Merge branch 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
29
30 /*
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
34 */
35 static void __init rcu_bootup_announce_oddness(void)
36 {
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
39 #endif
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
42 CONFIG_RCU_FANOUT);
43 #endif
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
46 #endif
47 #ifdef CONFIG_RCU_FAST_NO_HZ
48 printk(KERN_INFO
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
50 #endif
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
56 #endif
57 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
59 #endif
60 #if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
62 #endif
63 }
64
65 #ifdef CONFIG_TREE_PREEMPT_RCU
66
67 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
68 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
69 static struct rcu_state *rcu_state = &rcu_preempt_state;
70
71 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
72
73 /*
74 * Tell them what RCU they are running.
75 */
76 static void __init rcu_bootup_announce(void)
77 {
78 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
79 rcu_bootup_announce_oddness();
80 }
81
82 /*
83 * Return the number of RCU-preempt batches processed thus far
84 * for debug and statistics.
85 */
86 long rcu_batches_completed_preempt(void)
87 {
88 return rcu_preempt_state.completed;
89 }
90 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
91
92 /*
93 * Return the number of RCU batches processed thus far for debug & stats.
94 */
95 long rcu_batches_completed(void)
96 {
97 return rcu_batches_completed_preempt();
98 }
99 EXPORT_SYMBOL_GPL(rcu_batches_completed);
100
101 /*
102 * Force a quiescent state for preemptible RCU.
103 */
104 void rcu_force_quiescent_state(void)
105 {
106 force_quiescent_state(&rcu_preempt_state, 0);
107 }
108 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
109
110 /*
111 * Record a preemptible-RCU quiescent state for the specified CPU. Note
112 * that this just means that the task currently running on the CPU is
113 * not in a quiescent state. There might be any number of tasks blocked
114 * while in an RCU read-side critical section.
115 *
116 * Unlike the other rcu_*_qs() functions, callers to this function
117 * must disable irqs in order to protect the assignment to
118 * ->rcu_read_unlock_special.
119 */
120 static void rcu_preempt_qs(int cpu)
121 {
122 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
123
124 rdp->passed_quiesc_completed = rdp->gpnum - 1;
125 barrier();
126 rdp->passed_quiesc = 1;
127 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
128 }
129
130 /*
131 * We have entered the scheduler, and the current task might soon be
132 * context-switched away from. If this task is in an RCU read-side
133 * critical section, we will no longer be able to rely on the CPU to
134 * record that fact, so we enqueue the task on the blkd_tasks list.
135 * The task will dequeue itself when it exits the outermost enclosing
136 * RCU read-side critical section. Therefore, the current grace period
137 * cannot be permitted to complete until the blkd_tasks list entries
138 * predating the current grace period drain, in other words, until
139 * rnp->gp_tasks becomes NULL.
140 *
141 * Caller must disable preemption.
142 */
143 static void rcu_preempt_note_context_switch(int cpu)
144 {
145 struct task_struct *t = current;
146 unsigned long flags;
147 struct rcu_data *rdp;
148 struct rcu_node *rnp;
149
150 if (t->rcu_read_lock_nesting &&
151 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
152
153 /* Possibly blocking in an RCU read-side critical section. */
154 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
155 rnp = rdp->mynode;
156 raw_spin_lock_irqsave(&rnp->lock, flags);
157 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
158 t->rcu_blocked_node = rnp;
159
160 /*
161 * If this CPU has already checked in, then this task
162 * will hold up the next grace period rather than the
163 * current grace period. Queue the task accordingly.
164 * If the task is queued for the current grace period
165 * (i.e., this CPU has not yet passed through a quiescent
166 * state for the current grace period), then as long
167 * as that task remains queued, the current grace period
168 * cannot end. Note that there is some uncertainty as
169 * to exactly when the current grace period started.
170 * We take a conservative approach, which can result
171 * in unnecessarily waiting on tasks that started very
172 * slightly after the current grace period began. C'est
173 * la vie!!!
174 *
175 * But first, note that the current CPU must still be
176 * on line!
177 */
178 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
179 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
181 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
182 rnp->gp_tasks = &t->rcu_node_entry;
183 #ifdef CONFIG_RCU_BOOST
184 if (rnp->boost_tasks != NULL)
185 rnp->boost_tasks = rnp->gp_tasks;
186 #endif /* #ifdef CONFIG_RCU_BOOST */
187 } else {
188 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
189 if (rnp->qsmask & rdp->grpmask)
190 rnp->gp_tasks = &t->rcu_node_entry;
191 }
192 raw_spin_unlock_irqrestore(&rnp->lock, flags);
193 }
194
195 /*
196 * Either we were not in an RCU read-side critical section to
197 * begin with, or we have now recorded that critical section
198 * globally. Either way, we can now note a quiescent state
199 * for this CPU. Again, if we were in an RCU read-side critical
200 * section, and if that critical section was blocking the current
201 * grace period, then the fact that the task has been enqueued
202 * means that we continue to block the current grace period.
203 */
204 local_irq_save(flags);
205 rcu_preempt_qs(cpu);
206 local_irq_restore(flags);
207 }
208
209 /*
210 * Tree-preemptible RCU implementation for rcu_read_lock().
211 * Just increment ->rcu_read_lock_nesting, shared state will be updated
212 * if we block.
213 */
214 void __rcu_read_lock(void)
215 {
216 current->rcu_read_lock_nesting++;
217 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
218 }
219 EXPORT_SYMBOL_GPL(__rcu_read_lock);
220
221 /*
222 * Check for preempted RCU readers blocking the current grace period
223 * for the specified rcu_node structure. If the caller needs a reliable
224 * answer, it must hold the rcu_node's ->lock.
225 */
226 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
227 {
228 return rnp->gp_tasks != NULL;
229 }
230
231 /*
232 * Record a quiescent state for all tasks that were previously queued
233 * on the specified rcu_node structure and that were blocking the current
234 * RCU grace period. The caller must hold the specified rnp->lock with
235 * irqs disabled, and this lock is released upon return, but irqs remain
236 * disabled.
237 */
238 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
239 __releases(rnp->lock)
240 {
241 unsigned long mask;
242 struct rcu_node *rnp_p;
243
244 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
245 raw_spin_unlock_irqrestore(&rnp->lock, flags);
246 return; /* Still need more quiescent states! */
247 }
248
249 rnp_p = rnp->parent;
250 if (rnp_p == NULL) {
251 /*
252 * Either there is only one rcu_node in the tree,
253 * or tasks were kicked up to root rcu_node due to
254 * CPUs going offline.
255 */
256 rcu_report_qs_rsp(&rcu_preempt_state, flags);
257 return;
258 }
259
260 /* Report up the rest of the hierarchy. */
261 mask = rnp->grpmask;
262 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
263 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
264 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
265 }
266
267 /*
268 * Advance a ->blkd_tasks-list pointer to the next entry, instead
269 * returning NULL if at the end of the list.
270 */
271 static struct list_head *rcu_next_node_entry(struct task_struct *t,
272 struct rcu_node *rnp)
273 {
274 struct list_head *np;
275
276 np = t->rcu_node_entry.next;
277 if (np == &rnp->blkd_tasks)
278 np = NULL;
279 return np;
280 }
281
282 /*
283 * Handle special cases during rcu_read_unlock(), such as needing to
284 * notify RCU core processing or task having blocked during the RCU
285 * read-side critical section.
286 */
287 static void rcu_read_unlock_special(struct task_struct *t)
288 {
289 int empty;
290 int empty_exp;
291 unsigned long flags;
292 struct list_head *np;
293 struct rcu_node *rnp;
294 int special;
295
296 /* NMI handlers cannot block and cannot safely manipulate state. */
297 if (in_nmi())
298 return;
299
300 local_irq_save(flags);
301
302 /*
303 * If RCU core is waiting for this CPU to exit critical section,
304 * let it know that we have done so.
305 */
306 special = t->rcu_read_unlock_special;
307 if (special & RCU_READ_UNLOCK_NEED_QS) {
308 rcu_preempt_qs(smp_processor_id());
309 }
310
311 /* Hardware IRQ handlers cannot block. */
312 if (in_irq()) {
313 local_irq_restore(flags);
314 return;
315 }
316
317 /* Clean up if blocked during RCU read-side critical section. */
318 if (special & RCU_READ_UNLOCK_BLOCKED) {
319 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
320
321 /*
322 * Remove this task from the list it blocked on. The
323 * task can migrate while we acquire the lock, but at
324 * most one time. So at most two passes through loop.
325 */
326 for (;;) {
327 rnp = t->rcu_blocked_node;
328 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
329 if (rnp == t->rcu_blocked_node)
330 break;
331 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
332 }
333 empty = !rcu_preempt_blocked_readers_cgp(rnp);
334 empty_exp = !rcu_preempted_readers_exp(rnp);
335 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
336 np = rcu_next_node_entry(t, rnp);
337 list_del_init(&t->rcu_node_entry);
338 if (&t->rcu_node_entry == rnp->gp_tasks)
339 rnp->gp_tasks = np;
340 if (&t->rcu_node_entry == rnp->exp_tasks)
341 rnp->exp_tasks = np;
342 #ifdef CONFIG_RCU_BOOST
343 if (&t->rcu_node_entry == rnp->boost_tasks)
344 rnp->boost_tasks = np;
345 #endif /* #ifdef CONFIG_RCU_BOOST */
346 t->rcu_blocked_node = NULL;
347
348 /*
349 * If this was the last task on the current list, and if
350 * we aren't waiting on any CPUs, report the quiescent state.
351 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
352 */
353 if (empty)
354 raw_spin_unlock_irqrestore(&rnp->lock, flags);
355 else
356 rcu_report_unblock_qs_rnp(rnp, flags);
357
358 #ifdef CONFIG_RCU_BOOST
359 /* Unboost if we were boosted. */
360 if (special & RCU_READ_UNLOCK_BOOSTED) {
361 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BOOSTED;
362 rt_mutex_unlock(t->rcu_boost_mutex);
363 t->rcu_boost_mutex = NULL;
364 }
365 #endif /* #ifdef CONFIG_RCU_BOOST */
366
367 /*
368 * If this was the last task on the expedited lists,
369 * then we need to report up the rcu_node hierarchy.
370 */
371 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
372 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
373 } else {
374 local_irq_restore(flags);
375 }
376 }
377
378 /*
379 * Tree-preemptible RCU implementation for rcu_read_unlock().
380 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
381 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
382 * invoke rcu_read_unlock_special() to clean up after a context switch
383 * in an RCU read-side critical section and other special cases.
384 */
385 void __rcu_read_unlock(void)
386 {
387 struct task_struct *t = current;
388
389 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
390 --t->rcu_read_lock_nesting;
391 barrier(); /* decrement before load of ->rcu_read_unlock_special */
392 if (t->rcu_read_lock_nesting == 0 &&
393 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
394 rcu_read_unlock_special(t);
395 #ifdef CONFIG_PROVE_LOCKING
396 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
397 #endif /* #ifdef CONFIG_PROVE_LOCKING */
398 }
399 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
400
401 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
402
403 /*
404 * Dump detailed information for all tasks blocking the current RCU
405 * grace period on the specified rcu_node structure.
406 */
407 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
408 {
409 unsigned long flags;
410 struct task_struct *t;
411
412 if (!rcu_preempt_blocked_readers_cgp(rnp))
413 return;
414 raw_spin_lock_irqsave(&rnp->lock, flags);
415 t = list_entry(rnp->gp_tasks,
416 struct task_struct, rcu_node_entry);
417 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
418 sched_show_task(t);
419 raw_spin_unlock_irqrestore(&rnp->lock, flags);
420 }
421
422 /*
423 * Dump detailed information for all tasks blocking the current RCU
424 * grace period.
425 */
426 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
427 {
428 struct rcu_node *rnp = rcu_get_root(rsp);
429
430 rcu_print_detail_task_stall_rnp(rnp);
431 rcu_for_each_leaf_node(rsp, rnp)
432 rcu_print_detail_task_stall_rnp(rnp);
433 }
434
435 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
436
437 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
438 {
439 }
440
441 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
442
443 /*
444 * Scan the current list of tasks blocked within RCU read-side critical
445 * sections, printing out the tid of each.
446 */
447 static void rcu_print_task_stall(struct rcu_node *rnp)
448 {
449 struct task_struct *t;
450
451 if (!rcu_preempt_blocked_readers_cgp(rnp))
452 return;
453 t = list_entry(rnp->gp_tasks,
454 struct task_struct, rcu_node_entry);
455 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
456 printk(" P%d", t->pid);
457 }
458
459 /*
460 * Suppress preemptible RCU's CPU stall warnings by pushing the
461 * time of the next stall-warning message comfortably far into the
462 * future.
463 */
464 static void rcu_preempt_stall_reset(void)
465 {
466 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
467 }
468
469 /*
470 * Check that the list of blocked tasks for the newly completed grace
471 * period is in fact empty. It is a serious bug to complete a grace
472 * period that still has RCU readers blocked! This function must be
473 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
474 * must be held by the caller.
475 *
476 * Also, if there are blocked tasks on the list, they automatically
477 * block the newly created grace period, so set up ->gp_tasks accordingly.
478 */
479 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
480 {
481 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
482 if (!list_empty(&rnp->blkd_tasks))
483 rnp->gp_tasks = rnp->blkd_tasks.next;
484 WARN_ON_ONCE(rnp->qsmask);
485 }
486
487 #ifdef CONFIG_HOTPLUG_CPU
488
489 /*
490 * Handle tasklist migration for case in which all CPUs covered by the
491 * specified rcu_node have gone offline. Move them up to the root
492 * rcu_node. The reason for not just moving them to the immediate
493 * parent is to remove the need for rcu_read_unlock_special() to
494 * make more than two attempts to acquire the target rcu_node's lock.
495 * Returns true if there were tasks blocking the current RCU grace
496 * period.
497 *
498 * Returns 1 if there was previously a task blocking the current grace
499 * period on the specified rcu_node structure.
500 *
501 * The caller must hold rnp->lock with irqs disabled.
502 */
503 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
504 struct rcu_node *rnp,
505 struct rcu_data *rdp)
506 {
507 struct list_head *lp;
508 struct list_head *lp_root;
509 int retval = 0;
510 struct rcu_node *rnp_root = rcu_get_root(rsp);
511 struct task_struct *t;
512
513 if (rnp == rnp_root) {
514 WARN_ONCE(1, "Last CPU thought to be offlined?");
515 return 0; /* Shouldn't happen: at least one CPU online. */
516 }
517
518 /* If we are on an internal node, complain bitterly. */
519 WARN_ON_ONCE(rnp != rdp->mynode);
520
521 /*
522 * Move tasks up to root rcu_node. Don't try to get fancy for
523 * this corner-case operation -- just put this node's tasks
524 * at the head of the root node's list, and update the root node's
525 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
526 * if non-NULL. This might result in waiting for more tasks than
527 * absolutely necessary, but this is a good performance/complexity
528 * tradeoff.
529 */
530 if (rcu_preempt_blocked_readers_cgp(rnp))
531 retval |= RCU_OFL_TASKS_NORM_GP;
532 if (rcu_preempted_readers_exp(rnp))
533 retval |= RCU_OFL_TASKS_EXP_GP;
534 lp = &rnp->blkd_tasks;
535 lp_root = &rnp_root->blkd_tasks;
536 while (!list_empty(lp)) {
537 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
538 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
539 list_del(&t->rcu_node_entry);
540 t->rcu_blocked_node = rnp_root;
541 list_add(&t->rcu_node_entry, lp_root);
542 if (&t->rcu_node_entry == rnp->gp_tasks)
543 rnp_root->gp_tasks = rnp->gp_tasks;
544 if (&t->rcu_node_entry == rnp->exp_tasks)
545 rnp_root->exp_tasks = rnp->exp_tasks;
546 #ifdef CONFIG_RCU_BOOST
547 if (&t->rcu_node_entry == rnp->boost_tasks)
548 rnp_root->boost_tasks = rnp->boost_tasks;
549 #endif /* #ifdef CONFIG_RCU_BOOST */
550 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
551 }
552
553 #ifdef CONFIG_RCU_BOOST
554 /* In case root is being boosted and leaf is not. */
555 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
556 if (rnp_root->boost_tasks != NULL &&
557 rnp_root->boost_tasks != rnp_root->gp_tasks)
558 rnp_root->boost_tasks = rnp_root->gp_tasks;
559 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
560 #endif /* #ifdef CONFIG_RCU_BOOST */
561
562 rnp->gp_tasks = NULL;
563 rnp->exp_tasks = NULL;
564 return retval;
565 }
566
567 /*
568 * Do CPU-offline processing for preemptible RCU.
569 */
570 static void rcu_preempt_offline_cpu(int cpu)
571 {
572 __rcu_offline_cpu(cpu, &rcu_preempt_state);
573 }
574
575 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
576
577 /*
578 * Check for a quiescent state from the current CPU. When a task blocks,
579 * the task is recorded in the corresponding CPU's rcu_node structure,
580 * which is checked elsewhere.
581 *
582 * Caller must disable hard irqs.
583 */
584 static void rcu_preempt_check_callbacks(int cpu)
585 {
586 struct task_struct *t = current;
587
588 if (t->rcu_read_lock_nesting == 0) {
589 rcu_preempt_qs(cpu);
590 return;
591 }
592 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
593 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
594 }
595
596 /*
597 * Process callbacks for preemptible RCU.
598 */
599 static void rcu_preempt_process_callbacks(void)
600 {
601 __rcu_process_callbacks(&rcu_preempt_state,
602 &__get_cpu_var(rcu_preempt_data));
603 }
604
605 /*
606 * Queue a preemptible-RCU callback for invocation after a grace period.
607 */
608 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
609 {
610 __call_rcu(head, func, &rcu_preempt_state);
611 }
612 EXPORT_SYMBOL_GPL(call_rcu);
613
614 /**
615 * synchronize_rcu - wait until a grace period has elapsed.
616 *
617 * Control will return to the caller some time after a full grace
618 * period has elapsed, in other words after all currently executing RCU
619 * read-side critical sections have completed. Note, however, that
620 * upon return from synchronize_rcu(), the caller might well be executing
621 * concurrently with new RCU read-side critical sections that began while
622 * synchronize_rcu() was waiting. RCU read-side critical sections are
623 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
624 */
625 void synchronize_rcu(void)
626 {
627 struct rcu_synchronize rcu;
628
629 if (!rcu_scheduler_active)
630 return;
631
632 init_rcu_head_on_stack(&rcu.head);
633 init_completion(&rcu.completion);
634 /* Will wake me after RCU finished. */
635 call_rcu(&rcu.head, wakeme_after_rcu);
636 /* Wait for it. */
637 wait_for_completion(&rcu.completion);
638 destroy_rcu_head_on_stack(&rcu.head);
639 }
640 EXPORT_SYMBOL_GPL(synchronize_rcu);
641
642 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
643 static long sync_rcu_preempt_exp_count;
644 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
645
646 /*
647 * Return non-zero if there are any tasks in RCU read-side critical
648 * sections blocking the current preemptible-RCU expedited grace period.
649 * If there is no preemptible-RCU expedited grace period currently in
650 * progress, returns zero unconditionally.
651 */
652 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
653 {
654 return rnp->exp_tasks != NULL;
655 }
656
657 /*
658 * return non-zero if there is no RCU expedited grace period in progress
659 * for the specified rcu_node structure, in other words, if all CPUs and
660 * tasks covered by the specified rcu_node structure have done their bit
661 * for the current expedited grace period. Works only for preemptible
662 * RCU -- other RCU implementation use other means.
663 *
664 * Caller must hold sync_rcu_preempt_exp_mutex.
665 */
666 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
667 {
668 return !rcu_preempted_readers_exp(rnp) &&
669 ACCESS_ONCE(rnp->expmask) == 0;
670 }
671
672 /*
673 * Report the exit from RCU read-side critical section for the last task
674 * that queued itself during or before the current expedited preemptible-RCU
675 * grace period. This event is reported either to the rcu_node structure on
676 * which the task was queued or to one of that rcu_node structure's ancestors,
677 * recursively up the tree. (Calm down, calm down, we do the recursion
678 * iteratively!)
679 *
680 * Caller must hold sync_rcu_preempt_exp_mutex.
681 */
682 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
683 {
684 unsigned long flags;
685 unsigned long mask;
686
687 raw_spin_lock_irqsave(&rnp->lock, flags);
688 for (;;) {
689 if (!sync_rcu_preempt_exp_done(rnp))
690 break;
691 if (rnp->parent == NULL) {
692 wake_up(&sync_rcu_preempt_exp_wq);
693 break;
694 }
695 mask = rnp->grpmask;
696 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
697 rnp = rnp->parent;
698 raw_spin_lock(&rnp->lock); /* irqs already disabled */
699 rnp->expmask &= ~mask;
700 }
701 raw_spin_unlock_irqrestore(&rnp->lock, flags);
702 }
703
704 /*
705 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
706 * grace period for the specified rcu_node structure. If there are no such
707 * tasks, report it up the rcu_node hierarchy.
708 *
709 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
710 */
711 static void
712 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
713 {
714 unsigned long flags;
715 int must_wait = 0;
716
717 raw_spin_lock_irqsave(&rnp->lock, flags);
718 if (list_empty(&rnp->blkd_tasks))
719 raw_spin_unlock_irqrestore(&rnp->lock, flags);
720 else {
721 rnp->exp_tasks = rnp->blkd_tasks.next;
722 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
723 must_wait = 1;
724 }
725 if (!must_wait)
726 rcu_report_exp_rnp(rsp, rnp);
727 }
728
729 /*
730 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
731 * is to invoke synchronize_sched_expedited() to push all the tasks to
732 * the ->blkd_tasks lists and wait for this list to drain.
733 */
734 void synchronize_rcu_expedited(void)
735 {
736 unsigned long flags;
737 struct rcu_node *rnp;
738 struct rcu_state *rsp = &rcu_preempt_state;
739 long snap;
740 int trycount = 0;
741
742 smp_mb(); /* Caller's modifications seen first by other CPUs. */
743 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
744 smp_mb(); /* Above access cannot bleed into critical section. */
745
746 /*
747 * Acquire lock, falling back to synchronize_rcu() if too many
748 * lock-acquisition failures. Of course, if someone does the
749 * expedited grace period for us, just leave.
750 */
751 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
752 if (trycount++ < 10)
753 udelay(trycount * num_online_cpus());
754 else {
755 synchronize_rcu();
756 return;
757 }
758 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
759 goto mb_ret; /* Others did our work for us. */
760 }
761 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
762 goto unlock_mb_ret; /* Others did our work for us. */
763
764 /* force all RCU readers onto ->blkd_tasks lists. */
765 synchronize_sched_expedited();
766
767 raw_spin_lock_irqsave(&rsp->onofflock, flags);
768
769 /* Initialize ->expmask for all non-leaf rcu_node structures. */
770 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
771 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
772 rnp->expmask = rnp->qsmaskinit;
773 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
774 }
775
776 /* Snapshot current state of ->blkd_tasks lists. */
777 rcu_for_each_leaf_node(rsp, rnp)
778 sync_rcu_preempt_exp_init(rsp, rnp);
779 if (NUM_RCU_NODES > 1)
780 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
781
782 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
783
784 /* Wait for snapshotted ->blkd_tasks lists to drain. */
785 rnp = rcu_get_root(rsp);
786 wait_event(sync_rcu_preempt_exp_wq,
787 sync_rcu_preempt_exp_done(rnp));
788
789 /* Clean up and exit. */
790 smp_mb(); /* ensure expedited GP seen before counter increment. */
791 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
792 unlock_mb_ret:
793 mutex_unlock(&sync_rcu_preempt_exp_mutex);
794 mb_ret:
795 smp_mb(); /* ensure subsequent action seen after grace period. */
796 }
797 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
798
799 /*
800 * Check to see if there is any immediate preemptible-RCU-related work
801 * to be done.
802 */
803 static int rcu_preempt_pending(int cpu)
804 {
805 return __rcu_pending(&rcu_preempt_state,
806 &per_cpu(rcu_preempt_data, cpu));
807 }
808
809 /*
810 * Does preemptible RCU need the CPU to stay out of dynticks mode?
811 */
812 static int rcu_preempt_needs_cpu(int cpu)
813 {
814 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
815 }
816
817 /**
818 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
819 */
820 void rcu_barrier(void)
821 {
822 _rcu_barrier(&rcu_preempt_state, call_rcu);
823 }
824 EXPORT_SYMBOL_GPL(rcu_barrier);
825
826 /*
827 * Initialize preemptible RCU's per-CPU data.
828 */
829 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
830 {
831 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
832 }
833
834 /*
835 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
836 */
837 static void rcu_preempt_send_cbs_to_online(void)
838 {
839 rcu_send_cbs_to_online(&rcu_preempt_state);
840 }
841
842 /*
843 * Initialize preemptible RCU's state structures.
844 */
845 static void __init __rcu_init_preempt(void)
846 {
847 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
848 }
849
850 /*
851 * Check for a task exiting while in a preemptible-RCU read-side
852 * critical section, clean up if so. No need to issue warnings,
853 * as debug_check_no_locks_held() already does this if lockdep
854 * is enabled.
855 */
856 void exit_rcu(void)
857 {
858 struct task_struct *t = current;
859
860 if (t->rcu_read_lock_nesting == 0)
861 return;
862 t->rcu_read_lock_nesting = 1;
863 __rcu_read_unlock();
864 }
865
866 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
867
868 static struct rcu_state *rcu_state = &rcu_sched_state;
869
870 /*
871 * Tell them what RCU they are running.
872 */
873 static void __init rcu_bootup_announce(void)
874 {
875 printk(KERN_INFO "Hierarchical RCU implementation.\n");
876 rcu_bootup_announce_oddness();
877 }
878
879 /*
880 * Return the number of RCU batches processed thus far for debug & stats.
881 */
882 long rcu_batches_completed(void)
883 {
884 return rcu_batches_completed_sched();
885 }
886 EXPORT_SYMBOL_GPL(rcu_batches_completed);
887
888 /*
889 * Force a quiescent state for RCU, which, because there is no preemptible
890 * RCU, becomes the same as rcu-sched.
891 */
892 void rcu_force_quiescent_state(void)
893 {
894 rcu_sched_force_quiescent_state();
895 }
896 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
897
898 /*
899 * Because preemptible RCU does not exist, we never have to check for
900 * CPUs being in quiescent states.
901 */
902 static void rcu_preempt_note_context_switch(int cpu)
903 {
904 }
905
906 /*
907 * Because preemptible RCU does not exist, there are never any preempted
908 * RCU readers.
909 */
910 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
911 {
912 return 0;
913 }
914
915 #ifdef CONFIG_HOTPLUG_CPU
916
917 /* Because preemptible RCU does not exist, no quieting of tasks. */
918 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
919 {
920 raw_spin_unlock_irqrestore(&rnp->lock, flags);
921 }
922
923 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
924
925 /*
926 * Because preemptible RCU does not exist, we never have to check for
927 * tasks blocked within RCU read-side critical sections.
928 */
929 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
930 {
931 }
932
933 /*
934 * Because preemptible RCU does not exist, we never have to check for
935 * tasks blocked within RCU read-side critical sections.
936 */
937 static void rcu_print_task_stall(struct rcu_node *rnp)
938 {
939 }
940
941 /*
942 * Because preemptible RCU does not exist, there is no need to suppress
943 * its CPU stall warnings.
944 */
945 static void rcu_preempt_stall_reset(void)
946 {
947 }
948
949 /*
950 * Because there is no preemptible RCU, there can be no readers blocked,
951 * so there is no need to check for blocked tasks. So check only for
952 * bogus qsmask values.
953 */
954 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
955 {
956 WARN_ON_ONCE(rnp->qsmask);
957 }
958
959 #ifdef CONFIG_HOTPLUG_CPU
960
961 /*
962 * Because preemptible RCU does not exist, it never needs to migrate
963 * tasks that were blocked within RCU read-side critical sections, and
964 * such non-existent tasks cannot possibly have been blocking the current
965 * grace period.
966 */
967 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
968 struct rcu_node *rnp,
969 struct rcu_data *rdp)
970 {
971 return 0;
972 }
973
974 /*
975 * Because preemptible RCU does not exist, it never needs CPU-offline
976 * processing.
977 */
978 static void rcu_preempt_offline_cpu(int cpu)
979 {
980 }
981
982 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
983
984 /*
985 * Because preemptible RCU does not exist, it never has any callbacks
986 * to check.
987 */
988 static void rcu_preempt_check_callbacks(int cpu)
989 {
990 }
991
992 /*
993 * Because preemptible RCU does not exist, it never has any callbacks
994 * to process.
995 */
996 static void rcu_preempt_process_callbacks(void)
997 {
998 }
999
1000 /*
1001 * Wait for an rcu-preempt grace period, but make it happen quickly.
1002 * But because preemptible RCU does not exist, map to rcu-sched.
1003 */
1004 void synchronize_rcu_expedited(void)
1005 {
1006 synchronize_sched_expedited();
1007 }
1008 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1009
1010 #ifdef CONFIG_HOTPLUG_CPU
1011
1012 /*
1013 * Because preemptible RCU does not exist, there is never any need to
1014 * report on tasks preempted in RCU read-side critical sections during
1015 * expedited RCU grace periods.
1016 */
1017 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
1018 {
1019 return;
1020 }
1021
1022 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1023
1024 /*
1025 * Because preemptible RCU does not exist, it never has any work to do.
1026 */
1027 static int rcu_preempt_pending(int cpu)
1028 {
1029 return 0;
1030 }
1031
1032 /*
1033 * Because preemptible RCU does not exist, it never needs any CPU.
1034 */
1035 static int rcu_preempt_needs_cpu(int cpu)
1036 {
1037 return 0;
1038 }
1039
1040 /*
1041 * Because preemptible RCU does not exist, rcu_barrier() is just
1042 * another name for rcu_barrier_sched().
1043 */
1044 void rcu_barrier(void)
1045 {
1046 rcu_barrier_sched();
1047 }
1048 EXPORT_SYMBOL_GPL(rcu_barrier);
1049
1050 /*
1051 * Because preemptible RCU does not exist, there is no per-CPU
1052 * data to initialize.
1053 */
1054 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1055 {
1056 }
1057
1058 /*
1059 * Because there is no preemptible RCU, there are no callbacks to move.
1060 */
1061 static void rcu_preempt_send_cbs_to_online(void)
1062 {
1063 }
1064
1065 /*
1066 * Because preemptible RCU does not exist, it need not be initialized.
1067 */
1068 static void __init __rcu_init_preempt(void)
1069 {
1070 }
1071
1072 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1073
1074 #ifdef CONFIG_RCU_BOOST
1075
1076 #include "rtmutex_common.h"
1077
1078 #ifdef CONFIG_RCU_TRACE
1079
1080 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1081 {
1082 if (list_empty(&rnp->blkd_tasks))
1083 rnp->n_balk_blkd_tasks++;
1084 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1085 rnp->n_balk_exp_gp_tasks++;
1086 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1087 rnp->n_balk_boost_tasks++;
1088 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1089 rnp->n_balk_notblocked++;
1090 else if (rnp->gp_tasks != NULL &&
1091 ULONG_CMP_LT(jiffies, rnp->boost_time))
1092 rnp->n_balk_notyet++;
1093 else
1094 rnp->n_balk_nos++;
1095 }
1096
1097 #else /* #ifdef CONFIG_RCU_TRACE */
1098
1099 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1100 {
1101 }
1102
1103 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1104
1105 /*
1106 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1107 * or ->boost_tasks, advancing the pointer to the next task in the
1108 * ->blkd_tasks list.
1109 *
1110 * Note that irqs must be enabled: boosting the task can block.
1111 * Returns 1 if there are more tasks needing to be boosted.
1112 */
1113 static int rcu_boost(struct rcu_node *rnp)
1114 {
1115 unsigned long flags;
1116 struct rt_mutex mtx;
1117 struct task_struct *t;
1118 struct list_head *tb;
1119
1120 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1121 return 0; /* Nothing left to boost. */
1122
1123 raw_spin_lock_irqsave(&rnp->lock, flags);
1124
1125 /*
1126 * Recheck under the lock: all tasks in need of boosting
1127 * might exit their RCU read-side critical sections on their own.
1128 */
1129 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1130 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1131 return 0;
1132 }
1133
1134 /*
1135 * Preferentially boost tasks blocking expedited grace periods.
1136 * This cannot starve the normal grace periods because a second
1137 * expedited grace period must boost all blocked tasks, including
1138 * those blocking the pre-existing normal grace period.
1139 */
1140 if (rnp->exp_tasks != NULL) {
1141 tb = rnp->exp_tasks;
1142 rnp->n_exp_boosts++;
1143 } else {
1144 tb = rnp->boost_tasks;
1145 rnp->n_normal_boosts++;
1146 }
1147 rnp->n_tasks_boosted++;
1148
1149 /*
1150 * We boost task t by manufacturing an rt_mutex that appears to
1151 * be held by task t. We leave a pointer to that rt_mutex where
1152 * task t can find it, and task t will release the mutex when it
1153 * exits its outermost RCU read-side critical section. Then
1154 * simply acquiring this artificial rt_mutex will boost task
1155 * t's priority. (Thanks to tglx for suggesting this approach!)
1156 *
1157 * Note that task t must acquire rnp->lock to remove itself from
1158 * the ->blkd_tasks list, which it will do from exit() if from
1159 * nowhere else. We therefore are guaranteed that task t will
1160 * stay around at least until we drop rnp->lock. Note that
1161 * rnp->lock also resolves races between our priority boosting
1162 * and task t's exiting its outermost RCU read-side critical
1163 * section.
1164 */
1165 t = container_of(tb, struct task_struct, rcu_node_entry);
1166 rt_mutex_init_proxy_locked(&mtx, t);
1167 t->rcu_boost_mutex = &mtx;
1168 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BOOSTED;
1169 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1170 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1171 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1172
1173 return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
1174 }
1175
1176 /*
1177 * Timer handler to initiate waking up of boost kthreads that
1178 * have yielded the CPU due to excessive numbers of tasks to
1179 * boost. We wake up the per-rcu_node kthread, which in turn
1180 * will wake up the booster kthread.
1181 */
1182 static void rcu_boost_kthread_timer(unsigned long arg)
1183 {
1184 invoke_rcu_node_kthread((struct rcu_node *)arg);
1185 }
1186
1187 /*
1188 * Priority-boosting kthread. One per leaf rcu_node and one for the
1189 * root rcu_node.
1190 */
1191 static int rcu_boost_kthread(void *arg)
1192 {
1193 struct rcu_node *rnp = (struct rcu_node *)arg;
1194 int spincnt = 0;
1195 int more2boost;
1196
1197 for (;;) {
1198 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1199 wait_event_interruptible(rnp->boost_wq, rnp->boost_tasks ||
1200 rnp->exp_tasks);
1201 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1202 more2boost = rcu_boost(rnp);
1203 if (more2boost)
1204 spincnt++;
1205 else
1206 spincnt = 0;
1207 if (spincnt > 10) {
1208 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1209 spincnt = 0;
1210 }
1211 }
1212 /* NOTREACHED */
1213 return 0;
1214 }
1215
1216 /*
1217 * Check to see if it is time to start boosting RCU readers that are
1218 * blocking the current grace period, and, if so, tell the per-rcu_node
1219 * kthread to start boosting them. If there is an expedited grace
1220 * period in progress, it is always time to boost.
1221 *
1222 * The caller must hold rnp->lock, which this function releases,
1223 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1224 * so we don't need to worry about it going away.
1225 */
1226 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1227 {
1228 struct task_struct *t;
1229
1230 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1231 rnp->n_balk_exp_gp_tasks++;
1232 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1233 return;
1234 }
1235 if (rnp->exp_tasks != NULL ||
1236 (rnp->gp_tasks != NULL &&
1237 rnp->boost_tasks == NULL &&
1238 rnp->qsmask == 0 &&
1239 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1240 if (rnp->exp_tasks == NULL)
1241 rnp->boost_tasks = rnp->gp_tasks;
1242 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1243 t = rnp->boost_kthread_task;
1244 if (t != NULL)
1245 wake_up_process(t);
1246 } else {
1247 rcu_initiate_boost_trace(rnp);
1248 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1249 }
1250 }
1251
1252 /*
1253 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1254 * held, so no one should be messing with the existence of the boost
1255 * kthread.
1256 */
1257 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1258 cpumask_var_t cm)
1259 {
1260 struct task_struct *t;
1261
1262 t = rnp->boost_kthread_task;
1263 if (t != NULL)
1264 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1265 }
1266
1267 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1268
1269 /*
1270 * Do priority-boost accounting for the start of a new grace period.
1271 */
1272 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1273 {
1274 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1275 }
1276
1277 /*
1278 * Initialize the RCU-boost waitqueue.
1279 */
1280 static void __init rcu_init_boost_waitqueue(struct rcu_node *rnp)
1281 {
1282 init_waitqueue_head(&rnp->boost_wq);
1283 }
1284
1285 /*
1286 * Create an RCU-boost kthread for the specified node if one does not
1287 * already exist. We only create this kthread for preemptible RCU.
1288 * Returns zero if all is well, a negated errno otherwise.
1289 */
1290 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1291 struct rcu_node *rnp,
1292 int rnp_index)
1293 {
1294 unsigned long flags;
1295 struct sched_param sp;
1296 struct task_struct *t;
1297
1298 if (&rcu_preempt_state != rsp)
1299 return 0;
1300 if (rnp->boost_kthread_task != NULL)
1301 return 0;
1302 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1303 "rcub%d", rnp_index);
1304 if (IS_ERR(t))
1305 return PTR_ERR(t);
1306 raw_spin_lock_irqsave(&rnp->lock, flags);
1307 rnp->boost_kthread_task = t;
1308 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1309 wake_up_process(t);
1310 sp.sched_priority = RCU_KTHREAD_PRIO;
1311 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1312 return 0;
1313 }
1314
1315 #else /* #ifdef CONFIG_RCU_BOOST */
1316
1317 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1318 {
1319 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1320 }
1321
1322 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1323 cpumask_var_t cm)
1324 {
1325 }
1326
1327 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1328 {
1329 }
1330
1331 static void __init rcu_init_boost_waitqueue(struct rcu_node *rnp)
1332 {
1333 }
1334
1335 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1336 struct rcu_node *rnp,
1337 int rnp_index)
1338 {
1339 return 0;
1340 }
1341
1342 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1343
1344 #ifndef CONFIG_SMP
1345
1346 void synchronize_sched_expedited(void)
1347 {
1348 cond_resched();
1349 }
1350 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1351
1352 #else /* #ifndef CONFIG_SMP */
1353
1354 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1355 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1356
1357 static int synchronize_sched_expedited_cpu_stop(void *data)
1358 {
1359 /*
1360 * There must be a full memory barrier on each affected CPU
1361 * between the time that try_stop_cpus() is called and the
1362 * time that it returns.
1363 *
1364 * In the current initial implementation of cpu_stop, the
1365 * above condition is already met when the control reaches
1366 * this point and the following smp_mb() is not strictly
1367 * necessary. Do smp_mb() anyway for documentation and
1368 * robustness against future implementation changes.
1369 */
1370 smp_mb(); /* See above comment block. */
1371 return 0;
1372 }
1373
1374 /*
1375 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1376 * approach to force grace period to end quickly. This consumes
1377 * significant time on all CPUs, and is thus not recommended for
1378 * any sort of common-case code.
1379 *
1380 * Note that it is illegal to call this function while holding any
1381 * lock that is acquired by a CPU-hotplug notifier. Failing to
1382 * observe this restriction will result in deadlock.
1383 *
1384 * This implementation can be thought of as an application of ticket
1385 * locking to RCU, with sync_sched_expedited_started and
1386 * sync_sched_expedited_done taking on the roles of the halves
1387 * of the ticket-lock word. Each task atomically increments
1388 * sync_sched_expedited_started upon entry, snapshotting the old value,
1389 * then attempts to stop all the CPUs. If this succeeds, then each
1390 * CPU will have executed a context switch, resulting in an RCU-sched
1391 * grace period. We are then done, so we use atomic_cmpxchg() to
1392 * update sync_sched_expedited_done to match our snapshot -- but
1393 * only if someone else has not already advanced past our snapshot.
1394 *
1395 * On the other hand, if try_stop_cpus() fails, we check the value
1396 * of sync_sched_expedited_done. If it has advanced past our
1397 * initial snapshot, then someone else must have forced a grace period
1398 * some time after we took our snapshot. In this case, our work is
1399 * done for us, and we can simply return. Otherwise, we try again,
1400 * but keep our initial snapshot for purposes of checking for someone
1401 * doing our work for us.
1402 *
1403 * If we fail too many times in a row, we fall back to synchronize_sched().
1404 */
1405 void synchronize_sched_expedited(void)
1406 {
1407 int firstsnap, s, snap, trycount = 0;
1408
1409 /* Note that atomic_inc_return() implies full memory barrier. */
1410 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1411 get_online_cpus();
1412
1413 /*
1414 * Each pass through the following loop attempts to force a
1415 * context switch on each CPU.
1416 */
1417 while (try_stop_cpus(cpu_online_mask,
1418 synchronize_sched_expedited_cpu_stop,
1419 NULL) == -EAGAIN) {
1420 put_online_cpus();
1421
1422 /* No joy, try again later. Or just synchronize_sched(). */
1423 if (trycount++ < 10)
1424 udelay(trycount * num_online_cpus());
1425 else {
1426 synchronize_sched();
1427 return;
1428 }
1429
1430 /* Check to see if someone else did our work for us. */
1431 s = atomic_read(&sync_sched_expedited_done);
1432 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1433 smp_mb(); /* ensure test happens before caller kfree */
1434 return;
1435 }
1436
1437 /*
1438 * Refetching sync_sched_expedited_started allows later
1439 * callers to piggyback on our grace period. We subtract
1440 * 1 to get the same token that the last incrementer got.
1441 * We retry after they started, so our grace period works
1442 * for them, and they started after our first try, so their
1443 * grace period works for us.
1444 */
1445 get_online_cpus();
1446 snap = atomic_read(&sync_sched_expedited_started) - 1;
1447 smp_mb(); /* ensure read is before try_stop_cpus(). */
1448 }
1449
1450 /*
1451 * Everyone up to our most recent fetch is covered by our grace
1452 * period. Update the counter, but only if our work is still
1453 * relevant -- which it won't be if someone who started later
1454 * than we did beat us to the punch.
1455 */
1456 do {
1457 s = atomic_read(&sync_sched_expedited_done);
1458 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1459 smp_mb(); /* ensure test happens before caller kfree */
1460 break;
1461 }
1462 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1463
1464 put_online_cpus();
1465 }
1466 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1467
1468 #endif /* #else #ifndef CONFIG_SMP */
1469
1470 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1471
1472 /*
1473 * Check to see if any future RCU-related work will need to be done
1474 * by the current CPU, even if none need be done immediately, returning
1475 * 1 if so. This function is part of the RCU implementation; it is -not-
1476 * an exported member of the RCU API.
1477 *
1478 * Because we have preemptible RCU, just check whether this CPU needs
1479 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1480 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1481 */
1482 int rcu_needs_cpu(int cpu)
1483 {
1484 return rcu_needs_cpu_quick_check(cpu);
1485 }
1486
1487 /*
1488 * Check to see if we need to continue a callback-flush operations to
1489 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1490 * entry is not configured, so we never do need to.
1491 */
1492 static void rcu_needs_cpu_flush(void)
1493 {
1494 }
1495
1496 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1497
1498 #define RCU_NEEDS_CPU_FLUSHES 5
1499 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1500 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1501
1502 /*
1503 * Check to see if any future RCU-related work will need to be done
1504 * by the current CPU, even if none need be done immediately, returning
1505 * 1 if so. This function is part of the RCU implementation; it is -not-
1506 * an exported member of the RCU API.
1507 *
1508 * Because we are not supporting preemptible RCU, attempt to accelerate
1509 * any current grace periods so that RCU no longer needs this CPU, but
1510 * only if all other CPUs are already in dynticks-idle mode. This will
1511 * allow the CPU cores to be powered down immediately, as opposed to after
1512 * waiting many milliseconds for grace periods to elapse.
1513 *
1514 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1515 * disabled, we do one pass of force_quiescent_state(), then do a
1516 * invoke_rcu_cpu_kthread() to cause rcu_process_callbacks() to be invoked
1517 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
1518 */
1519 int rcu_needs_cpu(int cpu)
1520 {
1521 int c = 0;
1522 int snap;
1523 int snap_nmi;
1524 int thatcpu;
1525
1526 /* Check for being in the holdoff period. */
1527 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1528 return rcu_needs_cpu_quick_check(cpu);
1529
1530 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1531 for_each_online_cpu(thatcpu) {
1532 if (thatcpu == cpu)
1533 continue;
1534 snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
1535 snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
1536 smp_mb(); /* Order sampling of snap with end of grace period. */
1537 if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
1538 per_cpu(rcu_dyntick_drain, cpu) = 0;
1539 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1540 return rcu_needs_cpu_quick_check(cpu);
1541 }
1542 }
1543
1544 /* Check and update the rcu_dyntick_drain sequencing. */
1545 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1546 /* First time through, initialize the counter. */
1547 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1548 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1549 /* We have hit the limit, so time to give up. */
1550 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1551 return rcu_needs_cpu_quick_check(cpu);
1552 }
1553
1554 /* Do one step pushing remaining RCU callbacks through. */
1555 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1556 rcu_sched_qs(cpu);
1557 force_quiescent_state(&rcu_sched_state, 0);
1558 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1559 }
1560 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1561 rcu_bh_qs(cpu);
1562 force_quiescent_state(&rcu_bh_state, 0);
1563 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1564 }
1565
1566 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1567 if (c)
1568 invoke_rcu_cpu_kthread();
1569 return c;
1570 }
1571
1572 /*
1573 * Check to see if we need to continue a callback-flush operations to
1574 * allow the last CPU to enter dyntick-idle mode.
1575 */
1576 static void rcu_needs_cpu_flush(void)
1577 {
1578 int cpu = smp_processor_id();
1579 unsigned long flags;
1580
1581 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
1582 return;
1583 local_irq_save(flags);
1584 (void)rcu_needs_cpu(cpu);
1585 local_irq_restore(flags);
1586 }
1587
1588 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */