uids: Prevent tear down race
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28 #ifdef CONFIG_TREE_PREEMPT_RCU
29
30 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33 /*
34 * Tell them what RCU they are running.
35 */
36 static inline void rcu_bootup_announce(void)
37 {
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40 }
41
42 /*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46 long rcu_batches_completed_preempt(void)
47 {
48 return rcu_preempt_state.completed;
49 }
50 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52 /*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55 long rcu_batches_completed(void)
56 {
57 return rcu_batches_completed_preempt();
58 }
59 EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61 /*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67 static void rcu_preempt_qs(int cpu)
68 {
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc_completed = rdp->completed;
71 barrier();
72 rdp->passed_quiesc = 1;
73 }
74
75 /*
76 * We have entered the scheduler, and the current task might soon be
77 * context-switched away from. If this task is in an RCU read-side
78 * critical section, we will no longer be able to rely on the CPU to
79 * record that fact, so we enqueue the task on the appropriate entry
80 * of the blocked_tasks[] array. The task will dequeue itself when
81 * it exits the outermost enclosing RCU read-side critical section.
82 * Therefore, the current grace period cannot be permitted to complete
83 * until the blocked_tasks[] entry indexed by the low-order bit of
84 * rnp->gpnum empties.
85 *
86 * Caller must disable preemption.
87 */
88 static void rcu_preempt_note_context_switch(int cpu)
89 {
90 struct task_struct *t = current;
91 unsigned long flags;
92 int phase;
93 struct rcu_data *rdp;
94 struct rcu_node *rnp;
95
96 if (t->rcu_read_lock_nesting &&
97 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
98
99 /* Possibly blocking in an RCU read-side critical section. */
100 rdp = rcu_preempt_state.rda[cpu];
101 rnp = rdp->mynode;
102 spin_lock_irqsave(&rnp->lock, flags);
103 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
104 t->rcu_blocked_node = rnp;
105
106 /*
107 * If this CPU has already checked in, then this task
108 * will hold up the next grace period rather than the
109 * current grace period. Queue the task accordingly.
110 * If the task is queued for the current grace period
111 * (i.e., this CPU has not yet passed through a quiescent
112 * state for the current grace period), then as long
113 * as that task remains queued, the current grace period
114 * cannot end.
115 *
116 * But first, note that the current CPU must still be
117 * on line!
118 */
119 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
120 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
121 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
122 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
123 spin_unlock_irqrestore(&rnp->lock, flags);
124 }
125
126 /*
127 * Either we were not in an RCU read-side critical section to
128 * begin with, or we have now recorded that critical section
129 * globally. Either way, we can now note a quiescent state
130 * for this CPU. Again, if we were in an RCU read-side critical
131 * section, and if that critical section was blocking the current
132 * grace period, then the fact that the task has been enqueued
133 * means that we continue to block the current grace period.
134 */
135 rcu_preempt_qs(cpu);
136 local_irq_save(flags);
137 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
138 local_irq_restore(flags);
139 }
140
141 /*
142 * Tree-preemptable RCU implementation for rcu_read_lock().
143 * Just increment ->rcu_read_lock_nesting, shared state will be updated
144 * if we block.
145 */
146 void __rcu_read_lock(void)
147 {
148 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
149 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
150 }
151 EXPORT_SYMBOL_GPL(__rcu_read_lock);
152
153 /*
154 * Check for preempted RCU readers blocking the current grace period
155 * for the specified rcu_node structure. If the caller needs a reliable
156 * answer, it must hold the rcu_node's ->lock.
157 */
158 static int rcu_preempted_readers(struct rcu_node *rnp)
159 {
160 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
161 }
162
163 static void rcu_read_unlock_special(struct task_struct *t)
164 {
165 int empty;
166 unsigned long flags;
167 unsigned long mask;
168 struct rcu_node *rnp;
169 int special;
170
171 /* NMI handlers cannot block and cannot safely manipulate state. */
172 if (in_nmi())
173 return;
174
175 local_irq_save(flags);
176
177 /*
178 * If RCU core is waiting for this CPU to exit critical section,
179 * let it know that we have done so.
180 */
181 special = t->rcu_read_unlock_special;
182 if (special & RCU_READ_UNLOCK_NEED_QS) {
183 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
184 rcu_preempt_qs(smp_processor_id());
185 }
186
187 /* Hardware IRQ handlers cannot block. */
188 if (in_irq()) {
189 local_irq_restore(flags);
190 return;
191 }
192
193 /* Clean up if blocked during RCU read-side critical section. */
194 if (special & RCU_READ_UNLOCK_BLOCKED) {
195 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
196
197 /*
198 * Remove this task from the list it blocked on. The
199 * task can migrate while we acquire the lock, but at
200 * most one time. So at most two passes through loop.
201 */
202 for (;;) {
203 rnp = t->rcu_blocked_node;
204 spin_lock(&rnp->lock); /* irqs already disabled. */
205 if (rnp == t->rcu_blocked_node)
206 break;
207 spin_unlock(&rnp->lock); /* irqs remain disabled. */
208 }
209 empty = !rcu_preempted_readers(rnp);
210 list_del_init(&t->rcu_node_entry);
211 t->rcu_blocked_node = NULL;
212
213 /*
214 * If this was the last task on the current list, and if
215 * we aren't waiting on any CPUs, report the quiescent state.
216 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
217 * drop rnp->lock and restore irq.
218 */
219 if (!empty && rnp->qsmask == 0 &&
220 !rcu_preempted_readers(rnp)) {
221 struct rcu_node *rnp_p;
222
223 if (rnp->parent == NULL) {
224 /* Only one rcu_node in the tree. */
225 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
226 return;
227 }
228 /* Report up the rest of the hierarchy. */
229 mask = rnp->grpmask;
230 spin_unlock_irqrestore(&rnp->lock, flags);
231 rnp_p = rnp->parent;
232 spin_lock_irqsave(&rnp_p->lock, flags);
233 WARN_ON_ONCE(rnp->qsmask);
234 cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
235 return;
236 }
237 spin_unlock(&rnp->lock);
238 }
239 local_irq_restore(flags);
240 }
241
242 /*
243 * Tree-preemptable RCU implementation for rcu_read_unlock().
244 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
245 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
246 * invoke rcu_read_unlock_special() to clean up after a context switch
247 * in an RCU read-side critical section and other special cases.
248 */
249 void __rcu_read_unlock(void)
250 {
251 struct task_struct *t = current;
252
253 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
254 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
255 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
256 rcu_read_unlock_special(t);
257 }
258 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
259
260 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
261
262 /*
263 * Scan the current list of tasks blocked within RCU read-side critical
264 * sections, printing out the tid of each.
265 */
266 static void rcu_print_task_stall(struct rcu_node *rnp)
267 {
268 unsigned long flags;
269 struct list_head *lp;
270 int phase;
271 struct task_struct *t;
272
273 if (rcu_preempted_readers(rnp)) {
274 spin_lock_irqsave(&rnp->lock, flags);
275 phase = rnp->gpnum & 0x1;
276 lp = &rnp->blocked_tasks[phase];
277 list_for_each_entry(t, lp, rcu_node_entry)
278 printk(" P%d", t->pid);
279 spin_unlock_irqrestore(&rnp->lock, flags);
280 }
281 }
282
283 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
284
285 /*
286 * Check that the list of blocked tasks for the newly completed grace
287 * period is in fact empty. It is a serious bug to complete a grace
288 * period that still has RCU readers blocked! This function must be
289 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
290 * must be held by the caller.
291 */
292 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
293 {
294 WARN_ON_ONCE(rcu_preempted_readers(rnp));
295 WARN_ON_ONCE(rnp->qsmask);
296 }
297
298 #ifdef CONFIG_HOTPLUG_CPU
299
300 /*
301 * Handle tasklist migration for case in which all CPUs covered by the
302 * specified rcu_node have gone offline. Move them up to the root
303 * rcu_node. The reason for not just moving them to the immediate
304 * parent is to remove the need for rcu_read_unlock_special() to
305 * make more than two attempts to acquire the target rcu_node's lock.
306 *
307 * Returns 1 if there was previously a task blocking the current grace
308 * period on the specified rcu_node structure.
309 *
310 * The caller must hold rnp->lock with irqs disabled.
311 */
312 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
313 struct rcu_node *rnp,
314 struct rcu_data *rdp)
315 {
316 int i;
317 struct list_head *lp;
318 struct list_head *lp_root;
319 int retval = rcu_preempted_readers(rnp);
320 struct rcu_node *rnp_root = rcu_get_root(rsp);
321 struct task_struct *tp;
322
323 if (rnp == rnp_root) {
324 WARN_ONCE(1, "Last CPU thought to be offlined?");
325 return 0; /* Shouldn't happen: at least one CPU online. */
326 }
327 WARN_ON_ONCE(rnp != rdp->mynode &&
328 (!list_empty(&rnp->blocked_tasks[0]) ||
329 !list_empty(&rnp->blocked_tasks[1])));
330
331 /*
332 * Move tasks up to root rcu_node. Rely on the fact that the
333 * root rcu_node can be at most one ahead of the rest of the
334 * rcu_nodes in terms of gp_num value. This fact allows us to
335 * move the blocked_tasks[] array directly, element by element.
336 */
337 for (i = 0; i < 2; i++) {
338 lp = &rnp->blocked_tasks[i];
339 lp_root = &rnp_root->blocked_tasks[i];
340 while (!list_empty(lp)) {
341 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
342 spin_lock(&rnp_root->lock); /* irqs already disabled */
343 list_del(&tp->rcu_node_entry);
344 tp->rcu_blocked_node = rnp_root;
345 list_add(&tp->rcu_node_entry, lp_root);
346 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
347 }
348 }
349
350 return retval;
351 }
352
353 /*
354 * Do CPU-offline processing for preemptable RCU.
355 */
356 static void rcu_preempt_offline_cpu(int cpu)
357 {
358 __rcu_offline_cpu(cpu, &rcu_preempt_state);
359 }
360
361 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
362
363 /*
364 * Check for a quiescent state from the current CPU. When a task blocks,
365 * the task is recorded in the corresponding CPU's rcu_node structure,
366 * which is checked elsewhere.
367 *
368 * Caller must disable hard irqs.
369 */
370 static void rcu_preempt_check_callbacks(int cpu)
371 {
372 struct task_struct *t = current;
373
374 if (t->rcu_read_lock_nesting == 0) {
375 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
376 rcu_preempt_qs(cpu);
377 return;
378 }
379 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
380 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
381 }
382
383 /*
384 * Process callbacks for preemptable RCU.
385 */
386 static void rcu_preempt_process_callbacks(void)
387 {
388 __rcu_process_callbacks(&rcu_preempt_state,
389 &__get_cpu_var(rcu_preempt_data));
390 }
391
392 /*
393 * Queue a preemptable-RCU callback for invocation after a grace period.
394 */
395 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
396 {
397 __call_rcu(head, func, &rcu_preempt_state);
398 }
399 EXPORT_SYMBOL_GPL(call_rcu);
400
401 /*
402 * Wait for an rcu-preempt grace period. We are supposed to expedite the
403 * grace period, but this is the crude slow compatability hack, so just
404 * invoke synchronize_rcu().
405 */
406 void synchronize_rcu_expedited(void)
407 {
408 synchronize_rcu();
409 }
410 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
411
412 /*
413 * Check to see if there is any immediate preemptable-RCU-related work
414 * to be done.
415 */
416 static int rcu_preempt_pending(int cpu)
417 {
418 return __rcu_pending(&rcu_preempt_state,
419 &per_cpu(rcu_preempt_data, cpu));
420 }
421
422 /*
423 * Does preemptable RCU need the CPU to stay out of dynticks mode?
424 */
425 static int rcu_preempt_needs_cpu(int cpu)
426 {
427 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
428 }
429
430 /**
431 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
432 */
433 void rcu_barrier(void)
434 {
435 _rcu_barrier(&rcu_preempt_state, call_rcu);
436 }
437 EXPORT_SYMBOL_GPL(rcu_barrier);
438
439 /*
440 * Initialize preemptable RCU's per-CPU data.
441 */
442 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
443 {
444 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
445 }
446
447 /*
448 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
449 */
450 static void rcu_preempt_send_cbs_to_orphanage(void)
451 {
452 rcu_send_cbs_to_orphanage(&rcu_preempt_state);
453 }
454
455 /*
456 * Initialize preemptable RCU's state structures.
457 */
458 static void __init __rcu_init_preempt(void)
459 {
460 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
461 }
462
463 /*
464 * Check for a task exiting while in a preemptable-RCU read-side
465 * critical section, clean up if so. No need to issue warnings,
466 * as debug_check_no_locks_held() already does this if lockdep
467 * is enabled.
468 */
469 void exit_rcu(void)
470 {
471 struct task_struct *t = current;
472
473 if (t->rcu_read_lock_nesting == 0)
474 return;
475 t->rcu_read_lock_nesting = 1;
476 rcu_read_unlock();
477 }
478
479 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
480
481 /*
482 * Tell them what RCU they are running.
483 */
484 static inline void rcu_bootup_announce(void)
485 {
486 printk(KERN_INFO "Hierarchical RCU implementation.\n");
487 }
488
489 /*
490 * Return the number of RCU batches processed thus far for debug & stats.
491 */
492 long rcu_batches_completed(void)
493 {
494 return rcu_batches_completed_sched();
495 }
496 EXPORT_SYMBOL_GPL(rcu_batches_completed);
497
498 /*
499 * Because preemptable RCU does not exist, we never have to check for
500 * CPUs being in quiescent states.
501 */
502 static void rcu_preempt_note_context_switch(int cpu)
503 {
504 }
505
506 /*
507 * Because preemptable RCU does not exist, there are never any preempted
508 * RCU readers.
509 */
510 static int rcu_preempted_readers(struct rcu_node *rnp)
511 {
512 return 0;
513 }
514
515 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
516
517 /*
518 * Because preemptable RCU does not exist, we never have to check for
519 * tasks blocked within RCU read-side critical sections.
520 */
521 static void rcu_print_task_stall(struct rcu_node *rnp)
522 {
523 }
524
525 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
526
527 /*
528 * Because there is no preemptable RCU, there can be no readers blocked,
529 * so there is no need to check for blocked tasks. So check only for
530 * bogus qsmask values.
531 */
532 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
533 {
534 WARN_ON_ONCE(rnp->qsmask);
535 }
536
537 #ifdef CONFIG_HOTPLUG_CPU
538
539 /*
540 * Because preemptable RCU does not exist, it never needs to migrate
541 * tasks that were blocked within RCU read-side critical sections, and
542 * such non-existent tasks cannot possibly have been blocking the current
543 * grace period.
544 */
545 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
546 struct rcu_node *rnp,
547 struct rcu_data *rdp)
548 {
549 return 0;
550 }
551
552 /*
553 * Because preemptable RCU does not exist, it never needs CPU-offline
554 * processing.
555 */
556 static void rcu_preempt_offline_cpu(int cpu)
557 {
558 }
559
560 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
561
562 /*
563 * Because preemptable RCU does not exist, it never has any callbacks
564 * to check.
565 */
566 static void rcu_preempt_check_callbacks(int cpu)
567 {
568 }
569
570 /*
571 * Because preemptable RCU does not exist, it never has any callbacks
572 * to process.
573 */
574 static void rcu_preempt_process_callbacks(void)
575 {
576 }
577
578 /*
579 * In classic RCU, call_rcu() is just call_rcu_sched().
580 */
581 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
582 {
583 call_rcu_sched(head, func);
584 }
585 EXPORT_SYMBOL_GPL(call_rcu);
586
587 /*
588 * Wait for an rcu-preempt grace period, but make it happen quickly.
589 * But because preemptable RCU does not exist, map to rcu-sched.
590 */
591 void synchronize_rcu_expedited(void)
592 {
593 synchronize_sched_expedited();
594 }
595 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
596
597 /*
598 * Because preemptable RCU does not exist, it never has any work to do.
599 */
600 static int rcu_preempt_pending(int cpu)
601 {
602 return 0;
603 }
604
605 /*
606 * Because preemptable RCU does not exist, it never needs any CPU.
607 */
608 static int rcu_preempt_needs_cpu(int cpu)
609 {
610 return 0;
611 }
612
613 /*
614 * Because preemptable RCU does not exist, rcu_barrier() is just
615 * another name for rcu_barrier_sched().
616 */
617 void rcu_barrier(void)
618 {
619 rcu_barrier_sched();
620 }
621 EXPORT_SYMBOL_GPL(rcu_barrier);
622
623 /*
624 * Because preemptable RCU does not exist, there is no per-CPU
625 * data to initialize.
626 */
627 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
628 {
629 }
630
631 /*
632 * Because there is no preemptable RCU, there are no callbacks to move.
633 */
634 static void rcu_preempt_send_cbs_to_orphanage(void)
635 {
636 }
637
638 /*
639 * Because preemptable RCU does not exist, it need not be initialized.
640 */
641 static void __init __rcu_init_preempt(void)
642 {
643 }
644
645 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */