Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 #define RCU_KTHREAD_PRIO 1
30
31 #ifdef CONFIG_RCU_BOOST
32 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33 #else
34 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35 #endif
36
37 /*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42 static void __init rcu_bootup_announce_oddness(void)
43 {
44 #ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46 #endif
47 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50 #endif
51 #ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57 #endif
58 #ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60 #endif
61 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63 #endif
64 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66 #endif
67 #if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
69 #endif
70 #if NUM_RCU_LVL_4 != 0
71 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
72 #endif
73 }
74
75 #ifdef CONFIG_TREE_PREEMPT_RCU
76
77 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
78 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
79 static struct rcu_state *rcu_state = &rcu_preempt_state;
80
81 static void rcu_read_unlock_special(struct task_struct *t);
82 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
83
84 /*
85 * Tell them what RCU they are running.
86 */
87 static void __init rcu_bootup_announce(void)
88 {
89 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
90 rcu_bootup_announce_oddness();
91 }
92
93 /*
94 * Return the number of RCU-preempt batches processed thus far
95 * for debug and statistics.
96 */
97 long rcu_batches_completed_preempt(void)
98 {
99 return rcu_preempt_state.completed;
100 }
101 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
102
103 /*
104 * Return the number of RCU batches processed thus far for debug & stats.
105 */
106 long rcu_batches_completed(void)
107 {
108 return rcu_batches_completed_preempt();
109 }
110 EXPORT_SYMBOL_GPL(rcu_batches_completed);
111
112 /*
113 * Force a quiescent state for preemptible RCU.
114 */
115 void rcu_force_quiescent_state(void)
116 {
117 force_quiescent_state(&rcu_preempt_state, 0);
118 }
119 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
120
121 /*
122 * Record a preemptible-RCU quiescent state for the specified CPU. Note
123 * that this just means that the task currently running on the CPU is
124 * not in a quiescent state. There might be any number of tasks blocked
125 * while in an RCU read-side critical section.
126 *
127 * Unlike the other rcu_*_qs() functions, callers to this function
128 * must disable irqs in order to protect the assignment to
129 * ->rcu_read_unlock_special.
130 */
131 static void rcu_preempt_qs(int cpu)
132 {
133 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
134
135 rdp->passed_quiesce_gpnum = rdp->gpnum;
136 barrier();
137 if (rdp->passed_quiesce == 0)
138 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
139 rdp->passed_quiesce = 1;
140 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
141 }
142
143 /*
144 * We have entered the scheduler, and the current task might soon be
145 * context-switched away from. If this task is in an RCU read-side
146 * critical section, we will no longer be able to rely on the CPU to
147 * record that fact, so we enqueue the task on the blkd_tasks list.
148 * The task will dequeue itself when it exits the outermost enclosing
149 * RCU read-side critical section. Therefore, the current grace period
150 * cannot be permitted to complete until the blkd_tasks list entries
151 * predating the current grace period drain, in other words, until
152 * rnp->gp_tasks becomes NULL.
153 *
154 * Caller must disable preemption.
155 */
156 void rcu_preempt_note_context_switch(void)
157 {
158 struct task_struct *t = current;
159 unsigned long flags;
160 struct rcu_data *rdp;
161 struct rcu_node *rnp;
162
163 if (t->rcu_read_lock_nesting > 0 &&
164 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
165
166 /* Possibly blocking in an RCU read-side critical section. */
167 rdp = __this_cpu_ptr(rcu_preempt_state.rda);
168 rnp = rdp->mynode;
169 raw_spin_lock_irqsave(&rnp->lock, flags);
170 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
171 t->rcu_blocked_node = rnp;
172
173 /*
174 * If this CPU has already checked in, then this task
175 * will hold up the next grace period rather than the
176 * current grace period. Queue the task accordingly.
177 * If the task is queued for the current grace period
178 * (i.e., this CPU has not yet passed through a quiescent
179 * state for the current grace period), then as long
180 * as that task remains queued, the current grace period
181 * cannot end. Note that there is some uncertainty as
182 * to exactly when the current grace period started.
183 * We take a conservative approach, which can result
184 * in unnecessarily waiting on tasks that started very
185 * slightly after the current grace period began. C'est
186 * la vie!!!
187 *
188 * But first, note that the current CPU must still be
189 * on line!
190 */
191 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
192 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
193 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
194 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
195 rnp->gp_tasks = &t->rcu_node_entry;
196 #ifdef CONFIG_RCU_BOOST
197 if (rnp->boost_tasks != NULL)
198 rnp->boost_tasks = rnp->gp_tasks;
199 #endif /* #ifdef CONFIG_RCU_BOOST */
200 } else {
201 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
202 if (rnp->qsmask & rdp->grpmask)
203 rnp->gp_tasks = &t->rcu_node_entry;
204 }
205 trace_rcu_preempt_task(rdp->rsp->name,
206 t->pid,
207 (rnp->qsmask & rdp->grpmask)
208 ? rnp->gpnum
209 : rnp->gpnum + 1);
210 raw_spin_unlock_irqrestore(&rnp->lock, flags);
211 } else if (t->rcu_read_lock_nesting < 0 &&
212 t->rcu_read_unlock_special) {
213
214 /*
215 * Complete exit from RCU read-side critical section on
216 * behalf of preempted instance of __rcu_read_unlock().
217 */
218 rcu_read_unlock_special(t);
219 }
220
221 /*
222 * Either we were not in an RCU read-side critical section to
223 * begin with, or we have now recorded that critical section
224 * globally. Either way, we can now note a quiescent state
225 * for this CPU. Again, if we were in an RCU read-side critical
226 * section, and if that critical section was blocking the current
227 * grace period, then the fact that the task has been enqueued
228 * means that we continue to block the current grace period.
229 */
230 local_irq_save(flags);
231 rcu_preempt_qs(smp_processor_id());
232 local_irq_restore(flags);
233 }
234
235 /*
236 * Tree-preemptible RCU implementation for rcu_read_lock().
237 * Just increment ->rcu_read_lock_nesting, shared state will be updated
238 * if we block.
239 */
240 void __rcu_read_lock(void)
241 {
242 current->rcu_read_lock_nesting++;
243 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
244 }
245 EXPORT_SYMBOL_GPL(__rcu_read_lock);
246
247 /*
248 * Check for preempted RCU readers blocking the current grace period
249 * for the specified rcu_node structure. If the caller needs a reliable
250 * answer, it must hold the rcu_node's ->lock.
251 */
252 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
253 {
254 return rnp->gp_tasks != NULL;
255 }
256
257 /*
258 * Record a quiescent state for all tasks that were previously queued
259 * on the specified rcu_node structure and that were blocking the current
260 * RCU grace period. The caller must hold the specified rnp->lock with
261 * irqs disabled, and this lock is released upon return, but irqs remain
262 * disabled.
263 */
264 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
265 __releases(rnp->lock)
266 {
267 unsigned long mask;
268 struct rcu_node *rnp_p;
269
270 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
272 return; /* Still need more quiescent states! */
273 }
274
275 rnp_p = rnp->parent;
276 if (rnp_p == NULL) {
277 /*
278 * Either there is only one rcu_node in the tree,
279 * or tasks were kicked up to root rcu_node due to
280 * CPUs going offline.
281 */
282 rcu_report_qs_rsp(&rcu_preempt_state, flags);
283 return;
284 }
285
286 /* Report up the rest of the hierarchy. */
287 mask = rnp->grpmask;
288 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
289 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
290 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
291 }
292
293 /*
294 * Advance a ->blkd_tasks-list pointer to the next entry, instead
295 * returning NULL if at the end of the list.
296 */
297 static struct list_head *rcu_next_node_entry(struct task_struct *t,
298 struct rcu_node *rnp)
299 {
300 struct list_head *np;
301
302 np = t->rcu_node_entry.next;
303 if (np == &rnp->blkd_tasks)
304 np = NULL;
305 return np;
306 }
307
308 /*
309 * Handle special cases during rcu_read_unlock(), such as needing to
310 * notify RCU core processing or task having blocked during the RCU
311 * read-side critical section.
312 */
313 static noinline void rcu_read_unlock_special(struct task_struct *t)
314 {
315 int empty;
316 int empty_exp;
317 int empty_exp_now;
318 unsigned long flags;
319 struct list_head *np;
320 #ifdef CONFIG_RCU_BOOST
321 struct rt_mutex *rbmp = NULL;
322 #endif /* #ifdef CONFIG_RCU_BOOST */
323 struct rcu_node *rnp;
324 int special;
325
326 /* NMI handlers cannot block and cannot safely manipulate state. */
327 if (in_nmi())
328 return;
329
330 local_irq_save(flags);
331
332 /*
333 * If RCU core is waiting for this CPU to exit critical section,
334 * let it know that we have done so.
335 */
336 special = t->rcu_read_unlock_special;
337 if (special & RCU_READ_UNLOCK_NEED_QS) {
338 rcu_preempt_qs(smp_processor_id());
339 }
340
341 /* Hardware IRQ handlers cannot block. */
342 if (in_irq() || in_serving_softirq()) {
343 local_irq_restore(flags);
344 return;
345 }
346
347 /* Clean up if blocked during RCU read-side critical section. */
348 if (special & RCU_READ_UNLOCK_BLOCKED) {
349 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
350
351 /*
352 * Remove this task from the list it blocked on. The
353 * task can migrate while we acquire the lock, but at
354 * most one time. So at most two passes through loop.
355 */
356 for (;;) {
357 rnp = t->rcu_blocked_node;
358 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
359 if (rnp == t->rcu_blocked_node)
360 break;
361 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
362 }
363 empty = !rcu_preempt_blocked_readers_cgp(rnp);
364 empty_exp = !rcu_preempted_readers_exp(rnp);
365 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
366 np = rcu_next_node_entry(t, rnp);
367 list_del_init(&t->rcu_node_entry);
368 t->rcu_blocked_node = NULL;
369 trace_rcu_unlock_preempted_task("rcu_preempt",
370 rnp->gpnum, t->pid);
371 if (&t->rcu_node_entry == rnp->gp_tasks)
372 rnp->gp_tasks = np;
373 if (&t->rcu_node_entry == rnp->exp_tasks)
374 rnp->exp_tasks = np;
375 #ifdef CONFIG_RCU_BOOST
376 if (&t->rcu_node_entry == rnp->boost_tasks)
377 rnp->boost_tasks = np;
378 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
379 if (t->rcu_boost_mutex) {
380 rbmp = t->rcu_boost_mutex;
381 t->rcu_boost_mutex = NULL;
382 }
383 #endif /* #ifdef CONFIG_RCU_BOOST */
384
385 /*
386 * If this was the last task on the current list, and if
387 * we aren't waiting on any CPUs, report the quiescent state.
388 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
389 * so we must take a snapshot of the expedited state.
390 */
391 empty_exp_now = !rcu_preempted_readers_exp(rnp);
392 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
393 trace_rcu_quiescent_state_report("preempt_rcu",
394 rnp->gpnum,
395 0, rnp->qsmask,
396 rnp->level,
397 rnp->grplo,
398 rnp->grphi,
399 !!rnp->gp_tasks);
400 rcu_report_unblock_qs_rnp(rnp, flags);
401 } else
402 raw_spin_unlock_irqrestore(&rnp->lock, flags);
403
404 #ifdef CONFIG_RCU_BOOST
405 /* Unboost if we were boosted. */
406 if (rbmp)
407 rt_mutex_unlock(rbmp);
408 #endif /* #ifdef CONFIG_RCU_BOOST */
409
410 /*
411 * If this was the last task on the expedited lists,
412 * then we need to report up the rcu_node hierarchy.
413 */
414 if (!empty_exp && empty_exp_now)
415 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
416 } else {
417 local_irq_restore(flags);
418 }
419 }
420
421 /*
422 * Tree-preemptible RCU implementation for rcu_read_unlock().
423 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
424 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
425 * invoke rcu_read_unlock_special() to clean up after a context switch
426 * in an RCU read-side critical section and other special cases.
427 */
428 void __rcu_read_unlock(void)
429 {
430 struct task_struct *t = current;
431
432 if (t->rcu_read_lock_nesting != 1)
433 --t->rcu_read_lock_nesting;
434 else {
435 barrier(); /* critical section before exit code. */
436 t->rcu_read_lock_nesting = INT_MIN;
437 barrier(); /* assign before ->rcu_read_unlock_special load */
438 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
439 rcu_read_unlock_special(t);
440 barrier(); /* ->rcu_read_unlock_special load before assign */
441 t->rcu_read_lock_nesting = 0;
442 }
443 #ifdef CONFIG_PROVE_LOCKING
444 {
445 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
446
447 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
448 }
449 #endif /* #ifdef CONFIG_PROVE_LOCKING */
450 }
451 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
452
453 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
454
455 /*
456 * Dump detailed information for all tasks blocking the current RCU
457 * grace period on the specified rcu_node structure.
458 */
459 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
460 {
461 unsigned long flags;
462 struct task_struct *t;
463
464 if (!rcu_preempt_blocked_readers_cgp(rnp))
465 return;
466 raw_spin_lock_irqsave(&rnp->lock, flags);
467 t = list_entry(rnp->gp_tasks,
468 struct task_struct, rcu_node_entry);
469 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
470 sched_show_task(t);
471 raw_spin_unlock_irqrestore(&rnp->lock, flags);
472 }
473
474 /*
475 * Dump detailed information for all tasks blocking the current RCU
476 * grace period.
477 */
478 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
479 {
480 struct rcu_node *rnp = rcu_get_root(rsp);
481
482 rcu_print_detail_task_stall_rnp(rnp);
483 rcu_for_each_leaf_node(rsp, rnp)
484 rcu_print_detail_task_stall_rnp(rnp);
485 }
486
487 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
490 {
491 }
492
493 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
494
495 #ifdef CONFIG_RCU_CPU_STALL_INFO
496
497 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
498 {
499 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
500 rnp->level, rnp->grplo, rnp->grphi);
501 }
502
503 static void rcu_print_task_stall_end(void)
504 {
505 printk(KERN_CONT "\n");
506 }
507
508 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
509
510 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
511 {
512 }
513
514 static void rcu_print_task_stall_end(void)
515 {
516 }
517
518 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
519
520 /*
521 * Scan the current list of tasks blocked within RCU read-side critical
522 * sections, printing out the tid of each.
523 */
524 static int rcu_print_task_stall(struct rcu_node *rnp)
525 {
526 struct task_struct *t;
527 int ndetected = 0;
528
529 if (!rcu_preempt_blocked_readers_cgp(rnp))
530 return 0;
531 rcu_print_task_stall_begin(rnp);
532 t = list_entry(rnp->gp_tasks,
533 struct task_struct, rcu_node_entry);
534 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
535 printk(KERN_CONT " P%d", t->pid);
536 ndetected++;
537 }
538 rcu_print_task_stall_end();
539 return ndetected;
540 }
541
542 /*
543 * Suppress preemptible RCU's CPU stall warnings by pushing the
544 * time of the next stall-warning message comfortably far into the
545 * future.
546 */
547 static void rcu_preempt_stall_reset(void)
548 {
549 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
550 }
551
552 /*
553 * Check that the list of blocked tasks for the newly completed grace
554 * period is in fact empty. It is a serious bug to complete a grace
555 * period that still has RCU readers blocked! This function must be
556 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
557 * must be held by the caller.
558 *
559 * Also, if there are blocked tasks on the list, they automatically
560 * block the newly created grace period, so set up ->gp_tasks accordingly.
561 */
562 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
563 {
564 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
565 if (!list_empty(&rnp->blkd_tasks))
566 rnp->gp_tasks = rnp->blkd_tasks.next;
567 WARN_ON_ONCE(rnp->qsmask);
568 }
569
570 #ifdef CONFIG_HOTPLUG_CPU
571
572 /*
573 * Handle tasklist migration for case in which all CPUs covered by the
574 * specified rcu_node have gone offline. Move them up to the root
575 * rcu_node. The reason for not just moving them to the immediate
576 * parent is to remove the need for rcu_read_unlock_special() to
577 * make more than two attempts to acquire the target rcu_node's lock.
578 * Returns true if there were tasks blocking the current RCU grace
579 * period.
580 *
581 * Returns 1 if there was previously a task blocking the current grace
582 * period on the specified rcu_node structure.
583 *
584 * The caller must hold rnp->lock with irqs disabled.
585 */
586 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
587 struct rcu_node *rnp,
588 struct rcu_data *rdp)
589 {
590 struct list_head *lp;
591 struct list_head *lp_root;
592 int retval = 0;
593 struct rcu_node *rnp_root = rcu_get_root(rsp);
594 struct task_struct *t;
595
596 if (rnp == rnp_root) {
597 WARN_ONCE(1, "Last CPU thought to be offlined?");
598 return 0; /* Shouldn't happen: at least one CPU online. */
599 }
600
601 /* If we are on an internal node, complain bitterly. */
602 WARN_ON_ONCE(rnp != rdp->mynode);
603
604 /*
605 * Move tasks up to root rcu_node. Don't try to get fancy for
606 * this corner-case operation -- just put this node's tasks
607 * at the head of the root node's list, and update the root node's
608 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
609 * if non-NULL. This might result in waiting for more tasks than
610 * absolutely necessary, but this is a good performance/complexity
611 * tradeoff.
612 */
613 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
614 retval |= RCU_OFL_TASKS_NORM_GP;
615 if (rcu_preempted_readers_exp(rnp))
616 retval |= RCU_OFL_TASKS_EXP_GP;
617 lp = &rnp->blkd_tasks;
618 lp_root = &rnp_root->blkd_tasks;
619 while (!list_empty(lp)) {
620 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
621 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
622 list_del(&t->rcu_node_entry);
623 t->rcu_blocked_node = rnp_root;
624 list_add(&t->rcu_node_entry, lp_root);
625 if (&t->rcu_node_entry == rnp->gp_tasks)
626 rnp_root->gp_tasks = rnp->gp_tasks;
627 if (&t->rcu_node_entry == rnp->exp_tasks)
628 rnp_root->exp_tasks = rnp->exp_tasks;
629 #ifdef CONFIG_RCU_BOOST
630 if (&t->rcu_node_entry == rnp->boost_tasks)
631 rnp_root->boost_tasks = rnp->boost_tasks;
632 #endif /* #ifdef CONFIG_RCU_BOOST */
633 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
634 }
635
636 #ifdef CONFIG_RCU_BOOST
637 /* In case root is being boosted and leaf is not. */
638 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
639 if (rnp_root->boost_tasks != NULL &&
640 rnp_root->boost_tasks != rnp_root->gp_tasks)
641 rnp_root->boost_tasks = rnp_root->gp_tasks;
642 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
643 #endif /* #ifdef CONFIG_RCU_BOOST */
644
645 rnp->gp_tasks = NULL;
646 rnp->exp_tasks = NULL;
647 return retval;
648 }
649
650 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
651
652 /*
653 * Do CPU-offline processing for preemptible RCU.
654 */
655 static void rcu_preempt_cleanup_dead_cpu(int cpu)
656 {
657 rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
658 }
659
660 /*
661 * Check for a quiescent state from the current CPU. When a task blocks,
662 * the task is recorded in the corresponding CPU's rcu_node structure,
663 * which is checked elsewhere.
664 *
665 * Caller must disable hard irqs.
666 */
667 static void rcu_preempt_check_callbacks(int cpu)
668 {
669 struct task_struct *t = current;
670
671 if (t->rcu_read_lock_nesting == 0) {
672 rcu_preempt_qs(cpu);
673 return;
674 }
675 if (t->rcu_read_lock_nesting > 0 &&
676 per_cpu(rcu_preempt_data, cpu).qs_pending)
677 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
678 }
679
680 /*
681 * Process callbacks for preemptible RCU.
682 */
683 static void rcu_preempt_process_callbacks(void)
684 {
685 __rcu_process_callbacks(&rcu_preempt_state,
686 &__get_cpu_var(rcu_preempt_data));
687 }
688
689 #ifdef CONFIG_RCU_BOOST
690
691 static void rcu_preempt_do_callbacks(void)
692 {
693 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
694 }
695
696 #endif /* #ifdef CONFIG_RCU_BOOST */
697
698 /*
699 * Queue a preemptible-RCU callback for invocation after a grace period.
700 */
701 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
702 {
703 __call_rcu(head, func, &rcu_preempt_state, 0);
704 }
705 EXPORT_SYMBOL_GPL(call_rcu);
706
707 /*
708 * Queue an RCU callback for lazy invocation after a grace period.
709 * This will likely be later named something like "call_rcu_lazy()",
710 * but this change will require some way of tagging the lazy RCU
711 * callbacks in the list of pending callbacks. Until then, this
712 * function may only be called from __kfree_rcu().
713 */
714 void kfree_call_rcu(struct rcu_head *head,
715 void (*func)(struct rcu_head *rcu))
716 {
717 __call_rcu(head, func, &rcu_preempt_state, 1);
718 }
719 EXPORT_SYMBOL_GPL(kfree_call_rcu);
720
721 /**
722 * synchronize_rcu - wait until a grace period has elapsed.
723 *
724 * Control will return to the caller some time after a full grace
725 * period has elapsed, in other words after all currently executing RCU
726 * read-side critical sections have completed. Note, however, that
727 * upon return from synchronize_rcu(), the caller might well be executing
728 * concurrently with new RCU read-side critical sections that began while
729 * synchronize_rcu() was waiting. RCU read-side critical sections are
730 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
731 */
732 void synchronize_rcu(void)
733 {
734 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
735 !lock_is_held(&rcu_lock_map) &&
736 !lock_is_held(&rcu_sched_lock_map),
737 "Illegal synchronize_rcu() in RCU read-side critical section");
738 if (!rcu_scheduler_active)
739 return;
740 wait_rcu_gp(call_rcu);
741 }
742 EXPORT_SYMBOL_GPL(synchronize_rcu);
743
744 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
745 static long sync_rcu_preempt_exp_count;
746 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
747
748 /*
749 * Return non-zero if there are any tasks in RCU read-side critical
750 * sections blocking the current preemptible-RCU expedited grace period.
751 * If there is no preemptible-RCU expedited grace period currently in
752 * progress, returns zero unconditionally.
753 */
754 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
755 {
756 return rnp->exp_tasks != NULL;
757 }
758
759 /*
760 * return non-zero if there is no RCU expedited grace period in progress
761 * for the specified rcu_node structure, in other words, if all CPUs and
762 * tasks covered by the specified rcu_node structure have done their bit
763 * for the current expedited grace period. Works only for preemptible
764 * RCU -- other RCU implementation use other means.
765 *
766 * Caller must hold sync_rcu_preempt_exp_mutex.
767 */
768 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
769 {
770 return !rcu_preempted_readers_exp(rnp) &&
771 ACCESS_ONCE(rnp->expmask) == 0;
772 }
773
774 /*
775 * Report the exit from RCU read-side critical section for the last task
776 * that queued itself during or before the current expedited preemptible-RCU
777 * grace period. This event is reported either to the rcu_node structure on
778 * which the task was queued or to one of that rcu_node structure's ancestors,
779 * recursively up the tree. (Calm down, calm down, we do the recursion
780 * iteratively!)
781 *
782 * Most callers will set the "wake" flag, but the task initiating the
783 * expedited grace period need not wake itself.
784 *
785 * Caller must hold sync_rcu_preempt_exp_mutex.
786 */
787 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
788 bool wake)
789 {
790 unsigned long flags;
791 unsigned long mask;
792
793 raw_spin_lock_irqsave(&rnp->lock, flags);
794 for (;;) {
795 if (!sync_rcu_preempt_exp_done(rnp)) {
796 raw_spin_unlock_irqrestore(&rnp->lock, flags);
797 break;
798 }
799 if (rnp->parent == NULL) {
800 raw_spin_unlock_irqrestore(&rnp->lock, flags);
801 if (wake)
802 wake_up(&sync_rcu_preempt_exp_wq);
803 break;
804 }
805 mask = rnp->grpmask;
806 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
807 rnp = rnp->parent;
808 raw_spin_lock(&rnp->lock); /* irqs already disabled */
809 rnp->expmask &= ~mask;
810 }
811 }
812
813 /*
814 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
815 * grace period for the specified rcu_node structure. If there are no such
816 * tasks, report it up the rcu_node hierarchy.
817 *
818 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
819 */
820 static void
821 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
822 {
823 unsigned long flags;
824 int must_wait = 0;
825
826 raw_spin_lock_irqsave(&rnp->lock, flags);
827 if (list_empty(&rnp->blkd_tasks))
828 raw_spin_unlock_irqrestore(&rnp->lock, flags);
829 else {
830 rnp->exp_tasks = rnp->blkd_tasks.next;
831 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
832 must_wait = 1;
833 }
834 if (!must_wait)
835 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
836 }
837
838 /**
839 * synchronize_rcu_expedited - Brute-force RCU grace period
840 *
841 * Wait for an RCU-preempt grace period, but expedite it. The basic
842 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
843 * the ->blkd_tasks lists and wait for this list to drain. This consumes
844 * significant time on all CPUs and is unfriendly to real-time workloads,
845 * so is thus not recommended for any sort of common-case code.
846 * In fact, if you are using synchronize_rcu_expedited() in a loop,
847 * please restructure your code to batch your updates, and then Use a
848 * single synchronize_rcu() instead.
849 *
850 * Note that it is illegal to call this function while holding any lock
851 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
852 * to call this function from a CPU-hotplug notifier. Failing to observe
853 * these restriction will result in deadlock.
854 */
855 void synchronize_rcu_expedited(void)
856 {
857 unsigned long flags;
858 struct rcu_node *rnp;
859 struct rcu_state *rsp = &rcu_preempt_state;
860 long snap;
861 int trycount = 0;
862
863 smp_mb(); /* Caller's modifications seen first by other CPUs. */
864 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
865 smp_mb(); /* Above access cannot bleed into critical section. */
866
867 /*
868 * Acquire lock, falling back to synchronize_rcu() if too many
869 * lock-acquisition failures. Of course, if someone does the
870 * expedited grace period for us, just leave.
871 */
872 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
873 if (trycount++ < 10)
874 udelay(trycount * num_online_cpus());
875 else {
876 synchronize_rcu();
877 return;
878 }
879 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
880 goto mb_ret; /* Others did our work for us. */
881 }
882 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
883 goto unlock_mb_ret; /* Others did our work for us. */
884
885 /* force all RCU readers onto ->blkd_tasks lists. */
886 synchronize_sched_expedited();
887
888 raw_spin_lock_irqsave(&rsp->onofflock, flags);
889
890 /* Initialize ->expmask for all non-leaf rcu_node structures. */
891 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
892 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
893 rnp->expmask = rnp->qsmaskinit;
894 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
895 }
896
897 /* Snapshot current state of ->blkd_tasks lists. */
898 rcu_for_each_leaf_node(rsp, rnp)
899 sync_rcu_preempt_exp_init(rsp, rnp);
900 if (NUM_RCU_NODES > 1)
901 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
902
903 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
904
905 /* Wait for snapshotted ->blkd_tasks lists to drain. */
906 rnp = rcu_get_root(rsp);
907 wait_event(sync_rcu_preempt_exp_wq,
908 sync_rcu_preempt_exp_done(rnp));
909
910 /* Clean up and exit. */
911 smp_mb(); /* ensure expedited GP seen before counter increment. */
912 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
913 unlock_mb_ret:
914 mutex_unlock(&sync_rcu_preempt_exp_mutex);
915 mb_ret:
916 smp_mb(); /* ensure subsequent action seen after grace period. */
917 }
918 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
919
920 /*
921 * Check to see if there is any immediate preemptible-RCU-related work
922 * to be done.
923 */
924 static int rcu_preempt_pending(int cpu)
925 {
926 return __rcu_pending(&rcu_preempt_state,
927 &per_cpu(rcu_preempt_data, cpu));
928 }
929
930 /*
931 * Does preemptible RCU have callbacks on this CPU?
932 */
933 static int rcu_preempt_cpu_has_callbacks(int cpu)
934 {
935 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
936 }
937
938 /**
939 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
940 */
941 void rcu_barrier(void)
942 {
943 _rcu_barrier(&rcu_preempt_state, call_rcu);
944 }
945 EXPORT_SYMBOL_GPL(rcu_barrier);
946
947 /*
948 * Initialize preemptible RCU's per-CPU data.
949 */
950 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
951 {
952 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
953 }
954
955 /*
956 * Move preemptible RCU's callbacks from dying CPU to other online CPU
957 * and record a quiescent state.
958 */
959 static void rcu_preempt_cleanup_dying_cpu(void)
960 {
961 rcu_cleanup_dying_cpu(&rcu_preempt_state);
962 }
963
964 /*
965 * Initialize preemptible RCU's state structures.
966 */
967 static void __init __rcu_init_preempt(void)
968 {
969 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
970 }
971
972 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
973
974 static struct rcu_state *rcu_state = &rcu_sched_state;
975
976 /*
977 * Tell them what RCU they are running.
978 */
979 static void __init rcu_bootup_announce(void)
980 {
981 printk(KERN_INFO "Hierarchical RCU implementation.\n");
982 rcu_bootup_announce_oddness();
983 }
984
985 /*
986 * Return the number of RCU batches processed thus far for debug & stats.
987 */
988 long rcu_batches_completed(void)
989 {
990 return rcu_batches_completed_sched();
991 }
992 EXPORT_SYMBOL_GPL(rcu_batches_completed);
993
994 /*
995 * Force a quiescent state for RCU, which, because there is no preemptible
996 * RCU, becomes the same as rcu-sched.
997 */
998 void rcu_force_quiescent_state(void)
999 {
1000 rcu_sched_force_quiescent_state();
1001 }
1002 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1003
1004 /*
1005 * Because preemptible RCU does not exist, there are never any preempted
1006 * RCU readers.
1007 */
1008 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1009 {
1010 return 0;
1011 }
1012
1013 #ifdef CONFIG_HOTPLUG_CPU
1014
1015 /* Because preemptible RCU does not exist, no quieting of tasks. */
1016 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1017 {
1018 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1019 }
1020
1021 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1022
1023 /*
1024 * Because preemptible RCU does not exist, we never have to check for
1025 * tasks blocked within RCU read-side critical sections.
1026 */
1027 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1028 {
1029 }
1030
1031 /*
1032 * Because preemptible RCU does not exist, we never have to check for
1033 * tasks blocked within RCU read-side critical sections.
1034 */
1035 static int rcu_print_task_stall(struct rcu_node *rnp)
1036 {
1037 return 0;
1038 }
1039
1040 /*
1041 * Because preemptible RCU does not exist, there is no need to suppress
1042 * its CPU stall warnings.
1043 */
1044 static void rcu_preempt_stall_reset(void)
1045 {
1046 }
1047
1048 /*
1049 * Because there is no preemptible RCU, there can be no readers blocked,
1050 * so there is no need to check for blocked tasks. So check only for
1051 * bogus qsmask values.
1052 */
1053 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1054 {
1055 WARN_ON_ONCE(rnp->qsmask);
1056 }
1057
1058 #ifdef CONFIG_HOTPLUG_CPU
1059
1060 /*
1061 * Because preemptible RCU does not exist, it never needs to migrate
1062 * tasks that were blocked within RCU read-side critical sections, and
1063 * such non-existent tasks cannot possibly have been blocking the current
1064 * grace period.
1065 */
1066 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1067 struct rcu_node *rnp,
1068 struct rcu_data *rdp)
1069 {
1070 return 0;
1071 }
1072
1073 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1074
1075 /*
1076 * Because preemptible RCU does not exist, it never needs CPU-offline
1077 * processing.
1078 */
1079 static void rcu_preempt_cleanup_dead_cpu(int cpu)
1080 {
1081 }
1082
1083 /*
1084 * Because preemptible RCU does not exist, it never has any callbacks
1085 * to check.
1086 */
1087 static void rcu_preempt_check_callbacks(int cpu)
1088 {
1089 }
1090
1091 /*
1092 * Because preemptible RCU does not exist, it never has any callbacks
1093 * to process.
1094 */
1095 static void rcu_preempt_process_callbacks(void)
1096 {
1097 }
1098
1099 /*
1100 * Queue an RCU callback for lazy invocation after a grace period.
1101 * This will likely be later named something like "call_rcu_lazy()",
1102 * but this change will require some way of tagging the lazy RCU
1103 * callbacks in the list of pending callbacks. Until then, this
1104 * function may only be called from __kfree_rcu().
1105 *
1106 * Because there is no preemptible RCU, we use RCU-sched instead.
1107 */
1108 void kfree_call_rcu(struct rcu_head *head,
1109 void (*func)(struct rcu_head *rcu))
1110 {
1111 __call_rcu(head, func, &rcu_sched_state, 1);
1112 }
1113 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1114
1115 /*
1116 * Wait for an rcu-preempt grace period, but make it happen quickly.
1117 * But because preemptible RCU does not exist, map to rcu-sched.
1118 */
1119 void synchronize_rcu_expedited(void)
1120 {
1121 synchronize_sched_expedited();
1122 }
1123 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1124
1125 #ifdef CONFIG_HOTPLUG_CPU
1126
1127 /*
1128 * Because preemptible RCU does not exist, there is never any need to
1129 * report on tasks preempted in RCU read-side critical sections during
1130 * expedited RCU grace periods.
1131 */
1132 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1133 bool wake)
1134 {
1135 }
1136
1137 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1138
1139 /*
1140 * Because preemptible RCU does not exist, it never has any work to do.
1141 */
1142 static int rcu_preempt_pending(int cpu)
1143 {
1144 return 0;
1145 }
1146
1147 /*
1148 * Because preemptible RCU does not exist, it never has callbacks
1149 */
1150 static int rcu_preempt_cpu_has_callbacks(int cpu)
1151 {
1152 return 0;
1153 }
1154
1155 /*
1156 * Because preemptible RCU does not exist, rcu_barrier() is just
1157 * another name for rcu_barrier_sched().
1158 */
1159 void rcu_barrier(void)
1160 {
1161 rcu_barrier_sched();
1162 }
1163 EXPORT_SYMBOL_GPL(rcu_barrier);
1164
1165 /*
1166 * Because preemptible RCU does not exist, there is no per-CPU
1167 * data to initialize.
1168 */
1169 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1170 {
1171 }
1172
1173 /*
1174 * Because there is no preemptible RCU, there is no cleanup to do.
1175 */
1176 static void rcu_preempt_cleanup_dying_cpu(void)
1177 {
1178 }
1179
1180 /*
1181 * Because preemptible RCU does not exist, it need not be initialized.
1182 */
1183 static void __init __rcu_init_preempt(void)
1184 {
1185 }
1186
1187 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1188
1189 #ifdef CONFIG_RCU_BOOST
1190
1191 #include "rtmutex_common.h"
1192
1193 #ifdef CONFIG_RCU_TRACE
1194
1195 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1196 {
1197 if (list_empty(&rnp->blkd_tasks))
1198 rnp->n_balk_blkd_tasks++;
1199 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1200 rnp->n_balk_exp_gp_tasks++;
1201 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1202 rnp->n_balk_boost_tasks++;
1203 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1204 rnp->n_balk_notblocked++;
1205 else if (rnp->gp_tasks != NULL &&
1206 ULONG_CMP_LT(jiffies, rnp->boost_time))
1207 rnp->n_balk_notyet++;
1208 else
1209 rnp->n_balk_nos++;
1210 }
1211
1212 #else /* #ifdef CONFIG_RCU_TRACE */
1213
1214 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1215 {
1216 }
1217
1218 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1219
1220 /*
1221 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1222 * or ->boost_tasks, advancing the pointer to the next task in the
1223 * ->blkd_tasks list.
1224 *
1225 * Note that irqs must be enabled: boosting the task can block.
1226 * Returns 1 if there are more tasks needing to be boosted.
1227 */
1228 static int rcu_boost(struct rcu_node *rnp)
1229 {
1230 unsigned long flags;
1231 struct rt_mutex mtx;
1232 struct task_struct *t;
1233 struct list_head *tb;
1234
1235 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1236 return 0; /* Nothing left to boost. */
1237
1238 raw_spin_lock_irqsave(&rnp->lock, flags);
1239
1240 /*
1241 * Recheck under the lock: all tasks in need of boosting
1242 * might exit their RCU read-side critical sections on their own.
1243 */
1244 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1245 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1246 return 0;
1247 }
1248
1249 /*
1250 * Preferentially boost tasks blocking expedited grace periods.
1251 * This cannot starve the normal grace periods because a second
1252 * expedited grace period must boost all blocked tasks, including
1253 * those blocking the pre-existing normal grace period.
1254 */
1255 if (rnp->exp_tasks != NULL) {
1256 tb = rnp->exp_tasks;
1257 rnp->n_exp_boosts++;
1258 } else {
1259 tb = rnp->boost_tasks;
1260 rnp->n_normal_boosts++;
1261 }
1262 rnp->n_tasks_boosted++;
1263
1264 /*
1265 * We boost task t by manufacturing an rt_mutex that appears to
1266 * be held by task t. We leave a pointer to that rt_mutex where
1267 * task t can find it, and task t will release the mutex when it
1268 * exits its outermost RCU read-side critical section. Then
1269 * simply acquiring this artificial rt_mutex will boost task
1270 * t's priority. (Thanks to tglx for suggesting this approach!)
1271 *
1272 * Note that task t must acquire rnp->lock to remove itself from
1273 * the ->blkd_tasks list, which it will do from exit() if from
1274 * nowhere else. We therefore are guaranteed that task t will
1275 * stay around at least until we drop rnp->lock. Note that
1276 * rnp->lock also resolves races between our priority boosting
1277 * and task t's exiting its outermost RCU read-side critical
1278 * section.
1279 */
1280 t = container_of(tb, struct task_struct, rcu_node_entry);
1281 rt_mutex_init_proxy_locked(&mtx, t);
1282 t->rcu_boost_mutex = &mtx;
1283 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1284 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1285 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1286
1287 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1288 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1289 }
1290
1291 /*
1292 * Timer handler to initiate waking up of boost kthreads that
1293 * have yielded the CPU due to excessive numbers of tasks to
1294 * boost. We wake up the per-rcu_node kthread, which in turn
1295 * will wake up the booster kthread.
1296 */
1297 static void rcu_boost_kthread_timer(unsigned long arg)
1298 {
1299 invoke_rcu_node_kthread((struct rcu_node *)arg);
1300 }
1301
1302 /*
1303 * Priority-boosting kthread. One per leaf rcu_node and one for the
1304 * root rcu_node.
1305 */
1306 static int rcu_boost_kthread(void *arg)
1307 {
1308 struct rcu_node *rnp = (struct rcu_node *)arg;
1309 int spincnt = 0;
1310 int more2boost;
1311
1312 trace_rcu_utilization("Start boost kthread@init");
1313 for (;;) {
1314 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1315 trace_rcu_utilization("End boost kthread@rcu_wait");
1316 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1317 trace_rcu_utilization("Start boost kthread@rcu_wait");
1318 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1319 more2boost = rcu_boost(rnp);
1320 if (more2boost)
1321 spincnt++;
1322 else
1323 spincnt = 0;
1324 if (spincnt > 10) {
1325 trace_rcu_utilization("End boost kthread@rcu_yield");
1326 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1327 trace_rcu_utilization("Start boost kthread@rcu_yield");
1328 spincnt = 0;
1329 }
1330 }
1331 /* NOTREACHED */
1332 trace_rcu_utilization("End boost kthread@notreached");
1333 return 0;
1334 }
1335
1336 /*
1337 * Check to see if it is time to start boosting RCU readers that are
1338 * blocking the current grace period, and, if so, tell the per-rcu_node
1339 * kthread to start boosting them. If there is an expedited grace
1340 * period in progress, it is always time to boost.
1341 *
1342 * The caller must hold rnp->lock, which this function releases,
1343 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1344 * so we don't need to worry about it going away.
1345 */
1346 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1347 {
1348 struct task_struct *t;
1349
1350 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1351 rnp->n_balk_exp_gp_tasks++;
1352 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1353 return;
1354 }
1355 if (rnp->exp_tasks != NULL ||
1356 (rnp->gp_tasks != NULL &&
1357 rnp->boost_tasks == NULL &&
1358 rnp->qsmask == 0 &&
1359 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1360 if (rnp->exp_tasks == NULL)
1361 rnp->boost_tasks = rnp->gp_tasks;
1362 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1363 t = rnp->boost_kthread_task;
1364 if (t != NULL)
1365 wake_up_process(t);
1366 } else {
1367 rcu_initiate_boost_trace(rnp);
1368 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1369 }
1370 }
1371
1372 /*
1373 * Wake up the per-CPU kthread to invoke RCU callbacks.
1374 */
1375 static void invoke_rcu_callbacks_kthread(void)
1376 {
1377 unsigned long flags;
1378
1379 local_irq_save(flags);
1380 __this_cpu_write(rcu_cpu_has_work, 1);
1381 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1382 current != __this_cpu_read(rcu_cpu_kthread_task))
1383 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1384 local_irq_restore(flags);
1385 }
1386
1387 /*
1388 * Is the current CPU running the RCU-callbacks kthread?
1389 * Caller must have preemption disabled.
1390 */
1391 static bool rcu_is_callbacks_kthread(void)
1392 {
1393 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1394 }
1395
1396 /*
1397 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1398 * held, so no one should be messing with the existence of the boost
1399 * kthread.
1400 */
1401 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1402 cpumask_var_t cm)
1403 {
1404 struct task_struct *t;
1405
1406 t = rnp->boost_kthread_task;
1407 if (t != NULL)
1408 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1409 }
1410
1411 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1412
1413 /*
1414 * Do priority-boost accounting for the start of a new grace period.
1415 */
1416 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1417 {
1418 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1419 }
1420
1421 /*
1422 * Create an RCU-boost kthread for the specified node if one does not
1423 * already exist. We only create this kthread for preemptible RCU.
1424 * Returns zero if all is well, a negated errno otherwise.
1425 */
1426 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1427 struct rcu_node *rnp,
1428 int rnp_index)
1429 {
1430 unsigned long flags;
1431 struct sched_param sp;
1432 struct task_struct *t;
1433
1434 if (&rcu_preempt_state != rsp)
1435 return 0;
1436 rsp->boost = 1;
1437 if (rnp->boost_kthread_task != NULL)
1438 return 0;
1439 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1440 "rcub/%d", rnp_index);
1441 if (IS_ERR(t))
1442 return PTR_ERR(t);
1443 raw_spin_lock_irqsave(&rnp->lock, flags);
1444 rnp->boost_kthread_task = t;
1445 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1446 sp.sched_priority = RCU_BOOST_PRIO;
1447 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1448 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1449 return 0;
1450 }
1451
1452 #ifdef CONFIG_HOTPLUG_CPU
1453
1454 /*
1455 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1456 */
1457 static void rcu_stop_cpu_kthread(int cpu)
1458 {
1459 struct task_struct *t;
1460
1461 /* Stop the CPU's kthread. */
1462 t = per_cpu(rcu_cpu_kthread_task, cpu);
1463 if (t != NULL) {
1464 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1465 kthread_stop(t);
1466 }
1467 }
1468
1469 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1470
1471 static void rcu_kthread_do_work(void)
1472 {
1473 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1474 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1475 rcu_preempt_do_callbacks();
1476 }
1477
1478 /*
1479 * Wake up the specified per-rcu_node-structure kthread.
1480 * Because the per-rcu_node kthreads are immortal, we don't need
1481 * to do anything to keep them alive.
1482 */
1483 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1484 {
1485 struct task_struct *t;
1486
1487 t = rnp->node_kthread_task;
1488 if (t != NULL)
1489 wake_up_process(t);
1490 }
1491
1492 /*
1493 * Set the specified CPU's kthread to run RT or not, as specified by
1494 * the to_rt argument. The CPU-hotplug locks are held, so the task
1495 * is not going away.
1496 */
1497 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1498 {
1499 int policy;
1500 struct sched_param sp;
1501 struct task_struct *t;
1502
1503 t = per_cpu(rcu_cpu_kthread_task, cpu);
1504 if (t == NULL)
1505 return;
1506 if (to_rt) {
1507 policy = SCHED_FIFO;
1508 sp.sched_priority = RCU_KTHREAD_PRIO;
1509 } else {
1510 policy = SCHED_NORMAL;
1511 sp.sched_priority = 0;
1512 }
1513 sched_setscheduler_nocheck(t, policy, &sp);
1514 }
1515
1516 /*
1517 * Timer handler to initiate the waking up of per-CPU kthreads that
1518 * have yielded the CPU due to excess numbers of RCU callbacks.
1519 * We wake up the per-rcu_node kthread, which in turn will wake up
1520 * the booster kthread.
1521 */
1522 static void rcu_cpu_kthread_timer(unsigned long arg)
1523 {
1524 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1525 struct rcu_node *rnp = rdp->mynode;
1526
1527 atomic_or(rdp->grpmask, &rnp->wakemask);
1528 invoke_rcu_node_kthread(rnp);
1529 }
1530
1531 /*
1532 * Drop to non-real-time priority and yield, but only after posting a
1533 * timer that will cause us to regain our real-time priority if we
1534 * remain preempted. Either way, we restore our real-time priority
1535 * before returning.
1536 */
1537 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1538 {
1539 struct sched_param sp;
1540 struct timer_list yield_timer;
1541 int prio = current->rt_priority;
1542
1543 setup_timer_on_stack(&yield_timer, f, arg);
1544 mod_timer(&yield_timer, jiffies + 2);
1545 sp.sched_priority = 0;
1546 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1547 set_user_nice(current, 19);
1548 schedule();
1549 set_user_nice(current, 0);
1550 sp.sched_priority = prio;
1551 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1552 del_timer(&yield_timer);
1553 }
1554
1555 /*
1556 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1557 * This can happen while the corresponding CPU is either coming online
1558 * or going offline. We cannot wait until the CPU is fully online
1559 * before starting the kthread, because the various notifier functions
1560 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1561 * the corresponding CPU is online.
1562 *
1563 * Return 1 if the kthread needs to stop, 0 otherwise.
1564 *
1565 * Caller must disable bh. This function can momentarily enable it.
1566 */
1567 static int rcu_cpu_kthread_should_stop(int cpu)
1568 {
1569 while (cpu_is_offline(cpu) ||
1570 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1571 smp_processor_id() != cpu) {
1572 if (kthread_should_stop())
1573 return 1;
1574 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1575 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1576 local_bh_enable();
1577 schedule_timeout_uninterruptible(1);
1578 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1579 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1580 local_bh_disable();
1581 }
1582 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1583 return 0;
1584 }
1585
1586 /*
1587 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1588 * RCU softirq used in flavors and configurations of RCU that do not
1589 * support RCU priority boosting.
1590 */
1591 static int rcu_cpu_kthread(void *arg)
1592 {
1593 int cpu = (int)(long)arg;
1594 unsigned long flags;
1595 int spincnt = 0;
1596 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1597 char work;
1598 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1599
1600 trace_rcu_utilization("Start CPU kthread@init");
1601 for (;;) {
1602 *statusp = RCU_KTHREAD_WAITING;
1603 trace_rcu_utilization("End CPU kthread@rcu_wait");
1604 rcu_wait(*workp != 0 || kthread_should_stop());
1605 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1606 local_bh_disable();
1607 if (rcu_cpu_kthread_should_stop(cpu)) {
1608 local_bh_enable();
1609 break;
1610 }
1611 *statusp = RCU_KTHREAD_RUNNING;
1612 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1613 local_irq_save(flags);
1614 work = *workp;
1615 *workp = 0;
1616 local_irq_restore(flags);
1617 if (work)
1618 rcu_kthread_do_work();
1619 local_bh_enable();
1620 if (*workp != 0)
1621 spincnt++;
1622 else
1623 spincnt = 0;
1624 if (spincnt > 10) {
1625 *statusp = RCU_KTHREAD_YIELDING;
1626 trace_rcu_utilization("End CPU kthread@rcu_yield");
1627 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1628 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1629 spincnt = 0;
1630 }
1631 }
1632 *statusp = RCU_KTHREAD_STOPPED;
1633 trace_rcu_utilization("End CPU kthread@term");
1634 return 0;
1635 }
1636
1637 /*
1638 * Spawn a per-CPU kthread, setting up affinity and priority.
1639 * Because the CPU hotplug lock is held, no other CPU will be attempting
1640 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1641 * attempting to access it during boot, but the locking in kthread_bind()
1642 * will enforce sufficient ordering.
1643 *
1644 * Please note that we cannot simply refuse to wake up the per-CPU
1645 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1646 * which can result in softlockup complaints if the task ends up being
1647 * idle for more than a couple of minutes.
1648 *
1649 * However, please note also that we cannot bind the per-CPU kthread to its
1650 * CPU until that CPU is fully online. We also cannot wait until the
1651 * CPU is fully online before we create its per-CPU kthread, as this would
1652 * deadlock the system when CPU notifiers tried waiting for grace
1653 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1654 * is online. If its CPU is not yet fully online, then the code in
1655 * rcu_cpu_kthread() will wait until it is fully online, and then do
1656 * the binding.
1657 */
1658 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1659 {
1660 struct sched_param sp;
1661 struct task_struct *t;
1662
1663 if (!rcu_scheduler_fully_active ||
1664 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1665 return 0;
1666 t = kthread_create_on_node(rcu_cpu_kthread,
1667 (void *)(long)cpu,
1668 cpu_to_node(cpu),
1669 "rcuc/%d", cpu);
1670 if (IS_ERR(t))
1671 return PTR_ERR(t);
1672 if (cpu_online(cpu))
1673 kthread_bind(t, cpu);
1674 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1675 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1676 sp.sched_priority = RCU_KTHREAD_PRIO;
1677 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1678 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1679 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1680 return 0;
1681 }
1682
1683 /*
1684 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1685 * kthreads when needed. We ignore requests to wake up kthreads
1686 * for offline CPUs, which is OK because force_quiescent_state()
1687 * takes care of this case.
1688 */
1689 static int rcu_node_kthread(void *arg)
1690 {
1691 int cpu;
1692 unsigned long flags;
1693 unsigned long mask;
1694 struct rcu_node *rnp = (struct rcu_node *)arg;
1695 struct sched_param sp;
1696 struct task_struct *t;
1697
1698 for (;;) {
1699 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1700 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1701 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1702 raw_spin_lock_irqsave(&rnp->lock, flags);
1703 mask = atomic_xchg(&rnp->wakemask, 0);
1704 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1705 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1706 if ((mask & 0x1) == 0)
1707 continue;
1708 preempt_disable();
1709 t = per_cpu(rcu_cpu_kthread_task, cpu);
1710 if (!cpu_online(cpu) || t == NULL) {
1711 preempt_enable();
1712 continue;
1713 }
1714 per_cpu(rcu_cpu_has_work, cpu) = 1;
1715 sp.sched_priority = RCU_KTHREAD_PRIO;
1716 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1717 preempt_enable();
1718 }
1719 }
1720 /* NOTREACHED */
1721 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1722 return 0;
1723 }
1724
1725 /*
1726 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1727 * served by the rcu_node in question. The CPU hotplug lock is still
1728 * held, so the value of rnp->qsmaskinit will be stable.
1729 *
1730 * We don't include outgoingcpu in the affinity set, use -1 if there is
1731 * no outgoing CPU. If there are no CPUs left in the affinity set,
1732 * this function allows the kthread to execute on any CPU.
1733 */
1734 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1735 {
1736 cpumask_var_t cm;
1737 int cpu;
1738 unsigned long mask = rnp->qsmaskinit;
1739
1740 if (rnp->node_kthread_task == NULL)
1741 return;
1742 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1743 return;
1744 cpumask_clear(cm);
1745 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1746 if ((mask & 0x1) && cpu != outgoingcpu)
1747 cpumask_set_cpu(cpu, cm);
1748 if (cpumask_weight(cm) == 0) {
1749 cpumask_setall(cm);
1750 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1751 cpumask_clear_cpu(cpu, cm);
1752 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1753 }
1754 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1755 rcu_boost_kthread_setaffinity(rnp, cm);
1756 free_cpumask_var(cm);
1757 }
1758
1759 /*
1760 * Spawn a per-rcu_node kthread, setting priority and affinity.
1761 * Called during boot before online/offline can happen, or, if
1762 * during runtime, with the main CPU-hotplug locks held. So only
1763 * one of these can be executing at a time.
1764 */
1765 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1766 struct rcu_node *rnp)
1767 {
1768 unsigned long flags;
1769 int rnp_index = rnp - &rsp->node[0];
1770 struct sched_param sp;
1771 struct task_struct *t;
1772
1773 if (!rcu_scheduler_fully_active ||
1774 rnp->qsmaskinit == 0)
1775 return 0;
1776 if (rnp->node_kthread_task == NULL) {
1777 t = kthread_create(rcu_node_kthread, (void *)rnp,
1778 "rcun/%d", rnp_index);
1779 if (IS_ERR(t))
1780 return PTR_ERR(t);
1781 raw_spin_lock_irqsave(&rnp->lock, flags);
1782 rnp->node_kthread_task = t;
1783 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784 sp.sched_priority = 99;
1785 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1786 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1787 }
1788 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1789 }
1790
1791 /*
1792 * Spawn all kthreads -- called as soon as the scheduler is running.
1793 */
1794 static int __init rcu_spawn_kthreads(void)
1795 {
1796 int cpu;
1797 struct rcu_node *rnp;
1798
1799 rcu_scheduler_fully_active = 1;
1800 for_each_possible_cpu(cpu) {
1801 per_cpu(rcu_cpu_has_work, cpu) = 0;
1802 if (cpu_online(cpu))
1803 (void)rcu_spawn_one_cpu_kthread(cpu);
1804 }
1805 rnp = rcu_get_root(rcu_state);
1806 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1807 if (NUM_RCU_NODES > 1) {
1808 rcu_for_each_leaf_node(rcu_state, rnp)
1809 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1810 }
1811 return 0;
1812 }
1813 early_initcall(rcu_spawn_kthreads);
1814
1815 static void __cpuinit rcu_prepare_kthreads(int cpu)
1816 {
1817 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1818 struct rcu_node *rnp = rdp->mynode;
1819
1820 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1821 if (rcu_scheduler_fully_active) {
1822 (void)rcu_spawn_one_cpu_kthread(cpu);
1823 if (rnp->node_kthread_task == NULL)
1824 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1825 }
1826 }
1827
1828 #else /* #ifdef CONFIG_RCU_BOOST */
1829
1830 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1831 {
1832 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1833 }
1834
1835 static void invoke_rcu_callbacks_kthread(void)
1836 {
1837 WARN_ON_ONCE(1);
1838 }
1839
1840 static bool rcu_is_callbacks_kthread(void)
1841 {
1842 return false;
1843 }
1844
1845 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1846 {
1847 }
1848
1849 #ifdef CONFIG_HOTPLUG_CPU
1850
1851 static void rcu_stop_cpu_kthread(int cpu)
1852 {
1853 }
1854
1855 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1856
1857 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1858 {
1859 }
1860
1861 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1862 {
1863 }
1864
1865 static int __init rcu_scheduler_really_started(void)
1866 {
1867 rcu_scheduler_fully_active = 1;
1868 return 0;
1869 }
1870 early_initcall(rcu_scheduler_really_started);
1871
1872 static void __cpuinit rcu_prepare_kthreads(int cpu)
1873 {
1874 }
1875
1876 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1877
1878 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1879
1880 /*
1881 * Check to see if any future RCU-related work will need to be done
1882 * by the current CPU, even if none need be done immediately, returning
1883 * 1 if so. This function is part of the RCU implementation; it is -not-
1884 * an exported member of the RCU API.
1885 *
1886 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1887 * any flavor of RCU.
1888 */
1889 int rcu_needs_cpu(int cpu)
1890 {
1891 return rcu_cpu_has_callbacks(cpu);
1892 }
1893
1894 /*
1895 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1896 */
1897 static void rcu_prepare_for_idle_init(int cpu)
1898 {
1899 }
1900
1901 /*
1902 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1903 * after it.
1904 */
1905 static void rcu_cleanup_after_idle(int cpu)
1906 {
1907 }
1908
1909 /*
1910 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1911 * is nothing.
1912 */
1913 static void rcu_prepare_for_idle(int cpu)
1914 {
1915 }
1916
1917 /*
1918 * Don't bother keeping a running count of the number of RCU callbacks
1919 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1920 */
1921 static void rcu_idle_count_callbacks_posted(void)
1922 {
1923 }
1924
1925 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1926
1927 /*
1928 * This code is invoked when a CPU goes idle, at which point we want
1929 * to have the CPU do everything required for RCU so that it can enter
1930 * the energy-efficient dyntick-idle mode. This is handled by a
1931 * state machine implemented by rcu_prepare_for_idle() below.
1932 *
1933 * The following three proprocessor symbols control this state machine:
1934 *
1935 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1936 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1937 * scheduling-clock interrupt than to loop through the state machine
1938 * at full power.
1939 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1940 * optional if RCU does not need anything immediately from this
1941 * CPU, even if this CPU still has RCU callbacks queued. The first
1942 * times through the state machine are mandatory: we need to give
1943 * the state machine a chance to communicate a quiescent state
1944 * to the RCU core.
1945 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1946 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1947 * is sized to be roughly one RCU grace period. Those energy-efficiency
1948 * benchmarkers who might otherwise be tempted to set this to a large
1949 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1950 * system. And if you are -that- concerned about energy efficiency,
1951 * just power the system down and be done with it!
1952 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1953 * permitted to sleep in dyntick-idle mode with only lazy RCU
1954 * callbacks pending. Setting this too high can OOM your system.
1955 *
1956 * The values below work well in practice. If future workloads require
1957 * adjustment, they can be converted into kernel config parameters, though
1958 * making the state machine smarter might be a better option.
1959 */
1960 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1961 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1962 #define RCU_IDLE_GP_DELAY 6 /* Roughly one grace period. */
1963 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1964
1965 /* Loop counter for rcu_prepare_for_idle(). */
1966 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1967 /* If rcu_dyntick_holdoff==jiffies, don't try to enter dyntick-idle mode. */
1968 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1969 /* Timer to awaken the CPU if it enters dyntick-idle mode with callbacks. */
1970 static DEFINE_PER_CPU(struct timer_list, rcu_idle_gp_timer);
1971 /* Scheduled expiry time for rcu_idle_gp_timer to allow reposting. */
1972 static DEFINE_PER_CPU(unsigned long, rcu_idle_gp_timer_expires);
1973 /* Enable special processing on first attempt to enter dyntick-idle mode. */
1974 static DEFINE_PER_CPU(bool, rcu_idle_first_pass);
1975 /* Running count of non-lazy callbacks posted, never decremented. */
1976 static DEFINE_PER_CPU(unsigned long, rcu_nonlazy_posted);
1977 /* Snapshot of rcu_nonlazy_posted to detect meaningful exits from idle. */
1978 static DEFINE_PER_CPU(unsigned long, rcu_nonlazy_posted_snap);
1979
1980 /*
1981 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1982 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1983 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1984 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1985 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1986 * it is better to incur scheduling-clock interrupts than to spin
1987 * continuously for the same time duration!
1988 */
1989 int rcu_needs_cpu(int cpu)
1990 {
1991 /* Flag a new idle sojourn to the idle-entry state machine. */
1992 per_cpu(rcu_idle_first_pass, cpu) = 1;
1993 /* If no callbacks, RCU doesn't need the CPU. */
1994 if (!rcu_cpu_has_callbacks(cpu))
1995 return 0;
1996 /* Otherwise, RCU needs the CPU only if it recently tried and failed. */
1997 return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
1998 }
1999
2000 /*
2001 * Does the specified flavor of RCU have non-lazy callbacks pending on
2002 * the specified CPU? Both RCU flavor and CPU are specified by the
2003 * rcu_data structure.
2004 */
2005 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
2006 {
2007 return rdp->qlen != rdp->qlen_lazy;
2008 }
2009
2010 #ifdef CONFIG_TREE_PREEMPT_RCU
2011
2012 /*
2013 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
2014 * is no RCU-preempt in the kernel.)
2015 */
2016 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2017 {
2018 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
2019
2020 return __rcu_cpu_has_nonlazy_callbacks(rdp);
2021 }
2022
2023 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2024
2025 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2026 {
2027 return 0;
2028 }
2029
2030 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
2031
2032 /*
2033 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
2034 */
2035 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
2036 {
2037 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
2038 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
2039 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
2040 }
2041
2042 /*
2043 * Handler for smp_call_function_single(). The only point of this
2044 * handler is to wake the CPU up, so the handler does only tracing.
2045 */
2046 void rcu_idle_demigrate(void *unused)
2047 {
2048 trace_rcu_prep_idle("Demigrate");
2049 }
2050
2051 /*
2052 * Timer handler used to force CPU to start pushing its remaining RCU
2053 * callbacks in the case where it entered dyntick-idle mode with callbacks
2054 * pending. The hander doesn't really need to do anything because the
2055 * real work is done upon re-entry to idle, or by the next scheduling-clock
2056 * interrupt should idle not be re-entered.
2057 *
2058 * One special case: the timer gets migrated without awakening the CPU
2059 * on which the timer was scheduled on. In this case, we must wake up
2060 * that CPU. We do so with smp_call_function_single().
2061 */
2062 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
2063 {
2064 int cpu = (int)cpu_in;
2065
2066 trace_rcu_prep_idle("Timer");
2067 if (cpu != smp_processor_id())
2068 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
2069 else
2070 WARN_ON_ONCE(1); /* Getting here can hang the system... */
2071 }
2072
2073 /*
2074 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
2075 */
2076 static void rcu_prepare_for_idle_init(int cpu)
2077 {
2078 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2079 setup_timer(&per_cpu(rcu_idle_gp_timer, cpu),
2080 rcu_idle_gp_timer_func, cpu);
2081 per_cpu(rcu_idle_gp_timer_expires, cpu) = jiffies - 1;
2082 per_cpu(rcu_idle_first_pass, cpu) = 1;
2083 }
2084
2085 /*
2086 * Clean up for exit from idle. Because we are exiting from idle, there
2087 * is no longer any point to rcu_idle_gp_timer, so cancel it. This will
2088 * do nothing if this timer is not active, so just cancel it unconditionally.
2089 */
2090 static void rcu_cleanup_after_idle(int cpu)
2091 {
2092 del_timer(&per_cpu(rcu_idle_gp_timer, cpu));
2093 trace_rcu_prep_idle("Cleanup after idle");
2094 }
2095
2096 /*
2097 * Check to see if any RCU-related work can be done by the current CPU,
2098 * and if so, schedule a softirq to get it done. This function is part
2099 * of the RCU implementation; it is -not- an exported member of the RCU API.
2100 *
2101 * The idea is for the current CPU to clear out all work required by the
2102 * RCU core for the current grace period, so that this CPU can be permitted
2103 * to enter dyntick-idle mode. In some cases, it will need to be awakened
2104 * at the end of the grace period by whatever CPU ends the grace period.
2105 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2106 * number of wakeups by a modest integer factor.
2107 *
2108 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2109 * disabled, we do one pass of force_quiescent_state(), then do a
2110 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
2111 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
2112 *
2113 * The caller must have disabled interrupts.
2114 */
2115 static void rcu_prepare_for_idle(int cpu)
2116 {
2117 struct timer_list *tp;
2118
2119 /*
2120 * If this is an idle re-entry, for example, due to use of
2121 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
2122 * loop, then don't take any state-machine actions, unless the
2123 * momentary exit from idle queued additional non-lazy callbacks.
2124 * Instead, repost the rcu_idle_gp_timer if this CPU has callbacks
2125 * pending.
2126 */
2127 if (!per_cpu(rcu_idle_first_pass, cpu) &&
2128 (per_cpu(rcu_nonlazy_posted, cpu) ==
2129 per_cpu(rcu_nonlazy_posted_snap, cpu))) {
2130 if (rcu_cpu_has_callbacks(cpu)) {
2131 tp = &per_cpu(rcu_idle_gp_timer, cpu);
2132 mod_timer_pinned(tp, per_cpu(rcu_idle_gp_timer_expires, cpu));
2133 }
2134 return;
2135 }
2136 per_cpu(rcu_idle_first_pass, cpu) = 0;
2137 per_cpu(rcu_nonlazy_posted_snap, cpu) =
2138 per_cpu(rcu_nonlazy_posted, cpu) - 1;
2139
2140 /*
2141 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2142 * Also reset state to avoid prejudicing later attempts.
2143 */
2144 if (!rcu_cpu_has_callbacks(cpu)) {
2145 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2146 per_cpu(rcu_dyntick_drain, cpu) = 0;
2147 trace_rcu_prep_idle("No callbacks");
2148 return;
2149 }
2150
2151 /*
2152 * If in holdoff mode, just return. We will presumably have
2153 * refrained from disabling the scheduling-clock tick.
2154 */
2155 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
2156 trace_rcu_prep_idle("In holdoff");
2157 return;
2158 }
2159
2160 /* Check and update the rcu_dyntick_drain sequencing. */
2161 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2162 /* First time through, initialize the counter. */
2163 per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
2164 } else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
2165 !rcu_pending(cpu) &&
2166 !local_softirq_pending()) {
2167 /* Can we go dyntick-idle despite still having callbacks? */
2168 trace_rcu_prep_idle("Dyntick with callbacks");
2169 per_cpu(rcu_dyntick_drain, cpu) = 0;
2170 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2171 if (rcu_cpu_has_nonlazy_callbacks(cpu))
2172 per_cpu(rcu_idle_gp_timer_expires, cpu) =
2173 jiffies + RCU_IDLE_GP_DELAY;
2174 else
2175 per_cpu(rcu_idle_gp_timer_expires, cpu) =
2176 jiffies + RCU_IDLE_LAZY_GP_DELAY;
2177 tp = &per_cpu(rcu_idle_gp_timer, cpu);
2178 mod_timer_pinned(tp, per_cpu(rcu_idle_gp_timer_expires, cpu));
2179 per_cpu(rcu_nonlazy_posted_snap, cpu) =
2180 per_cpu(rcu_nonlazy_posted, cpu);
2181 return; /* Nothing more to do immediately. */
2182 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2183 /* We have hit the limit, so time to give up. */
2184 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2185 trace_rcu_prep_idle("Begin holdoff");
2186 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2187 return;
2188 }
2189
2190 /*
2191 * Do one step of pushing the remaining RCU callbacks through
2192 * the RCU core state machine.
2193 */
2194 #ifdef CONFIG_TREE_PREEMPT_RCU
2195 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2196 rcu_preempt_qs(cpu);
2197 force_quiescent_state(&rcu_preempt_state, 0);
2198 }
2199 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2200 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2201 rcu_sched_qs(cpu);
2202 force_quiescent_state(&rcu_sched_state, 0);
2203 }
2204 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2205 rcu_bh_qs(cpu);
2206 force_quiescent_state(&rcu_bh_state, 0);
2207 }
2208
2209 /*
2210 * If RCU callbacks are still pending, RCU still needs this CPU.
2211 * So try forcing the callbacks through the grace period.
2212 */
2213 if (rcu_cpu_has_callbacks(cpu)) {
2214 trace_rcu_prep_idle("More callbacks");
2215 invoke_rcu_core();
2216 } else
2217 trace_rcu_prep_idle("Callbacks drained");
2218 }
2219
2220 /*
2221 * Keep a running count of the number of non-lazy callbacks posted
2222 * on this CPU. This running counter (which is never decremented) allows
2223 * rcu_prepare_for_idle() to detect when something out of the idle loop
2224 * posts a callback, even if an equal number of callbacks are invoked.
2225 * Of course, callbacks should only be posted from within a trace event
2226 * designed to be called from idle or from within RCU_NONIDLE().
2227 */
2228 static void rcu_idle_count_callbacks_posted(void)
2229 {
2230 __this_cpu_add(rcu_nonlazy_posted, 1);
2231 }
2232
2233 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2234
2235 #ifdef CONFIG_RCU_CPU_STALL_INFO
2236
2237 #ifdef CONFIG_RCU_FAST_NO_HZ
2238
2239 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2240 {
2241 struct timer_list *tltp = &per_cpu(rcu_idle_gp_timer, cpu);
2242
2243 sprintf(cp, "drain=%d %c timer=%lu",
2244 per_cpu(rcu_dyntick_drain, cpu),
2245 per_cpu(rcu_dyntick_holdoff, cpu) == jiffies ? 'H' : '.',
2246 timer_pending(tltp) ? tltp->expires - jiffies : -1);
2247 }
2248
2249 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2250
2251 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2252 {
2253 }
2254
2255 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2256
2257 /* Initiate the stall-info list. */
2258 static void print_cpu_stall_info_begin(void)
2259 {
2260 printk(KERN_CONT "\n");
2261 }
2262
2263 /*
2264 * Print out diagnostic information for the specified stalled CPU.
2265 *
2266 * If the specified CPU is aware of the current RCU grace period
2267 * (flavor specified by rsp), then print the number of scheduling
2268 * clock interrupts the CPU has taken during the time that it has
2269 * been aware. Otherwise, print the number of RCU grace periods
2270 * that this CPU is ignorant of, for example, "1" if the CPU was
2271 * aware of the previous grace period.
2272 *
2273 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2274 */
2275 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2276 {
2277 char fast_no_hz[72];
2278 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2279 struct rcu_dynticks *rdtp = rdp->dynticks;
2280 char *ticks_title;
2281 unsigned long ticks_value;
2282
2283 if (rsp->gpnum == rdp->gpnum) {
2284 ticks_title = "ticks this GP";
2285 ticks_value = rdp->ticks_this_gp;
2286 } else {
2287 ticks_title = "GPs behind";
2288 ticks_value = rsp->gpnum - rdp->gpnum;
2289 }
2290 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2291 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2292 cpu, ticks_value, ticks_title,
2293 atomic_read(&rdtp->dynticks) & 0xfff,
2294 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2295 fast_no_hz);
2296 }
2297
2298 /* Terminate the stall-info list. */
2299 static void print_cpu_stall_info_end(void)
2300 {
2301 printk(KERN_ERR "\t");
2302 }
2303
2304 /* Zero ->ticks_this_gp for all flavors of RCU. */
2305 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2306 {
2307 rdp->ticks_this_gp = 0;
2308 }
2309
2310 /* Increment ->ticks_this_gp for all flavors of RCU. */
2311 static void increment_cpu_stall_ticks(void)
2312 {
2313 __get_cpu_var(rcu_sched_data).ticks_this_gp++;
2314 __get_cpu_var(rcu_bh_data).ticks_this_gp++;
2315 #ifdef CONFIG_TREE_PREEMPT_RCU
2316 __get_cpu_var(rcu_preempt_data).ticks_this_gp++;
2317 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2318 }
2319
2320 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2321
2322 static void print_cpu_stall_info_begin(void)
2323 {
2324 printk(KERN_CONT " {");
2325 }
2326
2327 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2328 {
2329 printk(KERN_CONT " %d", cpu);
2330 }
2331
2332 static void print_cpu_stall_info_end(void)
2333 {
2334 printk(KERN_CONT "} ");
2335 }
2336
2337 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2338 {
2339 }
2340
2341 static void increment_cpu_stall_ticks(void)
2342 {
2343 }
2344
2345 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */