044
1045 /*
1046 * sched_class::set_cpus_allowed must do the below, but is not required to
1047 * actually call this function.
1048 */
1049 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1050 {
1051 cpumask_copy(&p->cpus_allowed, new_mask);
1052 p->nr_cpus_allowed = cpumask_weight(new_mask);
1053 }
1054
1055 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1056 {
1057 struct rq *rq = task_rq(p);
1058 bool queued, running;
1059
1060 lockdep_assert_held(&p->pi_lock);
1061
1062 queued = task_on_rq_queued(p);
1063 running = task_current(rq, p);
1064
1065 if (queued) {
1066 /*
1067 * Because __kthread_bind() calls this on blocked tasks without
1068 * holding rq->lock.
1069 */
1070 lockdep_assert_held(&rq->lock);
1071 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1072 }
1073 if (running)
1074 put_prev_task(rq, p);
1075
1076 p->sched_class->set_cpus_allowed(p, new_mask);
1077
1078 if (queued)
1079 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1080 if (running)
1081 set_curr_task(rq, p);
1082 }
1083
1084 /*
1085 * Change a given task's CPU affinity. Migrate the thread to a
1086 * proper CPU and schedule it away if the CPU it's executing on
1087 * is removed from the allowed bitmask.
1088 *
1089 * NOTE: the caller must have a valid reference to the task, the
1090 * task must not exit() & deallocate itself prematurely. The
1091 * call is not atomic; no spinlocks may be held.
1092 */
1093 static int __set_cpus_allowed_ptr(struct task_struct *p,
1094 const struct cpumask *new_mask, bool check)
1095 {
1096 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1097 unsigned int dest_cpu;
1098 struct rq_flags rf;
1099 struct rq *rq;
1100 int ret = 0;
1101
1102 rq = task_rq_lock(p, &rf);
1103 update_rq_clock(rq);
1104
1105 if (p->flags & PF_KTHREAD) {
1106 /*
1107 * Kernel threads are allowed on online && !active CPUs
1108 */
1109 cpu_valid_mask = cpu_online_mask;
1110 }
1111
1112 /*
1113 * Must re-check here, to close a race against __kthread_bind(),
1114 * sched_setaffinity() is not guaranteed to observe the flag.
1115 */
1116 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1117 ret = -EINVAL;
1118 goto out;
1119 }
1120
1121 if (cpumask_equal(&p->cpus_allowed, new_mask))
1122 goto out;
1123
1124 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1125 ret = -EINVAL;
1126 goto out;
1127 }
1128
1129 do_set_cpus_allowed(p, new_mask);
1130
1131 if (p->flags & PF_KTHREAD) {
1132 /*
1133 * For kernel threads that do indeed end up on online &&
1134 * !active we want to ensure they are strict per-CPU threads.
1135 */
1136 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1137 !cpumask_intersects(new_mask, cpu_active_mask) &&
1138 p->nr_cpus_allowed != 1);
1139 }
1140
1141 /* Can the task run on the task's current CPU? If so, we're done */
1142 if (cpumask_test_cpu(task_cpu(p), new_mask))
1143 goto out;
1144
1145 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1146 if (task_running(rq, p) || p->state == TASK_WAKING) {
1147 struct migration_arg arg = { p, dest_cpu };
1148 /* Need help from migration thread: drop lock and wait. */
1149 task_rq_unlock(rq, p, &rf);
1150 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1151 tlb_migrate_finish(p->mm);
1152 return 0;
1153 } else if (task_on_rq_queued(p)) {
1154 /*
1155 * OK, since we're going to drop the lock immediately
1156 * afterwards anyway.
1157 */
1158 rq = move_queued_task(rq, &rf, p, dest_cpu);
1159 }
1160 out:
1161 task_rq_unlock(rq, p, &rf);
1162
1163 return ret;
1164 }
1165
1166 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1167 {
1168 return __set_cpus_allowed_ptr(p, new_mask, false);
1169 }
1170 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1171
1172 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1173 {
1174 #ifdef CONFIG_SCHED_DEBUG
1175 /*
1176 * We should never call set_task_cpu() on a blocked task,
1177 * ttwu() will sort out the placement.
1178 */
1179 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1180 !p->on_rq);
1181
1182 /*
1183 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1184 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1185 * time relying on p->on_rq.
1186 */
1187 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1188 p->sched_class == &fair_sched_class &&
1189 (p->on_rq && !task_on_rq_migrating(p)));
1190
1191 #ifdef CONFIG_LOCKDEP
1192 /*
1193 * The caller should hold either p->pi_lock or rq->lock, when changing
1194 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1195 *
1196 * sched_move_task() holds both and thus holding either pins the cgroup,
1197 * see task_group().
1198 *
1199 * Furthermore, all task_rq users should acquire both locks, see
1200 * task_rq_lock().
1201 */
1202 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1203 lockdep_is_held(&task_rq(p)->lock)));
1204 #endif
1205 /*
1206 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1207 */
1208 WARN_ON_ONCE(!cpu_online(new_cpu));
1209 #endif
1210
1211 trace_sched_migrate_task(p, new_cpu);
1212
1213 if (task_cpu(p) != new_cpu) {
1214 if (p->sched_class->migrate_task_rq)
1215 p->sched_class->migrate_task_rq(p);
1216 p->se.nr_migrations++;
1217 perf_event_task_migrate(p);
1218
1219 walt_fixup_busy_time(p, new_cpu);
1220 }
1221
1222 __set_task_cpu(p, new_cpu);
1223 }
1224
1225 static void __migrate_swap_task(struct task_struct *p, int cpu)
1226 {
1227 if (task_on_rq_queued(p)) {
1228 struct rq *src_rq, *dst_rq;
1229 struct rq_flags srf, drf;
1230
1231 src_rq = task_rq(p);
1232 dst_rq = cpu_rq(cpu);
1233
1234 rq_pin_lock(src_rq, &srf);
1235 rq_pin_lock(dst_rq, &drf);
1236
1237 p->on_rq = TASK_ON_RQ_MIGRATING;
1238 deactivate_task(src_rq, p, 0);
1239 set_task_cpu(p, cpu);
1240 activate_task(dst_rq, p, 0);
1241 p->on_rq = TASK_ON_RQ_QUEUED;
1242 check_preempt_curr(dst_rq, p, 0);
1243
1244 rq_unpin_lock(dst_rq, &drf);
1245 rq_unpin_lock(src_rq, &srf);
1246
1247 } else {
1248 /*
1249 * Task isn't running anymore; make it appear like we migrated
1250 * it before it went to sleep. This means on wakeup we make the
1251 * previous CPU our target instead of where it really is.
1252 */
1253 p->wake_cpu = cpu;
1254 }
1255 }
1256
1257 struct migration_swap_arg {
1258 struct task_struct *src_task, *dst_task;
1259 int src_cpu, dst_cpu;
1260 };
1261
1262 static int migrate_swap_stop(void *data)
1263 {
1264 struct migration_swap_arg *arg = data;
1265 struct rq *src_rq, *dst_rq;
1266 int ret = -EAGAIN;
1267
1268 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1269 return -EAGAIN;
1270
1271 src_rq = cpu_rq(arg->src_cpu);
1272 dst_rq = cpu_rq(arg->dst_cpu);
1273
1274 double_raw_lock(&arg->src_task->pi_lock,
1275 &arg->dst_task->pi_lock);
1276 double_rq_lock(src_rq, dst_rq);
1277
1278 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1279 goto unlock;
1280
1281 if (task_cpu(arg->src_task) != arg->src_cpu)
1282 goto unlock;
1283
1284 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1285 goto unlock;
1286
1287 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1288 goto unlock;
1289
1290 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1291 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1292
1293 ret = 0;
1294
1295 unlock:
1296 double_rq_unlock(src_rq, dst_rq);
1297 raw_spin_unlock(&arg->dst_task->pi_lock);
1298 raw_spin_unlock(&arg->src_task->pi_lock);
1299
1300 return ret;
1301 }
1302
1303 /*
1304 * Cross migrate two tasks
1305 */
1306 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1307 {
1308 struct migration_swap_arg arg;
1309 int ret = -EINVAL;
1310
1311 arg = (struct migration_swap_arg){
1312 .src_task = cur,
1313 .src_cpu = task_cpu(cur),
1314 .dst_task = p,
1315 .dst_cpu = task_cpu(p),
1316 };
1317
1318 if (arg.src_cpu == arg.dst_cpu)
1319 goto out;
1320
1321 /*
1322 * These three tests are all lockless; this is OK since all of them
1323 * will be re-checked with proper locks held further down the line.
1324 */
1325 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1326 goto out;
1327
1328 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1329 goto out;
1330
1331 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1332 goto out;
1333
1334 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1335 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1336
1337 out:
1338 return ret;
1339 }
1340
1341 /*
1342 * wait_task_inactive - wait for a thread to unschedule.
1343 *
1344 * If @match_state is nonzero, it's the @p->state value just checked and
1345 * not expected to change. If it changes, i.e. @p might have woken up,
1346 * then return zero. When we succeed in waiting for @p to be off its CPU,
1347 * we return a positive number (its total switch count). If a second call
1348 * a short while later returns the same number, the caller can be sure that
1349 * @p has remained unscheduled the whole time.
1350 *
1351 * The caller must ensure that the task *will* unschedule sometime soon,
1352 * else this function might spin for a *long* time. This function can't
1353 * be called with interrupts off, or it may introduce deadlock with
1354 * smp_call_function() if an IPI is sent by the same process we are
1355 * waiting to become inactive.
1356 */
1357 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1358 {
1359 int running, queued;
1360 struct rq_flags rf;
1361 unsigned long ncsw;
1362 struct rq *rq;
1363
1364 for (;;) {
1365 /*
1366 * We do the initial early heuristics without holding
1367 * any task-queue locks at all. We'll only try to get
1368 * the runqueue lock when things look like they will
1369 * work out!
1370 */
1371 rq = task_rq(p);
1372
1373 /*
1374 * If the task is actively running on another CPU
1375 * still, just relax and busy-wait without holding
1376 * any locks.
1377 *
1378 * NOTE! Since we don't hold any locks, it's not
1379 * even sure that "rq" stays as the right runqueue!
1380 * But we don't care, since "task_running()" will
1381 * return false if the runqueue has changed and p
1382 * is actually now running somewhere else!
1383 */
1384 while (task_running(rq, p)) {
1385 if (match_state && unlikely(p->state != match_state))
1386 return 0;
1387 cpu_relax();
1388 }
1389
1390 /*
1391 * Ok, time to look more closely! We need the rq
1392 * lock now, to be *sure*. If we're wrong, we'll
1393 * just go back and repeat.
1394 */
1395 rq = task_rq_lock(p, &rf);
1396 trace_sched_wait_task(p);
1397 running = task_running(rq, p);
1398 queued = task_on_rq_queued(p);
1399 ncsw = 0;
1400 if (!match_state || p->state == match_state)
1401 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1402 task_rq_unlock(rq, p, &rf);
1403
1404 /*
1405 * If it changed from the expected state, bail out now.
1406 */
1407 if (unlikely(!ncsw))
1408 break;
1409
1410 /*
1411 * Was it really running after all now that we
1412 * checked with the proper locks actually held?
1413 *
1414 * Oops. Go back and try again..
1415 */
1416 if (unlikely(running)) {
1417 cpu_relax();
1418 continue;
1419 }
1420
1421 /*
1422 * It's not enough that it's not actively running,
1423 * it must be off the runqueue _entirely_, and not
1424 * preempted!
1425 *
1426 * So if it was still runnable (but just not actively
1427 * running right now), it's preempted, and we should
1428 * yield - it could be a while.
1429 */
1430 if (unlikely(queued)) {
1431 ktime_t to = NSEC_PER_SEC / HZ;
1432
1433 set_current_state(TASK_UNINTERRUPTIBLE);
1434 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1435 continue;
1436 }
1437
1438 /*
1439 * Ahh, all good. It wasn't running, and it wasn't
1440 * runnable, which means that it will never become
1441 * running in the future either. We're all done!
1442 */
1443 break;
1444 }
1445
1446 return ncsw;
1447 }
1448
1449 /***
1450 * kick_process - kick a running thread to enter/exit the kernel
1451 * @p: the to-be-kicked thread
1452 *
1453 * Cause a process which is running on another CPU to enter
1454 * kernel-mode, without any delay. (to get signals handled.)
1455 *
1456 * NOTE: this function doesn't have to take the runqueue lock,
1457 * because all it wants to ensure is that the remote task enters
1458 * the kernel. If the IPI races and the task has been migrated
1459 * to another CPU then no harm is done and the purpose has been
1460 * achieved as well.
1461 */
1462 void kick_process(struct task_struct *p)
1463 {
1464 int cpu;
1465
1466 preempt_disable();
1467 cpu = task_cpu(p);
1468 if ((cpu != smp_processor_id()) && task_curr(p))
1469 smp_send_reschedule(cpu);
1470 preempt_enable();
1471 }
1472 EXPORT_SYMBOL_GPL(kick_process);
1473
1474 /*
1475 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1476 *
1477 * A few notes on cpu_active vs cpu_online:
1478 *
1479 * - cpu_active must be a subset of cpu_online
1480 *
1481 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1482 * see __set_cpus_allowed_ptr(). At this point the newly online
1483 * CPU isn't yet part of the sched domains, and balancing will not
1484 * see it.
1485 *
1486 * - on CPU-down we clear cpu_active() to mask the sched domains and
1487 * avoid the load balancer to place new tasks on the to be removed
1488 * CPU. Existing tasks will remain running there and will be taken
1489 * off.
1490 *
1491 * This means that fallback selection must not select !active CPUs.
1492 * And can assume that any active CPU must be online. Conversely
1493 * select_task_rq() below may allow selection of !active CPUs in order
1494 * to satisfy the above rules.
1495 */
1496 static int select_fallback_rq(int cpu, struct task_struct *p)
1497 {
1498 int nid = cpu_to_node(cpu);
1499 const struct cpumask *nodemask = NULL;
1500 enum { cpuset, possible, fail } state = cpuset;
1501 int dest_cpu;
1502
1503 /*
1504 * If the node that the CPU is on has been offlined, cpu_to_node()
1505 * will return -1. There is no CPU on the node, and we should
1506 * select the CPU on the other node.
1507 */
1508 if (nid != -1) {
1509 nodemask = cpumask_of_node(nid);
1510
1511 /* Look for allowed, online CPU in same node. */
1512 for_each_cpu(dest_cpu, nodemask) {
1513 if (!cpu_active(dest_cpu))
1514 continue;
1515 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1516 return dest_cpu;
1517 }
1518 }
1519
1520 for (;;) {
1521 /* Any allowed, online CPU? */
1522 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1523 if (!is_cpu_allowed(p, dest_cpu))
1524 continue;
1525
1526 goto out;
1527 }
1528
1529 /* No more Mr. Nice Guy. */
1530 switch (state) {
1531 case cpuset:
1532 if (IS_ENABLED(CONFIG_CPUSETS)) {
1533 cpuset_cpus_allowed_fallback(p);
1534 state = possible;
1535 break;
1536 }
1537 /* Fall-through */
1538 case possible:
1539 do_set_cpus_allowed(p, cpu_possible_mask);
1540 state = fail;
1541 break;
1542
1543 case fail:
1544 BUG();
1545 break;
1546 }
1547 }
1548
1549 out:
1550 if (state != cpuset) {
1551 /*
1552 * Don't tell them about moving exiting tasks or
1553 * kernel threads (both mm NULL), since they never
1554 * leave kernel.
1555 */
1556 if (p->mm && printk_ratelimit()) {
1557 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1558 task_pid_nr(p), p->comm, cpu);
1559 }
1560 }
1561
1562 return dest_cpu;
1563 }
1564
1565 /*
1566 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1567 */
1568 static inline
1569 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags,
1570 int sibling_count_hint)
1571 {
1572 lockdep_assert_held(&p->pi_lock);
1573
1574 if (p->nr_cpus_allowed > 1)
1575 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags,
1576 sibling_count_hint);
1577 else
1578 cpu = cpumask_any(&p->cpus_allowed);
1579
1580 /*
1581 * In order not to call set_task_cpu() on a blocking task we need
1582 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1583 * CPU.
1584 *
1585 * Since this is common to all placement strategies, this lives here.
1586 *
1587 * [ this allows ->select_task() to simply return task_cpu(p) and
1588 * not worry about this generic constraint ]
1589 */
1590 if (unlikely(!is_cpu_allowed(p, cpu)))
1591 cpu = select_fallback_rq(task_cpu(p), p);
1592
1593 return cpu;
1594 }
1595
1596 static void update_avg(u64 *avg, u64 sample)
1597 {
1598 s64 diff = sample - *avg;
1599 *avg += diff >> 3;
1600 }
1601
1602 void sched_set_stop_task(int cpu, struct task_struct *stop)
1603 {
1604 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1605 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1606
1607 if (stop) {
1608 /*
1609 * Make it appear like a SCHED_FIFO task, its something
1610 * userspace knows about and won't get confused about.
1611 *
1612 * Also, it will make PI more or less work without too
1613 * much confusion -- but then, stop work should not
1614 * rely on PI working anyway.
1615 */
1616 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1617
1618 stop->sched_class = &stop_sched_class;
1619 }
1620
1621 cpu_rq(cpu)->stop = stop;
1622
1623 if (old_stop) {
1624 /*
1625 * Reset it back to a normal scheduling class so that
1626 * it can die in pieces.
1627 */
1628 old_stop->sched_class = &rt_sched_class;
1629 }
1630 }
1631
1632 #else
1633
1634 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1635 const struct cpumask *new_mask, bool check)
1636 {
1637 return set_cpus_allowed_ptr(p, new_mask);
1638 }
1639
1640 #endif /* CONFIG_SMP */
1641
1642 static void
1643 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1644 {
1645 struct rq *rq;
1646
1647 if (!schedstat_enabled())
1648 return;
1649
1650 rq = this_rq();
1651
1652 #ifdef CONFIG_SMP
1653 if (cpu == rq->cpu) {
1654 schedstat_inc(rq->ttwu_local);
1655 schedstat_inc(p->se.statistics.nr_wakeups_local);
1656 } else {
1657 struct sched_domain *sd;
1658
1659 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1660 rcu_read_lock();
1661 for_each_domain(rq->cpu, sd) {
1662 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1663 schedstat_inc(sd->ttwu_wake_remote);
1664 break;
1665 }
1666 }
1667 rcu_read_unlock();
1668 }
1669
1670 if (wake_flags & WF_MIGRATED)
1671 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1672 #endif /* CONFIG_SMP */
1673
1674 schedstat_inc(rq->ttwu_count);
1675 schedstat_inc(p->se.statistics.nr_wakeups);
1676
1677 if (wake_flags & WF_SYNC)
1678 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1679 }
1680
1681 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1682 {
1683 activate_task(rq, p, en_flags);
1684 p->on_rq = TASK_ON_RQ_QUEUED;
1685
1686 /* If a worker is waking up, notify the workqueue: */
1687 if (p->flags & PF_WQ_WORKER)
1688 wq_worker_waking_up(p, cpu_of(rq));
1689 }
1690
1691 /*
1692 * Mark the task runnable and perform wakeup-preemption.
1693 */
1694 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1695 struct rq_flags *rf)
1696 {
1697 check_preempt_curr(rq, p, wake_flags);
1698 p->state = TASK_RUNNING;
1699 trace_sched_wakeup(p);
1700
1701 #ifdef CONFIG_SMP
1702 if (p->sched_class->task_woken) {
1703 /*
1704 * Our task @p is fully woken up and running; so its safe to
1705 * drop the rq->lock, hereafter rq is only used for statistics.
1706 */
1707 rq_unpin_lock(rq, rf);
1708 p->sched_class->task_woken(rq, p);
1709 rq_repin_lock(rq, rf);
1710 }
1711
1712 if (rq->idle_stamp) {
1713 u64 delta = rq_clock(rq) - rq->idle_stamp;
1714 u64 max = 2*rq->max_idle_balance_cost;
1715
1716 update_avg(&rq->avg_idle, delta);
1717
1718 if (rq->avg_idle > max)
1719 rq->avg_idle = max;
1720
1721 rq->idle_stamp = 0;
1722 }
1723 #endif
1724 }
1725
1726 static void
1727 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1728 struct rq_flags *rf)
1729 {
1730 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1731
1732 lockdep_assert_held(&rq->lock);
1733
1734 #ifdef CONFIG_SMP
1735 if (p->sched_contributes_to_load)
1736 rq->nr_uninterruptible--;
1737
1738 if (wake_flags & WF_MIGRATED)
1739 en_flags |= ENQUEUE_MIGRATED;
1740 #endif
1741
1742 ttwu_activate(rq, p, en_flags);
1743 ttwu_do_wakeup(rq, p, wake_flags, rf);
1744 }
1745
1746 /*
1747 * Called in case the task @p isn't fully descheduled from its runqueue,
1748 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1749 * since all we need to do is flip p->state to TASK_RUNNING, since
1750 * the task is still ->on_rq.
1751 */
1752 static int ttwu_remote(struct task_struct *p, int wake_flags)
1753 {
1754 struct rq_flags rf;
1755 struct rq *rq;
1756 int ret = 0;
1757
1758 rq = __task_rq_lock(p, &rf);
1759 if (task_on_rq_queued(p)) {
1760 /* check_preempt_curr() may use rq clock */
1761 update_rq_clock(rq);
1762 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1763 ret = 1;
1764 }
1765 __task_rq_unlock(rq, &rf);
1766
1767 return ret;
1768 }
1769
1770 #ifdef CONFIG_SMP
1771 void sched_ttwu_pending(void)
1772 {
1773 struct rq *rq = this_rq();
1774 struct llist_node *llist = llist_del_all(&rq->wake_list);
1775 struct task_struct *p, *t;
1776 struct rq_flags rf;
1777
1778 if (!llist)
1779 return;
1780
1781 rq_lock_irqsave(rq, &rf);
1782 update_rq_clock(rq);
1783
1784 llist_for_each_entry_safe(p, t, llist, wake_entry)
1785 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1786
1787 rq_unlock_irqrestore(rq, &rf);
1788 }
1789
1790 void scheduler_ipi(void)
1791 {
1792 /*
1793 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1794 * TIF_NEED_RESCHED remotely (for the first time) will also send
1795 * this IPI.
1796 */
1797 preempt_fold_need_resched();
1798
1799 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1800 return;
1801
1802 /*
1803 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1804 * traditionally all their work was done from the interrupt return
1805 * path. Now that we actually do some work, we need to make sure
1806 * we do call them.
1807 *
1808 * Some archs already do call them, luckily irq_enter/exit nest
1809 * properly.
1810 *
1811 * Arguably we should visit all archs and update all handlers,
1812 * however a fair share of IPIs are still resched only so this would
1813 * somewhat pessimize the simple resched case.
1814 */
1815 irq_enter();
1816 sched_ttwu_pending();
1817
1818 /*
1819 * Check if someone kicked us for doing the nohz idle load balance.
1820 */
1821 if (unlikely(got_nohz_idle_kick())) {
1822 this_rq()->idle_balance = 1;
1823 raise_softirq_irqoff(SCHED_SOFTIRQ);
1824 }
1825 irq_exit();
1826 }
1827
1828 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1829 {
1830 struct rq *rq = cpu_rq(cpu);
1831
1832 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1833
1834 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1835 if (!set_nr_if_polling(rq->idle))
1836 smp_send_reschedule(cpu);
1837 else
1838 trace_sched_wake_idle_without_ipi(cpu);
1839 }
1840 }
1841
1842 void wake_up_if_idle(int cpu)
1843 {
1844 struct rq *rq = cpu_rq(cpu);
1845 struct rq_flags rf;
1846
1847 rcu_read_lock();
1848
1849 if (!is_idle_task(rcu_dereference(rq->curr)))
1850 goto out;
1851
1852 if (set_nr_if_polling(rq->idle)) {
1853 trace_sched_wake_idle_without_ipi(cpu);
1854 } else {
1855 rq_lock_irqsave(rq, &rf);
1856 if (is_idle_task(rq->curr))
1857 smp_send_reschedule(cpu);
1858 /* Else CPU is not idle, do nothing here: */
1859 rq_unlock_irqrestore(rq, &rf);
1860 }
1861
1862 out:
1863 rcu_read_unlock();
1864 }
1865
1866 bool cpus_share_cache(int this_cpu, int that_cpu)
1867 {
1868 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1869 }
1870 #endif /* CONFIG_SMP */
1871
1872 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1873 {
1874 struct rq *rq = cpu_rq(cpu);
1875 struct rq_flags rf;
1876
1877 #if defined(CONFIG_SMP)
1878 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1879 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1880 ttwu_queue_remote(p, cpu, wake_flags);
1881 return;
1882 }
1883 #endif
1884
1885 rq_lock(rq, &rf);
1886 update_rq_clock(rq);
1887 ttwu_do_activate(rq, p, wake_flags, &rf);
1888 rq_unlock(rq, &rf);
1889 }
1890
1891 /*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1898 * execution on its new CPU [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the CPU doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1941 * 2) smp_cond_load_acquire(!X->on_cpu)
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 *
1980 */
1981
1982 #ifdef CONFIG_SMP
1983 #ifdef CONFIG_SCHED_WALT
1984 /* utility function to update walt signals at wakeup */
1985 static inline void walt_try_to_wake_up(struct task_struct *p)
1986 {
1987 struct rq *rq = cpu_rq(task_cpu(p));
1988 struct rq_flags rf;
1989 u64 wallclock;
1990
1991 rq_lock_irqsave(rq, &rf);
1992 wallclock = walt_ktime_clock();
1993 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
1994 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
1995 rq_unlock_irqrestore(rq, &rf);
1996 }
1997 #else
1998 #define walt_try_to_wake_up(a) {}
1999 #endif
2000 #endif
2001
2002 /**
2003 * try_to_wake_up - wake up a thread
2004 * @p: the thread to be awakened
2005 * @state: the mask of task states that can be woken
2006 * @wake_flags: wake modifier flags (WF_*)
2007 * @sibling_count_hint: A hint at the number of threads that are being woken up
2008 * in this event.
2009 *
2010 * If (@state & @p->state) @p->state = TASK_RUNNING.
2011 *
2012 * If the task was not queued/runnable, also place it back on a runqueue.
2013 *
2014 * Atomic against schedule() which would dequeue a task, also see
2015 * set_current_state().
2016 *
2017 * Return: %true if @p->state changes (an actual wakeup was done),
2018 * %false otherwise.
2019 */
2020 static int
2021 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
2022 int sibling_count_hint)
2023 {
2024 unsigned long flags;
2025 int cpu, success = 0;
2026
2027 /*
2028 * If we are going to wake up a thread waiting for CONDITION we
2029 * need to ensure that CONDITION=1 done by the caller can not be
2030 * reordered with p->state check below. This pairs with mb() in
2031 * set_current_state() the waiting thread does.
2032 */
2033 raw_spin_lock_irqsave(&p->pi_lock, flags);
2034 smp_mb__after_spinlock();
2035 if (!(p->state & state))
2036 goto out;
2037
2038 trace_sched_waking(p);
2039
2040 /* We're going to change ->state: */
2041 success = 1;
2042 cpu = task_cpu(p);
2043
2044 /*
2045 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2046 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2047 * in smp_cond_load_acquire() below.
2048 *
2049 * sched_ttwu_pending() try_to_wake_up()
2050 * [S] p->on_rq = 1; [L] P->state
2051 * UNLOCK rq->lock -----.
2052 * \
2053 * +--- RMB
2054 * schedule() /
2055 * LOCK rq->lock -----'
2056 * UNLOCK rq->lock
2057 *
2058 * [task p]
2059 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2060 *
2061 * Pairs with the UNLOCK+LOCK on rq->lock from the
2062 * last wakeup of our task and the schedule that got our task
2063 * current.
2064 */
2065 smp_rmb();
2066 if (p->on_rq && ttwu_remote(p, wake_flags))
2067 goto stat;
2068
2069 #ifdef CONFIG_SMP
2070 /*
2071 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2072 * possible to, falsely, observe p->on_cpu == 0.
2073 *
2074 * One must be running (->on_cpu == 1) in order to remove oneself
2075 * from the runqueue.
2076 *
2077 * [S] ->on_cpu = 1; [L] ->on_rq
2078 * UNLOCK rq->lock
2079 * RMB
2080 * LOCK rq->lock
2081 * [S] ->on_rq = 0; [L] ->on_cpu
2082 *
2083 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2084 * from the consecutive calls to schedule(); the first switching to our
2085 * task, the second putting it to sleep.
2086 */
2087 smp_rmb();
2088
2089 /*
2090 * If the owning (remote) CPU is still in the middle of schedule() with
2091 * this task as prev, wait until its done referencing the task.
2092 *
2093 * Pairs with the smp_store_release() in finish_lock_switch().
2094 *
2095 * This ensures that tasks getting woken will be fully ordered against
2096 * their previous state and preserve Program Order.
2097 */
2098 smp_cond_load_acquire(&p->on_cpu, !VAL);
2099
2100 walt_try_to_wake_up(p);
2101
2102 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2103 p->state = TASK_WAKING;
2104
2105 if (p->in_iowait) {
2106 delayacct_blkio_end(p);
2107 atomic_dec(&task_rq(p)->nr_iowait);
2108 }
2109
2110 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags,
2111 sibling_count_hint);
2112 if (task_cpu(p) != cpu) {
2113 wake_flags |= WF_MIGRATED;
2114 set_task_cpu(p, cpu);
2115 }
2116
2117 #else /* CONFIG_SMP */
2118
2119 if (p->in_iowait) {
2120 delayacct_blkio_end(p);
2121 atomic_dec(&task_rq(p)->nr_iowait);
2122 }
2123
2124 #endif /* CONFIG_SMP */
2125
2126 ttwu_queue(p, cpu, wake_flags);
2127 stat:
2128 ttwu_stat(p, cpu, wake_flags);
2129 out:
2130 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2131
2132 return success;
2133 }
2134
2135 /**
2136 * try_to_wake_up_local - try to wake up a local task with rq lock held
2137 * @p: the thread to be awakened
2138 * @rf: request-queue flags for pinning
2139 *
2140 * Put @p on the run-queue if it's not already there. The caller must
2141 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2142 * the current task.
2143 */
2144 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2145 {
2146 struct rq *rq = task_rq(p);
2147
2148 if (WARN_ON_ONCE(rq != this_rq()) ||
2149 WARN_ON_ONCE(p == current))
2150 return;
2151
2152 lockdep_assert_held(&rq->lock);
2153
2154 if (!raw_spin_trylock(&p->pi_lock)) {
2155 /*
2156 * This is OK, because current is on_cpu, which avoids it being
2157 * picked for load-balance and preemption/IRQs are still
2158 * disabled avoiding further scheduler activity on it and we've
2159 * not yet picked a replacement task.
2160 */
2161 rq_unlock(rq, rf);
2162 raw_spin_lock(&p->pi_lock);
2163 rq_relock(rq, rf);
2164 }
2165
2166 if (!(p->state & TASK_NORMAL))
2167 goto out;
2168
2169 trace_sched_waking(p);
2170
2171 if (!task_on_rq_queued(p)) {
2172 u64 wallclock = walt_ktime_clock();
2173
2174 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2175 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2176
2177 if (p->in_iowait) {
2178 delayacct_blkio_end(p);
2179 atomic_dec(&rq->nr_iowait);
2180 }
2181 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2182 }
2183
2184 ttwu_do_wakeup(rq, p, 0, rf);
2185 ttwu_stat(p, smp_processor_id(), 0);
2186 out:
2187 raw_spin_unlock(&p->pi_lock);
2188 }
2189
2190 /**
2191 * wake_up_process - Wake up a specific process
2192 * @p: The process to be woken up.
2193 *
2194 * Attempt to wake up the nominated process and move it to the set of runnable
2195 * processes.
2196 *
2197 * Return: 1 if the process was woken up, 0 if it was already running.
2198 *
2199 * It may be assumed that this function implies a write memory barrier before
2200 * changing the task state if and only if any tasks are woken up.
2201 */
2202 int wake_up_process(struct task_struct *p)
2203 {
2204 return try_to_wake_up(p, TASK_NORMAL, 0, 1);
2205 }
2206 EXPORT_SYMBOL(wake_up_process);
2207
2208 int wake_up_state(struct task_struct *p, unsigned int state)
2209 {
2210 return try_to_wake_up(p, state, 0, 1);
2211 }
2212
2213 /*
2214 * Perform scheduler related setup for a newly forked process p.
2215 * p is forked by current.
2216 *
2217 * __sched_fork() is basic setup used by init_idle() too:
2218 */
2219 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2220 {
2221 p->on_rq = 0;
2222
2223 p->se.on_rq = 0;
2224 p->se.exec_start = 0;
2225 p->se.sum_exec_runtime = 0;
2226 p->se.prev_sum_exec_runtime = 0;
2227 p->se.nr_migrations = 0;
2228 p->se.vruntime = 0;
2229 #ifdef CONFIG_SCHED_WALT
2230 p->last_sleep_ts = 0;
2231 #endif
2232
2233 INIT_LIST_HEAD(&p->se.group_node);
2234 #ifdef CONFIG_SCHED_EMS
2235 rcu_assign_pointer(p->band, NULL);
2236 INIT_LIST_HEAD(&p->band_members);
2237 #endif
2238 walt_init_new_task_load(p);
2239
2240 #ifdef CONFIG_FAIR_GROUP_SCHED
2241 p->se.cfs_rq = NULL;
2242 #endif
2243
2244 #ifdef CONFIG_SCHEDSTATS
2245 /* Even if schedstat is disabled, there should not be garbage */
2246 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2247 #endif
2248
2249 RB_CLEAR_NODE(&p->dl.rb_node);
2250 init_dl_task_timer(&p->dl);
2251 init_dl_inactive_task_timer(&p->dl);
2252 __dl_clear_params(p);
2253
2254 INIT_LIST_HEAD(&p->rt.run_list);
2255 p->rt.timeout = 0;
2256 p->rt.time_slice = sched_rr_timeslice;
2257 p->rt.on_rq = 0;
2258 p->rt.on_list = 0;
2259
2260 #ifdef CONFIG_PREEMPT_NOTIFIERS
2261 INIT_HLIST_HEAD(&p->preempt_notifiers);
2262 #endif
2263
2264 #ifdef CONFIG_NUMA_BALANCING
2265 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2266 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2267 p->mm->numa_scan_seq = 0;
2268 }
2269
2270 if (clone_flags & CLONE_VM)
2271 p->numa_preferred_nid = current->numa_preferred_nid;
2272 else
2273 p->numa_preferred_nid = -1;
2274
2275 p->node_stamp = 0ULL;
2276 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2277 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2278 p->numa_work.next = &p->numa_work;
2279 p->numa_faults = NULL;
2280 p->last_task_numa_placement = 0;
2281 p->last_sum_exec_runtime = 0;
2282
2283 p->numa_group = NULL;
2284 #endif /* CONFIG_NUMA_BALANCING */
2285 }
2286
2287 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2288
2289 #ifdef CONFIG_NUMA_BALANCING
2290
2291 void set_numabalancing_state(bool enabled)
2292 {
2293 if (enabled)
2294 static_branch_enable(&sched_numa_balancing);
2295 else
2296 static_branch_disable(&sched_numa_balancing);
2297 }
2298
2299 #ifdef CONFIG_PROC_SYSCTL
2300 int sysctl_numa_balancing(struct ctl_table *table, int write,
2301 void __user *buffer, size_t *lenp, loff_t *ppos)
2302 {
2303 struct ctl_table t;
2304 int err;
2305 int state = static_branch_likely(&sched_numa_balancing);
2306
2307 if (write && !capable(CAP_SYS_ADMIN))
2308 return -EPERM;
2309
2310 t = *table;
2311 t.data = &state;
2312 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2313 if (err < 0)
2314 return err;
2315 if (write)
2316 set_numabalancing_state(state);
2317 return err;
2318 }
2319 #endif
2320 #endif
2321
2322 #ifdef CONFIG_SCHEDSTATS
2323
2324 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2325 static bool __initdata __sched_schedstats = false;
2326
2327 static void set_schedstats(bool enabled)
2328 {
2329 if (enabled)
2330 static_branch_enable(&sched_schedstats);
2331 else
2332 static_branch_disable(&sched_schedstats);
2333 }
2334
2335 void force_schedstat_enabled(void)
2336 {
2337 if (!schedstat_enabled()) {
2338 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2339 static_branch_enable(&sched_schedstats);
2340 }
2341 }
2342
2343 static int __init setup_schedstats(char *str)
2344 {
2345 int ret = 0;
2346 if (!str)
2347 goto out;
2348
2349 /*
2350 * This code is called before jump labels have been set up, so we can't
2351 * change the static branch directly just yet. Instead set a temporary
2352 * variable so init_schedstats() can do it later.
2353 */
2354 if (!strcmp(str, "enable")) {
2355 __sched_schedstats = true;
2356 ret = 1;
2357 } else if (!strcmp(str, "disable")) {
2358 __sched_schedstats = false;
2359 ret = 1;
2360 }
2361 out:
2362 if (!ret)
2363 pr_warn("Unable to parse schedstats=\n");
2364
2365 return ret;
2366 }
2367 __setup("schedstats=", setup_schedstats);
2368
2369 static void __init init_schedstats(void)
2370 {
2371 set_schedstats(__sched_schedstats);
2372 }
2373
2374 #ifdef CONFIG_PROC_SYSCTL
2375 int sysctl_schedstats(struct ctl_table *table, int write,
2376 void __user *buffer, size_t *lenp, loff_t *ppos)
2377 {
2378 struct ctl_table t;
2379 int err;
2380 int state = static_branch_likely(&sched_schedstats);
2381
2382 if (write && !capable(CAP_SYS_ADMIN))
2383 return -EPERM;
2384
2385 t = *table;
2386 t.data = &state;
2387 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2388 if (err < 0)
2389 return err;
2390 if (write)
2391 set_schedstats(state);
2392 return err;
2393 }
2394 #endif /* CONFIG_PROC_SYSCTL */
2395 #else /* !CONFIG_SCHEDSTATS */
2396 static inline void init_schedstats(void) {}
2397 #endif /* CONFIG_SCHEDSTATS */
2398
2399 /*
2400 * fork()/clone()-time setup:
2401 */
2402 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2403 {
2404 unsigned long flags;
2405 int cpu = get_cpu();
2406
2407 __sched_fork(clone_flags, p);
2408 /*
2409 * We mark the process as NEW here. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2412 */
2413 p->state = TASK_NEW;
2414
2415 /*
2416 * Make sure we do not leak PI boosting priority to the child.
2417 */
2418 p->prio = current->normal_prio;
2419
2420 /*
2421 * Revert to default priority/policy on fork if requested.
2422 */
2423 if (unlikely(p->sched_reset_on_fork)) {
2424 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2425 p->policy = SCHED_NORMAL;
2426 p->static_prio = NICE_TO_PRIO(0);
2427 p->rt_priority = 0;
2428 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2429 p->static_prio = NICE_TO_PRIO(0);
2430
2431 p->prio = p->normal_prio = __normal_prio(p);
2432 set_load_weight(p);
2433
2434 /*
2435 * We don't need the reset flag anymore after the fork. It has
2436 * fulfilled its duty:
2437 */
2438 p->sched_reset_on_fork = 0;
2439 }
2440
2441 if (dl_prio(p->prio)) {
2442 put_cpu();
2443 return -EAGAIN;
2444 } else if (rt_prio(p->prio)) {
2445 p->sched_class = &rt_sched_class;
2446 } else {
2447 p->sched_class = &fair_sched_class;
2448 }
2449
2450 init_entity_runnable_average(&p->se);
2451 init_rt_entity_runnable_average(&p->rt);
2452
2453 /*
2454 * The child is not yet in the pid-hash so no cgroup attach races,
2455 * and the cgroup is pinned to this child due to cgroup_fork()
2456 * is ran before sched_fork().
2457 *
2458 * Silence PROVE_RCU.
2459 */
2460 raw_spin_lock_irqsave(&p->pi_lock, flags);
2461 /*
2462 * We're setting the CPU for the first time, we don't migrate,
2463 * so use __set_task_cpu().
2464 */
2465 __set_task_cpu(p, cpu);
2466 if (p->sched_class->task_fork)
2467 p->sched_class->task_fork(p);
2468 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2469
2470 #ifdef CONFIG_SCHED_INFO
2471 if (likely(sched_info_on()))
2472 memset(&p->sched_info, 0, sizeof(p->sched_info));
2473 #endif
2474 #if defined(CONFIG_SMP)
2475 p->on_cpu = 0;
2476 #endif
2477 init_task_preempt_count(p);
2478 #ifdef CONFIG_SMP
2479 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2480 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2481 #endif
2482
2483 put_cpu();
2484 return 0;
2485 }
2486
2487 unsigned long to_ratio(u64 period, u64 runtime)
2488 {
2489 if (runtime == RUNTIME_INF)
2490 return BW_UNIT;
2491
2492 /*
2493 * Doing this here saves a lot of checks in all
2494 * the calling paths, and returning zero seems
2495 * safe for them anyway.
2496 */
2497 if (period == 0)
2498 return 0;
2499
2500 return div64_u64(runtime << BW_SHIFT, period);
2501 }
2502
2503 /*
2504 * wake_up_new_task - wake up a newly created task for the first time.
2505 *
2506 * This function will do some initial scheduler statistics housekeeping
2507 * that must be done for every newly created context, then puts the task
2508 * on the runqueue and wakes it.
2509 */
2510 void wake_up_new_task(struct task_struct *p)
2511 {
2512 struct rq_flags rf;
2513 struct rq *rq;
2514
2515 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2516
2517 newbie_join_band(p);
2518
2519 walt_init_new_task_load(p);
2520
2521 p->state = TASK_RUNNING;
2522 #ifdef CONFIG_SMP
2523 /*
2524 * Fork balancing, do it here and not earlier because:
2525 * - cpus_allowed can change in the fork path
2526 * - any previously selected CPU might disappear through hotplug
2527 *
2528 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2529 * as we're not fully set-up yet.
2530 */
2531 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0, 1));
2532 #endif
2533 rq = __task_rq_lock(p, &rf);
2534 update_rq_clock(rq);
2535 post_init_entity_util_avg(&p->se);
2536
2537 activate_task(rq, p, ENQUEUE_NOCLOCK);
2538 walt_mark_task_starting(p);
2539
2540 p->on_rq = TASK_ON_RQ_QUEUED;
2541 trace_sched_wakeup_new(p);
2542 check_preempt_curr(rq, p, WF_FORK);
2543 #ifdef CONFIG_SMP
2544 if (p->sched_class->task_woken) {
2545 /*
2546 * Nothing relies on rq->lock after this, so its fine to
2547 * drop it.
2548 */
2549 rq_unpin_lock(rq, &rf);
2550 p->sched_class->task_woken(rq, p);
2551 rq_repin_lock(rq, &rf);
2552 }
2553 #endif
2554 task_rq_unlock(rq, p, &rf);
2555 }
2556
2557 #ifdef CONFIG_PREEMPT_NOTIFIERS
2558
2559 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2560
2561 void preempt_notifier_inc(void)
2562 {
2563 static_key_slow_inc(&preempt_notifier_key);
2564 }
2565 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2566
2567 void preempt_notifier_dec(void)
2568 {
2569 static_key_slow_dec(&preempt_notifier_key);
2570 }
2571 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2572
2573 /**
2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2575 * @notifier: notifier struct to register
2576 */
2577 void preempt_notifier_register(struct preempt_notifier *notifier)
2578 {
2579 if (!static_key_false(&preempt_notifier_key))
2580 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2581
2582 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2583 }
2584 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2585
2586 /**
2587 * preempt_notifier_unregister - no longer interested in preemption notifications
2588 * @notifier: notifier struct to unregister
2589 *
2590 * This is *not* safe to call from within a preemption notifier.
2591 */
2592 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2593 {
2594 hlist_del(&notifier->link);
2595 }
2596 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2597
2598 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2599 {
2600 struct preempt_notifier *notifier;
2601
2602 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2603 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2604 }
2605
2606 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2607 {
2608 if (static_key_false(&preempt_notifier_key))
2609 __fire_sched_in_preempt_notifiers(curr);
2610 }
2611
2612 static void
2613 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2614 struct task_struct *next)
2615 {
2616 struct preempt_notifier *notifier;
2617
2618 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2619 notifier->ops->sched_out(notifier, next);
2620 }
2621
2622 static __always_inline void
2623 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2624 struct task_struct *next)
2625 {
2626 if (static_key_false(&preempt_notifier_key))
2627 __fire_sched_out_preempt_notifiers(curr, next);
2628 }
2629
2630 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2631
2632 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633 {
2634 }
2635
2636 static inline void
2637 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2638 struct task_struct *next)
2639 {
2640 }
2641
2642 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2643
2644 /**
2645 * prepare_task_switch - prepare to switch tasks
2646 * @rq: the runqueue preparing to switch
2647 * @prev: the current task that is being switched out
2648 * @next: the task we are going to switch to.
2649 *
2650 * This is called with the rq lock held and interrupts off. It must
2651 * be paired with a subsequent finish_task_switch after the context
2652 * switch.
2653 *
2654 * prepare_task_switch sets up locking and calls architecture specific
2655 * hooks.
2656 */
2657 static inline void
2658 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2659 struct task_struct *next)
2660 {
2661 sched_info_switch(rq, prev, next);
2662 perf_event_task_sched_out(prev, next);
2663 fire_sched_out_preempt_notifiers(prev, next);
2664 prepare_lock_switch(rq, next);
2665 prepare_arch_switch(next);
2666 }
2667
2668 /**
2669 * finish_task_switch - clean up after a task-switch
2670 * @prev: the thread we just switched away from.
2671 *
2672 * finish_task_switch must be called after the context switch, paired
2673 * with a prepare_task_switch call before the context switch.
2674 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2675 * and do any other architecture-specific cleanup actions.
2676 *
2677 * Note that we may have delayed dropping an mm in context_switch(). If
2678 * so, we finish that here outside of the runqueue lock. (Doing it
2679 * with the lock held can cause deadlocks; see schedule() for
2680 * details.)
2681 *
2682 * The context switch have flipped the stack from under us and restored the
2683 * local variables which were saved when this task called schedule() in the
2684 * past. prev == current is still correct but we need to recalculate this_rq
2685 * because prev may have moved to another CPU.
2686 */
2687 static struct rq *finish_task_switch(struct task_struct *prev)
2688 __releases(rq->lock)
2689 {
2690 struct rq *rq = this_rq();
2691 struct mm_struct *mm = rq->prev_mm;
2692 long prev_state;
2693
2694 /*
2695 * The previous task will have left us with a preempt_count of 2
2696 * because it left us after:
2697 *
2698 * schedule()
2699 * preempt_disable(); // 1
2700 * __schedule()
2701 * raw_spin_lock_irq(&rq->lock) // 2
2702 *
2703 * Also, see FORK_PREEMPT_COUNT.
2704 */
2705 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2706 "corrupted preempt_count: %s/%d/0x%x\n",
2707 current->comm, current->pid, preempt_count()))
2708 preempt_count_set(FORK_PREEMPT_COUNT);
2709
2710 rq->prev_mm = NULL;
2711
2712 /*
2713 * A task struct has one reference for the use as "current".
2714 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2715 * schedule one last time. The schedule call will never return, and
2716 * the scheduled task must drop that reference.
2717 *
2718 * We must observe prev->state before clearing prev->on_cpu (in
2719 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2720 * running on another CPU and we could rave with its RUNNING -> DEAD
2721 * transition, resulting in a double drop.
2722 */
2723 prev_state = prev->state;
2724 vtime_task_switch(prev);
2725 perf_event_task_sched_in(prev, current);
2726 /*
2727 * The membarrier system call requires a full memory barrier
2728 * after storing to rq->curr, before going back to user-space.
2729 *
2730 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2731 * up adding a full barrier to switch_mm(), or we should figure
2732 * out if a smp_mb__after_unlock_lock is really the proper API
2733 * to use.
2734 */
2735 smp_mb__after_unlock_lock();
2736 finish_lock_switch(rq, prev);
2737 finish_arch_post_lock_switch();
2738
2739 fire_sched_in_preempt_notifiers(current);
2740 if (mm)
2741 mmdrop(mm);
2742 if (unlikely(prev_state == TASK_DEAD)) {
2743 if (prev->sched_class->task_dead)
2744 prev->sched_class->task_dead(prev);
2745
2746 /*
2747 * Remove function-return probe instances associated with this
2748 * task and put them back on the free list.
2749 */
2750 kprobe_flush_task(prev);
2751
2752 /* Task is done with its stack. */
2753 put_task_stack(prev);
2754
2755 put_task_struct(prev);
2756 }
2757
2758 tick_nohz_task_switch();
2759 return rq;
2760 }
2761
2762 #ifdef CONFIG_SMP
2763
2764 /* rq->lock is NOT held, but preemption is disabled */
2765 static void __balance_callback(struct rq *rq)
2766 {
2767 struct callback_head *head, *next;
2768 void (*func)(struct rq *rq);
2769 unsigned long flags;
2770
2771 raw_spin_lock_irqsave(&rq->lock, flags);
2772 head = rq->balance_callback;
2773 rq->balance_callback = NULL;
2774 while (head) {
2775 func = (void (*)(struct rq *))head->func;
2776 next = head->next;
2777 head->next = NULL;
2778 head = next;
2779
2780 func(rq);
2781 }
2782 raw_spin_unlock_irqrestore(&rq->lock, flags);
2783 }
2784
2785 static inline void balance_callback(struct rq *rq)
2786 {
2787 if (unlikely(rq->balance_callback))
2788 __balance_callback(rq);
2789 }
2790
2791 #else
2792
2793 static inline void balance_callback(struct rq *rq)
2794 {
2795 }
2796
2797 #endif
2798
2799 /**
2800 * schedule_tail - first thing a freshly forked thread must call.
2801 * @prev: the thread we just switched away from.
2802 */
2803 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2804 __releases(rq->lock)
2805 {
2806 struct rq *rq;
2807
2808 /*
2809 * New tasks start with FORK_PREEMPT_COUNT, see there and
2810 * finish_task_switch() for details.
2811 *
2812 * finish_task_switch() will drop rq->lock() and lower preempt_count
2813 * and the preempt_enable() will end up enabling preemption (on
2814 * PREEMPT_COUNT kernels).
2815 */
2816
2817 rq = finish_task_switch(prev);
2818 balance_callback(rq);
2819 preempt_enable();
2820
2821 if (current->set_child_tid)
2822 put_user(task_pid_vnr(current), current->set_child_tid);
2823 }
2824
2825 /*
2826 * context_switch - switch to the new MM and the new thread's register state.
2827 */
2828 static __always_inline struct rq *
2829 context_switch(struct rq *rq, struct task_struct *prev,
2830 struct task_struct *next, struct rq_flags *rf)
2831 {
2832 struct mm_struct *mm, *oldmm;
2833
2834 prepare_task_switch(rq, prev, next);
2835
2836 mm = next->mm;
2837 oldmm = prev->active_mm;
2838 /*
2839 * For paravirt, this is coupled with an exit in switch_to to
2840 * combine the page table reload and the switch backend into
2841 * one hypercall.
2842 */
2843 arch_start_context_switch(prev);
2844
2845 if (!mm) {
2846 next->active_mm = oldmm;
2847 mmgrab(oldmm);
2848 enter_lazy_tlb(oldmm, next);
2849 } else
2850 switch_mm_irqs_off(oldmm, mm, next);
2851
2852 if (!prev->mm) {
2853 prev->active_mm = NULL;
2854 rq->prev_mm = oldmm;
2855 }
2856
2857 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2858
2859 /*
2860 * Since the runqueue lock will be released by the next
2861 * task (which is an invalid locking op but in the case
2862 * of the scheduler it's an obvious special-case), so we
2863 * do an early lockdep release here:
2864 */
2865 rq_unpin_lock(rq, rf);
2866 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2867
2868 /* Here we just switch the register state and the stack. */
2869 switch_to(prev, next, prev);
2870 barrier();
2871
2872 return finish_task_switch(prev);
2873 }
2874
2875 /*
2876 * nr_running and nr_context_switches:
2877 *
2878 * externally visible scheduler statistics: current number of runnable
2879 * threads, total number of context switches performed since bootup.
2880 */
2881 unsigned long nr_running(void)
2882 {
2883 unsigned long i, sum = 0;
2884
2885 for_each_online_cpu(i)
2886 sum += cpu_rq(i)->nr_running;
2887
2888 return sum;
2889 }
2890
2891 /*
2892 * Check if only the current task is running on the CPU.
2893 *
2894 * Caution: this function does not check that the caller has disabled
2895 * preemption, thus the result might have a time-of-check-to-time-of-use
2896 * race. The caller is responsible to use it correctly, for example:
2897 *
2898 * - from a non-preemptable section (of course)
2899 *
2900 * - from a thread that is bound to a single CPU
2901 *
2902 * - in a loop with very short iterations (e.g. a polling loop)
2903 */
2904 bool single_task_running(void)
2905 {
2906 return raw_rq()->nr_running == 1;
2907 }
2908 EXPORT_SYMBOL(single_task_running);
2909
2910 unsigned long long nr_context_switches(void)
2911 {
2912 int i;
2913 unsigned long long sum = 0;
2914
2915 for_each_possible_cpu(i)
2916 sum += cpu_rq(i)->nr_switches;
2917
2918 return sum;
2919 }
2920
2921 /*
2922 * IO-wait accounting, and how its mostly bollocks (on SMP).
2923 *
2924 * The idea behind IO-wait account is to account the idle time that we could
2925 * have spend running if it were not for IO. That is, if we were to improve the
2926 * storage performance, we'd have a proportional reduction in IO-wait time.
2927 *
2928 * This all works nicely on UP, where, when a task blocks on IO, we account
2929 * idle time as IO-wait, because if the storage were faster, it could've been
2930 * running and we'd not be idle.
2931 *
2932 * This has been extended to SMP, by doing the same for each CPU. This however
2933 * is broken.
2934 *
2935 * Imagine for instance the case where two tasks block on one CPU, only the one
2936 * CPU will have IO-wait accounted, while the other has regular idle. Even
2937 * though, if the storage were faster, both could've ran at the same time,
2938 * utilising both CPUs.
2939 *
2940 * This means, that when looking globally, the current IO-wait accounting on
2941 * SMP is a lower bound, by reason of under accounting.
2942 *
2943 * Worse, since the numbers are provided per CPU, they are sometimes
2944 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2945 * associated with any one particular CPU, it can wake to another CPU than it
2946 * blocked on. This means the per CPU IO-wait number is meaningless.
2947 *
2948 * Task CPU affinities can make all that even more 'interesting'.
2949 */
2950
2951 unsigned long nr_iowait(void)
2952 {
2953 unsigned long i, sum = 0;
2954
2955 for_each_possible_cpu(i)
2956 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2957
2958 return sum;
2959 }
2960
2961 /*
2962 * Consumers of these two interfaces, like for example the cpufreq menu
2963 * governor are using nonsensical data. Boosting frequency for a CPU that has
2964 * IO-wait which might not even end up running the task when it does become
2965 * runnable.
2966 */
2967
2968 unsigned long nr_iowait_cpu(int cpu)
2969 {
2970 struct rq *this = cpu_rq(cpu);
2971 return atomic_read(&this->nr_iowait);
2972 }
2973
2974 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2975 {
2976 struct rq *rq = this_rq();
2977 *nr_waiters = atomic_read(&rq->nr_iowait);
2978 *load = rq->load.weight;
2979 }
2980
2981 #ifdef CONFIG_SMP
2982
2983 /*
2984 * sched_exec - execve() is a valuable balancing opportunity, because at
2985 * this point the task has the smallest effective memory and cache footprint.
2986 */
2987 void sched_exec(void)
2988 {
2989 struct task_struct *p = current;
2990 unsigned long flags;
2991 int dest_cpu;
2992
2993 raw_spin_lock_irqsave(&p->pi_lock, flags);
2994 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0, 1);
2995 if (dest_cpu == smp_processor_id())
2996 goto unlock;
2997
2998 if (likely(cpu_active(dest_cpu))) {
2999 struct migration_arg arg = { p, dest_cpu };
3000
3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3002 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3003 return;
3004 }
3005 unlock:
3006 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3007 }
3008
3009 #endif
3010
3011 DEFINE_PER_CPU(struct kernel_stat, kstat);
3012 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3013
3014 EXPORT_PER_CPU_SYMBOL(kstat);
3015 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3016
3017 /*
3018 * The function fair_sched_class.update_curr accesses the struct curr
3019 * and its field curr->exec_start; when called from task_sched_runtime(),
3020 * we observe a high rate of cache misses in practice.
3021 * Prefetching this data results in improved performance.
3022 */
3023 static inline void prefetch_curr_exec_start(struct task_struct *p)
3024 {
3025 #ifdef CONFIG_FAIR_GROUP_SCHED
3026 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3027 #else
3028 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3029 #endif
3030 prefetch(curr);
3031 prefetch(&curr->exec_start);
3032 }
3033
3034 /*
3035 * Return accounted runtime for the task.
3036 * In case the task is currently running, return the runtime plus current's
3037 * pending runtime that have not been accounted yet.
3038 */
3039 unsigned long long task_sched_runtime(struct task_struct *p)
3040 {
3041 struct rq_flags rf;
3042 struct rq *rq;
3043 u64 ns;
3044
3045 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3046 /*
3047 * 64-bit doesn't need locks to atomically read a 64bit value.
3048 * So we have a optimization chance when the task's delta_exec is 0.
3049 * Reading ->on_cpu is racy, but this is ok.
3050 *
3051 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3052 * If we race with it entering CPU, unaccounted time is 0. This is
3053 * indistinguishable from the read occurring a few cycles earlier.
3054 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3055 * been accounted, so we're correct here as well.
3056 */
3057 if (!p->on_cpu || !task_on_rq_queued(p))
3058 return p->se.sum_exec_runtime;
3059 #endif
3060
3061 rq = task_rq_lock(p, &rf);
3062 /*
3063 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3064 * project cycles that may never be accounted to this
3065 * thread, breaking clock_gettime().
3066 */
3067 if (task_current(rq, p) && task_on_rq_queued(p)) {
3068 prefetch_curr_exec_start(p);
3069 update_rq_clock(rq);
3070 p->sched_class->update_curr(rq);
3071 }
3072 ns = p->se.sum_exec_runtime;
3073 task_rq_unlock(rq, p, &rf);
3074
3075 return ns;
3076 }
3077
3078 /*
3079 * This function gets called by the timer code, with HZ frequency.
3080 * We call it with interrupts disabled.
3081 */
3082 void scheduler_tick(void)
3083 {
3084 int cpu = smp_processor_id();
3085 struct rq *rq = cpu_rq(cpu);
3086 struct task_struct *curr = rq->curr;
3087 struct rq_flags rf;
3088
3089 sched_clock_tick();
3090
3091 rq_lock(rq, &rf);
3092
3093 walt_set_window_start(rq, &rf);
3094 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
3095 walt_ktime_clock(), 0);
3096 update_rq_clock(rq);
3097 curr->sched_class->task_tick(rq, curr, 0);
3098 cpu_load_update_active(rq);
3099 calc_global_load_tick(rq);
3100
3101 rq_unlock(rq, &rf);
3102
3103 perf_event_task_tick();
3104
3105 #ifdef CONFIG_SMP
3106 rq->idle_balance = idle_cpu(cpu);
3107 trigger_load_balance(rq);
3108 #endif
3109 rq_last_tick_reset(rq);
3110
3111 update_band(curr, -1);
3112 }
3113
3114 #ifdef CONFIG_NO_HZ_FULL
3115 /**
3116 * scheduler_tick_max_deferment
3117 *
3118 * Keep at least one tick per second when a single
3119 * active task is running because the scheduler doesn't
3120 * yet completely support full dynticks environment.
3121 *
3122 * This makes sure that uptime, CFS vruntime, load
3123 * balancing, etc... continue to move forward, even
3124 * with a very low granularity.
3125 *
3126 * Return: Maximum deferment in nanoseconds.
3127 */
3128 u64 scheduler_tick_max_deferment(void)
3129 {
3130 struct rq *rq = this_rq();
3131 unsigned long next, now = READ_ONCE(jiffies);
3132
3133 next = rq->last_sched_tick + HZ;
3134
3135 if (time_before_eq(next, now))
3136 return 0;
3137
3138 return jiffies_to_nsecs(next - now);
3139 }
3140 #endif
3141
3142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3143 defined(CONFIG_PREEMPT_TRACER))
3144 /*
3145 * If the value passed in is equal to the current preempt count
3146 * then we just disabled preemption. Start timing the latency.
3147 */
3148 static inline void preempt_latency_start(int val)
3149 {
3150 if (preempt_count() == val) {
3151 unsigned long ip = get_lock_parent_ip();
3152 #ifdef CONFIG_DEBUG_PREEMPT
3153 current->preempt_disable_ip = ip;
3154 #endif
3155 trace_preempt_off(CALLER_ADDR0, ip);
3156 }
3157 }
3158
3159 void preempt_count_add(int val)
3160 {
3161 #ifdef CONFIG_DEBUG_PREEMPT
3162 /*
3163 * Underflow?
3164 */
3165 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3166 return;
3167 #endif
3168 __preempt_count_add(val);
3169 #ifdef CONFIG_DEBUG_PREEMPT
3170 /*
3171 * Spinlock count overflowing soon?
3172 */
3173 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3174 PREEMPT_MASK - 10);
3175 #endif
3176 preempt_latency_start(val);
3177 }
3178 EXPORT_SYMBOL(preempt_count_add);
3179 NOKPROBE_SYMBOL(preempt_count_add);
3180
3181 /*
3182 * If the value passed in equals to the current preempt count
3183 * then we just enabled preemption. Stop timing the latency.
3184 */
3185 static inline void preempt_latency_stop(int val)
3186 {
3187 if (preempt_count() == val)
3188 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3189 }
3190
3191 void preempt_count_sub(int val)
3192 {
3193 #ifdef CONFIG_DEBUG_PREEMPT
3194 /*
3195 * Underflow?
3196 */
3197 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3198 return;
3199 /*
3200 * Is the spinlock portion underflowing?
3201 */
3202 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3203 !(preempt_count() & PREEMPT_MASK)))
3204 return;
3205 #endif
3206
3207 preempt_latency_stop(val);
3208 __preempt_count_sub(val);
3209 }
3210 EXPORT_SYMBOL(preempt_count_sub);
3211 NOKPROBE_SYMBOL(preempt_count_sub);
3212
3213 #else
3214 static inline void preempt_latency_start(int val) { }
3215 static inline void preempt_latency_stop(int val) { }
3216 #endif
3217
3218 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3219 {
3220 #ifdef CONFIG_DEBUG_PREEMPT
3221 return p->preempt_disable_ip;
3222 #else
3223 return 0;
3224 #endif
3225 }
3226
3227 /*
3228 * Print scheduling while atomic bug:
3229 */
3230 static noinline void __schedule_bug(struct task_struct *prev)
3231 {
3232 /* Save this before calling printk(), since that will clobber it */
3233 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3234
3235 if (oops_in_progress)
3236 return;
3237
3238 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3239 prev->comm, prev->pid, preempt_count());
3240
3241 debug_show_held_locks(prev);
3242 print_modules();
3243 if (irqs_disabled())
3244 print_irqtrace_events(prev);
3245 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3246 && in_atomic_preempt_off()) {
3247 pr_err("Preemption disabled at:");
3248 print_ip_sym(preempt_disable_ip);
3249 pr_cont("\n");
3250 }
3251 if (panic_on_warn)
3252 panic("scheduling while atomic\n");
3253
3254 dump_stack();
3255 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3256 }
3257
3258 /*
3259 * Various schedule()-time debugging checks and statistics:
3260 */
3261 static inline void schedule_debug(struct task_struct *prev)
3262 {
3263 #ifdef CONFIG_SCHED_STACK_END_CHECK
3264 if (task_stack_end_corrupted(prev))
3265 panic("corrupted stack end detected inside scheduler\n");
3266 #endif
3267
3268 if (unlikely(in_atomic_preempt_off())) {
3269 __schedule_bug(prev);
3270 preempt_count_set(PREEMPT_DISABLED);
3271 }
3272 rcu_sleep_check();
3273
3274 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3275
3276 schedstat_inc(this_rq()->sched_count);
3277 }
3278
3279 /*
3280 * Pick up the highest-prio task:
3281 */
3282 static inline struct task_struct *
3283 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3284 {
3285 const struct sched_class *class;
3286 struct task_struct *p;
3287
3288 /*
3289 * Optimization: we know that if all tasks are in the fair class we can
3290 * call that function directly, but only if the @prev task wasn't of a
3291 * higher scheduling class, because otherwise those loose the
3292 * opportunity to pull in more work from other CPUs.
3293 */
3294 if (likely((prev->sched_class == &idle_sched_class ||
3295 prev->sched_class == &fair_sched_class) &&
3296 rq->nr_running == rq->cfs.h_nr_running)) {
3297
3298 p = fair_sched_class.pick_next_task(rq, prev, rf);
3299 if (unlikely(p == RETRY_TASK))
3300 goto again;
3301
3302 /* Assumes fair_sched_class->next == idle_sched_class */
3303 if (unlikely(!p))
3304 p = idle_sched_class.pick_next_task(rq, prev, rf);
3305
3306 return p;
3307 }
3308
3309 again:
3310 for_each_class(class) {
3311 p = class->pick_next_task(rq, prev, rf);
3312 if (p) {
3313 if (unlikely(p == RETRY_TASK))
3314 goto again;
3315 return p;
3316 }
3317 }
3318
3319 /* The idle class should always have a runnable task: */
3320 BUG();
3321 }
3322
3323 /*
3324 * __schedule() is the main scheduler function.
3325 *
3326 * The main means of driving the scheduler and thus entering this function are:
3327 *
3328 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3329 *
3330 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3331 * paths. For example, see arch/x86/entry_64.S.
3332 *
3333 * To drive preemption between tasks, the scheduler sets the flag in timer
3334 * interrupt handler scheduler_tick().
3335 *
3336 * 3. Wakeups don't really cause entry into schedule(). They add a
3337 * task to the run-queue and that's it.
3338 *
3339 * Now, if the new task added to the run-queue preempts the current
3340 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3341 * called on the nearest possible occasion:
3342 *
3343 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3344 *
3345 * - in syscall or exception context, at the next outmost
3346 * preempt_enable(). (this might be as soon as the wake_up()'s
3347 * spin_unlock()!)
3348 *
3349 * - in IRQ context, return from interrupt-handler to
3350 * preemptible context
3351 *
3352 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3353 * then at the next:
3354 *
3355 * - cond_resched() call
3356 * - explicit schedule() call
3357 * - return from syscall or exception to user-space
3358 * - return from interrupt-handler to user-space
3359 *
3360 * WARNING: must be called with preemption disabled!
3361 */
3362 static void __sched notrace __schedule(bool preempt)
3363 {
3364 struct task_struct *prev, *next;
3365 unsigned long *switch_count;
3366 struct rq_flags rf;
3367 struct rq *rq;
3368 int cpu;
3369 u64 wallclock;
3370
3371 cpu = smp_processor_id();
3372 rq = cpu_rq(cpu);
3373 prev = rq->curr;
3374
3375 schedule_debug(prev);
3376
3377 if (sched_feat(HRTICK))
3378 hrtick_clear(rq);
3379
3380 local_irq_disable();
3381 rcu_note_context_switch(preempt);
3382
3383 /*
3384 * Make sure that signal_pending_state()->signal_pending() below
3385 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3386 * done by the caller to avoid the race with signal_wake_up().
3387 */
3388 rq_lock(rq, &rf);
3389 smp_mb__after_spinlock();
3390
3391 /* Promote REQ to ACT */
3392 rq->clock_update_flags <<= 1;
3393 update_rq_clock(rq);
3394
3395 switch_count = &prev->nivcsw;
3396 if (!preempt && prev->state) {
3397 if (unlikely(signal_pending_state(prev->state, prev))) {
3398 prev->state = TASK_RUNNING;
3399 } else {
3400 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3401 prev->on_rq = 0;
3402
3403 if (prev->in_iowait) {
3404 atomic_inc(&rq->nr_iowait);
3405 delayacct_blkio_start();
3406 }
3407
3408 /*
3409 * If a worker went to sleep, notify and ask workqueue
3410 * whether it wants to wake up a task to maintain
3411 * concurrency.
3412 */
3413 if (prev->flags & PF_WQ_WORKER) {
3414 struct task_struct *to_wakeup;
3415
3416 to_wakeup = wq_worker_sleeping(prev);
3417 if (to_wakeup)
3418 try_to_wake_up_local(to_wakeup, &rf);
3419 }
3420 }
3421 switch_count = &prev->nvcsw;
3422 }
3423
3424 next = pick_next_task(rq, prev, &rf);
3425 wallclock = walt_ktime_clock();
3426 walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
3427 walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
3428 clear_tsk_need_resched(prev);
3429 clear_preempt_need_resched();
3430
3431 if (likely(prev != next)) {
3432 #ifdef CONFIG_SCHED_WALT
3433 if (!prev->on_rq)
3434 prev->last_sleep_ts = wallclock;
3435 #endif
3436 rq->nr_switches++;
3437 rq->curr = next;
3438 /*
3439 * The membarrier system call requires each architecture
3440 * to have a full memory barrier after updating
3441 * rq->curr, before returning to user-space. For TSO
3442 * (e.g. x86), the architecture must provide its own
3443 * barrier in switch_mm(). For weakly ordered machines
3444 * for which spin_unlock() acts as a full memory
3445 * barrier, finish_lock_switch() in common code takes
3446 * care of this barrier. For weakly ordered machines for
3447 * which spin_unlock() acts as a RELEASE barrier (only
3448 * arm64 and PowerPC), arm64 has a full barrier in
3449 * switch_to(), and PowerPC has
3450 * smp_mb__after_unlock_lock() before
3451 * finish_lock_switch().
3452 */
3453 ++*switch_count;
3454
3455 trace_sched_switch(preempt, prev, next);
3456
3457 /* Also unlocks the rq: */
3458 rq = context_switch(rq, prev, next, &rf);
3459 } else {
3460 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3461 rq_unlock_irq(rq, &rf);
3462 }
3463
3464 dbg_snapshot_task(smp_processor_id(), rq->curr);
3465 balance_callback(rq);
3466 }
3467
3468 void __noreturn do_task_dead(void)
3469 {
3470 /* Causes final put_task_struct in finish_task_switch(): */
3471 set_special_state(TASK_DEAD);
3472
3473 /* Tell freezer to ignore us: */
3474 current->flags |= PF_NOFREEZE;
3475
3476 __schedule(false);
3477 BUG();
3478
3479 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3480 for (;;)
3481 cpu_relax();
3482 }
3483
3484 static inline void sched_submit_work(struct task_struct *tsk)
3485 {
3486 if (!tsk->state || tsk_is_pi_blocked(tsk))
3487 return;
3488 /*
3489 * If we are going to sleep and we have plugged IO queued,
3490 * make sure to submit it to avoid deadlocks.
3491 */
3492 if (blk_needs_flush_plug(tsk))
3493 blk_schedule_flush_plug(tsk);
3494 }
3495
3496 asmlinkage __visible void __sched schedule(void)
3497 {
3498 struct task_struct *tsk = current;
3499
3500 sched_submit_work(tsk);
3501 do {
3502 preempt_disable();
3503 __schedule(false);
3504 sched_preempt_enable_no_resched();
3505 } while (need_resched());
3506 }
3507 EXPORT_SYMBOL(schedule);
3508
3509 /*
3510 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3511 * state (have scheduled out non-voluntarily) by making sure that all
3512 * tasks have either left the run queue or have gone into user space.
3513 * As idle tasks do not do either, they must not ever be preempted
3514 * (schedule out non-voluntarily).
3515 *
3516 * schedule_idle() is similar to schedule_preempt_disable() except that it
3517 * never enables preemption because it does not call sched_submit_work().
3518 */
3519 void __sched schedule_idle(void)
3520 {
3521 /*
3522 * As this skips calling sched_submit_work(), which the idle task does
3523 * regardless because that function is a nop when the task is in a
3524 * TASK_RUNNING state, make sure this isn't used someplace that the
3525 * current task can be in any other state. Note, idle is always in the
3526 * TASK_RUNNING state.
3527 */
3528 WARN_ON_ONCE(current->state);
3529 do {
3530 __schedule(false);
3531 } while (need_resched());
3532 }
3533
3534 #ifdef CONFIG_CONTEXT_TRACKING
3535 asmlinkage __visible void __sched schedule_user(void)
3536 {
3537 /*
3538 * If we come here after a random call to set_need_resched(),
3539 * or we have been woken up remotely but the IPI has not yet arrived,
3540 * we haven't yet exited the RCU idle mode. Do it here manually until
3541 * we find a better solution.
3542 *
3543 * NB: There are buggy callers of this function. Ideally we
3544 * should warn if prev_state != CONTEXT_USER, but that will trigger
3545 * too frequently to make sense yet.
3546 */
3547 enum ctx_state prev_state = exception_enter();
3548 schedule();
3549 exception_exit(prev_state);
3550 }
3551 #endif
3552
3553 /**
3554 * schedule_preempt_disabled - called with preemption disabled
3555 *
3556 * Returns with preemption disabled. Note: preempt_count must be 1
3557 */
3558 void __sched schedule_preempt_disabled(void)
3559 {
3560 sched_preempt_enable_no_resched();
3561 schedule();
3562 preempt_disable();
3563 }
3564
3565 static void __sched notrace preempt_schedule_common(void)
3566 {
3567 do {
3568 /*
3569 * Because the function tracer can trace preempt_count_sub()
3570 * and it also uses preempt_enable/disable_notrace(), if
3571 * NEED_RESCHED is set, the preempt_enable_notrace() called
3572 * by the function tracer will call this function again and
3573 * cause infinite recursion.
3574 *
3575 * Preemption must be disabled here before the function
3576 * tracer can trace. Break up preempt_disable() into two
3577 * calls. One to disable preemption without fear of being
3578 * traced. The other to still record the preemption latency,
3579 * which can also be traced by the function tracer.
3580 */
3581 preempt_disable_notrace();
3582 preempt_latency_start(1);
3583 __schedule(true);
3584 preempt_latency_stop(1);
3585 preempt_enable_no_resched_notrace();
3586
3587 /*
3588 * Check again in case we missed a preemption opportunity
3589 * between schedule and now.
3590 */
3591 } while (need_resched());
3592 }
3593
3594 #ifdef CONFIG_PREEMPT
3595 /*
3596 * this is the entry point to schedule() from in-kernel preemption
3597 * off of preempt_enable. Kernel preemptions off return from interrupt
3598 * occur there and call schedule directly.
3599 */
3600 asmlinkage __visible void __sched notrace preempt_schedule(void)
3601 {
3602 /*
3603 * If there is a non-zero preempt_count or interrupts are disabled,
3604 * we do not want to preempt the current task. Just return..
3605 */
3606 if (likely(!preemptible()))
3607 return;
3608
3609 preempt_schedule_common();
3610 }
3611 NOKPROBE_SYMBOL(preempt_schedule);
3612 EXPORT_SYMBOL(preempt_schedule);
3613
3614 /**
3615 * preempt_schedule_notrace - preempt_schedule called by tracing
3616 *
3617 * The tracing infrastructure uses preempt_enable_notrace to prevent
3618 * recursion and tracing preempt enabling caused by the tracing
3619 * infrastructure itself. But as tracing can happen in areas coming
3620 * from userspace or just about to enter userspace, a preempt enable
3621 * can occur before user_exit() is called. This will cause the scheduler
3622 * to be called when the system is still in usermode.
3623 *
3624 * To prevent this, the preempt_enable_notrace will use this function
3625 * instead of preempt_schedule() to exit user context if needed before
3626 * calling the scheduler.
3627 */
3628 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3629 {
3630 enum ctx_state prev_ctx;
3631
3632 if (likely(!preemptible()))
3633 return;
3634
3635 do {
3636 /*
3637 * Because the function tracer can trace preempt_count_sub()
3638 * and it also uses preempt_enable/disable_notrace(), if
3639 * NEED_RESCHED is set, the preempt_enable_notrace() called
3640 * by the function tracer will call this function again and
3641 * cause infinite recursion.
3642 *
3643 * Preemption must be disabled here before the function
3644 * tracer can trace. Break up preempt_disable() into two
3645 * calls. One to disable preemption without fear of being
3646 * traced. The other to still record the preemption latency,
3647 * which can also be traced by the function tracer.
3648 */
3649 preempt_disable_notrace();
3650 preempt_latency_start(1);
3651 /*
3652 * Needs preempt disabled in case user_exit() is traced
3653 * and the tracer calls preempt_enable_notrace() causing
3654 * an infinite recursion.
3655 */
3656 prev_ctx = exception_enter();
3657 __schedule(true);
3658 exception_exit(prev_ctx);
3659
3660 preempt_latency_stop(1);
3661 preempt_enable_no_resched_notrace();
3662 } while (need_resched());
3663 }
3664 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3665
3666 #endif /* CONFIG_PREEMPT */
3667
3668 /*
3669 * this is the entry point to schedule() from kernel preemption
3670 * off of irq context.
3671 * Note, that this is called and return with irqs disabled. This will
3672 * protect us against recursive calling from irq.
3673 */
3674 asmlinkage __visible void __sched preempt_schedule_irq(void)
3675 {
3676 enum ctx_state prev_state;
3677
3678 /* Catch callers which need to be fixed */
3679 BUG_ON(preempt_count() || !irqs_disabled());
3680
3681 prev_state = exception_enter();
3682
3683 do {
3684 preempt_disable();
3685 local_irq_enable();
3686 __schedule(true);
3687 local_irq_disable();
3688 sched_preempt_enable_no_resched();
3689 } while (need_resched());
3690
3691 exception_exit(prev_state);
3692 }
3693
3694 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3695 void *key)
3696 {
3697 return try_to_wake_up(curr->private, mode, wake_flags, 1);
3698 }
3699 EXPORT_SYMBOL(default_wake_function);
3700
3701 #ifdef CONFIG_RT_MUTEXES
3702
3703 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3704 {
3705 if (pi_task)
3706 prio = min(prio, pi_task->prio);
3707
3708 return prio;
3709 }
3710
3711 static inline int rt_effective_prio(struct task_struct *p, int prio)
3712 {
3713 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3714
3715 return __rt_effective_prio(pi_task, prio);
3716 }
3717
3718 /*
3719 * rt_mutex_setprio - set the current priority of a task
3720 * @p: task to boost
3721 * @pi_task: donor task
3722 *
3723 * This function changes the 'effective' priority of a task. It does
3724 * not touch ->normal_prio like __setscheduler().
3725 *
3726 * Used by the rt_mutex code to implement priority inheritance
3727 * logic. Call site only calls if the priority of the task changed.
3728 */
3729 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3730 {
3731 int prio, oldprio, queued, running, queue_flag =
3732 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3733 const struct sched_class *prev_class;
3734 struct rq_flags rf;
3735 struct rq *rq;
3736
3737 /* XXX used to be waiter->prio, not waiter->task->prio */
3738 prio = __rt_effective_prio(pi_task, p->normal_prio);
3739
3740 /*
3741 * If nothing changed; bail early.
3742 */
3743 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3744 return;
3745
3746 rq = __task_rq_lock(p, &rf);
3747 update_rq_clock(rq);
3748 /*
3749 * Set under pi_lock && rq->lock, such that the value can be used under
3750 * either lock.
3751 *
3752 * Note that there is loads of tricky to make this pointer cache work
3753 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3754 * ensure a task is de-boosted (pi_task is set to NULL) before the
3755 * task is allowed to run again (and can exit). This ensures the pointer
3756 * points to a blocked task -- which guaratees the task is present.
3757 */
3758 p->pi_top_task = pi_task;
3759
3760 /*
3761 * For FIFO/RR we only need to set prio, if that matches we're done.
3762 */
3763 if (prio == p->prio && !dl_prio(prio))
3764 goto out_unlock;
3765
3766 /*
3767 * Idle task boosting is a nono in general. There is one
3768 * exception, when PREEMPT_RT and NOHZ is active:
3769 *
3770 * The idle task calls get_next_timer_interrupt() and holds
3771 * the timer wheel base->lock on the CPU and another CPU wants
3772 * to access the timer (probably to cancel it). We can safely
3773 * ignore the boosting request, as the idle CPU runs this code
3774 * with interrupts disabled and will complete the lock
3775 * protected section without being interrupted. So there is no
3776 * real need to boost.
3777 */
3778 if (unlikely(p == rq->idle)) {
3779 WARN_ON(p != rq->curr);
3780 WARN_ON(p->pi_blocked_on);
3781 goto out_unlock;
3782 }
3783
3784 trace_sched_pi_setprio(p, pi_task);
3785 oldprio = p->prio;
3786
3787 if (oldprio == prio)
3788 queue_flag &= ~DEQUEUE_MOVE;
3789
3790 prev_class = p->sched_class;
3791 queued = task_on_rq_queued(p);
3792 running = task_current(rq, p);
3793 if (queued)
3794 dequeue_task(rq, p, queue_flag);
3795 if (running)
3796 put_prev_task(rq, p);
3797
3798 /*
3799 * Boosting condition are:
3800 * 1. -rt task is running and holds mutex A
3801 * --> -dl task blocks on mutex A
3802 *
3803 * 2. -dl task is running and holds mutex A
3804 * --> -dl task blocks on mutex A and could preempt the
3805 * running task
3806 */
3807 if (dl_prio(prio)) {
3808 if (!dl_prio(p->normal_prio) ||
3809 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3810 p->dl.dl_boosted = 1;
3811 queue_flag |= ENQUEUE_REPLENISH;
3812 } else
3813 p->dl.dl_boosted = 0;
3814 p->sched_class = &dl_sched_class;
3815 } else if (rt_prio(prio)) {
3816 if (dl_prio(oldprio))
3817 p->dl.dl_boosted = 0;
3818 if (oldprio < prio)
3819 queue_flag |= ENQUEUE_HEAD;
3820 p->sched_class = &rt_sched_class;
3821 } else {
3822 if (dl_prio(oldprio))
3823 p->dl.dl_boosted = 0;
3824 if (rt_prio(oldprio))
3825 p->rt.timeout = 0;
3826 p->sched_class = &fair_sched_class;
3827 }
3828
3829 p->prio = prio;
3830
3831 if (queued)
3832 enqueue_task(rq, p, queue_flag);
3833 if (running)
3834 set_curr_task(rq, p);
3835
3836 check_class_changed(rq, p, prev_class, oldprio);
3837 out_unlock:
3838 /* Avoid rq from going away on us: */
3839 preempt_disable();
3840 __task_rq_unlock(rq, &rf);
3841
3842 balance_callback(rq);
3843 preempt_enable();
3844 }
3845 #else
3846 static inline int rt_effective_prio(struct task_struct *p, int prio)
3847 {
3848 return prio;
3849 }
3850 #endif
3851
3852 void set_user_nice(struct task_struct *p, long nice)
3853 {
3854 bool queued, running;
3855 int old_prio, delta;
3856 struct rq_flags rf;
3857 struct rq *rq;
3858
3859 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3860 return;
3861 /*
3862 * We have to be careful, if called from sys_setpriority(),
3863 * the task might be in the middle of scheduling on another CPU.
3864 */
3865 rq = task_rq_lock(p, &rf);
3866 update_rq_clock(rq);
3867
3868 /*
3869 * The RT priorities are set via sched_setscheduler(), but we still
3870 * allow the 'normal' nice value to be set - but as expected
3871 * it wont have any effect on scheduling until the task is
3872 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3873 */
3874 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3875 p->static_prio = NICE_TO_PRIO(nice);
3876 goto out_unlock;
3877 }
3878 queued = task_on_rq_queued(p);
3879 running = task_current(rq, p);
3880 if (queued)
3881 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3882 if (running)
3883 put_prev_task(rq, p);
3884
3885 p->static_prio = NICE_TO_PRIO(nice);
3886 set_load_weight(p);
3887 old_prio = p->prio;
3888 p->prio = effective_prio(p);
3889 delta = p->prio - old_prio;
3890
3891 if (queued) {
3892 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3893 /*
3894 * If the task increased its priority or is running and
3895 * lowered its priority, then reschedule its CPU:
3896 */
3897 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3898 resched_curr(rq);
3899 }
3900 if (running)
3901 set_curr_task(rq, p);
3902 out_unlock:
3903 task_rq_unlock(rq, p, &rf);
3904 }
3905 EXPORT_SYMBOL(set_user_nice);
3906
3907 /*
3908 * can_nice - check if a task can reduce its nice value
3909 * @p: task
3910 * @nice: nice value
3911 */
3912 int can_nice(const struct task_struct *p, const int nice)
3913 {
3914 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3915 int nice_rlim = nice_to_rlimit(nice);
3916
3917 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3918 capable(CAP_SYS_NICE));
3919 }
3920
3921 #ifdef __ARCH_WANT_SYS_NICE
3922
3923 /*
3924 * sys_nice - change the priority of the current process.
3925 * @increment: priority increment
3926 *
3927 * sys_setpriority is a more generic, but much slower function that
3928 * does similar things.
3929 */
3930 SYSCALL_DEFINE1(nice, int, increment)
3931 {
3932 long nice, retval;
3933
3934 /*
3935 * Setpriority might change our priority at the same moment.
3936 * We don't have to worry. Conceptually one call occurs first
3937 * and we have a single winner.
3938 */
3939 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3940 nice = task_nice(current) + increment;
3941
3942 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3943 if (increment < 0 && !can_nice(current, nice))
3944 return -EPERM;
3945
3946 retval = security_task_setnice(current, nice);
3947 if (retval)
3948 return retval;
3949
3950 set_user_nice(current, nice);
3951 return 0;
3952 }
3953
3954 #endif
3955
3956 /**
3957 * task_prio - return the priority value of a given task.
3958 * @p: the task in question.
3959 *
3960 * Return: The priority value as seen by users in /proc.
3961 * RT tasks are offset by -200. Normal tasks are centered
3962 * around 0, value goes from -16 to +15.
3963 */
3964 int task_prio(const struct task_struct *p)
3965 {
3966 return p->prio - MAX_RT_PRIO;
3967 }
3968
3969 /**
3970 * idle_cpu - is a given CPU idle currently?
3971 * @cpu: the processor in question.
3972 *
3973 * Return: 1 if the CPU is currently idle. 0 otherwise.
3974 */
3975 int idle_cpu(int cpu)
3976 {
3977 struct rq *rq = cpu_rq(cpu);
3978
3979 if (rq->curr != rq->idle)
3980 return 0;
3981
3982 if (rq->nr_running == 1)
3983 return 0;
3984
3985 #ifdef CONFIG_SMP
3986 if (!llist_empty(&rq->wake_list))
3987 return 0;
3988 #endif
3989
3990 return 1;
3991 }
3992
3993 /**
3994 * idle_task - return the idle task for a given CPU.
3995 * @cpu: the processor in question.
3996 *
3997 * Return: The idle task for the CPU @cpu.
3998 */
3999 struct task_struct *idle_task(int cpu)
4000 {
4001 return cpu_rq(cpu)->idle;
4002 }
4003
4004 /**
4005 * find_process_by_pid - find a process with a matching PID value.
4006 * @pid: the pid in question.
4007 *
4008 * The task of @pid, if found. %NULL otherwise.
4009 */
4010 static struct task_struct *find_process_by_pid(pid_t pid)
4011 {
4012 return pid ? find_task_by_vpid(pid) : current;
4013 }
4014
4015 /*
4016 * sched_setparam() passes in -1 for its policy, to let the functions
4017 * it calls know not to change it.
4018 */
4019 #define SETPARAM_POLICY -1
4020
4021 static void __setscheduler_params(struct task_struct *p,
4022 const struct sched_attr *attr)
4023 {
4024 int policy = attr->sched_policy;
4025
4026 if (policy == SETPARAM_POLICY)
4027 policy = p->policy;
4028
4029 p->policy = policy;
4030
4031 if (dl_policy(policy))
4032 __setparam_dl(p, attr);
4033 else if (fair_policy(policy))
4034 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4035
4036 /*
4037 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4038 * !rt_policy. Always setting this ensures that things like
4039 * getparam()/getattr() don't report silly values for !rt tasks.
4040 */
4041 p->rt_priority = attr->sched_priority;
4042 p->normal_prio = normal_prio(p);
4043 set_load_weight(p);
4044 }
4045
4046 /* Actually do priority change: must hold pi & rq lock. */
4047 static void __setscheduler(struct rq *rq, struct task_struct *p,
4048 const struct sched_attr *attr, bool keep_boost)
4049 {
4050 __setscheduler_params(p, attr);
4051
4052 /*
4053 * Keep a potential priority boosting if called from
4054 * sched_setscheduler().
4055 */
4056 p->prio = normal_prio(p);
4057 if (keep_boost)
4058 p->prio = rt_effective_prio(p, p->prio);
4059
4060 if (dl_prio(p->prio))
4061 p->sched_class = &dl_sched_class;
4062 else if (rt_prio(p->prio))
4063 p->sched_class = &rt_sched_class;
4064 else
4065 p->sched_class = &fair_sched_class;
4066 }
4067
4068 /*
4069 * Check the target process has a UID that matches the current process's:
4070 */
4071 static bool check_same_owner(struct task_struct *p)
4072 {
4073 const struct cred *cred = current_cred(), *pcred;
4074 bool match;
4075
4076 rcu_read_lock();
4077 pcred = __task_cred(p);
4078 match = (uid_eq(cred->euid, pcred->euid) ||
4079 uid_eq(cred->euid, pcred->uid));
4080 rcu_read_unlock();
4081 return match;
4082 }
4083
4084 static int __sched_setscheduler(struct task_struct *p,
4085 const struct sched_attr *attr,
4086 bool user, bool pi)
4087 {
4088 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4089 MAX_RT_PRIO - 1 - attr->sched_priority;
4090 int retval, oldprio, oldpolicy = -1, queued, running;
4091 int new_effective_prio, policy = attr->sched_policy;
4092 const struct sched_class *prev_class;
4093 struct rq_flags rf;
4094 int reset_on_fork;
4095 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4096 struct rq *rq;
4097
4098 /* The pi code expects interrupts enabled */
4099 BUG_ON(pi && in_interrupt());
4100 recheck:
4101 /* Double check policy once rq lock held: */
4102 if (policy < 0) {
4103 reset_on_fork = p->sched_reset_on_fork;
4104 policy = oldpolicy = p->policy;
4105 } else {
4106 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4107
4108 if (!valid_policy(policy))
4109 return -EINVAL;
4110 }
4111
4112 if (attr->sched_flags &
4113 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4114 return -EINVAL;
4115
4116 /*
4117 * Valid priorities for SCHED_FIFO and SCHED_RR are
4118 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4119 * SCHED_BATCH and SCHED_IDLE is 0.
4120 */
4121 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4122 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4123 return -EINVAL;
4124 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4125 (rt_policy(policy) != (attr->sched_priority != 0)))
4126 return -EINVAL;
4127
4128 /*
4129 * Allow unprivileged RT tasks to decrease priority:
4130 */
4131 if (user && !capable(CAP_SYS_NICE)) {
4132 if (fair_policy(policy)) {
4133 if (attr->sched_nice < task_nice(p) &&
4134 !can_nice(p, attr->sched_nice))
4135 return -EPERM;
4136 }
4137
4138 if (rt_policy(policy)) {
4139 unsigned long rlim_rtprio =
4140 task_rlimit(p, RLIMIT_RTPRIO);
4141
4142 /* Can't set/change the rt policy: */
4143 if (policy != p->policy && !rlim_rtprio)
4144 return -EPERM;
4145
4146 /* Can't increase priority: */
4147 if (attr->sched_priority > p->rt_priority &&
4148 attr->sched_priority > rlim_rtprio)
4149 return -EPERM;
4150 }
4151
4152 /*
4153 * Can't set/change SCHED_DEADLINE policy at all for now
4154 * (safest behavior); in the future we would like to allow
4155 * unprivileged DL tasks to increase their relative deadline
4156 * or reduce their runtime (both ways reducing utilization)
4157 */
4158 if (dl_policy(policy))
4159 return -EPERM;
4160
4161 /*
4162 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4163 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4164 */
4165 if (idle_policy(p->policy) && !idle_policy(policy)) {
4166 if (!can_nice(p, task_nice(p)))
4167 return -EPERM;
4168 }
4169
4170 /* Can't change other user's priorities: */
4171 if (!check_same_owner(p))
4172 return -EPERM;
4173
4174 /* Normal users shall not reset the sched_reset_on_fork flag: */
4175 if (p->sched_reset_on_fork && !reset_on_fork)
4176 return -EPERM;
4177 }
4178
4179 if (user) {
4180 retval = security_task_setscheduler(p);
4181 if (retval)
4182 return retval;
4183 }
4184
4185 /*
4186 * Make sure no PI-waiters arrive (or leave) while we are
4187 * changing the priority of the task:
4188 *
4189 * To be able to change p->policy safely, the appropriate
4190 * runqueue lock must be held.
4191 */
4192 rq = task_rq_lock(p, &rf);
4193 update_rq_clock(rq);
4194
4195 /*
4196 * Changing the policy of the stop threads its a very bad idea:
4197 */
4198 if (p == rq->stop) {
4199 task_rq_unlock(rq, p, &rf);
4200 return -EINVAL;
4201 }
4202
4203 /*
4204 * If not changing anything there's no need to proceed further,
4205 * but store a possible modification of reset_on_fork.
4206 */
4207 if (unlikely(policy == p->policy)) {
4208 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4209 goto change;
4210 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4211 goto change;
4212 if (dl_policy(policy) && dl_param_changed(p, attr))
4213 goto change;
4214
4215 p->sched_reset_on_fork = reset_on_fork;
4216 task_rq_unlock(rq, p, &rf);
4217 return 0;
4218 }
4219 change:
4220
4221 if (user) {
4222 #ifdef CONFIG_RT_GROUP_SCHED
4223 /*
4224 * Do not allow realtime tasks into groups that have no runtime
4225 * assigned.
4226 */
4227 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4228 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4229 !task_group_is_autogroup(task_group(p))) {
4230 task_rq_unlock(rq, p, &rf);
4231 return -EPERM;
4232 }
4233 #endif
4234 #ifdef CONFIG_SMP
4235 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4236 cpumask_t *span = rq->rd->span;
4237
4238 /*
4239 * Don't allow tasks with an affinity mask smaller than
4240 * the entire root_domain to become SCHED_DEADLINE. We
4241 * will also fail if there's no bandwidth available.
4242 */
4243 if (!cpumask_subset(span, &p->cpus_allowed) ||
4244 rq->rd->dl_bw.bw == 0) {
4245 task_rq_unlock(rq, p, &rf);
4246 return -EPERM;
4247 }
4248 }
4249 #endif
4250 }
4251
4252 /* Re-check policy now with rq lock held: */
4253 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4254 policy = oldpolicy = -1;
4255 task_rq_unlock(rq, p, &rf);
4256 goto recheck;
4257 }
4258
4259 /*
4260 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4261 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4262 * is available.
4263 */
4264 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4265 task_rq_unlock(rq, p, &rf);
4266 return -EBUSY;
4267 }
4268
4269 p->sched_reset_on_fork = reset_on_fork;
4270 oldprio = p->prio;
4271
4272 if (pi) {
4273 /*
4274 * Take priority boosted tasks into account. If the new
4275 * effective priority is unchanged, we just store the new
4276 * normal parameters and do not touch the scheduler class and
4277 * the runqueue. This will be done when the task deboost
4278 * itself.
4279 */
4280 new_effective_prio = rt_effective_prio(p, newprio);
4281 if (new_effective_prio == oldprio)
4282 queue_flags &= ~DEQUEUE_MOVE;
4283 }
4284
4285 queued = task_on_rq_queued(p);
4286 running = task_current(rq, p);
4287 if (queued)
4288 dequeue_task(rq, p, queue_flags);
4289 if (running)
4290 put_prev_task(rq, p);
4291
4292 prev_class = p->sched_class;
4293 __setscheduler(rq, p, attr, pi);
4294
4295 if (queued) {
4296 /*
4297 * We enqueue to tail when the priority of a task is
4298 * increased (user space view).
4299 */
4300 if (oldprio < p->prio)
4301 queue_flags |= ENQUEUE_HEAD;
4302
4303 enqueue_task(rq, p, queue_flags);
4304 }
4305 if (running)
4306 set_curr_task(rq, p);
4307
4308 check_class_changed(rq, p, prev_class, oldprio);
4309
4310 /* Avoid rq from going away on us: */
4311 preempt_disable();
4312 task_rq_unlock(rq, p, &rf);
4313
4314 if (pi)
4315 rt_mutex_adjust_pi(p);
4316
4317 /* Run balance callbacks after we've adjusted the PI chain: */
4318 balance_callback(rq);
4319 preempt_enable();
4320
4321 return 0;
4322 }
4323
4324 static int _sched_setscheduler(struct task_struct *p, int policy,
4325 const struct sched_param *param, bool check)
4326 {
4327 struct sched_attr attr = {
4328 .sched_policy = policy,
4329 .sched_priority = param->sched_priority,
4330 .sched_nice = PRIO_TO_NICE(p->static_prio),
4331 };
4332
4333 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4334 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4335 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4336 policy &= ~SCHED_RESET_ON_FORK;
4337 attr.sched_policy = policy;
4338 }
4339
4340 return __sched_setscheduler(p, &attr, check, true);
4341 }
4342 /**
4343 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4344 * @p: the task in question.
4345 * @policy: new policy.
4346 * @param: structure containing the new RT priority.
4347 *
4348 * Return: 0 on success. An error code otherwise.
4349 *
4350 * NOTE that the task may be already dead.
4351 */
4352 int sched_setscheduler(struct task_struct *p, int policy,
4353 const struct sched_param *param)
4354 {
4355 return _sched_setscheduler(p, policy, param, true);
4356 }
4357 EXPORT_SYMBOL_GPL(sched_setscheduler);
4358
4359 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4360 {
4361 return __sched_setscheduler(p, attr, true, true);
4362 }
4363 EXPORT_SYMBOL_GPL(sched_setattr);
4364
4365 /**
4366 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4367 * @p: the task in question.
4368 * @policy: new policy.
4369 * @param: structure containing the new RT priority.
4370 *
4371 * Just like sched_setscheduler, only don't bother checking if the
4372 * current context has permission. For example, this is needed in
4373 * stop_machine(): we create temporary high priority worker threads,
4374 * but our caller might not have that capability.
4375 *
4376 * Return: 0 on success. An error code otherwise.
4377 */
4378 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4379 const struct sched_param *param)
4380 {
4381 return _sched_setscheduler(p, policy, param, false);
4382 }
4383 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4384
4385 static int
4386 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4387 {
4388 struct sched_param lparam;
4389 struct task_struct *p;
4390 int retval;
4391
4392 if (!param || pid < 0)
4393 return -EINVAL;
4394 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4395 return -EFAULT;
4396
4397 rcu_read_lock();
4398 retval = -ESRCH;
4399 p = find_process_by_pid(pid);
4400 if (p != NULL)
4401 retval = sched_setscheduler(p, policy, &lparam);
4402 rcu_read_unlock();
4403
4404 return retval;
4405 }
4406
4407 /*
4408 * Mimics kernel/events/core.c perf_copy_attr().
4409 */
4410 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4411 {
4412 u32 size;
4413 int ret;
4414
4415 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4416 return -EFAULT;
4417
4418 /* Zero the full structure, so that a short copy will be nice: */
4419 memset(attr, 0, sizeof(*attr));
4420
4421 ret = get_user(size, &uattr->size);
4422 if (ret)
4423 return ret;
4424
4425 /* Bail out on silly large: */
4426 if (size > PAGE_SIZE)
4427 goto err_size;
4428
4429 /* ABI compatibility quirk: */
4430 if (!size)
4431 size = SCHED_ATTR_SIZE_VER0;
4432
4433 if (size < SCHED_ATTR_SIZE_VER0)
4434 goto err_size;
4435
4436 /*
4437 * If we're handed a bigger struct than we know of,
4438 * ensure all the unknown bits are 0 - i.e. new
4439 * user-space does not rely on any kernel feature
4440 * extensions we dont know about yet.
4441 */
4442 if (size > sizeof(*attr)) {
4443 unsigned char __user *addr;
4444 unsigned char __user *end;
4445 unsigned char val;
4446
4447 addr = (void __user *)uattr + sizeof(*attr);
4448 end = (void __user *)uattr + size;
4449
4450 for (; addr < end; addr++) {
4451 ret = get_user(val, addr);
4452 if (ret)
4453 return ret;
4454 if (val)
4455 goto err_size;
4456 }
4457 size = sizeof(*attr);
4458 }
4459
4460 ret = copy_from_user(attr, uattr, size);
4461 if (ret)
4462 return -EFAULT;
4463
4464 /*
4465 * XXX: Do we want to be lenient like existing syscalls; or do we want
4466 * to be strict and return an error on out-of-bounds values?
4467 */
4468 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4469
4470 return 0;
4471
4472 err_size:
4473 put_user(sizeof(*attr), &uattr->size);
4474 return -E2BIG;
4475 }
4476
4477 /**
4478 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4479 * @pid: the pid in question.
4480 * @policy: new policy.
4481 * @param: structure containing the new RT priority.
4482 *
4483 * Return: 0 on success. An error code otherwise.
4484 */
4485 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4486 {
4487 if (policy < 0)
4488 return -EINVAL;
4489
4490 return do_sched_setscheduler(pid, policy, param);
4491 }
4492
4493 /**
4494 * sys_sched_setparam - set/change the RT priority of a thread
4495 * @pid: the pid in question.
4496 * @param: structure containing the new RT priority.
4497 *
4498 * Return: 0 on success. An error code otherwise.
4499 */
4500 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4501 {
4502 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4503 }
4504
4505 /**
4506 * sys_sched_setattr - same as above, but with extended sched_attr
4507 * @pid: the pid in question.
4508 * @uattr: structure containing the extended parameters.
4509 * @flags: for future extension.
4510 */
4511 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4512 unsigned int, flags)
4513 {
4514 struct sched_attr attr;
4515 struct task_struct *p;
4516 int retval;
4517
4518 if (!uattr || pid < 0 || flags)
4519 return -EINVAL;
4520
4521 retval = sched_copy_attr(uattr, &attr);
4522 if (retval)
4523 return retval;
4524
4525 if ((int)attr.sched_policy < 0)
4526 return -EINVAL;
4527
4528 rcu_read_lock();
4529 retval = -ESRCH;
4530 p = find_process_by_pid(pid);
4531 if (p != NULL)
4532 retval = sched_setattr(p, &attr);
4533 rcu_read_unlock();
4534
4535 return retval;
4536 }
4537
4538 /**
4539 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4540 * @pid: the pid in question.
4541 *
4542 * Return: On success, the policy of the thread. Otherwise, a negative error
4543 * code.
4544 */
4545 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4546 {
4547 struct task_struct *p;
4548 int retval;
4549
4550 if (pid < 0)
4551 return -EINVAL;
4552
4553 retval = -ESRCH;
4554 rcu_read_lock();
4555 p = find_process_by_pid(pid);
4556 if (p) {
4557 retval = security_task_getscheduler(p);
4558 if (!retval)
4559 retval = p->policy
4560 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4561 }
4562 rcu_read_unlock();
4563 return retval;
4564 }
4565
4566 /**
4567 * sys_sched_getparam - get the RT priority of a thread
4568 * @pid: the pid in question.
4569 * @param: structure containing the RT priority.
4570 *
4571 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4572 * code.
4573 */
4574 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4575 {
4576 struct sched_param lp = { .sched_priority = 0 };
4577 struct task_struct *p;
4578 int retval;
4579
4580 if (!param || pid < 0)
4581 return -EINVAL;
4582
4583 rcu_read_lock();
4584 p = find_process_by_pid(pid);
4585 retval = -ESRCH;
4586 if (!p)
4587 goto out_unlock;
4588
4589 retval = security_task_getscheduler(p);
4590 if (retval)
4591 goto out_unlock;
4592
4593 if (task_has_rt_policy(p))
4594 lp.sched_priority = p->rt_priority;
4595 rcu_read_unlock();
4596
4597 /*
4598 * This one might sleep, we cannot do it with a spinlock held ...
4599 */
4600 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4601
4602 return retval;
4603
4604 out_unlock:
4605 rcu_read_unlock();
4606 return retval;
4607 }
4608
4609 static int sched_read_attr(struct sched_attr __user *uattr,
4610 struct sched_attr *attr,
4611 unsigned int usize)
4612 {
4613 int ret;
4614
4615 if (!access_ok(VERIFY_WRITE, uattr, usize))
4616 return -EFAULT;
4617
4618 /*
4619 * If we're handed a smaller struct than we know of,
4620 * ensure all the unknown bits are 0 - i.e. old
4621 * user-space does not get uncomplete information.
4622 */
4623 if (usize < sizeof(*attr)) {
4624 unsigned char *addr;
4625 unsigned char *end;
4626
4627 addr = (void *)attr + usize;
4628 end = (void *)attr + sizeof(*attr);
4629
4630 for (; addr < end; addr++) {
4631 if (*addr)
4632 return -EFBIG;
4633 }
4634
4635 attr->size = usize;
4636 }
4637
4638 ret = copy_to_user(uattr, attr, attr->size);
4639 if (ret)
4640 return -EFAULT;
4641
4642 return 0;
4643 }
4644
4645 /**
4646 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4647 * @pid: the pid in question.
4648 * @uattr: structure containing the extended parameters.
4649 * @size: sizeof(attr) for fwd/bwd comp.
4650 * @flags: for future extension.
4651 */
4652 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4653 unsigned int, size, unsigned int, flags)
4654 {
4655 struct sched_attr attr = {
4656 .size = sizeof(struct sched_attr),
4657 };
4658 struct task_struct *p;
4659 int retval;
4660
4661 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4662 size < SCHED_ATTR_SIZE_VER0 || flags)
4663 return -EINVAL;
4664
4665 rcu_read_lock();
4666 p = find_process_by_pid(pid);
4667 retval = -ESRCH;
4668 if (!p)
4669 goto out_unlock;
4670
4671 retval = security_task_getscheduler(p);
4672 if (retval)
4673 goto out_unlock;
4674
4675 attr.sched_policy = p->policy;
4676 if (p->sched_reset_on_fork)
4677 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4678 if (task_has_dl_policy(p))
4679 __getparam_dl(p, &attr);
4680 else if (task_has_rt_policy(p))
4681 attr.sched_priority = p->rt_priority;
4682 else
4683 attr.sched_nice = task_nice(p);
4684
4685 rcu_read_unlock();
4686
4687 retval = sched_read_attr(uattr, &attr, size);
4688 return retval;
4689
4690 out_unlock:
4691 rcu_read_unlock();
4692 return retval;
4693 }
4694
4695 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4696 {
4697 cpumask_var_t cpus_allowed, new_mask;
4698 struct task_struct *p;
4699 int retval;
4700
4701 rcu_read_lock();
4702
4703 p = find_process_by_pid(pid);
4704 if (!p) {
4705 rcu_read_unlock();
4706 return -ESRCH;
4707 }
4708
4709 /* Prevent p going away */
4710 get_task_struct(p);
4711 rcu_read_unlock();
4712
4713 if (p->flags & PF_NO_SETAFFINITY) {
4714 retval = -EINVAL;
4715 goto out_put_task;
4716 }
4717 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4718 retval = -ENOMEM;
4719 goto out_put_task;
4720 }
4721 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4722 retval = -ENOMEM;
4723 goto out_free_cpus_allowed;
4724 }
4725 retval = -EPERM;
4726 if (!check_same_owner(p)) {
4727 rcu_read_lock();
4728 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4729 rcu_read_unlock();
4730 goto out_free_new_mask;
4731 }
4732 rcu_read_unlock();
4733 }
4734
4735 retval = security_task_setscheduler(p);
4736 if (retval)
4737 goto out_free_new_mask;
4738
4739
4740 cpuset_cpus_allowed(p, cpus_allowed);
4741 cpumask_and(new_mask, in_mask, cpus_allowed);
4742
4743 /*
4744 * Since bandwidth control happens on root_domain basis,
4745 * if admission test is enabled, we only admit -deadline
4746 * tasks allowed to run on all the CPUs in the task's
4747 * root_domain.
4748 */
4749 #ifdef CONFIG_SMP
4750 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4751 rcu_read_lock();
4752 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4753 retval = -EBUSY;
4754 rcu_read_unlock();
4755 goto out_free_new_mask;
4756 }
4757 rcu_read_unlock();
4758 }
4759 #endif
4760 again:
4761 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4762
4763 if (!retval) {
4764 cpuset_cpus_allowed(p, cpus_allowed);
4765 if (!cpumask_subset(new_mask, cpus_allowed)) {
4766 /*
4767 * We must have raced with a concurrent cpuset
4768 * update. Just reset the cpus_allowed to the
4769 * cpuset's cpus_allowed
4770 */
4771 cpumask_copy(new_mask, cpus_allowed);
4772 goto again;
4773 }
4774 }
4775 out_free_new_mask:
4776 free_cpumask_var(new_mask);
4777 out_free_cpus_allowed:
4778 free_cpumask_var(cpus_allowed);
4779 out_put_task:
4780 put_task_struct(p);
4781 return retval;
4782 }
4783
4784 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4785 struct cpumask *new_mask)
4786 {
4787 if (len < cpumask_size())
4788 cpumask_clear(new_mask);
4789 else if (len > cpumask_size())
4790 len = cpumask_size();
4791
4792 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4793 }
4794
4795 /**
4796 * sys_sched_setaffinity - set the CPU affinity of a process
4797 * @pid: pid of the process
4798 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4799 * @user_mask_ptr: user-space pointer to the new CPU mask
4800 *
4801 * Return: 0 on success. An error code otherwise.
4802 */
4803 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4804 unsigned long __user *, user_mask_ptr)
4805 {
4806 cpumask_var_t new_mask;
4807 int retval;
4808
4809 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4810 return -ENOMEM;
4811
4812 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4813 if (retval == 0)
4814 retval = sched_setaffinity(pid, new_mask);
4815 free_cpumask_var(new_mask);
4816 return retval;
4817 }
4818
4819 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4820 {
4821 struct task_struct *p;
4822 unsigned long flags;
4823 int retval;
4824
4825 rcu_read_lock();
4826
4827 retval = -ESRCH;
4828 p = find_process_by_pid(pid);
4829 if (!p)
4830 goto out_unlock;
4831
4832 retval = security_task_getscheduler(p);
4833 if (retval)
4834 goto out_unlock;
4835
4836 raw_spin_lock_irqsave(&p->pi_lock, flags);
4837 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4838 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4839
4840 out_unlock:
4841 rcu_read_unlock();
4842
4843 return retval;
4844 }
4845
4846 /**
4847 * sys_sched_getaffinity - get the CPU affinity of a process
4848 * @pid: pid of the process
4849 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4850 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4851 *
4852 * Return: size of CPU mask copied to user_mask_ptr on success. An
4853 * error code otherwise.
4854 */
4855 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4856 unsigned long __user *, user_mask_ptr)
4857 {
4858 int ret;
4859 cpumask_var_t mask;
4860
4861 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4862 return -EINVAL;
4863 if (len & (sizeof(unsigned long)-1))
4864 return -EINVAL;
4865
4866 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4867 return -ENOMEM;
4868
4869 ret = sched_getaffinity(pid, mask);
4870 if (ret == 0) {
4871 size_t retlen = min_t(size_t, len, cpumask_size());
4872
4873 if (copy_to_user(user_mask_ptr, mask, retlen))
4874 ret = -EFAULT;
4875 else
4876 ret = retlen;
4877 }
4878 free_cpumask_var(mask);
4879
4880 return ret;
4881 }
4882
4883 /**
4884 * sys_sched_yield - yield the current processor to other threads.
4885 *
4886 * This function yields the current CPU to other tasks. If there are no
4887 * other threads running on this CPU then this function will return.
4888 *
4889 * Return: 0.
4890 */
4891 SYSCALL_DEFINE0(sched_yield)
4892 {
4893 struct rq_flags rf;
4894 struct rq *rq;
4895
4896 local_irq_disable();
4897 rq = this_rq();
4898 rq_lock(rq, &rf);
4899
4900 schedstat_inc(rq->yld_count);
4901 current->sched_class->yield_task(rq);
4902
4903 /*
4904 * Since we are going to call schedule() anyway, there's
4905 * no need to preempt or enable interrupts:
4906 */
4907 preempt_disable();
4908 rq_unlock(rq, &rf);
4909 sched_preempt_enable_no_resched();
4910
4911 schedule();
4912
4913 return 0;
4914 }
4915
4916 #ifndef CONFIG_PREEMPT
4917 int __sched _cond_resched(void)
4918 {
4919 if (should_resched(0)) {
4920 preempt_schedule_common();
4921 return 1;
4922 }
4923 return 0;
4924 }
4925 EXPORT_SYMBOL(_cond_resched);
4926 #endif
4927
4928 /*
4929 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4930 * call schedule, and on return reacquire the lock.
4931 *
4932 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4933 * operations here to prevent schedule() from being called twice (once via
4934 * spin_unlock(), once by hand).
4935 */
4936 int __cond_resched_lock(spinlock_t *lock)
4937 {
4938 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4939 int ret = 0;
4940
4941 lockdep_assert_held(lock);
4942
4943 if (spin_needbreak(lock) || resched) {
4944 spin_unlock(lock);
4945 if (resched)
4946 preempt_schedule_common();
4947 else
4948 cpu_relax();
4949 ret = 1;
4950 spin_lock(lock);
4951 }
4952 return ret;
4953 }
4954 EXPORT_SYMBOL(__cond_resched_lock);
4955
4956 int __sched __cond_resched_softirq(void)
4957 {
4958 BUG_ON(!in_softirq());
4959
4960 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4961 local_bh_enable();
4962 preempt_schedule_common();
4963 local_bh_disable();
4964 return 1;
4965 }
4966 return 0;
4967 }
4968 EXPORT_SYMBOL(__cond_resched_softirq);
4969
4970 /**
4971 * yield - yield the current processor to other threads.
4972 *
4973 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4974 *
4975 * The scheduler is at all times free to pick the calling task as the most
4976 * eligible task to run, if removing the yield() call from your code breaks
4977 * it, its already broken.
4978 *
4979 * Typical broken usage is:
4980 *
4981 * while (!event)
4982 * yield();
4983 *
4984 * where one assumes that yield() will let 'the other' process run that will
4985 * make event true. If the current task is a SCHED_FIFO task that will never
4986 * happen. Never use yield() as a progress guarantee!!
4987 *
4988 * If you want to use yield() to wait for something, use wait_event().
4989 * If you want to use yield() to be 'nice' for others, use cond_resched().
4990 * If you still want to use yield(), do not!
4991 */
4992 void __sched yield(void)
4993 {
4994 set_current_state(TASK_RUNNING);
4995 sys_sched_yield();
4996 }
4997 EXPORT_SYMBOL(yield);
4998
4999 /**
5000 * yield_to - yield the current processor to another thread in
5001 * your thread group, or accelerate that thread toward the
5002 * processor it's on.
5003 * @p: target task
5004 * @preempt: whether task preemption is allowed or not
5005 *
5006 * It's the caller's job to ensure that the target task struct
5007 * can't go away on us before we can do any checks.
5008 *
5009 * Return:
5010 * true (>0) if we indeed boosted the target task.
5011 * false (0) if we failed to boost the target.
5012 * -ESRCH if there's no task to yield to.
5013 */
5014 int __sched yield_to(struct task_struct *p, bool preempt)
5015 {
5016 struct task_struct *curr = current;
5017 struct rq *rq, *p_rq;
5018 unsigned long flags;
5019 int yielded = 0;
5020
5021 local_irq_save(flags);
5022 rq = this_rq();
5023
5024 again:
5025 p_rq = task_rq(p);
5026 /*
5027 * If we're the only runnable task on the rq and target rq also
5028 * has only one task, there's absolutely no point in yielding.
5029 */
5030 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5031 yielded = -ESRCH;
5032 goto out_irq;
5033 }
5034
5035 double_rq_lock(rq, p_rq);
5036 if (task_rq(p) != p_rq) {
5037 double_rq_unlock(rq, p_rq);
5038 goto again;
5039 }
5040
5041 if (!curr->sched_class->yield_to_task)
5042 goto out_unlock;
5043
5044 if (curr->sched_class != p->sched_class)
5045 goto out_unlock;
5046
5047 if (task_running(p_rq, p) || p->state)
5048 goto out_unlock;
5049
5050 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5051 if (yielded) {
5052 schedstat_inc(rq->yld_count);
5053 /*
5054 * Make p's CPU reschedule; pick_next_entity takes care of
5055 * fairness.
5056 */
5057 if (preempt && rq != p_rq)
5058 resched_curr(p_rq);
5059 }
5060
5061 out_unlock:
5062 double_rq_unlock(rq, p_rq);
5063 out_irq:
5064 local_irq_restore(flags);
5065
5066 if (yielded > 0)
5067 schedule();
5068
5069 return yielded;
5070 }
5071 EXPORT_SYMBOL_GPL(yield_to);
5072
5073 int io_schedule_prepare(void)
5074 {
5075 int old_iowait = current->in_iowait;
5076
5077 current->in_iowait = 1;
5078 blk_schedule_flush_plug(current);
5079
5080 return old_iowait;
5081 }
5082
5083 void io_schedule_finish(int token)
5084 {
5085 current->in_iowait = token;
5086 }
5087
5088 /*
5089 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5090 * that process accounting knows that this is a task in IO wait state.
5091 */
5092 long __sched io_schedule_timeout(long timeout)
5093 {
5094 int token;
5095 long ret;
5096
5097 token = io_schedule_prepare();
5098 ret = schedule_timeout(timeout);
5099 io_schedule_finish(token);
5100
5101 return ret;
5102 }
5103 EXPORT_SYMBOL(io_schedule_timeout);
5104
5105 void io_schedule(void)
5106 {
5107 int token;
5108
5109 token = io_schedule_prepare();
5110 schedule();
5111 io_schedule_finish(token);
5112 }
5113 EXPORT_SYMBOL(io_schedule);
5114
5115 /**
5116 * sys_sched_get_priority_max - return maximum RT priority.
5117 * @policy: scheduling class.
5118 *
5119 * Return: On success, this syscall returns the maximum
5120 * rt_priority that can be used by a given scheduling class.
5121 * On failure, a negative error code is returned.
5122 */
5123 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5124 {
5125 int ret = -EINVAL;
5126
5127 switch (policy) {
5128 case SCHED_FIFO:
5129 case SCHED_RR:
5130 ret = MAX_USER_RT_PRIO-1;
5131 break;
5132 case SCHED_DEADLINE:
5133 case SCHED_NORMAL:
5134 case SCHED_BATCH:
5135 case SCHED_IDLE:
5136 ret = 0;
5137 break;
5138 }
5139 return ret;
5140 }
5141
5142 /**
5143 * sys_sched_get_priority_min - return minimum RT priority.
5144 * @policy: scheduling class.
5145 *
5146 * Return: On success, this syscall returns the minimum
5147 * rt_priority that can be used by a given scheduling class.
5148 * On failure, a negative error code is returned.
5149 */
5150 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5151 {
5152 int ret = -EINVAL;
5153
5154 switch (policy) {
5155 case SCHED_FIFO:
5156 case SCHED_RR:
5157 ret = 1;
5158 break;
5159 case SCHED_DEADLINE:
5160 case SCHED_NORMAL:
5161 case SCHED_BATCH:
5162 case SCHED_IDLE:
5163 ret = 0;
5164 }
5165 return ret;
5166 }
5167
5168 /**
5169 * sys_sched_rr_get_interval - return the default timeslice of a process.
5170 * @pid: pid of the process.
5171 * @interval: userspace pointer to the timeslice value.
5172 *
5173 * this syscall writes the default timeslice value of a given process
5174 * into the user-space timespec buffer. A value of '0' means infinity.
5175 *
5176 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5177 * an error code.
5178 */
5179 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5180 struct timespec __user *, interval)
5181 {
5182 struct task_struct *p;
5183 unsigned int time_slice;
5184 struct rq_flags rf;
5185 struct timespec t;
5186 struct rq *rq;
5187 int retval;
5188
5189 if (pid < 0)
5190 return -EINVAL;
5191
5192 retval = -ESRCH;
5193 rcu_read_lock();
5194 p = find_process_by_pid(pid);
5195 if (!p)
5196 goto out_unlock;
5197
5198 retval = security_task_getscheduler(p);
5199 if (retval)
5200 goto out_unlock;
5201
5202 rq = task_rq_lock(p, &rf);
5203 time_slice = 0;
5204 if (p->sched_class->get_rr_interval)
5205 time_slice = p->sched_class->get_rr_interval(rq, p);
5206 task_rq_unlock(rq, p, &rf);
5207
5208 rcu_read_unlock();
5209 jiffies_to_timespec(time_slice, &t);
5210 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5211 return retval;
5212
5213 out_unlock:
5214 rcu_read_unlock();
5215 return retval;
5216 }
5217
5218 void sched_show_task(struct task_struct *p)
5219 {
5220 unsigned long free = 0;
5221 int ppid;
5222
5223 if (!try_get_task_stack(p))
5224 return;
5225
5226 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5227
5228 if (p->state == TASK_RUNNING)
5229 printk(KERN_CONT " running task ");
5230 #ifdef CONFIG_DEBUG_STACK_USAGE
5231 free = stack_not_used(p);
5232 #endif
5233 ppid = 0;
5234 rcu_read_lock();
5235 if (pid_alive(p))
5236 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5237 rcu_read_unlock();
5238 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5239 task_pid_nr(p), ppid,
5240 (unsigned long)task_thread_info(p)->flags);
5241
5242 print_worker_info(KERN_INFO, p);
5243 show_stack(p, NULL);
5244 put_task_stack(p);
5245 }
5246
5247 static inline bool
5248 state_filter_match(unsigned long state_filter, struct task_struct *p)
5249 {
5250 /* no filter, everything matches */
5251 if (!state_filter)
5252 return true;
5253
5254 /* filter, but doesn't match */
5255 if (!(p->state & state_filter))
5256 return false;
5257
5258 /*
5259 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5260 * TASK_KILLABLE).
5261 */
5262 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5263 return false;
5264
5265 return true;
5266 }
5267
5268
5269 void show_state_filter(unsigned long state_filter)
5270 {
5271 struct task_struct *g, *p;
5272
5273 #if BITS_PER_LONG == 32
5274 printk(KERN_INFO
5275 " task PC stack pid father\n");
5276 #else
5277 printk(KERN_INFO
5278 " task PC stack pid father\n");
5279 #endif
5280 rcu_read_lock();
5281 for_each_process_thread(g, p) {
5282 /*
5283 * reset the NMI-timeout, listing all files on a slow
5284 * console might take a lot of time:
5285 * Also, reset softlockup watchdogs on all CPUs, because
5286 * another CPU might be blocked waiting for us to process
5287 * an IPI.
5288 */
5289 touch_nmi_watchdog();
5290 touch_all_softlockup_watchdogs();
5291 if (state_filter_match(state_filter, p))
5292 sched_show_task(p);
5293 }
5294
5295 #ifdef CONFIG_SCHED_DEBUG
5296 if (!state_filter)
5297 sysrq_sched_debug_show();
5298 #endif
5299 rcu_read_unlock();
5300 /*
5301 * Only show locks if all tasks are dumped:
5302 */
5303 if (!state_filter)
5304 debug_show_all_locks();
5305 }
5306
5307 /**
5308 * init_idle - set up an idle thread for a given CPU
5309 * @idle: task in question
5310 * @cpu: CPU the idle task belongs to
5311 *
5312 * NOTE: this function does not set the idle thread's NEED_RESCHED
5313 * flag, to make booting more robust.
5314 */
5315 void init_idle(struct task_struct *idle, int cpu)
5316 {
5317 struct rq *rq = cpu_rq(cpu);
5318 unsigned long flags;
5319
5320 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5321 raw_spin_lock(&rq->lock);
5322
5323 __sched_fork(0, idle);
5324 idle->state = TASK_RUNNING;
5325 idle->se.exec_start = sched_clock();
5326 idle->flags |= PF_IDLE;
5327
5328 kasan_unpoison_task_stack(idle);
5329
5330 #ifdef CONFIG_SMP
5331 /*
5332 * Its possible that init_idle() gets called multiple times on a task,
5333 * in that case do_set_cpus_allowed() will not do the right thing.
5334 *
5335 * And since this is boot we can forgo the serialization.
5336 */
5337 set_cpus_allowed_common(idle, cpumask_of(cpu));
5338 #endif
5339 /*
5340 * We're having a chicken and egg problem, even though we are
5341 * holding rq->lock, the CPU isn't yet set to this CPU so the
5342 * lockdep check in task_group() will fail.
5343 *
5344 * Similar case to sched_fork(). / Alternatively we could
5345 * use task_rq_lock() here and obtain the other rq->lock.
5346 *
5347 * Silence PROVE_RCU
5348 */
5349 rcu_read_lock();
5350 __set_task_cpu(idle, cpu);
5351 rcu_read_unlock();
5352
5353 rq->curr = rq->idle = idle;
5354 idle->on_rq = TASK_ON_RQ_QUEUED;
5355 #ifdef CONFIG_SMP
5356 idle->on_cpu = 1;
5357 #endif
5358 raw_spin_unlock(&rq->lock);
5359 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5360
5361 /* Set the preempt count _outside_ the spinlocks! */
5362 init_idle_preempt_count(idle, cpu);
5363
5364 /*
5365 * The idle tasks have their own, simple scheduling class:
5366 */
5367 idle->sched_class = &idle_sched_class;
5368 ftrace_graph_init_idle_task(idle, cpu);
5369 vtime_init_idle(idle, cpu);
5370 #ifdef CONFIG_SMP
5371 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5372 #endif
5373 }
5374
5375 #ifdef CONFIG_SMP
5376
5377 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5378 const struct cpumask *trial)
5379 {
5380 int ret = 1;
5381
5382 if (!cpumask_weight(cur))
5383 return ret;
5384
5385 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5386
5387 return ret;
5388 }
5389
5390 int task_can_attach(struct task_struct *p,
5391 const struct cpumask *cs_cpus_allowed)
5392 {
5393 int ret = 0;
5394
5395 /*
5396 * Kthreads which disallow setaffinity shouldn't be moved
5397 * to a new cpuset; we don't want to change their CPU
5398 * affinity and isolating such threads by their set of
5399 * allowed nodes is unnecessary. Thus, cpusets are not
5400 * applicable for such threads. This prevents checking for
5401 * success of set_cpus_allowed_ptr() on all attached tasks
5402 * before cpus_allowed may be changed.
5403 */
5404 if (p->flags & PF_NO_SETAFFINITY) {
5405 ret = -EINVAL;
5406 goto out;
5407 }
5408
5409 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5410 cs_cpus_allowed))
5411 ret = dl_task_can_attach(p, cs_cpus_allowed);
5412
5413 out:
5414 return ret;
5415 }
5416
5417 bool sched_smp_initialized __read_mostly;
5418
5419 #ifdef CONFIG_NUMA_BALANCING
5420 /* Migrate current task p to target_cpu */
5421 int migrate_task_to(struct task_struct *p, int target_cpu)
5422 {
5423 struct migration_arg arg = { p, target_cpu };
5424 int curr_cpu = task_cpu(p);
5425
5426 if (curr_cpu == target_cpu)
5427 return 0;
5428
5429 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5430 return -EINVAL;
5431
5432 /* TODO: This is not properly updating schedstats */
5433
5434 trace_sched_move_numa(p, curr_cpu, target_cpu);
5435 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5436 }
5437
5438 /*
5439 * Requeue a task on a given node and accurately track the number of NUMA
5440 * tasks on the runqueues
5441 */
5442 void sched_setnuma(struct task_struct *p, int nid)
5443 {
5444 bool queued, running;
5445 struct rq_flags rf;
5446 struct rq *rq;
5447
5448 rq = task_rq_lock(p, &rf);
5449 queued = task_on_rq_queued(p);
5450 running = task_current(rq, p);
5451
5452 if (queued)
5453 dequeue_task(rq, p, DEQUEUE_SAVE);
5454 if (running)
5455 put_prev_task(rq, p);
5456
5457 p->numa_preferred_nid = nid;
5458
5459 if (queued)
5460 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5461 if (running)
5462 set_curr_task(rq, p);
5463 task_rq_unlock(rq, p, &rf);
5464 }
5465 #endif /* CONFIG_NUMA_BALANCING */
5466
5467 #ifdef CONFIG_HOTPLUG_CPU
5468 /*
5469 * Ensure that the idle task is using init_mm right before its CPU goes
5470 * offline.
5471 */
5472 void idle_task_exit(void)
5473 {
5474 struct mm_struct *mm = current->active_mm;
5475
5476 BUG_ON(cpu_online(smp_processor_id()));
5477
5478 if (mm != &init_mm) {
5479 switch_mm(mm, &init_mm, current);
5480 finish_arch_post_lock_switch();
5481 }
5482 mmdrop(mm);
5483 }
5484
5485 /*
5486 * Since this CPU is going 'away' for a while, fold any nr_active delta
5487 * we might have. Assumes we're called after migrate_tasks() so that the
5488 * nr_active count is stable. We need to take the teardown thread which
5489 * is calling this into account, so we hand in adjust = 1 to the load
5490 * calculation.
5491 *
5492 * Also see the comment "Global load-average calculations".
5493 */
5494 static void calc_load_migrate(struct rq *rq)
5495 {
5496 long delta = calc_load_fold_active(rq, 1);
5497 if (delta)
5498 atomic_long_add(delta, &calc_load_tasks);
5499 }
5500
5501 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5502 {
5503 }
5504
5505 static const struct sched_class fake_sched_class = {
5506 .put_prev_task = put_prev_task_fake,
5507 };
5508
5509 static struct task_struct fake_task = {
5510 /*
5511 * Avoid pull_{rt,dl}_task()
5512 */
5513 .prio = MAX_PRIO + 1,
5514 .sched_class = &fake_sched_class,
5515 };
5516
5517 /*
5518 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5519 * try_to_wake_up()->select_task_rq().
5520 *
5521 * Called with rq->lock held even though we'er in stop_machine() and
5522 * there's no concurrency possible, we hold the required locks anyway
5523 * because of lock validation efforts.
5524 */
5525 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5526 {
5527 struct rq *rq = dead_rq;
5528 struct task_struct *next, *stop = rq->stop;
5529 struct rq_flags orf = *rf;
5530 int dest_cpu;
5531
5532 /*
5533 * Fudge the rq selection such that the below task selection loop
5534 * doesn't get stuck on the currently eligible stop task.
5535 *
5536 * We're currently inside stop_machine() and the rq is either stuck
5537 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5538 * either way we should never end up calling schedule() until we're
5539 * done here.
5540 */
5541 rq->stop = NULL;
5542
5543 /*
5544 * put_prev_task() and pick_next_task() sched
5545 * class method both need to have an up-to-date
5546 * value of rq->clock[_task]
5547 */
5548 update_rq_clock(rq);
5549
5550 for (;;) {
5551 /*
5552 * There's this thread running, bail when that's the only
5553 * remaining thread:
5554 */
5555 if (rq->nr_running == 1)
5556 break;
5557
5558 /*
5559 * pick_next_task() assumes pinned rq->lock:
5560 */
5561 next = pick_next_task(rq, &fake_task, rf);
5562 BUG_ON(!next);
5563 put_prev_task(rq, next);
5564
5565 /*
5566 * Rules for changing task_struct::cpus_allowed are holding
5567 * both pi_lock and rq->lock, such that holding either
5568 * stabilizes the mask.
5569 *
5570 * Drop rq->lock is not quite as disastrous as it usually is
5571 * because !cpu_active at this point, which means load-balance
5572 * will not interfere. Also, stop-machine.
5573 */
5574 rq_unlock(rq, rf);
5575 raw_spin_lock(&next->pi_lock);
5576 rq_relock(rq, rf);
5577
5578 /*
5579 * Since we're inside stop-machine, _nothing_ should have
5580 * changed the task, WARN if weird stuff happened, because in
5581 * that case the above rq->lock drop is a fail too.
5582 */
5583 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5584 raw_spin_unlock(&next->pi_lock);
5585 continue;
5586 }
5587
5588 /* Find suitable destination for @next, with force if needed. */
5589 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5590 rq = __migrate_task(rq, rf, next, dest_cpu);
5591 if (rq != dead_rq) {
5592 rq_unlock(rq, rf);
5593 rq = dead_rq;
5594 *rf = orf;
5595 rq_relock(rq, rf);
5596 }
5597 raw_spin_unlock(&next->pi_lock);
5598 }
5599
5600 rq->stop = stop;
5601 }
5602 #endif /* CONFIG_HOTPLUG_CPU */
5603
5604 void set_rq_online(struct rq *rq)
5605 {
5606 if (!rq->online) {
5607 const struct sched_class *class;
5608
5609 cpumask_set_cpu(rq->cpu, rq->rd->online);
5610 rq->online = 1;
5611
5612 for_each_class(class) {
5613 if (class->rq_online)
5614 class->rq_online(rq);
5615 }
5616 }
5617 }
5618
5619 void set_rq_offline(struct rq *rq)
5620 {
5621 if (rq->online) {
5622 const struct sched_class *class;
5623
5624 for_each_class(class) {
5625 if (class->rq_offline)
5626 class->rq_offline(rq);
5627 }
5628
5629 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5630 rq->online = 0;
5631 }
5632 }
5633
5634 static void set_cpu_rq_start_time(unsigned int cpu)
5635 {
5636 struct rq *rq = cpu_rq(cpu);
5637
5638 rq->age_stamp = sched_clock_cpu(cpu);
5639 }
5640
5641 /*
5642 * used to mark begin/end of suspend/resume:
5643 */
5644 static int num_cpus_frozen;
5645
5646 /*
5647 * Update cpusets according to cpu_active mask. If cpusets are
5648 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5649 * around partition_sched_domains().
5650 *
5651 * If we come here as part of a suspend/resume, don't touch cpusets because we
5652 * want to restore it back to its original state upon resume anyway.
5653 */
5654 static void cpuset_cpu_active(void)
5655 {
5656 if (cpuhp_tasks_frozen) {
5657 /*
5658 * num_cpus_frozen tracks how many CPUs are involved in suspend
5659 * resume sequence. As long as this is not the last online
5660 * operation in the resume sequence, just build a single sched
5661 * domain, ignoring cpusets.
5662 */
5663 partition_sched_domains(1, NULL, NULL);
5664 if (--num_cpus_frozen)
5665 return;
5666 /*
5667 * This is the last CPU online operation. So fall through and
5668 * restore the original sched domains by considering the
5669 * cpuset configurations.
5670 */
5671 cpuset_force_rebuild();
5672 }
5673 cpuset_update_active_cpus();
5674 }
5675
5676 static int cpuset_cpu_inactive(unsigned int cpu)
5677 {
5678 if (!cpuhp_tasks_frozen) {
5679 if (dl_cpu_busy(cpu))
5680 return -EBUSY;
5681 cpuset_update_active_cpus();
5682 } else {
5683 num_cpus_frozen++;
5684 partition_sched_domains(1, NULL, NULL);
5685 }
5686 return 0;
5687 }
5688
5689 int sched_cpu_activate(unsigned int cpu)
5690 {
5691 struct rq *rq = cpu_rq(cpu);
5692 struct rq_flags rf;
5693
5694 #ifdef CONFIG_SCHED_SMT
5695 /*
5696 * When going up, increment the number of cores with SMT present.
5697 */
5698 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5699 static_branch_inc_cpuslocked(&sched_smt_present);
5700 #endif
5701 set_cpu_active(cpu, true);
5702
5703 if (sched_smp_initialized) {
5704 sched_domains_numa_masks_set(cpu);
5705 cpuset_cpu_active();
5706 }
5707
5708 /*
5709 * Put the rq online, if not already. This happens:
5710 *
5711 * 1) In the early boot process, because we build the real domains
5712 * after all CPUs have been brought up.
5713 *
5714 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5715 * domains.
5716 */
5717 rq_lock_irqsave(rq, &rf);
5718 if (rq->rd) {
5719 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5720 set_rq_online(rq);
5721 }
5722 rq_unlock_irqrestore(rq, &rf);
5723
5724 update_max_interval();
5725
5726 return 0;
5727 }
5728
5729 int sched_cpu_deactivate(unsigned int cpu)
5730 {
5731 int ret;
5732
5733 set_cpu_active(cpu, false);
5734 /*
5735 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5736 * users of this state to go away such that all new such users will
5737 * observe it.
5738 *
5739 * Do sync before park smpboot threads to take care the rcu boost case.
5740 */
5741 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5742
5743 #ifdef CONFIG_SCHED_SMT
5744 /*
5745 * When going down, decrement the number of cores with SMT present.
5746 */
5747 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5748 static_branch_dec_cpuslocked(&sched_smt_present);
5749 #endif
5750
5751 if (!sched_smp_initialized)
5752 return 0;
5753
5754 ret = cpuset_cpu_inactive(cpu);
5755 if (ret) {
5756 set_cpu_active(cpu, true);
5757 return ret;
5758 }
5759 sched_domains_numa_masks_clear(cpu);
5760 return 0;
5761 }
5762
5763 static void sched_rq_cpu_starting(unsigned int cpu)
5764 {
5765 struct rq *rq = cpu_rq(cpu);
5766
5767 rq->calc_load_update = calc_load_update;
5768 update_max_interval();
5769 }
5770
5771 int sched_cpu_starting(unsigned int cpu)
5772 {
5773 set_cpu_rq_start_time(cpu);
5774 sched_rq_cpu_starting(cpu);
5775 return 0;
5776 }
5777
5778 #ifdef CONFIG_HOTPLUG_CPU
5779 int sched_cpu_dying(unsigned int cpu)
5780 {
5781 struct rq *rq = cpu_rq(cpu);
5782 struct rq_flags rf;
5783
5784 /* Handle pending wakeups and then migrate everything off */
5785 sched_ttwu_pending();
5786
5787 rq_lock_irqsave(rq, &rf);
5788
5789 walt_migrate_sync_cpu(cpu);
5790
5791 if (rq->rd) {
5792 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5793 set_rq_offline(rq);
5794 }
5795 migrate_tasks(rq, &rf);
5796 BUG_ON(rq->nr_running != 1);
5797 rq_unlock_irqrestore(rq, &rf);
5798
5799 calc_load_migrate(rq);
5800 update_max_interval();
5801 nohz_balance_exit_idle(cpu);
5802 hrtick_clear(rq);
5803 return 0;
5804 }
5805 #endif
5806
5807 void __init sched_init_smp(void)
5808 {
5809 cpumask_var_t non_isolated_cpus;
5810
5811 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5812
5813 sched_init_numa();
5814
5815 /*
5816 * There's no userspace yet to cause hotplug operations; hence all the
5817 * CPU masks are stable and all blatant races in the below code cannot
5818 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
5819 * but there won't be any contention on it.
5820 */
5821 cpus_read_lock();
5822 mutex_lock(&sched_domains_mutex);
5823 sched_init_domains(cpu_active_mask);
5824 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
5825 if (cpumask_empty(non_isolated_cpus))
5826 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5827 mutex_unlock(&sched_domains_mutex);
5828 cpus_read_unlock();
5829
5830 /* Move init over to a non-isolated CPU */
5831 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5832 BUG();
5833 sched_init_granularity();
5834 free_cpumask_var(non_isolated_cpus);
5835
5836 init_sched_rt_class();
5837 init_sched_dl_class();
5838
5839 sched_smp_initialized = true;
5840 }
5841
5842 static int __init migration_init(void)
5843 {
5844 sched_rq_cpu_starting(smp_processor_id());
5845 return 0;
5846 }
5847 early_initcall(migration_init);
5848
5849 #else
5850 void __init sched_init_smp(void)
5851 {
5852 sched_init_granularity();
5853 }
5854 #endif /* CONFIG_SMP */
5855
5856 int in_sched_functions(unsigned long addr)
5857 {
5858 return in_lock_functions(addr) ||
5859 (addr >= (unsigned long)__sched_text_start
5860 && addr < (unsigned long)__sched_text_end);
5861 }
5862
5863 #ifdef CONFIG_CGROUP_SCHED
5864 /*
5865 * Default task group.
5866 * Every task in system belongs to this group at bootup.
5867 */
5868 struct task_group root_task_group;
5869 LIST_HEAD(task_groups);
5870
5871 /* Cacheline aligned slab cache for task_group */
5872 static struct kmem_cache *task_group_cache __read_mostly;
5873 #endif
5874
5875 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5876 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5877
5878 void __init sched_init(void)
5879 {
5880 int i, j;
5881 unsigned long alloc_size = 0, ptr;
5882
5883 sched_clock_init();
5884 wait_bit_init();
5885
5886 #ifdef CONFIG_FAIR_GROUP_SCHED
5887 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5888 #endif
5889 #ifdef CONFIG_RT_GROUP_SCHED
5890 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5891 #endif
5892 if (alloc_size) {
5893 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5894
5895 #ifdef CONFIG_FAIR_GROUP_SCHED
5896 root_task_group.se = (struct sched_entity **)ptr;
5897 ptr += nr_cpu_ids * sizeof(void **);
5898
5899 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5900 ptr += nr_cpu_ids * sizeof(void **);
5901
5902 #endif /* CONFIG_FAIR_GROUP_SCHED */
5903 #ifdef CONFIG_RT_GROUP_SCHED
5904 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5905 ptr += nr_cpu_ids * sizeof(void **);
5906
5907 root_task_group.rt_rq = (struct rt_rq **)ptr;
5908 ptr += nr_cpu_ids * sizeof(void **);
5909
5910 #endif /* CONFIG_RT_GROUP_SCHED */
5911 }
5912 #ifdef CONFIG_CPUMASK_OFFSTACK
5913 for_each_possible_cpu(i) {
5914 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5915 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5916 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5917 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5918 }
5919 #endif /* CONFIG_CPUMASK_OFFSTACK */
5920
5921 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5922 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5923
5924 #ifdef CONFIG_SMP
5925 init_defrootdomain();
5926 #endif
5927
5928 #ifdef CONFIG_RT_GROUP_SCHED
5929 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5930 global_rt_period(), global_rt_runtime());
5931 #endif /* CONFIG_RT_GROUP_SCHED */
5932
5933 #ifdef CONFIG_CGROUP_SCHED
5934 task_group_cache = KMEM_CACHE(task_group, 0);
5935
5936 list_add(&root_task_group.list, &task_groups);
5937 INIT_LIST_HEAD(&root_task_group.children);
5938 INIT_LIST_HEAD(&root_task_group.siblings);
5939 autogroup_init(&init_task);
5940 #endif /* CONFIG_CGROUP_SCHED */
5941
5942 for_each_possible_cpu(i) {
5943 struct rq *rq;
5944
5945 rq = cpu_rq(i);
5946 raw_spin_lock_init(&rq->lock);
5947 rq->nr_running = 0;
5948 rq->calc_load_active = 0;
5949 rq->calc_load_update = jiffies + LOAD_FREQ;
5950 init_cfs_rq(&rq->cfs);
5951 init_rt_rq(&rq->rt);
5952 init_dl_rq(&rq->dl);
5953 #ifdef CONFIG_FAIR_GROUP_SCHED
5954 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5955 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5956 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5957 /*
5958 * How much CPU bandwidth does root_task_group get?
5959 *
5960 * In case of task-groups formed thr' the cgroup filesystem, it
5961 * gets 100% of the CPU resources in the system. This overall
5962 * system CPU resource is divided among the tasks of
5963 * root_task_group and its child task-groups in a fair manner,
5964 * based on each entity's (task or task-group's) weight
5965 * (se->load.weight).
5966 *
5967 * In other words, if root_task_group has 10 tasks of weight
5968 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5969 * then A0's share of the CPU resource is:
5970 *
5971 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5972 *
5973 * We achieve this by letting root_task_group's tasks sit
5974 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5975 */
5976 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5977 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5978 #endif /* CONFIG_FAIR_GROUP_SCHED */
5979
5980 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5981 #ifdef CONFIG_RT_GROUP_SCHED
5982 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5983 #endif
5984
5985 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5986 rq->cpu_load[j] = 0;
5987
5988 #ifdef CONFIG_SMP
5989 rq->sd = NULL;
5990 rq->rd = NULL;
5991 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5992 rq->balance_callback = NULL;
5993 rq->active_balance = 0;
5994 rq->next_balance = jiffies;
5995 rq->push_cpu = 0;
5996 rq->cpu = i;
5997 rq->online = 0;
5998 rq->idle_stamp = 0;
5999 rq->avg_idle = 2*sysctl_sched_migration_cost;
6000 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6001 #ifdef CONFIG_SCHED_WALT
6002 rq->cur_irqload = 0;
6003 rq->avg_irqload = 0;
6004 rq->irqload_ts = 0;
6005 #endif
6006
6007 INIT_LIST_HEAD(&rq->cfs_tasks);
6008
6009 rq_attach_root(rq, &def_root_domain);
6010 #ifdef CONFIG_NO_HZ_COMMON
6011 rq->last_load_update_tick = jiffies;
6012 rq->last_blocked_load_update_tick = jiffies;
6013 rq->nohz_flags = 0;
6014 #endif
6015 #ifdef CONFIG_NO_HZ_FULL
6016 rq->last_sched_tick = 0;
6017 #endif
6018 #endif /* CONFIG_SMP */
6019 init_rq_hrtick(rq);
6020 atomic_set(&rq->nr_iowait, 0);
6021 }
6022
6023 set_load_weight(&init_task);
6024
6025 alloc_bands();
6026
6027 /*
6028 * The boot idle thread does lazy MMU switching as well:
6029 */
6030 mmgrab(&init_mm);
6031 enter_lazy_tlb(&init_mm, current);
6032
6033 /*
6034 * Make us the idle thread. Technically, schedule() should not be
6035 * called from this thread, however somewhere below it might be,
6036 * but because we are the idle thread, we just pick up running again
6037 * when this runqueue becomes "idle".
6038 */
6039 init_idle(current, smp_processor_id());
6040
6041 calc_load_update = jiffies + LOAD_FREQ;
6042
6043 #ifdef CONFIG_SMP
6044 /* May be allocated at isolcpus cmdline parse time */
6045 if (cpu_isolated_map == NULL)
6046 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6047 idle_thread_set_boot_cpu();
6048 set_cpu_rq_start_time(smp_processor_id());
6049 #endif
6050 init_sched_fair_class();
6051
6052 init_schedstats();
6053
6054 scheduler_running = 1;
6055 }
6056
6057 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6058 static inline int preempt_count_equals(int preempt_offset)
6059 {
6060 int nested = preempt_count() + rcu_preempt_depth();
6061
6062 return (nested == preempt_offset);
6063 }
6064
6065 void __might_sleep(const char *file, int line, int preempt_offset)
6066 {
6067 /*
6068 * Blocking primitives will set (and therefore destroy) current->state,
6069 * since we will exit with TASK_RUNNING make sure we enter with it,
6070 * otherwise we will destroy state.
6071 */
6072 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6073 "do not call blocking ops when !TASK_RUNNING; "
6074 "state=%lx set at [<%p>] %pS\n",
6075 current->state,
6076 (void *)current->task_state_change,
6077 (void *)current->task_state_change);
6078
6079 ___might_sleep(file, line, preempt_offset);
6080 }
6081 EXPORT_SYMBOL(__might_sleep);
6082
6083 void ___might_sleep(const char *file, int line, int preempt_offset)
6084 {
6085 /* Ratelimiting timestamp: */
6086 static unsigned long prev_jiffy;
6087
6088 unsigned long preempt_disable_ip;
6089
6090 /* WARN_ON_ONCE() by default, no rate limit required: */
6091 rcu_sleep_check();
6092
6093 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6094 !is_idle_task(current)) ||
6095 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6096 oops_in_progress)
6097 return;
6098
6099 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6100 return;
6101 prev_jiffy = jiffies;
6102
6103 /* Save this before calling printk(), since that will clobber it: */
6104 preempt_disable_ip = get_preempt_disable_ip(current);
6105
6106 printk(KERN_ERR
6107 "BUG: sleeping function called from invalid context at %s:%d\n",
6108 file, line);
6109 printk(KERN_ERR
6110 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6111 in_atomic(), irqs_disabled(),
6112 current->pid, current->comm);
6113
6114 if (task_stack_end_corrupted(current))
6115 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6116
6117 debug_show_held_locks(current);
6118 if (irqs_disabled())
6119 print_irqtrace_events(current);
6120 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6121 && !preempt_count_equals(preempt_offset)) {
6122 pr_err("Preemption disabled at:");
6123 print_ip_sym(preempt_disable_ip);
6124 pr_cont("\n");
6125 }
6126 dump_stack();
6127 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6128 }
6129 EXPORT_SYMBOL(___might_sleep);
6130 #endif
6131
6132 #ifdef CONFIG_MAGIC_SYSRQ
6133 void normalize_rt_tasks(void)
6134 {
6135 struct task_struct *g, *p;
6136 struct sched_attr attr = {
6137 .sched_policy = SCHED_NORMAL,
6138 };
6139
6140 read_lock(&tasklist_lock);
6141 for_each_process_thread(g, p) {
6142 /*
6143 * Only normalize user tasks:
6144 */
6145 if (p->flags & PF_KTHREAD)
6146 continue;
6147
6148 p->se.exec_start = 0;
6149 schedstat_set(p->se.statistics.wait_start, 0);
6150 schedstat_set(p->se.statistics.sleep_start, 0);
6151 schedstat_set(p->se.statistics.block_start, 0);
6152
6153 if (!dl_task(p) && !rt_task(p)) {
6154 /*
6155 * Renice negative nice level userspace
6156 * tasks back to 0:
6157 */
6158 if (task_nice(p) < 0)
6159 set_user_nice(p, 0);
6160 continue;
6161 }
6162
6163 __sched_setscheduler(p, &attr, false, false);
6164 }
6165 read_unlock(&tasklist_lock);
6166 }
6167
6168 #endif /* CONFIG_MAGIC_SYSRQ */
6169
6170 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6171 /*
6172 * These functions are only useful for the IA64 MCA handling, or kdb.
6173 *
6174 * They can only be called when the whole system has been
6175 * stopped - every CPU needs to be quiescent, and no scheduling
6176 * activity can take place. Using them for anything else would
6177 * be a serious bug, and as a result, they aren't even visible
6178 * under any other configuration.
6179 */
6180
6181 /**
6182 * curr_task - return the current task for a given CPU.
6183 * @cpu: the processor in question.
6184 *
6185 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6186 *
6187 * Return: The current task for @cpu.
6188 */
6189 struct task_struct *curr_task(int cpu)
6190 {
6191 return cpu_curr(cpu);
6192 }
6193
6194 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6195
6196 #ifdef CONFIG_IA64
6197 /**
6198 * set_curr_task - set the current task for a given CPU.
6199 * @cpu: the processor in question.
6200 * @p: the task pointer to set.
6201 *
6202 * Description: This function must only be used when non-maskable interrupts
6203 * are serviced on a separate stack. It allows the architecture to switch the
6204 * notion of the current task on a CPU in a non-blocking manner. This function
6205 * must be called with all CPU's synchronized, and interrupts disabled, the
6206 * and caller must save the original value of the current task (see
6207 * curr_task() above) and restore that value before reenabling interrupts and
6208 * re-starting the system.
6209 *
6210 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6211 */
6212 void ia64_set_curr_task(int cpu, struct task_struct *p)
6213 {
6214 cpu_curr(cpu) = p;
6215 }
6216
6217 #endif
6218
6219 #ifdef CONFIG_CGROUP_SCHED
6220 /* task_group_lock serializes the addition/removal of task groups */
6221 static DEFINE_SPINLOCK(task_group_lock);
6222
6223 static void sched_free_group(struct task_group *tg)
6224 {
6225 free_fair_sched_group(tg);
6226 free_rt_sched_group(tg);
6227 autogroup_free(tg);
6228 kmem_cache_free(task_group_cache, tg);
6229 }
6230
6231 /* allocate runqueue etc for a new task group */
6232 struct task_group *sched_create_group(struct task_group *parent)
6233 {
6234 struct task_group *tg;
6235
6236 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6237 if (!tg)
6238 return ERR_PTR(-ENOMEM);
6239
6240 if (!alloc_fair_sched_group(tg, parent))
6241 goto err;
6242
6243 if (!alloc_rt_sched_group(tg, parent))
6244 goto err;
6245
6246 return tg;
6247
6248 err:
6249 sched_free_group(tg);
6250 return ERR_PTR(-ENOMEM);
6251 }
6252
6253 void sched_online_group(struct task_group *tg, struct task_group *parent)
6254 {
6255 unsigned long flags;
6256
6257 spin_lock_irqsave(&task_group_lock, flags);
6258 list_add_rcu(&tg->list, &task_groups);
6259
6260 /* Root should already exist: */
6261 WARN_ON(!parent);
6262
6263 tg->parent = parent;
6264 INIT_LIST_HEAD(&tg->children);
6265 list_add_rcu(&tg->siblings, &parent->children);
6266 spin_unlock_irqrestore(&task_group_lock, flags);
6267
6268 online_fair_sched_group(tg);
6269 }
6270
6271 /* rcu callback to free various structures associated with a task group */
6272 static void sched_free_group_rcu(struct rcu_head *rhp)
6273 {
6274 /* Now it should be safe to free those cfs_rqs: */
6275 sched_free_group(container_of(rhp, struct task_group, rcu));
6276 }
6277
6278 void sched_destroy_group(struct task_group *tg)
6279 {
6280 /* Wait for possible concurrent references to cfs_rqs complete: */
6281 call_rcu(&tg->rcu, sched_free_group_rcu);
6282 }
6283
6284 void sched_offline_group(struct task_group *tg)
6285 {
6286 unsigned long flags;
6287
6288 /* End participation in shares distribution: */
6289 unregister_fair_sched_group(tg);
6290
6291 spin_lock_irqsave(&task_group_lock, flags);
6292 list_del_rcu(&tg->list);
6293 list_del_rcu(&tg->siblings);
6294 spin_unlock_irqrestore(&task_group_lock, flags);
6295 }
6296
6297 static void sched_change_group(struct task_struct *tsk, int type)
6298 {
6299 struct task_group *tg;
6300
6301 /*
6302 * All callers are synchronized by task_rq_lock(); we do not use RCU
6303 * which is pointless here. Thus, we pass "true" to task_css_check()
6304 * to prevent lockdep warnings.
6305 */
6306 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6307 struct task_group, css);
6308 tg = autogroup_task_group(tsk, tg);
6309 tsk->sched_task_group = tg;
6310
6311 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
6312 if (tsk->sched_class->task_change_group)
6313 tsk->sched_class->task_change_group(tsk, type);
6314 else
6315 #endif
6316 set_task_rq(tsk, task_cpu(tsk));
6317 }
6318
6319 /*
6320 * Change task's runqueue when it moves between groups.
6321 *
6322 * The caller of this function should have put the task in its new group by
6323 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6324 * its new group.
6325 */
6326 void sched_move_task(struct task_struct *tsk)
6327 {
6328 int queued, running, queue_flags =
6329 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6330 struct rq_flags rf;
6331 struct rq *rq;
6332
6333 rq = task_rq_lock(tsk, &rf);
6334 update_rq_clock(rq);
6335
6336 running = task_current(rq, tsk);
6337 queued = task_on_rq_queued(tsk);
6338
6339 if (queued)
6340 dequeue_task(rq, tsk, queue_flags);
6341 if (running)
6342 put_prev_task(rq, tsk);
6343
6344 sched_change_group(tsk, TASK_MOVE_GROUP);
6345
6346 if (queued)
6347 enqueue_task(rq, tsk, queue_flags);
6348 if (running)
6349 set_curr_task(rq, tsk);
6350
6351 task_rq_unlock(rq, tsk, &rf);
6352 }
6353
6354 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6355 {
6356 return css ? container_of(css, struct task_group, css) : NULL;
6357 }
6358
6359 static struct cgroup_subsys_state *
6360 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6361 {
6362 struct task_group *parent = css_tg(parent_css);
6363 struct task_group *tg;
6364
6365 if (!parent) {
6366 /* This is early initialization for the top cgroup */
6367 return &root_task_group.css;
6368 }
6369
6370 tg = sched_create_group(parent);
6371 if (IS_ERR(tg))
6372 return ERR_PTR(-ENOMEM);
6373
6374 return &tg->css;
6375 }
6376
6377 /* Expose task group only after completing cgroup initialization */
6378 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6379 {
6380 struct task_group *tg = css_tg(css);
6381 struct task_group *parent = css_tg(css->parent);
6382
6383 if (parent)
6384 sched_online_group(tg, parent);
6385 return 0;
6386 }
6387
6388 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6389 {
6390 struct task_group *tg = css_tg(css);
6391
6392 sched_offline_group(tg);
6393 }
6394
6395 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6396 {
6397 struct task_group *tg = css_tg(css);
6398
6399 /*
6400 * Relies on the RCU grace period between css_released() and this.
6401 */
6402 sched_free_group(tg);
6403 }
6404
6405 /*
6406 * This is called before wake_up_new_task(), therefore we really only
6407 * have to set its group bits, all the other stuff does not apply.
6408 */
6409 static void cpu_cgroup_fork(struct task_struct *task)
6410 {
6411 struct rq_flags rf;
6412 struct rq *rq;
6413
6414 rq = task_rq_lock(task, &rf);
6415
6416 update_rq_clock(rq);
6417 sched_change_group(task, TASK_SET_GROUP);
6418
6419 task_rq_unlock(rq, task, &rf);
6420 }
6421
6422 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6423 {
6424 struct task_struct *task;
6425 struct cgroup_subsys_state *css;
6426 int ret = 0;
6427
6428 cgroup_taskset_for_each(task, css, tset) {
6429 #ifdef CONFIG_RT_GROUP_SCHED
6430 if (!sched_rt_can_attach(css_tg(css), task))
6431 return -EINVAL;
6432 #else
6433 /* We don't support RT-tasks being in separate groups */
6434 if (task->sched_class != &fair_sched_class)
6435 return -EINVAL;
6436 #endif
6437 /*
6438 * Serialize against wake_up_new_task() such that if its
6439 * running, we're sure to observe its full state.
6440 */
6441 raw_spin_lock_irq(&task->pi_lock);
6442 /*
6443 * Avoid calling sched_move_task() before wake_up_new_task()
6444 * has happened. This would lead to problems with PELT, due to
6445 * move wanting to detach+attach while we're not attached yet.
6446 */
6447 if (task->state == TASK_NEW)
6448 ret = -EINVAL;
6449 raw_spin_unlock_irq(&task->pi_lock);
6450
6451 if (ret)
6452 break;
6453 }
6454 return ret;
6455 }
6456
6457 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6458 {
6459 struct task_struct *task;
6460 struct cgroup_subsys_state *css;
6461
6462 cgroup_taskset_for_each(task, css, tset)
6463 sched_move_task(task);
6464 }
6465
6466 #ifdef CONFIG_FAIR_GROUP_SCHED
6467 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6468 struct cftype *cftype, u64 shareval)
6469 {
6470 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6471 }
6472
6473 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6474 struct cftype *cft)
6475 {
6476 struct task_group *tg = css_tg(css);
6477
6478 return (u64) scale_load_down(tg->shares);
6479 }
6480
6481 #ifdef CONFIG_CFS_BANDWIDTH
6482 static DEFINE_MUTEX(cfs_constraints_mutex);
6483
6484 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6485 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6486
6487 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6488
6489 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6490 {
6491 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6492 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6493
6494 if (tg == &root_task_group)
6495 return -EINVAL;
6496
6497 /*
6498 * Ensure we have at some amount of bandwidth every period. This is
6499 * to prevent reaching a state of large arrears when throttled via
6500 * entity_tick() resulting in prolonged exit starvation.
6501 */
6502 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6503 return -EINVAL;
6504
6505 /*
6506 * Likewise, bound things on the otherside by preventing insane quota
6507 * periods. This also allows us to normalize in computing quota
6508 * feasibility.
6509 */
6510 if (period > max_cfs_quota_period)
6511 return -EINVAL;
6512
6513 /*
6514 * Prevent race between setting of cfs_rq->runtime_enabled and
6515 * unthrottle_offline_cfs_rqs().
6516 */
6517 get_online_cpus();
6518 mutex_lock(&cfs_constraints_mutex);
6519 ret = __cfs_schedulable(tg, period, quota);
6520 if (ret)
6521 goto out_unlock;
6522
6523 runtime_enabled = quota != RUNTIME_INF;
6524 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6525 /*
6526 * If we need to toggle cfs_bandwidth_used, off->on must occur
6527 * before making related changes, and on->off must occur afterwards
6528 */
6529 if (runtime_enabled && !runtime_was_enabled)
6530 cfs_bandwidth_usage_inc();
6531 raw_spin_lock_irq(&cfs_b->lock);
6532 cfs_b->period = ns_to_ktime(period);
6533 cfs_b->quota = quota;
6534
6535 __refill_cfs_bandwidth_runtime(cfs_b);
6536
6537 /* Restart the period timer (if active) to handle new period expiry: */
6538 if (runtime_enabled)
6539 start_cfs_bandwidth(cfs_b);
6540
6541 raw_spin_unlock_irq(&cfs_b->lock);
6542
6543 for_each_online_cpu(i) {
6544 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6545 struct rq *rq = cfs_rq->rq;
6546 struct rq_flags rf;
6547
6548 rq_lock_irq(rq, &rf);
6549 cfs_rq->runtime_enabled = runtime_enabled;
6550 cfs_rq->runtime_remaining = 0;
6551
6552 if (cfs_rq->throttled)
6553 unthrottle_cfs_rq(cfs_rq);
6554 rq_unlock_irq(rq, &rf);
6555 }
6556 if (runtime_was_enabled && !runtime_enabled)
6557 cfs_bandwidth_usage_dec();
6558 out_unlock:
6559 mutex_unlock(&cfs_constraints_mutex);
6560 put_online_cpus();
6561
6562 return ret;
6563 }
6564
6565 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6566 {
6567 u64 quota, period;
6568
6569 period = ktime_to_ns(tg->cfs_bandwidth.period);
6570 if (cfs_quota_us < 0)
6571 quota = RUNTIME_INF;
6572 else
6573 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6574
6575 return tg_set_cfs_bandwidth(tg, period, quota);
6576 }
6577
6578 long tg_get_cfs_quota(struct task_group *tg)
6579 {
6580 u64 quota_us;
6581
6582 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6583 return -1;
6584
6585 quota_us = tg->cfs_bandwidth.quota;
6586 do_div(quota_us, NSEC_PER_USEC);
6587
6588 return quota_us;
6589 }
6590
6591 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6592 {
6593 u64 quota, period;
6594
6595 period = (u64)cfs_period_us * NSEC_PER_USEC;
6596 quota = tg->cfs_bandwidth.quota;
6597
6598 return tg_set_cfs_bandwidth(tg, period, quota);
6599 }
6600
6601 long tg_get_cfs_period(struct task_group *tg)
6602 {
6603 u64 cfs_period_us;
6604
6605 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6606 do_div(cfs_period_us, NSEC_PER_USEC);
6607
6608 return cfs_period_us;
6609 }
6610
6611 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6612 struct cftype *cft)
6613 {
6614 return tg_get_cfs_quota(css_tg(css));
6615 }
6616
6617 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6618 struct cftype *cftype, s64 cfs_quota_us)
6619 {
6620 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6621 }
6622
6623 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6624 struct cftype *cft)
6625 {
6626 return tg_get_cfs_period(css_tg(css));
6627 }
6628
6629 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6630 struct cftype *cftype, u64 cfs_period_us)
6631 {
6632 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6633 }
6634
6635 struct cfs_schedulable_data {
6636 struct task_group *tg;
6637 u64 period, quota;
6638 };
6639
6640 /*
6641 * normalize group quota/period to be quota/max_period
6642 * note: units are usecs
6643 */
6644 static u64 normalize_cfs_quota(struct task_group *tg,
6645 struct cfs_schedulable_data *d)
6646 {
6647 u64 quota, period;
6648
6649 if (tg == d->tg) {
6650 period = d->period;
6651 quota = d->quota;
6652 } else {
6653 period = tg_get_cfs_period(tg);
6654 quota = tg_get_cfs_quota(tg);
6655 }
6656
6657 /* note: these should typically be equivalent */
6658 if (quota == RUNTIME_INF || quota == -1)
6659 return RUNTIME_INF;
6660
6661 return to_ratio(period, quota);
6662 }
6663
6664 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6665 {
6666 struct cfs_schedulable_data *d = data;
6667 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6668 s64 quota = 0, parent_quota = -1;
6669
6670 if (!tg->parent) {
6671 quota = RUNTIME_INF;
6672 } else {
6673 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6674
6675 quota = normalize_cfs_quota(tg, d);
6676 parent_quota = parent_b->hierarchical_quota;
6677
6678 /*
6679 * Ensure max(child_quota) <= parent_quota, inherit when no
6680 * limit is set:
6681 */
6682 if (quota == RUNTIME_INF)
6683 quota = parent_quota;
6684 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6685 return -EINVAL;
6686 }
6687 cfs_b->hierarchical_quota = quota;
6688
6689 return 0;
6690 }
6691
6692 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6693 {
6694 int ret;
6695 struct cfs_schedulable_data data = {
6696 .tg = tg,
6697 .period = period,
6698 .quota = quota,
6699 };
6700
6701 if (quota != RUNTIME_INF) {
6702 do_div(data.period, NSEC_PER_USEC);
6703 do_div(data.quota, NSEC_PER_USEC);
6704 }
6705
6706 rcu_read_lock();
6707 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6708 rcu_read_unlock();
6709
6710 return ret;
6711 }
6712
6713 static int cpu_stats_show(struct seq_file *sf, void *v)
6714 {
6715 struct task_group *tg = css_tg(seq_css(sf));
6716 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6717
6718 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6719 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6720 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6721
6722 return 0;
6723 }
6724 #endif /* CONFIG_CFS_BANDWIDTH */
6725 #endif /* CONFIG_FAIR_GROUP_SCHED */
6726
6727 #ifdef CONFIG_RT_GROUP_SCHED
6728 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6729 struct cftype *cft, s64 val)
6730 {
6731 return sched_group_set_rt_runtime(css_tg(css), val);
6732 }
6733
6734 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6735 struct cftype *cft)
6736 {
6737 return sched_group_rt_runtime(css_tg(css));
6738 }
6739
6740 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6741 struct cftype *cftype, u64 rt_period_us)
6742 {
6743 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6744 }
6745
6746 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6747 struct cftype *cft)
6748 {
6749 return sched_group_rt_period(css_tg(css));
6750 }
6751 #endif /* CONFIG_RT_GROUP_SCHED */
6752
6753 static struct cftype cpu_files[] = {
6754 #ifdef CONFIG_FAIR_GROUP_SCHED
6755 {
6756 .name = "shares",
6757 .read_u64 = cpu_shares_read_u64,
6758 .write_u64 = cpu_shares_write_u64,
6759 },
6760 #endif
6761 #ifdef CONFIG_CFS_BANDWIDTH
6762 {
6763 .name = "cfs_quota_us",
6764 .read_s64 = cpu_cfs_quota_read_s64,
6765 .write_s64 = cpu_cfs_quota_write_s64,
6766 },
6767 {
6768 .name = "cfs_period_us",
6769 .read_u64 = cpu_cfs_period_read_u64,
6770 .write_u64 = cpu_cfs_period_write_u64,
6771 },
6772 {
6773 .name = "stat",
6774 .seq_show = cpu_stats_show,
6775 },
6776 #endif
6777 #ifdef CONFIG_RT_GROUP_SCHED
6778 {
6779 .name = "rt_runtime_us",
6780 .read_s64 = cpu_rt_runtime_read,
6781 .write_s64 = cpu_rt_runtime_write,
6782 },
6783 {
6784 .name = "rt_period_us",
6785 .read_u64 = cpu_rt_period_read_uint,
6786 .write_u64 = cpu_rt_period_write_uint,
6787 },
6788 #endif
6789 { } /* Terminate */
6790 };
6791
6792 struct cgroup_subsys cpu_cgrp_subsys = {
6793 .css_alloc = cpu_cgroup_css_alloc,
6794 .css_online = cpu_cgroup_css_online,
6795 .css_released = cpu_cgroup_css_released,
6796 .css_free = cpu_cgroup_css_free,
6797 .fork = cpu_cgroup_fork,
6798 .can_attach = cpu_cgroup_can_attach,
6799 .attach = cpu_cgroup_attach,
6800 .legacy_cftypes = cpu_files,
6801 .early_init = true,
6802 };
6803
6804 #endif /* CONFIG_CGROUP_SCHED */
6805
6806 void dump_cpu_task(int cpu)
6807 {
6808 pr_info("Task dump for CPU %d:\n", cpu);
6809 sched_show_task(cpu_curr(cpu));
6810 }
6811
6812 /*
6813 * Nice levels are multiplicative, with a gentle 10% change for every
6814 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6815 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6816 * that remained on nice 0.
6817 *
6818 * The "10% effect" is relative and cumulative: from _any_ nice level,
6819 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6820 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6821 * If a task goes up by ~10% and another task goes down by ~10% then
6822 * the relative distance between them is ~25%.)
6823 */
6824 const int sched_prio_to_weight[40] = {
6825 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6826 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6827 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6828 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6829 /* 0 */ 1024, 820, 655, 526, 423,
6830 /* 5 */ 335, 272, 215, 172, 137,
6831 /* 10 */ 110, 87, 70, 56, 45,
6832 /* 15 */ 36, 29, 23, 18, 15,
6833 };
6834
6835 /*
6836 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6837 *
6838 * In cases where the weight does not change often, we can use the
6839 * precalculated inverse to speed up arithmetics by turning divisions
6840 * into multiplications:
6841 */
6842 const u32 sched_prio_to_wmult[40] = {
6843 /* -20 */ 48388, 59856, 76040, 92818, 118348,
6844 /* -15 */ 147320, 184698, 229616, 287308, 360437,
6845 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
6846 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
6847 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
6848 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
6849 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
6850 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6851 };
6852
6853 /*
6854 * RT Extension for 'prio_to_weight'
6855 */
6856 const int rtprio_to_weight[51] = {
6857 /* 0 */ 17222521, 15500269, 13950242, 12555218, 11299696,
6858 /* 10 */ 10169726, 9152754, 8237478, 7413730, 6672357,
6859 /* 20 */ 6005122, 5404609, 4864149, 4377734, 3939960,
6860 /* 30 */ 3545964, 3191368, 2872231, 2585008, 2326507,
6861 /* 40 */ 2093856, 1884471, 1696024, 1526421, 1373779,
6862 /* 50 */ 1236401, 1112761, 1001485, 901337, 811203,
6863 /* 60 */ 730083, 657074, 591367, 532230, 479007,
6864 /* 70 */ 431106, 387996, 349196, 314277, 282849,
6865 /* 80 */ 254564, 229108, 206197, 185577, 167019,
6866 /* 90 */ 150318, 135286, 121757, 109581, 98623,
6867 /* 100 for Fair class */ 88761,
6868 };