vfs: use ERR_CAST for err-ptr tossing in lookup_instantiate_filp
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
29
30 /*
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
34 */
35 static void __init rcu_bootup_announce_oddness(void)
36 {
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
39 #endif
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
42 CONFIG_RCU_FANOUT);
43 #endif
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
46 #endif
47 #ifdef CONFIG_RCU_FAST_NO_HZ
48 printk(KERN_INFO
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
50 #endif
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
56 #endif
57 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
59 #endif
60 #if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
62 #endif
63 }
64
65 #ifdef CONFIG_TREE_PREEMPT_RCU
66
67 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
68 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
69 static struct rcu_state *rcu_state = &rcu_preempt_state;
70
71 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
72
73 /*
74 * Tell them what RCU they are running.
75 */
76 static void __init rcu_bootup_announce(void)
77 {
78 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
79 rcu_bootup_announce_oddness();
80 }
81
82 /*
83 * Return the number of RCU-preempt batches processed thus far
84 * for debug and statistics.
85 */
86 long rcu_batches_completed_preempt(void)
87 {
88 return rcu_preempt_state.completed;
89 }
90 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
91
92 /*
93 * Return the number of RCU batches processed thus far for debug & stats.
94 */
95 long rcu_batches_completed(void)
96 {
97 return rcu_batches_completed_preempt();
98 }
99 EXPORT_SYMBOL_GPL(rcu_batches_completed);
100
101 /*
102 * Force a quiescent state for preemptible RCU.
103 */
104 void rcu_force_quiescent_state(void)
105 {
106 force_quiescent_state(&rcu_preempt_state, 0);
107 }
108 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
109
110 /*
111 * Record a preemptible-RCU quiescent state for the specified CPU. Note
112 * that this just means that the task currently running on the CPU is
113 * not in a quiescent state. There might be any number of tasks blocked
114 * while in an RCU read-side critical section.
115 *
116 * Unlike the other rcu_*_qs() functions, callers to this function
117 * must disable irqs in order to protect the assignment to
118 * ->rcu_read_unlock_special.
119 */
120 static void rcu_preempt_qs(int cpu)
121 {
122 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
123
124 rdp->passed_quiesc_completed = rdp->gpnum - 1;
125 barrier();
126 rdp->passed_quiesc = 1;
127 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
128 }
129
130 /*
131 * We have entered the scheduler, and the current task might soon be
132 * context-switched away from. If this task is in an RCU read-side
133 * critical section, we will no longer be able to rely on the CPU to
134 * record that fact, so we enqueue the task on the blkd_tasks list.
135 * The task will dequeue itself when it exits the outermost enclosing
136 * RCU read-side critical section. Therefore, the current grace period
137 * cannot be permitted to complete until the blkd_tasks list entries
138 * predating the current grace period drain, in other words, until
139 * rnp->gp_tasks becomes NULL.
140 *
141 * Caller must disable preemption.
142 */
143 static void rcu_preempt_note_context_switch(int cpu)
144 {
145 struct task_struct *t = current;
146 unsigned long flags;
147 struct rcu_data *rdp;
148 struct rcu_node *rnp;
149
150 if (t->rcu_read_lock_nesting &&
151 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
152
153 /* Possibly blocking in an RCU read-side critical section. */
154 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
155 rnp = rdp->mynode;
156 raw_spin_lock_irqsave(&rnp->lock, flags);
157 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
158 t->rcu_blocked_node = rnp;
159
160 /*
161 * If this CPU has already checked in, then this task
162 * will hold up the next grace period rather than the
163 * current grace period. Queue the task accordingly.
164 * If the task is queued for the current grace period
165 * (i.e., this CPU has not yet passed through a quiescent
166 * state for the current grace period), then as long
167 * as that task remains queued, the current grace period
168 * cannot end. Note that there is some uncertainty as
169 * to exactly when the current grace period started.
170 * We take a conservative approach, which can result
171 * in unnecessarily waiting on tasks that started very
172 * slightly after the current grace period began. C'est
173 * la vie!!!
174 *
175 * But first, note that the current CPU must still be
176 * on line!
177 */
178 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
179 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
181 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
182 rnp->gp_tasks = &t->rcu_node_entry;
183 #ifdef CONFIG_RCU_BOOST
184 if (rnp->boost_tasks != NULL)
185 rnp->boost_tasks = rnp->gp_tasks;
186 #endif /* #ifdef CONFIG_RCU_BOOST */
187 } else {
188 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
189 if (rnp->qsmask & rdp->grpmask)
190 rnp->gp_tasks = &t->rcu_node_entry;
191 }
192 raw_spin_unlock_irqrestore(&rnp->lock, flags);
193 }
194
195 /*
196 * Either we were not in an RCU read-side critical section to
197 * begin with, or we have now recorded that critical section
198 * globally. Either way, we can now note a quiescent state
199 * for this CPU. Again, if we were in an RCU read-side critical
200 * section, and if that critical section was blocking the current
201 * grace period, then the fact that the task has been enqueued
202 * means that we continue to block the current grace period.
203 */
204 local_irq_save(flags);
205 rcu_preempt_qs(cpu);
206 local_irq_restore(flags);
207 }
208
209 /*
210 * Tree-preemptible RCU implementation for rcu_read_lock().
211 * Just increment ->rcu_read_lock_nesting, shared state will be updated
212 * if we block.
213 */
214 void __rcu_read_lock(void)
215 {
216 current->rcu_read_lock_nesting++;
217 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
218 }
219 EXPORT_SYMBOL_GPL(__rcu_read_lock);
220
221 /*
222 * Check for preempted RCU readers blocking the current grace period
223 * for the specified rcu_node structure. If the caller needs a reliable
224 * answer, it must hold the rcu_node's ->lock.
225 */
226 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
227 {
228 return rnp->gp_tasks != NULL;
229 }
230
231 /*
232 * Record a quiescent state for all tasks that were previously queued
233 * on the specified rcu_node structure and that were blocking the current
234 * RCU grace period. The caller must hold the specified rnp->lock with
235 * irqs disabled, and this lock is released upon return, but irqs remain
236 * disabled.
237 */
238 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
239 __releases(rnp->lock)
240 {
241 unsigned long mask;
242 struct rcu_node *rnp_p;
243
244 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
245 raw_spin_unlock_irqrestore(&rnp->lock, flags);
246 return; /* Still need more quiescent states! */
247 }
248
249 rnp_p = rnp->parent;
250 if (rnp_p == NULL) {
251 /*
252 * Either there is only one rcu_node in the tree,
253 * or tasks were kicked up to root rcu_node due to
254 * CPUs going offline.
255 */
256 rcu_report_qs_rsp(&rcu_preempt_state, flags);
257 return;
258 }
259
260 /* Report up the rest of the hierarchy. */
261 mask = rnp->grpmask;
262 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
263 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
264 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
265 }
266
267 /*
268 * Advance a ->blkd_tasks-list pointer to the next entry, instead
269 * returning NULL if at the end of the list.
270 */
271 static struct list_head *rcu_next_node_entry(struct task_struct *t,
272 struct rcu_node *rnp)
273 {
274 struct list_head *np;
275
276 np = t->rcu_node_entry.next;
277 if (np == &rnp->blkd_tasks)
278 np = NULL;
279 return np;
280 }
281
282 /*
283 * Handle special cases during rcu_read_unlock(), such as needing to
284 * notify RCU core processing or task having blocked during the RCU
285 * read-side critical section.
286 */
287 static void rcu_read_unlock_special(struct task_struct *t)
288 {
289 int empty;
290 int empty_exp;
291 unsigned long flags;
292 struct list_head *np;
293 struct rcu_node *rnp;
294 int special;
295
296 /* NMI handlers cannot block and cannot safely manipulate state. */
297 if (in_nmi())
298 return;
299
300 local_irq_save(flags);
301
302 /*
303 * If RCU core is waiting for this CPU to exit critical section,
304 * let it know that we have done so.
305 */
306 special = t->rcu_read_unlock_special;
307 if (special & RCU_READ_UNLOCK_NEED_QS) {
308 rcu_preempt_qs(smp_processor_id());
309 }
310
311 /* Hardware IRQ handlers cannot block. */
312 if (in_irq()) {
313 local_irq_restore(flags);
314 return;
315 }
316
317 /* Clean up if blocked during RCU read-side critical section. */
318 if (special & RCU_READ_UNLOCK_BLOCKED) {
319 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
320
321 /*
322 * Remove this task from the list it blocked on. The
323 * task can migrate while we acquire the lock, but at
324 * most one time. So at most two passes through loop.
325 */
326 for (;;) {
327 rnp = t->rcu_blocked_node;
328 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
329 if (rnp == t->rcu_blocked_node)
330 break;
331 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
332 }
333 empty = !rcu_preempt_blocked_readers_cgp(rnp);
334 empty_exp = !rcu_preempted_readers_exp(rnp);
335 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
336 np = rcu_next_node_entry(t, rnp);
337 list_del_init(&t->rcu_node_entry);
338 if (&t->rcu_node_entry == rnp->gp_tasks)
339 rnp->gp_tasks = np;
340 if (&t->rcu_node_entry == rnp->exp_tasks)
341 rnp->exp_tasks = np;
342 #ifdef CONFIG_RCU_BOOST
343 if (&t->rcu_node_entry == rnp->boost_tasks)
344 rnp->boost_tasks = np;
345 #endif /* #ifdef CONFIG_RCU_BOOST */
346 t->rcu_blocked_node = NULL;
347
348 /*
349 * If this was the last task on the current list, and if
350 * we aren't waiting on any CPUs, report the quiescent state.
351 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
352 */
353 if (empty)
354 raw_spin_unlock_irqrestore(&rnp->lock, flags);
355 else
356 rcu_report_unblock_qs_rnp(rnp, flags);
357
358 #ifdef CONFIG_RCU_BOOST
359 /* Unboost if we were boosted. */
360 if (special & RCU_READ_UNLOCK_BOOSTED) {
361 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BOOSTED;
362 rt_mutex_unlock(t->rcu_boost_mutex);
363 t->rcu_boost_mutex = NULL;
364 }
365 #endif /* #ifdef CONFIG_RCU_BOOST */
366
367 /*
368 * If this was the last task on the expedited lists,
369 * then we need to report up the rcu_node hierarchy.
370 */
371 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
372 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
373 } else {
374 local_irq_restore(flags);
375 }
376 }
377
378 /*
379 * Tree-preemptible RCU implementation for rcu_read_unlock().
380 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
381 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
382 * invoke rcu_read_unlock_special() to clean up after a context switch
383 * in an RCU read-side critical section and other special cases.
384 */
385 void __rcu_read_unlock(void)
386 {
387 struct task_struct *t = current;
388
389 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
390 --t->rcu_read_lock_nesting;
391 barrier(); /* decrement before load of ->rcu_read_unlock_special */
392 if (t->rcu_read_lock_nesting == 0 &&
393 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
394 rcu_read_unlock_special(t);
395 #ifdef CONFIG_PROVE_LOCKING
396 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
397 #endif /* #ifdef CONFIG_PROVE_LOCKING */
398 }
399 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
400
401 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
402
403 /*
404 * Dump detailed information for all tasks blocking the current RCU
405 * grace period on the specified rcu_node structure.
406 */
407 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
408 {
409 unsigned long flags;
410 struct task_struct *t;
411
412 if (!rcu_preempt_blocked_readers_cgp(rnp))
413 return;
414 raw_spin_lock_irqsave(&rnp->lock, flags);
415 t = list_entry(rnp->gp_tasks,
416 struct task_struct, rcu_node_entry);
417 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
418 sched_show_task(t);
419 raw_spin_unlock_irqrestore(&rnp->lock, flags);
420 }
421
422 /*
423 * Dump detailed information for all tasks blocking the current RCU
424 * grace period.
425 */
426 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
427 {
428 struct rcu_node *rnp = rcu_get_root(rsp);
429
430 rcu_print_detail_task_stall_rnp(rnp);
431 rcu_for_each_leaf_node(rsp, rnp)
432 rcu_print_detail_task_stall_rnp(rnp);
433 }
434
435 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
436
437 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
438 {
439 }
440
441 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
442
443 /*
444 * Scan the current list of tasks blocked within RCU read-side critical
445 * sections, printing out the tid of each.
446 */
447 static void rcu_print_task_stall(struct rcu_node *rnp)
448 {
449 struct task_struct *t;
450
451 if (!rcu_preempt_blocked_readers_cgp(rnp))
452 return;
453 t = list_entry(rnp->gp_tasks,
454 struct task_struct, rcu_node_entry);
455 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
456 printk(" P%d", t->pid);
457 }
458
459 /*
460 * Suppress preemptible RCU's CPU stall warnings by pushing the
461 * time of the next stall-warning message comfortably far into the
462 * future.
463 */
464 static void rcu_preempt_stall_reset(void)
465 {
466 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
467 }
468
469 /*
470 * Check that the list of blocked tasks for the newly completed grace
471 * period is in fact empty. It is a serious bug to complete a grace
472 * period that still has RCU readers blocked! This function must be
473 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
474 * must be held by the caller.
475 *
476 * Also, if there are blocked tasks on the list, they automatically
477 * block the newly created grace period, so set up ->gp_tasks accordingly.
478 */
479 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
480 {
481 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
482 if (!list_empty(&rnp->blkd_tasks))
483 rnp->gp_tasks = rnp->blkd_tasks.next;
484 WARN_ON_ONCE(rnp->qsmask);
485 }
486
487 #ifdef CONFIG_HOTPLUG_CPU
488
489 /*
490 * Handle tasklist migration for case in which all CPUs covered by the
491 * specified rcu_node have gone offline. Move them up to the root
492 * rcu_node. The reason for not just moving them to the immediate
493 * parent is to remove the need for rcu_read_unlock_special() to
494 * make more than two attempts to acquire the target rcu_node's lock.
495 * Returns true if there were tasks blocking the current RCU grace
496 * period.
497 *
498 * Returns 1 if there was previously a task blocking the current grace
499 * period on the specified rcu_node structure.
500 *
501 * The caller must hold rnp->lock with irqs disabled.
502 */
503 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
504 struct rcu_node *rnp,
505 struct rcu_data *rdp)
506 {
507 struct list_head *lp;
508 struct list_head *lp_root;
509 int retval = 0;
510 struct rcu_node *rnp_root = rcu_get_root(rsp);
511 struct task_struct *t;
512
513 if (rnp == rnp_root) {
514 WARN_ONCE(1, "Last CPU thought to be offlined?");
515 return 0; /* Shouldn't happen: at least one CPU online. */
516 }
517
518 /* If we are on an internal node, complain bitterly. */
519 WARN_ON_ONCE(rnp != rdp->mynode);
520
521 /*
522 * Move tasks up to root rcu_node. Don't try to get fancy for
523 * this corner-case operation -- just put this node's tasks
524 * at the head of the root node's list, and update the root node's
525 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
526 * if non-NULL. This might result in waiting for more tasks than
527 * absolutely necessary, but this is a good performance/complexity
528 * tradeoff.
529 */
530 if (rcu_preempt_blocked_readers_cgp(rnp))
531 retval |= RCU_OFL_TASKS_NORM_GP;
532 if (rcu_preempted_readers_exp(rnp))
533 retval |= RCU_OFL_TASKS_EXP_GP;
534 lp = &rnp->blkd_tasks;
535 lp_root = &rnp_root->blkd_tasks;
536 while (!list_empty(lp)) {
537 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
538 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
539 list_del(&t->rcu_node_entry);
540 t->rcu_blocked_node = rnp_root;
541 list_add(&t->rcu_node_entry, lp_root);
542 if (&t->rcu_node_entry == rnp->gp_tasks)
543 rnp_root->gp_tasks = rnp->gp_tasks;
544 if (&t->rcu_node_entry == rnp->exp_tasks)
545 rnp_root->exp_tasks = rnp->exp_tasks;
546 #ifdef CONFIG_RCU_BOOST
547 if (&t->rcu_node_entry == rnp->boost_tasks)
548 rnp_root->boost_tasks = rnp->boost_tasks;
549 #endif /* #ifdef CONFIG_RCU_BOOST */
550 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
551 }
552
553 #ifdef CONFIG_RCU_BOOST
554 /* In case root is being boosted and leaf is not. */
555 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
556 if (rnp_root->boost_tasks != NULL &&
557 rnp_root->boost_tasks != rnp_root->gp_tasks)
558 rnp_root->boost_tasks = rnp_root->gp_tasks;
559 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
560 #endif /* #ifdef CONFIG_RCU_BOOST */
561
562 rnp->gp_tasks = NULL;
563 rnp->exp_tasks = NULL;
564 return retval;
565 }
566
567 /*
568 * Do CPU-offline processing for preemptible RCU.
569 */
570 static void rcu_preempt_offline_cpu(int cpu)
571 {
572 __rcu_offline_cpu(cpu, &rcu_preempt_state);
573 }
574
575 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
576
577 /*
578 * Check for a quiescent state from the current CPU. When a task blocks,
579 * the task is recorded in the corresponding CPU's rcu_node structure,
580 * which is checked elsewhere.
581 *
582 * Caller must disable hard irqs.
583 */
584 static void rcu_preempt_check_callbacks(int cpu)
585 {
586 struct task_struct *t = current;
587
588 if (t->rcu_read_lock_nesting == 0) {
589 rcu_preempt_qs(cpu);
590 return;
591 }
592 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
593 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
594 }
595
596 /*
597 * Process callbacks for preemptible RCU.
598 */
599 static void rcu_preempt_process_callbacks(void)
600 {
601 __rcu_process_callbacks(&rcu_preempt_state,
602 &__get_cpu_var(rcu_preempt_data));
603 }
604
605 #ifdef CONFIG_RCU_BOOST
606
607 static void rcu_preempt_do_callbacks(void)
608 {
609 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
610 }
611
612 #endif /* #ifdef CONFIG_RCU_BOOST */
613
614 /*
615 * Queue a preemptible-RCU callback for invocation after a grace period.
616 */
617 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
618 {
619 __call_rcu(head, func, &rcu_preempt_state);
620 }
621 EXPORT_SYMBOL_GPL(call_rcu);
622
623 /**
624 * synchronize_rcu - wait until a grace period has elapsed.
625 *
626 * Control will return to the caller some time after a full grace
627 * period has elapsed, in other words after all currently executing RCU
628 * read-side critical sections have completed. Note, however, that
629 * upon return from synchronize_rcu(), the caller might well be executing
630 * concurrently with new RCU read-side critical sections that began while
631 * synchronize_rcu() was waiting. RCU read-side critical sections are
632 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
633 */
634 void synchronize_rcu(void)
635 {
636 struct rcu_synchronize rcu;
637
638 if (!rcu_scheduler_active)
639 return;
640
641 init_rcu_head_on_stack(&rcu.head);
642 init_completion(&rcu.completion);
643 /* Will wake me after RCU finished. */
644 call_rcu(&rcu.head, wakeme_after_rcu);
645 /* Wait for it. */
646 wait_for_completion(&rcu.completion);
647 destroy_rcu_head_on_stack(&rcu.head);
648 }
649 EXPORT_SYMBOL_GPL(synchronize_rcu);
650
651 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
652 static long sync_rcu_preempt_exp_count;
653 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
654
655 /*
656 * Return non-zero if there are any tasks in RCU read-side critical
657 * sections blocking the current preemptible-RCU expedited grace period.
658 * If there is no preemptible-RCU expedited grace period currently in
659 * progress, returns zero unconditionally.
660 */
661 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
662 {
663 return rnp->exp_tasks != NULL;
664 }
665
666 /*
667 * return non-zero if there is no RCU expedited grace period in progress
668 * for the specified rcu_node structure, in other words, if all CPUs and
669 * tasks covered by the specified rcu_node structure have done their bit
670 * for the current expedited grace period. Works only for preemptible
671 * RCU -- other RCU implementation use other means.
672 *
673 * Caller must hold sync_rcu_preempt_exp_mutex.
674 */
675 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
676 {
677 return !rcu_preempted_readers_exp(rnp) &&
678 ACCESS_ONCE(rnp->expmask) == 0;
679 }
680
681 /*
682 * Report the exit from RCU read-side critical section for the last task
683 * that queued itself during or before the current expedited preemptible-RCU
684 * grace period. This event is reported either to the rcu_node structure on
685 * which the task was queued or to one of that rcu_node structure's ancestors,
686 * recursively up the tree. (Calm down, calm down, we do the recursion
687 * iteratively!)
688 *
689 * Caller must hold sync_rcu_preempt_exp_mutex.
690 */
691 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
692 {
693 unsigned long flags;
694 unsigned long mask;
695
696 raw_spin_lock_irqsave(&rnp->lock, flags);
697 for (;;) {
698 if (!sync_rcu_preempt_exp_done(rnp))
699 break;
700 if (rnp->parent == NULL) {
701 wake_up(&sync_rcu_preempt_exp_wq);
702 break;
703 }
704 mask = rnp->grpmask;
705 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
706 rnp = rnp->parent;
707 raw_spin_lock(&rnp->lock); /* irqs already disabled */
708 rnp->expmask &= ~mask;
709 }
710 raw_spin_unlock_irqrestore(&rnp->lock, flags);
711 }
712
713 /*
714 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
715 * grace period for the specified rcu_node structure. If there are no such
716 * tasks, report it up the rcu_node hierarchy.
717 *
718 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
719 */
720 static void
721 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
722 {
723 unsigned long flags;
724 int must_wait = 0;
725
726 raw_spin_lock_irqsave(&rnp->lock, flags);
727 if (list_empty(&rnp->blkd_tasks))
728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
729 else {
730 rnp->exp_tasks = rnp->blkd_tasks.next;
731 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
732 must_wait = 1;
733 }
734 if (!must_wait)
735 rcu_report_exp_rnp(rsp, rnp);
736 }
737
738 /*
739 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
740 * is to invoke synchronize_sched_expedited() to push all the tasks to
741 * the ->blkd_tasks lists and wait for this list to drain.
742 */
743 void synchronize_rcu_expedited(void)
744 {
745 unsigned long flags;
746 struct rcu_node *rnp;
747 struct rcu_state *rsp = &rcu_preempt_state;
748 long snap;
749 int trycount = 0;
750
751 smp_mb(); /* Caller's modifications seen first by other CPUs. */
752 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
753 smp_mb(); /* Above access cannot bleed into critical section. */
754
755 /*
756 * Acquire lock, falling back to synchronize_rcu() if too many
757 * lock-acquisition failures. Of course, if someone does the
758 * expedited grace period for us, just leave.
759 */
760 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
761 if (trycount++ < 10)
762 udelay(trycount * num_online_cpus());
763 else {
764 synchronize_rcu();
765 return;
766 }
767 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
768 goto mb_ret; /* Others did our work for us. */
769 }
770 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
771 goto unlock_mb_ret; /* Others did our work for us. */
772
773 /* force all RCU readers onto ->blkd_tasks lists. */
774 synchronize_sched_expedited();
775
776 raw_spin_lock_irqsave(&rsp->onofflock, flags);
777
778 /* Initialize ->expmask for all non-leaf rcu_node structures. */
779 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
780 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
781 rnp->expmask = rnp->qsmaskinit;
782 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
783 }
784
785 /* Snapshot current state of ->blkd_tasks lists. */
786 rcu_for_each_leaf_node(rsp, rnp)
787 sync_rcu_preempt_exp_init(rsp, rnp);
788 if (NUM_RCU_NODES > 1)
789 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
790
791 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
792
793 /* Wait for snapshotted ->blkd_tasks lists to drain. */
794 rnp = rcu_get_root(rsp);
795 wait_event(sync_rcu_preempt_exp_wq,
796 sync_rcu_preempt_exp_done(rnp));
797
798 /* Clean up and exit. */
799 smp_mb(); /* ensure expedited GP seen before counter increment. */
800 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
801 unlock_mb_ret:
802 mutex_unlock(&sync_rcu_preempt_exp_mutex);
803 mb_ret:
804 smp_mb(); /* ensure subsequent action seen after grace period. */
805 }
806 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
807
808 /*
809 * Check to see if there is any immediate preemptible-RCU-related work
810 * to be done.
811 */
812 static int rcu_preempt_pending(int cpu)
813 {
814 return __rcu_pending(&rcu_preempt_state,
815 &per_cpu(rcu_preempt_data, cpu));
816 }
817
818 /*
819 * Does preemptible RCU need the CPU to stay out of dynticks mode?
820 */
821 static int rcu_preempt_needs_cpu(int cpu)
822 {
823 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
824 }
825
826 /**
827 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
828 */
829 void rcu_barrier(void)
830 {
831 _rcu_barrier(&rcu_preempt_state, call_rcu);
832 }
833 EXPORT_SYMBOL_GPL(rcu_barrier);
834
835 /*
836 * Initialize preemptible RCU's per-CPU data.
837 */
838 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
839 {
840 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
841 }
842
843 /*
844 * Move preemptible RCU's callbacks from dying CPU to other online CPU.
845 */
846 static void rcu_preempt_send_cbs_to_online(void)
847 {
848 rcu_send_cbs_to_online(&rcu_preempt_state);
849 }
850
851 /*
852 * Initialize preemptible RCU's state structures.
853 */
854 static void __init __rcu_init_preempt(void)
855 {
856 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
857 }
858
859 /*
860 * Check for a task exiting while in a preemptible-RCU read-side
861 * critical section, clean up if so. No need to issue warnings,
862 * as debug_check_no_locks_held() already does this if lockdep
863 * is enabled.
864 */
865 void exit_rcu(void)
866 {
867 struct task_struct *t = current;
868
869 if (t->rcu_read_lock_nesting == 0)
870 return;
871 t->rcu_read_lock_nesting = 1;
872 __rcu_read_unlock();
873 }
874
875 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
876
877 static struct rcu_state *rcu_state = &rcu_sched_state;
878
879 /*
880 * Tell them what RCU they are running.
881 */
882 static void __init rcu_bootup_announce(void)
883 {
884 printk(KERN_INFO "Hierarchical RCU implementation.\n");
885 rcu_bootup_announce_oddness();
886 }
887
888 /*
889 * Return the number of RCU batches processed thus far for debug & stats.
890 */
891 long rcu_batches_completed(void)
892 {
893 return rcu_batches_completed_sched();
894 }
895 EXPORT_SYMBOL_GPL(rcu_batches_completed);
896
897 /*
898 * Force a quiescent state for RCU, which, because there is no preemptible
899 * RCU, becomes the same as rcu-sched.
900 */
901 void rcu_force_quiescent_state(void)
902 {
903 rcu_sched_force_quiescent_state();
904 }
905 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
906
907 /*
908 * Because preemptible RCU does not exist, we never have to check for
909 * CPUs being in quiescent states.
910 */
911 static void rcu_preempt_note_context_switch(int cpu)
912 {
913 }
914
915 /*
916 * Because preemptible RCU does not exist, there are never any preempted
917 * RCU readers.
918 */
919 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
920 {
921 return 0;
922 }
923
924 #ifdef CONFIG_HOTPLUG_CPU
925
926 /* Because preemptible RCU does not exist, no quieting of tasks. */
927 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
928 {
929 raw_spin_unlock_irqrestore(&rnp->lock, flags);
930 }
931
932 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
933
934 /*
935 * Because preemptible RCU does not exist, we never have to check for
936 * tasks blocked within RCU read-side critical sections.
937 */
938 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
939 {
940 }
941
942 /*
943 * Because preemptible RCU does not exist, we never have to check for
944 * tasks blocked within RCU read-side critical sections.
945 */
946 static void rcu_print_task_stall(struct rcu_node *rnp)
947 {
948 }
949
950 /*
951 * Because preemptible RCU does not exist, there is no need to suppress
952 * its CPU stall warnings.
953 */
954 static void rcu_preempt_stall_reset(void)
955 {
956 }
957
958 /*
959 * Because there is no preemptible RCU, there can be no readers blocked,
960 * so there is no need to check for blocked tasks. So check only for
961 * bogus qsmask values.
962 */
963 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
964 {
965 WARN_ON_ONCE(rnp->qsmask);
966 }
967
968 #ifdef CONFIG_HOTPLUG_CPU
969
970 /*
971 * Because preemptible RCU does not exist, it never needs to migrate
972 * tasks that were blocked within RCU read-side critical sections, and
973 * such non-existent tasks cannot possibly have been blocking the current
974 * grace period.
975 */
976 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
977 struct rcu_node *rnp,
978 struct rcu_data *rdp)
979 {
980 return 0;
981 }
982
983 /*
984 * Because preemptible RCU does not exist, it never needs CPU-offline
985 * processing.
986 */
987 static void rcu_preempt_offline_cpu(int cpu)
988 {
989 }
990
991 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
992
993 /*
994 * Because preemptible RCU does not exist, it never has any callbacks
995 * to check.
996 */
997 static void rcu_preempt_check_callbacks(int cpu)
998 {
999 }
1000
1001 /*
1002 * Because preemptible RCU does not exist, it never has any callbacks
1003 * to process.
1004 */
1005 static void rcu_preempt_process_callbacks(void)
1006 {
1007 }
1008
1009 /*
1010 * Wait for an rcu-preempt grace period, but make it happen quickly.
1011 * But because preemptible RCU does not exist, map to rcu-sched.
1012 */
1013 void synchronize_rcu_expedited(void)
1014 {
1015 synchronize_sched_expedited();
1016 }
1017 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1018
1019 #ifdef CONFIG_HOTPLUG_CPU
1020
1021 /*
1022 * Because preemptible RCU does not exist, there is never any need to
1023 * report on tasks preempted in RCU read-side critical sections during
1024 * expedited RCU grace periods.
1025 */
1026 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
1027 {
1028 return;
1029 }
1030
1031 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1032
1033 /*
1034 * Because preemptible RCU does not exist, it never has any work to do.
1035 */
1036 static int rcu_preempt_pending(int cpu)
1037 {
1038 return 0;
1039 }
1040
1041 /*
1042 * Because preemptible RCU does not exist, it never needs any CPU.
1043 */
1044 static int rcu_preempt_needs_cpu(int cpu)
1045 {
1046 return 0;
1047 }
1048
1049 /*
1050 * Because preemptible RCU does not exist, rcu_barrier() is just
1051 * another name for rcu_barrier_sched().
1052 */
1053 void rcu_barrier(void)
1054 {
1055 rcu_barrier_sched();
1056 }
1057 EXPORT_SYMBOL_GPL(rcu_barrier);
1058
1059 /*
1060 * Because preemptible RCU does not exist, there is no per-CPU
1061 * data to initialize.
1062 */
1063 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1064 {
1065 }
1066
1067 /*
1068 * Because there is no preemptible RCU, there are no callbacks to move.
1069 */
1070 static void rcu_preempt_send_cbs_to_online(void)
1071 {
1072 }
1073
1074 /*
1075 * Because preemptible RCU does not exist, it need not be initialized.
1076 */
1077 static void __init __rcu_init_preempt(void)
1078 {
1079 }
1080
1081 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1082
1083 #ifdef CONFIG_RCU_BOOST
1084
1085 #include "rtmutex_common.h"
1086
1087 #ifdef CONFIG_RCU_TRACE
1088
1089 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1090 {
1091 if (list_empty(&rnp->blkd_tasks))
1092 rnp->n_balk_blkd_tasks++;
1093 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1094 rnp->n_balk_exp_gp_tasks++;
1095 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1096 rnp->n_balk_boost_tasks++;
1097 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1098 rnp->n_balk_notblocked++;
1099 else if (rnp->gp_tasks != NULL &&
1100 ULONG_CMP_LT(jiffies, rnp->boost_time))
1101 rnp->n_balk_notyet++;
1102 else
1103 rnp->n_balk_nos++;
1104 }
1105
1106 #else /* #ifdef CONFIG_RCU_TRACE */
1107
1108 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1109 {
1110 }
1111
1112 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1113
1114 /*
1115 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1116 * or ->boost_tasks, advancing the pointer to the next task in the
1117 * ->blkd_tasks list.
1118 *
1119 * Note that irqs must be enabled: boosting the task can block.
1120 * Returns 1 if there are more tasks needing to be boosted.
1121 */
1122 static int rcu_boost(struct rcu_node *rnp)
1123 {
1124 unsigned long flags;
1125 struct rt_mutex mtx;
1126 struct task_struct *t;
1127 struct list_head *tb;
1128
1129 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1130 return 0; /* Nothing left to boost. */
1131
1132 raw_spin_lock_irqsave(&rnp->lock, flags);
1133
1134 /*
1135 * Recheck under the lock: all tasks in need of boosting
1136 * might exit their RCU read-side critical sections on their own.
1137 */
1138 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1139 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1140 return 0;
1141 }
1142
1143 /*
1144 * Preferentially boost tasks blocking expedited grace periods.
1145 * This cannot starve the normal grace periods because a second
1146 * expedited grace period must boost all blocked tasks, including
1147 * those blocking the pre-existing normal grace period.
1148 */
1149 if (rnp->exp_tasks != NULL) {
1150 tb = rnp->exp_tasks;
1151 rnp->n_exp_boosts++;
1152 } else {
1153 tb = rnp->boost_tasks;
1154 rnp->n_normal_boosts++;
1155 }
1156 rnp->n_tasks_boosted++;
1157
1158 /*
1159 * We boost task t by manufacturing an rt_mutex that appears to
1160 * be held by task t. We leave a pointer to that rt_mutex where
1161 * task t can find it, and task t will release the mutex when it
1162 * exits its outermost RCU read-side critical section. Then
1163 * simply acquiring this artificial rt_mutex will boost task
1164 * t's priority. (Thanks to tglx for suggesting this approach!)
1165 *
1166 * Note that task t must acquire rnp->lock to remove itself from
1167 * the ->blkd_tasks list, which it will do from exit() if from
1168 * nowhere else. We therefore are guaranteed that task t will
1169 * stay around at least until we drop rnp->lock. Note that
1170 * rnp->lock also resolves races between our priority boosting
1171 * and task t's exiting its outermost RCU read-side critical
1172 * section.
1173 */
1174 t = container_of(tb, struct task_struct, rcu_node_entry);
1175 rt_mutex_init_proxy_locked(&mtx, t);
1176 t->rcu_boost_mutex = &mtx;
1177 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BOOSTED;
1178 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1180 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1181
1182 return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
1183 }
1184
1185 /*
1186 * Timer handler to initiate waking up of boost kthreads that
1187 * have yielded the CPU due to excessive numbers of tasks to
1188 * boost. We wake up the per-rcu_node kthread, which in turn
1189 * will wake up the booster kthread.
1190 */
1191 static void rcu_boost_kthread_timer(unsigned long arg)
1192 {
1193 invoke_rcu_node_kthread((struct rcu_node *)arg);
1194 }
1195
1196 /*
1197 * Priority-boosting kthread. One per leaf rcu_node and one for the
1198 * root rcu_node.
1199 */
1200 static int rcu_boost_kthread(void *arg)
1201 {
1202 struct rcu_node *rnp = (struct rcu_node *)arg;
1203 int spincnt = 0;
1204 int more2boost;
1205
1206 for (;;) {
1207 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1208 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1209 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1210 more2boost = rcu_boost(rnp);
1211 if (more2boost)
1212 spincnt++;
1213 else
1214 spincnt = 0;
1215 if (spincnt > 10) {
1216 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1217 spincnt = 0;
1218 }
1219 }
1220 /* NOTREACHED */
1221 return 0;
1222 }
1223
1224 /*
1225 * Check to see if it is time to start boosting RCU readers that are
1226 * blocking the current grace period, and, if so, tell the per-rcu_node
1227 * kthread to start boosting them. If there is an expedited grace
1228 * period in progress, it is always time to boost.
1229 *
1230 * The caller must hold rnp->lock, which this function releases,
1231 * but irqs remain disabled. The ->boost_kthread_task is immortal,
1232 * so we don't need to worry about it going away.
1233 */
1234 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1235 {
1236 struct task_struct *t;
1237
1238 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1239 rnp->n_balk_exp_gp_tasks++;
1240 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1241 return;
1242 }
1243 if (rnp->exp_tasks != NULL ||
1244 (rnp->gp_tasks != NULL &&
1245 rnp->boost_tasks == NULL &&
1246 rnp->qsmask == 0 &&
1247 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1248 if (rnp->exp_tasks == NULL)
1249 rnp->boost_tasks = rnp->gp_tasks;
1250 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1251 t = rnp->boost_kthread_task;
1252 if (t != NULL)
1253 wake_up_process(t);
1254 } else {
1255 rcu_initiate_boost_trace(rnp);
1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1257 }
1258 }
1259
1260 /*
1261 * Wake up the per-CPU kthread to invoke RCU callbacks.
1262 */
1263 static void invoke_rcu_callbacks_kthread(void)
1264 {
1265 unsigned long flags;
1266
1267 local_irq_save(flags);
1268 __this_cpu_write(rcu_cpu_has_work, 1);
1269 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1270 local_irq_restore(flags);
1271 return;
1272 }
1273 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1274 local_irq_restore(flags);
1275 }
1276
1277 /*
1278 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1279 * held, so no one should be messing with the existence of the boost
1280 * kthread.
1281 */
1282 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1283 cpumask_var_t cm)
1284 {
1285 struct task_struct *t;
1286
1287 t = rnp->boost_kthread_task;
1288 if (t != NULL)
1289 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
1290 }
1291
1292 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1293
1294 /*
1295 * Do priority-boost accounting for the start of a new grace period.
1296 */
1297 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1298 {
1299 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1300 }
1301
1302 /*
1303 * Create an RCU-boost kthread for the specified node if one does not
1304 * already exist. We only create this kthread for preemptible RCU.
1305 * Returns zero if all is well, a negated errno otherwise.
1306 */
1307 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1308 struct rcu_node *rnp,
1309 int rnp_index)
1310 {
1311 unsigned long flags;
1312 struct sched_param sp;
1313 struct task_struct *t;
1314
1315 if (&rcu_preempt_state != rsp)
1316 return 0;
1317 rsp->boost = 1;
1318 if (rnp->boost_kthread_task != NULL)
1319 return 0;
1320 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1321 "rcub%d", rnp_index);
1322 if (IS_ERR(t))
1323 return PTR_ERR(t);
1324 raw_spin_lock_irqsave(&rnp->lock, flags);
1325 rnp->boost_kthread_task = t;
1326 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1327 sp.sched_priority = RCU_KTHREAD_PRIO;
1328 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1329 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1330 return 0;
1331 }
1332
1333 #ifdef CONFIG_HOTPLUG_CPU
1334
1335 /*
1336 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1337 */
1338 static void rcu_stop_cpu_kthread(int cpu)
1339 {
1340 struct task_struct *t;
1341
1342 /* Stop the CPU's kthread. */
1343 t = per_cpu(rcu_cpu_kthread_task, cpu);
1344 if (t != NULL) {
1345 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1346 kthread_stop(t);
1347 }
1348 }
1349
1350 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1351
1352 static void rcu_kthread_do_work(void)
1353 {
1354 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1355 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1356 rcu_preempt_do_callbacks();
1357 }
1358
1359 /*
1360 * Wake up the specified per-rcu_node-structure kthread.
1361 * Because the per-rcu_node kthreads are immortal, we don't need
1362 * to do anything to keep them alive.
1363 */
1364 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1365 {
1366 struct task_struct *t;
1367
1368 t = rnp->node_kthread_task;
1369 if (t != NULL)
1370 wake_up_process(t);
1371 }
1372
1373 /*
1374 * Set the specified CPU's kthread to run RT or not, as specified by
1375 * the to_rt argument. The CPU-hotplug locks are held, so the task
1376 * is not going away.
1377 */
1378 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1379 {
1380 int policy;
1381 struct sched_param sp;
1382 struct task_struct *t;
1383
1384 t = per_cpu(rcu_cpu_kthread_task, cpu);
1385 if (t == NULL)
1386 return;
1387 if (to_rt) {
1388 policy = SCHED_FIFO;
1389 sp.sched_priority = RCU_KTHREAD_PRIO;
1390 } else {
1391 policy = SCHED_NORMAL;
1392 sp.sched_priority = 0;
1393 }
1394 sched_setscheduler_nocheck(t, policy, &sp);
1395 }
1396
1397 /*
1398 * Timer handler to initiate the waking up of per-CPU kthreads that
1399 * have yielded the CPU due to excess numbers of RCU callbacks.
1400 * We wake up the per-rcu_node kthread, which in turn will wake up
1401 * the booster kthread.
1402 */
1403 static void rcu_cpu_kthread_timer(unsigned long arg)
1404 {
1405 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1406 struct rcu_node *rnp = rdp->mynode;
1407
1408 atomic_or(rdp->grpmask, &rnp->wakemask);
1409 invoke_rcu_node_kthread(rnp);
1410 }
1411
1412 /*
1413 * Drop to non-real-time priority and yield, but only after posting a
1414 * timer that will cause us to regain our real-time priority if we
1415 * remain preempted. Either way, we restore our real-time priority
1416 * before returning.
1417 */
1418 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1419 {
1420 struct sched_param sp;
1421 struct timer_list yield_timer;
1422
1423 setup_timer_on_stack(&yield_timer, f, arg);
1424 mod_timer(&yield_timer, jiffies + 2);
1425 sp.sched_priority = 0;
1426 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1427 set_user_nice(current, 19);
1428 schedule();
1429 sp.sched_priority = RCU_KTHREAD_PRIO;
1430 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1431 del_timer(&yield_timer);
1432 }
1433
1434 /*
1435 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1436 * This can happen while the corresponding CPU is either coming online
1437 * or going offline. We cannot wait until the CPU is fully online
1438 * before starting the kthread, because the various notifier functions
1439 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1440 * the corresponding CPU is online.
1441 *
1442 * Return 1 if the kthread needs to stop, 0 otherwise.
1443 *
1444 * Caller must disable bh. This function can momentarily enable it.
1445 */
1446 static int rcu_cpu_kthread_should_stop(int cpu)
1447 {
1448 while (cpu_is_offline(cpu) ||
1449 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1450 smp_processor_id() != cpu) {
1451 if (kthread_should_stop())
1452 return 1;
1453 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1454 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1455 local_bh_enable();
1456 schedule_timeout_uninterruptible(1);
1457 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1458 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1459 local_bh_disable();
1460 }
1461 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1462 return 0;
1463 }
1464
1465 /*
1466 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1467 * earlier RCU softirq.
1468 */
1469 static int rcu_cpu_kthread(void *arg)
1470 {
1471 int cpu = (int)(long)arg;
1472 unsigned long flags;
1473 int spincnt = 0;
1474 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1475 char work;
1476 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1477
1478 for (;;) {
1479 *statusp = RCU_KTHREAD_WAITING;
1480 rcu_wait(*workp != 0 || kthread_should_stop());
1481 local_bh_disable();
1482 if (rcu_cpu_kthread_should_stop(cpu)) {
1483 local_bh_enable();
1484 break;
1485 }
1486 *statusp = RCU_KTHREAD_RUNNING;
1487 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1488 local_irq_save(flags);
1489 work = *workp;
1490 *workp = 0;
1491 local_irq_restore(flags);
1492 if (work)
1493 rcu_kthread_do_work();
1494 local_bh_enable();
1495 if (*workp != 0)
1496 spincnt++;
1497 else
1498 spincnt = 0;
1499 if (spincnt > 10) {
1500 *statusp = RCU_KTHREAD_YIELDING;
1501 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1502 spincnt = 0;
1503 }
1504 }
1505 *statusp = RCU_KTHREAD_STOPPED;
1506 return 0;
1507 }
1508
1509 /*
1510 * Spawn a per-CPU kthread, setting up affinity and priority.
1511 * Because the CPU hotplug lock is held, no other CPU will be attempting
1512 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1513 * attempting to access it during boot, but the locking in kthread_bind()
1514 * will enforce sufficient ordering.
1515 *
1516 * Please note that we cannot simply refuse to wake up the per-CPU
1517 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1518 * which can result in softlockup complaints if the task ends up being
1519 * idle for more than a couple of minutes.
1520 *
1521 * However, please note also that we cannot bind the per-CPU kthread to its
1522 * CPU until that CPU is fully online. We also cannot wait until the
1523 * CPU is fully online before we create its per-CPU kthread, as this would
1524 * deadlock the system when CPU notifiers tried waiting for grace
1525 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1526 * is online. If its CPU is not yet fully online, then the code in
1527 * rcu_cpu_kthread() will wait until it is fully online, and then do
1528 * the binding.
1529 */
1530 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1531 {
1532 struct sched_param sp;
1533 struct task_struct *t;
1534
1535 if (!rcu_scheduler_fully_active ||
1536 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1537 return 0;
1538 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1539 if (IS_ERR(t))
1540 return PTR_ERR(t);
1541 if (cpu_online(cpu))
1542 kthread_bind(t, cpu);
1543 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1544 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1545 sp.sched_priority = RCU_KTHREAD_PRIO;
1546 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1547 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1548 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1549 return 0;
1550 }
1551
1552 /*
1553 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1554 * kthreads when needed. We ignore requests to wake up kthreads
1555 * for offline CPUs, which is OK because force_quiescent_state()
1556 * takes care of this case.
1557 */
1558 static int rcu_node_kthread(void *arg)
1559 {
1560 int cpu;
1561 unsigned long flags;
1562 unsigned long mask;
1563 struct rcu_node *rnp = (struct rcu_node *)arg;
1564 struct sched_param sp;
1565 struct task_struct *t;
1566
1567 for (;;) {
1568 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1569 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1570 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1571 raw_spin_lock_irqsave(&rnp->lock, flags);
1572 mask = atomic_xchg(&rnp->wakemask, 0);
1573 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1574 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1575 if ((mask & 0x1) == 0)
1576 continue;
1577 preempt_disable();
1578 t = per_cpu(rcu_cpu_kthread_task, cpu);
1579 if (!cpu_online(cpu) || t == NULL) {
1580 preempt_enable();
1581 continue;
1582 }
1583 per_cpu(rcu_cpu_has_work, cpu) = 1;
1584 sp.sched_priority = RCU_KTHREAD_PRIO;
1585 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1586 preempt_enable();
1587 }
1588 }
1589 /* NOTREACHED */
1590 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1591 return 0;
1592 }
1593
1594 /*
1595 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1596 * served by the rcu_node in question. The CPU hotplug lock is still
1597 * held, so the value of rnp->qsmaskinit will be stable.
1598 *
1599 * We don't include outgoingcpu in the affinity set, use -1 if there is
1600 * no outgoing CPU. If there are no CPUs left in the affinity set,
1601 * this function allows the kthread to execute on any CPU.
1602 */
1603 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1604 {
1605 cpumask_var_t cm;
1606 int cpu;
1607 unsigned long mask = rnp->qsmaskinit;
1608
1609 if (rnp->node_kthread_task == NULL)
1610 return;
1611 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1612 return;
1613 cpumask_clear(cm);
1614 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1615 if ((mask & 0x1) && cpu != outgoingcpu)
1616 cpumask_set_cpu(cpu, cm);
1617 if (cpumask_weight(cm) == 0) {
1618 cpumask_setall(cm);
1619 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1620 cpumask_clear_cpu(cpu, cm);
1621 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1622 }
1623 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1624 rcu_boost_kthread_setaffinity(rnp, cm);
1625 free_cpumask_var(cm);
1626 }
1627
1628 /*
1629 * Spawn a per-rcu_node kthread, setting priority and affinity.
1630 * Called during boot before online/offline can happen, or, if
1631 * during runtime, with the main CPU-hotplug locks held. So only
1632 * one of these can be executing at a time.
1633 */
1634 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1635 struct rcu_node *rnp)
1636 {
1637 unsigned long flags;
1638 int rnp_index = rnp - &rsp->node[0];
1639 struct sched_param sp;
1640 struct task_struct *t;
1641
1642 if (!rcu_scheduler_fully_active ||
1643 rnp->qsmaskinit == 0)
1644 return 0;
1645 if (rnp->node_kthread_task == NULL) {
1646 t = kthread_create(rcu_node_kthread, (void *)rnp,
1647 "rcun%d", rnp_index);
1648 if (IS_ERR(t))
1649 return PTR_ERR(t);
1650 raw_spin_lock_irqsave(&rnp->lock, flags);
1651 rnp->node_kthread_task = t;
1652 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1653 sp.sched_priority = 99;
1654 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1655 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1656 }
1657 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1658 }
1659
1660 /*
1661 * Spawn all kthreads -- called as soon as the scheduler is running.
1662 */
1663 static int __init rcu_spawn_kthreads(void)
1664 {
1665 int cpu;
1666 struct rcu_node *rnp;
1667
1668 rcu_scheduler_fully_active = 1;
1669 for_each_possible_cpu(cpu) {
1670 per_cpu(rcu_cpu_has_work, cpu) = 0;
1671 if (cpu_online(cpu))
1672 (void)rcu_spawn_one_cpu_kthread(cpu);
1673 }
1674 rnp = rcu_get_root(rcu_state);
1675 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1676 if (NUM_RCU_NODES > 1) {
1677 rcu_for_each_leaf_node(rcu_state, rnp)
1678 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1679 }
1680 return 0;
1681 }
1682 early_initcall(rcu_spawn_kthreads);
1683
1684 static void __cpuinit rcu_prepare_kthreads(int cpu)
1685 {
1686 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1687 struct rcu_node *rnp = rdp->mynode;
1688
1689 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1690 if (rcu_scheduler_fully_active) {
1691 (void)rcu_spawn_one_cpu_kthread(cpu);
1692 if (rnp->node_kthread_task == NULL)
1693 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1694 }
1695 }
1696
1697 #else /* #ifdef CONFIG_RCU_BOOST */
1698
1699 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1700 {
1701 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1702 }
1703
1704 static void invoke_rcu_callbacks_kthread(void)
1705 {
1706 WARN_ON_ONCE(1);
1707 }
1708
1709 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1710 {
1711 }
1712
1713 #ifdef CONFIG_HOTPLUG_CPU
1714
1715 static void rcu_stop_cpu_kthread(int cpu)
1716 {
1717 }
1718
1719 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1720
1721 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1722 {
1723 }
1724
1725 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1726 {
1727 }
1728
1729 static int __init rcu_scheduler_really_started(void)
1730 {
1731 rcu_scheduler_fully_active = 1;
1732 return 0;
1733 }
1734 early_initcall(rcu_scheduler_really_started);
1735
1736 static void __cpuinit rcu_prepare_kthreads(int cpu)
1737 {
1738 }
1739
1740 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1741
1742 #ifndef CONFIG_SMP
1743
1744 void synchronize_sched_expedited(void)
1745 {
1746 cond_resched();
1747 }
1748 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1749
1750 #else /* #ifndef CONFIG_SMP */
1751
1752 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1753 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1754
1755 static int synchronize_sched_expedited_cpu_stop(void *data)
1756 {
1757 /*
1758 * There must be a full memory barrier on each affected CPU
1759 * between the time that try_stop_cpus() is called and the
1760 * time that it returns.
1761 *
1762 * In the current initial implementation of cpu_stop, the
1763 * above condition is already met when the control reaches
1764 * this point and the following smp_mb() is not strictly
1765 * necessary. Do smp_mb() anyway for documentation and
1766 * robustness against future implementation changes.
1767 */
1768 smp_mb(); /* See above comment block. */
1769 return 0;
1770 }
1771
1772 /*
1773 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1774 * approach to force grace period to end quickly. This consumes
1775 * significant time on all CPUs, and is thus not recommended for
1776 * any sort of common-case code.
1777 *
1778 * Note that it is illegal to call this function while holding any
1779 * lock that is acquired by a CPU-hotplug notifier. Failing to
1780 * observe this restriction will result in deadlock.
1781 *
1782 * This implementation can be thought of as an application of ticket
1783 * locking to RCU, with sync_sched_expedited_started and
1784 * sync_sched_expedited_done taking on the roles of the halves
1785 * of the ticket-lock word. Each task atomically increments
1786 * sync_sched_expedited_started upon entry, snapshotting the old value,
1787 * then attempts to stop all the CPUs. If this succeeds, then each
1788 * CPU will have executed a context switch, resulting in an RCU-sched
1789 * grace period. We are then done, so we use atomic_cmpxchg() to
1790 * update sync_sched_expedited_done to match our snapshot -- but
1791 * only if someone else has not already advanced past our snapshot.
1792 *
1793 * On the other hand, if try_stop_cpus() fails, we check the value
1794 * of sync_sched_expedited_done. If it has advanced past our
1795 * initial snapshot, then someone else must have forced a grace period
1796 * some time after we took our snapshot. In this case, our work is
1797 * done for us, and we can simply return. Otherwise, we try again,
1798 * but keep our initial snapshot for purposes of checking for someone
1799 * doing our work for us.
1800 *
1801 * If we fail too many times in a row, we fall back to synchronize_sched().
1802 */
1803 void synchronize_sched_expedited(void)
1804 {
1805 int firstsnap, s, snap, trycount = 0;
1806
1807 /* Note that atomic_inc_return() implies full memory barrier. */
1808 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1809 get_online_cpus();
1810
1811 /*
1812 * Each pass through the following loop attempts to force a
1813 * context switch on each CPU.
1814 */
1815 while (try_stop_cpus(cpu_online_mask,
1816 synchronize_sched_expedited_cpu_stop,
1817 NULL) == -EAGAIN) {
1818 put_online_cpus();
1819
1820 /* No joy, try again later. Or just synchronize_sched(). */
1821 if (trycount++ < 10)
1822 udelay(trycount * num_online_cpus());
1823 else {
1824 synchronize_sched();
1825 return;
1826 }
1827
1828 /* Check to see if someone else did our work for us. */
1829 s = atomic_read(&sync_sched_expedited_done);
1830 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1831 smp_mb(); /* ensure test happens before caller kfree */
1832 return;
1833 }
1834
1835 /*
1836 * Refetching sync_sched_expedited_started allows later
1837 * callers to piggyback on our grace period. We subtract
1838 * 1 to get the same token that the last incrementer got.
1839 * We retry after they started, so our grace period works
1840 * for them, and they started after our first try, so their
1841 * grace period works for us.
1842 */
1843 get_online_cpus();
1844 snap = atomic_read(&sync_sched_expedited_started) - 1;
1845 smp_mb(); /* ensure read is before try_stop_cpus(). */
1846 }
1847
1848 /*
1849 * Everyone up to our most recent fetch is covered by our grace
1850 * period. Update the counter, but only if our work is still
1851 * relevant -- which it won't be if someone who started later
1852 * than we did beat us to the punch.
1853 */
1854 do {
1855 s = atomic_read(&sync_sched_expedited_done);
1856 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1857 smp_mb(); /* ensure test happens before caller kfree */
1858 break;
1859 }
1860 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1861
1862 put_online_cpus();
1863 }
1864 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1865
1866 #endif /* #else #ifndef CONFIG_SMP */
1867
1868 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1869
1870 /*
1871 * Check to see if any future RCU-related work will need to be done
1872 * by the current CPU, even if none need be done immediately, returning
1873 * 1 if so. This function is part of the RCU implementation; it is -not-
1874 * an exported member of the RCU API.
1875 *
1876 * Because we have preemptible RCU, just check whether this CPU needs
1877 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1878 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1879 */
1880 int rcu_needs_cpu(int cpu)
1881 {
1882 return rcu_needs_cpu_quick_check(cpu);
1883 }
1884
1885 /*
1886 * Check to see if we need to continue a callback-flush operations to
1887 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1888 * entry is not configured, so we never do need to.
1889 */
1890 static void rcu_needs_cpu_flush(void)
1891 {
1892 }
1893
1894 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1895
1896 #define RCU_NEEDS_CPU_FLUSHES 5
1897 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1898 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1899
1900 /*
1901 * Check to see if any future RCU-related work will need to be done
1902 * by the current CPU, even if none need be done immediately, returning
1903 * 1 if so. This function is part of the RCU implementation; it is -not-
1904 * an exported member of the RCU API.
1905 *
1906 * Because we are not supporting preemptible RCU, attempt to accelerate
1907 * any current grace periods so that RCU no longer needs this CPU, but
1908 * only if all other CPUs are already in dynticks-idle mode. This will
1909 * allow the CPU cores to be powered down immediately, as opposed to after
1910 * waiting many milliseconds for grace periods to elapse.
1911 *
1912 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1913 * disabled, we do one pass of force_quiescent_state(), then do a
1914 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1915 * later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
1916 */
1917 int rcu_needs_cpu(int cpu)
1918 {
1919 int c = 0;
1920 int snap;
1921 int thatcpu;
1922
1923 /* Check for being in the holdoff period. */
1924 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1925 return rcu_needs_cpu_quick_check(cpu);
1926
1927 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1928 for_each_online_cpu(thatcpu) {
1929 if (thatcpu == cpu)
1930 continue;
1931 snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
1932 thatcpu).dynticks);
1933 smp_mb(); /* Order sampling of snap with end of grace period. */
1934 if ((snap & 0x1) != 0) {
1935 per_cpu(rcu_dyntick_drain, cpu) = 0;
1936 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1937 return rcu_needs_cpu_quick_check(cpu);
1938 }
1939 }
1940
1941 /* Check and update the rcu_dyntick_drain sequencing. */
1942 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1943 /* First time through, initialize the counter. */
1944 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1945 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1946 /* We have hit the limit, so time to give up. */
1947 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1948 return rcu_needs_cpu_quick_check(cpu);
1949 }
1950
1951 /* Do one step pushing remaining RCU callbacks through. */
1952 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1953 rcu_sched_qs(cpu);
1954 force_quiescent_state(&rcu_sched_state, 0);
1955 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1956 }
1957 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1958 rcu_bh_qs(cpu);
1959 force_quiescent_state(&rcu_bh_state, 0);
1960 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1961 }
1962
1963 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1964 if (c)
1965 invoke_rcu_core();
1966 return c;
1967 }
1968
1969 /*
1970 * Check to see if we need to continue a callback-flush operations to
1971 * allow the last CPU to enter dyntick-idle mode.
1972 */
1973 static void rcu_needs_cpu_flush(void)
1974 {
1975 int cpu = smp_processor_id();
1976 unsigned long flags;
1977
1978 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
1979 return;
1980 local_irq_save(flags);
1981 (void)rcu_needs_cpu(cpu);
1982 local_irq_restore(flags);
1983 }
1984
1985 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */