Pull acpi-debug into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * nopage() vm_op implementation for relay file mapping.
41 */
42 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
43 unsigned long address,
44 int *type)
45 {
46 struct page *page;
47 struct rchan_buf *buf = vma->vm_private_data;
48 unsigned long offset = address - vma->vm_start;
49
50 if (address > vma->vm_end)
51 return NOPAGE_SIGBUS; /* Disallow mremap */
52 if (!buf)
53 return NOPAGE_OOM;
54
55 page = vmalloc_to_page(buf->start + offset);
56 if (!page)
57 return NOPAGE_OOM;
58 get_page(page);
59
60 if (type)
61 *type = VM_FAULT_MINOR;
62
63 return page;
64 }
65
66 /*
67 * vm_ops for relay file mappings.
68 */
69 static struct vm_operations_struct relay_file_mmap_ops = {
70 .nopage = relay_buf_nopage,
71 .close = relay_file_mmap_close,
72 };
73
74 /**
75 * relay_mmap_buf: - mmap channel buffer to process address space
76 * @buf: relay channel buffer
77 * @vma: vm_area_struct describing memory to be mapped
78 *
79 * Returns 0 if ok, negative on error
80 *
81 * Caller should already have grabbed mmap_sem.
82 */
83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85 unsigned long length = vma->vm_end - vma->vm_start;
86 struct file *filp = vma->vm_file;
87
88 if (!buf)
89 return -EBADF;
90
91 if (length != (unsigned long)buf->chan->alloc_size)
92 return -EINVAL;
93
94 vma->vm_ops = &relay_file_mmap_ops;
95 vma->vm_private_data = buf;
96 buf->chan->cb->buf_mapped(buf, filp);
97
98 return 0;
99 }
100
101 /**
102 * relay_alloc_buf - allocate a channel buffer
103 * @buf: the buffer struct
104 * @size: total size of the buffer
105 *
106 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
107 * passed in size will get page aligned, if it isn't already.
108 */
109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110 {
111 void *mem;
112 unsigned int i, j, n_pages;
113
114 *size = PAGE_ALIGN(*size);
115 n_pages = *size >> PAGE_SHIFT;
116
117 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
118 if (!buf->page_array)
119 return NULL;
120
121 for (i = 0; i < n_pages; i++) {
122 buf->page_array[i] = alloc_page(GFP_KERNEL);
123 if (unlikely(!buf->page_array[i]))
124 goto depopulate;
125 set_page_private(buf->page_array[i], (unsigned long)buf);
126 }
127 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
128 if (!mem)
129 goto depopulate;
130
131 memset(mem, 0, *size);
132 buf->page_count = n_pages;
133 return mem;
134
135 depopulate:
136 for (j = 0; j < i; j++)
137 __free_page(buf->page_array[j]);
138 kfree(buf->page_array);
139 return NULL;
140 }
141
142 /**
143 * relay_create_buf - allocate and initialize a channel buffer
144 * @chan: the relay channel
145 *
146 * Returns channel buffer if successful, %NULL otherwise.
147 */
148 static struct rchan_buf *relay_create_buf(struct rchan *chan)
149 {
150 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
151 if (!buf)
152 return NULL;
153
154 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
155 if (!buf->padding)
156 goto free_buf;
157
158 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
159 if (!buf->start)
160 goto free_buf;
161
162 buf->chan = chan;
163 kref_get(&buf->chan->kref);
164 return buf;
165
166 free_buf:
167 kfree(buf->padding);
168 kfree(buf);
169 return NULL;
170 }
171
172 /**
173 * relay_destroy_channel - free the channel struct
174 * @kref: target kernel reference that contains the relay channel
175 *
176 * Should only be called from kref_put().
177 */
178 static void relay_destroy_channel(struct kref *kref)
179 {
180 struct rchan *chan = container_of(kref, struct rchan, kref);
181 kfree(chan);
182 }
183
184 /**
185 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
186 * @buf: the buffer struct
187 */
188 static void relay_destroy_buf(struct rchan_buf *buf)
189 {
190 struct rchan *chan = buf->chan;
191 unsigned int i;
192
193 if (likely(buf->start)) {
194 vunmap(buf->start);
195 for (i = 0; i < buf->page_count; i++)
196 __free_page(buf->page_array[i]);
197 kfree(buf->page_array);
198 }
199 chan->buf[buf->cpu] = NULL;
200 kfree(buf->padding);
201 kfree(buf);
202 kref_put(&chan->kref, relay_destroy_channel);
203 }
204
205 /**
206 * relay_remove_buf - remove a channel buffer
207 * @kref: target kernel reference that contains the relay buffer
208 *
209 * Removes the file from the fileystem, which also frees the
210 * rchan_buf_struct and the channel buffer. Should only be called from
211 * kref_put().
212 */
213 static void relay_remove_buf(struct kref *kref)
214 {
215 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
216 buf->chan->cb->remove_buf_file(buf->dentry);
217 relay_destroy_buf(buf);
218 }
219
220 /**
221 * relay_buf_empty - boolean, is the channel buffer empty?
222 * @buf: channel buffer
223 *
224 * Returns 1 if the buffer is empty, 0 otherwise.
225 */
226 static int relay_buf_empty(struct rchan_buf *buf)
227 {
228 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
229 }
230
231 /**
232 * relay_buf_full - boolean, is the channel buffer full?
233 * @buf: channel buffer
234 *
235 * Returns 1 if the buffer is full, 0 otherwise.
236 */
237 int relay_buf_full(struct rchan_buf *buf)
238 {
239 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
240 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
241 }
242 EXPORT_SYMBOL_GPL(relay_buf_full);
243
244 /*
245 * High-level relay kernel API and associated functions.
246 */
247
248 /*
249 * rchan_callback implementations defining default channel behavior. Used
250 * in place of corresponding NULL values in client callback struct.
251 */
252
253 /*
254 * subbuf_start() default callback. Does nothing.
255 */
256 static int subbuf_start_default_callback (struct rchan_buf *buf,
257 void *subbuf,
258 void *prev_subbuf,
259 size_t prev_padding)
260 {
261 if (relay_buf_full(buf))
262 return 0;
263
264 return 1;
265 }
266
267 /*
268 * buf_mapped() default callback. Does nothing.
269 */
270 static void buf_mapped_default_callback(struct rchan_buf *buf,
271 struct file *filp)
272 {
273 }
274
275 /*
276 * buf_unmapped() default callback. Does nothing.
277 */
278 static void buf_unmapped_default_callback(struct rchan_buf *buf,
279 struct file *filp)
280 {
281 }
282
283 /*
284 * create_buf_file_create() default callback. Does nothing.
285 */
286 static struct dentry *create_buf_file_default_callback(const char *filename,
287 struct dentry *parent,
288 int mode,
289 struct rchan_buf *buf,
290 int *is_global)
291 {
292 return NULL;
293 }
294
295 /*
296 * remove_buf_file() default callback. Does nothing.
297 */
298 static int remove_buf_file_default_callback(struct dentry *dentry)
299 {
300 return -EINVAL;
301 }
302
303 /* relay channel default callbacks */
304 static struct rchan_callbacks default_channel_callbacks = {
305 .subbuf_start = subbuf_start_default_callback,
306 .buf_mapped = buf_mapped_default_callback,
307 .buf_unmapped = buf_unmapped_default_callback,
308 .create_buf_file = create_buf_file_default_callback,
309 .remove_buf_file = remove_buf_file_default_callback,
310 };
311
312 /**
313 * wakeup_readers - wake up readers waiting on a channel
314 * @data: contains the channel buffer
315 *
316 * This is the timer function used to defer reader waking.
317 */
318 static void wakeup_readers(unsigned long data)
319 {
320 struct rchan_buf *buf = (struct rchan_buf *)data;
321 wake_up_interruptible(&buf->read_wait);
322 }
323
324 /**
325 * __relay_reset - reset a channel buffer
326 * @buf: the channel buffer
327 * @init: 1 if this is a first-time initialization
328 *
329 * See relay_reset() for description of effect.
330 */
331 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
332 {
333 size_t i;
334
335 if (init) {
336 init_waitqueue_head(&buf->read_wait);
337 kref_init(&buf->kref);
338 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
339 } else
340 del_timer_sync(&buf->timer);
341
342 buf->subbufs_produced = 0;
343 buf->subbufs_consumed = 0;
344 buf->bytes_consumed = 0;
345 buf->finalized = 0;
346 buf->data = buf->start;
347 buf->offset = 0;
348
349 for (i = 0; i < buf->chan->n_subbufs; i++)
350 buf->padding[i] = 0;
351
352 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
353 }
354
355 /**
356 * relay_reset - reset the channel
357 * @chan: the channel
358 *
359 * This has the effect of erasing all data from all channel buffers
360 * and restarting the channel in its initial state. The buffers
361 * are not freed, so any mappings are still in effect.
362 *
363 * NOTE. Care should be taken that the channel isn't actually
364 * being used by anything when this call is made.
365 */
366 void relay_reset(struct rchan *chan)
367 {
368 unsigned int i;
369
370 if (!chan)
371 return;
372
373 if (chan->is_global && chan->buf[0]) {
374 __relay_reset(chan->buf[0], 0);
375 return;
376 }
377
378 mutex_lock(&relay_channels_mutex);
379 for_each_online_cpu(i)
380 if (chan->buf[i])
381 __relay_reset(chan->buf[i], 0);
382 mutex_unlock(&relay_channels_mutex);
383 }
384 EXPORT_SYMBOL_GPL(relay_reset);
385
386 /*
387 * relay_open_buf - create a new relay channel buffer
388 *
389 * used by relay_open() and CPU hotplug.
390 */
391 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
392 {
393 struct rchan_buf *buf = NULL;
394 struct dentry *dentry;
395 char *tmpname;
396
397 if (chan->is_global)
398 return chan->buf[0];
399
400 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
401 if (!tmpname)
402 goto end;
403 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
404
405 buf = relay_create_buf(chan);
406 if (!buf)
407 goto free_name;
408
409 buf->cpu = cpu;
410 __relay_reset(buf, 1);
411
412 /* Create file in fs */
413 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
414 buf, &chan->is_global);
415 if (!dentry)
416 goto free_buf;
417
418 buf->dentry = dentry;
419
420 if(chan->is_global) {
421 chan->buf[0] = buf;
422 buf->cpu = 0;
423 }
424
425 goto free_name;
426
427 free_buf:
428 relay_destroy_buf(buf);
429 free_name:
430 kfree(tmpname);
431 end:
432 return buf;
433 }
434
435 /**
436 * relay_close_buf - close a channel buffer
437 * @buf: channel buffer
438 *
439 * Marks the buffer finalized and restores the default callbacks.
440 * The channel buffer and channel buffer data structure are then freed
441 * automatically when the last reference is given up.
442 */
443 static void relay_close_buf(struct rchan_buf *buf)
444 {
445 buf->finalized = 1;
446 del_timer_sync(&buf->timer);
447 kref_put(&buf->kref, relay_remove_buf);
448 }
449
450 static void setup_callbacks(struct rchan *chan,
451 struct rchan_callbacks *cb)
452 {
453 if (!cb) {
454 chan->cb = &default_channel_callbacks;
455 return;
456 }
457
458 if (!cb->subbuf_start)
459 cb->subbuf_start = subbuf_start_default_callback;
460 if (!cb->buf_mapped)
461 cb->buf_mapped = buf_mapped_default_callback;
462 if (!cb->buf_unmapped)
463 cb->buf_unmapped = buf_unmapped_default_callback;
464 if (!cb->create_buf_file)
465 cb->create_buf_file = create_buf_file_default_callback;
466 if (!cb->remove_buf_file)
467 cb->remove_buf_file = remove_buf_file_default_callback;
468 chan->cb = cb;
469 }
470
471 /**
472 * relay_hotcpu_callback - CPU hotplug callback
473 * @nb: notifier block
474 * @action: hotplug action to take
475 * @hcpu: CPU number
476 *
477 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
478 */
479 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
480 unsigned long action,
481 void *hcpu)
482 {
483 unsigned int hotcpu = (unsigned long)hcpu;
484 struct rchan *chan;
485
486 switch(action) {
487 case CPU_UP_PREPARE:
488 case CPU_UP_PREPARE_FROZEN:
489 mutex_lock(&relay_channels_mutex);
490 list_for_each_entry(chan, &relay_channels, list) {
491 if (chan->buf[hotcpu])
492 continue;
493 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
494 if(!chan->buf[hotcpu]) {
495 printk(KERN_ERR
496 "relay_hotcpu_callback: cpu %d buffer "
497 "creation failed\n", hotcpu);
498 mutex_unlock(&relay_channels_mutex);
499 return NOTIFY_BAD;
500 }
501 }
502 mutex_unlock(&relay_channels_mutex);
503 break;
504 case CPU_DEAD:
505 case CPU_DEAD_FROZEN:
506 /* No need to flush the cpu : will be flushed upon
507 * final relay_flush() call. */
508 break;
509 }
510 return NOTIFY_OK;
511 }
512
513 /**
514 * relay_open - create a new relay channel
515 * @base_filename: base name of files to create
516 * @parent: dentry of parent directory, %NULL for root directory
517 * @subbuf_size: size of sub-buffers
518 * @n_subbufs: number of sub-buffers
519 * @cb: client callback functions
520 * @private_data: user-defined data
521 *
522 * Returns channel pointer if successful, %NULL otherwise.
523 *
524 * Creates a channel buffer for each cpu using the sizes and
525 * attributes specified. The created channel buffer files
526 * will be named base_filename0...base_filenameN-1. File
527 * permissions will be %S_IRUSR.
528 */
529 struct rchan *relay_open(const char *base_filename,
530 struct dentry *parent,
531 size_t subbuf_size,
532 size_t n_subbufs,
533 struct rchan_callbacks *cb,
534 void *private_data)
535 {
536 unsigned int i;
537 struct rchan *chan;
538 if (!base_filename)
539 return NULL;
540
541 if (!(subbuf_size && n_subbufs))
542 return NULL;
543
544 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
545 if (!chan)
546 return NULL;
547
548 chan->version = RELAYFS_CHANNEL_VERSION;
549 chan->n_subbufs = n_subbufs;
550 chan->subbuf_size = subbuf_size;
551 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
552 chan->parent = parent;
553 chan->private_data = private_data;
554 strlcpy(chan->base_filename, base_filename, NAME_MAX);
555 setup_callbacks(chan, cb);
556 kref_init(&chan->kref);
557
558 mutex_lock(&relay_channels_mutex);
559 for_each_online_cpu(i) {
560 chan->buf[i] = relay_open_buf(chan, i);
561 if (!chan->buf[i])
562 goto free_bufs;
563 }
564 list_add(&chan->list, &relay_channels);
565 mutex_unlock(&relay_channels_mutex);
566
567 return chan;
568
569 free_bufs:
570 for_each_online_cpu(i) {
571 if (!chan->buf[i])
572 break;
573 relay_close_buf(chan->buf[i]);
574 }
575
576 kref_put(&chan->kref, relay_destroy_channel);
577 mutex_unlock(&relay_channels_mutex);
578 return NULL;
579 }
580 EXPORT_SYMBOL_GPL(relay_open);
581
582 /**
583 * relay_switch_subbuf - switch to a new sub-buffer
584 * @buf: channel buffer
585 * @length: size of current event
586 *
587 * Returns either the length passed in or 0 if full.
588 *
589 * Performs sub-buffer-switch tasks such as invoking callbacks,
590 * updating padding counts, waking up readers, etc.
591 */
592 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
593 {
594 void *old, *new;
595 size_t old_subbuf, new_subbuf;
596
597 if (unlikely(length > buf->chan->subbuf_size))
598 goto toobig;
599
600 if (buf->offset != buf->chan->subbuf_size + 1) {
601 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
602 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
603 buf->padding[old_subbuf] = buf->prev_padding;
604 buf->subbufs_produced++;
605 buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
606 buf->padding[old_subbuf];
607 smp_mb();
608 if (waitqueue_active(&buf->read_wait))
609 /*
610 * Calling wake_up_interruptible() from here
611 * will deadlock if we happen to be logging
612 * from the scheduler (trying to re-grab
613 * rq->lock), so defer it.
614 */
615 __mod_timer(&buf->timer, jiffies + 1);
616 }
617
618 old = buf->data;
619 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
620 new = buf->start + new_subbuf * buf->chan->subbuf_size;
621 buf->offset = 0;
622 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
623 buf->offset = buf->chan->subbuf_size + 1;
624 return 0;
625 }
626 buf->data = new;
627 buf->padding[new_subbuf] = 0;
628
629 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
630 goto toobig;
631
632 return length;
633
634 toobig:
635 buf->chan->last_toobig = length;
636 return 0;
637 }
638 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
639
640 /**
641 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
642 * @chan: the channel
643 * @cpu: the cpu associated with the channel buffer to update
644 * @subbufs_consumed: number of sub-buffers to add to current buf's count
645 *
646 * Adds to the channel buffer's consumed sub-buffer count.
647 * subbufs_consumed should be the number of sub-buffers newly consumed,
648 * not the total consumed.
649 *
650 * NOTE. Kernel clients don't need to call this function if the channel
651 * mode is 'overwrite'.
652 */
653 void relay_subbufs_consumed(struct rchan *chan,
654 unsigned int cpu,
655 size_t subbufs_consumed)
656 {
657 struct rchan_buf *buf;
658
659 if (!chan)
660 return;
661
662 if (cpu >= NR_CPUS || !chan->buf[cpu])
663 return;
664
665 buf = chan->buf[cpu];
666 buf->subbufs_consumed += subbufs_consumed;
667 if (buf->subbufs_consumed > buf->subbufs_produced)
668 buf->subbufs_consumed = buf->subbufs_produced;
669 }
670 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
671
672 /**
673 * relay_close - close the channel
674 * @chan: the channel
675 *
676 * Closes all channel buffers and frees the channel.
677 */
678 void relay_close(struct rchan *chan)
679 {
680 unsigned int i;
681
682 if (!chan)
683 return;
684
685 mutex_lock(&relay_channels_mutex);
686 if (chan->is_global && chan->buf[0])
687 relay_close_buf(chan->buf[0]);
688 else
689 for_each_possible_cpu(i)
690 if (chan->buf[i])
691 relay_close_buf(chan->buf[i]);
692
693 if (chan->last_toobig)
694 printk(KERN_WARNING "relay: one or more items not logged "
695 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
696 chan->last_toobig, chan->subbuf_size);
697
698 list_del(&chan->list);
699 kref_put(&chan->kref, relay_destroy_channel);
700 mutex_unlock(&relay_channels_mutex);
701 }
702 EXPORT_SYMBOL_GPL(relay_close);
703
704 /**
705 * relay_flush - close the channel
706 * @chan: the channel
707 *
708 * Flushes all channel buffers, i.e. forces buffer switch.
709 */
710 void relay_flush(struct rchan *chan)
711 {
712 unsigned int i;
713
714 if (!chan)
715 return;
716
717 if (chan->is_global && chan->buf[0]) {
718 relay_switch_subbuf(chan->buf[0], 0);
719 return;
720 }
721
722 mutex_lock(&relay_channels_mutex);
723 for_each_possible_cpu(i)
724 if (chan->buf[i])
725 relay_switch_subbuf(chan->buf[i], 0);
726 mutex_unlock(&relay_channels_mutex);
727 }
728 EXPORT_SYMBOL_GPL(relay_flush);
729
730 /**
731 * relay_file_open - open file op for relay files
732 * @inode: the inode
733 * @filp: the file
734 *
735 * Increments the channel buffer refcount.
736 */
737 static int relay_file_open(struct inode *inode, struct file *filp)
738 {
739 struct rchan_buf *buf = inode->i_private;
740 kref_get(&buf->kref);
741 filp->private_data = buf;
742
743 return 0;
744 }
745
746 /**
747 * relay_file_mmap - mmap file op for relay files
748 * @filp: the file
749 * @vma: the vma describing what to map
750 *
751 * Calls upon relay_mmap_buf() to map the file into user space.
752 */
753 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
754 {
755 struct rchan_buf *buf = filp->private_data;
756 return relay_mmap_buf(buf, vma);
757 }
758
759 /**
760 * relay_file_poll - poll file op for relay files
761 * @filp: the file
762 * @wait: poll table
763 *
764 * Poll implemention.
765 */
766 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
767 {
768 unsigned int mask = 0;
769 struct rchan_buf *buf = filp->private_data;
770
771 if (buf->finalized)
772 return POLLERR;
773
774 if (filp->f_mode & FMODE_READ) {
775 poll_wait(filp, &buf->read_wait, wait);
776 if (!relay_buf_empty(buf))
777 mask |= POLLIN | POLLRDNORM;
778 }
779
780 return mask;
781 }
782
783 /**
784 * relay_file_release - release file op for relay files
785 * @inode: the inode
786 * @filp: the file
787 *
788 * Decrements the channel refcount, as the filesystem is
789 * no longer using it.
790 */
791 static int relay_file_release(struct inode *inode, struct file *filp)
792 {
793 struct rchan_buf *buf = filp->private_data;
794 kref_put(&buf->kref, relay_remove_buf);
795
796 return 0;
797 }
798
799 /*
800 * relay_file_read_consume - update the consumed count for the buffer
801 */
802 static void relay_file_read_consume(struct rchan_buf *buf,
803 size_t read_pos,
804 size_t bytes_consumed)
805 {
806 size_t subbuf_size = buf->chan->subbuf_size;
807 size_t n_subbufs = buf->chan->n_subbufs;
808 size_t read_subbuf;
809
810 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
811 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
812 buf->bytes_consumed = 0;
813 }
814
815 buf->bytes_consumed += bytes_consumed;
816 if (!read_pos)
817 read_subbuf = buf->subbufs_consumed % n_subbufs;
818 else
819 read_subbuf = read_pos / buf->chan->subbuf_size;
820 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
821 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
822 (buf->offset == subbuf_size))
823 return;
824 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
825 buf->bytes_consumed = 0;
826 }
827 }
828
829 /*
830 * relay_file_read_avail - boolean, are there unconsumed bytes available?
831 */
832 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
833 {
834 size_t subbuf_size = buf->chan->subbuf_size;
835 size_t n_subbufs = buf->chan->n_subbufs;
836 size_t produced = buf->subbufs_produced;
837 size_t consumed = buf->subbufs_consumed;
838
839 relay_file_read_consume(buf, read_pos, 0);
840
841 if (unlikely(buf->offset > subbuf_size)) {
842 if (produced == consumed)
843 return 0;
844 return 1;
845 }
846
847 if (unlikely(produced - consumed >= n_subbufs)) {
848 consumed = produced - n_subbufs + 1;
849 buf->subbufs_consumed = consumed;
850 buf->bytes_consumed = 0;
851 }
852
853 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
854 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
855
856 if (consumed > produced)
857 produced += n_subbufs * subbuf_size;
858
859 if (consumed == produced)
860 return 0;
861
862 return 1;
863 }
864
865 /**
866 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
867 * @read_pos: file read position
868 * @buf: relay channel buffer
869 */
870 static size_t relay_file_read_subbuf_avail(size_t read_pos,
871 struct rchan_buf *buf)
872 {
873 size_t padding, avail = 0;
874 size_t read_subbuf, read_offset, write_subbuf, write_offset;
875 size_t subbuf_size = buf->chan->subbuf_size;
876
877 write_subbuf = (buf->data - buf->start) / subbuf_size;
878 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
879 read_subbuf = read_pos / subbuf_size;
880 read_offset = read_pos % subbuf_size;
881 padding = buf->padding[read_subbuf];
882
883 if (read_subbuf == write_subbuf) {
884 if (read_offset + padding < write_offset)
885 avail = write_offset - (read_offset + padding);
886 } else
887 avail = (subbuf_size - padding) - read_offset;
888
889 return avail;
890 }
891
892 /**
893 * relay_file_read_start_pos - find the first available byte to read
894 * @read_pos: file read position
895 * @buf: relay channel buffer
896 *
897 * If the @read_pos is in the middle of padding, return the
898 * position of the first actually available byte, otherwise
899 * return the original value.
900 */
901 static size_t relay_file_read_start_pos(size_t read_pos,
902 struct rchan_buf *buf)
903 {
904 size_t read_subbuf, padding, padding_start, padding_end;
905 size_t subbuf_size = buf->chan->subbuf_size;
906 size_t n_subbufs = buf->chan->n_subbufs;
907 size_t consumed = buf->subbufs_consumed % n_subbufs;
908
909 if (!read_pos)
910 read_pos = consumed * subbuf_size + buf->bytes_consumed;
911 read_subbuf = read_pos / subbuf_size;
912 padding = buf->padding[read_subbuf];
913 padding_start = (read_subbuf + 1) * subbuf_size - padding;
914 padding_end = (read_subbuf + 1) * subbuf_size;
915 if (read_pos >= padding_start && read_pos < padding_end) {
916 read_subbuf = (read_subbuf + 1) % n_subbufs;
917 read_pos = read_subbuf * subbuf_size;
918 }
919
920 return read_pos;
921 }
922
923 /**
924 * relay_file_read_end_pos - return the new read position
925 * @read_pos: file read position
926 * @buf: relay channel buffer
927 * @count: number of bytes to be read
928 */
929 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
930 size_t read_pos,
931 size_t count)
932 {
933 size_t read_subbuf, padding, end_pos;
934 size_t subbuf_size = buf->chan->subbuf_size;
935 size_t n_subbufs = buf->chan->n_subbufs;
936
937 read_subbuf = read_pos / subbuf_size;
938 padding = buf->padding[read_subbuf];
939 if (read_pos % subbuf_size + count + padding == subbuf_size)
940 end_pos = (read_subbuf + 1) * subbuf_size;
941 else
942 end_pos = read_pos + count;
943 if (end_pos >= subbuf_size * n_subbufs)
944 end_pos = 0;
945
946 return end_pos;
947 }
948
949 /*
950 * subbuf_read_actor - read up to one subbuf's worth of data
951 */
952 static int subbuf_read_actor(size_t read_start,
953 struct rchan_buf *buf,
954 size_t avail,
955 read_descriptor_t *desc,
956 read_actor_t actor)
957 {
958 void *from;
959 int ret = 0;
960
961 from = buf->start + read_start;
962 ret = avail;
963 if (copy_to_user(desc->arg.buf, from, avail)) {
964 desc->error = -EFAULT;
965 ret = 0;
966 }
967 desc->arg.data += ret;
968 desc->written += ret;
969 desc->count -= ret;
970
971 return ret;
972 }
973
974 typedef int (*subbuf_actor_t) (size_t read_start,
975 struct rchan_buf *buf,
976 size_t avail,
977 read_descriptor_t *desc,
978 read_actor_t actor);
979
980 /*
981 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
982 */
983 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
984 subbuf_actor_t subbuf_actor,
985 read_actor_t actor,
986 read_descriptor_t *desc)
987 {
988 struct rchan_buf *buf = filp->private_data;
989 size_t read_start, avail;
990 int ret;
991
992 if (!desc->count)
993 return 0;
994
995 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
996 do {
997 if (!relay_file_read_avail(buf, *ppos))
998 break;
999
1000 read_start = relay_file_read_start_pos(*ppos, buf);
1001 avail = relay_file_read_subbuf_avail(read_start, buf);
1002 if (!avail)
1003 break;
1004
1005 avail = min(desc->count, avail);
1006 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1007 if (desc->error < 0)
1008 break;
1009
1010 if (ret) {
1011 relay_file_read_consume(buf, read_start, ret);
1012 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1013 }
1014 } while (desc->count && ret);
1015 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1016
1017 return desc->written;
1018 }
1019
1020 static ssize_t relay_file_read(struct file *filp,
1021 char __user *buffer,
1022 size_t count,
1023 loff_t *ppos)
1024 {
1025 read_descriptor_t desc;
1026 desc.written = 0;
1027 desc.count = count;
1028 desc.arg.buf = buffer;
1029 desc.error = 0;
1030 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1031 NULL, &desc);
1032 }
1033
1034 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1035 {
1036 rbuf->bytes_consumed += bytes_consumed;
1037
1038 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1039 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1040 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1041 }
1042 }
1043
1044 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1045 struct pipe_buffer *buf)
1046 {
1047 struct rchan_buf *rbuf;
1048
1049 rbuf = (struct rchan_buf *)page_private(buf->page);
1050 relay_consume_bytes(rbuf, buf->private);
1051 }
1052
1053 static struct pipe_buf_operations relay_pipe_buf_ops = {
1054 .can_merge = 0,
1055 .map = generic_pipe_buf_map,
1056 .unmap = generic_pipe_buf_unmap,
1057 .confirm = generic_pipe_buf_confirm,
1058 .release = relay_pipe_buf_release,
1059 .steal = generic_pipe_buf_steal,
1060 .get = generic_pipe_buf_get,
1061 };
1062
1063 /*
1064 * subbuf_splice_actor - splice up to one subbuf's worth of data
1065 */
1066 static int subbuf_splice_actor(struct file *in,
1067 loff_t *ppos,
1068 struct pipe_inode_info *pipe,
1069 size_t len,
1070 unsigned int flags,
1071 int *nonpad_ret)
1072 {
1073 unsigned int pidx, poff, total_len, subbuf_pages, ret;
1074 struct rchan_buf *rbuf = in->private_data;
1075 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1076 uint64_t pos = (uint64_t) *ppos;
1077 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1078 size_t read_start = (size_t) do_div(pos, alloc_size);
1079 size_t read_subbuf = read_start / subbuf_size;
1080 size_t padding = rbuf->padding[read_subbuf];
1081 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1082 struct page *pages[PIPE_BUFFERS];
1083 struct partial_page partial[PIPE_BUFFERS];
1084 struct splice_pipe_desc spd = {
1085 .pages = pages,
1086 .nr_pages = 0,
1087 .partial = partial,
1088 .flags = flags,
1089 .ops = &relay_pipe_buf_ops,
1090 };
1091
1092 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1093 return 0;
1094
1095 /*
1096 * Adjust read len, if longer than what is available
1097 */
1098 if (len > (subbuf_size - read_start % subbuf_size))
1099 len = subbuf_size - read_start % subbuf_size;
1100
1101 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1102 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1103 poff = read_start & ~PAGE_MASK;
1104
1105 for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
1106 unsigned int this_len, this_end, private;
1107 unsigned int cur_pos = read_start + total_len;
1108
1109 if (!len)
1110 break;
1111
1112 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1113 private = this_len;
1114
1115 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1116 spd.partial[spd.nr_pages].offset = poff;
1117
1118 this_end = cur_pos + this_len;
1119 if (this_end >= nonpad_end) {
1120 this_len = nonpad_end - cur_pos;
1121 private = this_len + padding;
1122 }
1123 spd.partial[spd.nr_pages].len = this_len;
1124 spd.partial[spd.nr_pages].private = private;
1125
1126 len -= this_len;
1127 total_len += this_len;
1128 poff = 0;
1129 pidx = (pidx + 1) % subbuf_pages;
1130
1131 if (this_end >= nonpad_end) {
1132 spd.nr_pages++;
1133 break;
1134 }
1135 }
1136
1137 if (!spd.nr_pages)
1138 return 0;
1139
1140 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1141 if (ret < 0 || ret < total_len)
1142 return ret;
1143
1144 if (read_start + ret == nonpad_end)
1145 ret += padding;
1146
1147 return ret;
1148 }
1149
1150 static ssize_t relay_file_splice_read(struct file *in,
1151 loff_t *ppos,
1152 struct pipe_inode_info *pipe,
1153 size_t len,
1154 unsigned int flags)
1155 {
1156 ssize_t spliced;
1157 int ret;
1158 int nonpad_ret = 0;
1159
1160 ret = 0;
1161 spliced = 0;
1162
1163 while (len) {
1164 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1165 if (ret < 0)
1166 break;
1167 else if (!ret) {
1168 if (spliced)
1169 break;
1170 if (flags & SPLICE_F_NONBLOCK) {
1171 ret = -EAGAIN;
1172 break;
1173 }
1174 }
1175
1176 *ppos += ret;
1177 if (ret > len)
1178 len = 0;
1179 else
1180 len -= ret;
1181 spliced += nonpad_ret;
1182 nonpad_ret = 0;
1183 }
1184
1185 if (spliced)
1186 return spliced;
1187
1188 return ret;
1189 }
1190
1191 const struct file_operations relay_file_operations = {
1192 .open = relay_file_open,
1193 .poll = relay_file_poll,
1194 .mmap = relay_file_mmap,
1195 .read = relay_file_read,
1196 .llseek = no_llseek,
1197 .release = relay_file_release,
1198 .splice_read = relay_file_splice_read,
1199 };
1200 EXPORT_SYMBOL_GPL(relay_file_operations);
1201
1202 static __init int relay_init(void)
1203 {
1204
1205 hotcpu_notifier(relay_hotcpu_callback, 0);
1206 return 0;
1207 }
1208
1209 module_init(relay_init);