rcu: Simplify offline processing
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
29
30 #define RCU_KTHREAD_PRIO 1
31
32 #ifdef CONFIG_RCU_BOOST
33 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
34 #else
35 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
36 #endif
37
38 /*
39 * Check the RCU kernel configuration parameters and print informative
40 * messages about anything out of the ordinary. If you like #ifdef, you
41 * will love this function.
42 */
43 static void __init rcu_bootup_announce_oddness(void)
44 {
45 #ifdef CONFIG_RCU_TRACE
46 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
47 #endif
48 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
49 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
50 CONFIG_RCU_FANOUT);
51 #endif
52 #ifdef CONFIG_RCU_FANOUT_EXACT
53 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
54 #endif
55 #ifdef CONFIG_RCU_FAST_NO_HZ
56 printk(KERN_INFO
57 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
58 #endif
59 #ifdef CONFIG_PROVE_RCU
60 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
61 #endif
62 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
63 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
64 #endif
65 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
66 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
67 #endif
68 #if NUM_RCU_LVL_4 != 0
69 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
70 #endif
71 }
72
73 #ifdef CONFIG_TREE_PREEMPT_RCU
74
75 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
76 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
77 static struct rcu_state *rcu_state = &rcu_preempt_state;
78
79 static void rcu_read_unlock_special(struct task_struct *t);
80 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
81
82 /*
83 * Tell them what RCU they are running.
84 */
85 static void __init rcu_bootup_announce(void)
86 {
87 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
88 rcu_bootup_announce_oddness();
89 }
90
91 /*
92 * Return the number of RCU-preempt batches processed thus far
93 * for debug and statistics.
94 */
95 long rcu_batches_completed_preempt(void)
96 {
97 return rcu_preempt_state.completed;
98 }
99 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
100
101 /*
102 * Return the number of RCU batches processed thus far for debug & stats.
103 */
104 long rcu_batches_completed(void)
105 {
106 return rcu_batches_completed_preempt();
107 }
108 EXPORT_SYMBOL_GPL(rcu_batches_completed);
109
110 /*
111 * Force a quiescent state for preemptible RCU.
112 */
113 void rcu_force_quiescent_state(void)
114 {
115 force_quiescent_state(&rcu_preempt_state, 0);
116 }
117 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
118
119 /*
120 * Record a preemptible-RCU quiescent state for the specified CPU. Note
121 * that this just means that the task currently running on the CPU is
122 * not in a quiescent state. There might be any number of tasks blocked
123 * while in an RCU read-side critical section.
124 *
125 * Unlike the other rcu_*_qs() functions, callers to this function
126 * must disable irqs in order to protect the assignment to
127 * ->rcu_read_unlock_special.
128 */
129 static void rcu_preempt_qs(int cpu)
130 {
131 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
132
133 rdp->passed_quiesce_gpnum = rdp->gpnum;
134 barrier();
135 if (rdp->passed_quiesce == 0)
136 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
137 rdp->passed_quiesce = 1;
138 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
139 }
140
141 /*
142 * We have entered the scheduler, and the current task might soon be
143 * context-switched away from. If this task is in an RCU read-side
144 * critical section, we will no longer be able to rely on the CPU to
145 * record that fact, so we enqueue the task on the blkd_tasks list.
146 * The task will dequeue itself when it exits the outermost enclosing
147 * RCU read-side critical section. Therefore, the current grace period
148 * cannot be permitted to complete until the blkd_tasks list entries
149 * predating the current grace period drain, in other words, until
150 * rnp->gp_tasks becomes NULL.
151 *
152 * Caller must disable preemption.
153 */
154 static void rcu_preempt_note_context_switch(int cpu)
155 {
156 struct task_struct *t = current;
157 unsigned long flags;
158 struct rcu_data *rdp;
159 struct rcu_node *rnp;
160
161 if (t->rcu_read_lock_nesting > 0 &&
162 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
163
164 /* Possibly blocking in an RCU read-side critical section. */
165 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
166 rnp = rdp->mynode;
167 raw_spin_lock_irqsave(&rnp->lock, flags);
168 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
169 t->rcu_blocked_node = rnp;
170
171 /*
172 * If this CPU has already checked in, then this task
173 * will hold up the next grace period rather than the
174 * current grace period. Queue the task accordingly.
175 * If the task is queued for the current grace period
176 * (i.e., this CPU has not yet passed through a quiescent
177 * state for the current grace period), then as long
178 * as that task remains queued, the current grace period
179 * cannot end. Note that there is some uncertainty as
180 * to exactly when the current grace period started.
181 * We take a conservative approach, which can result
182 * in unnecessarily waiting on tasks that started very
183 * slightly after the current grace period began. C'est
184 * la vie!!!
185 *
186 * But first, note that the current CPU must still be
187 * on line!
188 */
189 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
190 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
191 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
192 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
193 rnp->gp_tasks = &t->rcu_node_entry;
194 #ifdef CONFIG_RCU_BOOST
195 if (rnp->boost_tasks != NULL)
196 rnp->boost_tasks = rnp->gp_tasks;
197 #endif /* #ifdef CONFIG_RCU_BOOST */
198 } else {
199 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
200 if (rnp->qsmask & rdp->grpmask)
201 rnp->gp_tasks = &t->rcu_node_entry;
202 }
203 trace_rcu_preempt_task(rdp->rsp->name,
204 t->pid,
205 (rnp->qsmask & rdp->grpmask)
206 ? rnp->gpnum
207 : rnp->gpnum + 1);
208 raw_spin_unlock_irqrestore(&rnp->lock, flags);
209 } else if (t->rcu_read_lock_nesting < 0 &&
210 t->rcu_read_unlock_special) {
211
212 /*
213 * Complete exit from RCU read-side critical section on
214 * behalf of preempted instance of __rcu_read_unlock().
215 */
216 rcu_read_unlock_special(t);
217 }
218
219 /*
220 * Either we were not in an RCU read-side critical section to
221 * begin with, or we have now recorded that critical section
222 * globally. Either way, we can now note a quiescent state
223 * for this CPU. Again, if we were in an RCU read-side critical
224 * section, and if that critical section was blocking the current
225 * grace period, then the fact that the task has been enqueued
226 * means that we continue to block the current grace period.
227 */
228 local_irq_save(flags);
229 rcu_preempt_qs(cpu);
230 local_irq_restore(flags);
231 }
232
233 /*
234 * Tree-preemptible RCU implementation for rcu_read_lock().
235 * Just increment ->rcu_read_lock_nesting, shared state will be updated
236 * if we block.
237 */
238 void __rcu_read_lock(void)
239 {
240 current->rcu_read_lock_nesting++;
241 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
242 }
243 EXPORT_SYMBOL_GPL(__rcu_read_lock);
244
245 /*
246 * Check for preempted RCU readers blocking the current grace period
247 * for the specified rcu_node structure. If the caller needs a reliable
248 * answer, it must hold the rcu_node's ->lock.
249 */
250 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
251 {
252 return rnp->gp_tasks != NULL;
253 }
254
255 /*
256 * Record a quiescent state for all tasks that were previously queued
257 * on the specified rcu_node structure and that were blocking the current
258 * RCU grace period. The caller must hold the specified rnp->lock with
259 * irqs disabled, and this lock is released upon return, but irqs remain
260 * disabled.
261 */
262 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
263 __releases(rnp->lock)
264 {
265 unsigned long mask;
266 struct rcu_node *rnp_p;
267
268 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
270 return; /* Still need more quiescent states! */
271 }
272
273 rnp_p = rnp->parent;
274 if (rnp_p == NULL) {
275 /*
276 * Either there is only one rcu_node in the tree,
277 * or tasks were kicked up to root rcu_node due to
278 * CPUs going offline.
279 */
280 rcu_report_qs_rsp(&rcu_preempt_state, flags);
281 return;
282 }
283
284 /* Report up the rest of the hierarchy. */
285 mask = rnp->grpmask;
286 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
287 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
288 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
289 }
290
291 /*
292 * Advance a ->blkd_tasks-list pointer to the next entry, instead
293 * returning NULL if at the end of the list.
294 */
295 static struct list_head *rcu_next_node_entry(struct task_struct *t,
296 struct rcu_node *rnp)
297 {
298 struct list_head *np;
299
300 np = t->rcu_node_entry.next;
301 if (np == &rnp->blkd_tasks)
302 np = NULL;
303 return np;
304 }
305
306 /*
307 * Handle special cases during rcu_read_unlock(), such as needing to
308 * notify RCU core processing or task having blocked during the RCU
309 * read-side critical section.
310 */
311 static noinline void rcu_read_unlock_special(struct task_struct *t)
312 {
313 int empty;
314 int empty_exp;
315 int empty_exp_now;
316 unsigned long flags;
317 struct list_head *np;
318 #ifdef CONFIG_RCU_BOOST
319 struct rt_mutex *rbmp = NULL;
320 #endif /* #ifdef CONFIG_RCU_BOOST */
321 struct rcu_node *rnp;
322 int special;
323
324 /* NMI handlers cannot block and cannot safely manipulate state. */
325 if (in_nmi())
326 return;
327
328 local_irq_save(flags);
329
330 /*
331 * If RCU core is waiting for this CPU to exit critical section,
332 * let it know that we have done so.
333 */
334 special = t->rcu_read_unlock_special;
335 if (special & RCU_READ_UNLOCK_NEED_QS) {
336 rcu_preempt_qs(smp_processor_id());
337 }
338
339 /* Hardware IRQ handlers cannot block. */
340 if (in_irq() || in_serving_softirq()) {
341 local_irq_restore(flags);
342 return;
343 }
344
345 /* Clean up if blocked during RCU read-side critical section. */
346 if (special & RCU_READ_UNLOCK_BLOCKED) {
347 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
348
349 /*
350 * Remove this task from the list it blocked on. The
351 * task can migrate while we acquire the lock, but at
352 * most one time. So at most two passes through loop.
353 */
354 for (;;) {
355 rnp = t->rcu_blocked_node;
356 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
357 if (rnp == t->rcu_blocked_node)
358 break;
359 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
360 }
361 empty = !rcu_preempt_blocked_readers_cgp(rnp);
362 empty_exp = !rcu_preempted_readers_exp(rnp);
363 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
364 np = rcu_next_node_entry(t, rnp);
365 list_del_init(&t->rcu_node_entry);
366 t->rcu_blocked_node = NULL;
367 trace_rcu_unlock_preempted_task("rcu_preempt",
368 rnp->gpnum, t->pid);
369 if (&t->rcu_node_entry == rnp->gp_tasks)
370 rnp->gp_tasks = np;
371 if (&t->rcu_node_entry == rnp->exp_tasks)
372 rnp->exp_tasks = np;
373 #ifdef CONFIG_RCU_BOOST
374 if (&t->rcu_node_entry == rnp->boost_tasks)
375 rnp->boost_tasks = np;
376 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
377 if (t->rcu_boost_mutex) {
378 rbmp = t->rcu_boost_mutex;
379 t->rcu_boost_mutex = NULL;
380 }
381 #endif /* #ifdef CONFIG_RCU_BOOST */
382
383 /*
384 * If this was the last task on the current list, and if
385 * we aren't waiting on any CPUs, report the quiescent state.
386 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
387 * so we must take a snapshot of the expedited state.
388 */
389 empty_exp_now = !rcu_preempted_readers_exp(rnp);
390 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
391 trace_rcu_quiescent_state_report("preempt_rcu",
392 rnp->gpnum,
393 0, rnp->qsmask,
394 rnp->level,
395 rnp->grplo,
396 rnp->grphi,
397 !!rnp->gp_tasks);
398 rcu_report_unblock_qs_rnp(rnp, flags);
399 } else
400 raw_spin_unlock_irqrestore(&rnp->lock, flags);
401
402 #ifdef CONFIG_RCU_BOOST
403 /* Unboost if we were boosted. */
404 if (rbmp)
405 rt_mutex_unlock(rbmp);
406 #endif /* #ifdef CONFIG_RCU_BOOST */
407
408 /*
409 * If this was the last task on the expedited lists,
410 * then we need to report up the rcu_node hierarchy.
411 */
412 if (!empty_exp && empty_exp_now)
413 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
414 } else {
415 local_irq_restore(flags);
416 }
417 }
418
419 /*
420 * Tree-preemptible RCU implementation for rcu_read_unlock().
421 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
422 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
423 * invoke rcu_read_unlock_special() to clean up after a context switch
424 * in an RCU read-side critical section and other special cases.
425 */
426 void __rcu_read_unlock(void)
427 {
428 struct task_struct *t = current;
429
430 if (t->rcu_read_lock_nesting != 1)
431 --t->rcu_read_lock_nesting;
432 else {
433 barrier(); /* critical section before exit code. */
434 t->rcu_read_lock_nesting = INT_MIN;
435 barrier(); /* assign before ->rcu_read_unlock_special load */
436 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
437 rcu_read_unlock_special(t);
438 barrier(); /* ->rcu_read_unlock_special load before assign */
439 t->rcu_read_lock_nesting = 0;
440 }
441 #ifdef CONFIG_PROVE_LOCKING
442 {
443 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
444
445 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
446 }
447 #endif /* #ifdef CONFIG_PROVE_LOCKING */
448 }
449 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
450
451 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
452
453 /*
454 * Dump detailed information for all tasks blocking the current RCU
455 * grace period on the specified rcu_node structure.
456 */
457 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
458 {
459 unsigned long flags;
460 struct task_struct *t;
461
462 if (!rcu_preempt_blocked_readers_cgp(rnp))
463 return;
464 raw_spin_lock_irqsave(&rnp->lock, flags);
465 t = list_entry(rnp->gp_tasks,
466 struct task_struct, rcu_node_entry);
467 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
468 sched_show_task(t);
469 raw_spin_unlock_irqrestore(&rnp->lock, flags);
470 }
471
472 /*
473 * Dump detailed information for all tasks blocking the current RCU
474 * grace period.
475 */
476 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
477 {
478 struct rcu_node *rnp = rcu_get_root(rsp);
479
480 rcu_print_detail_task_stall_rnp(rnp);
481 rcu_for_each_leaf_node(rsp, rnp)
482 rcu_print_detail_task_stall_rnp(rnp);
483 }
484
485 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
486
487 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
488 {
489 }
490
491 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
492
493 /*
494 * Scan the current list of tasks blocked within RCU read-side critical
495 * sections, printing out the tid of each.
496 */
497 static int rcu_print_task_stall(struct rcu_node *rnp)
498 {
499 struct task_struct *t;
500 int ndetected = 0;
501
502 if (!rcu_preempt_blocked_readers_cgp(rnp))
503 return 0;
504 t = list_entry(rnp->gp_tasks,
505 struct task_struct, rcu_node_entry);
506 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
507 printk(" P%d", t->pid);
508 ndetected++;
509 }
510 return ndetected;
511 }
512
513 /*
514 * Suppress preemptible RCU's CPU stall warnings by pushing the
515 * time of the next stall-warning message comfortably far into the
516 * future.
517 */
518 static void rcu_preempt_stall_reset(void)
519 {
520 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
521 }
522
523 /*
524 * Check that the list of blocked tasks for the newly completed grace
525 * period is in fact empty. It is a serious bug to complete a grace
526 * period that still has RCU readers blocked! This function must be
527 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
528 * must be held by the caller.
529 *
530 * Also, if there are blocked tasks on the list, they automatically
531 * block the newly created grace period, so set up ->gp_tasks accordingly.
532 */
533 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
534 {
535 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
536 if (!list_empty(&rnp->blkd_tasks))
537 rnp->gp_tasks = rnp->blkd_tasks.next;
538 WARN_ON_ONCE(rnp->qsmask);
539 }
540
541 #ifdef CONFIG_HOTPLUG_CPU
542
543 /*
544 * Handle tasklist migration for case in which all CPUs covered by the
545 * specified rcu_node have gone offline. Move them up to the root
546 * rcu_node. The reason for not just moving them to the immediate
547 * parent is to remove the need for rcu_read_unlock_special() to
548 * make more than two attempts to acquire the target rcu_node's lock.
549 * Returns true if there were tasks blocking the current RCU grace
550 * period.
551 *
552 * Returns 1 if there was previously a task blocking the current grace
553 * period on the specified rcu_node structure.
554 *
555 * The caller must hold rnp->lock with irqs disabled.
556 */
557 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
558 struct rcu_node *rnp,
559 struct rcu_data *rdp)
560 {
561 struct list_head *lp;
562 struct list_head *lp_root;
563 int retval = 0;
564 struct rcu_node *rnp_root = rcu_get_root(rsp);
565 struct task_struct *t;
566
567 if (rnp == rnp_root) {
568 WARN_ONCE(1, "Last CPU thought to be offlined?");
569 return 0; /* Shouldn't happen: at least one CPU online. */
570 }
571
572 /* If we are on an internal node, complain bitterly. */
573 WARN_ON_ONCE(rnp != rdp->mynode);
574
575 /*
576 * Move tasks up to root rcu_node. Don't try to get fancy for
577 * this corner-case operation -- just put this node's tasks
578 * at the head of the root node's list, and update the root node's
579 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
580 * if non-NULL. This might result in waiting for more tasks than
581 * absolutely necessary, but this is a good performance/complexity
582 * tradeoff.
583 */
584 if (rcu_preempt_blocked_readers_cgp(rnp))
585 retval |= RCU_OFL_TASKS_NORM_GP;
586 if (rcu_preempted_readers_exp(rnp))
587 retval |= RCU_OFL_TASKS_EXP_GP;
588 lp = &rnp->blkd_tasks;
589 lp_root = &rnp_root->blkd_tasks;
590 while (!list_empty(lp)) {
591 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
592 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
593 list_del(&t->rcu_node_entry);
594 t->rcu_blocked_node = rnp_root;
595 list_add(&t->rcu_node_entry, lp_root);
596 if (&t->rcu_node_entry == rnp->gp_tasks)
597 rnp_root->gp_tasks = rnp->gp_tasks;
598 if (&t->rcu_node_entry == rnp->exp_tasks)
599 rnp_root->exp_tasks = rnp->exp_tasks;
600 #ifdef CONFIG_RCU_BOOST
601 if (&t->rcu_node_entry == rnp->boost_tasks)
602 rnp_root->boost_tasks = rnp->boost_tasks;
603 #endif /* #ifdef CONFIG_RCU_BOOST */
604 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
605 }
606
607 #ifdef CONFIG_RCU_BOOST
608 /* In case root is being boosted and leaf is not. */
609 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
610 if (rnp_root->boost_tasks != NULL &&
611 rnp_root->boost_tasks != rnp_root->gp_tasks)
612 rnp_root->boost_tasks = rnp_root->gp_tasks;
613 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
614 #endif /* #ifdef CONFIG_RCU_BOOST */
615
616 rnp->gp_tasks = NULL;
617 rnp->exp_tasks = NULL;
618 return retval;
619 }
620
621 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
622
623 /*
624 * Do CPU-offline processing for preemptible RCU.
625 */
626 static void rcu_preempt_cleanup_dead_cpu(int cpu)
627 {
628 rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
629 }
630
631 /*
632 * Check for a quiescent state from the current CPU. When a task blocks,
633 * the task is recorded in the corresponding CPU's rcu_node structure,
634 * which is checked elsewhere.
635 *
636 * Caller must disable hard irqs.
637 */
638 static void rcu_preempt_check_callbacks(int cpu)
639 {
640 struct task_struct *t = current;
641
642 if (t->rcu_read_lock_nesting == 0) {
643 rcu_preempt_qs(cpu);
644 return;
645 }
646 if (t->rcu_read_lock_nesting > 0 &&
647 per_cpu(rcu_preempt_data, cpu).qs_pending)
648 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
649 }
650
651 /*
652 * Process callbacks for preemptible RCU.
653 */
654 static void rcu_preempt_process_callbacks(void)
655 {
656 __rcu_process_callbacks(&rcu_preempt_state,
657 &__get_cpu_var(rcu_preempt_data));
658 }
659
660 #ifdef CONFIG_RCU_BOOST
661
662 static void rcu_preempt_do_callbacks(void)
663 {
664 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
665 }
666
667 #endif /* #ifdef CONFIG_RCU_BOOST */
668
669 /*
670 * Queue a preemptible-RCU callback for invocation after a grace period.
671 */
672 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
673 {
674 __call_rcu(head, func, &rcu_preempt_state, 0);
675 }
676 EXPORT_SYMBOL_GPL(call_rcu);
677
678 /*
679 * Queue an RCU callback for lazy invocation after a grace period.
680 * This will likely be later named something like "call_rcu_lazy()",
681 * but this change will require some way of tagging the lazy RCU
682 * callbacks in the list of pending callbacks. Until then, this
683 * function may only be called from __kfree_rcu().
684 */
685 void kfree_call_rcu(struct rcu_head *head,
686 void (*func)(struct rcu_head *rcu))
687 {
688 __call_rcu(head, func, &rcu_preempt_state, 1);
689 }
690 EXPORT_SYMBOL_GPL(kfree_call_rcu);
691
692 /**
693 * synchronize_rcu - wait until a grace period has elapsed.
694 *
695 * Control will return to the caller some time after a full grace
696 * period has elapsed, in other words after all currently executing RCU
697 * read-side critical sections have completed. Note, however, that
698 * upon return from synchronize_rcu(), the caller might well be executing
699 * concurrently with new RCU read-side critical sections that began while
700 * synchronize_rcu() was waiting. RCU read-side critical sections are
701 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
702 */
703 void synchronize_rcu(void)
704 {
705 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
706 !lock_is_held(&rcu_lock_map) &&
707 !lock_is_held(&rcu_sched_lock_map),
708 "Illegal synchronize_rcu() in RCU read-side critical section");
709 if (!rcu_scheduler_active)
710 return;
711 wait_rcu_gp(call_rcu);
712 }
713 EXPORT_SYMBOL_GPL(synchronize_rcu);
714
715 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
716 static long sync_rcu_preempt_exp_count;
717 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
718
719 /*
720 * Return non-zero if there are any tasks in RCU read-side critical
721 * sections blocking the current preemptible-RCU expedited grace period.
722 * If there is no preemptible-RCU expedited grace period currently in
723 * progress, returns zero unconditionally.
724 */
725 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
726 {
727 return rnp->exp_tasks != NULL;
728 }
729
730 /*
731 * return non-zero if there is no RCU expedited grace period in progress
732 * for the specified rcu_node structure, in other words, if all CPUs and
733 * tasks covered by the specified rcu_node structure have done their bit
734 * for the current expedited grace period. Works only for preemptible
735 * RCU -- other RCU implementation use other means.
736 *
737 * Caller must hold sync_rcu_preempt_exp_mutex.
738 */
739 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
740 {
741 return !rcu_preempted_readers_exp(rnp) &&
742 ACCESS_ONCE(rnp->expmask) == 0;
743 }
744
745 /*
746 * Report the exit from RCU read-side critical section for the last task
747 * that queued itself during or before the current expedited preemptible-RCU
748 * grace period. This event is reported either to the rcu_node structure on
749 * which the task was queued or to one of that rcu_node structure's ancestors,
750 * recursively up the tree. (Calm down, calm down, we do the recursion
751 * iteratively!)
752 *
753 * Most callers will set the "wake" flag, but the task initiating the
754 * expedited grace period need not wake itself.
755 *
756 * Caller must hold sync_rcu_preempt_exp_mutex.
757 */
758 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
759 bool wake)
760 {
761 unsigned long flags;
762 unsigned long mask;
763
764 raw_spin_lock_irqsave(&rnp->lock, flags);
765 for (;;) {
766 if (!sync_rcu_preempt_exp_done(rnp)) {
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
768 break;
769 }
770 if (rnp->parent == NULL) {
771 raw_spin_unlock_irqrestore(&rnp->lock, flags);
772 if (wake)
773 wake_up(&sync_rcu_preempt_exp_wq);
774 break;
775 }
776 mask = rnp->grpmask;
777 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
778 rnp = rnp->parent;
779 raw_spin_lock(&rnp->lock); /* irqs already disabled */
780 rnp->expmask &= ~mask;
781 }
782 }
783
784 /*
785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786 * grace period for the specified rcu_node structure. If there are no such
787 * tasks, report it up the rcu_node hierarchy.
788 *
789 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
790 */
791 static void
792 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
793 {
794 unsigned long flags;
795 int must_wait = 0;
796
797 raw_spin_lock_irqsave(&rnp->lock, flags);
798 if (list_empty(&rnp->blkd_tasks))
799 raw_spin_unlock_irqrestore(&rnp->lock, flags);
800 else {
801 rnp->exp_tasks = rnp->blkd_tasks.next;
802 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
803 must_wait = 1;
804 }
805 if (!must_wait)
806 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
807 }
808
809 /*
810 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
811 * is to invoke synchronize_sched_expedited() to push all the tasks to
812 * the ->blkd_tasks lists and wait for this list to drain.
813 */
814 void synchronize_rcu_expedited(void)
815 {
816 unsigned long flags;
817 struct rcu_node *rnp;
818 struct rcu_state *rsp = &rcu_preempt_state;
819 long snap;
820 int trycount = 0;
821
822 smp_mb(); /* Caller's modifications seen first by other CPUs. */
823 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
824 smp_mb(); /* Above access cannot bleed into critical section. */
825
826 /*
827 * Acquire lock, falling back to synchronize_rcu() if too many
828 * lock-acquisition failures. Of course, if someone does the
829 * expedited grace period for us, just leave.
830 */
831 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
832 if (trycount++ < 10)
833 udelay(trycount * num_online_cpus());
834 else {
835 synchronize_rcu();
836 return;
837 }
838 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
839 goto mb_ret; /* Others did our work for us. */
840 }
841 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
842 goto unlock_mb_ret; /* Others did our work for us. */
843
844 /* force all RCU readers onto ->blkd_tasks lists. */
845 synchronize_sched_expedited();
846
847 raw_spin_lock_irqsave(&rsp->onofflock, flags);
848
849 /* Initialize ->expmask for all non-leaf rcu_node structures. */
850 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
851 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
852 rnp->expmask = rnp->qsmaskinit;
853 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
854 }
855
856 /* Snapshot current state of ->blkd_tasks lists. */
857 rcu_for_each_leaf_node(rsp, rnp)
858 sync_rcu_preempt_exp_init(rsp, rnp);
859 if (NUM_RCU_NODES > 1)
860 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
861
862 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
863
864 /* Wait for snapshotted ->blkd_tasks lists to drain. */
865 rnp = rcu_get_root(rsp);
866 wait_event(sync_rcu_preempt_exp_wq,
867 sync_rcu_preempt_exp_done(rnp));
868
869 /* Clean up and exit. */
870 smp_mb(); /* ensure expedited GP seen before counter increment. */
871 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
872 unlock_mb_ret:
873 mutex_unlock(&sync_rcu_preempt_exp_mutex);
874 mb_ret:
875 smp_mb(); /* ensure subsequent action seen after grace period. */
876 }
877 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
878
879 /*
880 * Check to see if there is any immediate preemptible-RCU-related work
881 * to be done.
882 */
883 static int rcu_preempt_pending(int cpu)
884 {
885 return __rcu_pending(&rcu_preempt_state,
886 &per_cpu(rcu_preempt_data, cpu));
887 }
888
889 /*
890 * Does preemptible RCU need the CPU to stay out of dynticks mode?
891 */
892 static int rcu_preempt_needs_cpu(int cpu)
893 {
894 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
895 }
896
897 /**
898 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
899 */
900 void rcu_barrier(void)
901 {
902 _rcu_barrier(&rcu_preempt_state, call_rcu);
903 }
904 EXPORT_SYMBOL_GPL(rcu_barrier);
905
906 /*
907 * Initialize preemptible RCU's per-CPU data.
908 */
909 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
910 {
911 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
912 }
913
914 /*
915 * Move preemptible RCU's callbacks from dying CPU to other online CPU
916 * and record a quiescent state.
917 */
918 static void rcu_preempt_cleanup_dying_cpu(void)
919 {
920 rcu_cleanup_dying_cpu(&rcu_preempt_state);
921 }
922
923 /*
924 * Initialize preemptible RCU's state structures.
925 */
926 static void __init __rcu_init_preempt(void)
927 {
928 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
929 }
930
931 /*
932 * Check for a task exiting while in a preemptible-RCU read-side
933 * critical section, clean up if so. No need to issue warnings,
934 * as debug_check_no_locks_held() already does this if lockdep
935 * is enabled.
936 */
937 void exit_rcu(void)
938 {
939 struct task_struct *t = current;
940
941 if (t->rcu_read_lock_nesting == 0)
942 return;
943 t->rcu_read_lock_nesting = 1;
944 __rcu_read_unlock();
945 }
946
947 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
948
949 static struct rcu_state *rcu_state = &rcu_sched_state;
950
951 /*
952 * Tell them what RCU they are running.
953 */
954 static void __init rcu_bootup_announce(void)
955 {
956 printk(KERN_INFO "Hierarchical RCU implementation.\n");
957 rcu_bootup_announce_oddness();
958 }
959
960 /*
961 * Return the number of RCU batches processed thus far for debug & stats.
962 */
963 long rcu_batches_completed(void)
964 {
965 return rcu_batches_completed_sched();
966 }
967 EXPORT_SYMBOL_GPL(rcu_batches_completed);
968
969 /*
970 * Force a quiescent state for RCU, which, because there is no preemptible
971 * RCU, becomes the same as rcu-sched.
972 */
973 void rcu_force_quiescent_state(void)
974 {
975 rcu_sched_force_quiescent_state();
976 }
977 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
978
979 /*
980 * Because preemptible RCU does not exist, we never have to check for
981 * CPUs being in quiescent states.
982 */
983 static void rcu_preempt_note_context_switch(int cpu)
984 {
985 }
986
987 /*
988 * Because preemptible RCU does not exist, there are never any preempted
989 * RCU readers.
990 */
991 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
992 {
993 return 0;
994 }
995
996 #ifdef CONFIG_HOTPLUG_CPU
997
998 /* Because preemptible RCU does not exist, no quieting of tasks. */
999 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1000 {
1001 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1002 }
1003
1004 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1005
1006 /*
1007 * Because preemptible RCU does not exist, we never have to check for
1008 * tasks blocked within RCU read-side critical sections.
1009 */
1010 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1011 {
1012 }
1013
1014 /*
1015 * Because preemptible RCU does not exist, we never have to check for
1016 * tasks blocked within RCU read-side critical sections.
1017 */
1018 static int rcu_print_task_stall(struct rcu_node *rnp)
1019 {
1020 return 0;
1021 }
1022
1023 /*
1024 * Because preemptible RCU does not exist, there is no need to suppress
1025 * its CPU stall warnings.
1026 */
1027 static void rcu_preempt_stall_reset(void)
1028 {
1029 }
1030
1031 /*
1032 * Because there is no preemptible RCU, there can be no readers blocked,
1033 * so there is no need to check for blocked tasks. So check only for
1034 * bogus qsmask values.
1035 */
1036 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1037 {
1038 WARN_ON_ONCE(rnp->qsmask);
1039 }
1040
1041 #ifdef CONFIG_HOTPLUG_CPU
1042
1043 /*
1044 * Because preemptible RCU does not exist, it never needs to migrate
1045 * tasks that were blocked within RCU read-side critical sections, and
1046 * such non-existent tasks cannot possibly have been blocking the current
1047 * grace period.
1048 */
1049 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1050 struct rcu_node *rnp,
1051 struct rcu_data *rdp)
1052 {
1053 return 0;
1054 }
1055
1056 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1057
1058 /*
1059 * Because preemptible RCU does not exist, it never needs CPU-offline
1060 * processing.
1061 */
1062 static void rcu_preempt_cleanup_dead_cpu(int cpu)
1063 {
1064 }
1065
1066 /*
1067 * Because preemptible RCU does not exist, it never has any callbacks
1068 * to check.
1069 */
1070 static void rcu_preempt_check_callbacks(int cpu)
1071 {
1072 }
1073
1074 /*
1075 * Because preemptible RCU does not exist, it never has any callbacks
1076 * to process.
1077 */
1078 static void rcu_preempt_process_callbacks(void)
1079 {
1080 }
1081
1082 /*
1083 * Queue an RCU callback for lazy invocation after a grace period.
1084 * This will likely be later named something like "call_rcu_lazy()",
1085 * but this change will require some way of tagging the lazy RCU
1086 * callbacks in the list of pending callbacks. Until then, this
1087 * function may only be called from __kfree_rcu().
1088 *
1089 * Because there is no preemptible RCU, we use RCU-sched instead.
1090 */
1091 void kfree_call_rcu(struct rcu_head *head,
1092 void (*func)(struct rcu_head *rcu))
1093 {
1094 __call_rcu(head, func, &rcu_sched_state, 1);
1095 }
1096 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1097
1098 /*
1099 * Wait for an rcu-preempt grace period, but make it happen quickly.
1100 * But because preemptible RCU does not exist, map to rcu-sched.
1101 */
1102 void synchronize_rcu_expedited(void)
1103 {
1104 synchronize_sched_expedited();
1105 }
1106 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1107
1108 #ifdef CONFIG_HOTPLUG_CPU
1109
1110 /*
1111 * Because preemptible RCU does not exist, there is never any need to
1112 * report on tasks preempted in RCU read-side critical sections during
1113 * expedited RCU grace periods.
1114 */
1115 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1116 bool wake)
1117 {
1118 }
1119
1120 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1121
1122 /*
1123 * Because preemptible RCU does not exist, it never has any work to do.
1124 */
1125 static int rcu_preempt_pending(int cpu)
1126 {
1127 return 0;
1128 }
1129
1130 /*
1131 * Because preemptible RCU does not exist, it never needs any CPU.
1132 */
1133 static int rcu_preempt_needs_cpu(int cpu)
1134 {
1135 return 0;
1136 }
1137
1138 /*
1139 * Because preemptible RCU does not exist, rcu_barrier() is just
1140 * another name for rcu_barrier_sched().
1141 */
1142 void rcu_barrier(void)
1143 {
1144 rcu_barrier_sched();
1145 }
1146 EXPORT_SYMBOL_GPL(rcu_barrier);
1147
1148 /*
1149 * Because preemptible RCU does not exist, there is no per-CPU
1150 * data to initialize.
1151 */
1152 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1153 {
1154 }
1155
1156 /*
1157 * Because there is no preemptible RCU, there is no cleanup to do.
1158 */
1159 static void rcu_preempt_cleanup_dying_cpu(void)
1160 {
1161 }
1162
1163 /*
1164 * Because preemptible RCU does not exist, it need not be initialized.
1165 */
1166 static void __init __rcu_init_preempt(void)
1167 {
1168 }
1169
1170 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1171
1172 #ifdef CONFIG_RCU_BOOST
1173
1174 #include "rtmutex_common.h"
1175
1176 #ifdef CONFIG_RCU_TRACE
1177
1178 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1179 {
1180 if (list_empty(&rnp->blkd_tasks))
1181 rnp->n_balk_blkd_tasks++;
1182 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1183 rnp->n_balk_exp_gp_tasks++;
1184 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1185 rnp->n_balk_boost_tasks++;
1186 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1187 rnp->n_balk_notblocked++;
1188 else if (rnp->gp_tasks != NULL &&
1189 ULONG_CMP_LT(jiffies, rnp->boost_time))
1190 rnp->n_balk_notyet++;
1191 else
1192 rnp->n_balk_nos++;
1193 }
1194
1195 #else /* #ifdef CONFIG_RCU_TRACE */
1196
1197 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1198 {
1199 }
1200
1201 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1202
1203 /*
1204 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1205 * or ->boost_tasks, advancing the pointer to the next task in the
1206 * ->blkd_tasks list.
1207 *
1208 * Note that irqs must be enabled: boosting the task can block.
1209 * Returns 1 if there are more tasks needing to be boosted.
1210 */
1211 static int rcu_boost(struct rcu_node *rnp)
1212 {
1213 unsigned long flags;
1214 struct rt_mutex mtx;
1215 struct task_struct *t;
1216 struct list_head *tb;
1217
1218 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1219 return 0; /* Nothing left to boost. */
1220
1221 raw_spin_lock_irqsave(&rnp->lock, flags);
1222
1223 /*
1224 * Recheck under the lock: all tasks in need of boosting
1225 * might exit their RCU read-side critical sections on their own.
1226 */
1227 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1228 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1229 return 0;
1230 }
1231
1232 /*
1233 * Preferentially boost tasks blocking expedited grace periods.
1234 * This cannot starve the normal grace periods because a second
1235 * expedited grace period must boost all blocked tasks, including
1236 * those blocking the pre-existing normal grace period.
1237 */
1238 if (rnp->exp_tasks != NULL) {
1239 tb = rnp->exp_tasks;
1240 rnp->n_exp_boosts++;
1241 } else {
1242 tb = rnp->boost_tasks;
1243 rnp->n_normal_boosts++;
1244 }
1245 rnp->n_tasks_boosted++;
1246
1247 /*
1248 * We boost task t by manufacturing an rt_mutex that appears to
1249 * be held by task t. We leave a pointer to that rt_mutex where
1250 * task t can find it, and task t will release the mutex when it
1251 * exits its outermost RCU read-side critical section. Then
1252 * simply acquiring this artificial rt_mutex will boost task
1253 * t's priority. (Thanks to tglx for suggesting this approach!)
1254 *
1255 * Note that task t must acquire rnp->lock to remove itself from
1256 * the ->blkd_tasks list, which it will do from exit() if from
1257 * nowhere else. We therefore are guaranteed that task t will
1258 * stay around at least until we drop rnp->lock. Note that
1259 * rnp->lock also resolves races between our priority boosting
1260 * and task t's exiting its outermost RCU read-side critical
1261 * section.
1262 */
1263 t = container_of(tb, struct task_struct, rcu_node_entry);
1264 rt_mutex_init_proxy_locked(&mtx, t);
1265 t->rcu_boost_mutex = &mtx;
1266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1267 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1268 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1269
1270 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1271 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1272 }
1273
1274 /*
1275 * Timer handler to initiate waking up of boost kthreads that
1276 * have yielded the CPU due to excessive numbers of tasks to
1277 * boost. We wake up the per-rcu_node kthread, which in turn
1278 * will wake up the booster kthread.
1279 */
1280 static void rcu_boost_kthread_timer(unsigned long arg)
1281 {
1282 invoke_rcu_node_kthread((struct rcu_node *)arg);
1283 }
1284
1285 /*
1286 * Priority-boosting kthread. One per leaf rcu_node and one for the
1287 * root rcu_node.
1288 */
1289 static int rcu_boost_kthread(void *arg)
1290 {
1291 struct rcu_node *rnp = (struct rcu_node *)arg;
1292 int spincnt = 0;
1293 int more2boost;
1294
1295 trace_rcu_utilization("Start boost kthread@init");
1296 for (;;) {
1297 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1298 trace_rcu_utilization("End boost kthread@rcu_wait");
1299 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1300 trace_rcu_utilization("Start boost kthread@rcu_wait");
1301 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1302 more2boost = rcu_boost(rnp);
1303 if (more2boost)
1304 spincnt++;
1305 else
1306 spincnt = 0;
1307 if (spincnt > 10) {
1308 trace_rcu_utilization("End boost kthread@rcu_yield");
1309 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1310 trace_rcu_utilization("Start boost kthread@rcu_yield");
1311 spincnt = 0;
1312 }
1313 }
1314 /* NOTREACHED */
1315 trace_rcu_utilization("End boost kthread@notreached");
1316 return 0;
1317 }
1318
1319 /*
1320 * Check to see if it is time to start boosting RCU readers that are
1321 * blocking the current grace period, and, if so, tell the per-rcu_node
1322 * kthread to start boosting them. If there is an expedited grace
1323 * period in progress, it is always time to boost.
1324 *
1325 * The caller must hold rnp->lock, which this function releases,
1326 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1327 * so we don't need to worry about it going away.
1328 */
1329 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1330 {
1331 struct task_struct *t;
1332
1333 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1334 rnp->n_balk_exp_gp_tasks++;
1335 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1336 return;
1337 }
1338 if (rnp->exp_tasks != NULL ||
1339 (rnp->gp_tasks != NULL &&
1340 rnp->boost_tasks == NULL &&
1341 rnp->qsmask == 0 &&
1342 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1343 if (rnp->exp_tasks == NULL)
1344 rnp->boost_tasks = rnp->gp_tasks;
1345 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1346 t = rnp->boost_kthread_task;
1347 if (t != NULL)
1348 wake_up_process(t);
1349 } else {
1350 rcu_initiate_boost_trace(rnp);
1351 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1352 }
1353 }
1354
1355 /*
1356 * Wake up the per-CPU kthread to invoke RCU callbacks.
1357 */
1358 static void invoke_rcu_callbacks_kthread(void)
1359 {
1360 unsigned long flags;
1361
1362 local_irq_save(flags);
1363 __this_cpu_write(rcu_cpu_has_work, 1);
1364 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1365 current != __this_cpu_read(rcu_cpu_kthread_task))
1366 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1367 local_irq_restore(flags);
1368 }
1369
1370 /*
1371 * Is the current CPU running the RCU-callbacks kthread?
1372 * Caller must have preemption disabled.
1373 */
1374 static bool rcu_is_callbacks_kthread(void)
1375 {
1376 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1377 }
1378
1379 /*
1380 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1381 * held, so no one should be messing with the existence of the boost
1382 * kthread.
1383 */
1384 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1385 cpumask_var_t cm)
1386 {
1387 struct task_struct *t;
1388
1389 t = rnp->boost_kthread_task;
1390 if (t != NULL)
1391 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1392 }
1393
1394 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1395
1396 /*
1397 * Do priority-boost accounting for the start of a new grace period.
1398 */
1399 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1400 {
1401 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1402 }
1403
1404 /*
1405 * Create an RCU-boost kthread for the specified node if one does not
1406 * already exist. We only create this kthread for preemptible RCU.
1407 * Returns zero if all is well, a negated errno otherwise.
1408 */
1409 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1410 struct rcu_node *rnp,
1411 int rnp_index)
1412 {
1413 unsigned long flags;
1414 struct sched_param sp;
1415 struct task_struct *t;
1416
1417 if (&rcu_preempt_state != rsp)
1418 return 0;
1419 rsp->boost = 1;
1420 if (rnp->boost_kthread_task != NULL)
1421 return 0;
1422 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1423 "rcub/%d", rnp_index);
1424 if (IS_ERR(t))
1425 return PTR_ERR(t);
1426 raw_spin_lock_irqsave(&rnp->lock, flags);
1427 rnp->boost_kthread_task = t;
1428 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1429 sp.sched_priority = RCU_BOOST_PRIO;
1430 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1431 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1432 return 0;
1433 }
1434
1435 #ifdef CONFIG_HOTPLUG_CPU
1436
1437 /*
1438 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1439 */
1440 static void rcu_stop_cpu_kthread(int cpu)
1441 {
1442 struct task_struct *t;
1443
1444 /* Stop the CPU's kthread. */
1445 t = per_cpu(rcu_cpu_kthread_task, cpu);
1446 if (t != NULL) {
1447 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1448 kthread_stop(t);
1449 }
1450 }
1451
1452 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1453
1454 static void rcu_kthread_do_work(void)
1455 {
1456 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1457 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1458 rcu_preempt_do_callbacks();
1459 }
1460
1461 /*
1462 * Wake up the specified per-rcu_node-structure kthread.
1463 * Because the per-rcu_node kthreads are immortal, we don't need
1464 * to do anything to keep them alive.
1465 */
1466 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1467 {
1468 struct task_struct *t;
1469
1470 t = rnp->node_kthread_task;
1471 if (t != NULL)
1472 wake_up_process(t);
1473 }
1474
1475 /*
1476 * Set the specified CPU's kthread to run RT or not, as specified by
1477 * the to_rt argument. The CPU-hotplug locks are held, so the task
1478 * is not going away.
1479 */
1480 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1481 {
1482 int policy;
1483 struct sched_param sp;
1484 struct task_struct *t;
1485
1486 t = per_cpu(rcu_cpu_kthread_task, cpu);
1487 if (t == NULL)
1488 return;
1489 if (to_rt) {
1490 policy = SCHED_FIFO;
1491 sp.sched_priority = RCU_KTHREAD_PRIO;
1492 } else {
1493 policy = SCHED_NORMAL;
1494 sp.sched_priority = 0;
1495 }
1496 sched_setscheduler_nocheck(t, policy, &sp);
1497 }
1498
1499 /*
1500 * Timer handler to initiate the waking up of per-CPU kthreads that
1501 * have yielded the CPU due to excess numbers of RCU callbacks.
1502 * We wake up the per-rcu_node kthread, which in turn will wake up
1503 * the booster kthread.
1504 */
1505 static void rcu_cpu_kthread_timer(unsigned long arg)
1506 {
1507 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1508 struct rcu_node *rnp = rdp->mynode;
1509
1510 atomic_or(rdp->grpmask, &rnp->wakemask);
1511 invoke_rcu_node_kthread(rnp);
1512 }
1513
1514 /*
1515 * Drop to non-real-time priority and yield, but only after posting a
1516 * timer that will cause us to regain our real-time priority if we
1517 * remain preempted. Either way, we restore our real-time priority
1518 * before returning.
1519 */
1520 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1521 {
1522 struct sched_param sp;
1523 struct timer_list yield_timer;
1524 int prio = current->rt_priority;
1525
1526 setup_timer_on_stack(&yield_timer, f, arg);
1527 mod_timer(&yield_timer, jiffies + 2);
1528 sp.sched_priority = 0;
1529 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1530 set_user_nice(current, 19);
1531 schedule();
1532 set_user_nice(current, 0);
1533 sp.sched_priority = prio;
1534 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1535 del_timer(&yield_timer);
1536 }
1537
1538 /*
1539 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1540 * This can happen while the corresponding CPU is either coming online
1541 * or going offline. We cannot wait until the CPU is fully online
1542 * before starting the kthread, because the various notifier functions
1543 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1544 * the corresponding CPU is online.
1545 *
1546 * Return 1 if the kthread needs to stop, 0 otherwise.
1547 *
1548 * Caller must disable bh. This function can momentarily enable it.
1549 */
1550 static int rcu_cpu_kthread_should_stop(int cpu)
1551 {
1552 while (cpu_is_offline(cpu) ||
1553 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1554 smp_processor_id() != cpu) {
1555 if (kthread_should_stop())
1556 return 1;
1557 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1558 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1559 local_bh_enable();
1560 schedule_timeout_uninterruptible(1);
1561 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1562 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1563 local_bh_disable();
1564 }
1565 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1566 return 0;
1567 }
1568
1569 /*
1570 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1571 * RCU softirq used in flavors and configurations of RCU that do not
1572 * support RCU priority boosting.
1573 */
1574 static int rcu_cpu_kthread(void *arg)
1575 {
1576 int cpu = (int)(long)arg;
1577 unsigned long flags;
1578 int spincnt = 0;
1579 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1580 char work;
1581 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1582
1583 trace_rcu_utilization("Start CPU kthread@init");
1584 for (;;) {
1585 *statusp = RCU_KTHREAD_WAITING;
1586 trace_rcu_utilization("End CPU kthread@rcu_wait");
1587 rcu_wait(*workp != 0 || kthread_should_stop());
1588 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1589 local_bh_disable();
1590 if (rcu_cpu_kthread_should_stop(cpu)) {
1591 local_bh_enable();
1592 break;
1593 }
1594 *statusp = RCU_KTHREAD_RUNNING;
1595 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1596 local_irq_save(flags);
1597 work = *workp;
1598 *workp = 0;
1599 local_irq_restore(flags);
1600 if (work)
1601 rcu_kthread_do_work();
1602 local_bh_enable();
1603 if (*workp != 0)
1604 spincnt++;
1605 else
1606 spincnt = 0;
1607 if (spincnt > 10) {
1608 *statusp = RCU_KTHREAD_YIELDING;
1609 trace_rcu_utilization("End CPU kthread@rcu_yield");
1610 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1611 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1612 spincnt = 0;
1613 }
1614 }
1615 *statusp = RCU_KTHREAD_STOPPED;
1616 trace_rcu_utilization("End CPU kthread@term");
1617 return 0;
1618 }
1619
1620 /*
1621 * Spawn a per-CPU kthread, setting up affinity and priority.
1622 * Because the CPU hotplug lock is held, no other CPU will be attempting
1623 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1624 * attempting to access it during boot, but the locking in kthread_bind()
1625 * will enforce sufficient ordering.
1626 *
1627 * Please note that we cannot simply refuse to wake up the per-CPU
1628 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1629 * which can result in softlockup complaints if the task ends up being
1630 * idle for more than a couple of minutes.
1631 *
1632 * However, please note also that we cannot bind the per-CPU kthread to its
1633 * CPU until that CPU is fully online. We also cannot wait until the
1634 * CPU is fully online before we create its per-CPU kthread, as this would
1635 * deadlock the system when CPU notifiers tried waiting for grace
1636 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1637 * is online. If its CPU is not yet fully online, then the code in
1638 * rcu_cpu_kthread() will wait until it is fully online, and then do
1639 * the binding.
1640 */
1641 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1642 {
1643 struct sched_param sp;
1644 struct task_struct *t;
1645
1646 if (!rcu_scheduler_fully_active ||
1647 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1648 return 0;
1649 t = kthread_create_on_node(rcu_cpu_kthread,
1650 (void *)(long)cpu,
1651 cpu_to_node(cpu),
1652 "rcuc/%d", cpu);
1653 if (IS_ERR(t))
1654 return PTR_ERR(t);
1655 if (cpu_online(cpu))
1656 kthread_bind(t, cpu);
1657 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1658 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1659 sp.sched_priority = RCU_KTHREAD_PRIO;
1660 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1661 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1662 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1663 return 0;
1664 }
1665
1666 /*
1667 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1668 * kthreads when needed. We ignore requests to wake up kthreads
1669 * for offline CPUs, which is OK because force_quiescent_state()
1670 * takes care of this case.
1671 */
1672 static int rcu_node_kthread(void *arg)
1673 {
1674 int cpu;
1675 unsigned long flags;
1676 unsigned long mask;
1677 struct rcu_node *rnp = (struct rcu_node *)arg;
1678 struct sched_param sp;
1679 struct task_struct *t;
1680
1681 for (;;) {
1682 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1683 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1684 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1685 raw_spin_lock_irqsave(&rnp->lock, flags);
1686 mask = atomic_xchg(&rnp->wakemask, 0);
1687 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1688 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1689 if ((mask & 0x1) == 0)
1690 continue;
1691 preempt_disable();
1692 t = per_cpu(rcu_cpu_kthread_task, cpu);
1693 if (!cpu_online(cpu) || t == NULL) {
1694 preempt_enable();
1695 continue;
1696 }
1697 per_cpu(rcu_cpu_has_work, cpu) = 1;
1698 sp.sched_priority = RCU_KTHREAD_PRIO;
1699 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1700 preempt_enable();
1701 }
1702 }
1703 /* NOTREACHED */
1704 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1705 return 0;
1706 }
1707
1708 /*
1709 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1710 * served by the rcu_node in question. The CPU hotplug lock is still
1711 * held, so the value of rnp->qsmaskinit will be stable.
1712 *
1713 * We don't include outgoingcpu in the affinity set, use -1 if there is
1714 * no outgoing CPU. If there are no CPUs left in the affinity set,
1715 * this function allows the kthread to execute on any CPU.
1716 */
1717 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1718 {
1719 cpumask_var_t cm;
1720 int cpu;
1721 unsigned long mask = rnp->qsmaskinit;
1722
1723 if (rnp->node_kthread_task == NULL)
1724 return;
1725 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1726 return;
1727 cpumask_clear(cm);
1728 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1729 if ((mask & 0x1) && cpu != outgoingcpu)
1730 cpumask_set_cpu(cpu, cm);
1731 if (cpumask_weight(cm) == 0) {
1732 cpumask_setall(cm);
1733 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1734 cpumask_clear_cpu(cpu, cm);
1735 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1736 }
1737 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1738 rcu_boost_kthread_setaffinity(rnp, cm);
1739 free_cpumask_var(cm);
1740 }
1741
1742 /*
1743 * Spawn a per-rcu_node kthread, setting priority and affinity.
1744 * Called during boot before online/offline can happen, or, if
1745 * during runtime, with the main CPU-hotplug locks held. So only
1746 * one of these can be executing at a time.
1747 */
1748 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1749 struct rcu_node *rnp)
1750 {
1751 unsigned long flags;
1752 int rnp_index = rnp - &rsp->node[0];
1753 struct sched_param sp;
1754 struct task_struct *t;
1755
1756 if (!rcu_scheduler_fully_active ||
1757 rnp->qsmaskinit == 0)
1758 return 0;
1759 if (rnp->node_kthread_task == NULL) {
1760 t = kthread_create(rcu_node_kthread, (void *)rnp,
1761 "rcun/%d", rnp_index);
1762 if (IS_ERR(t))
1763 return PTR_ERR(t);
1764 raw_spin_lock_irqsave(&rnp->lock, flags);
1765 rnp->node_kthread_task = t;
1766 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1767 sp.sched_priority = 99;
1768 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1769 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1770 }
1771 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1772 }
1773
1774 /*
1775 * Spawn all kthreads -- called as soon as the scheduler is running.
1776 */
1777 static int __init rcu_spawn_kthreads(void)
1778 {
1779 int cpu;
1780 struct rcu_node *rnp;
1781
1782 rcu_scheduler_fully_active = 1;
1783 for_each_possible_cpu(cpu) {
1784 per_cpu(rcu_cpu_has_work, cpu) = 0;
1785 if (cpu_online(cpu))
1786 (void)rcu_spawn_one_cpu_kthread(cpu);
1787 }
1788 rnp = rcu_get_root(rcu_state);
1789 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1790 if (NUM_RCU_NODES > 1) {
1791 rcu_for_each_leaf_node(rcu_state, rnp)
1792 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1793 }
1794 return 0;
1795 }
1796 early_initcall(rcu_spawn_kthreads);
1797
1798 static void __cpuinit rcu_prepare_kthreads(int cpu)
1799 {
1800 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1801 struct rcu_node *rnp = rdp->mynode;
1802
1803 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1804 if (rcu_scheduler_fully_active) {
1805 (void)rcu_spawn_one_cpu_kthread(cpu);
1806 if (rnp->node_kthread_task == NULL)
1807 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1808 }
1809 }
1810
1811 #else /* #ifdef CONFIG_RCU_BOOST */
1812
1813 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1814 {
1815 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1816 }
1817
1818 static void invoke_rcu_callbacks_kthread(void)
1819 {
1820 WARN_ON_ONCE(1);
1821 }
1822
1823 static bool rcu_is_callbacks_kthread(void)
1824 {
1825 return false;
1826 }
1827
1828 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1829 {
1830 }
1831
1832 #ifdef CONFIG_HOTPLUG_CPU
1833
1834 static void rcu_stop_cpu_kthread(int cpu)
1835 {
1836 }
1837
1838 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1839
1840 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1841 {
1842 }
1843
1844 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1845 {
1846 }
1847
1848 static int __init rcu_scheduler_really_started(void)
1849 {
1850 rcu_scheduler_fully_active = 1;
1851 return 0;
1852 }
1853 early_initcall(rcu_scheduler_really_started);
1854
1855 static void __cpuinit rcu_prepare_kthreads(int cpu)
1856 {
1857 }
1858
1859 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1860
1861 #ifndef CONFIG_SMP
1862
1863 void synchronize_sched_expedited(void)
1864 {
1865 cond_resched();
1866 }
1867 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1868
1869 #else /* #ifndef CONFIG_SMP */
1870
1871 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1872 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1873
1874 static int synchronize_sched_expedited_cpu_stop(void *data)
1875 {
1876 /*
1877 * There must be a full memory barrier on each affected CPU
1878 * between the time that try_stop_cpus() is called and the
1879 * time that it returns.
1880 *
1881 * In the current initial implementation of cpu_stop, the
1882 * above condition is already met when the control reaches
1883 * this point and the following smp_mb() is not strictly
1884 * necessary. Do smp_mb() anyway for documentation and
1885 * robustness against future implementation changes.
1886 */
1887 smp_mb(); /* See above comment block. */
1888 return 0;
1889 }
1890
1891 /*
1892 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1893 * approach to force grace period to end quickly. This consumes
1894 * significant time on all CPUs, and is thus not recommended for
1895 * any sort of common-case code.
1896 *
1897 * Note that it is illegal to call this function while holding any
1898 * lock that is acquired by a CPU-hotplug notifier. Failing to
1899 * observe this restriction will result in deadlock.
1900 *
1901 * This implementation can be thought of as an application of ticket
1902 * locking to RCU, with sync_sched_expedited_started and
1903 * sync_sched_expedited_done taking on the roles of the halves
1904 * of the ticket-lock word. Each task atomically increments
1905 * sync_sched_expedited_started upon entry, snapshotting the old value,
1906 * then attempts to stop all the CPUs. If this succeeds, then each
1907 * CPU will have executed a context switch, resulting in an RCU-sched
1908 * grace period. We are then done, so we use atomic_cmpxchg() to
1909 * update sync_sched_expedited_done to match our snapshot -- but
1910 * only if someone else has not already advanced past our snapshot.
1911 *
1912 * On the other hand, if try_stop_cpus() fails, we check the value
1913 * of sync_sched_expedited_done. If it has advanced past our
1914 * initial snapshot, then someone else must have forced a grace period
1915 * some time after we took our snapshot. In this case, our work is
1916 * done for us, and we can simply return. Otherwise, we try again,
1917 * but keep our initial snapshot for purposes of checking for someone
1918 * doing our work for us.
1919 *
1920 * If we fail too many times in a row, we fall back to synchronize_sched().
1921 */
1922 void synchronize_sched_expedited(void)
1923 {
1924 int firstsnap, s, snap, trycount = 0;
1925
1926 /* Note that atomic_inc_return() implies full memory barrier. */
1927 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1928 get_online_cpus();
1929
1930 /*
1931 * Each pass through the following loop attempts to force a
1932 * context switch on each CPU.
1933 */
1934 while (try_stop_cpus(cpu_online_mask,
1935 synchronize_sched_expedited_cpu_stop,
1936 NULL) == -EAGAIN) {
1937 put_online_cpus();
1938
1939 /* No joy, try again later. Or just synchronize_sched(). */
1940 if (trycount++ < 10)
1941 udelay(trycount * num_online_cpus());
1942 else {
1943 synchronize_sched();
1944 return;
1945 }
1946
1947 /* Check to see if someone else did our work for us. */
1948 s = atomic_read(&sync_sched_expedited_done);
1949 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1950 smp_mb(); /* ensure test happens before caller kfree */
1951 return;
1952 }
1953
1954 /*
1955 * Refetching sync_sched_expedited_started allows later
1956 * callers to piggyback on our grace period. We subtract
1957 * 1 to get the same token that the last incrementer got.
1958 * We retry after they started, so our grace period works
1959 * for them, and they started after our first try, so their
1960 * grace period works for us.
1961 */
1962 get_online_cpus();
1963 snap = atomic_read(&sync_sched_expedited_started);
1964 smp_mb(); /* ensure read is before try_stop_cpus(). */
1965 }
1966
1967 /*
1968 * Everyone up to our most recent fetch is covered by our grace
1969 * period. Update the counter, but only if our work is still
1970 * relevant -- which it won't be if someone who started later
1971 * than we did beat us to the punch.
1972 */
1973 do {
1974 s = atomic_read(&sync_sched_expedited_done);
1975 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1976 smp_mb(); /* ensure test happens before caller kfree */
1977 break;
1978 }
1979 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1980
1981 put_online_cpus();
1982 }
1983 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1984
1985 #endif /* #else #ifndef CONFIG_SMP */
1986
1987 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1988
1989 /*
1990 * Check to see if any future RCU-related work will need to be done
1991 * by the current CPU, even if none need be done immediately, returning
1992 * 1 if so. This function is part of the RCU implementation; it is -not-
1993 * an exported member of the RCU API.
1994 *
1995 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1996 * any flavor of RCU.
1997 */
1998 int rcu_needs_cpu(int cpu)
1999 {
2000 return rcu_cpu_has_callbacks(cpu);
2001 }
2002
2003 /*
2004 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
2005 */
2006 static void rcu_prepare_for_idle_init(int cpu)
2007 {
2008 }
2009
2010 /*
2011 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
2012 * after it.
2013 */
2014 static void rcu_cleanup_after_idle(int cpu)
2015 {
2016 }
2017
2018 /*
2019 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=y,
2020 * is nothing.
2021 */
2022 static void rcu_prepare_for_idle(int cpu)
2023 {
2024 }
2025
2026 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
2027
2028 /*
2029 * This code is invoked when a CPU goes idle, at which point we want
2030 * to have the CPU do everything required for RCU so that it can enter
2031 * the energy-efficient dyntick-idle mode. This is handled by a
2032 * state machine implemented by rcu_prepare_for_idle() below.
2033 *
2034 * The following three proprocessor symbols control this state machine:
2035 *
2036 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
2037 * to satisfy RCU. Beyond this point, it is better to incur a periodic
2038 * scheduling-clock interrupt than to loop through the state machine
2039 * at full power.
2040 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
2041 * optional if RCU does not need anything immediately from this
2042 * CPU, even if this CPU still has RCU callbacks queued. The first
2043 * times through the state machine are mandatory: we need to give
2044 * the state machine a chance to communicate a quiescent state
2045 * to the RCU core.
2046 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
2047 * to sleep in dyntick-idle mode with RCU callbacks pending. This
2048 * is sized to be roughly one RCU grace period. Those energy-efficiency
2049 * benchmarkers who might otherwise be tempted to set this to a large
2050 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
2051 * system. And if you are -that- concerned about energy efficiency,
2052 * just power the system down and be done with it!
2053 *
2054 * The values below work well in practice. If future workloads require
2055 * adjustment, they can be converted into kernel config parameters, though
2056 * making the state machine smarter might be a better option.
2057 */
2058 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
2059 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
2060 #define RCU_IDLE_GP_DELAY 6 /* Roughly one grace period. */
2061
2062 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
2063 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
2064 static DEFINE_PER_CPU(struct hrtimer, rcu_idle_gp_timer);
2065 static ktime_t rcu_idle_gp_wait;
2066
2067 /*
2068 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
2069 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
2070 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
2071 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
2072 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
2073 * it is better to incur scheduling-clock interrupts than to spin
2074 * continuously for the same time duration!
2075 */
2076 int rcu_needs_cpu(int cpu)
2077 {
2078 /* If no callbacks, RCU doesn't need the CPU. */
2079 if (!rcu_cpu_has_callbacks(cpu))
2080 return 0;
2081 /* Otherwise, RCU needs the CPU only if it recently tried and failed. */
2082 return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
2083 }
2084
2085 /*
2086 * Does the specified flavor of RCU have non-lazy callbacks pending on
2087 * the specified CPU? Both RCU flavor and CPU are specified by the
2088 * rcu_data structure.
2089 */
2090 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
2091 {
2092 return rdp->qlen != rdp->qlen_lazy;
2093 }
2094
2095 #ifdef CONFIG_TREE_PREEMPT_RCU
2096
2097 /*
2098 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
2099 * is no RCU-preempt in the kernel.)
2100 */
2101 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2102 {
2103 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
2104
2105 return __rcu_cpu_has_nonlazy_callbacks(rdp);
2106 }
2107
2108 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2109
2110 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
2111 {
2112 return 0;
2113 }
2114
2115 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
2116
2117 /*
2118 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
2119 */
2120 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
2121 {
2122 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
2123 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
2124 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
2125 }
2126
2127 /*
2128 * Timer handler used to force CPU to start pushing its remaining RCU
2129 * callbacks in the case where it entered dyntick-idle mode with callbacks
2130 * pending. The hander doesn't really need to do anything because the
2131 * real work is done upon re-entry to idle, or by the next scheduling-clock
2132 * interrupt should idle not be re-entered.
2133 */
2134 static enum hrtimer_restart rcu_idle_gp_timer_func(struct hrtimer *hrtp)
2135 {
2136 trace_rcu_prep_idle("Timer");
2137 return HRTIMER_NORESTART;
2138 }
2139
2140 /*
2141 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
2142 */
2143 static void rcu_prepare_for_idle_init(int cpu)
2144 {
2145 static int firsttime = 1;
2146 struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);
2147
2148 hrtimer_init(hrtp, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2149 hrtp->function = rcu_idle_gp_timer_func;
2150 if (firsttime) {
2151 unsigned int upj = jiffies_to_usecs(RCU_IDLE_GP_DELAY);
2152
2153 rcu_idle_gp_wait = ns_to_ktime(upj * (u64)1000);
2154 firsttime = 0;
2155 }
2156 }
2157
2158 /*
2159 * Clean up for exit from idle. Because we are exiting from idle, there
2160 * is no longer any point to rcu_idle_gp_timer, so cancel it. This will
2161 * do nothing if this timer is not active, so just cancel it unconditionally.
2162 */
2163 static void rcu_cleanup_after_idle(int cpu)
2164 {
2165 hrtimer_cancel(&per_cpu(rcu_idle_gp_timer, cpu));
2166 }
2167
2168 /*
2169 * Check to see if any RCU-related work can be done by the current CPU,
2170 * and if so, schedule a softirq to get it done. This function is part
2171 * of the RCU implementation; it is -not- an exported member of the RCU API.
2172 *
2173 * The idea is for the current CPU to clear out all work required by the
2174 * RCU core for the current grace period, so that this CPU can be permitted
2175 * to enter dyntick-idle mode. In some cases, it will need to be awakened
2176 * at the end of the grace period by whatever CPU ends the grace period.
2177 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
2178 * number of wakeups by a modest integer factor.
2179 *
2180 * Because it is not legal to invoke rcu_process_callbacks() with irqs
2181 * disabled, we do one pass of force_quiescent_state(), then do a
2182 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
2183 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
2184 *
2185 * The caller must have disabled interrupts.
2186 */
2187 static void rcu_prepare_for_idle(int cpu)
2188 {
2189 unsigned long flags;
2190
2191 local_irq_save(flags);
2192
2193 /*
2194 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2195 * Also reset state to avoid prejudicing later attempts.
2196 */
2197 if (!rcu_cpu_has_callbacks(cpu)) {
2198 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2199 per_cpu(rcu_dyntick_drain, cpu) = 0;
2200 local_irq_restore(flags);
2201 trace_rcu_prep_idle("No callbacks");
2202 return;
2203 }
2204
2205 /*
2206 * If in holdoff mode, just return. We will presumably have
2207 * refrained from disabling the scheduling-clock tick.
2208 */
2209 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
2210 local_irq_restore(flags);
2211 trace_rcu_prep_idle("In holdoff");
2212 return;
2213 }
2214
2215 /* Check and update the rcu_dyntick_drain sequencing. */
2216 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2217 /* First time through, initialize the counter. */
2218 per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
2219 } else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
2220 !rcu_pending(cpu)) {
2221 /* Can we go dyntick-idle despite still having callbacks? */
2222 trace_rcu_prep_idle("Dyntick with callbacks");
2223 per_cpu(rcu_dyntick_drain, cpu) = 0;
2224 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2225 if (rcu_cpu_has_nonlazy_callbacks(cpu))
2226 hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
2227 rcu_idle_gp_wait, HRTIMER_MODE_REL);
2228 return; /* Nothing more to do immediately. */
2229 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2230 /* We have hit the limit, so time to give up. */
2231 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2232 local_irq_restore(flags);
2233 trace_rcu_prep_idle("Begin holdoff");
2234 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2235 return;
2236 }
2237
2238 /*
2239 * Do one step of pushing the remaining RCU callbacks through
2240 * the RCU core state machine.
2241 */
2242 #ifdef CONFIG_TREE_PREEMPT_RCU
2243 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2244 local_irq_restore(flags);
2245 rcu_preempt_qs(cpu);
2246 force_quiescent_state(&rcu_preempt_state, 0);
2247 local_irq_save(flags);
2248 }
2249 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2250 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2251 local_irq_restore(flags);
2252 rcu_sched_qs(cpu);
2253 force_quiescent_state(&rcu_sched_state, 0);
2254 local_irq_save(flags);
2255 }
2256 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2257 local_irq_restore(flags);
2258 rcu_bh_qs(cpu);
2259 force_quiescent_state(&rcu_bh_state, 0);
2260 local_irq_save(flags);
2261 }
2262
2263 /*
2264 * If RCU callbacks are still pending, RCU still needs this CPU.
2265 * So try forcing the callbacks through the grace period.
2266 */
2267 if (rcu_cpu_has_callbacks(cpu)) {
2268 local_irq_restore(flags);
2269 trace_rcu_prep_idle("More callbacks");
2270 invoke_rcu_core();
2271 } else {
2272 local_irq_restore(flags);
2273 trace_rcu_prep_idle("Callbacks drained");
2274 }
2275 }
2276
2277 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */