Pull bugzilla-7122 into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/timer.h>
17
18 #include "rtmutex_common.h"
19
20 #ifdef CONFIG_DEBUG_RT_MUTEXES
21 # include "rtmutex-debug.h"
22 #else
23 # include "rtmutex.h"
24 #endif
25
26 /*
27 * lock->owner state tracking:
28 *
29 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
30 * are used to keep track of the "owner is pending" and "lock has
31 * waiters" state.
32 *
33 * owner bit1 bit0
34 * NULL 0 0 lock is free (fast acquire possible)
35 * NULL 0 1 invalid state
36 * NULL 1 0 Transitional State*
37 * NULL 1 1 invalid state
38 * taskpointer 0 0 lock is held (fast release possible)
39 * taskpointer 0 1 task is pending owner
40 * taskpointer 1 0 lock is held and has waiters
41 * taskpointer 1 1 task is pending owner and lock has more waiters
42 *
43 * Pending ownership is assigned to the top (highest priority)
44 * waiter of the lock, when the lock is released. The thread is woken
45 * up and can now take the lock. Until the lock is taken (bit 0
46 * cleared) a competing higher priority thread can steal the lock
47 * which puts the woken up thread back on the waiters list.
48 *
49 * The fast atomic compare exchange based acquire and release is only
50 * possible when bit 0 and 1 of lock->owner are 0.
51 *
52 * (*) There's a small time where the owner can be NULL and the
53 * "lock has waiters" bit is set. This can happen when grabbing the lock.
54 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
55 * bit before looking at the lock, hence the reason this is a transitional
56 * state.
57 */
58
59 static void
60 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
61 unsigned long mask)
62 {
63 unsigned long val = (unsigned long)owner | mask;
64
65 if (rt_mutex_has_waiters(lock))
66 val |= RT_MUTEX_HAS_WAITERS;
67
68 lock->owner = (struct task_struct *)val;
69 }
70
71 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
72 {
73 lock->owner = (struct task_struct *)
74 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
75 }
76
77 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
78 {
79 if (!rt_mutex_has_waiters(lock))
80 clear_rt_mutex_waiters(lock);
81 }
82
83 /*
84 * We can speed up the acquire/release, if the architecture
85 * supports cmpxchg and if there's no debugging state to be set up
86 */
87 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
88 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
89 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
90 {
91 unsigned long owner, *p = (unsigned long *) &lock->owner;
92
93 do {
94 owner = *p;
95 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
96 }
97 #else
98 # define rt_mutex_cmpxchg(l,c,n) (0)
99 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
100 {
101 lock->owner = (struct task_struct *)
102 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
103 }
104 #endif
105
106 /*
107 * Calculate task priority from the waiter list priority
108 *
109 * Return task->normal_prio when the waiter list is empty or when
110 * the waiter is not allowed to do priority boosting
111 */
112 int rt_mutex_getprio(struct task_struct *task)
113 {
114 if (likely(!task_has_pi_waiters(task)))
115 return task->normal_prio;
116
117 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
118 task->normal_prio);
119 }
120
121 /*
122 * Adjust the priority of a task, after its pi_waiters got modified.
123 *
124 * This can be both boosting and unboosting. task->pi_lock must be held.
125 */
126 static void __rt_mutex_adjust_prio(struct task_struct *task)
127 {
128 int prio = rt_mutex_getprio(task);
129
130 if (task->prio != prio)
131 rt_mutex_setprio(task, prio);
132 }
133
134 /*
135 * Adjust task priority (undo boosting). Called from the exit path of
136 * rt_mutex_slowunlock() and rt_mutex_slowlock().
137 *
138 * (Note: We do this outside of the protection of lock->wait_lock to
139 * allow the lock to be taken while or before we readjust the priority
140 * of task. We do not use the spin_xx_mutex() variants here as we are
141 * outside of the debug path.)
142 */
143 static void rt_mutex_adjust_prio(struct task_struct *task)
144 {
145 unsigned long flags;
146
147 spin_lock_irqsave(&task->pi_lock, flags);
148 __rt_mutex_adjust_prio(task);
149 spin_unlock_irqrestore(&task->pi_lock, flags);
150 }
151
152 /*
153 * Max number of times we'll walk the boosting chain:
154 */
155 int max_lock_depth = 1024;
156
157 /*
158 * Adjust the priority chain. Also used for deadlock detection.
159 * Decreases task's usage by one - may thus free the task.
160 * Returns 0 or -EDEADLK.
161 */
162 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
163 int deadlock_detect,
164 struct rt_mutex *orig_lock,
165 struct rt_mutex_waiter *orig_waiter,
166 struct task_struct *top_task)
167 {
168 struct rt_mutex *lock;
169 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
170 int detect_deadlock, ret = 0, depth = 0;
171 unsigned long flags;
172
173 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
174 deadlock_detect);
175
176 /*
177 * The (de)boosting is a step by step approach with a lot of
178 * pitfalls. We want this to be preemptible and we want hold a
179 * maximum of two locks per step. So we have to check
180 * carefully whether things change under us.
181 */
182 again:
183 if (++depth > max_lock_depth) {
184 static int prev_max;
185
186 /*
187 * Print this only once. If the admin changes the limit,
188 * print a new message when reaching the limit again.
189 */
190 if (prev_max != max_lock_depth) {
191 prev_max = max_lock_depth;
192 printk(KERN_WARNING "Maximum lock depth %d reached "
193 "task: %s (%d)\n", max_lock_depth,
194 top_task->comm, top_task->pid);
195 }
196 put_task_struct(task);
197
198 return deadlock_detect ? -EDEADLK : 0;
199 }
200 retry:
201 /*
202 * Task can not go away as we did a get_task() before !
203 */
204 spin_lock_irqsave(&task->pi_lock, flags);
205
206 waiter = task->pi_blocked_on;
207 /*
208 * Check whether the end of the boosting chain has been
209 * reached or the state of the chain has changed while we
210 * dropped the locks.
211 */
212 if (!waiter || !waiter->task)
213 goto out_unlock_pi;
214
215 if (top_waiter && (!task_has_pi_waiters(task) ||
216 top_waiter != task_top_pi_waiter(task)))
217 goto out_unlock_pi;
218
219 /*
220 * When deadlock detection is off then we check, if further
221 * priority adjustment is necessary.
222 */
223 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
224 goto out_unlock_pi;
225
226 lock = waiter->lock;
227 if (!spin_trylock(&lock->wait_lock)) {
228 spin_unlock_irqrestore(&task->pi_lock, flags);
229 cpu_relax();
230 goto retry;
231 }
232
233 /* Deadlock detection */
234 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
235 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
236 spin_unlock(&lock->wait_lock);
237 ret = deadlock_detect ? -EDEADLK : 0;
238 goto out_unlock_pi;
239 }
240
241 top_waiter = rt_mutex_top_waiter(lock);
242
243 /* Requeue the waiter */
244 plist_del(&waiter->list_entry, &lock->wait_list);
245 waiter->list_entry.prio = task->prio;
246 plist_add(&waiter->list_entry, &lock->wait_list);
247
248 /* Release the task */
249 spin_unlock_irqrestore(&task->pi_lock, flags);
250 put_task_struct(task);
251
252 /* Grab the next task */
253 task = rt_mutex_owner(lock);
254 get_task_struct(task);
255 spin_lock_irqsave(&task->pi_lock, flags);
256
257 if (waiter == rt_mutex_top_waiter(lock)) {
258 /* Boost the owner */
259 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
260 waiter->pi_list_entry.prio = waiter->list_entry.prio;
261 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
262 __rt_mutex_adjust_prio(task);
263
264 } else if (top_waiter == waiter) {
265 /* Deboost the owner */
266 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
267 waiter = rt_mutex_top_waiter(lock);
268 waiter->pi_list_entry.prio = waiter->list_entry.prio;
269 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
270 __rt_mutex_adjust_prio(task);
271 }
272
273 spin_unlock_irqrestore(&task->pi_lock, flags);
274
275 top_waiter = rt_mutex_top_waiter(lock);
276 spin_unlock(&lock->wait_lock);
277
278 if (!detect_deadlock && waiter != top_waiter)
279 goto out_put_task;
280
281 goto again;
282
283 out_unlock_pi:
284 spin_unlock_irqrestore(&task->pi_lock, flags);
285 out_put_task:
286 put_task_struct(task);
287
288 return ret;
289 }
290
291 /*
292 * Optimization: check if we can steal the lock from the
293 * assigned pending owner [which might not have taken the
294 * lock yet]:
295 */
296 static inline int try_to_steal_lock(struct rt_mutex *lock)
297 {
298 struct task_struct *pendowner = rt_mutex_owner(lock);
299 struct rt_mutex_waiter *next;
300 unsigned long flags;
301
302 if (!rt_mutex_owner_pending(lock))
303 return 0;
304
305 if (pendowner == current)
306 return 1;
307
308 spin_lock_irqsave(&pendowner->pi_lock, flags);
309 if (current->prio >= pendowner->prio) {
310 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
311 return 0;
312 }
313
314 /*
315 * Check if a waiter is enqueued on the pending owners
316 * pi_waiters list. Remove it and readjust pending owners
317 * priority.
318 */
319 if (likely(!rt_mutex_has_waiters(lock))) {
320 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
321 return 1;
322 }
323
324 /* No chain handling, pending owner is not blocked on anything: */
325 next = rt_mutex_top_waiter(lock);
326 plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
327 __rt_mutex_adjust_prio(pendowner);
328 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
329
330 /*
331 * We are going to steal the lock and a waiter was
332 * enqueued on the pending owners pi_waiters queue. So
333 * we have to enqueue this waiter into
334 * current->pi_waiters list. This covers the case,
335 * where current is boosted because it holds another
336 * lock and gets unboosted because the booster is
337 * interrupted, so we would delay a waiter with higher
338 * priority as current->normal_prio.
339 *
340 * Note: in the rare case of a SCHED_OTHER task changing
341 * its priority and thus stealing the lock, next->task
342 * might be current:
343 */
344 if (likely(next->task != current)) {
345 spin_lock_irqsave(&current->pi_lock, flags);
346 plist_add(&next->pi_list_entry, &current->pi_waiters);
347 __rt_mutex_adjust_prio(current);
348 spin_unlock_irqrestore(&current->pi_lock, flags);
349 }
350 return 1;
351 }
352
353 /*
354 * Try to take an rt-mutex
355 *
356 * This fails
357 * - when the lock has a real owner
358 * - when a different pending owner exists and has higher priority than current
359 *
360 * Must be called with lock->wait_lock held.
361 */
362 static int try_to_take_rt_mutex(struct rt_mutex *lock)
363 {
364 /*
365 * We have to be careful here if the atomic speedups are
366 * enabled, such that, when
367 * - no other waiter is on the lock
368 * - the lock has been released since we did the cmpxchg
369 * the lock can be released or taken while we are doing the
370 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
371 *
372 * The atomic acquire/release aware variant of
373 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
374 * the WAITERS bit, the atomic release / acquire can not
375 * happen anymore and lock->wait_lock protects us from the
376 * non-atomic case.
377 *
378 * Note, that this might set lock->owner =
379 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
380 * any more. This is fixed up when we take the ownership.
381 * This is the transitional state explained at the top of this file.
382 */
383 mark_rt_mutex_waiters(lock);
384
385 if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
386 return 0;
387
388 /* We got the lock. */
389 debug_rt_mutex_lock(lock);
390
391 rt_mutex_set_owner(lock, current, 0);
392
393 rt_mutex_deadlock_account_lock(lock, current);
394
395 return 1;
396 }
397
398 /*
399 * Task blocks on lock.
400 *
401 * Prepare waiter and propagate pi chain
402 *
403 * This must be called with lock->wait_lock held.
404 */
405 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
406 struct rt_mutex_waiter *waiter,
407 int detect_deadlock)
408 {
409 struct task_struct *owner = rt_mutex_owner(lock);
410 struct rt_mutex_waiter *top_waiter = waiter;
411 unsigned long flags;
412 int chain_walk = 0, res;
413
414 spin_lock_irqsave(&current->pi_lock, flags);
415 __rt_mutex_adjust_prio(current);
416 waiter->task = current;
417 waiter->lock = lock;
418 plist_node_init(&waiter->list_entry, current->prio);
419 plist_node_init(&waiter->pi_list_entry, current->prio);
420
421 /* Get the top priority waiter on the lock */
422 if (rt_mutex_has_waiters(lock))
423 top_waiter = rt_mutex_top_waiter(lock);
424 plist_add(&waiter->list_entry, &lock->wait_list);
425
426 current->pi_blocked_on = waiter;
427
428 spin_unlock_irqrestore(&current->pi_lock, flags);
429
430 if (waiter == rt_mutex_top_waiter(lock)) {
431 spin_lock_irqsave(&owner->pi_lock, flags);
432 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
433 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
434
435 __rt_mutex_adjust_prio(owner);
436 if (owner->pi_blocked_on)
437 chain_walk = 1;
438 spin_unlock_irqrestore(&owner->pi_lock, flags);
439 }
440 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
441 chain_walk = 1;
442
443 if (!chain_walk)
444 return 0;
445
446 /*
447 * The owner can't disappear while holding a lock,
448 * so the owner struct is protected by wait_lock.
449 * Gets dropped in rt_mutex_adjust_prio_chain()!
450 */
451 get_task_struct(owner);
452
453 spin_unlock(&lock->wait_lock);
454
455 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
456 current);
457
458 spin_lock(&lock->wait_lock);
459
460 return res;
461 }
462
463 /*
464 * Wake up the next waiter on the lock.
465 *
466 * Remove the top waiter from the current tasks waiter list and from
467 * the lock waiter list. Set it as pending owner. Then wake it up.
468 *
469 * Called with lock->wait_lock held.
470 */
471 static void wakeup_next_waiter(struct rt_mutex *lock)
472 {
473 struct rt_mutex_waiter *waiter;
474 struct task_struct *pendowner;
475 unsigned long flags;
476
477 spin_lock_irqsave(&current->pi_lock, flags);
478
479 waiter = rt_mutex_top_waiter(lock);
480 plist_del(&waiter->list_entry, &lock->wait_list);
481
482 /*
483 * Remove it from current->pi_waiters. We do not adjust a
484 * possible priority boost right now. We execute wakeup in the
485 * boosted mode and go back to normal after releasing
486 * lock->wait_lock.
487 */
488 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
489 pendowner = waiter->task;
490 waiter->task = NULL;
491
492 rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
493
494 spin_unlock_irqrestore(&current->pi_lock, flags);
495
496 /*
497 * Clear the pi_blocked_on variable and enqueue a possible
498 * waiter into the pi_waiters list of the pending owner. This
499 * prevents that in case the pending owner gets unboosted a
500 * waiter with higher priority than pending-owner->normal_prio
501 * is blocked on the unboosted (pending) owner.
502 */
503 spin_lock_irqsave(&pendowner->pi_lock, flags);
504
505 WARN_ON(!pendowner->pi_blocked_on);
506 WARN_ON(pendowner->pi_blocked_on != waiter);
507 WARN_ON(pendowner->pi_blocked_on->lock != lock);
508
509 pendowner->pi_blocked_on = NULL;
510
511 if (rt_mutex_has_waiters(lock)) {
512 struct rt_mutex_waiter *next;
513
514 next = rt_mutex_top_waiter(lock);
515 plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
516 }
517 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
518
519 wake_up_process(pendowner);
520 }
521
522 /*
523 * Remove a waiter from a lock
524 *
525 * Must be called with lock->wait_lock held
526 */
527 static void remove_waiter(struct rt_mutex *lock,
528 struct rt_mutex_waiter *waiter)
529 {
530 int first = (waiter == rt_mutex_top_waiter(lock));
531 struct task_struct *owner = rt_mutex_owner(lock);
532 unsigned long flags;
533 int chain_walk = 0;
534
535 spin_lock_irqsave(&current->pi_lock, flags);
536 plist_del(&waiter->list_entry, &lock->wait_list);
537 waiter->task = NULL;
538 current->pi_blocked_on = NULL;
539 spin_unlock_irqrestore(&current->pi_lock, flags);
540
541 if (first && owner != current) {
542
543 spin_lock_irqsave(&owner->pi_lock, flags);
544
545 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
546
547 if (rt_mutex_has_waiters(lock)) {
548 struct rt_mutex_waiter *next;
549
550 next = rt_mutex_top_waiter(lock);
551 plist_add(&next->pi_list_entry, &owner->pi_waiters);
552 }
553 __rt_mutex_adjust_prio(owner);
554
555 if (owner->pi_blocked_on)
556 chain_walk = 1;
557
558 spin_unlock_irqrestore(&owner->pi_lock, flags);
559 }
560
561 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
562
563 if (!chain_walk)
564 return;
565
566 /* gets dropped in rt_mutex_adjust_prio_chain()! */
567 get_task_struct(owner);
568
569 spin_unlock(&lock->wait_lock);
570
571 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
572
573 spin_lock(&lock->wait_lock);
574 }
575
576 /*
577 * Recheck the pi chain, in case we got a priority setting
578 *
579 * Called from sched_setscheduler
580 */
581 void rt_mutex_adjust_pi(struct task_struct *task)
582 {
583 struct rt_mutex_waiter *waiter;
584 unsigned long flags;
585
586 spin_lock_irqsave(&task->pi_lock, flags);
587
588 waiter = task->pi_blocked_on;
589 if (!waiter || waiter->list_entry.prio == task->prio) {
590 spin_unlock_irqrestore(&task->pi_lock, flags);
591 return;
592 }
593
594 spin_unlock_irqrestore(&task->pi_lock, flags);
595
596 /* gets dropped in rt_mutex_adjust_prio_chain()! */
597 get_task_struct(task);
598 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
599 }
600
601 /*
602 * Slow path lock function:
603 */
604 static int __sched
605 rt_mutex_slowlock(struct rt_mutex *lock, int state,
606 struct hrtimer_sleeper *timeout,
607 int detect_deadlock)
608 {
609 struct rt_mutex_waiter waiter;
610 int ret = 0;
611
612 debug_rt_mutex_init_waiter(&waiter);
613 waiter.task = NULL;
614
615 spin_lock(&lock->wait_lock);
616
617 /* Try to acquire the lock again: */
618 if (try_to_take_rt_mutex(lock)) {
619 spin_unlock(&lock->wait_lock);
620 return 0;
621 }
622
623 set_current_state(state);
624
625 /* Setup the timer, when timeout != NULL */
626 if (unlikely(timeout))
627 hrtimer_start(&timeout->timer, timeout->timer.expires,
628 HRTIMER_MODE_ABS);
629
630 for (;;) {
631 /* Try to acquire the lock: */
632 if (try_to_take_rt_mutex(lock))
633 break;
634
635 /*
636 * TASK_INTERRUPTIBLE checks for signals and
637 * timeout. Ignored otherwise.
638 */
639 if (unlikely(state == TASK_INTERRUPTIBLE)) {
640 /* Signal pending? */
641 if (signal_pending(current))
642 ret = -EINTR;
643 if (timeout && !timeout->task)
644 ret = -ETIMEDOUT;
645 if (ret)
646 break;
647 }
648
649 /*
650 * waiter.task is NULL the first time we come here and
651 * when we have been woken up by the previous owner
652 * but the lock got stolen by a higher prio task.
653 */
654 if (!waiter.task) {
655 ret = task_blocks_on_rt_mutex(lock, &waiter,
656 detect_deadlock);
657 /*
658 * If we got woken up by the owner then start loop
659 * all over without going into schedule to try
660 * to get the lock now:
661 */
662 if (unlikely(!waiter.task))
663 continue;
664
665 if (unlikely(ret))
666 break;
667 }
668
669 spin_unlock(&lock->wait_lock);
670
671 debug_rt_mutex_print_deadlock(&waiter);
672
673 if (waiter.task)
674 schedule_rt_mutex(lock);
675
676 spin_lock(&lock->wait_lock);
677 set_current_state(state);
678 }
679
680 set_current_state(TASK_RUNNING);
681
682 if (unlikely(waiter.task))
683 remove_waiter(lock, &waiter);
684
685 /*
686 * try_to_take_rt_mutex() sets the waiter bit
687 * unconditionally. We might have to fix that up.
688 */
689 fixup_rt_mutex_waiters(lock);
690
691 spin_unlock(&lock->wait_lock);
692
693 /* Remove pending timer: */
694 if (unlikely(timeout))
695 hrtimer_cancel(&timeout->timer);
696
697 /*
698 * Readjust priority, when we did not get the lock. We might
699 * have been the pending owner and boosted. Since we did not
700 * take the lock, the PI boost has to go.
701 */
702 if (unlikely(ret))
703 rt_mutex_adjust_prio(current);
704
705 debug_rt_mutex_free_waiter(&waiter);
706
707 return ret;
708 }
709
710 /*
711 * Slow path try-lock function:
712 */
713 static inline int
714 rt_mutex_slowtrylock(struct rt_mutex *lock)
715 {
716 int ret = 0;
717
718 spin_lock(&lock->wait_lock);
719
720 if (likely(rt_mutex_owner(lock) != current)) {
721
722 ret = try_to_take_rt_mutex(lock);
723 /*
724 * try_to_take_rt_mutex() sets the lock waiters
725 * bit unconditionally. Clean this up.
726 */
727 fixup_rt_mutex_waiters(lock);
728 }
729
730 spin_unlock(&lock->wait_lock);
731
732 return ret;
733 }
734
735 /*
736 * Slow path to release a rt-mutex:
737 */
738 static void __sched
739 rt_mutex_slowunlock(struct rt_mutex *lock)
740 {
741 spin_lock(&lock->wait_lock);
742
743 debug_rt_mutex_unlock(lock);
744
745 rt_mutex_deadlock_account_unlock(current);
746
747 if (!rt_mutex_has_waiters(lock)) {
748 lock->owner = NULL;
749 spin_unlock(&lock->wait_lock);
750 return;
751 }
752
753 wakeup_next_waiter(lock);
754
755 spin_unlock(&lock->wait_lock);
756
757 /* Undo pi boosting if necessary: */
758 rt_mutex_adjust_prio(current);
759 }
760
761 /*
762 * debug aware fast / slowpath lock,trylock,unlock
763 *
764 * The atomic acquire/release ops are compiled away, when either the
765 * architecture does not support cmpxchg or when debugging is enabled.
766 */
767 static inline int
768 rt_mutex_fastlock(struct rt_mutex *lock, int state,
769 int detect_deadlock,
770 int (*slowfn)(struct rt_mutex *lock, int state,
771 struct hrtimer_sleeper *timeout,
772 int detect_deadlock))
773 {
774 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
775 rt_mutex_deadlock_account_lock(lock, current);
776 return 0;
777 } else
778 return slowfn(lock, state, NULL, detect_deadlock);
779 }
780
781 static inline int
782 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
783 struct hrtimer_sleeper *timeout, int detect_deadlock,
784 int (*slowfn)(struct rt_mutex *lock, int state,
785 struct hrtimer_sleeper *timeout,
786 int detect_deadlock))
787 {
788 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
789 rt_mutex_deadlock_account_lock(lock, current);
790 return 0;
791 } else
792 return slowfn(lock, state, timeout, detect_deadlock);
793 }
794
795 static inline int
796 rt_mutex_fasttrylock(struct rt_mutex *lock,
797 int (*slowfn)(struct rt_mutex *lock))
798 {
799 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
800 rt_mutex_deadlock_account_lock(lock, current);
801 return 1;
802 }
803 return slowfn(lock);
804 }
805
806 static inline void
807 rt_mutex_fastunlock(struct rt_mutex *lock,
808 void (*slowfn)(struct rt_mutex *lock))
809 {
810 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
811 rt_mutex_deadlock_account_unlock(current);
812 else
813 slowfn(lock);
814 }
815
816 /**
817 * rt_mutex_lock - lock a rt_mutex
818 *
819 * @lock: the rt_mutex to be locked
820 */
821 void __sched rt_mutex_lock(struct rt_mutex *lock)
822 {
823 might_sleep();
824
825 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
826 }
827 EXPORT_SYMBOL_GPL(rt_mutex_lock);
828
829 /**
830 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
831 *
832 * @lock: the rt_mutex to be locked
833 * @detect_deadlock: deadlock detection on/off
834 *
835 * Returns:
836 * 0 on success
837 * -EINTR when interrupted by a signal
838 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
839 */
840 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
841 int detect_deadlock)
842 {
843 might_sleep();
844
845 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
846 detect_deadlock, rt_mutex_slowlock);
847 }
848 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
849
850 /**
851 * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
852 * the timeout structure is provided
853 * by the caller
854 *
855 * @lock: the rt_mutex to be locked
856 * @timeout: timeout structure or NULL (no timeout)
857 * @detect_deadlock: deadlock detection on/off
858 *
859 * Returns:
860 * 0 on success
861 * -EINTR when interrupted by a signal
862 * -ETIMEOUT when the timeout expired
863 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
864 */
865 int
866 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
867 int detect_deadlock)
868 {
869 might_sleep();
870
871 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
872 detect_deadlock, rt_mutex_slowlock);
873 }
874 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
875
876 /**
877 * rt_mutex_trylock - try to lock a rt_mutex
878 *
879 * @lock: the rt_mutex to be locked
880 *
881 * Returns 1 on success and 0 on contention
882 */
883 int __sched rt_mutex_trylock(struct rt_mutex *lock)
884 {
885 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
886 }
887 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
888
889 /**
890 * rt_mutex_unlock - unlock a rt_mutex
891 *
892 * @lock: the rt_mutex to be unlocked
893 */
894 void __sched rt_mutex_unlock(struct rt_mutex *lock)
895 {
896 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
897 }
898 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
899
900 /***
901 * rt_mutex_destroy - mark a mutex unusable
902 * @lock: the mutex to be destroyed
903 *
904 * This function marks the mutex uninitialized, and any subsequent
905 * use of the mutex is forbidden. The mutex must not be locked when
906 * this function is called.
907 */
908 void rt_mutex_destroy(struct rt_mutex *lock)
909 {
910 WARN_ON(rt_mutex_is_locked(lock));
911 #ifdef CONFIG_DEBUG_RT_MUTEXES
912 lock->magic = NULL;
913 #endif
914 }
915
916 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
917
918 /**
919 * __rt_mutex_init - initialize the rt lock
920 *
921 * @lock: the rt lock to be initialized
922 *
923 * Initialize the rt lock to unlocked state.
924 *
925 * Initializing of a locked rt lock is not allowed
926 */
927 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
928 {
929 lock->owner = NULL;
930 spin_lock_init(&lock->wait_lock);
931 plist_head_init(&lock->wait_list, &lock->wait_lock);
932
933 debug_rt_mutex_init(lock, name);
934 }
935 EXPORT_SYMBOL_GPL(__rt_mutex_init);
936
937 /**
938 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
939 * proxy owner
940 *
941 * @lock: the rt_mutex to be locked
942 * @proxy_owner:the task to set as owner
943 *
944 * No locking. Caller has to do serializing itself
945 * Special API call for PI-futex support
946 */
947 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
948 struct task_struct *proxy_owner)
949 {
950 __rt_mutex_init(lock, NULL);
951 debug_rt_mutex_proxy_lock(lock, proxy_owner);
952 rt_mutex_set_owner(lock, proxy_owner, 0);
953 rt_mutex_deadlock_account_lock(lock, proxy_owner);
954 }
955
956 /**
957 * rt_mutex_proxy_unlock - release a lock on behalf of owner
958 *
959 * @lock: the rt_mutex to be locked
960 *
961 * No locking. Caller has to do serializing itself
962 * Special API call for PI-futex support
963 */
964 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
965 struct task_struct *proxy_owner)
966 {
967 debug_rt_mutex_proxy_unlock(lock);
968 rt_mutex_set_owner(lock, NULL, 0);
969 rt_mutex_deadlock_account_unlock(proxy_owner);
970 }
971
972 /**
973 * rt_mutex_next_owner - return the next owner of the lock
974 *
975 * @lock: the rt lock query
976 *
977 * Returns the next owner of the lock or NULL
978 *
979 * Caller has to serialize against other accessors to the lock
980 * itself.
981 *
982 * Special API call for PI-futex support
983 */
984 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
985 {
986 if (!rt_mutex_has_waiters(lock))
987 return NULL;
988
989 return rt_mutex_top_waiter(lock)->task;
990 }