Merge branch 'timers/nohz-reviewed' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include <linux/tick.h>
32
33 #define RCU_KTHREAD_PRIO 1
34
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37 #else
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39 #endif
40
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
45 static char __initdata nocb_buf[NR_CPUS * 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
48 /*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
52 */
53 static void __init rcu_bootup_announce_oddness(void)
54 {
55 #ifdef CONFIG_RCU_TRACE
56 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
57 #endif
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 CONFIG_RCU_FANOUT);
61 #endif
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
64 #endif
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 printk(KERN_INFO
67 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #endif
69 #ifdef CONFIG_PROVE_RCU
70 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
74 #endif
75 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #endif
78 #if defined(CONFIG_RCU_CPU_STALL_INFO)
79 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
80 #endif
81 #if NUM_RCU_LVL_4 != 0
82 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
83 #endif
84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86 if (nr_cpu_ids != NR_CPUS)
87 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88 #ifdef CONFIG_RCU_NOCB_CPU
89 if (have_rcu_nocb_mask) {
90 if (cpumask_test_cpu(0, rcu_nocb_mask)) {
91 cpumask_clear_cpu(0, rcu_nocb_mask);
92 pr_info("\tCPU 0: illegal no-CBs CPU (cleared).\n");
93 }
94 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
95 pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
96 if (rcu_nocb_poll)
97 pr_info("\tExperimental polled no-CBs CPUs.\n");
98 }
99 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
100 }
101
102 #ifdef CONFIG_TREE_PREEMPT_RCU
103
104 struct rcu_state rcu_preempt_state =
105 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
106 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
107 static struct rcu_state *rcu_state = &rcu_preempt_state;
108
109 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
110
111 /*
112 * Tell them what RCU they are running.
113 */
114 static void __init rcu_bootup_announce(void)
115 {
116 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
117 rcu_bootup_announce_oddness();
118 }
119
120 /*
121 * Return the number of RCU-preempt batches processed thus far
122 * for debug and statistics.
123 */
124 long rcu_batches_completed_preempt(void)
125 {
126 return rcu_preempt_state.completed;
127 }
128 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
129
130 /*
131 * Return the number of RCU batches processed thus far for debug & stats.
132 */
133 long rcu_batches_completed(void)
134 {
135 return rcu_batches_completed_preempt();
136 }
137 EXPORT_SYMBOL_GPL(rcu_batches_completed);
138
139 /*
140 * Force a quiescent state for preemptible RCU.
141 */
142 void rcu_force_quiescent_state(void)
143 {
144 force_quiescent_state(&rcu_preempt_state);
145 }
146 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
147
148 /*
149 * Record a preemptible-RCU quiescent state for the specified CPU. Note
150 * that this just means that the task currently running on the CPU is
151 * not in a quiescent state. There might be any number of tasks blocked
152 * while in an RCU read-side critical section.
153 *
154 * Unlike the other rcu_*_qs() functions, callers to this function
155 * must disable irqs in order to protect the assignment to
156 * ->rcu_read_unlock_special.
157 */
158 static void rcu_preempt_qs(int cpu)
159 {
160 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
161
162 if (rdp->passed_quiesce == 0)
163 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
164 rdp->passed_quiesce = 1;
165 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
166 }
167
168 /*
169 * We have entered the scheduler, and the current task might soon be
170 * context-switched away from. If this task is in an RCU read-side
171 * critical section, we will no longer be able to rely on the CPU to
172 * record that fact, so we enqueue the task on the blkd_tasks list.
173 * The task will dequeue itself when it exits the outermost enclosing
174 * RCU read-side critical section. Therefore, the current grace period
175 * cannot be permitted to complete until the blkd_tasks list entries
176 * predating the current grace period drain, in other words, until
177 * rnp->gp_tasks becomes NULL.
178 *
179 * Caller must disable preemption.
180 */
181 static void rcu_preempt_note_context_switch(int cpu)
182 {
183 struct task_struct *t = current;
184 unsigned long flags;
185 struct rcu_data *rdp;
186 struct rcu_node *rnp;
187
188 if (t->rcu_read_lock_nesting > 0 &&
189 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
190
191 /* Possibly blocking in an RCU read-side critical section. */
192 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
193 rnp = rdp->mynode;
194 raw_spin_lock_irqsave(&rnp->lock, flags);
195 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
196 t->rcu_blocked_node = rnp;
197
198 /*
199 * If this CPU has already checked in, then this task
200 * will hold up the next grace period rather than the
201 * current grace period. Queue the task accordingly.
202 * If the task is queued for the current grace period
203 * (i.e., this CPU has not yet passed through a quiescent
204 * state for the current grace period), then as long
205 * as that task remains queued, the current grace period
206 * cannot end. Note that there is some uncertainty as
207 * to exactly when the current grace period started.
208 * We take a conservative approach, which can result
209 * in unnecessarily waiting on tasks that started very
210 * slightly after the current grace period began. C'est
211 * la vie!!!
212 *
213 * But first, note that the current CPU must still be
214 * on line!
215 */
216 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
217 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
218 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
219 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
220 rnp->gp_tasks = &t->rcu_node_entry;
221 #ifdef CONFIG_RCU_BOOST
222 if (rnp->boost_tasks != NULL)
223 rnp->boost_tasks = rnp->gp_tasks;
224 #endif /* #ifdef CONFIG_RCU_BOOST */
225 } else {
226 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
227 if (rnp->qsmask & rdp->grpmask)
228 rnp->gp_tasks = &t->rcu_node_entry;
229 }
230 trace_rcu_preempt_task(rdp->rsp->name,
231 t->pid,
232 (rnp->qsmask & rdp->grpmask)
233 ? rnp->gpnum
234 : rnp->gpnum + 1);
235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
236 } else if (t->rcu_read_lock_nesting < 0 &&
237 t->rcu_read_unlock_special) {
238
239 /*
240 * Complete exit from RCU read-side critical section on
241 * behalf of preempted instance of __rcu_read_unlock().
242 */
243 rcu_read_unlock_special(t);
244 }
245
246 /*
247 * Either we were not in an RCU read-side critical section to
248 * begin with, or we have now recorded that critical section
249 * globally. Either way, we can now note a quiescent state
250 * for this CPU. Again, if we were in an RCU read-side critical
251 * section, and if that critical section was blocking the current
252 * grace period, then the fact that the task has been enqueued
253 * means that we continue to block the current grace period.
254 */
255 local_irq_save(flags);
256 rcu_preempt_qs(cpu);
257 local_irq_restore(flags);
258 }
259
260 /*
261 * Check for preempted RCU readers blocking the current grace period
262 * for the specified rcu_node structure. If the caller needs a reliable
263 * answer, it must hold the rcu_node's ->lock.
264 */
265 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
266 {
267 return rnp->gp_tasks != NULL;
268 }
269
270 /*
271 * Record a quiescent state for all tasks that were previously queued
272 * on the specified rcu_node structure and that were blocking the current
273 * RCU grace period. The caller must hold the specified rnp->lock with
274 * irqs disabled, and this lock is released upon return, but irqs remain
275 * disabled.
276 */
277 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
278 __releases(rnp->lock)
279 {
280 unsigned long mask;
281 struct rcu_node *rnp_p;
282
283 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
284 raw_spin_unlock_irqrestore(&rnp->lock, flags);
285 return; /* Still need more quiescent states! */
286 }
287
288 rnp_p = rnp->parent;
289 if (rnp_p == NULL) {
290 /*
291 * Either there is only one rcu_node in the tree,
292 * or tasks were kicked up to root rcu_node due to
293 * CPUs going offline.
294 */
295 rcu_report_qs_rsp(&rcu_preempt_state, flags);
296 return;
297 }
298
299 /* Report up the rest of the hierarchy. */
300 mask = rnp->grpmask;
301 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
302 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
303 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
304 }
305
306 /*
307 * Advance a ->blkd_tasks-list pointer to the next entry, instead
308 * returning NULL if at the end of the list.
309 */
310 static struct list_head *rcu_next_node_entry(struct task_struct *t,
311 struct rcu_node *rnp)
312 {
313 struct list_head *np;
314
315 np = t->rcu_node_entry.next;
316 if (np == &rnp->blkd_tasks)
317 np = NULL;
318 return np;
319 }
320
321 /*
322 * Handle special cases during rcu_read_unlock(), such as needing to
323 * notify RCU core processing or task having blocked during the RCU
324 * read-side critical section.
325 */
326 void rcu_read_unlock_special(struct task_struct *t)
327 {
328 int empty;
329 int empty_exp;
330 int empty_exp_now;
331 unsigned long flags;
332 struct list_head *np;
333 #ifdef CONFIG_RCU_BOOST
334 struct rt_mutex *rbmp = NULL;
335 #endif /* #ifdef CONFIG_RCU_BOOST */
336 struct rcu_node *rnp;
337 int special;
338
339 /* NMI handlers cannot block and cannot safely manipulate state. */
340 if (in_nmi())
341 return;
342
343 local_irq_save(flags);
344
345 /*
346 * If RCU core is waiting for this CPU to exit critical section,
347 * let it know that we have done so.
348 */
349 special = t->rcu_read_unlock_special;
350 if (special & RCU_READ_UNLOCK_NEED_QS) {
351 rcu_preempt_qs(smp_processor_id());
352 }
353
354 /* Hardware IRQ handlers cannot block. */
355 if (in_irq() || in_serving_softirq()) {
356 local_irq_restore(flags);
357 return;
358 }
359
360 /* Clean up if blocked during RCU read-side critical section. */
361 if (special & RCU_READ_UNLOCK_BLOCKED) {
362 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
363
364 /*
365 * Remove this task from the list it blocked on. The
366 * task can migrate while we acquire the lock, but at
367 * most one time. So at most two passes through loop.
368 */
369 for (;;) {
370 rnp = t->rcu_blocked_node;
371 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
372 if (rnp == t->rcu_blocked_node)
373 break;
374 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
375 }
376 empty = !rcu_preempt_blocked_readers_cgp(rnp);
377 empty_exp = !rcu_preempted_readers_exp(rnp);
378 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
379 np = rcu_next_node_entry(t, rnp);
380 list_del_init(&t->rcu_node_entry);
381 t->rcu_blocked_node = NULL;
382 trace_rcu_unlock_preempted_task("rcu_preempt",
383 rnp->gpnum, t->pid);
384 if (&t->rcu_node_entry == rnp->gp_tasks)
385 rnp->gp_tasks = np;
386 if (&t->rcu_node_entry == rnp->exp_tasks)
387 rnp->exp_tasks = np;
388 #ifdef CONFIG_RCU_BOOST
389 if (&t->rcu_node_entry == rnp->boost_tasks)
390 rnp->boost_tasks = np;
391 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
392 if (t->rcu_boost_mutex) {
393 rbmp = t->rcu_boost_mutex;
394 t->rcu_boost_mutex = NULL;
395 }
396 #endif /* #ifdef CONFIG_RCU_BOOST */
397
398 /*
399 * If this was the last task on the current list, and if
400 * we aren't waiting on any CPUs, report the quiescent state.
401 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
402 * so we must take a snapshot of the expedited state.
403 */
404 empty_exp_now = !rcu_preempted_readers_exp(rnp);
405 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
406 trace_rcu_quiescent_state_report("preempt_rcu",
407 rnp->gpnum,
408 0, rnp->qsmask,
409 rnp->level,
410 rnp->grplo,
411 rnp->grphi,
412 !!rnp->gp_tasks);
413 rcu_report_unblock_qs_rnp(rnp, flags);
414 } else {
415 raw_spin_unlock_irqrestore(&rnp->lock, flags);
416 }
417
418 #ifdef CONFIG_RCU_BOOST
419 /* Unboost if we were boosted. */
420 if (rbmp)
421 rt_mutex_unlock(rbmp);
422 #endif /* #ifdef CONFIG_RCU_BOOST */
423
424 /*
425 * If this was the last task on the expedited lists,
426 * then we need to report up the rcu_node hierarchy.
427 */
428 if (!empty_exp && empty_exp_now)
429 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
430 } else {
431 local_irq_restore(flags);
432 }
433 }
434
435 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
436
437 /*
438 * Dump detailed information for all tasks blocking the current RCU
439 * grace period on the specified rcu_node structure.
440 */
441 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
442 {
443 unsigned long flags;
444 struct task_struct *t;
445
446 raw_spin_lock_irqsave(&rnp->lock, flags);
447 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
448 raw_spin_unlock_irqrestore(&rnp->lock, flags);
449 return;
450 }
451 t = list_entry(rnp->gp_tasks,
452 struct task_struct, rcu_node_entry);
453 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
454 sched_show_task(t);
455 raw_spin_unlock_irqrestore(&rnp->lock, flags);
456 }
457
458 /*
459 * Dump detailed information for all tasks blocking the current RCU
460 * grace period.
461 */
462 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
463 {
464 struct rcu_node *rnp = rcu_get_root(rsp);
465
466 rcu_print_detail_task_stall_rnp(rnp);
467 rcu_for_each_leaf_node(rsp, rnp)
468 rcu_print_detail_task_stall_rnp(rnp);
469 }
470
471 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
472
473 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
474 {
475 }
476
477 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
478
479 #ifdef CONFIG_RCU_CPU_STALL_INFO
480
481 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
482 {
483 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
484 rnp->level, rnp->grplo, rnp->grphi);
485 }
486
487 static void rcu_print_task_stall_end(void)
488 {
489 printk(KERN_CONT "\n");
490 }
491
492 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
493
494 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
495 {
496 }
497
498 static void rcu_print_task_stall_end(void)
499 {
500 }
501
502 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504 /*
505 * Scan the current list of tasks blocked within RCU read-side critical
506 * sections, printing out the tid of each.
507 */
508 static int rcu_print_task_stall(struct rcu_node *rnp)
509 {
510 struct task_struct *t;
511 int ndetected = 0;
512
513 if (!rcu_preempt_blocked_readers_cgp(rnp))
514 return 0;
515 rcu_print_task_stall_begin(rnp);
516 t = list_entry(rnp->gp_tasks,
517 struct task_struct, rcu_node_entry);
518 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
519 printk(KERN_CONT " P%d", t->pid);
520 ndetected++;
521 }
522 rcu_print_task_stall_end();
523 return ndetected;
524 }
525
526 /*
527 * Check that the list of blocked tasks for the newly completed grace
528 * period is in fact empty. It is a serious bug to complete a grace
529 * period that still has RCU readers blocked! This function must be
530 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
531 * must be held by the caller.
532 *
533 * Also, if there are blocked tasks on the list, they automatically
534 * block the newly created grace period, so set up ->gp_tasks accordingly.
535 */
536 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
537 {
538 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
539 if (!list_empty(&rnp->blkd_tasks))
540 rnp->gp_tasks = rnp->blkd_tasks.next;
541 WARN_ON_ONCE(rnp->qsmask);
542 }
543
544 #ifdef CONFIG_HOTPLUG_CPU
545
546 /*
547 * Handle tasklist migration for case in which all CPUs covered by the
548 * specified rcu_node have gone offline. Move them up to the root
549 * rcu_node. The reason for not just moving them to the immediate
550 * parent is to remove the need for rcu_read_unlock_special() to
551 * make more than two attempts to acquire the target rcu_node's lock.
552 * Returns true if there were tasks blocking the current RCU grace
553 * period.
554 *
555 * Returns 1 if there was previously a task blocking the current grace
556 * period on the specified rcu_node structure.
557 *
558 * The caller must hold rnp->lock with irqs disabled.
559 */
560 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
561 struct rcu_node *rnp,
562 struct rcu_data *rdp)
563 {
564 struct list_head *lp;
565 struct list_head *lp_root;
566 int retval = 0;
567 struct rcu_node *rnp_root = rcu_get_root(rsp);
568 struct task_struct *t;
569
570 if (rnp == rnp_root) {
571 WARN_ONCE(1, "Last CPU thought to be offlined?");
572 return 0; /* Shouldn't happen: at least one CPU online. */
573 }
574
575 /* If we are on an internal node, complain bitterly. */
576 WARN_ON_ONCE(rnp != rdp->mynode);
577
578 /*
579 * Move tasks up to root rcu_node. Don't try to get fancy for
580 * this corner-case operation -- just put this node's tasks
581 * at the head of the root node's list, and update the root node's
582 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
583 * if non-NULL. This might result in waiting for more tasks than
584 * absolutely necessary, but this is a good performance/complexity
585 * tradeoff.
586 */
587 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
588 retval |= RCU_OFL_TASKS_NORM_GP;
589 if (rcu_preempted_readers_exp(rnp))
590 retval |= RCU_OFL_TASKS_EXP_GP;
591 lp = &rnp->blkd_tasks;
592 lp_root = &rnp_root->blkd_tasks;
593 while (!list_empty(lp)) {
594 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
595 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
596 list_del(&t->rcu_node_entry);
597 t->rcu_blocked_node = rnp_root;
598 list_add(&t->rcu_node_entry, lp_root);
599 if (&t->rcu_node_entry == rnp->gp_tasks)
600 rnp_root->gp_tasks = rnp->gp_tasks;
601 if (&t->rcu_node_entry == rnp->exp_tasks)
602 rnp_root->exp_tasks = rnp->exp_tasks;
603 #ifdef CONFIG_RCU_BOOST
604 if (&t->rcu_node_entry == rnp->boost_tasks)
605 rnp_root->boost_tasks = rnp->boost_tasks;
606 #endif /* #ifdef CONFIG_RCU_BOOST */
607 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
608 }
609
610 rnp->gp_tasks = NULL;
611 rnp->exp_tasks = NULL;
612 #ifdef CONFIG_RCU_BOOST
613 rnp->boost_tasks = NULL;
614 /*
615 * In case root is being boosted and leaf was not. Make sure
616 * that we boost the tasks blocking the current grace period
617 * in this case.
618 */
619 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
620 if (rnp_root->boost_tasks != NULL &&
621 rnp_root->boost_tasks != rnp_root->gp_tasks &&
622 rnp_root->boost_tasks != rnp_root->exp_tasks)
623 rnp_root->boost_tasks = rnp_root->gp_tasks;
624 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
625 #endif /* #ifdef CONFIG_RCU_BOOST */
626
627 return retval;
628 }
629
630 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
631
632 /*
633 * Check for a quiescent state from the current CPU. When a task blocks,
634 * the task is recorded in the corresponding CPU's rcu_node structure,
635 * which is checked elsewhere.
636 *
637 * Caller must disable hard irqs.
638 */
639 static void rcu_preempt_check_callbacks(int cpu)
640 {
641 struct task_struct *t = current;
642
643 if (t->rcu_read_lock_nesting == 0) {
644 rcu_preempt_qs(cpu);
645 return;
646 }
647 if (t->rcu_read_lock_nesting > 0 &&
648 per_cpu(rcu_preempt_data, cpu).qs_pending)
649 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
650 }
651
652 #ifdef CONFIG_RCU_BOOST
653
654 static void rcu_preempt_do_callbacks(void)
655 {
656 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
657 }
658
659 #endif /* #ifdef CONFIG_RCU_BOOST */
660
661 /*
662 * Queue a preemptible-RCU callback for invocation after a grace period.
663 */
664 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
665 {
666 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
667 }
668 EXPORT_SYMBOL_GPL(call_rcu);
669
670 /*
671 * Queue an RCU callback for lazy invocation after a grace period.
672 * This will likely be later named something like "call_rcu_lazy()",
673 * but this change will require some way of tagging the lazy RCU
674 * callbacks in the list of pending callbacks. Until then, this
675 * function may only be called from __kfree_rcu().
676 */
677 void kfree_call_rcu(struct rcu_head *head,
678 void (*func)(struct rcu_head *rcu))
679 {
680 __call_rcu(head, func, &rcu_preempt_state, -1, 1);
681 }
682 EXPORT_SYMBOL_GPL(kfree_call_rcu);
683
684 /**
685 * synchronize_rcu - wait until a grace period has elapsed.
686 *
687 * Control will return to the caller some time after a full grace
688 * period has elapsed, in other words after all currently executing RCU
689 * read-side critical sections have completed. Note, however, that
690 * upon return from synchronize_rcu(), the caller might well be executing
691 * concurrently with new RCU read-side critical sections that began while
692 * synchronize_rcu() was waiting. RCU read-side critical sections are
693 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
694 *
695 * See the description of synchronize_sched() for more detailed information
696 * on memory ordering guarantees.
697 */
698 void synchronize_rcu(void)
699 {
700 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
701 !lock_is_held(&rcu_lock_map) &&
702 !lock_is_held(&rcu_sched_lock_map),
703 "Illegal synchronize_rcu() in RCU read-side critical section");
704 if (!rcu_scheduler_active)
705 return;
706 if (rcu_expedited)
707 synchronize_rcu_expedited();
708 else
709 wait_rcu_gp(call_rcu);
710 }
711 EXPORT_SYMBOL_GPL(synchronize_rcu);
712
713 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
714 static unsigned long sync_rcu_preempt_exp_count;
715 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
716
717 /*
718 * Return non-zero if there are any tasks in RCU read-side critical
719 * sections blocking the current preemptible-RCU expedited grace period.
720 * If there is no preemptible-RCU expedited grace period currently in
721 * progress, returns zero unconditionally.
722 */
723 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
724 {
725 return rnp->exp_tasks != NULL;
726 }
727
728 /*
729 * return non-zero if there is no RCU expedited grace period in progress
730 * for the specified rcu_node structure, in other words, if all CPUs and
731 * tasks covered by the specified rcu_node structure have done their bit
732 * for the current expedited grace period. Works only for preemptible
733 * RCU -- other RCU implementation use other means.
734 *
735 * Caller must hold sync_rcu_preempt_exp_mutex.
736 */
737 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
738 {
739 return !rcu_preempted_readers_exp(rnp) &&
740 ACCESS_ONCE(rnp->expmask) == 0;
741 }
742
743 /*
744 * Report the exit from RCU read-side critical section for the last task
745 * that queued itself during or before the current expedited preemptible-RCU
746 * grace period. This event is reported either to the rcu_node structure on
747 * which the task was queued or to one of that rcu_node structure's ancestors,
748 * recursively up the tree. (Calm down, calm down, we do the recursion
749 * iteratively!)
750 *
751 * Most callers will set the "wake" flag, but the task initiating the
752 * expedited grace period need not wake itself.
753 *
754 * Caller must hold sync_rcu_preempt_exp_mutex.
755 */
756 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
757 bool wake)
758 {
759 unsigned long flags;
760 unsigned long mask;
761
762 raw_spin_lock_irqsave(&rnp->lock, flags);
763 for (;;) {
764 if (!sync_rcu_preempt_exp_done(rnp)) {
765 raw_spin_unlock_irqrestore(&rnp->lock, flags);
766 break;
767 }
768 if (rnp->parent == NULL) {
769 raw_spin_unlock_irqrestore(&rnp->lock, flags);
770 if (wake)
771 wake_up(&sync_rcu_preempt_exp_wq);
772 break;
773 }
774 mask = rnp->grpmask;
775 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
776 rnp = rnp->parent;
777 raw_spin_lock(&rnp->lock); /* irqs already disabled */
778 rnp->expmask &= ~mask;
779 }
780 }
781
782 /*
783 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
784 * grace period for the specified rcu_node structure. If there are no such
785 * tasks, report it up the rcu_node hierarchy.
786 *
787 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
788 * CPU hotplug operations.
789 */
790 static void
791 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
792 {
793 unsigned long flags;
794 int must_wait = 0;
795
796 raw_spin_lock_irqsave(&rnp->lock, flags);
797 if (list_empty(&rnp->blkd_tasks)) {
798 raw_spin_unlock_irqrestore(&rnp->lock, flags);
799 } else {
800 rnp->exp_tasks = rnp->blkd_tasks.next;
801 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
802 must_wait = 1;
803 }
804 if (!must_wait)
805 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
806 }
807
808 /**
809 * synchronize_rcu_expedited - Brute-force RCU grace period
810 *
811 * Wait for an RCU-preempt grace period, but expedite it. The basic
812 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
813 * the ->blkd_tasks lists and wait for this list to drain. This consumes
814 * significant time on all CPUs and is unfriendly to real-time workloads,
815 * so is thus not recommended for any sort of common-case code.
816 * In fact, if you are using synchronize_rcu_expedited() in a loop,
817 * please restructure your code to batch your updates, and then Use a
818 * single synchronize_rcu() instead.
819 *
820 * Note that it is illegal to call this function while holding any lock
821 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
822 * to call this function from a CPU-hotplug notifier. Failing to observe
823 * these restriction will result in deadlock.
824 */
825 void synchronize_rcu_expedited(void)
826 {
827 unsigned long flags;
828 struct rcu_node *rnp;
829 struct rcu_state *rsp = &rcu_preempt_state;
830 unsigned long snap;
831 int trycount = 0;
832
833 smp_mb(); /* Caller's modifications seen first by other CPUs. */
834 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
835 smp_mb(); /* Above access cannot bleed into critical section. */
836
837 /*
838 * Block CPU-hotplug operations. This means that any CPU-hotplug
839 * operation that finds an rcu_node structure with tasks in the
840 * process of being boosted will know that all tasks blocking
841 * this expedited grace period will already be in the process of
842 * being boosted. This simplifies the process of moving tasks
843 * from leaf to root rcu_node structures.
844 */
845 get_online_cpus();
846
847 /*
848 * Acquire lock, falling back to synchronize_rcu() if too many
849 * lock-acquisition failures. Of course, if someone does the
850 * expedited grace period for us, just leave.
851 */
852 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
853 if (ULONG_CMP_LT(snap,
854 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
855 put_online_cpus();
856 goto mb_ret; /* Others did our work for us. */
857 }
858 if (trycount++ < 10) {
859 udelay(trycount * num_online_cpus());
860 } else {
861 put_online_cpus();
862 wait_rcu_gp(call_rcu);
863 return;
864 }
865 }
866 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
867 put_online_cpus();
868 goto unlock_mb_ret; /* Others did our work for us. */
869 }
870
871 /* force all RCU readers onto ->blkd_tasks lists. */
872 synchronize_sched_expedited();
873
874 /* Initialize ->expmask for all non-leaf rcu_node structures. */
875 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
876 raw_spin_lock_irqsave(&rnp->lock, flags);
877 rnp->expmask = rnp->qsmaskinit;
878 raw_spin_unlock_irqrestore(&rnp->lock, flags);
879 }
880
881 /* Snapshot current state of ->blkd_tasks lists. */
882 rcu_for_each_leaf_node(rsp, rnp)
883 sync_rcu_preempt_exp_init(rsp, rnp);
884 if (NUM_RCU_NODES > 1)
885 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
886
887 put_online_cpus();
888
889 /* Wait for snapshotted ->blkd_tasks lists to drain. */
890 rnp = rcu_get_root(rsp);
891 wait_event(sync_rcu_preempt_exp_wq,
892 sync_rcu_preempt_exp_done(rnp));
893
894 /* Clean up and exit. */
895 smp_mb(); /* ensure expedited GP seen before counter increment. */
896 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
897 unlock_mb_ret:
898 mutex_unlock(&sync_rcu_preempt_exp_mutex);
899 mb_ret:
900 smp_mb(); /* ensure subsequent action seen after grace period. */
901 }
902 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
903
904 /**
905 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
906 *
907 * Note that this primitive does not necessarily wait for an RCU grace period
908 * to complete. For example, if there are no RCU callbacks queued anywhere
909 * in the system, then rcu_barrier() is within its rights to return
910 * immediately, without waiting for anything, much less an RCU grace period.
911 */
912 void rcu_barrier(void)
913 {
914 _rcu_barrier(&rcu_preempt_state);
915 }
916 EXPORT_SYMBOL_GPL(rcu_barrier);
917
918 /*
919 * Initialize preemptible RCU's state structures.
920 */
921 static void __init __rcu_init_preempt(void)
922 {
923 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
924 }
925
926 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
927
928 static struct rcu_state *rcu_state = &rcu_sched_state;
929
930 /*
931 * Tell them what RCU they are running.
932 */
933 static void __init rcu_bootup_announce(void)
934 {
935 printk(KERN_INFO "Hierarchical RCU implementation.\n");
936 rcu_bootup_announce_oddness();
937 }
938
939 /*
940 * Return the number of RCU batches processed thus far for debug & stats.
941 */
942 long rcu_batches_completed(void)
943 {
944 return rcu_batches_completed_sched();
945 }
946 EXPORT_SYMBOL_GPL(rcu_batches_completed);
947
948 /*
949 * Force a quiescent state for RCU, which, because there is no preemptible
950 * RCU, becomes the same as rcu-sched.
951 */
952 void rcu_force_quiescent_state(void)
953 {
954 rcu_sched_force_quiescent_state();
955 }
956 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
957
958 /*
959 * Because preemptible RCU does not exist, we never have to check for
960 * CPUs being in quiescent states.
961 */
962 static void rcu_preempt_note_context_switch(int cpu)
963 {
964 }
965
966 /*
967 * Because preemptible RCU does not exist, there are never any preempted
968 * RCU readers.
969 */
970 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
971 {
972 return 0;
973 }
974
975 #ifdef CONFIG_HOTPLUG_CPU
976
977 /* Because preemptible RCU does not exist, no quieting of tasks. */
978 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
979 {
980 raw_spin_unlock_irqrestore(&rnp->lock, flags);
981 }
982
983 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
984
985 /*
986 * Because preemptible RCU does not exist, we never have to check for
987 * tasks blocked within RCU read-side critical sections.
988 */
989 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
990 {
991 }
992
993 /*
994 * Because preemptible RCU does not exist, we never have to check for
995 * tasks blocked within RCU read-side critical sections.
996 */
997 static int rcu_print_task_stall(struct rcu_node *rnp)
998 {
999 return 0;
1000 }
1001
1002 /*
1003 * Because there is no preemptible RCU, there can be no readers blocked,
1004 * so there is no need to check for blocked tasks. So check only for
1005 * bogus qsmask values.
1006 */
1007 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1008 {
1009 WARN_ON_ONCE(rnp->qsmask);
1010 }
1011
1012 #ifdef CONFIG_HOTPLUG_CPU
1013
1014 /*
1015 * Because preemptible RCU does not exist, it never needs to migrate
1016 * tasks that were blocked within RCU read-side critical sections, and
1017 * such non-existent tasks cannot possibly have been blocking the current
1018 * grace period.
1019 */
1020 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1021 struct rcu_node *rnp,
1022 struct rcu_data *rdp)
1023 {
1024 return 0;
1025 }
1026
1027 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1028
1029 /*
1030 * Because preemptible RCU does not exist, it never has any callbacks
1031 * to check.
1032 */
1033 static void rcu_preempt_check_callbacks(int cpu)
1034 {
1035 }
1036
1037 /*
1038 * Queue an RCU callback for lazy invocation after a grace period.
1039 * This will likely be later named something like "call_rcu_lazy()",
1040 * but this change will require some way of tagging the lazy RCU
1041 * callbacks in the list of pending callbacks. Until then, this
1042 * function may only be called from __kfree_rcu().
1043 *
1044 * Because there is no preemptible RCU, we use RCU-sched instead.
1045 */
1046 void kfree_call_rcu(struct rcu_head *head,
1047 void (*func)(struct rcu_head *rcu))
1048 {
1049 __call_rcu(head, func, &rcu_sched_state, -1, 1);
1050 }
1051 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1052
1053 /*
1054 * Wait for an rcu-preempt grace period, but make it happen quickly.
1055 * But because preemptible RCU does not exist, map to rcu-sched.
1056 */
1057 void synchronize_rcu_expedited(void)
1058 {
1059 synchronize_sched_expedited();
1060 }
1061 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1062
1063 #ifdef CONFIG_HOTPLUG_CPU
1064
1065 /*
1066 * Because preemptible RCU does not exist, there is never any need to
1067 * report on tasks preempted in RCU read-side critical sections during
1068 * expedited RCU grace periods.
1069 */
1070 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1071 bool wake)
1072 {
1073 }
1074
1075 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1076
1077 /*
1078 * Because preemptible RCU does not exist, rcu_barrier() is just
1079 * another name for rcu_barrier_sched().
1080 */
1081 void rcu_barrier(void)
1082 {
1083 rcu_barrier_sched();
1084 }
1085 EXPORT_SYMBOL_GPL(rcu_barrier);
1086
1087 /*
1088 * Because preemptible RCU does not exist, it need not be initialized.
1089 */
1090 static void __init __rcu_init_preempt(void)
1091 {
1092 }
1093
1094 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1095
1096 #ifdef CONFIG_RCU_BOOST
1097
1098 #include "rtmutex_common.h"
1099
1100 #ifdef CONFIG_RCU_TRACE
1101
1102 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1103 {
1104 if (list_empty(&rnp->blkd_tasks))
1105 rnp->n_balk_blkd_tasks++;
1106 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1107 rnp->n_balk_exp_gp_tasks++;
1108 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1109 rnp->n_balk_boost_tasks++;
1110 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1111 rnp->n_balk_notblocked++;
1112 else if (rnp->gp_tasks != NULL &&
1113 ULONG_CMP_LT(jiffies, rnp->boost_time))
1114 rnp->n_balk_notyet++;
1115 else
1116 rnp->n_balk_nos++;
1117 }
1118
1119 #else /* #ifdef CONFIG_RCU_TRACE */
1120
1121 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1122 {
1123 }
1124
1125 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1126
1127 static void rcu_wake_cond(struct task_struct *t, int status)
1128 {
1129 /*
1130 * If the thread is yielding, only wake it when this
1131 * is invoked from idle
1132 */
1133 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1134 wake_up_process(t);
1135 }
1136
1137 /*
1138 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1139 * or ->boost_tasks, advancing the pointer to the next task in the
1140 * ->blkd_tasks list.
1141 *
1142 * Note that irqs must be enabled: boosting the task can block.
1143 * Returns 1 if there are more tasks needing to be boosted.
1144 */
1145 static int rcu_boost(struct rcu_node *rnp)
1146 {
1147 unsigned long flags;
1148 struct rt_mutex mtx;
1149 struct task_struct *t;
1150 struct list_head *tb;
1151
1152 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1153 return 0; /* Nothing left to boost. */
1154
1155 raw_spin_lock_irqsave(&rnp->lock, flags);
1156
1157 /*
1158 * Recheck under the lock: all tasks in need of boosting
1159 * might exit their RCU read-side critical sections on their own.
1160 */
1161 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1162 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1163 return 0;
1164 }
1165
1166 /*
1167 * Preferentially boost tasks blocking expedited grace periods.
1168 * This cannot starve the normal grace periods because a second
1169 * expedited grace period must boost all blocked tasks, including
1170 * those blocking the pre-existing normal grace period.
1171 */
1172 if (rnp->exp_tasks != NULL) {
1173 tb = rnp->exp_tasks;
1174 rnp->n_exp_boosts++;
1175 } else {
1176 tb = rnp->boost_tasks;
1177 rnp->n_normal_boosts++;
1178 }
1179 rnp->n_tasks_boosted++;
1180
1181 /*
1182 * We boost task t by manufacturing an rt_mutex that appears to
1183 * be held by task t. We leave a pointer to that rt_mutex where
1184 * task t can find it, and task t will release the mutex when it
1185 * exits its outermost RCU read-side critical section. Then
1186 * simply acquiring this artificial rt_mutex will boost task
1187 * t's priority. (Thanks to tglx for suggesting this approach!)
1188 *
1189 * Note that task t must acquire rnp->lock to remove itself from
1190 * the ->blkd_tasks list, which it will do from exit() if from
1191 * nowhere else. We therefore are guaranteed that task t will
1192 * stay around at least until we drop rnp->lock. Note that
1193 * rnp->lock also resolves races between our priority boosting
1194 * and task t's exiting its outermost RCU read-side critical
1195 * section.
1196 */
1197 t = container_of(tb, struct task_struct, rcu_node_entry);
1198 rt_mutex_init_proxy_locked(&mtx, t);
1199 t->rcu_boost_mutex = &mtx;
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1202 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1203
1204 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1205 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1206 }
1207
1208 /*
1209 * Priority-boosting kthread. One per leaf rcu_node and one for the
1210 * root rcu_node.
1211 */
1212 static int rcu_boost_kthread(void *arg)
1213 {
1214 struct rcu_node *rnp = (struct rcu_node *)arg;
1215 int spincnt = 0;
1216 int more2boost;
1217
1218 trace_rcu_utilization("Start boost kthread@init");
1219 for (;;) {
1220 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1221 trace_rcu_utilization("End boost kthread@rcu_wait");
1222 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1223 trace_rcu_utilization("Start boost kthread@rcu_wait");
1224 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1225 more2boost = rcu_boost(rnp);
1226 if (more2boost)
1227 spincnt++;
1228 else
1229 spincnt = 0;
1230 if (spincnt > 10) {
1231 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1232 trace_rcu_utilization("End boost kthread@rcu_yield");
1233 schedule_timeout_interruptible(2);
1234 trace_rcu_utilization("Start boost kthread@rcu_yield");
1235 spincnt = 0;
1236 }
1237 }
1238 /* NOTREACHED */
1239 trace_rcu_utilization("End boost kthread@notreached");
1240 return 0;
1241 }
1242
1243 /*
1244 * Check to see if it is time to start boosting RCU readers that are
1245 * blocking the current grace period, and, if so, tell the per-rcu_node
1246 * kthread to start boosting them. If there is an expedited grace
1247 * period in progress, it is always time to boost.
1248 *
1249 * The caller must hold rnp->lock, which this function releases.
1250 * The ->boost_kthread_task is immortal, so we don't need to worry
1251 * about it going away.
1252 */
1253 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1254 {
1255 struct task_struct *t;
1256
1257 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1258 rnp->n_balk_exp_gp_tasks++;
1259 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260 return;
1261 }
1262 if (rnp->exp_tasks != NULL ||
1263 (rnp->gp_tasks != NULL &&
1264 rnp->boost_tasks == NULL &&
1265 rnp->qsmask == 0 &&
1266 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1267 if (rnp->exp_tasks == NULL)
1268 rnp->boost_tasks = rnp->gp_tasks;
1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270 t = rnp->boost_kthread_task;
1271 if (t)
1272 rcu_wake_cond(t, rnp->boost_kthread_status);
1273 } else {
1274 rcu_initiate_boost_trace(rnp);
1275 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1276 }
1277 }
1278
1279 /*
1280 * Wake up the per-CPU kthread to invoke RCU callbacks.
1281 */
1282 static void invoke_rcu_callbacks_kthread(void)
1283 {
1284 unsigned long flags;
1285
1286 local_irq_save(flags);
1287 __this_cpu_write(rcu_cpu_has_work, 1);
1288 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1289 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1290 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1291 __this_cpu_read(rcu_cpu_kthread_status));
1292 }
1293 local_irq_restore(flags);
1294 }
1295
1296 /*
1297 * Is the current CPU running the RCU-callbacks kthread?
1298 * Caller must have preemption disabled.
1299 */
1300 static bool rcu_is_callbacks_kthread(void)
1301 {
1302 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1303 }
1304
1305 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1306
1307 /*
1308 * Do priority-boost accounting for the start of a new grace period.
1309 */
1310 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1311 {
1312 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1313 }
1314
1315 /*
1316 * Create an RCU-boost kthread for the specified node if one does not
1317 * already exist. We only create this kthread for preemptible RCU.
1318 * Returns zero if all is well, a negated errno otherwise.
1319 */
1320 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1321 struct rcu_node *rnp)
1322 {
1323 int rnp_index = rnp - &rsp->node[0];
1324 unsigned long flags;
1325 struct sched_param sp;
1326 struct task_struct *t;
1327
1328 if (&rcu_preempt_state != rsp)
1329 return 0;
1330
1331 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1332 return 0;
1333
1334 rsp->boost = 1;
1335 if (rnp->boost_kthread_task != NULL)
1336 return 0;
1337 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1338 "rcub/%d", rnp_index);
1339 if (IS_ERR(t))
1340 return PTR_ERR(t);
1341 raw_spin_lock_irqsave(&rnp->lock, flags);
1342 rnp->boost_kthread_task = t;
1343 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1344 sp.sched_priority = RCU_BOOST_PRIO;
1345 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1346 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1347 return 0;
1348 }
1349
1350 static void rcu_kthread_do_work(void)
1351 {
1352 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1353 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1354 rcu_preempt_do_callbacks();
1355 }
1356
1357 static void rcu_cpu_kthread_setup(unsigned int cpu)
1358 {
1359 struct sched_param sp;
1360
1361 sp.sched_priority = RCU_KTHREAD_PRIO;
1362 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1363 }
1364
1365 static void rcu_cpu_kthread_park(unsigned int cpu)
1366 {
1367 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1368 }
1369
1370 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1371 {
1372 return __get_cpu_var(rcu_cpu_has_work);
1373 }
1374
1375 /*
1376 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1377 * RCU softirq used in flavors and configurations of RCU that do not
1378 * support RCU priority boosting.
1379 */
1380 static void rcu_cpu_kthread(unsigned int cpu)
1381 {
1382 unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
1383 char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
1384 int spincnt;
1385
1386 for (spincnt = 0; spincnt < 10; spincnt++) {
1387 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1388 local_bh_disable();
1389 *statusp = RCU_KTHREAD_RUNNING;
1390 this_cpu_inc(rcu_cpu_kthread_loops);
1391 local_irq_disable();
1392 work = *workp;
1393 *workp = 0;
1394 local_irq_enable();
1395 if (work)
1396 rcu_kthread_do_work();
1397 local_bh_enable();
1398 if (*workp == 0) {
1399 trace_rcu_utilization("End CPU kthread@rcu_wait");
1400 *statusp = RCU_KTHREAD_WAITING;
1401 return;
1402 }
1403 }
1404 *statusp = RCU_KTHREAD_YIELDING;
1405 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1406 schedule_timeout_interruptible(2);
1407 trace_rcu_utilization("End CPU kthread@rcu_yield");
1408 *statusp = RCU_KTHREAD_WAITING;
1409 }
1410
1411 /*
1412 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1413 * served by the rcu_node in question. The CPU hotplug lock is still
1414 * held, so the value of rnp->qsmaskinit will be stable.
1415 *
1416 * We don't include outgoingcpu in the affinity set, use -1 if there is
1417 * no outgoing CPU. If there are no CPUs left in the affinity set,
1418 * this function allows the kthread to execute on any CPU.
1419 */
1420 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1421 {
1422 struct task_struct *t = rnp->boost_kthread_task;
1423 unsigned long mask = rnp->qsmaskinit;
1424 cpumask_var_t cm;
1425 int cpu;
1426
1427 if (!t)
1428 return;
1429 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1430 return;
1431 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1432 if ((mask & 0x1) && cpu != outgoingcpu)
1433 cpumask_set_cpu(cpu, cm);
1434 if (cpumask_weight(cm) == 0) {
1435 cpumask_setall(cm);
1436 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1437 cpumask_clear_cpu(cpu, cm);
1438 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1439 }
1440 set_cpus_allowed_ptr(t, cm);
1441 free_cpumask_var(cm);
1442 }
1443
1444 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1445 .store = &rcu_cpu_kthread_task,
1446 .thread_should_run = rcu_cpu_kthread_should_run,
1447 .thread_fn = rcu_cpu_kthread,
1448 .thread_comm = "rcuc/%u",
1449 .setup = rcu_cpu_kthread_setup,
1450 .park = rcu_cpu_kthread_park,
1451 };
1452
1453 /*
1454 * Spawn all kthreads -- called as soon as the scheduler is running.
1455 */
1456 static int __init rcu_spawn_kthreads(void)
1457 {
1458 struct rcu_node *rnp;
1459 int cpu;
1460
1461 rcu_scheduler_fully_active = 1;
1462 for_each_possible_cpu(cpu)
1463 per_cpu(rcu_cpu_has_work, cpu) = 0;
1464 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1465 rnp = rcu_get_root(rcu_state);
1466 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1467 if (NUM_RCU_NODES > 1) {
1468 rcu_for_each_leaf_node(rcu_state, rnp)
1469 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1470 }
1471 return 0;
1472 }
1473 early_initcall(rcu_spawn_kthreads);
1474
1475 static void __cpuinit rcu_prepare_kthreads(int cpu)
1476 {
1477 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1478 struct rcu_node *rnp = rdp->mynode;
1479
1480 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1481 if (rcu_scheduler_fully_active)
1482 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1483 }
1484
1485 #else /* #ifdef CONFIG_RCU_BOOST */
1486
1487 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1488 {
1489 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1490 }
1491
1492 static void invoke_rcu_callbacks_kthread(void)
1493 {
1494 WARN_ON_ONCE(1);
1495 }
1496
1497 static bool rcu_is_callbacks_kthread(void)
1498 {
1499 return false;
1500 }
1501
1502 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1503 {
1504 }
1505
1506 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1507 {
1508 }
1509
1510 static int __init rcu_scheduler_really_started(void)
1511 {
1512 rcu_scheduler_fully_active = 1;
1513 return 0;
1514 }
1515 early_initcall(rcu_scheduler_really_started);
1516
1517 static void __cpuinit rcu_prepare_kthreads(int cpu)
1518 {
1519 }
1520
1521 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1522
1523 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1524
1525 /*
1526 * Check to see if any future RCU-related work will need to be done
1527 * by the current CPU, even if none need be done immediately, returning
1528 * 1 if so. This function is part of the RCU implementation; it is -not-
1529 * an exported member of the RCU API.
1530 *
1531 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1532 * any flavor of RCU.
1533 */
1534 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1535 {
1536 *delta_jiffies = ULONG_MAX;
1537 return rcu_cpu_has_callbacks(cpu);
1538 }
1539
1540 /*
1541 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1542 */
1543 static void rcu_prepare_for_idle_init(int cpu)
1544 {
1545 }
1546
1547 /*
1548 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1549 * after it.
1550 */
1551 static void rcu_cleanup_after_idle(int cpu)
1552 {
1553 }
1554
1555 /*
1556 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1557 * is nothing.
1558 */
1559 static void rcu_prepare_for_idle(int cpu)
1560 {
1561 }
1562
1563 /*
1564 * Don't bother keeping a running count of the number of RCU callbacks
1565 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1566 */
1567 static void rcu_idle_count_callbacks_posted(void)
1568 {
1569 }
1570
1571 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1572
1573 /*
1574 * This code is invoked when a CPU goes idle, at which point we want
1575 * to have the CPU do everything required for RCU so that it can enter
1576 * the energy-efficient dyntick-idle mode. This is handled by a
1577 * state machine implemented by rcu_prepare_for_idle() below.
1578 *
1579 * The following three proprocessor symbols control this state machine:
1580 *
1581 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1582 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1583 * scheduling-clock interrupt than to loop through the state machine
1584 * at full power.
1585 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1586 * optional if RCU does not need anything immediately from this
1587 * CPU, even if this CPU still has RCU callbacks queued. The first
1588 * times through the state machine are mandatory: we need to give
1589 * the state machine a chance to communicate a quiescent state
1590 * to the RCU core.
1591 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1592 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1593 * is sized to be roughly one RCU grace period. Those energy-efficiency
1594 * benchmarkers who might otherwise be tempted to set this to a large
1595 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1596 * system. And if you are -that- concerned about energy efficiency,
1597 * just power the system down and be done with it!
1598 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1599 * permitted to sleep in dyntick-idle mode with only lazy RCU
1600 * callbacks pending. Setting this too high can OOM your system.
1601 *
1602 * The values below work well in practice. If future workloads require
1603 * adjustment, they can be converted into kernel config parameters, though
1604 * making the state machine smarter might be a better option.
1605 */
1606 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1607 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1608 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1609 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1610
1611 extern int tick_nohz_enabled;
1612
1613 /*
1614 * Does the specified flavor of RCU have non-lazy callbacks pending on
1615 * the specified CPU? Both RCU flavor and CPU are specified by the
1616 * rcu_data structure.
1617 */
1618 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1619 {
1620 return rdp->qlen != rdp->qlen_lazy;
1621 }
1622
1623 #ifdef CONFIG_TREE_PREEMPT_RCU
1624
1625 /*
1626 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1627 * is no RCU-preempt in the kernel.)
1628 */
1629 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1630 {
1631 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1632
1633 return __rcu_cpu_has_nonlazy_callbacks(rdp);
1634 }
1635
1636 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1637
1638 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1639 {
1640 return 0;
1641 }
1642
1643 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1644
1645 /*
1646 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1647 */
1648 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1649 {
1650 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1651 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1652 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1653 }
1654
1655 /*
1656 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1657 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1658 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1659 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1660 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1661 * it is better to incur scheduling-clock interrupts than to spin
1662 * continuously for the same time duration!
1663 *
1664 * The delta_jiffies argument is used to store the time when RCU is
1665 * going to need the CPU again if it still has callbacks. The reason
1666 * for this is that rcu_prepare_for_idle() might need to post a timer,
1667 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1668 * the wakeup time for this CPU. This means that RCU's timer can be
1669 * delayed until the wakeup time, which defeats the purpose of posting
1670 * a timer.
1671 */
1672 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1673 {
1674 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1675
1676 /* Flag a new idle sojourn to the idle-entry state machine. */
1677 rdtp->idle_first_pass = 1;
1678 /* If no callbacks, RCU doesn't need the CPU. */
1679 if (!rcu_cpu_has_callbacks(cpu)) {
1680 *delta_jiffies = ULONG_MAX;
1681 return 0;
1682 }
1683 if (rdtp->dyntick_holdoff == jiffies) {
1684 /* RCU recently tried and failed, so don't try again. */
1685 *delta_jiffies = 1;
1686 return 1;
1687 }
1688 /* Set up for the possibility that RCU will post a timer. */
1689 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1690 *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1691 RCU_IDLE_GP_DELAY) - jiffies;
1692 } else {
1693 *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1694 *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1695 }
1696 return 0;
1697 }
1698
1699 /*
1700 * Handler for smp_call_function_single(). The only point of this
1701 * handler is to wake the CPU up, so the handler does only tracing.
1702 */
1703 void rcu_idle_demigrate(void *unused)
1704 {
1705 trace_rcu_prep_idle("Demigrate");
1706 }
1707
1708 /*
1709 * Timer handler used to force CPU to start pushing its remaining RCU
1710 * callbacks in the case where it entered dyntick-idle mode with callbacks
1711 * pending. The hander doesn't really need to do anything because the
1712 * real work is done upon re-entry to idle, or by the next scheduling-clock
1713 * interrupt should idle not be re-entered.
1714 *
1715 * One special case: the timer gets migrated without awakening the CPU
1716 * on which the timer was scheduled on. In this case, we must wake up
1717 * that CPU. We do so with smp_call_function_single().
1718 */
1719 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1720 {
1721 int cpu = (int)cpu_in;
1722
1723 trace_rcu_prep_idle("Timer");
1724 if (cpu != smp_processor_id())
1725 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1726 else
1727 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1728 }
1729
1730 /*
1731 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1732 */
1733 static void rcu_prepare_for_idle_init(int cpu)
1734 {
1735 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1736
1737 rdtp->dyntick_holdoff = jiffies - 1;
1738 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1739 rdtp->idle_gp_timer_expires = jiffies - 1;
1740 rdtp->idle_first_pass = 1;
1741 }
1742
1743 /*
1744 * Clean up for exit from idle. Because we are exiting from idle, there
1745 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1746 * do nothing if this timer is not active, so just cancel it unconditionally.
1747 */
1748 static void rcu_cleanup_after_idle(int cpu)
1749 {
1750 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1751
1752 del_timer(&rdtp->idle_gp_timer);
1753 trace_rcu_prep_idle("Cleanup after idle");
1754 rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1755 }
1756
1757 /*
1758 * Check to see if any RCU-related work can be done by the current CPU,
1759 * and if so, schedule a softirq to get it done. This function is part
1760 * of the RCU implementation; it is -not- an exported member of the RCU API.
1761 *
1762 * The idea is for the current CPU to clear out all work required by the
1763 * RCU core for the current grace period, so that this CPU can be permitted
1764 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1765 * at the end of the grace period by whatever CPU ends the grace period.
1766 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1767 * number of wakeups by a modest integer factor.
1768 *
1769 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1770 * disabled, we do one pass of force_quiescent_state(), then do a
1771 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1772 * later. The ->dyntick_drain field controls the sequencing.
1773 *
1774 * The caller must have disabled interrupts.
1775 */
1776 static void rcu_prepare_for_idle(int cpu)
1777 {
1778 struct timer_list *tp;
1779 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1780 int tne;
1781
1782 /* Handle nohz enablement switches conservatively. */
1783 tne = ACCESS_ONCE(tick_nohz_enabled);
1784 if (tne != rdtp->tick_nohz_enabled_snap) {
1785 if (rcu_cpu_has_callbacks(cpu))
1786 invoke_rcu_core(); /* force nohz to see update. */
1787 rdtp->tick_nohz_enabled_snap = tne;
1788 return;
1789 }
1790 if (!tne)
1791 return;
1792
1793 /* Adaptive-tick mode, where usermode execution is idle to RCU. */
1794 if (!is_idle_task(current)) {
1795 rdtp->dyntick_holdoff = jiffies - 1;
1796 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1797 trace_rcu_prep_idle("User dyntick with callbacks");
1798 rdtp->idle_gp_timer_expires =
1799 round_up(jiffies + RCU_IDLE_GP_DELAY,
1800 RCU_IDLE_GP_DELAY);
1801 } else if (rcu_cpu_has_callbacks(cpu)) {
1802 rdtp->idle_gp_timer_expires =
1803 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1804 trace_rcu_prep_idle("User dyntick with lazy callbacks");
1805 } else {
1806 return;
1807 }
1808 tp = &rdtp->idle_gp_timer;
1809 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1810 return;
1811 }
1812
1813 /*
1814 * If this is an idle re-entry, for example, due to use of
1815 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
1816 * loop, then don't take any state-machine actions, unless the
1817 * momentary exit from idle queued additional non-lazy callbacks.
1818 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1819 * pending.
1820 */
1821 if (!rdtp->idle_first_pass &&
1822 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
1823 if (rcu_cpu_has_callbacks(cpu)) {
1824 tp = &rdtp->idle_gp_timer;
1825 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1826 }
1827 return;
1828 }
1829 rdtp->idle_first_pass = 0;
1830 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
1831
1832 /*
1833 * If there are no callbacks on this CPU, enter dyntick-idle mode.
1834 * Also reset state to avoid prejudicing later attempts.
1835 */
1836 if (!rcu_cpu_has_callbacks(cpu)) {
1837 rdtp->dyntick_holdoff = jiffies - 1;
1838 rdtp->dyntick_drain = 0;
1839 trace_rcu_prep_idle("No callbacks");
1840 return;
1841 }
1842
1843 /*
1844 * If in holdoff mode, just return. We will presumably have
1845 * refrained from disabling the scheduling-clock tick.
1846 */
1847 if (rdtp->dyntick_holdoff == jiffies) {
1848 trace_rcu_prep_idle("In holdoff");
1849 return;
1850 }
1851
1852 /* Check and update the ->dyntick_drain sequencing. */
1853 if (rdtp->dyntick_drain <= 0) {
1854 /* First time through, initialize the counter. */
1855 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
1856 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
1857 !rcu_pending(cpu) &&
1858 !local_softirq_pending()) {
1859 /* Can we go dyntick-idle despite still having callbacks? */
1860 rdtp->dyntick_drain = 0;
1861 rdtp->dyntick_holdoff = jiffies;
1862 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1863 trace_rcu_prep_idle("Dyntick with callbacks");
1864 rdtp->idle_gp_timer_expires =
1865 round_up(jiffies + RCU_IDLE_GP_DELAY,
1866 RCU_IDLE_GP_DELAY);
1867 } else {
1868 rdtp->idle_gp_timer_expires =
1869 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1870 trace_rcu_prep_idle("Dyntick with lazy callbacks");
1871 }
1872 tp = &rdtp->idle_gp_timer;
1873 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1874 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1875 return; /* Nothing more to do immediately. */
1876 } else if (--(rdtp->dyntick_drain) <= 0) {
1877 /* We have hit the limit, so time to give up. */
1878 rdtp->dyntick_holdoff = jiffies;
1879 trace_rcu_prep_idle("Begin holdoff");
1880 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
1881 return;
1882 }
1883
1884 /*
1885 * Do one step of pushing the remaining RCU callbacks through
1886 * the RCU core state machine.
1887 */
1888 #ifdef CONFIG_TREE_PREEMPT_RCU
1889 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
1890 rcu_preempt_qs(cpu);
1891 force_quiescent_state(&rcu_preempt_state);
1892 }
1893 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1894 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1895 rcu_sched_qs(cpu);
1896 force_quiescent_state(&rcu_sched_state);
1897 }
1898 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1899 rcu_bh_qs(cpu);
1900 force_quiescent_state(&rcu_bh_state);
1901 }
1902
1903 /*
1904 * If RCU callbacks are still pending, RCU still needs this CPU.
1905 * So try forcing the callbacks through the grace period.
1906 */
1907 if (rcu_cpu_has_callbacks(cpu)) {
1908 trace_rcu_prep_idle("More callbacks");
1909 invoke_rcu_core();
1910 } else {
1911 trace_rcu_prep_idle("Callbacks drained");
1912 }
1913 }
1914
1915 /*
1916 * Keep a running count of the number of non-lazy callbacks posted
1917 * on this CPU. This running counter (which is never decremented) allows
1918 * rcu_prepare_for_idle() to detect when something out of the idle loop
1919 * posts a callback, even if an equal number of callbacks are invoked.
1920 * Of course, callbacks should only be posted from within a trace event
1921 * designed to be called from idle or from within RCU_NONIDLE().
1922 */
1923 static void rcu_idle_count_callbacks_posted(void)
1924 {
1925 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1926 }
1927
1928 /*
1929 * Data for flushing lazy RCU callbacks at OOM time.
1930 */
1931 static atomic_t oom_callback_count;
1932 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1933
1934 /*
1935 * RCU OOM callback -- decrement the outstanding count and deliver the
1936 * wake-up if we are the last one.
1937 */
1938 static void rcu_oom_callback(struct rcu_head *rhp)
1939 {
1940 if (atomic_dec_and_test(&oom_callback_count))
1941 wake_up(&oom_callback_wq);
1942 }
1943
1944 /*
1945 * Post an rcu_oom_notify callback on the current CPU if it has at
1946 * least one lazy callback. This will unnecessarily post callbacks
1947 * to CPUs that already have a non-lazy callback at the end of their
1948 * callback list, but this is an infrequent operation, so accept some
1949 * extra overhead to keep things simple.
1950 */
1951 static void rcu_oom_notify_cpu(void *unused)
1952 {
1953 struct rcu_state *rsp;
1954 struct rcu_data *rdp;
1955
1956 for_each_rcu_flavor(rsp) {
1957 rdp = __this_cpu_ptr(rsp->rda);
1958 if (rdp->qlen_lazy != 0) {
1959 atomic_inc(&oom_callback_count);
1960 rsp->call(&rdp->oom_head, rcu_oom_callback);
1961 }
1962 }
1963 }
1964
1965 /*
1966 * If low on memory, ensure that each CPU has a non-lazy callback.
1967 * This will wake up CPUs that have only lazy callbacks, in turn
1968 * ensuring that they free up the corresponding memory in a timely manner.
1969 * Because an uncertain amount of memory will be freed in some uncertain
1970 * timeframe, we do not claim to have freed anything.
1971 */
1972 static int rcu_oom_notify(struct notifier_block *self,
1973 unsigned long notused, void *nfreed)
1974 {
1975 int cpu;
1976
1977 /* Wait for callbacks from earlier instance to complete. */
1978 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1979
1980 /*
1981 * Prevent premature wakeup: ensure that all increments happen
1982 * before there is a chance of the counter reaching zero.
1983 */
1984 atomic_set(&oom_callback_count, 1);
1985
1986 get_online_cpus();
1987 for_each_online_cpu(cpu) {
1988 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1989 cond_resched();
1990 }
1991 put_online_cpus();
1992
1993 /* Unconditionally decrement: no need to wake ourselves up. */
1994 atomic_dec(&oom_callback_count);
1995
1996 return NOTIFY_OK;
1997 }
1998
1999 static struct notifier_block rcu_oom_nb = {
2000 .notifier_call = rcu_oom_notify
2001 };
2002
2003 static int __init rcu_register_oom_notifier(void)
2004 {
2005 register_oom_notifier(&rcu_oom_nb);
2006 return 0;
2007 }
2008 early_initcall(rcu_register_oom_notifier);
2009
2010 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2011
2012 #ifdef CONFIG_RCU_CPU_STALL_INFO
2013
2014 #ifdef CONFIG_RCU_FAST_NO_HZ
2015
2016 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2017 {
2018 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2019 struct timer_list *tltp = &rdtp->idle_gp_timer;
2020 char c;
2021
2022 c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.';
2023 if (timer_pending(tltp))
2024 sprintf(cp, "drain=%d %c timer=%lu",
2025 rdtp->dyntick_drain, c, tltp->expires - jiffies);
2026 else
2027 sprintf(cp, "drain=%d %c timer not pending",
2028 rdtp->dyntick_drain, c);
2029 }
2030
2031 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2032
2033 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2034 {
2035 *cp = '\0';
2036 }
2037
2038 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2039
2040 /* Initiate the stall-info list. */
2041 static void print_cpu_stall_info_begin(void)
2042 {
2043 printk(KERN_CONT "\n");
2044 }
2045
2046 /*
2047 * Print out diagnostic information for the specified stalled CPU.
2048 *
2049 * If the specified CPU is aware of the current RCU grace period
2050 * (flavor specified by rsp), then print the number of scheduling
2051 * clock interrupts the CPU has taken during the time that it has
2052 * been aware. Otherwise, print the number of RCU grace periods
2053 * that this CPU is ignorant of, for example, "1" if the CPU was
2054 * aware of the previous grace period.
2055 *
2056 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2057 */
2058 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2059 {
2060 char fast_no_hz[72];
2061 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2062 struct rcu_dynticks *rdtp = rdp->dynticks;
2063 char *ticks_title;
2064 unsigned long ticks_value;
2065
2066 if (rsp->gpnum == rdp->gpnum) {
2067 ticks_title = "ticks this GP";
2068 ticks_value = rdp->ticks_this_gp;
2069 } else {
2070 ticks_title = "GPs behind";
2071 ticks_value = rsp->gpnum - rdp->gpnum;
2072 }
2073 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2074 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2075 cpu, ticks_value, ticks_title,
2076 atomic_read(&rdtp->dynticks) & 0xfff,
2077 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2078 fast_no_hz);
2079 }
2080
2081 /* Terminate the stall-info list. */
2082 static void print_cpu_stall_info_end(void)
2083 {
2084 printk(KERN_ERR "\t");
2085 }
2086
2087 /* Zero ->ticks_this_gp for all flavors of RCU. */
2088 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2089 {
2090 rdp->ticks_this_gp = 0;
2091 }
2092
2093 /* Increment ->ticks_this_gp for all flavors of RCU. */
2094 static void increment_cpu_stall_ticks(void)
2095 {
2096 struct rcu_state *rsp;
2097
2098 for_each_rcu_flavor(rsp)
2099 __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2100 }
2101
2102 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2103
2104 static void print_cpu_stall_info_begin(void)
2105 {
2106 printk(KERN_CONT " {");
2107 }
2108
2109 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2110 {
2111 printk(KERN_CONT " %d", cpu);
2112 }
2113
2114 static void print_cpu_stall_info_end(void)
2115 {
2116 printk(KERN_CONT "} ");
2117 }
2118
2119 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2120 {
2121 }
2122
2123 static void increment_cpu_stall_ticks(void)
2124 {
2125 }
2126
2127 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2128
2129 #ifdef CONFIG_RCU_NOCB_CPU
2130
2131 /*
2132 * Offload callback processing from the boot-time-specified set of CPUs
2133 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2134 * kthread created that pulls the callbacks from the corresponding CPU,
2135 * waits for a grace period to elapse, and invokes the callbacks.
2136 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2137 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2138 * has been specified, in which case each kthread actively polls its
2139 * CPU. (Which isn't so great for energy efficiency, but which does
2140 * reduce RCU's overhead on that CPU.)
2141 *
2142 * This is intended to be used in conjunction with Frederic Weisbecker's
2143 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2144 * running CPU-bound user-mode computations.
2145 *
2146 * Offloading of callback processing could also in theory be used as
2147 * an energy-efficiency measure because CPUs with no RCU callbacks
2148 * queued are more aggressive about entering dyntick-idle mode.
2149 */
2150
2151
2152 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2153 static int __init rcu_nocb_setup(char *str)
2154 {
2155 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2156 have_rcu_nocb_mask = true;
2157 cpulist_parse(str, rcu_nocb_mask);
2158 return 1;
2159 }
2160 __setup("rcu_nocbs=", rcu_nocb_setup);
2161
2162 static int __init parse_rcu_nocb_poll(char *arg)
2163 {
2164 rcu_nocb_poll = 1;
2165 return 0;
2166 }
2167 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2168
2169 /* Is the specified CPU a no-CPUs CPU? */
2170 bool rcu_is_nocb_cpu(int cpu)
2171 {
2172 if (have_rcu_nocb_mask)
2173 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2174 return false;
2175 }
2176
2177 /*
2178 * Enqueue the specified string of rcu_head structures onto the specified
2179 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2180 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2181 * counts are supplied by rhcount and rhcount_lazy.
2182 *
2183 * If warranted, also wake up the kthread servicing this CPUs queues.
2184 */
2185 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2186 struct rcu_head *rhp,
2187 struct rcu_head **rhtp,
2188 int rhcount, int rhcount_lazy)
2189 {
2190 int len;
2191 struct rcu_head **old_rhpp;
2192 struct task_struct *t;
2193
2194 /* Enqueue the callback on the nocb list and update counts. */
2195 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2196 ACCESS_ONCE(*old_rhpp) = rhp;
2197 atomic_long_add(rhcount, &rdp->nocb_q_count);
2198 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2199
2200 /* If we are not being polled and there is a kthread, awaken it ... */
2201 t = ACCESS_ONCE(rdp->nocb_kthread);
2202 if (rcu_nocb_poll | !t)
2203 return;
2204 len = atomic_long_read(&rdp->nocb_q_count);
2205 if (old_rhpp == &rdp->nocb_head) {
2206 wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
2207 rdp->qlen_last_fqs_check = 0;
2208 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2209 wake_up_process(t); /* ... or if many callbacks queued. */
2210 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2211 }
2212 return;
2213 }
2214
2215 /*
2216 * This is a helper for __call_rcu(), which invokes this when the normal
2217 * callback queue is inoperable. If this is not a no-CBs CPU, this
2218 * function returns failure back to __call_rcu(), which can complain
2219 * appropriately.
2220 *
2221 * Otherwise, this function queues the callback where the corresponding
2222 * "rcuo" kthread can find it.
2223 */
2224 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2225 bool lazy)
2226 {
2227
2228 if (!rcu_is_nocb_cpu(rdp->cpu))
2229 return 0;
2230 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2231 return 1;
2232 }
2233
2234 /*
2235 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2236 * not a no-CBs CPU.
2237 */
2238 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2239 struct rcu_data *rdp)
2240 {
2241 long ql = rsp->qlen;
2242 long qll = rsp->qlen_lazy;
2243
2244 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2245 if (!rcu_is_nocb_cpu(smp_processor_id()))
2246 return 0;
2247 rsp->qlen = 0;
2248 rsp->qlen_lazy = 0;
2249
2250 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2251 if (rsp->orphan_donelist != NULL) {
2252 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2253 rsp->orphan_donetail, ql, qll);
2254 ql = qll = 0;
2255 rsp->orphan_donelist = NULL;
2256 rsp->orphan_donetail = &rsp->orphan_donelist;
2257 }
2258 if (rsp->orphan_nxtlist != NULL) {
2259 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2260 rsp->orphan_nxttail, ql, qll);
2261 ql = qll = 0;
2262 rsp->orphan_nxtlist = NULL;
2263 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2264 }
2265 return 1;
2266 }
2267
2268 /*
2269 * There must be at least one non-no-CBs CPU in operation at any given
2270 * time, because no-CBs CPUs are not capable of initiating grace periods
2271 * independently. This function therefore complains if the specified
2272 * CPU is the last non-no-CBs CPU, allowing the CPU-hotplug system to
2273 * avoid offlining the last such CPU. (Recursion is a wonderful thing,
2274 * but you have to have a base case!)
2275 */
2276 static bool nocb_cpu_expendable(int cpu)
2277 {
2278 cpumask_var_t non_nocb_cpus;
2279 int ret;
2280
2281 /*
2282 * If there are no no-CB CPUs or if this CPU is not a no-CB CPU,
2283 * then offlining this CPU is harmless. Let it happen.
2284 */
2285 if (!have_rcu_nocb_mask || rcu_is_nocb_cpu(cpu))
2286 return 1;
2287
2288 /* If no memory, play it safe and keep the CPU around. */
2289 if (!alloc_cpumask_var(&non_nocb_cpus, GFP_NOIO))
2290 return 0;
2291 cpumask_andnot(non_nocb_cpus, cpu_online_mask, rcu_nocb_mask);
2292 cpumask_clear_cpu(cpu, non_nocb_cpus);
2293 ret = !cpumask_empty(non_nocb_cpus);
2294 free_cpumask_var(non_nocb_cpus);
2295 return ret;
2296 }
2297
2298 /*
2299 * Helper structure for remote registry of RCU callbacks.
2300 * This is needed for when a no-CBs CPU needs to start a grace period.
2301 * If it just invokes call_rcu(), the resulting callback will be queued,
2302 * which can result in deadlock.
2303 */
2304 struct rcu_head_remote {
2305 struct rcu_head *rhp;
2306 call_rcu_func_t *crf;
2307 void (*func)(struct rcu_head *rhp);
2308 };
2309
2310 /*
2311 * Register a callback as specified by the rcu_head_remote struct.
2312 * This function is intended to be invoked via smp_call_function_single().
2313 */
2314 static void call_rcu_local(void *arg)
2315 {
2316 struct rcu_head_remote *rhrp =
2317 container_of(arg, struct rcu_head_remote, rhp);
2318
2319 rhrp->crf(rhrp->rhp, rhrp->func);
2320 }
2321
2322 /*
2323 * Set up an rcu_head_remote structure and the invoke call_rcu_local()
2324 * on CPU 0 (which is guaranteed to be a non-no-CBs CPU) via
2325 * smp_call_function_single().
2326 */
2327 static void invoke_crf_remote(struct rcu_head *rhp,
2328 void (*func)(struct rcu_head *rhp),
2329 call_rcu_func_t crf)
2330 {
2331 struct rcu_head_remote rhr;
2332
2333 rhr.rhp = rhp;
2334 rhr.crf = crf;
2335 rhr.func = func;
2336 smp_call_function_single(0, call_rcu_local, &rhr, 1);
2337 }
2338
2339 /*
2340 * Helper functions to be passed to wait_rcu_gp(), each of which
2341 * invokes invoke_crf_remote() to register a callback appropriately.
2342 */
2343 static void __maybe_unused
2344 call_rcu_preempt_remote(struct rcu_head *rhp,
2345 void (*func)(struct rcu_head *rhp))
2346 {
2347 invoke_crf_remote(rhp, func, call_rcu);
2348 }
2349 static void call_rcu_bh_remote(struct rcu_head *rhp,
2350 void (*func)(struct rcu_head *rhp))
2351 {
2352 invoke_crf_remote(rhp, func, call_rcu_bh);
2353 }
2354 static void call_rcu_sched_remote(struct rcu_head *rhp,
2355 void (*func)(struct rcu_head *rhp))
2356 {
2357 invoke_crf_remote(rhp, func, call_rcu_sched);
2358 }
2359
2360 /*
2361 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2362 * callbacks queued by the corresponding no-CBs CPU.
2363 */
2364 static int rcu_nocb_kthread(void *arg)
2365 {
2366 int c, cl;
2367 struct rcu_head *list;
2368 struct rcu_head *next;
2369 struct rcu_head **tail;
2370 struct rcu_data *rdp = arg;
2371
2372 /* Each pass through this loop invokes one batch of callbacks */
2373 for (;;) {
2374 /* If not polling, wait for next batch of callbacks. */
2375 if (!rcu_nocb_poll)
2376 wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2377 list = ACCESS_ONCE(rdp->nocb_head);
2378 if (!list) {
2379 schedule_timeout_interruptible(1);
2380 flush_signals(current);
2381 continue;
2382 }
2383
2384 /*
2385 * Extract queued callbacks, update counts, and wait
2386 * for a grace period to elapse.
2387 */
2388 ACCESS_ONCE(rdp->nocb_head) = NULL;
2389 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2390 c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2391 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2392 ACCESS_ONCE(rdp->nocb_p_count) += c;
2393 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2394 wait_rcu_gp(rdp->rsp->call_remote);
2395
2396 /* Each pass through the following loop invokes a callback. */
2397 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2398 c = cl = 0;
2399 while (list) {
2400 next = list->next;
2401 /* Wait for enqueuing to complete, if needed. */
2402 while (next == NULL && &list->next != tail) {
2403 schedule_timeout_interruptible(1);
2404 next = list->next;
2405 }
2406 debug_rcu_head_unqueue(list);
2407 local_bh_disable();
2408 if (__rcu_reclaim(rdp->rsp->name, list))
2409 cl++;
2410 c++;
2411 local_bh_enable();
2412 list = next;
2413 }
2414 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2415 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2416 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2417 rdp->n_nocbs_invoked += c;
2418 }
2419 return 0;
2420 }
2421
2422 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2423 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2424 {
2425 rdp->nocb_tail = &rdp->nocb_head;
2426 init_waitqueue_head(&rdp->nocb_wq);
2427 }
2428
2429 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2430 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2431 {
2432 int cpu;
2433 struct rcu_data *rdp;
2434 struct task_struct *t;
2435
2436 if (rcu_nocb_mask == NULL)
2437 return;
2438 for_each_cpu(cpu, rcu_nocb_mask) {
2439 rdp = per_cpu_ptr(rsp->rda, cpu);
2440 t = kthread_run(rcu_nocb_kthread, rdp, "rcuo%d", cpu);
2441 BUG_ON(IS_ERR(t));
2442 ACCESS_ONCE(rdp->nocb_kthread) = t;
2443 }
2444 }
2445
2446 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2447 static void init_nocb_callback_list(struct rcu_data *rdp)
2448 {
2449 if (rcu_nocb_mask == NULL ||
2450 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2451 return;
2452 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2453 }
2454
2455 /* Initialize the ->call_remote fields in the rcu_state structures. */
2456 static void __init rcu_init_nocb(void)
2457 {
2458 #ifdef CONFIG_PREEMPT_RCU
2459 rcu_preempt_state.call_remote = call_rcu_preempt_remote;
2460 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2461 rcu_bh_state.call_remote = call_rcu_bh_remote;
2462 rcu_sched_state.call_remote = call_rcu_sched_remote;
2463 }
2464
2465 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2466
2467 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2468 bool lazy)
2469 {
2470 return 0;
2471 }
2472
2473 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2474 struct rcu_data *rdp)
2475 {
2476 return 0;
2477 }
2478
2479 static bool nocb_cpu_expendable(int cpu)
2480 {
2481 return 1;
2482 }
2483
2484 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2485 {
2486 }
2487
2488 static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2489 {
2490 }
2491
2492 static void init_nocb_callback_list(struct rcu_data *rdp)
2493 {
2494 }
2495
2496 static void __init rcu_init_nocb(void)
2497 {
2498 }
2499
2500 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2501
2502 /*
2503 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2504 * arbitrarily long period of time with the scheduling-clock tick turned
2505 * off. RCU will be paying attention to this CPU because it is in the
2506 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2507 * machine because the scheduling-clock tick has been disabled. Therefore,
2508 * if an adaptive-ticks CPU is failing to respond to the current grace
2509 * period and has not be idle from an RCU perspective, kick it.
2510 */
2511 static void rcu_kick_nohz_cpu(int cpu)
2512 {
2513 #ifdef CONFIG_NO_HZ_FULL
2514 if (tick_nohz_full_cpu(cpu))
2515 smp_send_reschedule(cpu);
2516 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2517 }